WO2020111807A1 - Cathode active material for lithium secondary battery and manufacturing method therefor - Google Patents

Cathode active material for lithium secondary battery and manufacturing method therefor Download PDF

Info

Publication number
WO2020111807A1
WO2020111807A1 PCT/KR2019/016546 KR2019016546W WO2020111807A1 WO 2020111807 A1 WO2020111807 A1 WO 2020111807A1 KR 2019016546 W KR2019016546 W KR 2019016546W WO 2020111807 A1 WO2020111807 A1 WO 2020111807A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
lithium secondary
secondary battery
Prior art date
Application number
PCT/KR2019/016546
Other languages
French (fr)
Korean (ko)
Inventor
진홍수
Original Assignee
진홍수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 진홍수 filed Critical 진홍수
Priority to KR1020197035951A priority Critical patent/KR102385292B1/en
Publication of WO2020111807A1 publication Critical patent/WO2020111807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery and a method for manufacturing the same, and more particularly, to a cathode active material for a lithium secondary battery in a primary particle state and a method for manufacturing the same.
  • the battery is to generate electric power by using a material capable of electrochemical reaction on the positive electrode and the negative electrode.
  • a representative example of such a battery is a lithium secondary battery that generates electrical energy by changing a chemical potential when lithium ions are intercalated/deintercalated at the positive electrode and the negative electrode.
  • the lithium secondary battery is manufactured by using a material capable of reversible intercalation/deintercalation of lithium ions as a positive electrode and a negative electrode active material, and charging an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • the positive electrode active material is a material that plays the most important role in battery performance and safety of a lithium secondary battery, and a chalcogenide compound is used, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1-x Co x Composite metal oxides such as O 2 (0 ⁇ x ⁇ 1) and LiMnO 2 have been studied.
  • Mn-based positive electrode active materials such as LiMn 2 O 4 and LiMnO 2 are also easy to synthesize, relatively inexpensive, and have less pollution to the environment, but are attractive materials, but have a small capacity.
  • Co-based positive electrode active materials such as LiCoO 2 have good electrical conductivity, high battery voltage, and excellent electrode characteristics, but have the disadvantage of being expensive.
  • the development of other positive electrode materials is desired because Co has low reserves and is expensive and has toxicity to the human body.
  • the crystal structure is unstable due to de-lithium during charging, and thus has a disadvantage in that the thermal properties are very poor.
  • the method of reprocessing the metal oxide-based positive electrode active material of the lithium secondary battery reported so far has been studied by a dry treatment method by high-temperature melting, which has the advantage of being capable of mass processing, but is used to decompose each valuable metal component in a molten state. There is a disadvantage in that the purity is lowered and a second refining process through wet processing is required.
  • the positive electrode plate is separated from the waste-lithium secondary battery, the waste-anode active material is recovered after physical treatment, and then leached with acid such as sulfuric acid, nitric acid, hydrochloric acid to ionize metal components.
  • An object of the present invention is to provide a method of manufacturing a positive electrode active material for a recycled lithium secondary battery of a new method in order to solve the problems of the positive electrode active material recycling technology that needs to be melted and recycled as described above.
  • Another object of the present invention is to provide a new positive electrode active material produced by the production method of the present invention and capable of exhibiting a high packing density with a uniform particle size.
  • the present invention provides a positive electrode active material in the form of primary particles, that is, a plurality of non-bonded primary particles in order to solve the above problems.
  • the term “primary particle positive electrode active material” means that each primary particle is not bound to each other.
  • 10 shows a positive electrode active material for a lithium secondary battery according to the present invention. As shown in FIG. 10, unlike the conventional positive electrode active material showing a form of secondary particles in which a plurality of primary particles are aggregated, the positive electrode active material of the present invention is composed of only individual primary particles that are not aggregated.
  • the particle diameter of the “primary particle-shaped positive electrode active material” according to the present invention is characterized in that it is 3 to 20 um.
  • the positive electrode active material for a lithium secondary battery in a primary particle state prepared from the recycled positive electrode active material represented by the following Chemical Formula 1 according to the present invention is characterized by being represented by the following Chemical Formula 2.
  • M is Mn, Al, Mg, Ni, Co, Fe, It is one or more elements selected from the group consisting of Ti, V, Zr and Zn
  • The'primary particle state positive electrode active material' according to the present invention is characterized by including a cation mixed layer.
  • the cation may mean Li + and Ni 2+ in the embodiment according to the present invention.
  • degree of cation mixing in the positive electrode active material structure of Li + and Ni 2+ reversible capacity and life characteristics can be improved.
  • the present invention also relates to the present invention.
  • It provides a method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material comprising; crushing the pellets.
  • the method of manufacturing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention is a technical feature of producing a positive electrode active material for a lithium secondary battery using a recycled positive electrode active material that has been subjected to one or more charge and discharge processes as a raw material.
  • the recycled positive electrode active material as a raw material may be used without limitation as long as it is a positive electrode active material that has been subjected to one or more charge/discharge processes, and may be specifically represented by Chemical Formula 1 as follows.
  • M is Mn, Al, Mg, Ni, Co, Fe, Ti, V, Zr And Zn is at least one element selected from the group consisting of).
  • the recycled positive electrode active material can be used without limitation as long as it contains Ni, and a plurality of recycled positive electrode active materials can be mixed and used. .
  • the metal raw material mixed with the recycled positive electrode active material is not only a lithium raw material, but also various metal materials, such as manganese, aluminum, magnesium, nickel, cobalt, It is characterized by being a material comprising at least one metal selected from the group consisting of iron, titanium, vanadium, zirconium and zinc.
  • the pellet in the step of preparing the mixture into pellets, is produced by applying a pressure of 10 to 500 Mpa of compressive strength.
  • the step of manufacturing the mixture into pellets is a pelletizer, a high pressure press, a hot press , It is characterized in that it is performed using an extruder (extruder) or kneading (kneading) equipment.
  • the density of the pellets in the step of manufacturing the mixture into pellets is characterized in that 1 to 5 g / cc.
  • the step of calcining the pellets by heat treatment is characterized in that it is carried out at 500 to 1,500 °C.
  • the step of pulverizing the pellets may include classifying the calcined pellets.
  • the step of pulverizing or classifying the fired pellets includes a ball mill, an attrition mill, and a disc mill ( It is characterized in that it is carried out by a method that is a disk mill, jet mill (jet mill), jaw crusher, crusher (crusher), classifier (sieve) or a combination thereof.
  • the lithium raw material in the step of solid-phase mixing the recycled positive electrode active material and the lithium raw material containing Ni is LiOH, Li 2 O , Li 2 CO 3 , Li 2 SO 4 and Li-acetate.
  • the step of solid-phase mixing the recycled positive electrode active material and the lithium raw material is characterized by further mixing the Ni raw material.
  • the Ni raw material includes at least one material selected from the group consisting of Ni(OH) 2 , NiSO 4 , NiO and Ni-acetate It is characterized by.
  • the present invention also provides a positive electrode active material for a lithium secondary battery produced from recycled positive electrode active material by the production method of the present invention.
  • the method for manufacturing a positive electrode active material for a lithium secondary battery in a primary particle state represented by Formula 2 prepared from the recycled positive electrode active material represented by Chemical Formula 1 according to the present invention includes the number of moles of lithium of the lithium raw material added, x, Ni raw material When the number of moles of nickel is y, the molar ratio of lithium and nickel in the recycled positive electrode active material as the raw material represented by Chemical Formula 1 and the positive electrode active material in the primary particle state represented by Chemical Formula 2 produced by the production method according to the present invention The molar ratio of lithium and nickel is characterized by satisfying the following equation.
  • the method of manufacturing a positive electrode active material for a lithium secondary battery in a primary particle state from the recycled positive electrode active material according to the present invention uses a recycled positive electrode active material as a raw material, and if necessary, adds a metal raw material including lithium raw material, nickel raw material and other metal Lithium secondary battery comprising a positive electrode active material prepared according to the present invention can be prepared in a'primary particle state positive electrode active material', the particle size is adjusted to a certain range by firing after being produced in a pellet shape, the charging density characteristics And charging/discharging characteristics are improved.
  • 1 is a schematic diagram showing the method of manufacturing the positive electrode active material of the present invention step by step.
  • FIG. 10 shows the structure of a typical positive electrode active material.
  • LiNi 0.6 Co 0.2 Mn 0.2 containing a molar ratio of Ni:Co:Mn of 6:2:2 is mixed with LiOH as a lithium source and Ni(OH) 2 as a nickel source in a solid phase, thereby mixing LiNi 0.7 Co 0.15 Mn 0.15 O 2
  • the composition was mixed while stirring for 1 hour or more.
  • the pulverized particles were prepared in a pellet shape, compressed for 10 sec at 30 Mpa pressure, based on 1 g powder, and then heat treated at 980° C. for 20 hours, then heat treated at 900° C. for 5 hours, and the pellets were crushed into particles.
  • LiNi 0.6 Co 0.2 Mn 0.2 containing a molar ratio of Ni:Co:Mn of 6:2:2 is mixed in a solid phase while stirring LiOH as a lithium source and Ni(OH) 2 as a nickel source for 1 hour or more, and pellet shape It was heat-treated at 980°C for 20 hours in a pulverized state without being prepared, heat-treated at 900°C for 5 hours, and the pellets were crushed into particles.
  • FIG. 4 it can be confirmed that even when a lithium source or a nickel source is not added, it is manufactured in a pellet shape and then heat-treated and pulverized to produce a cathode active material in a primary particle state.
  • the positive electrode active material prepared in the embodiment of the present invention was a positive electrode active material in an undetected primary particle state with an impurity-related peak in the same XRD pattern as a normal layered positive electrode active material.
  • a battery was manufactured using the positive electrode active material prepared in Example 1 and Comparative Example 1.
  • a slurry was prepared by mixing the positive electrode active material prepared in Example 1 and Comparative Example 1 with super-P as a conductive material and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 8:1:1, respectively.
  • the slurry was uniformly applied to an aluminum foil having a thickness of 15 ⁇ m, and vacuum dried at a temperature of 120° C. to prepare an anode.
  • the prepared positive electrode and lithium foil are used as counter electrodes, and a liquid electrolyte solution in which LiPF 6 is dissolved at a concentration of 1.0 M in a solvent in which a porous polyethylene membrane carbonate, ethylmethyl carbonate, and dimethyl carbonate is mixed in a volume ratio of 3:4:3 is used.
  • a half cell was prepared according to a commonly known manufacturing process.
  • Example 1 Comparative Example 1 CHG(mAh/g) 205 210 DIS(mAH/g) 185 190 C.E.(%) 90.2 90.5
  • LiNi 0.84 Co 0.14 Al 0.02 LiCoO 2 per 1 mol was solid-phase mixed at a ratio of 0.33 mol to make a composition of LiNi 0.63 Co 0.355 Al 0.015 O 2 and mixed with stirring for 1 hour or more.
  • LiNi 0.84 Co 0.14 Al 0.02 LiCoO 2 was mixed in a solid phase at a ratio of 0.33 mol to the positive electrode active material and mixed with LiNi 0.63 Co 0.355 Al 0.015 O 2 composition for 1 hour or more while stirring.
  • a battery was manufactured using the positive electrode active material prepared in Example 2.
  • a slurry was prepared by mixing the positive electrode active material prepared in Example 2 and Comparative Example 2 with super-P as a conductive material and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 8:1:1, respectively.
  • the slurry was uniformly applied to an aluminum foil having a thickness of 15 ⁇ m, and vacuum dried at a temperature of 120° C. to prepare an anode.
  • the prepared positive electrode and lithium foil are used as counter electrodes, and a liquid electrolyte solution in which LiPF 6 is dissolved at a concentration of 1.0M in a solvent in which a porous polyethylene membrane carbonate, ethylmethyl carbonate, and dimethyl carbonate is mixed in a volume ratio of 3:4:3 is used.
  • a half cell was prepared according to a commonly known manufacturing process.

Abstract

The present invention relates to a method for manufacturing a cathode active material for a lithium secondary battery from a recovered cathode active material and a cathode active material for a lithium secondary battery manufactured thereby. In the manufacturing method for a cathode active material for a lithium secondary battery from a recovered cathode active material according to the present invention, a desired composition for the cathode active material can be prepared by adding a metal raw material to the recovered cathode active material as necessary and prepared into pellet forms which are then fired to adjust the diameters thereof within a predetermined range. The lithium secondary battery comprising the recovered cathode active material of the present invention can have improved packing density properties and charge-discharge characteristics.

Description

리튬 이차 전지용 양극 활물질 및 이의 제조 방법Positive electrode active material for lithium secondary battery and method for manufacturing same
본 발명은 리튬 이차 전지용 양극 활물질 및 이의 제조 방법에 관한 것으로서, 더욱 상세하세는 일차 입자 상태의 리튬 이차 전지용 양극 활물질 및 이의 제조 방법에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery and a method for manufacturing the same, and more particularly, to a cathode active material for a lithium secondary battery in a primary particle state and a method for manufacturing the same.
전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션/디인터칼레이션될 때의 화학전위(chemical potential)의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다.The battery is to generate electric power by using a material capable of electrochemical reaction on the positive electrode and the negative electrode. A representative example of such a battery is a lithium secondary battery that generates electrical energy by changing a chemical potential when lithium ions are intercalated/deintercalated at the positive electrode and the negative electrode.
리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다The lithium secondary battery is manufactured by using a material capable of reversible intercalation/deintercalation of lithium ions as a positive electrode and a negative electrode active material, and charging an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
양극 활물질은 리튬 이차 전지의 전지 성능 및 안전성에 가장 중요한 역할을 하는 물질로서, 칼코게나이드(chalcogenide) 화합물이 사용되고 있으며, 그 예로 LiCoO 2, LiMn 2O 4, LiNiO 2, LiNi 1-xCo xO 2(0<x<1), LiMnO 2 등의 복합 금속 산화물들이 연구되고 있다. 상기 양극 활물질 중 LiMn 2O 4, LiMnO 2 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 환경에 대한 오염도 적어 매력이 있는 물질이기는 하나, 용량이 작다는 단점을 가지고 있다. LiCoO 2 등의 Co계 양극 활물질은 양호한 전기 전도도와 높은 전지 전압, 그리고 우수한 전극 특성을 보이나 가격이 비싸다는 단점을 갖고 있다. 또한, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극재료 개발이 요망된다. 또한, 충전시의 탈 리튬에 의하여 결정 구조가 불안정하여 열적 특성이 매우 열악한 단점을 가지고 있다.The positive electrode active material is a material that plays the most important role in battery performance and safety of a lithium secondary battery, and a chalcogenide compound is used, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1-x Co x Composite metal oxides such as O 2 (0<x<1) and LiMnO 2 have been studied. Among the positive electrode active materials, Mn-based positive electrode active materials such as LiMn 2 O 4 and LiMnO 2 are also easy to synthesize, relatively inexpensive, and have less pollution to the environment, but are attractive materials, but have a small capacity. Co-based positive electrode active materials such as LiCoO 2 have good electrical conductivity, high battery voltage, and excellent electrode characteristics, but have the disadvantage of being expensive. In addition, the development of other positive electrode materials is desired because Co has low reserves and is expensive and has toxicity to the human body. In addition, the crystal structure is unstable due to de-lithium during charging, and thus has a disadvantage in that the thermal properties are very poor.
이를 개선하기 위해, 니켈의 일부를 전이금속 원소로 치환하여, 발열 시작 온도를 고온 측으로 이동시키거나 급격한 발열을 방지하기 위하여 발열 피크를 완만하게(broad) 하려는 시도가 많이 이루어지고 있다. 즉, 니켈의 일부를 코발트로 치환한 LiNi 1-xCo xO 2(x=0.1-0.3) 물질의 경우 우수한 충방전 특성과 수명 특성을 보이나, 열적 안전성 문제는 해결하지 못하였다. 또한, 뿐만 아니라 유럽 특허 제0872450호에서는 Ni 자리에 Co와 Mn 뿐만 아니라 다른 금속이 치환된 Li aCo bMn cM dNi 1-(b+c+d)O 2(M=B, Al, Si. Fe, Cr, Cu, Zn, W, Ti, Ga) 형을 개시하였으나, 여전히 Ni계의 열적 안전성은 해결하지 못하였다.In order to improve this, many attempts have been made to replace a portion of nickel with a transition metal element, to shift the heating start temperature to the high temperature side, or to broaden the heating peak in order to prevent sudden heating. That is, in the case of a LiNi 1-x Co x O 2 (x=0.1-0.3) material in which a part of nickel is substituted with cobalt, excellent charge/discharge characteristics and life characteristics are shown, but thermal safety problems have not been solved. Further, as well as in European Patent No. 0.87245 million of the other metals as well as Co and Mn to Ni spot substituted Li a Co b Mn c M d Ni 1- (b + c + d) O 2 (M = B, Al, Si. Fe, Cr, Cu, Zn, W, Ti, Ga) types have been disclosed, but the thermal stability of Ni-based still has not been solved.
최근 본격적으로 전기자동차용 리튬이차전지의 생산과 사용량이 증가하면서 그 폐기량도 증가할 것이므로 이의 처리를 위한 폐리튬이차전지의 재처리 및 재활용의 기술의 필요성이 대두되고 있다. 또한 이차전지 및 소재 관련업계는 제품 생산 단가를 내리려는 경쟁이 치열하여 저가의 원재료, 저가 공정, 수율 향상 등의 노력이 절실한 상황일 뿐만 아니라 이차전지 수요가 증가하면서 사용 후 폐전지와 제조공정에서 발생되는 불량품, 전극 등을 재활용하려는 시도가 증가하고 있다. Recently, as the production and use of lithium secondary batteries for electric vehicles have increased, the amount of their disposal will also increase, so the need for reprocessing and recycling of waste lithium secondary batteries for its treatment has emerged. In addition, in the industry related to secondary batteries and materials, competition to reduce the production cost of products is fierce, making efforts for low-cost raw materials, low-cost processes, and yield improvement, as well as increasing demand for secondary batteries. There are increasing attempts to recycle defective products, electrodes, and the like.
현재까지 보고된 상기의 리튬이차전지 금속산화물계 양극활물질의 재처리 방법은 고온 용융에 의한 건식 처리방법이 연구되고 있으며 이는 대량 처리가 가능하다는 장점이 있으나 용융상태에서 각 유가금속 성분을 분해하는 것에 한계가 있으므로 순도가 낮아져 습식처리를 통한 2차 정련 과정이 필요하다는 단점이 있다. 또한, 습식 제련을 통한 유가금속 회수의 경우 폐-리튬 이차전지로부터 양극 극판을 분리하고 물리적 처리 후 폐-양극활물질을 회수한 후 이를 황산 또는 질산, 염산 등의 산으로 침출하여 금속 성분을 이온화한 후 선택적인 금속 이온 회수를 위해 용매추출 등의 추가적인 처리공정이 수반될 뿐만 아니라 이로 인해 발생되는 폐수가 많으며 다량의 산을 사용함에 따라 대기 중으로 증발 확산되는 산증기에 의하여 심각한 환경오염 유발과 설비 부식 등의 문제가 심각하다. 또한, 유가금속의 회수를 위한 설비 및 시설 투자비가 높아 경제적이지 못하다는 단점이 있다.The method of reprocessing the metal oxide-based positive electrode active material of the lithium secondary battery reported so far has been studied by a dry treatment method by high-temperature melting, which has the advantage of being capable of mass processing, but is used to decompose each valuable metal component in a molten state. There is a disadvantage in that the purity is lowered and a second refining process through wet processing is required. In addition, in the case of recovering valuable metals through wet smelting, the positive electrode plate is separated from the waste-lithium secondary battery, the waste-anode active material is recovered after physical treatment, and then leached with acid such as sulfuric acid, nitric acid, hydrochloric acid to ionize metal components. For selective metal ion recovery afterwards, additional treatment processes such as solvent extraction are not only involved, but also a large amount of waste water is generated, and acid vapors that evaporate and diffuse into the atmosphere by using a large amount of acid cause serious environmental pollution and equipment corrosion. The back problem is serious. In addition, there is a disadvantage that it is not economical due to the high investment cost of facilities and facilities for recovering valuable metals.
본 발명은 상기와 같은 종래 기존 소재를 녹여서 재활용해야 하는 양극활물질 재활용 기술의 문제점을 해결하기 위하여 새로운 방법의 재활용 리튬 이차 전지용 양극 활물질을 제조하는 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method of manufacturing a positive electrode active material for a recycled lithium secondary battery of a new method in order to solve the problems of the positive electrode active material recycling technology that needs to be melted and recycled as described above.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조되어 균일한 입자 크기로 높은 충전 밀도를 나타낼 수 있는 새로운 양극활물질을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a new positive electrode active material produced by the production method of the present invention and capable of exhibiting a high packing density with a uniform particle size.
본 발명은 상기와 같은 과제를 해결하기 위하여 일차 입자 형태, 즉, 복수개의 상호간 결합되지 않은 일차 입자 상태의 양극활물질을 제공한다. The present invention provides a positive electrode active material in the form of primary particles, that is, a plurality of non-bonded primary particles in order to solve the above problems.
종래 양극활물질의 경우 복수개의 일차 입자가 응집되어 이차 입자 구조를 형성하는데 비해, 본 발명에 있어서, ‘일차 입자 상태의 양극활물질’은 상호간 결합되지 않은 각각의 일차 입자로 구성된 것을 의미한다. 본 발명에 의한 리튬 이차 전지용 양극 활물질을 도 10에 나타내었다. 도 10에서 보는 바와 같이 종래 양극활물질은 복수개의 일차 입자가 응집된 이차 입자의 형태를 나타내는 것과 달리 본원 발명의 양극활물질은 응집되지 않은 개개의 일차 입자로만 구성된다.In the case of a conventional positive electrode active material, a plurality of primary particles aggregate to form a secondary particle structure, whereas in the present invention, the term “primary particle positive electrode active material” means that each primary particle is not bound to each other. 10 shows a positive electrode active material for a lithium secondary battery according to the present invention. As shown in FIG. 10, unlike the conventional positive electrode active material showing a form of secondary particles in which a plurality of primary particles are aggregated, the positive electrode active material of the present invention is composed of only individual primary particles that are not aggregated.
본 발명에 의한 ‘일차 입자 상태의 양극활물질’의 입경은 3 내지 20 um 인 것을 특징으로 한다.The particle diameter of the “primary particle-shaped positive electrode active material” according to the present invention is characterized in that it is 3 to 20 um.
본 발명에 의하여 하기 화학식 1로 표시되는 재활용 양극활물질로부터 제조된 일차 입자 상태의 리튬 이차 전지용 양극 활물질은 아래 화학식 2로 표시되는 것을 특징으로 한다. The positive electrode active material for a lithium secondary battery in a primary particle state prepared from the recycled positive electrode active material represented by the following Chemical Formula 1 according to the present invention is characterized by being represented by the following Chemical Formula 2.
[화학식 2] Li 1+a’Ni b’Co c’M 1-(b’+c’)O 2 [Chemical Formula 2] Li 1 + a 'Ni b' Co c 'M 1- (b' + c ') O 2
(상기 화학식 2에서 -0.1≤a’≤0.5, 0.05≤b’≤0.8, 0.05≤c’≤0.5, b’+c’≤1 이고, M은 Mn, Al, Mg, Ni, Co, Fe, Ti, V, Zr 및 Zn로 이루어지는 군에서 선택된 1 종 이상의 원소이다)(In Formula 2, -0.1≤a'≤0.5, 0.05≤b'≤0.8, 0.05≤c'≤0.5, b'+c'≤1, M is Mn, Al, Mg, Ni, Co, Fe, It is one or more elements selected from the group consisting of Ti, V, Zr and Zn)
본 발명에 의한 ‘일차 입자 상태의 양극활물질’은 양이온 혼합층을 포함하는 것을 특징으로 한다. 상기 양이온은 본 발명에 따른 실시예에서는 Li + 와 Ni 2+를 의미하는 것일 수 있다. Li + 와 Ni 2+의 양극활물질 구조 내에서의 양이온 혼합(cation mixing)의 정도에 따라 가역용량 및 수명특성을 향상시킬 수 있다. The'primary particle state positive electrode active material' according to the present invention is characterized by including a cation mixed layer. The cation may mean Li + and Ni 2+ in the embodiment according to the present invention. Depending on the degree of cation mixing in the positive electrode active material structure of Li + and Ni 2+ , reversible capacity and life characteristics can be improved.
본 발명은 또한, The present invention also
원료로서 재활용 양극활물질 및 금속 원료 물질을 고상 혼합하는 단계;Solid-phase mixing of recycled positive electrode active material and metal raw material as raw materials;
상기 혼합물을 펠렛으로 제조하는 단계; Preparing the mixture into pellets;
상기 펠렛을 열처리하여 리튬 복합 산화물을 수득하는 단계; 및 Heat-treating the pellets to obtain a lithium composite oxide; And
상기 펠렛을 분쇄하는 단계;를 포함하는 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법을 제공한다. It provides a method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material comprising; crushing the pellets.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법은 원료로서 1회 이상의 충방전 공정이 수행된 재활용 양극활물질을 사용하여 리튬 이차 전지용 양극 활물질을 제조하는 것을 기술적 특징으로 한다. The method of manufacturing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention is a technical feature of producing a positive electrode active material for a lithium secondary battery using a recycled positive electrode active material that has been subjected to one or more charge and discharge processes as a raw material.
본 발명에 의한 제조 방법에 있어서 원료로서의 재활용 양극활물질은 1회 이상의 충방전 공정이 수행된 양극활물질이라면 제한없이 사용될 수 있으며, 구체적으로 아래와 같이 화학식 1로 표시될 수 있다. In the manufacturing method according to the present invention, the recycled positive electrode active material as a raw material may be used without limitation as long as it is a positive electrode active material that has been subjected to one or more charge/discharge processes, and may be specifically represented by Chemical Formula 1 as follows.
[화학식 1] Li 1+aNi bCo cM 1-(b+c)O 2 [Formula 1] Li 1+a Ni b Co c M 1-(b+c) O 2
(상기 화학식 1에서 -0.1≤a≤0.5, 0≤b≤0.8, 0≤c≤0.8, b+c≤1 이고, M은 Mn, Al, Mg, Ni, Co, Fe, Ti, V, Zr 및 Zn로 이루어지는 군에서 선택된 1종 이상의 원소이다).(In Formula 1, -0.1≤a≤0.5, 0≤b≤0.8, 0≤c≤0.8, b+c≤1, M is Mn, Al, Mg, Ni, Co, Fe, Ti, V, Zr And Zn is at least one element selected from the group consisting of).
즉, 본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질의 제조 방법에 있어서 재활용 양극활물질은 Ni을 포함하고 있는 한 제한되지 않고 사용되는 것이 가능하며, 복수개의 재활용 양극활물질을 혼합하여 사용할 수 있다.That is, in the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the recycled positive electrode active material can be used without limitation as long as it contains Ni, and a plurality of recycled positive electrode active materials can be mixed and used. .
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질의 제조 방법에 있어서, 상기 재활용 양극활물질과 혼합되는 금속 원료 물질은 리튬 원료 물질뿐만 아니라 다양한 금속 물질, 예컨대 망간, 알루미늄, 마그네슘, 니켈, 코발트, 철, 티타늄, 바나듐, 지르코늄 및 아연으로 구성된 군으로부터 선택되는 하나 이상의 금속을 포함하는 물질인 것을 특징으로 한다.In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the metal raw material mixed with the recycled positive electrode active material is not only a lithium raw material, but also various metal materials, such as manganese, aluminum, magnesium, nickel, cobalt, It is characterized by being a material comprising at least one metal selected from the group consisting of iron, titanium, vanadium, zirconium and zinc.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 혼합물을 펠렛으로 제조하는 단계에서 펠렛은 압축 강도 10 내지 500 Mpa의 압력을 인가하여 제조되는 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, in the step of preparing the mixture into pellets, the pellet is produced by applying a pressure of 10 to 500 Mpa of compressive strength.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 혼합물을 펠렛으로 제조하는 단계는 펠렛타이저(pelletizer), 고압프레스(high pressure press), 핫프레스(hot press), 압출기(extruder) 또는 니딩(kneading) 장비를 이용하여 수행되는 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the step of manufacturing the mixture into pellets is a pelletizer, a high pressure press, a hot press , It is characterized in that it is performed using an extruder (extruder) or kneading (kneading) equipment.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 혼합물을 펠렛으로 제조하는 단계에서 상기 펠릿의 밀도는 1 내지 5 g/cc인 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the density of the pellets in the step of manufacturing the mixture into pellets is characterized in that 1 to 5 g / cc.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 펠릿을 열처리하여 소성하는 단계는, 500 내지 1,500℃에서 수행되는 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the step of calcining the pellets by heat treatment is characterized in that it is carried out at 500 to 1,500 ℃.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 펠렛을 분쇄하는 단계는 상기 소성된 펠릿을 분급하는 단계를 포함하는 것이 가능하다. In the method of manufacturing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the step of pulverizing the pellets may include classifying the calcined pellets.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 소성된 펠릿을 분쇄 또는 분급하는 단계는, 볼밀(ball mill), 어트리션 밀(attrition mill), 디스크 밀(disk mill), 제트 밀(jet mill), 죠크러셔(jaw crusher), 해쇄기(crusher), 분급기(sieve) 또는 이들의 조합인 방법에 의해 수행되는 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the step of pulverizing or classifying the fired pellets includes a ball mill, an attrition mill, and a disc mill ( It is characterized in that it is carried out by a method that is a disk mill, jet mill (jet mill), jaw crusher, crusher (crusher), classifier (sieve) or a combination thereof.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 Ni 을 포함하는 재활용 양극활물질 원료 및 리튬 원료 물질을 고상 혼합하는 단계에서의 상기 리튬 원료 물질은 LiOH, Li 2O, Li 2CO 3, Li 2SO 4 및 Li-acetate로 이루어진 그룹에서 선택되는 하나 이상의 물질을 포함하는 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the lithium raw material in the step of solid-phase mixing the recycled positive electrode active material and the lithium raw material containing Ni is LiOH, Li 2 O , Li 2 CO 3 , Li 2 SO 4 and Li-acetate.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 재활용 양극활물질 원료 및 리튬 원료 물질을 고상 혼합하는 단계에서는 Ni 원료 물질을 더 혼합하는 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the step of solid-phase mixing the recycled positive electrode active material and the lithium raw material is characterized by further mixing the Ni raw material.
본 발명에 의한 재활용 양극활물질로부터 리튬 이차 전지용 양극 활물질을 제조하는 방법에 있어서, 상기 Ni 원료 물질은 Ni(OH) 2, NiSO 4, NiO 및 Ni-acetate로 이루어진 그룹에서 선택되는 하나 이상의 물질을 포함하는 것을 특징으로 한다.In the method for producing a positive electrode active material for a lithium secondary battery from the recycled positive electrode active material according to the present invention, the Ni raw material includes at least one material selected from the group consisting of Ni(OH) 2 , NiSO 4 , NiO and Ni-acetate It is characterized by.
본 발명은 또한, 본 발명의 제조 방법에 의하여 재활용 양극활물질로부터 제조된 리튬 이차 전지용 양극 활물질을 제공한다. The present invention also provides a positive electrode active material for a lithium secondary battery produced from recycled positive electrode active material by the production method of the present invention.
본 발명에 의한 상기 화학식 1로 표시되는 재활용 양극활물질로부터 제조된 화학식 2로 표시되는 일차 입자 상태의 리튬 이차 전지용 양극 활물질의 제조 방법은, 첨가되는 상기 리튬 원료 물질의 리튬 몰수를 x, Ni 원료 물질의 니켈 몰수를 y 라고 할 때 상기 화학식 1로 표시되는 원료로서의 재활용 양극활물질에서의 리튬과 니켈의 몰비와 본 발명에 의한 제조 방법에 의하여 제조되는 화학식 2로 표시되는 일차 입자 상태의 양극활물질에서의 리튬과 니켈의 몰비는 아래 식을 만족하는 것을 특징으로 한다.The method for manufacturing a positive electrode active material for a lithium secondary battery in a primary particle state represented by Formula 2 prepared from the recycled positive electrode active material represented by Chemical Formula 1 according to the present invention includes the number of moles of lithium of the lithium raw material added, x, Ni raw material When the number of moles of nickel is y, the molar ratio of lithium and nickel in the recycled positive electrode active material as the raw material represented by Chemical Formula 1 and the positive electrode active material in the primary particle state represented by Chemical Formula 2 produced by the production method according to the present invention The molar ratio of lithium and nickel is characterized by satisfying the following equation.
a’ = a + xa’ = a + x
b’ = b + yb’ = b + y
본 발명에 의한 재활용 양극활물질로부터 일차 입자 상태의 리튬 이차 전지용 양극 활물질을 제조하는 방법은 원료로서 재활용 양극활물질을 사용하고, 필요에 따라 리튬원료, 니켈원료 및 기타 금속을 포함하는 금속원료를 추가하여 원하는 조성의 ‘일차 입자 상태의 양극활물질’을 제조할 수 있으며, 펠렛 형상으로 제조후 소성함으로써 입경이 일정 범위로 조절되어, 본 발명에 의하여 제조된 양극활물질을 포함하는 리튬이차전지는 충전 밀도 특성 및 충방전 특성이 개선되는 효과를 나타낸다.The method of manufacturing a positive electrode active material for a lithium secondary battery in a primary particle state from the recycled positive electrode active material according to the present invention uses a recycled positive electrode active material as a raw material, and if necessary, adds a metal raw material including lithium raw material, nickel raw material and other metal Lithium secondary battery comprising a positive electrode active material prepared according to the present invention can be prepared in a'primary particle state positive electrode active material', the particle size is adjusted to a certain range by firing after being produced in a pellet shape, the charging density characteristics And charging/discharging characteristics are improved.
도 1은 본 발명의 양극 활물질의 제조방법을 단계별로 나타낸 모식도이다.1 is a schematic diagram showing the method of manufacturing the positive electrode active material of the present invention step by step.
도 2 내지 도 4는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 SEM 사진을 나타낸다. 2 to 4 show SEM pictures of the positive electrode active material prepared in one embodiment and a comparative example of the present invention.
도 5 및 도 6은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 XRD 측정 결과를 나타낸다.5 and 6 show the XRD measurement results of the positive electrode active material prepared in Examples and Comparative Examples of the present invention.
도 7 내지 도 9는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 전기화학적 특성을 측정한 결과를 나타낸다.7 to 9 show the results of measuring the electrochemical properties of the positive electrode active material prepared in Examples and Comparative Examples of the present invention.
도 10은 일반적인 양극활물질의 구조를 도시한 것이다.10 shows the structure of a typical positive electrode active material.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by examples. However, the present invention is not limited by the following examples.
<실시예 1><Example 1>
Ni:Co:Mn의 몰비가 6:2:2로 포함하는 LiNi 0.6Co 0.2Mn 0.2 양극활물질에 리튬원으로서 LiOH 및 니켈원으로서 Ni(OH) 2을 고상혼합하여 LiNi 0.7Co 0.15Mn 0.15O 2 조성으로 1시간 이상 교반하면서 혼합하였다. LiNi 0.6 Co 0.2 Mn 0.2 containing a molar ratio of Ni:Co:Mn of 6:2:2 is mixed with LiOH as a lithium source and Ni(OH) 2 as a nickel source in a solid phase, thereby mixing LiNi 0.7 Co 0.15 Mn 0.15 O 2 The composition was mixed while stirring for 1 hour or more.
분쇄된 입자를 펠렛 형상으로 제조하고 1 g 파우더 기준, 30 Mpa 압력으로 10 sec 압착한 후 980℃ 에서 20 시간 동안 열처리 후, 900℃ 에서 5 시간 동안 열처리하고, 펠렛을 입자로 분쇄하였다. The pulverized particles were prepared in a pellet shape, compressed for 10 sec at 30 Mpa pressure, based on 1 g powder, and then heat treated at 980° C. for 20 hours, then heat treated at 900° C. for 5 hours, and the pellets were crushed into particles.
<비교예 1><Comparative Example 1>
Ni:Co:Mn의 몰비가 6:2:2로 포함하는 LiNi 0.6Co 0.2Mn 0.2 양극활물질에 리튬원으로서 LiOH 및 니켈원으로서 Ni(OH) 2을 1시간 이상 교반하면서 고상혼합하고, 펠렛 형상으로 제조하지 않고 분쇄된 상태로 980℃ 에서 20 시간 동안 열처리 후, 900℃ 에서 5 시간 동안 열처리하고, 펠렛을 입자로 분쇄하였다.LiNi 0.6 Co 0.2 Mn 0.2 containing a molar ratio of Ni:Co:Mn of 6:2:2 is mixed in a solid phase while stirring LiOH as a lithium source and Ni(OH) 2 as a nickel source for 1 hour or more, and pellet shape It was heat-treated at 980°C for 20 hours in a pulverized state without being prepared, heat-treated at 900°C for 5 hours, and the pellets were crushed into particles.
<실험예> SEM 사진 측정<Experimental Example> SEM photograph measurement
상기 실시예 1 및 비교예 1에서 제조된 입자의 SEM 사진을 측정하고 그 결과를 도 2 내지 도 4에 나타내었다. The SEM photographs of the particles prepared in Example 1 and Comparative Example 1 were measured, and the results are shown in FIGS. 2 to 4.
도 2에서 보는 바와 같이 본 발명의 실시예에 의하여 제조된 일차 입자 상태의 양극활물질의 경우 입자 크기가 평균 3 내지 5 um인 일차 입자 상태의 양극활물질임을 확인할 수 있었다. As shown in Figure 2, in the case of the positive electrode active material in the primary particle state prepared according to the embodiment of the present invention, it was confirmed that the positive electrode active material in the primary particle state having an average particle size of 3 to 5 um.
도 3에서 펠렛을 제조하지 않은 비교예 1의 경우 1차 입자가 응집된 2차 입자로 일차 입자 상태의 양극활물질로 제조되지 않는 것을 확인할 수 있었다. In FIG. 3, in the case of Comparative Example 1 in which pellets were not prepared, it was confirmed that the primary particles were aggregated secondary particles and were not prepared as a cathode active material in a primary particle state.
도 4에서 리튬원이나 니켈원을 추가하지 않은 상태에서도 펠렛 형상으로 제조후 열처리하여 분쇄하는 경우 일차 입자 상태의 양극활물질 형상으로 제조되는 것을 확인할 수 있었다. In FIG. 4, it can be confirmed that even when a lithium source or a nickel source is not added, it is manufactured in a pellet shape and then heat-treated and pulverized to produce a cathode active material in a primary particle state.
<실험예> XRD 측정<Experimental Example> XRD measurement
상기 실시예 1 및 비교예 1에서 제조된 입자의 SEM 사진을 측정하고 그 결과를 도 5 및 도 6에 나타내었다. The SEM photographs of the particles prepared in Example 1 and Comparative Example 1 were measured, and the results are shown in FIGS. 5 and 6.
도 5에서 보는 바와 같이 본 발명의 실시예에서 제조된 양극활물질은 일반적인 층상 양극활물질과 같은 XRD 패턴으로 불순물 관련한 피크는 검출되지 않은 일차 입자 상태의 양극활물질임을 확인할 수 있었다. As shown in FIG. 5, it was confirmed that the positive electrode active material prepared in the embodiment of the present invention was a positive electrode active material in an undetected primary particle state with an impurity-related peak in the same XRD pattern as a normal layered positive electrode active material.
또한, 도 6에서 보는 바와 같이 펠렛으로 제조하지 않은 비교예의 경우 본 발명의 실시예에서보다 2θ = 45에서 검출되는 피크 강도가 높은 것을 확인할 수 있었다. In addition, as shown in FIG. 6, it was confirmed that the peak intensity detected at 2θ=45 was higher than that of the example of the present invention in the case of the comparative example not prepared from pellets.
<제조예> 리튬 이차 전지의 제조<Production Example> Preparation of lithium secondary battery
상기 실시예 1 및 비교예 1에서 제조된 양극활물질을 이용하여 전지를 제조하였다. A battery was manufactured using the positive electrode active material prepared in Example 1 and Comparative Example 1.
상기 실시예 1 및 비교예 1에서 제조된 양극활물질과 도전재로 슈퍼-P, 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 각각 8:1:1의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 15 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 120℃의 온도에서 진공 건조하여 양극을 제조하였다.A slurry was prepared by mixing the positive electrode active material prepared in Example 1 and Comparative Example 1 with super-P as a conductive material and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 8:1:1, respectively. The slurry was uniformly applied to an aluminum foil having a thickness of 15 μm, and vacuum dried at a temperature of 120° C. to prepare an anode.
상기 제조된 양극과 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막 카보네이트, 에틸메틸 카보네이트 및 디메틸카보네이트를 3:4:3의 부피비로 혼합한 용매에 LiPF 6가 1.0 M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조 공정에 따라 반쪽 셀을 제조하였다.The prepared positive electrode and lithium foil are used as counter electrodes, and a liquid electrolyte solution in which LiPF 6 is dissolved at a concentration of 1.0 M in a solvent in which a porous polyethylene membrane carbonate, ethylmethyl carbonate, and dimethyl carbonate is mixed in a volume ratio of 3:4:3 is used. Thus, a half cell was prepared according to a commonly known manufacturing process.
<실험예> 전지 특성 측정 - 충방전 특성<Experimental Example> Measurement of battery characteristics-Charging and discharging characteristics
본 발명의 일 실시예에 의하여 재활용 제조된 실시예 1의 활물질을 포함하는 전지의 충방전 특성을 측정하고 그 결과를 아래 표 1에 나타내었다. The charge and discharge characteristics of the battery containing the active material of Example 1 recycled and manufactured according to an embodiment of the present invention were measured and the results are shown in Table 1 below.
비교예로서 시판 제품인 LiNi 0.7Co 0.1Mn 0.1O 2 조성을 사용한 결과 본 발명의 실시예에 의하여 재활용되어 제조되는 양극활물질과 시판 제품의 충방전 특성이 유사하다는 것을 확인할 수 있다.As a comparative example, as a result of using a commercially available product LiNi 0.7 Co 0.1 Mn 0.1 O 2 composition, it can be confirmed that the charge and discharge characteristics of the cathode active material and commercially available products produced and recycled according to the examples of the present invention are similar.
실시예 1Example 1 비교예 1Comparative Example 1
CHG(mAh/g)CHG(mAh/g) 205205 210210
DIS(mAH/g)DIS(mAH/g) 185185 190190
C.E.(%)C.E.(%) 90.290.2 90.590.5
<실시예 2><Example 2>
LiNi 0.84Co 0.14Al 0.02 1 몰당 LiCoO 2을 0.33 몰의 비율로 고상혼합하여 LiNi 0.63Co 0.355Al 0.015O 2 조성으로 만들고, 1시간 이상 교반하면서 혼합하였다. LiNi 0.84 Co 0.14 Al 0.02 LiCoO 2 per 1 mol was solid-phase mixed at a ratio of 0.33 mol to make a composition of LiNi 0.63 Co 0.355 Al 0.015 O 2 and mixed with stirring for 1 hour or more.
펠렛 형상으로 제조하고 1 g 파우더 기준, 30 Mpa 압력으로 10 sec 압착한 후 900℃ 에서 5 시간 동안 열처리하고, 펠렛을 입자로 분쇄하였다. Prepared in the form of pellets, and pressed for 10 sec at 30 Mpa pressure based on 1 g powder, and then heat treated at 900° C. for 5 hours, and the pellets were crushed into particles.
<비교예 2><Comparative Example 2>
LiNi 0.84Co 0.14Al 0.02 양극활물질에 LiCoO 2을 0.33 몰의 비율로 고상혼합하여 LiNi 0.63Co 0.355Al 0.015O 2 조성으로 1시간 이상 교반하면서 혼합하였다. LiNi 0.84 Co 0.14 Al 0.02 LiCoO 2 was mixed in a solid phase at a ratio of 0.33 mol to the positive electrode active material and mixed with LiNi 0.63 Co 0.355 Al 0.015 O 2 composition for 1 hour or more while stirring.
펠렛 형상으로 제조하지 않고 분쇄된 상태로 900℃ 에서 5 시간 동안 열처리하고, 펠렛을 입자로 분쇄하였다.It was heat treated at 900° C. for 5 hours in a pulverized state without being prepared in a pellet shape, and the pellet was pulverized into particles.
<제조예> 리튬 이차 전지의 제조<Production Example> Preparation of lithium secondary battery
상기 실시예 2 에서 제조된 양극활물질을 이용하여 전지를 제조하였다. A battery was manufactured using the positive electrode active material prepared in Example 2.
상기 실시예 2 및 비교예 2에서 제조된 양극활물질과 도전재로 슈퍼-P, 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 각각 8:1:1의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 15 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 120℃의 온도에서 진공 건조하여 양극을 제조하였다.A slurry was prepared by mixing the positive electrode active material prepared in Example 2 and Comparative Example 2 with super-P as a conductive material and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 8:1:1, respectively. The slurry was uniformly applied to an aluminum foil having a thickness of 15 μm, and vacuum dried at a temperature of 120° C. to prepare an anode.
상기 제조된 양극과 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막 카보네이트, 에틸메틸 카보네이트 및 디메틸카보네이트를 3:4:3의 부피비로 혼합한 용매에 LiPF 6가 1.0M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조 공정에 따라 반쪽 셀을 제조하였다.The prepared positive electrode and lithium foil are used as counter electrodes, and a liquid electrolyte solution in which LiPF 6 is dissolved at a concentration of 1.0M in a solvent in which a porous polyethylene membrane carbonate, ethylmethyl carbonate, and dimethyl carbonate is mixed in a volume ratio of 3:4:3 is used. Thus, a half cell was prepared according to a commonly known manufacturing process.
<실험예> 전지 특성 측정 - 충방전 특성<Experimental Example> Measurement of battery characteristics-Charging and discharging characteristics
본 발명의 일 실시예에 의하여 재활용 제조된 실시예 2의 활물질을 포함하는 전지의 충방전 특성을 측정하고 그 결과를 도 7 내지 도 9에 나타내었다.Charge and discharge characteristics of the battery containing the active material of Example 2 recycled and manufactured according to an embodiment of the present invention were measured and the results are shown in FIGS. 7 to 9.

Claims (14)

  1. 서로 응집되지 않은 복수개의 일차 입자를 포함하는, Comprising a plurality of primary particles that are not aggregated with each other,
    리튬 이차 전지용 양극 활물질.Positive electrode active material for lithium secondary batteries.
  2. 제 1항에 있어서, According to claim 1,
    상기 리튬 이차 전지용 양극 활물질의 입경은 3 내지 20 um인 것인,The particle size of the positive electrode active material for a lithium secondary battery is 3 to 20 um,
    리튬 이차 전지용 양극 활물질.Positive electrode active material for lithium secondary batteries.
  3. 제 1항에 있어서, According to claim 1,
    상기 리튬 이차 전지용 양극 활물질은 양이온 혼합층을 포함하는 것인,The positive electrode active material for a lithium secondary battery would include a cation mixed layer,
    리튬 이차 전지용 양극활물질.Positive electrode active material for lithium secondary batteries.
  4. 제 1 양극활물질 및 금속 원료 물질을 혼합하는 단계;Mixing a first positive electrode active material and a metal raw material;
    상기 혼합물을 펠렛으로 제조하는 단계; Preparing the mixture into pellets;
    상기 펠렛을 열처리하여 리튬 복합 산화물을 수득하는 단계; 및 Heat-treating the pellets to obtain a lithium composite oxide; And
    상기 펠렛을 분쇄하는 단계;를 포함하는,Comprising the step of grinding the pellet; containing,
    제 1 항에 의한 리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for producing a positive electrode active material for a lithium secondary battery according to claim 1.
  5. 제 4 항에 있어서,The method of claim 4,
    상기 금속 원료 물질은 리튬, 망간, 알루미늄, 마그네슘, 니켈, 코발트, 철, 티타늄, 바나듐, 지르코늄 및 아연으로 구성된 군으로부터 선택되는 하나 이상의 금속을 포함하는 물질인 것인,The metal raw material is a material containing at least one metal selected from the group consisting of lithium, manganese, aluminum, magnesium, nickel, cobalt, iron, titanium, vanadium, zirconium and zinc,
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
  6. 제 4 항에 있어서,The method of claim 4,
    상기 제 1 양극활물질은 하기 화학식 1로 표시되는 것인, The first positive electrode active material is represented by the following formula (1),
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
    [화학식 1] Li 1+aNi bCo cM 1-(b+c)O 2 [Formula 1] Li 1+a Ni b Co c M 1-(b+c) O 2
    (상기 화학식 1에서 -0.1≤a≤0.5, 0≤b≤0.8, 0≤c≤0.8, b+c≤1 이고, M 은 Mn, Al, Mg, Ni, Co, Fe, Ti, V, Zr 및 Zn로 이루어지는 군에서 선택된 1 종 이상의 원소이다)(In the above formula 1 -0.1≤a≤0.5, 0≤b≤0.8, 0≤c≤0.8, b + c≤1, M is Mn, Al, Mg, Ni, Co, Fe, Ti, V, Zr And Zn is one or more elements selected from the group consisting of)
  7. 제 4 항에 있어서, The method of claim 4,
    상기 혼합물을 펠렛으로 제조하는 단계에서 펠렛은 압축 강도 1 내지 20톤/cm 2 에 의한 압축에 의해 제조되는 것인,In the step of preparing the mixture into pellets, the pellets are prepared by compression with a compressive strength of 1 to 20 ton/cm 2 .
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
  8. 제 4 항에 있어서, The method of claim 4,
    상기 혼합물을 펠렛으로 제조하는 단계는 펠렛타이저(pelletizer), 고압프레스(high pressure press), 핫프레스(hot press), 압출기(extruder) 또는 니딩(kneading) 장비를 이용하여 수행되는 것인,The step of preparing the mixture into pellets is carried out using a pelletizer, a high pressure press, a hot press, an extruder or a kneading equipment,
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
  9. 제 4 항에 있어서, The method of claim 4,
    상기 혼합물을 펠렛으로 제조하는 단계에서 상기 펠릿의 밀도는 10 내지 20 g/cc인 것인,In the step of preparing the mixture into pellets, the density of the pellets is 10 to 20 g/cc,
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
  10. 제 4 항에 있어서, The method of claim 4,
    상기 펠렛을 열처리하여 소성하는 단계는 700 내지 1,500℃에서 수행되는 것인, The step of calcining the pellets by heat treatment is performed at 700 to 1,500°C.
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
  11. 제 4 항에 있어서, The method of claim 4,
    상기 소성된 펠렛을 분쇄하는 단계는 볼밀(ball mill), 어트리션 밀(attrition mill), 디스크 밀(disk mill), 제트 밀(jet mill), 죠크러셔(jaw crusher), 해쇄기(crusher), 분급기(sieve) 또는 이들의 조합인 방법에 의해 수행되는 것인,The step of pulverizing the calcined pellets includes a ball mill, an attrition mill, a disk mill, a jet mill, a jaw crusher, and a crusher. , Is performed by a method that is a classifier (sieve) or a combination thereof,
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
  12. 제 4 항에 있어서, The method of claim 4,
    상기 펠렛을 분쇄하는 단계는 상기 펠릿을 분급하는 단계를 포함하는 것인,The step of grinding the pellets includes classifying the pellets,
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
  13. 제 4 항에 있어서, The method of claim 4,
    금속 원료 물질로서 리튬을 포함하는 원료 물질은 LiOH, Li 2O, Li 2CO 3 및 Li 2SO 4 로 이루어진 그룹에서 선택되는 것인,The raw material containing lithium as the metal raw material is selected from the group consisting of LiOH, Li 2 O, Li 2 CO 3 and Li 2 SO 4 ,
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
  14. 제 4 항에 있어서, The method of claim 4,
    금속 원료 물질로서 니켈을 포함하는 원료 물질은 Ni(OH) 2, NiSO 4, NiO 및 Ni-acetate로 이루어진 그룹에서 선택되는 것인, The raw material containing nickel as the metal raw material is selected from the group consisting of Ni(OH) 2 , NiSO 4 , NiO and Ni-acetate,
    리튬 이차 전지용 양극 활물질을 제조하는 방법.Method for manufacturing a positive electrode active material for a lithium secondary battery.
PCT/KR2019/016546 2018-11-28 2019-11-28 Cathode active material for lithium secondary battery and manufacturing method therefor WO2020111807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197035951A KR102385292B1 (en) 2018-11-28 2019-11-28 Cathode active material for lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0149309 2018-11-28
KR20180149309 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020111807A1 true WO2020111807A1 (en) 2020-06-04

Family

ID=70852079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016546 WO2020111807A1 (en) 2018-11-28 2019-11-28 Cathode active material for lithium secondary battery and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102385292B1 (en)
WO (1) WO2020111807A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010434A (en) * 1996-08-12 2008-01-17 Toda Kogyo Corp Lithium/nickel/cobalt composite oxide, manufacturing method therefor, and cathode active material for secondary battery
JP2010212261A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery using the same
JP2012212669A (en) * 2011-03-30 2012-11-01 Ngk Insulators Ltd Positive electrode active material powder for lithium secondary battery and lithium secondary battery
KR20130143014A (en) * 2010-10-08 2013-12-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing positive electrode active material for energy storage device and energy storage device
US20140057177A1 (en) * 2012-08-23 2014-02-27 Samsung Sdi Co., Ltd. Composite precursor, composite prepared therefrom, method of preparing the composite, positive electrode for lithium secondary battery including the composite, and lithium secondary battery employing the positive electrode
KR20170033787A (en) * 2015-09-17 2017-03-27 주식회사 에코프로비엠 Precursor Synthetic method for lithium-ion secondary battery cathode active material from waste battery material, and manufacturing method of the cathode active material made by the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010434A (en) * 1996-08-12 2008-01-17 Toda Kogyo Corp Lithium/nickel/cobalt composite oxide, manufacturing method therefor, and cathode active material for secondary battery
JP2010212261A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery using the same
KR20130143014A (en) * 2010-10-08 2013-12-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing positive electrode active material for energy storage device and energy storage device
JP2012212669A (en) * 2011-03-30 2012-11-01 Ngk Insulators Ltd Positive electrode active material powder for lithium secondary battery and lithium secondary battery
US20140057177A1 (en) * 2012-08-23 2014-02-27 Samsung Sdi Co., Ltd. Composite precursor, composite prepared therefrom, method of preparing the composite, positive electrode for lithium secondary battery including the composite, and lithium secondary battery employing the positive electrode
KR20170033787A (en) * 2015-09-17 2017-03-27 주식회사 에코프로비엠 Precursor Synthetic method for lithium-ion secondary battery cathode active material from waste battery material, and manufacturing method of the cathode active material made by the same

Also Published As

Publication number Publication date
KR20200066265A (en) 2020-06-09
KR102385292B1 (en) 2022-04-11

Similar Documents

Publication Publication Date Title
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2016052820A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including same
WO2015080450A1 (en) Secondary battery comprising solid electrolyte layer
WO2010077100A2 (en) Active cathode substance for secondary battery
CN109167028B (en) Regeneration preparation method of lithium iron phosphate/carbon composite material
WO2012064053A2 (en) Lithium manganese composite oxide and method for preparing same
CN112054181B (en) Lithium supplement agent and application thereof
WO2019103522A2 (en) Method for preparing cathode active material
WO2011126182A1 (en) Method for manufacturing a cathode active material for a secondary battery including a metal composite oxide, and cathode active material for a second battery including a metal composite oxide manufactured by said method
WO2019177394A1 (en) Positive electrode active material for lithium secondary battery and manufacturing method therefor
EP3909915A1 (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded article
WO2016035985A1 (en) Preparation method for positive electrode material for secondary battery
CN110627128B (en) Lithium manganate positive electrode material, preparation method and application
WO2019013587A1 (en) Method for producing cathode active material
CN103474653A (en) Preparation method for lithium iron phosphate
WO2020096212A1 (en) Lithium compound, nickel-based cathode active material, method for preparing lithium oxide, method for preparing nickel-based cathode active material, and secondary battery using same
WO2020149724A1 (en) Anode active material for lithium secondary battery, and lithium secondary battery comprising same
CN102447129A (en) Nonaqueous electrolyte secondary battery
WO2013081369A2 (en) Method for preparing lithium-nickel-cobalt-aluminum composite oxide, and lithium-nickel-cobalt-aluminum composite oxide prepared by the method and lithium secondary battery comprising same
CN110970615A (en) Modification method of high-performance lithium manganate positive electrode material
WO2022231253A1 (en) Positive active material, preparing method thereof and rechargeable lithium battery
WO2020111807A1 (en) Cathode active material for lithium secondary battery and manufacturing method therefor
WO2013002559A2 (en) Cathode active material, lithium secondary battery including cathode active material, and method for electrochemically activating lithium secondary battery
WO2013065918A1 (en) Method for manufacturing a cathode active material for a lithium secondary battery
JP3038648B2 (en) Method for producing manganese spinel compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19890602

Country of ref document: EP

Kind code of ref document: A1