WO2020111513A1 - Device for converting three-phase power regardless of direction of upward rotation - Google Patents

Device for converting three-phase power regardless of direction of upward rotation Download PDF

Info

Publication number
WO2020111513A1
WO2020111513A1 PCT/KR2019/013854 KR2019013854W WO2020111513A1 WO 2020111513 A1 WO2020111513 A1 WO 2020111513A1 KR 2019013854 W KR2019013854 W KR 2019013854W WO 2020111513 A1 WO2020111513 A1 WO 2020111513A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
unit
rotation direction
power conversion
Prior art date
Application number
PCT/KR2019/013854
Other languages
French (fr)
Korean (ko)
Inventor
신현균
Original Assignee
중앙제어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190001016A external-priority patent/KR102153071B1/en
Application filed by 중앙제어 주식회사 filed Critical 중앙제어 주식회사
Publication of WO2020111513A1 publication Critical patent/WO2020111513A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • This embodiment relates to a three-phase power converter used in an electric vehicle charger. More specifically, it relates to a three-phase power conversion device that operates without distinction of the phase rotation direction.
  • the power conversion device is always operated stably regardless of the direction of the upward rotation of the AC power input by changing the control signal according to the forward and reverse directions by detecting the upward rotation direction in the power conversion device. Its purpose is to make it possible.
  • power is detected regardless of the upward rotation direction of the AC power input by changing the control signal accordingly in the forward and reverse directions by detecting the upward rotation direction in the power converter.
  • the effect is that the converter can be stably operated at all times.
  • FIG. 1 is a view showing a three-phase power conversion device according to this embodiment.
  • 2B to 2E are block diagrams schematically showing functional modules located in a control circuit according to the present embodiment.
  • 3 to 7 are circuit diagrams of a control circuit and a function module according to the present embodiment.
  • FIG. 8 is a view showing an operating waveform of the three-phase power conversion device according to this embodiment.
  • FIG. 1 is a view showing a three-phase power conversion device according to this embodiment. Meanwhile, FIG. 1 shows the main circuit of the three-phase power converter according to the present embodiment.
  • the main circuit of the three-phase power converter 100 according to the present embodiment is largely composed of two parts.
  • the AC-DC power conversion circuit 110 of the AC power input by receiving different control signals when the phase rotation direction is forward and reverse in the three-phase power conversion device 100. It is implemented so that it can be operated regardless of the upward rotation direction. That is, the AC-DC power conversion circuit 110 according to the present embodiment receives the PWM signal generated according to the current rotational direction of the current AC power from the control circuit of FIG. 2A to be described later, and based on this, the switch in the circuit It is implemented in the form of driving.
  • the AC-DC power conversion circuit 110 has a control method, and in the case of the DC-DC conversion circuit 120, in fact, the DC-DC conversion circuit of the conventional power conversion device and the same Since the functions are the same, detailed descriptions will be omitted.
  • the control circuit 200 may be implemented in a form of providing a control signal such as a PWM control signal to the AC-DC power conversion circuit 110 to control the operation of the AC-DC power conversion circuit 110.
  • control circuit 200 performs a function of changing the control signal in the forward and reverse directions according to the detection result of the phase rotation in the three-phase power converter 100.
  • the control circuit 200 includes first to third adders 201, 204, and 214, voltage and current controllers 202, 212, first to second multiplexers 206, 222, clock, and reverse. It includes clock conversion units 208 and 218, coordinate and inverse coordinate conversion units 210 and 216, and PWM generation unit 220.
  • the components included in the control circuit 200 are not necessarily limited thereto.
  • the first adder 201 performs a function of calculating a reference signal for voltage control of the AC-DC power conversion circuit 110.
  • the first adder 201 calculates the reference signal by adding the output voltage of the three-phase power converter 100 to the command value of the output voltage.
  • the second adder 204 performs a function of calculating a reference signal for output current control of the AC-DC power conversion circuit 110.
  • the current command value output from the voltage controller 202 is input to one end of the second adder 204, and a current detection value is input to the other end.
  • the control circuit 200 is composed of a double control loop.
  • the outer loop is a voltage control loop for constantly controlling the voltage of the DC link (DC link), and the inner loop is a current control loop for controlling the input current.
  • the current control loop is to control the DC link voltage, it is composed of one controller (voltage control unit 202), and the current control loop includes two controllers to control the direct current and throttle current, respectively.
  • Current control unit 212) That is, on the block diagram of the control circuit 200 of FIG. 2A, for convenience, the second adder 204 is illustrated as one, but in practice, the second adder 204 controls the direct current and the throttle current, respectively. A plurality may be provided.
  • each second adder 204 receives input from a voltage control loop in the case of a current command value corresponding to a direct current, and receives 0 in case of a current command value corresponding to a throttle current.
  • the direct current is an active current and contributes to the increase or decrease of the DC link voltage
  • the throttle current is preferably 0 as the reactive current.
  • the first multiplexer 206 receives a three-phase current signal in the three-phase power converter 100 and adaptively adjusts it according to the phase rotation direction of the three-phase AC power and outputs it.
  • the first multiplexer 206 receives the direction selection signal Seq calculated by the function module, for example, the determination unit 236, which will be described later in FIGS. 2B to 2E, and selects the received direction It adaptively adjusts the rotation direction of the 3-phase current signal based on the signal and outputs it. For example, when the direction selection signal 1 is input, the first multiplexer 206 determines that the upward rotation direction is the forward direction. Conversely, when the direction selection signal 0 is input, the first multiplexer 206 determines that the upward rotation direction is reverse.
  • the function module for example, the determination unit 236, which will be described later in FIGS. 2B to 2E
  • the phase rotation direction is the forward direction
  • the 3-phase current signal is used as it is, but in the reverse direction, the rotation direction of the 3-phase current signal must be reversed. Due to this point, when it is determined that the upward rotation direction is reverse based on the direction selection signal, the first multiplexer 206 reverses the rotation direction of the input three-phase current signal and outputs it.
  • the first multiplexer 206 receives a three-phase current signal from the AC-DC power conversion circuit 110 and receives a direction selection signal from the discrimination unit 236, and based on this, the rotation direction of the three-phase current signal.
  • the circuit can be configured to be changeable.
  • the clock converting unit 208 converts a three-phase current signal output from the first multiplexer 206 into a two-phase current signal for control of the three-phase current signal.
  • the coordinate converter 210 receives a corresponding phase angle signal corresponding to the phase rotation direction of the three-phase AC power source, and receives a two-phase current signal from the rotation coordinate system based on the received phase angle signal. Convert to signal and output.
  • the coordinate conversion unit 210 may be configured to receive the corresponding phase angle signal from the functional module, for example, the phase signal conversion unit 238, which will be described with reference to FIGS. 2B to 2E.
  • the coordinate converter 210 outputs the two-phase current signals Id and Iq converted to the stop coordinate signal to a second adder corresponding to the direct current and a second adder corresponding to the throttle current, respectively.
  • the current control unit 212 compares the current detection value and the current command value through the output of the second adder 204, and through this, performs a function of detecting and amplifying and outputting an error error component.
  • the current control unit 212 may be preferably implemented as a PI controller, and similarly, a plurality of current controllers may be provided corresponding to the direct current and the throttling current. Each current control unit 212 outputs a result value (V de * , V qe * ) of PI control based on an error error component.
  • the third adder 214 receives a result value output from the current control unit 212 as a voltage command value at one end, and a function module to be described later in FIGS. 2B to 2E, for example, a voltage signal switching unit 240 at the other end.
  • the voltage signal (V de , V qe ) calculated by is received.
  • V de is The right-angle signal in the static coordinate system
  • V qe means the cross-axis signal in the static coordinate system.
  • the third adder 214 according to the present embodiment adaptively receives a voltage signal corresponding to the phase rotation direction of the three-phase AC power supply from the voltage signal switching unit 240.
  • a plurality of third adders 214 may be provided corresponding to the direct current and the throttling current, and each third adder may have a result value output from the current control unit 212 and a voltage provided from the voltage signal switching unit 240 The signal is added and output.
  • the inverse coordinate conversion unit 216 inversely converts the output signal from the third adder 214 from the stop coordinate system signal to the rotation coordinate system signal and outputs the output signal.
  • a phase angle signal is required in the process of converting a rotational coordinate system signal to a stationary coordinate system signal, and the value of the phase angle signal may vary depending on the phase rotation direction of the three-phase AC power.
  • the inverse coordinate conversion unit 216 receives a corresponding phase angle signal corresponding to the phase rotation direction of the three-phase AC power supply, and outputs from the third adder 214 based on the received phase angle signal.
  • the signal is inversely converted from a stop coordinate signal to a rotation coordinate signal and output.
  • the inverse coordinate conversion unit 216 may be configured to receive the corresponding phase angle signal from the function module, for example, the phase signal conversion unit 238, which will be described with reference to FIGS. 2B to 2E.
  • the inverse clock conversion unit 218 converts the two-phase rotation coordinate system signal output from the inverse coordinate conversion unit 216 into a three-phase rotation coordinate system signal.
  • the PWM control unit 220 generates a PWM signal for controlling the driving of a plurality of switching elements provided on the top of the AC-DC power conversion circuit 110 based on the output signal output from the inverse claw conversion unit 218. To create.
  • the second multiplexer 222 adaptively adjusts and outputs the PWM signal generated from the PWM controller 220 according to the phase rotation direction of the three-phase AC power.
  • the second multiplexer 222 receives a direction selection signal Seq calculated by a function module (ex: discrimination unit 236) to be described later in FIGS. 2B to 2E, and receives the direction.
  • the rotation direction of the PWM signal is adaptively adjusted based on the selection signal and output.
  • the second multiplexer 222 reverses the rotation direction of the input PWM signal and outputs it.
  • 2B to 2E are block diagrams schematically showing functional modules located in a control circuit according to the present embodiment.
  • the function module performs a function of providing information that is a control standard in the process of controlling the operation of the AC-DC power conversion circuit 110 by the control circuit 200.
  • the function module may be provided in the form of interlocking with the control circuit 200 in the control circuit 200.
  • FIG. 2B is a block diagram schematically showing the phase angle detector 230 of the function module according to the present embodiment
  • FIG. 4 is a circuit diagram of the phase angle detector 230 according to the present embodiment.
  • the phase angle detection unit 230 is composed of a forward phase synchronization circuit (PLL) corresponding to a forward signal and a reverse phase synchronization circuit 234 corresponding to a reverse signal.
  • PLL forward phase synchronization circuit
  • the forward phase synchronization circuit 232 operates in the forward direction, and is implemented to receive a forward signal of a three-phase AC power supply from the AC-DC power conversion circuit 110 as an input.
  • the reverse phase synchronization circuit 234 operates in the reverse direction, and is implemented to receive the reverse signal of the three-phase AC power supply from the AC-DC power conversion circuit 110 as an input.
  • the cross-axis signal V qe_P of the stop coordinate system passes through the first adder, the error amplifier 238, the second adder, and the integrator 240 to calculate a phase angle signal (Angle_p) corresponding to the forward direction.
  • FIG. 2C is a block diagram schematically showing the discrimination unit 236 of the function modules according to the present embodiment
  • FIG. 5 is a circuit diagram of the discrimination unit 236 according to the present embodiment.
  • the discrimination unit 236 is interlocked with the phase angle detection unit 230 to determine the phase rotation direction of the three-phase AC power source in the three-phase power conversion device 100, and to the phase rotation direction according to the determination result.
  • the corresponding direction selection signal is output.
  • the determination unit 236 is connected to the coordinate conversion units 236 and 246 in each of the phase synchronization circuits 232 and 234 in the phase angle detection unit 230 and output by the coordinate conversion units 236 and 246 It is configured to receive a stop coordinate system signal as an input value.
  • the discrimination unit 236 reads status information for each of the operation signals V de_P , V qe_P , V de_n , V qe_n of the phase synchronization circuits 232 and 234, and corresponds to forward or reverse directions based on the read result
  • the direction selection signal is output.
  • the discrimination unit 236 determines a phase synchronization circuit having an operation signal outputting a constant voltage among the phase synchronization circuits 232 and 234 as a phase synchronization circuit that operates normally, and selects a direction corresponding to the phase synchronization circuit.
  • the direction selection signals output by the determination unit 236 are the first to second multiplexers 206 and 222 of the control circuit 200 and the phase signal switching unit 238 of the function module, respectively. And it is transmitted to the voltage signal switching unit 240, for this purpose, the circuit may be configured such that the output of the determination unit 236 is input to each device.
  • FIG. 2D is a block diagram schematically showing the phase signal switching unit 238 of the function module according to the present embodiment
  • FIG. 6 is a circuit diagram of the phase signal switching unit 238 according to the present embodiment.
  • the phase signal switching unit 238 corresponds to a phase rotation signal corresponding to the phase rotation direction among the phase angle signals output from the phase angle detection unit 230 based on the direction selection signal provided from the determination unit 2306 It performs the function of controlling the output.
  • the phase signal switching unit 238 operates to cut or short signal lines connected to each of the phase synchronization circuits 232 and 234 in the phase angle detection unit 230 based on the direction selection signal, so that the corresponding phase angle signal can be output. So that it works.
  • the phase signal switching unit 238 provides the corresponding phase angle signal as input values of the coordinate conversion unit 210 and the inverse coordinate conversion unit 216 in the control circuit 200, and for this purpose, the phase signal conversion unit 238
  • the circuit may be configured such that the output of is input to the coordinate conversion unit 210 and the inverse coordinate conversion unit 216.
  • FIG. 2E is a block diagram schematically showing the voltage signal switching unit 240 among the function modules according to the present embodiment
  • FIG. 7 is a circuit diagram of the voltage signal switching unit 240 according to the present embodiment.
  • the voltage signal switching unit 240 outputs the operation signal from the phase synchronization corresponding to the upward rotation direction based on the direction selection signal provided from the determination unit 236 by the phase signal switching unit 238. Performs the control function.
  • a plurality of voltage signal switching units 240 may be provided corresponding to the direct voltage signal and the throttling voltage signal, respectively.
  • the voltage signal switching unit 240 selects the stop coordinate system signal output from the coordinate converter of the phase synchronization circuit corresponding to the phase rotation direction based on the direction selection signal, and the third adder 214 of the control circuit 200 It is provided as an input value.
  • the voltage signal converting unit 240 is configured to receive output values from the coordinate converting units of the phase synchronizing circuits 232 and 234 in the discriminating unit 236 and the phase angle detecting unit 230, the output of which is
  • the circuit may be configured to be input to the three adders 214.
  • the top waveform is an input voltage waveform, and Va, Vb, and Vc are in a forward direction. Based on Va, Vb is 120 degrees later in phase and Vc is 120 degrees later in phase than Vb.
  • the phase direction is a forward signal, and first comes out as 1, and then changes to 0 when the phase direction is reversed.
  • the fifth waveform is an inverse phase detection signal and comes out as 1 when the phase is reverse. And if the phase changes from forward to reverse, it will take some time to detect (about 25ms).
  • the third waveform is a phase angle detection signal, which increases or decreases from 0 to 2 ⁇ radians.
  • the second waveform is an input current waveform, and it can be seen that it works stably and well when the phase direction is reversed.
  • coordinate conversion unit 212 current control unit
  • PWM generator 230 phase angle detector

Abstract

An embodiment relates to a device for converting three-phase power regardless of the direction of upward rotation, the device sensing the direction of the upward rotation in a power converting device so as to change a control signal according to a forward direction and a reverse direction, such that the power converting device is always operated stably regardless of the direction of the upward rotation of an alternating current power source to be inputted.

Description

상회전 방향에 무관한 3상 전력변환장치3-phase power converter independent of the phase rotation direction
본 실시예는 전기차 충전기에 사용되는 3상 전력변환장치에 관한 것이다. 보다 자세하게는, 상회전 방향 구분없이 동작하는 3상 전력변환장치에 관한 것이다.This embodiment relates to a three-phase power converter used in an electric vehicle charger. More specifically, it relates to a three-phase power conversion device that operates without distinction of the phase rotation direction.
이하에 기술되는 내용은 단순히 본 실시예와 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.The contents described below merely provide background information related to the present embodiment, and do not constitute a prior art.
일반적으로 3상 교류 전력을 받아 직류로 변환하는 장치를 전력변환장치라고 한다.Generally, a device that receives three-phase AC power and converts it into DC is called a power conversion device.
종래의 전력변환장치는 제어 특성상 입력되는 3상 교류 전원의 상회전 방향이 정방향일 때 동작하도록 되어 있다. 만일 상회전 방향이 역방향이 되면 동작하지 않는다.Conventional power conversion devices are designed to operate when the phase rotation direction of the input three-phase AC power is positive due to the control characteristics. If the upward rotation direction is reverse, it does not work.
따라서 실제로 충전기를 설치하는 현장에서는 결선시 상회전 방향을 구분하여 정방향이 되도록 설치해 주어야 한다. 그러나 가끔씩 상회전 방향이 역방향이 되어 동작하지 않는 경우가 있다. 또한 처음에는 제대로 설치하여 사용하였으나 사용 도중에 전기공사를 새로 하거나 하여 상회전 방향이 바뀌게 되면 충전기가 동작하지 않는 문제점이 있다.Therefore, at the site where the charger is actually installed, it is necessary to classify the upward rotation direction and make sure that it is installed in the forward direction. However, sometimes the upward rotation direction is reversed and it does not work. In addition, it was installed and used properly at first, but the charger does not work if the phase rotation direction is changed due to new construction or electric work.
본 실시예는 전력변환장치 내에서 상회전 방향을 감지하여 정방향일 때와 역방향일 때 제어신호를 그에 맞도록 바꾸어 줌으로서 입력되는 교류전원의 상회전 방향에 관계없이 전력변환장치가 항상 안정되게 동작 가능토록 하는 데 그 목적이 있다.In the present embodiment, the power conversion device is always operated stably regardless of the direction of the upward rotation of the AC power input by changing the control signal according to the forward and reverse directions by detecting the upward rotation direction in the power conversion device. Its purpose is to make it possible.
본 실시예는, 복수 개의 위상동기회로 구성되며, 전력변환장치 내 3상 교류 전원의 정방향 신호 및 역방향 신호를 입력으로 하여 각각에 상응하는 위상각 신호를 출력하는 위상각 검출부; 상기 위상각 검출부와 연동되어 상기 3상 교류 전원의 상회전 방향을 판별하고, 판별결과에 따라 상기 상회전 방향에 상응하는 방향 선택신호를 출력하는 판별부; 상기 방향 선택신호를 기반으로 상기 위상각 신호 중 상기 상회전 방향에 상응하는 상응 위상각 신호의 출력을 제어하는 위상 신호 전환부; 및 상기 방향 선택신호를 기반으로 상기 전력변환장치에 상응하는 3상 전류 신호와 PWM 제어신호의 회전 방향을 적응적으로 조정하는 신호 조정부를 포함하는 것을 특징으로 하는 3상 전력변환장치를 제공한다.The present embodiment is composed of a plurality of phase synchronization circuits, a phase angle detection unit for outputting a phase angle signal corresponding to each of the forward and reverse signals of the three-phase AC power supply in the power converter; A discrimination unit interlocked with the phase angle detection unit to determine an upward rotation direction of the three-phase AC power supply, and output a direction selection signal corresponding to the upward rotation direction according to the determination result; A phase signal switching unit controlling an output of a corresponding phase angle signal corresponding to the phase rotation direction among the phase angle signals based on the direction selection signal; And a signal adjusting unit adaptively adjusting a rotation direction of a three-phase current signal and a PWM control signal corresponding to the power conversion device based on the direction selection signal.
이상에서 설명한 바와 같이 본 실시예에 의하면, 전력변환장치 내에서 상회전 방향을 감지하여 정방향일 때와 역방향일 때 제어신호를 그에 맞도록 바꾸어 줌으로서 입력되는 교류전원의 상회전 방향에 관계없이 전력변환장치가 항상 안정되게 동작 가능하도록 하는 효과가 있다.As described above, according to the present embodiment, power is detected regardless of the upward rotation direction of the AC power input by changing the control signal accordingly in the forward and reverse directions by detecting the upward rotation direction in the power converter. The effect is that the converter can be stably operated at all times.
도 1은 본 실시예에 따른 3상 전력변환장치를 나타낸 도면이다.1 is a view showing a three-phase power conversion device according to this embodiment.
도 2a는 본 실시예에 따른 3상 전력변환장치의 제어회로를 개략적으로 나타낸 블록 구성도이다.2A is a block diagram schematically showing a control circuit of a three-phase power converter according to the present embodiment.
도 2b 내지 도 2e는 본 실시예에 따른 제어회로 내 위치하는 기능 모듈을 개략적으로 나타낸 블록 구성도이다.2B to 2E are block diagrams schematically showing functional modules located in a control circuit according to the present embodiment.
도 3 내지 도 7은 본 실시예에 따른 제어회로 및 기능 모듈의 회로도이다.3 to 7 are circuit diagrams of a control circuit and a function module according to the present embodiment.
도 8은 본 실시예에 따른 3상 전력변환장치의 동작파형을 나타낸 도면이다.8 is a view showing an operating waveform of the three-phase power conversion device according to this embodiment.
이하, 본 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, '…부', '모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Hereinafter, this embodiment will be described in detail with reference to the accompanying drawings. In describing the present invention,'… Terms such as "unit" and "module" mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
도 1은 본 실시예에 따른 3상 전력변환장치를 나타낸 도면이다. 한편, 도 1에서는 본 실시예에 따른 3상 전력변환장치의 주회로를 도시하였다.1 is a view showing a three-phase power conversion device according to this embodiment. Meanwhile, FIG. 1 shows the main circuit of the three-phase power converter according to the present embodiment.
도 1에 도시하듯이, 본 실시예에 따른 3상 전력변환장치(100)의 주회로는 크게 두 부분으로 구성된다.As shown in Fig. 1, the main circuit of the three-phase power converter 100 according to the present embodiment is largely composed of two parts.
첫째는 3상 교류전원을 입력받아 일정 전압의 직류 전원으로 변환하는 교류-직류 전력변환회로(110)이고, 둘째는 일정전압의 직류를 가변전압의 직류로 변환해주는 직류-직류 전력변환회로(120)이다. 여기서 가변 직류전원으로 변환해 주는 것은 전기차의 배터리를 충전함에 있어 충전지령에 따라 배터리를 정전압, 정전류로 충전해 주기 위한 것이다.The first is an AC-DC power conversion circuit 110 that receives 3-phase AC power and converts it into a DC voltage of a constant voltage, and the second is a DC-DC power conversion circuit 120 that converts DC of a constant voltage into DC of a variable voltage. )to be. Here, the conversion to the variable DC power is for charging the battery with a constant voltage and a constant current according to a charging instruction in charging the battery of the electric vehicle.
본 실시예에 있어서, 교류-직류 전력변환회로(110)는 3상 전력변환장치(100) 내에서 상회전 방향이 정방향일 때와 역방향일 때 각기 다른 제어신호를 제공받음으로써 입력되는 교류전원의 상회전 방향에 상관없이 동작 가능토록 구현된다. 즉, 본 실시예에 따른 교류-직류 전력변환회로(110)는 이후 설명할 도 2a의 제어회로로부터 현재 교류전원의 상회전 방향에 맞춰 생성된 PWM 신호를 수신하고, 이를 기반으로, 회로 내 스위치를 구동하는 형태로 구현된다.In the present embodiment, the AC-DC power conversion circuit 110 of the AC power input by receiving different control signals when the phase rotation direction is forward and reverse in the three-phase power conversion device 100. It is implemented so that it can be operated regardless of the upward rotation direction. That is, the AC-DC power conversion circuit 110 according to the present embodiment receives the PWM signal generated according to the current rotational direction of the current AC power from the control circuit of FIG. 2A to be described later, and based on this, the switch in the circuit It is implemented in the form of driving.
이를 위해, 본 실시예에 따른 교류-직류 전력변환회로(110)는 도 1에 도시된 바와 같이, 교류-직류 전력변환회로(110)의 토플리지 상에 PWM 신호에 따라 구동되는 복수 개의 스위칭 소자(Q1Q1 ~ Q5Q6)가 구비될 수 있다. 이때, 복수 개의 스위칭 소자(Q1Q1 ~ Q5Q6)는 각각 일측이 인덕터(L1 ~ L3)와 연결되고, 타측이 서로 연결되는 형태로 구현될 수 있다.To this end, the AC-DC power conversion circuit 110 according to this embodiment is a plurality of switching elements driven according to the PWM signal on the top of the AC-DC power conversion circuit 110, as shown in FIG. (Q1Q1 ~ Q5Q6) may be provided. At this time, the plurality of switching elements (Q1Q1 ~ Q5Q6) may be implemented in a form in which one side is connected to the inductors (L1 ~ L3), and the other side is connected to each other.
한편, 본 실시예의 경우 교류-직류 전력변환회로(110)의 제어 방식에 있어서 그 특징이 있으며, 직류-직류 변환회로(120)의 경우 사실 상 종래의 전력변환장치의 직류-직류 변환회로와 그 기능이 동일한 바 상세한 설명은 생략하도록 한다.On the other hand, in the present embodiment, the AC-DC power conversion circuit 110 has a control method, and in the case of the DC-DC conversion circuit 120, in fact, the DC-DC conversion circuit of the conventional power conversion device and the same Since the functions are the same, detailed descriptions will be omitted.
도 2a는 본 실시예에 따른 3상 전력변환장치의 동작을 제어하기 위한 제어회로를 개략적으로 나타낸 블록 구성도이며, 도 3은 본 실시예에 따른 제어회로의 회로도이다.2A is a block diagram schematically showing a control circuit for controlling the operation of the three-phase power converter according to the present embodiment, and FIG. 3 is a circuit diagram of the control circuit according to the present embodiment.
제어회로(200)는 3상 전력변환장치(100) 내의 교류-직류 전력변환회로(110)와 연동하여 교류-직류 전력변환회로(110)의 동작을 제어한다.The control circuit 200 controls the operation of the AC-DC power conversion circuit 110 in conjunction with the AC-DC power conversion circuit 110 in the three-phase power conversion device 100.
제어회로(200)는 교류-직류 전력변환회로(110)의 동작을 제어하기 위해 PWM 제어신호 등의 제어신호를 교류-직류 전력변환회로(110)로 제공하는 형태로 구현될 수 있다.The control circuit 200 may be implemented in a form of providing a control signal such as a PWM control signal to the AC-DC power conversion circuit 110 to control the operation of the AC-DC power conversion circuit 110.
본 실시예에 있어서, 제어회로(200)는 3상 전력변환장치(100) 내에서의 상회전 방향 감지결과에 따라 정방향일 때와 역방향일 때 제어신호를 그에 맞도록 바꾸어 주는 기능을 수행한다.In the present embodiment, the control circuit 200 performs a function of changing the control signal in the forward and reverse directions according to the detection result of the phase rotation in the three-phase power converter 100.
본 실시예에 따른 제어회로(200)는 제1 내지 제3 가산기(201, 204, 214), 전압 및 전류 제어부(202, 212), 제1 내지 제2 멀티플렉서(206, 222), 클락 및 역클락 변환부(208, 218), 좌표 및 역좌표 변환부(210, 216), PWM 생성부(220)를 포함한다. 제어회로(200)에 포함된 구성요소는 반드시 이에 한정되는 것은 아니다.The control circuit 200 according to the present embodiment includes first to third adders 201, 204, and 214, voltage and current controllers 202, 212, first to second multiplexers 206, 222, clock, and reverse. It includes clock conversion units 208 and 218, coordinate and inverse coordinate conversion units 210 and 216, and PWM generation unit 220. The components included in the control circuit 200 are not necessarily limited thereto.
제1 가산기(201)는 교류-직류 전력변환회로(110)의 전압 제어를 위한 기준신호를 산출하는 기능을 수행한다.The first adder 201 performs a function of calculating a reference signal for voltage control of the AC-DC power conversion circuit 110.
제1 가산기(201)의 일단에는 교류-직류 전력변환회로(110)으로부터 피드백된 3상 전력변환장치(100)의 출력 전압(실제 출력치)이 입력되고, 타단에는 기 설정된 출력 전압의 지령치가 입력된다. 이를 위해, 제1 가산기(201)의 일단은 교류-직류 전력변환회로(110)의 출력단에 연결될 수 있다.The output voltage (actual output value) of the three-phase power conversion device 100 fed back from the AC-DC power conversion circuit 110 is input to one end of the first adder 201, and the other output has a command value of a preset output voltage. Is entered. To this end, one end of the first adder 201 may be connected to the output terminal of the AC-DC power conversion circuit 110.
제1 가산기(201)는 출력 전압의 지령치에 3상 전력변환장치(100)의 출력 전압을 가산함으로써 상기의 기준신호를 산출한다.The first adder 201 calculates the reference signal by adding the output voltage of the three-phase power converter 100 to the command value of the output voltage.
전압 제어부(202)는 제1 가산기(201)의 출력을 통해 출력 전압의 지령치와 실제 출력치를 비교하고, 이를 통해, 에러 오차 성분을 검출 및 증폭하여 출력하는 기능을 수행한다.The voltage control unit 202 performs a function of comparing the command value of the output voltage and the actual output value through the output of the first adder 201, and detecting, amplifying, and outputting an error error component.
전압 제어부(202)는 바람직하게는 PI 제어기로 구현될 수 잇으며, 에러 오차 성분을 기반으로 PI 제어를 수행한 결과 값을 전류 명령 즉, 전류 지령치 (I L *)로서 출력한다.The voltage control unit 202 may be preferably implemented as a PI controller, and outputs a result value of performing PI control based on an error error component as a current command, that is, a current command value (I L * ).
제2 가산기(204)는 교류-직류 전력변환회로(110)의 출력 전류 제어를 위한 기준신호를 산출하는 기능을 수행한다.The second adder 204 performs a function of calculating a reference signal for output current control of the AC-DC power conversion circuit 110.
제2 가산기(204)의 일단에는 전압 제어부(202)로부터 출력된 전류 지령치가 입력되고, 타단에는 전류 검출값이 입력된다.The current command value output from the voltage controller 202 is input to one end of the second adder 204, and a current detection value is input to the other end.
한편, 본 실시예에 따른 제어회로(200)는 2중 제어 루프로 구성된다. 바깥 루프(Outer Loop)는 DC Link(직류 링크단)의 전압을 일정하게 제어하기 위한 전압제어루프이고, 내부 루프(Inner Loop)는 입력 전류를 제어하기 위한 전류제어루프이다. 도 3을 참조하여 설명하자면, 전류제어루프는 직류 링크 전압을 제어하는 것이므로 제어기(전압 제어부(202)) 1개로 구성되며, 전류제어루프는 직축 전류와 교축 전류를 각각 제어하기 위해 제어기 2개(전류 제어부(212))로 구성된다. 즉, 도 2a의 제어회로(200)의 블록도 상에서는 편의상 제2 가산기(204)가 1개로 구성된 것으로 도시하여 설명하였으나 실질적으로, 제2 가산기(204)는 직축 전류와 교축 전류를 각각 제어하기 위해 복수 개가 구비될 수 있다.On the other hand, the control circuit 200 according to the present embodiment is composed of a double control loop. The outer loop is a voltage control loop for constantly controlling the voltage of the DC link (DC link), and the inner loop is a current control loop for controlling the input current. Referring to FIG. 3, since the current control loop is to control the DC link voltage, it is composed of one controller (voltage control unit 202), and the current control loop includes two controllers to control the direct current and throttle current, respectively. Current control unit 212). That is, on the block diagram of the control circuit 200 of FIG. 2A, for convenience, the second adder 204 is illustrated as one, but in practice, the second adder 204 controls the direct current and the throttle current, respectively. A plurality may be provided.
이때, 각각의 제2 가산기(204)는 직축 전류에 상응하는 전류 지령치의 경우 전압제어루프로부터 입력받으며, 교축 전류에 상응하는 전류 지령치의 경우 0을 입력받는다. 이는 직축 전류는 유효전류로서 직류 링크 전압 증감에 기여하기 때문이며, 교축 전류는 무효전류로서 0이되는 것이 좋기 때문이다.At this time, each second adder 204 receives input from a voltage control loop in the case of a current command value corresponding to a direct current, and receives 0 in case of a current command value corresponding to a throttle current. This is because the direct current is an active current and contributes to the increase or decrease of the DC link voltage, and the throttle current is preferably 0 as the reactive current.
이하, 제2 가산기(204)의 타단으로 입력되는 전류 검출값의 산출과정에 대해 설명하도록 한다.Hereinafter, a process of calculating the current detection value input to the other end of the second adder 204 will be described.
제1 멀티플렉서(206)는 3상 전력변환장치(100) 내 3상 전류 신호를 입력받고, 이를 3상 교류 전원의 상회전 방향에 따라 적응적으로 조정하여 출력하는 기능을 수행한다.The first multiplexer 206 receives a three-phase current signal in the three-phase power converter 100 and adaptively adjusts it according to the phase rotation direction of the three-phase AC power and outputs it.
본 실시예에 있어서, 제1 멀티플렉서(206)는 이후 도 2b 내지 도 2e에서 설명할 기능 모듈, 예컨대, 판별부(236)에 의해 산출되는 방향 선택신호(Seq)를 입력받고, 입력받은 방향 선택신호를 기반으로 3상 전류신호의 회전방향을 적응적으로 조정하여 출력한다. 예컨대, 제1 멀티플렉서(206)는 방향 선택신호가 1이 입력되면 상회전 방향이 정방향인 것으로 판단한다. 반대로, 제1 멀티플렉서(206)는 방향 선택신호가 0이 입력되면 상회전 방향이 역방향인 것으로 판단한다.In the present embodiment, the first multiplexer 206 receives the direction selection signal Seq calculated by the function module, for example, the determination unit 236, which will be described later in FIGS. 2B to 2E, and selects the received direction It adaptively adjusts the rotation direction of the 3-phase current signal based on the signal and outputs it. For example, when the direction selection signal 1 is input, the first multiplexer 206 determines that the upward rotation direction is the forward direction. Conversely, when the direction selection signal 0 is input, the first multiplexer 206 determines that the upward rotation direction is reverse.
한편, 상회전 방향이 정방향일때는 3상 전류신호를 그대로 사용하지만, 역방향일때는 3상 전류신호의 회전 방향을 역으로 바꾸어 주어야 한다. 이 점에 기인하여, 제1 멀티플렉서(206)는 방향 선택신호를 기반으로 상회전 방향이 역방향인 것으로 확인되는 경우, 입력받은 3상 전류신호의 회전 방향을 역으로 바꾸어 출력한다.On the other hand, when the phase rotation direction is the forward direction, the 3-phase current signal is used as it is, but in the reverse direction, the rotation direction of the 3-phase current signal must be reversed. Due to this point, when it is determined that the upward rotation direction is reverse based on the direction selection signal, the first multiplexer 206 reverses the rotation direction of the input three-phase current signal and outputs it.
이를 위해, 제1 멀티플렉서(206)는 교류-직류 전력변환회로(110)로부터 3상 전류신호를, 판별부(236)로부터 방향 선택신호를 입력받고, 이를 기반으로 3상 전류신호의 회전 방향을 변경 가능하도록 회로가 구성될 수 있다.To this end, the first multiplexer 206 receives a three-phase current signal from the AC-DC power conversion circuit 110 and receives a direction selection signal from the discrimination unit 236, and based on this, the rotation direction of the three-phase current signal. The circuit can be configured to be changeable.
클락 변환부(208)는 3상 전류신호의 제어를 위하여 제1 멀티플렉서(206)로부터 출력된 3상 전류신호를 2상 전류신호로 변환하는 기능을 수행한다.The clock converting unit 208 converts a three-phase current signal output from the first multiplexer 206 into a two-phase current signal for control of the three-phase current signal.
좌표 변환부(210)는 클락 변환부(208)를 통해 변환된 2상 전류신호를 회전좌표계 신호에서 정지좌표계 신호로 변환하여 출력한다. 한편, 2상 전류신호를 회전좌표계에서 정지좌표계 신호로 변환하는 과정에서 위상각 신호(Angle_Grid)를 필요로 하며, 이러한, 위상각 신호는 3상 교류 전원의 상회전 방향에 따라 그 값이 달라질 수 있다.The coordinate converter 210 converts and outputs the two-phase current signal converted by the clock converter 208 from the rotation coordinate system signal to the stop coordinate system signal. Meanwhile, a phase angle signal (Angle_Grid) is required in the process of converting a two-phase current signal from a rotating coordinate system to a stationary coordinate system signal, and the value of the phase angle signal may vary depending on the phase rotation direction of the three-phase AC power. have.
본 실시예에 있어서, 좌표 변환부(210)는 3상 교류 전원의 상회전 방향에 상응하는 상응 위상각 신호를 입력받고, 입력받은 위상각 신호를 기반으로 2상 전류신호를 회전좌표계에서 정지좌표계 신호로 변환하여 출력한다. 이를 위해, 좌표 변환부(210)는 이후 도 2b 내지 도 2e에서 설명할 기능 모듈 예컨대, 위상 신호 전환부(238)로부터 상기의 상응 위상각 신호를 입력받도록 구성될 수 있다.In the present embodiment, the coordinate converter 210 receives a corresponding phase angle signal corresponding to the phase rotation direction of the three-phase AC power source, and receives a two-phase current signal from the rotation coordinate system based on the received phase angle signal. Convert to signal and output. To this end, the coordinate conversion unit 210 may be configured to receive the corresponding phase angle signal from the functional module, for example, the phase signal conversion unit 238, which will be described with reference to FIGS. 2B to 2E.
좌표 변환부(210)는 정지좌표계 신호로 변환된 2상 전류 신호(Id, Iq)를 각각 직축 전류에 상응하는 제2 가산기 및 교축 전류에 상응하는 제2 가산기로 출력한다.The coordinate converter 210 outputs the two-phase current signals Id and Iq converted to the stop coordinate signal to a second adder corresponding to the direct current and a second adder corresponding to the throttle current, respectively.
전류 제어부(212)는 제2 가산기(204)의 출력을 통해 전류 검출값과 전류 지령치를 비교하고, 이를 통해, 에러 오차 성분을 검출 및 증폭하여 출력하는 기능을 수행한다.The current control unit 212 compares the current detection value and the current command value through the output of the second adder 204, and through this, performs a function of detecting and amplifying and outputting an error error component.
전류 제어부(212)는 바람직하게는 PI 제어기로 구현될 수 있으며, 마찬가지로, 직축 전류와 교축 전류에 상응하여 복수 개가 구비될 수 있다. 각 전류 제어부(212)는 에러 오차 성분을 기반으로 PI 제어를 수행한 결과 값(V de *, V qe *)을 출력한다.The current control unit 212 may be preferably implemented as a PI controller, and similarly, a plurality of current controllers may be provided corresponding to the direct current and the throttling current. Each current control unit 212 outputs a result value (V de * , V qe * ) of PI control based on an error error component.
제3 가산기(214)는 일단에는 전류 제어부(212)로부터 출력된 결과 값을 전압 지령치로서 입력받고, 타단에는 이후 도 2b 내지 도 2e에서 설명할 기능 모듈, 예컨대, 전압 신호 전환부(240)에 의해 산출되는 전압 신호(V de, V qe)를 입력받는다. 여기서 전압 V de 정지좌표계에서의 직각축 신호를, V qe는 정지좌표계에서의 교차축 신호를 의미한다. 한편, 본 실시예에 따른 제3 가산기(214)는 전압 신호 전환부(240)로부터 3상 교류 전원의 상회전 방향에 상응하는 전압 신호를 적응적으로 입력받는다.The third adder 214 receives a result value output from the current control unit 212 as a voltage command value at one end, and a function module to be described later in FIGS. 2B to 2E, for example, a voltage signal switching unit 240 at the other end. The voltage signal (V de , V qe ) calculated by is received. Where the voltage V de is The right-angle signal in the static coordinate system, and V qe means the cross-axis signal in the static coordinate system. Meanwhile, the third adder 214 according to the present embodiment adaptively receives a voltage signal corresponding to the phase rotation direction of the three-phase AC power supply from the voltage signal switching unit 240.
제3 가산기(214)는 직축 전류와 교축 전류에 상응하여 복수 개가 구비될 수 있으며, 각각의 제3 가산기는 전류 제어부(212)로부터 출력된 결과 값과 전압 신호 전환부(240)로부터 제공받은 전압 신호를 가산하여 출력한다.A plurality of third adders 214 may be provided corresponding to the direct current and the throttling current, and each third adder may have a result value output from the current control unit 212 and a voltage provided from the voltage signal switching unit 240 The signal is added and output.
역좌표 변환부(216)는 제3 가산기(214)로부터의 출력 신호를 정지좌표계 신호에서 회전좌표계 신호로 역변환하여 출력한다. 마찬가지로, 회전좌표계 신호를 정지좌표계 신호로 변환하는 과정에서 위상각 신호를 필요로 하며, 이러한, 위상각 신호는 3상 교류 전원의 상회전 방향에 따라 그 값이 달라질 수 있다.The inverse coordinate conversion unit 216 inversely converts the output signal from the third adder 214 from the stop coordinate system signal to the rotation coordinate system signal and outputs the output signal. Similarly, a phase angle signal is required in the process of converting a rotational coordinate system signal to a stationary coordinate system signal, and the value of the phase angle signal may vary depending on the phase rotation direction of the three-phase AC power.
본 실시예에 있어서, 역좌표 변환부(216)는 3상 교류 전원의 상회전 방향에 상응하는 상응 위상각 신호를 입력받고, 입력받은 위상각 신호를 기반으로 제3 가산기(214)로부터의 출력 신호를 정지좌표계 신호에서 회전좌표계 신호로 역변환하여 출력한다. 이를 위해, 역좌표 변환부(216)는 이후 도 2b 내지 도 2e에서 설명할 기능 모듈 예컨대, 위상 신호 전환부(238)로부터 상기의 상응 위상각 신호를 입력받도록 구성될 수 있다.In this embodiment, the inverse coordinate conversion unit 216 receives a corresponding phase angle signal corresponding to the phase rotation direction of the three-phase AC power supply, and outputs from the third adder 214 based on the received phase angle signal. The signal is inversely converted from a stop coordinate signal to a rotation coordinate signal and output. To this end, the inverse coordinate conversion unit 216 may be configured to receive the corresponding phase angle signal from the function module, for example, the phase signal conversion unit 238, which will be described with reference to FIGS. 2B to 2E.
역클락 변환부(218)는 역좌표 변환부(216)로부터 출력된 2상 회전좌표계 신호를 3상 회전좌표계 신호로 변환하는 기능을 수행한다.The inverse clock conversion unit 218 converts the two-phase rotation coordinate system signal output from the inverse coordinate conversion unit 216 into a three-phase rotation coordinate system signal.
PWM 제어부(220)는 역클라 변환부(218)로부터 출력된 출력신호를 기반으로 교류-직류 전력변환회로(110)의 토플리지 상에 구비된 복수 개의 스위칭 소자의 구동을 제어하기 위한 PWM 신호를 생성한다.The PWM control unit 220 generates a PWM signal for controlling the driving of a plurality of switching elements provided on the top of the AC-DC power conversion circuit 110 based on the output signal output from the inverse claw conversion unit 218. To create.
제2 멀티플렉서(222)는 PWM 제어부(220)로부터 생성된 PWM 신호를 3상 교류 전원의 상회전 방향에 따라 적응적으로 조정하여 출력하는 기능을 수행한다.The second multiplexer 222 adaptively adjusts and outputs the PWM signal generated from the PWM controller 220 according to the phase rotation direction of the three-phase AC power.
본 실시예에 있어서, 제2 멀티플렉서(222)는 이후 도 2b 내지 도 2e에서 설명할 기능 모듈(ex: 판별부(236))에 의해 산출되는 방향 선택신호(Seq)를 입력받고, 입력받은 방향 선택신호를 기반으로 PWM 신호의 회전방향을 적응적으로 조정하여 출력한다.In the present embodiment, the second multiplexer 222 receives a direction selection signal Seq calculated by a function module (ex: discrimination unit 236) to be described later in FIGS. 2B to 2E, and receives the direction. The rotation direction of the PWM signal is adaptively adjusted based on the selection signal and output.
한편, 상회전 방향이 정방향일때는 PWM 신호를 그대로 사용하지만, 역방향일때는 PWM 신호의 회전 방향을 역으로 바꾸어 주어야 한다. 이 점에 기인하여, 제2 멀티플렉서(222)는 방향 선택신호를 기반으로 상회전 방향이 역방향인 것으로 확인되는 경우, 입력받은 PWM 신호의 회전 방향을 역으로 바꾸어 출력한다.On the other hand, when the upward rotation direction is the forward direction, the PWM signal is used as it is, but in the reverse direction, the rotation direction of the PWM signal must be reversed. Due to this point, when it is determined that the upward rotation direction is the reverse direction based on the direction selection signal, the second multiplexer 222 reverses the rotation direction of the input PWM signal and outputs it.
도 2b 내지 도 2e는 본 실시예에 따른 제어회로 내 위치하는 기능 모듈을 개략적으로 나타낸 블록 구성도이다.2B to 2E are block diagrams schematically showing functional modules located in a control circuit according to the present embodiment.
본 실시예에 따른 기능 모듈은 제어회로(200)가 교류-직류 전력변환회로(110)의 동작을 제어하는 과정에서 제어 기준이 되는 정보들을 제공하는 기능을 수행한다. 이러한, 기능 모듈은 제어회로(200) 내에 제어회로(200)와 연동되는 형태로 구비될 수 있다.The function module according to the present embodiment performs a function of providing information that is a control standard in the process of controlling the operation of the AC-DC power conversion circuit 110 by the control circuit 200. The function module may be provided in the form of interlocking with the control circuit 200 in the control circuit 200.
도 2b는 본 실시예에 따른 기능 모듈 중 위상각 검출부(230)를 개략적으로 나타낸 블록 구성도이며, 도 4는 본 실시예에 따른 위상각 검출부(230)의 회로도이다.2B is a block diagram schematically showing the phase angle detector 230 of the function module according to the present embodiment, and FIG. 4 is a circuit diagram of the phase angle detector 230 according to the present embodiment.
본 실시예에 따른 위상각 검출부(230)는 복수 개의 위상동기회로(232, 234)로 구성되며, 3상 전력변환장치(100) 내 3상 교류 전원의 정방향 신호 및 역방향 신호를 입력으로 하여 각각에 상응하는 위상각 신호를 출력한다.The phase angle detection unit 230 according to the present embodiment is composed of a plurality of phase synchronization circuits 232 and 234, and inputs a forward signal and a reverse signal of a three-phase AC power source in the three-phase power converter 100, respectively. The phase angle signal corresponding to is output.
즉, 위상각 검출부(230)는 정방향 신호에 상응하는 정방향 위상동기회로(PLL: Phase Looked Loop, 232) 및 역방향 신호에 상응하는 역방향 위상동기회로(234)로 구성된다. 여기서, 정방향 위상동기회로(232)는 정방향일때 동작하며, 교류-직류 전력변환회로(110)로부터 3상 교류 전원의 정방향 신호를 입력으로 제공받도록 구현된다. 반대로, 역방향 위상동기회로(234)는 역방향일때 동작하며, 교류-직류 전력변환회로(110)로부터 3상 교류 전원의 역방향 신호를 입력으로 제공받도록 구현된다That is, the phase angle detection unit 230 is composed of a forward phase synchronization circuit (PLL) corresponding to a forward signal and a reverse phase synchronization circuit 234 corresponding to a reverse signal. Here, the forward phase synchronization circuit 232 operates in the forward direction, and is implemented to receive a forward signal of a three-phase AC power supply from the AC-DC power conversion circuit 110 as an input. Conversely, the reverse phase synchronization circuit 234 operates in the reverse direction, and is implemented to receive the reverse signal of the three-phase AC power supply from the AC-DC power conversion circuit 110 as an input.
각각의 위상동기회로(232, 234)는 클락 변환부(234, 244), 좌표 변환부(236, 246), 오차 증폭기(238, 248) 및 적분기(240, 250)를 포함하여 구성된다. 정방향 위상동기회로(232)를 예시하여 설명하자면, 3상 교류 전원의 정방향 신호가 클락 변환부(234)를 통해 2상 전압신호로 변환되며, 변환된 2상 전압신호가 좌표 변환부(236)를 통해 회전 좌표계 신호에서 정지좌표계 신호(V de_P, V qe_P)로 변환되어 출력된다. 이 중 정지좌표계의 교차축 신호 V qe_P가 제1 가산기, 오차 증폭기(238), 제2 가산기 및 적분기(240)를 통과하여 정방향에 상응하는 위상각 신호(Angle_p)를 산출한다.Each of the phase synchronization circuits 232 and 234 includes a clock conversion unit 234 and 244, coordinate conversion units 236 and 246, error amplifiers 238 and 248, and integrators 240 and 250. To illustrate the forward phase synchronization circuit 232, the forward signal of the three-phase AC power is converted into a two-phase voltage signal through the clock conversion unit 234, and the converted two-phase voltage signal is a coordinate conversion unit 236. It is converted from the rotation coordinate system signal to a stop coordinate system signal (V de_P , V qe_P) and output. Among them, the cross-axis signal V qe_P of the stop coordinate system passes through the first adder, the error amplifier 238, the second adder, and the integrator 240 to calculate a phase angle signal (Angle_p) corresponding to the forward direction.
마찬가지로, 역방향 위상동기회로(242)도 역방향에 상응하는 위상각 신호(Angle_n)를 산출한다.Similarly, the reverse phase synchronization circuit 242 also calculates a phase angle signal (Angle_n) corresponding to the reverse direction.
도 2c는 본 실시예에 따른 기능 모듈 중 판별부(236)를 개략적으로 나타낸 블록 구성도이며, 도 5는 본 실시예에 따른 판별부(236)의 회로도이다.2C is a block diagram schematically showing the discrimination unit 236 of the function modules according to the present embodiment, and FIG. 5 is a circuit diagram of the discrimination unit 236 according to the present embodiment.
본 실시예에 따른 판별부(236)는 위상각 검출부(230)와 연동되어, 3상 전력변환장치(100) 내 3상 교류 전원의 상회전 방향을 판별하고, 판별결과에 따라 상회전 방향에 상응하는 방향 선택신호를 출력한다.The discrimination unit 236 according to the present embodiment is interlocked with the phase angle detection unit 230 to determine the phase rotation direction of the three-phase AC power source in the three-phase power conversion device 100, and to the phase rotation direction according to the determination result. The corresponding direction selection signal is output.
이를 위해, 판별부(236)는 위상각 검출부(230) 내 각각의 위상동기회로(232, 234) 내 좌표 변환부(236, 246)와 연결되어, 좌표 변환부(236, 246)에 의해 출력되는 정지좌표계 신호를 입력 값으로써 제공받도록 구성된다.To this end, the determination unit 236 is connected to the coordinate conversion units 236 and 246 in each of the phase synchronization circuits 232 and 234 in the phase angle detection unit 230 and output by the coordinate conversion units 236 and 246 It is configured to receive a stop coordinate system signal as an input value.
판별부(236)는 위상동기회로(232, 234) 각각의 동작 신호(V de_P, V qe_P, V de_n, V qe_n)에 대한 상태정보를 판독하고, 판독결과에 기초하여 정방향 또는 역방향에 상응하는 방향 선택신호를 출력한다. 예컨대, 판별부(236)는 위상동기회로(232, 234) 중 일정 전압이 출력되는 동작 신호를 갖는 위상동기회로를 정상 동작하는 위상동기회로로서 판별하고, 해당 위상동기회로에 상응하는 방향 선택신호를 출력한다.The discrimination unit 236 reads status information for each of the operation signals V de_P , V qe_P , V de_n , V qe_n of the phase synchronization circuits 232 and 234, and corresponds to forward or reverse directions based on the read result The direction selection signal is output. For example, the discrimination unit 236 determines a phase synchronization circuit having an operation signal outputting a constant voltage among the phase synchronization circuits 232 and 234 as a phase synchronization circuit that operates normally, and selects a direction corresponding to the phase synchronization circuit. Output
한편, 본 실시예에의 경우 판별부(236)에 의해 출력되는 방향 선택신호는 각각 제어회로(200)의 제1 내지 제2 멀티플렉서(206, 222) 및 기능 모듈의 위상 신호 전환부(238) 및 전압 신호 전환부(240)로 전달되며, 이를 위해, 판별부(236)의 출력이 각 장치로 입력되도록 회로가 구성될 수 있다.On the other hand, in the present embodiment, the direction selection signals output by the determination unit 236 are the first to second multiplexers 206 and 222 of the control circuit 200 and the phase signal switching unit 238 of the function module, respectively. And it is transmitted to the voltage signal switching unit 240, for this purpose, the circuit may be configured such that the output of the determination unit 236 is input to each device.
도 2d는 본 실시예에 따른 기능 모듈 중 위상 신호 전환부(238)를 개략적으로 나타낸 블록 구성도이며, 도 6은 본 실시예에 따른 위상 신호 전환부(238)의 회로도이다.2D is a block diagram schematically showing the phase signal switching unit 238 of the function module according to the present embodiment, and FIG. 6 is a circuit diagram of the phase signal switching unit 238 according to the present embodiment.
본 실시예에 따른 위상 신호 전환부(238)는 판별부(2306)로부터 제공받은 방향 선택신호를 기반으로 위상각 검출부(230)로부터 출력된 위상각 신호 중 상회전 방향에 상응하는 상응 위상각 신호의 출력을 제어하는 기능을 수행한다.The phase signal switching unit 238 according to the present embodiment corresponds to a phase rotation signal corresponding to the phase rotation direction among the phase angle signals output from the phase angle detection unit 230 based on the direction selection signal provided from the determination unit 2306 It performs the function of controlling the output.
위상 신호 전환부(238)는 방향 선택신호에 기반하여 위상각 검출부(230) 내 위상동기회로(232, 234) 각각에 연결된 신호선을 차단 또는 단락하도록 동작하여 상기의 상응 위상각 신호가 출력될 수 있도록 동작한다.The phase signal switching unit 238 operates to cut or short signal lines connected to each of the phase synchronization circuits 232 and 234 in the phase angle detection unit 230 based on the direction selection signal, so that the corresponding phase angle signal can be output. So that it works.
위상 신호 전환부(238)는 상응 위상각 신호를 제어회로(200) 내 좌표 변환부(210) 및 역좌표 변환부(216)의 입력값으로 제공하며, 이를 위해, 위상 신호 전환부(238)의 출력이 좌표 변환부(210) 및 역좌표 변환부(216)로 입력되도록 회로가 구성될 수 있다.The phase signal switching unit 238 provides the corresponding phase angle signal as input values of the coordinate conversion unit 210 and the inverse coordinate conversion unit 216 in the control circuit 200, and for this purpose, the phase signal conversion unit 238 The circuit may be configured such that the output of is input to the coordinate conversion unit 210 and the inverse coordinate conversion unit 216.
도 2e는 본 실시예에 따른 기능 모듈 중 전압 신호 전환부(240)를 개략적으로 나타낸 블록 구성도이며, 도 7은 본 실시예에 따른 전압 신호 전환부(240)의 회로도이다.2E is a block diagram schematically showing the voltage signal switching unit 240 among the function modules according to the present embodiment, and FIG. 7 is a circuit diagram of the voltage signal switching unit 240 according to the present embodiment.
본 실시예에 따른 전압 신호 전환부(240)는 위상 신호 전환부(238)는 판별부(236)로부터 제공받은 방향 선택신호를 기반으로 상회전 방향에 상응하는 위상동기회로부터의 동작 신호의 출력을 제어하는 기능을 수행한다. 본 실시예에 있어서, 전압 신호 전환부(240)는 직축 전압신호 및 교축 전압신호에 각각 상응하여 복수 개가 구비될 수 있다.The voltage signal switching unit 240 according to the present embodiment outputs the operation signal from the phase synchronization corresponding to the upward rotation direction based on the direction selection signal provided from the determination unit 236 by the phase signal switching unit 238. Performs the control function. In this embodiment, a plurality of voltage signal switching units 240 may be provided corresponding to the direct voltage signal and the throttling voltage signal, respectively.
전압 신호 전환부(240)는 방향 선택신호를 기반으로 상회전 방향에 상응하는 위상동기회로의 좌표 변환부로부터 출력되는 정지좌표계 신호를 선별하고, 이를 제어회로(200)의 제3 가산기(214)의 입력값으로 제공한다. 이를 위해, 전압 신호 전환부(240)는 판별부(236) 및 위상각 검출부(230) 내 각 위상동기회로(232, 234)의 좌표 변환부로부터 출력 값을 입력 받도록 구성되며, 그 출력이 제3 가산기(214)로 입력되도록 회로가 구성될 수 있다.The voltage signal switching unit 240 selects the stop coordinate system signal output from the coordinate converter of the phase synchronization circuit corresponding to the phase rotation direction based on the direction selection signal, and the third adder 214 of the control circuit 200 It is provided as an input value. To this end, the voltage signal converting unit 240 is configured to receive output values from the coordinate converting units of the phase synchronizing circuits 232 and 234 in the discriminating unit 236 and the phase angle detecting unit 230, the output of which is The circuit may be configured to be input to the three adders 214.
도 8은 본 실시예에 따른 3상 전력변환장치의 동작파형을 나타낸 도면이다8 is a view showing an operating waveform of the three-phase power converter according to this embodiment
도 8을 참조하면, 맨 위 파형은 입력전압 파형으로서, Va, Vb, Vc 가 정방향으로 되어 있다. Va를 기준으로 보면 Vb는 위상이 120도 늦고 Vc는 Vb 보다 위상이 다시 120도 늦다.Referring to FIG. 8, the top waveform is an input voltage waveform, and Va, Vb, and Vc are in a forward direction. Based on Va, Vb is 120 degrees later in phase and Vc is 120 degrees later in phase than Vb.
본 발명의 경우 제어방식이 잘 동작하는지를 보기 위하여 시간축 0.5에서 입력전압의 위상을 역으로 바꾸었다. 즉 Va보다 Vb의 위상이 120도 앞서고, Vc가 Vb보다 위상이 120도 앞서 있다.In the case of the present invention, the phase of the input voltage was reversed on the time axis 0.5 to see if the control method works well. That is, the phase of Vb is 120 degrees ahead of Va, and the phase of Vc is 120 degrees ahead of Vb.
4번째 파형은 위상 방향이 정방향 신호이며 처음에는 1로 나오다가 위상방향이 역으로 되면 0으로 바뀐다. 반대로 5번째 파형은 역위상 검출신호이며 위상이 역방향일 때 1로 나온다. 그리고 위상이 정방향에서 역방향으로 바뀌게 되면 검출하는데 다소 시간이 걸리게 된다.(약 25ms). 3번째 파형은 위상각 검출신호이며, 0에서 2π 라디안까지 증감하게 된다.In the fourth waveform, the phase direction is a forward signal, and first comes out as 1, and then changes to 0 when the phase direction is reversed. Conversely, the fifth waveform is an inverse phase detection signal and comes out as 1 when the phase is reverse. And if the phase changes from forward to reverse, it will take some time to detect (about 25ms). The third waveform is a phase angle detection signal, which increases or decreases from 0 to 2π radians.
2번째 파형은 입력전류 파형으로서 위상 방향이 정방향일때외 역방향일 때 안정되게 잘 동작하는 것을 알 수 있다.The second waveform is an input current waveform, and it can be seen that it works stably and well when the phase direction is reversed.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which this embodiment belongs may be capable of various modifications and variations without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical spirit of the present embodiment, but to explain, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The protection scope of the present embodiment should be interpreted by the claims below, and all technical spirits within the equivalent range should be interpreted as being included in the scope of the present embodiment.
(부호의 설명)(Explanation of codes)
100: 3상 전력변환장치 200: 제어회로100: three-phase power converter 200: control circuit
201, 204, 214: 가산기 202: 전압 제어부201, 204, 214: adder 202: voltage control
206, 222: 멀티플렉서 208: 클락 변환부206, 222: multiplexer 208: clock conversion unit
210: 좌표 변환부 212: 전류 제어부210: coordinate conversion unit 212: current control unit
216: 역좌표 변환부 218: 역클락 변환부216: inverse coordinate conversion unit 218: inverse clock conversion unit
220: PWM 생성부 230: 위상각 검출부220: PWM generator 230: phase angle detector
236: 판별부 238: 위상 신호 전환부236: discrimination unit 238: phase signal switching unit
240: 전압 신호 전환부240: voltage signal switching unit
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2018년 11월 29일 한국에 출원한 특허출원번호 제10-2018-0150796 호 및 2019년 01월 04일 한국에 출원한 특허출원번호 제10-2019-0001016 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하며 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is filed in the United States Patent Act 119 for patent application number 10-2018-0150796 filed in Korea on November 29, 2018 and patent application number 10-2019-0001016 filed in Korea on January 04, 2019. Priority is claimed pursuant to subdivision (a) (35 USC § 119(a)), all of which is incorporated into this patent application by reference. In addition, this patent application claims priority to countries other than the United States for the same reason as above, and all the contents are incorporated into this patent application as a reference.

Claims (8)

  1. 복수 개의 위상동기회로 구성되며, 전력변환장치 내 3상 교류 전원의 정방향 신호 및 역방향 신호를 입력으로 하여 각각에 상응하는 위상각 신호를 출력하는 위상각 검출부;It is composed of a plurality of phase synchronization circuit, a phase angle detection unit for outputting a phase angle signal corresponding to each of the input signal of the forward and reverse signals of the three-phase AC power in the power converter;
    상기 위상각 검출부와 연동되어 상기 3상 교류 전원의 상회전 방향을 판별하고, 판별결과에 따라 상기 상회전 방향에 상응하는 방향 선택신호를 출력하는 판별부;A discrimination unit interlocked with the phase angle detection unit to determine an upward rotation direction of the three-phase AC power supply, and output a direction selection signal corresponding to the upward rotation direction according to the determination result;
    상기 방향 선택신호를 기반으로 상기 위상각 신호 중 상기 상회전 방향에 상응하는 상응 위상각 신호의 출력을 제어하는 위상 신호 전환부; 및A phase signal switching unit controlling an output of a corresponding phase angle signal corresponding to the phase rotation direction among the phase angle signals based on the direction selection signal; And
    상기 방향 선택신호를 기반으로 상기 전력변환장치에 상응하는 3상 전류 신호와 PWM 제어신호의 회전 방향을 적응적으로 조정하는 신호 조정부Signal adjusting unit for adaptively adjusting the rotation direction of the three-phase current signal and the PWM control signal corresponding to the power conversion device based on the direction selection signal
    를 포함하는 것을 특징으로 하는 3상 전력변환장치.Three-phase power conversion device comprising a.
  2. 제 1항에 있어서,According to claim 1,
    상기 위상각 검출부는,The phase angle detection unit,
    상기 정방향 신호에 상응하는 정방향 위상동기회로(PLL: Phase Looked Loop) 및 상기 역방향 신호에 상응하는 역방향 위상동기회로로 구성되는 것을 특징으로 하는 3상 전력변환장치.A three-phase power conversion device comprising a forward phase synchronization circuit (PLL) corresponding to the forward signal and a reverse phase synchronization circuit corresponding to the reverse signal.
  3. 제 1항에 있어서,According to claim 1,
    상기 판별부는,The discrimination unit,
    상기 위상동기회로 각각의 동작신호에 대한 상태정보를 판독하고, 판독결과에 기초하여 상기 정방향 또는 상기 역방향에 상응하는 상기 방향 선택신호를 출력하는 것을 특징으로 하는 3상 전력변환장치.The three-phase power conversion device, characterized in that for reading the status information for each operation signal of the phase synchronization circuit, and outputting the direction selection signal corresponding to the forward or reverse direction based on the read result.
  4. 제 1항에 있어서,According to claim 1,
    상기 위상 신호 전환부는,The phase signal switching unit,
    상기 방향 선택신호에 따라 상기 위상동기회로 각각에 연결된 신호선을 차단 또는 단락하도록 동작하여 상기 상응 위상각 신호가 출력되도록 하는 것을 특징으로 하는 3상 전력변환장치.The three-phase power conversion device, characterized in that to operate by blocking or shorting the signal line connected to each of the phase synchronization circuit according to the direction selection signal to output the corresponding phase angle signal.
  5. 제 1항에 있어서,According to claim 1,
    상기 위상 신호 전환부는,The phase signal switching unit,
    상기 상응 위상각 신호를 회전좌표계 신호에서 정지좌표계 신호로의 변환 기능을 수행하는 좌표 변환부 및 상기 정지좌표계 신호에서 상기 회전좌표계 신호로의 변환 기능을 수행하는 역좌표 변환부의 입력값으로 제공하는 것을 특징으로 하는 3상 전력변환장치.Providing the corresponding phase angle signal as input values of a coordinate conversion unit performing a conversion function from a rotational coordinate system signal to a stationary coordinate system signal and an inverse coordinate conversion unit performing a conversion function from the stationary coordinate system signal to the rotational coordinate system signal. Three-phase power conversion device characterized by.
  6. 제 1항에 있어서,According to claim 1,
    상기 신호 조정부는,The signal adjustment unit,
    상기 3상 전류 신호에 상응하는 제1 멀티플렉서 및 상기 PWM 제어신호에 상응하는 제2 멀티플렉서로 구성되는 것을 특징으로 하는 3상 전력변환장치.And a first multiplexer corresponding to the three-phase current signal and a second multiplexer corresponding to the PWM control signal.
  7. 제 6항에 있어서,The method of claim 6,
    상기 제1 멀티플렉서 및 상기 제2 멀티플렉서는,The first multiplexer and the second multiplexer,
    상기 방향 선택신호를 기반으로 상기 상회전 방향이 역방향 신호인 것으로 확인되는 경우 상기 회전 방향을 역으로 변환시켜 출력하는 것을 특징으로 하는 3상 전력변환장치.When it is determined that the upward rotation direction is the reverse signal based on the direction selection signal, the three-phase power conversion device, characterized in that for converting the rotation direction to output.
  8. 제 1항에 있어서,According to claim 1,
    상기 방향 선택신호를 기반으로 상기 상회전 방향에 상응하는 위상동기회로로부터의 동작 신호를 직축 전압신호 및 교축 전압신호로서 제공하는 전압 신호 전환부를 더 포함하는 것을 특징으로 하는 3상 전력변환장치.And a voltage signal switching unit providing an operation signal from a phase synchronization circuit corresponding to the phase rotation direction as a direct voltage signal and a throttling voltage signal based on the direction selection signal.
PCT/KR2019/013854 2018-11-29 2019-10-22 Device for converting three-phase power regardless of direction of upward rotation WO2020111513A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180150796 2018-11-29
KR10-2018-0150796 2018-11-29
KR10-2019-0001016 2019-01-04
KR1020190001016A KR102153071B1 (en) 2018-11-29 2019-01-04 Apparatus for Converting Three Phase Power Independent Phase Rotation Direction

Publications (1)

Publication Number Publication Date
WO2020111513A1 true WO2020111513A1 (en) 2020-06-04

Family

ID=70852326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013854 WO2020111513A1 (en) 2018-11-29 2019-10-22 Device for converting three-phase power regardless of direction of upward rotation

Country Status (1)

Country Link
WO (1) WO2020111513A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0167159B1 (en) * 1993-03-09 1999-04-15 이희종 The control circuit for instantaneous phase
JP2011223734A (en) * 2010-04-09 2011-11-04 Hitachi Ltd Power conversion device
JP2011250534A (en) * 2010-05-25 2011-12-08 Toshiba Corp Power converter
US20120314467A1 (en) * 2010-12-22 2012-12-13 O'brien Kathleen Ann Power conversion system and method
KR20160139949A (en) * 2015-05-29 2016-12-07 주식회사 만도 Power conversion system for electric vehicles and control methof thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0167159B1 (en) * 1993-03-09 1999-04-15 이희종 The control circuit for instantaneous phase
JP2011223734A (en) * 2010-04-09 2011-11-04 Hitachi Ltd Power conversion device
JP2011250534A (en) * 2010-05-25 2011-12-08 Toshiba Corp Power converter
US20120314467A1 (en) * 2010-12-22 2012-12-13 O'brien Kathleen Ann Power conversion system and method
KR20160139949A (en) * 2015-05-29 2016-12-07 주식회사 만도 Power conversion system for electric vehicles and control methof thereof

Similar Documents

Publication Publication Date Title
CN101013823B (en) Apparatus for synchronizing uninterruptible power supplies
FI117363B (en) Device for checking the pulse width modulator (PWM) converter
US5933341A (en) Power converting apparatus
WO2010071361A2 (en) Apparatus and method for start-up of a sensorless bldc motor
CN103477233A (en) Current sensing circuit and control circuit thereof and power converter circuit
WO2021043173A1 (en) Distributed insulation detection device for multi-stage dc system
WO2021085759A1 (en) Static transfer switch, and ups module to which static transfer switch is applied
WO2011065679A2 (en) Uninterrupted power supply system and uninterrupted power supply device
WO2018216850A1 (en) Power conversion device
WO2020111513A1 (en) Device for converting three-phase power regardless of direction of upward rotation
US5959858A (en) Electric power conversion apparatus
WO2016017880A1 (en) Rotor position error compensation method using modeling current of brushless direct current motor without position sensor
KR101756222B1 (en) Energy storage system with fuction of emergency power supply
KR101198638B1 (en) Parallel Operation Apparatus using Magnetic Load Sharing Transformer
WO2016060319A1 (en) Reactive power compensation apparatus and reactive power compensation method
WO2018093149A1 (en) Control system for switching dc-to-dc voltage converter from boost operating mode to safe operating mode
WO2020189861A1 (en) Inverter control device and method
WO2019245155A1 (en) Stand-alone microgrid operating system
WO2015186904A1 (en) Power conversion device comprising bypass switch circuit
WO2021172702A1 (en) Fault detection and system protection method of stand-alone microgrid on basis of power conversion system
KR102153071B1 (en) Apparatus for Converting Three Phase Power Independent Phase Rotation Direction
WO2013141452A1 (en) Control system of pcs for h-bridge 2-string single-phase power system interconnection
WO2018110791A1 (en) High efficiency permanent magnet exciter generator
WO2013051830A2 (en) Apparatus and method for decelerating a sensorless bldc motor
WO2018188027A1 (en) Control method and control system for multi-speed multi-power electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890271

Country of ref document: EP

Kind code of ref document: A1