WO2020111487A1 - Fiber scanning system - Google Patents

Fiber scanning system Download PDF

Info

Publication number
WO2020111487A1
WO2020111487A1 PCT/KR2019/012593 KR2019012593W WO2020111487A1 WO 2020111487 A1 WO2020111487 A1 WO 2020111487A1 KR 2019012593 W KR2019012593 W KR 2019012593W WO 2020111487 A1 WO2020111487 A1 WO 2020111487A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
axis direction
piezoelectric tube
scanner
axis
Prior art date
Application number
PCT/KR2019/012593
Other languages
French (fr)
Korean (ko)
Inventor
송철
장연희
임진택
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Publication of WO2020111487A1 publication Critical patent/WO2020111487A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Definitions

  • the present invention relates to a fiber scanning system, and more specifically, by providing an asymmetric frequency separation unit, it is possible to obtain uniform image information and uniform light irradiation by separating frequencies, and to apply a Lissajous scan capable of scanning in various forms. It relates to a fiber scanning system.
  • the fiber scanner is a device for acquiring an external image using an optical fiber, and is easily applied to and manipulates a subject to be applied to various industrial fields.
  • the scanner has been miniaturized, and has high utilization as a medical scanner and an endoscope scanner.
  • Korean Patent Registration No. 10-1583277 relates to an optical fiber scanning probe using a MEMS-based frequency separator, without any additional structure for modulating the resonance frequency using modulation of the resonance frequency through the asymmetry of the scanner itself.
  • a configuration providing a scanner for 2D optical scanning capable of realizing 2D driving with an input signal of.
  • an insulating layer 52 is formed on the upper side of the first fixing part 50 and the fixing block 51, and one end of the driving arm is fixed on the upper side of the insulating layer 52. do. That is, the first fixing part 50 to which one end of the driving arms is fixed is formed so that the insulating layer 52 is formed on the upper side of the fixing block 51 so that one end of the driving arms is not electrically connected to each other. It is formed in the form that one end of the driving arm is fixed to the upper side.
  • the ends of the optical fiber are scanned by vibrating through a MEMS type plate type cantilever, and the asymmetrical MEMS cantilever can separate the resonant frequency of the optical fiber in two axial directions, and the stiffness of the cantilever is adjusted to control Control the difference.
  • the MEMS method has a limitation in miniaturization of a product, and the process of making an additional mass by the MEMS process is complicated, and thus there is a problem in terms of cost efficiency.
  • a probe 245 that scans an optical fiber end by vibrating through a PZT type tube actuator 225, which is a tube actuator. It is an inverter structure in which the attachment portion of and the optical fiber is located behind the fixed point of the tube actuator.
  • the present invention is to solve the above-mentioned problems, asymmetrical shape produced using an ultra-precision device Elastic chain
  • the frequency separation part is provided in the piezoelectric tube to simplify the process process, and by adjusting the elasticity of the frequency separation part, the size of the resonant frequency and the degree to which the frequency is separated are controlled to obtain the resonant frequencies in the X-axis and Y-axis directions in a relatively simple manner. It is possible to separate and reduce the overall length of the fiber scanning housing, which makes it possible to miniaturize the product, and also obtains uniform image information by the frequency separation unit, and allows a uniform amount of light to be irradiated to the desired area. It is intended to provide a purpose.
  • the housing 50 of the scanning optical fiber endoscope the housing is provided with a cylindrical piezoelectric tube 100, one end portion 101 of the cylindrical piezoelectric tube Is physically fixedly coupled to the piezoelectric tube coupling part 130 disposed at a predetermined position on the inner surface of the housing, and the cantilever beam type optical fiber scanner 200 is fixed inside the cylindrical piezoelectric tube.
  • the other end 206 is physically coupled by the optical fiber fixing portion 110 at the other end portion 102 of the cylindrical piezoelectric tube, and one end portion 205 of the optical fiber scanner is a free end and the optical fiber fixing portion 110
  • the optical fiber scanner fixed by) is disposed to pass through the frequency separation unit 120 coupled with the optical fiber fixing unit 110 in a form protruding from the optical fiber fixing unit.
  • a wire for applying electric current is connected to the piezoelectric tube 100, but the central axis of the piezoelectric tube is called the z axis, and perpendicular to the z axis, parallel to the cross section of the piezoelectric tube, and the vertical axis of each other is called the x axis and the y axis.
  • the electric wire is applied to the other end 102 of the piezoelectric tube to be deformed in the x-axis or y-axis direction to be deformed. do.
  • the frequency separating part 120 is a cylindrical shape surrounding the optical fiber scanner, and the frequency separating part has different elastic modulus in the x-axis direction and elastic modulus in the y-axis direction, so that the optical fiber is driven by the behavior of the piezoelectric tube.
  • One end 205 of the scanner behaves in the form of a Lissajous.
  • the piezoelectric tube 100 is characterized in that the outer diameter is 1.0-2.0mm and the inner diameter is 0.6-1.3mm, and the length is about 4-10mm.
  • the frequency separation portion surrounding the outer diameter of the optical fiber scanner is attached with the optical fiber scanner and an adhesive, and the other end of the frequency separation portion is attached with the optical fiber fixing part 110 and an adhesive so that the frequency when the optical fiber scanner vibrates.
  • the separator also vibrates.
  • the cross-sectional shape of the frequency separation unit may have different elasticity in the x-axis direction and elasticity in the y-axis direction.
  • elasticity in the x-axis direction and elasticity in the y-axis direction may be formed differently by applying different materials to the material in the x-axis direction and the material in the y-axis direction.
  • the elasticity in the x-axis direction and the elasticity in the y-axis direction may be formed differently.
  • the elasticity and y-axis in the x-axis direction are different from each other by differently applying the curvature of the surface forming the end portion of the cross section in the x-axis direction and the curvature of the surface forming the end portion of the cross-section in the x-axis direction.
  • the elasticity of the direction can be formed differently
  • L1 ⁇ L It is preferably formed of ⁇ L2, but may be used in the form of L1 ⁇ L2 ⁇ L or L ⁇ L1 ⁇ L, if necessary.
  • the housing 50 includes a conical rear housing 51 whose diameter of the cross section gradually increases as it moves from the front end to the rear end, and a front housing 53 formed in a cylindrical shape, but the front end of the rear housing The outer surface protrudes in the longitudinal direction of the housing and has the same cross-section diameter.
  • the rear housing 51 is provided with a first engaging portion 52 protruding to have a predetermined length along an outer surface of the rear end of the rear housing; wherein the inner diameter of the first engaging portion is identical to the inner diameter of the rear housing
  • the front housing 53 is provided with a second engaging portion 54 protruding to have a predetermined length along the outer surface of the front end of the front housing; provided with the outer diameter of the second engaging portion coincides with the outer diameter of the front housing As the outer diameter of the first coupling portion coincides with the inner diameter of the second coupling portion, the first coupling portion is fitted with the second coupling portion.
  • a lens mounting portion 300 is provided at the inner rear side of the front housing, but a lens is mounted in the first space portion so that light emitted from the end of the optical fiber scanner is focused to focus on a predetermined area.
  • an optical fiber scanner having an asymmetrical structure of a frequency separator is inserted into a piezoelectric tube for scanning, and the behavior of the optical fiber scanner is widely implemented by varying the elasticity in the axial direction of the cross section of the frequency separator. It is expected to have the effect of acquiring images in various forms.
  • FIG. 1 shows an optical fiber scanning probe using a frequency separator having an asymmetric mass of the prior art.
  • Figure 2 shows a prior art optical fiber scanning probe shape.
  • Figure 3 shows a cross-section of the coupled state of the fiber scanning system of the present invention.
  • FIG. 4 is a perspective view showing a coupled state of the fiber scanning system of the present invention.
  • FIG. 5 schematically shows a state in which the asymmetric frequency separation unit of the present invention is coupled to an optical fiber fixing unit and an optical fiber scanner.
  • FIG 3 is a cross-sectional view showing a coupled state of the fiber scanning system of the present invention.
  • a housing 50 of a scanning optical fiber endoscope and a cylindrical piezoelectric tube 100 are provided in the housing, and one end 101 of the cylindrical piezoelectric tube is an inner surface of the housing Physically fixedly coupled to the piezoelectric tube coupling portion 130 disposed at a predetermined position of the cantilever-shaped optical fiber scanner 200 fixed to one side inside the cylindrical piezoelectric tube, the other end portion 102 of the optical fiber scanner ) Is physically coupled by the optical fiber fixing unit 110 at the other end 102 of the cylindrical piezoelectric tube, and one end 205 of the optical fiber scanner is a free end and is fixed by the optical fiber fixing unit 110 at this time.
  • the optical fiber scanner is arranged to pass through the frequency separation unit 120 coupled to the optical fiber fixing unit 110 in a form protruding from the optical fiber fixing unit.
  • the length in the z-axis direction of the piezoelectric tube 200 is referred to as L
  • the length in the z-axis direction of the frequency separation unit 120 is referred to as L1
  • the optical fiber fixing unit of the optical fiber scanner is used.
  • L2 L1 ⁇ L ⁇ L2 or L1 ⁇ L2 ⁇ L or L ⁇ L1 ⁇ L.
  • the housing 50 includes a conical rear housing 51 whose diameter of the cross section gradually increases as it moves from the front end to the rear end, and a front housing 53 formed in a cylindrical shape, but the front end of the rear housing The outer surface protrudes in the longitudinal direction of the housing and has the same cross-section diameter.
  • the rear housing 51 is provided with a first engaging portion 52 protruding to have a predetermined length along an outer surface of the rear end of the rear housing; wherein the inner diameter of the first engaging portion is identical to the inner diameter of the rear housing
  • the front housing 53 is provided with a second engaging portion 54 protruding to have a predetermined length along the outer surface of the front end of the front housing; provided with the outer diameter of the second engaging portion coincides with the outer diameter of the front housing As the outer diameter of the first coupling portion coincides with the inner diameter of the second coupling portion, the first coupling portion is fitted with the second coupling portion.
  • a lens mounting portion 300 is provided on the inner rear side of the front housing, but a lens is mounted on the first space portion to condense light emitted from the end of the optical fiber scanner so that focus is focused on a predetermined area.
  • Attached Figure 4 shows a perspective view of the coupled state of the fiber scanning system of the present invention.
  • the piezoelectric tube 100 is connected to a wire that applies a current
  • the central axis of the piezoelectric tube is referred to as the z-axis, and perpendicular to the z-axis, parallel to the cross section of the piezoelectric tube, and perpendicular to each other x
  • the other end portion 102 of the piezoelectric tube is bent in the x-axis or y-axis direction with respect to one end 101 where the piezoelectric tube is fixedly coupled to the housing so that the electric wire is deformed. It is arranged and power is applied.
  • the frequency separating part 120 is a cylindrical shape surrounding the optical fiber scanner, and the frequency separating part has different elastic modulus in the x-axis direction and elastic modulus in the y-axis direction, so that the optical fiber is driven by the behavior of the piezoelectric tube.
  • One end 205 of the scanner behaves in the form of a Lissajous.
  • the piezoelectric tube 100 has an outer diameter of 1.0-2.0mm, an inner diameter of 0.6-1.3mm, and preferably a length of about 4-10mm.
  • FIG. 5 schematically shows a state in which the asymmetric frequency separation part of the present invention is coupled to an optical fiber fixing part and an optical fiber scanner.
  • the frequency separation unit 120 surrounding the outer diameter of the optical fiber scanner is bonded to the optical fiber scanner 200 and an adhesive 60, and the other end of the frequency separation unit is the optical fiber fixing unit 110 ) And the adhesive 60 to vibrate when the optical fiber scanner vibrates.
  • the cross-sectional shape of the frequency separation portion is preferably formed to have different elasticity in the x-axis direction and elasticity in the y-axis direction as the curvature in the x-axis direction and the curvature in the y-axis direction are formed differently.
  • one end 101 of the cylindrical piezoelectric tube is physically fixedly coupled by the piezoelectric tube coupling part 130 disposed at a predetermined position on the inner surface of the housing, and the other end 102 of the optical fiber scanner is cylindrically piezoelectric.
  • the frequency separation unit 120 in a form protruding from the optical fiber fixing unit is physically coupled by the optical fiber fixing unit 110 at the other end portion 102 of the tube, and fixed by the optical fiber fixing unit 110. ).
  • the displacement of the end of the optical fiber scanner is increased by the displacement of the small piezoelectric tube to scan the region of interest, and the optical fiber scanner end can be moved in a desired scan pattern.
  • the optical fiber scanner end can be moved in a desired scan pattern.

Abstract

The present invention relates to a fiber scanning system which, in a scanning optical fiber endoscope, has: a housing (50) of the scanning optical fiber endoscope; a cylindrical piezoelectric tube (100) inside the housing, wherein one end part (101) of the cylindrical piezoelectric tube is physically fixedly coupled to a piezoelectric tube coupling part (130) disposed in a predetermined position on the inner surface of the housing; and an optical fiber scanner (200) which is a cantilever type having only one side fixed inside the cylindrical piezoelectric tube. One end part (206) of the optical fiber scanner is physically coupled to the other end part (102) of the cylindrical piezoelectric tube by means of an optical fiber fixing part (110), and the other end part (205) of the optical fiber scanner is a free end. The optical fiber scanner fixed by means of the optical fiber fixing part (110) is disposed so as to pass, in a form of protruding from the optical fiber fixing part, through a frequency division part (120) coupled to the optical fiber fixing part (110). Therefore, the full length is reduced and thus a product can be made ultra-small and can be commercialized, uniform image information can be obtained by means of the frequency division part, and light can be irradiated in a uniform amount to a desired area.

Description

파이버 스캐닝 시스템Fiber scanning system
본 발명은 파이버 스캐닝 시스템에 관한 것으로서, 더욱 상세하게는 비대칭 주파수 분리부를 구비함으로써 주파수를 분리하여 균일한 영상정보의 취득 및 균일한 빛조사가 가능하고, 다양한 형태로 스캐닝이 가능한 리사주 스캔을 적용한 파이버 스캐닝 시스템에 관한 것이다.The present invention relates to a fiber scanning system, and more specifically, by providing an asymmetric frequency separation unit, it is possible to obtain uniform image information and uniform light irradiation by separating frequencies, and to apply a Lissajous scan capable of scanning in various forms. It relates to a fiber scanning system.
파이버 스캐너는 광섬유를 사용하여 외부 영상을 획득하기 위한 장비로서, 촬영 대상에 접근 및 조작이 용이하여 다양한 산업분야에 적용된다. The fiber scanner is a device for acquiring an external image using an optical fiber, and is easily applied to and manipulates a subject to be applied to various industrial fields.
특히 근래에는 상기 스캐너를 소형화하여 의료용 스캐너 및 내시경용 스캐너로 그 활용도가 높다.In particular, in recent years, the scanner has been miniaturized, and has high utilization as a medical scanner and an endoscope scanner.
종래기술1을 보면, 국내 등록특허 10-1583277호는, MEMS 기반의 주파수 분리기를 이용한 광섬유 스캐닝 프로브에 관한 것으로 스캐너 자체의 비대칭성을 통한 공진주파수의 변조를 이용해 공진주파수 변조를 위한 추가적인 구조물 없이 하나의 입력 신호로 2차원 구동을 구현 할 수 있는 2차원 광학 스캐닝을 위한 스캐너를 제공하는 구성이 개시된다. Looking at the prior art 1, Korean Patent Registration No. 10-1583277 relates to an optical fiber scanning probe using a MEMS-based frequency separator, without any additional structure for modulating the resonance frequency using modulation of the resonance frequency through the asymmetry of the scanner itself. Disclosed is a configuration providing a scanner for 2D optical scanning capable of realizing 2D driving with an input signal of.
위 종래기술1을 도 1을 통해 설명하면 제1고정부(50)와 고정블록(51)의 상측에 절연층(52)이 형성되고, 절연층(52)의 상측에 구동 암의 일단이 고정된다. 즉, 구동 암들의 일단이 고정되는 제1고정부(50)는 구동 암들의 일단이 서로 전기적으로 연결되지 않도록 고정블록(51)의 상측에 절연층(52)이 형성되고 절연층(52)의 상측에 구동 암의 일단이 고정되는 형태로 형성된다.When the above prior art 1 is described with reference to FIG. 1, an insulating layer 52 is formed on the upper side of the first fixing part 50 and the fixing block 51, and one end of the driving arm is fixed on the upper side of the insulating layer 52. do. That is, the first fixing part 50 to which one end of the driving arms is fixed is formed so that the insulating layer 52 is formed on the upper side of the fixing block 51 so that one end of the driving arms is not electrically connected to each other. It is formed in the form that one end of the driving arm is fixed to the upper side.
따라서 위의 종래 기술에 의하면 광섬유 끝단을 MEMS 타입의 판형 Cantilever를 통해 진동시켜 스캐닝하고, 비대칭 형상의 MEMS Cantilever가 두 축방향으로 광섬유의 공진주파수를 분리시킬 수 있으며 Cantilever의 Stiffness를 조절하여 두 주파수의 차이를 조절한다. Therefore, according to the above prior art, the ends of the optical fiber are scanned by vibrating through a MEMS type plate type cantilever, and the asymmetrical MEMS cantilever can separate the resonant frequency of the optical fiber in two axial directions, and the stiffness of the cantilever is adjusted to control Control the difference.
그러나 상기와 같은 종래기술1은 MEMS 방식은 제품의 소형화에 한계가 있으며, MEMS 공정으로 추가 mass를 만드는 과정이 복잡하여 비용 효율 측면에서도 좋지 않은 문제점이 있다.However, in the prior art 1 as described above, the MEMS method has a limitation in miniaturization of a product, and the process of making an additional mass by the MEMS process is complicated, and thus there is a problem in terms of cost efficiency.
또 다른 종래기술2로서 미국특허 US2008/0249369A1(2008. 10. 9 공개)에 의하면 광섬유 끝단을 PZT 타입의 튜브 액츄에이터(225)를 통해 진동시켜 스캐닝하는 프루브(245)가 개시되어 있으며, 이는 튜브 엑츄에이터와 광섬유의 부착부가 튜브 엑츄에이터의 고정점보다 더 뒤에 위치하는 인버터 구조이다.As another prior art 2, according to U.S. Patent US2008/0249369A1 (published Oct. 9, 2008), a probe 245 is disclosed that scans an optical fiber end by vibrating through a PZT type tube actuator 225, which is a tube actuator. It is an inverter structure in which the attachment portion of and the optical fiber is located behind the fixed point of the tube actuator.
즉 종래기술2를 도 2를 통해 설명하면, 스캐너인 광섬유의 일부분이 튜브 액츄에이터에 의해 감싸지는 구조로서 전체 길이를 줄일 수 있는 장점이 있으나, 프로브의 위치를 다양한 형태로 제어하는 구성이 결여됨에 따라 프로브의 위치를 제어하는데 한계가 있는 문제점이 있다. That is, when the prior art 2 is described with reference to FIG. 2, a portion of the optical fiber, which is a scanner, is wrapped by a tube actuator, which has an advantage of reducing the overall length, but lacks a configuration to control the position of the probe in various forms. There is a limitation in controlling the position of the probe.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 초정밀 기기를 사용하여 제작한 비대칭 형상의 탄성체인 주파수 분리부를 압전 튜브 내에 구비함으로써 공정과정을 단순화하고, 상기 주파수 분리부의 탄성도를 조절하여 공진주파수의 크기 및 주파수가 분리되는 정도를 조절함으로써 비교적 간단한 방식으로 X축과 Y축 방향의 공진주파수를 분리시킬 수 있으며, 파이버 스캐닝 하우징의 전장 길이를 줄임으로써 제품의 초소형화가 가능할 뿐만 아니라 또한 상기 주파수 분리부에 의해 균일한 영상 정보를 취득하고, 원하고자 하는 영역에 균일한 광량 조사가 가능한 파이버 스캐닝 시스템을 제공하고자 하는데 그 목적이 있다.The present invention is to solve the above-mentioned problems, asymmetrical shape produced using an ultra-precision device Elastic chain The frequency separation part is provided in the piezoelectric tube to simplify the process process, and by adjusting the elasticity of the frequency separation part, the size of the resonant frequency and the degree to which the frequency is separated are controlled to obtain the resonant frequencies in the X-axis and Y-axis directions in a relatively simple manner. It is possible to separate and reduce the overall length of the fiber scanning housing, which makes it possible to miniaturize the product, and also obtains uniform image information by the frequency separation unit, and allows a uniform amount of light to be irradiated to the desired area. It is intended to provide a purpose.
그러나 본 발명의 목적은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the object of the present invention is not limited to the above-mentioned object, another object not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위하여, 본 발명은 주사 광섬유 내시경에 있어서, 주사 광섬유 내시경의 하우징(50)과, 상기 하우징 내에는 원통형 압전 튜브(100)가 구비되고, 상기 원통형 압전 튜브의 일단부(101)는 상기 하우징 내면의 소정의 위치에 배치된 압전 튜브 결합부(130)에 물리적으로 고정 결합되며 상기 원통형 압전 튜브의 내부에는 한쪽만 고정된 외팔보 형태의 광섬유 스캐너(200)가 구비되되 상기 광섬유 스캐너의 타단부(206)는 상기 원통형 압전 튜브의 타단부(102)에서 광섬유고정부(110)에 의해 물리적으로 결합되고, 상기 광섬유 스캐너의 일단부(205)는 자유단이며 이때 상기 광섬유고정부(110)에 의해 고정되는 광섬유 스캐너는 상기 광섬유고정부에서 돌출된 형태로 상기 광섬유고정부(110)와 결합된 주파수 분리부(120)를 통과하도록 배치된다.In order to achieve the above object, the present invention, in the scanning optical fiber endoscope, the housing 50 of the scanning optical fiber endoscope, the housing is provided with a cylindrical piezoelectric tube 100, one end portion 101 of the cylindrical piezoelectric tube Is physically fixedly coupled to the piezoelectric tube coupling part 130 disposed at a predetermined position on the inner surface of the housing, and the cantilever beam type optical fiber scanner 200 is fixed inside the cylindrical piezoelectric tube. The other end 206 is physically coupled by the optical fiber fixing portion 110 at the other end portion 102 of the cylindrical piezoelectric tube, and one end portion 205 of the optical fiber scanner is a free end and the optical fiber fixing portion 110 The optical fiber scanner fixed by) is disposed to pass through the frequency separation unit 120 coupled with the optical fiber fixing unit 110 in a form protruding from the optical fiber fixing unit.
그리고 상기 압전 튜브(100)에는 전류를 인가하는 전선이 연결되되 상기 압전 튜브의 중심축을 z 축이라 하고 상기 z 축에 수직이면서 상기 압전 튜브의 단면에 대해 평행하며 서로 수직 축을 x축과 y축이라 할 때 상기 압전 튜브가 상기 하우징에 고정 결합된 일단부(101)에 대해 상기 압전 튜브의 타단부(102)가 상기 x축 혹은 y축 방향으로 휘어져 변형이 이루어지도록 상기 전선이 배치되어 전원이 인가된다.In addition, a wire for applying electric current is connected to the piezoelectric tube 100, but the central axis of the piezoelectric tube is called the z axis, and perpendicular to the z axis, parallel to the cross section of the piezoelectric tube, and the vertical axis of each other is called the x axis and the y axis. When the piezoelectric tube is fixedly coupled to the housing, the electric wire is applied to the other end 102 of the piezoelectric tube to be deformed in the x-axis or y-axis direction to be deformed. do.
또한 상기 주파수 분리부(120)는 상기 광섬유 스캐너를 감싸는 원기둥 형태로서, 상기 주파수 분리부는 x축방향의 탄성계수와 y축방향의 탄성계수를 서로 다르게 형성됨에 따라 상기 압전 튜브의 거동에 의해 상기 광섬유 스캐너의 일단부(205)는 리사쥬 형태로 거동한다.In addition, the frequency separating part 120 is a cylindrical shape surrounding the optical fiber scanner, and the frequency separating part has different elastic modulus in the x-axis direction and elastic modulus in the y-axis direction, so that the optical fiber is driven by the behavior of the piezoelectric tube. One end 205 of the scanner behaves in the form of a Lissajous.
상기에서 압전 튜브(100)는 외경이 1.0 - 2.0mm 내경이 0.6 - 1.3mm 길이는 대략 4 - 10mm 인 것을 특징으로 한다.In the above, the piezoelectric tube 100 is characterized in that the outer diameter is 1.0-2.0mm and the inner diameter is 0.6-1.3mm, and the length is about 4-10mm.
또한 상기 광섬유 스캐너의 외경을 감싸는 상기 주파수 분리부는 상기 광섬유 스캐너와 접착제로 부착되고, 또한 상기 주파수 분리부의 타단부는 상기 광섬유고정부(110)와 접착제로 부착되어 상기 광섬유 스캐너가 진동할 때 상기 주파수 분리부도 함께 진동한다.In addition, the frequency separation portion surrounding the outer diameter of the optical fiber scanner is attached with the optical fiber scanner and an adhesive, and the other end of the frequency separation portion is attached with the optical fiber fixing part 110 and an adhesive so that the frequency when the optical fiber scanner vibrates. The separator also vibrates.
그리고 상기 주파수 분리부의 단면 형상은 상기 x축방향의 곡률과 상기 y 축방향의 곡률이 다르게 형성됨에 따라 x축방향의 탄성도와 y축방향의 탄성도가 서로 다르게 형성시킬 수 있다.In addition, as the curvature in the x-axis direction and the curvature in the y-axis direction are different from each other, the cross-sectional shape of the frequency separation unit may have different elasticity in the x-axis direction and elasticity in the y-axis direction.
또한 상기 주파수 분리부의 단면에서 상기 x축방향의 재질과 상기 y 축방향의 재질을 이종의 재질을 적용함에 따라 x축방향의 탄성도와 y축방향의 탄성도를 서로 다르게 형성시킬 수 있다.In addition, in the cross-section of the frequency separation unit, elasticity in the x-axis direction and elasticity in the y-axis direction may be formed differently by applying different materials to the material in the x-axis direction and the material in the y-axis direction.
나아가 상기 주파수 분리부의 단면에서 상기 x축방향이 길이와 상기 y 축방향의 길이를 서로 다르게 적용함에 따라 x축방향의 탄성도와 y축방향의 탄성도를 서로 다르게 형성시킬 수 있다.Further, as the x-axis direction and the y-axis length are different from each other, the elasticity in the x-axis direction and the elasticity in the y-axis direction may be formed differently.
또한 상기 주파수 분리부의 단면에서 상기 x축방향의 단면 끝부분을 형성하는 면의 곡률과 상기 y 축방향의 단면 끝부분을 형성하는 면의 곡률을 서로 다르게 적용함에 따라 x축방향의 탄성도와 y축방향의 탄성도를 서로 다르게 형성시킬 수 있다 In addition, the elasticity and y-axis in the x-axis direction are different from each other by differently applying the curvature of the surface forming the end portion of the cross section in the x-axis direction and the curvature of the surface forming the end portion of the cross-section in the x-axis direction. The elasticity of the direction can be formed differently
나아가 상기 압전 튜브의 z축방향의 길이를 L 이라하고, 상기 주파수 분리부의 z축방향의 길이를 L1 라 하며, 광섬유 스캐너의 상기 광섬유고정부에서 자유단까지의 길이를 L2 라 할 때 L1 < L < L2 로 형성되는 것이 바람직하나 필요에 따라 L1 < L2 < L 또는 L<L1<L 형태로 사용될 수 있다.Further, when the length in the z-axis direction of the piezoelectric tube is L, the length in the z-axis direction of the frequency separation unit is L1, and when the length from the optical fiber fixing part of the optical fiber scanner to the free end is L2, L1 <L It is preferably formed of <L2, but may be used in the form of L1 <L2 <L or L<L1<L, if necessary.
상기에서 하우징(50)은 전단부에서 후단부로 이동함에 따라 단면의 직경이 점차 증가하는 원뿔형 리어 하우징(51)과 원통형 형상으로 이루어지는 프론트 하우징(53)을 포함하여 이루어지되, 상기 리어하우징의 전단부 외측면은, 하우징의 길이방향으로 돌출되어 단면의 직경이 동일하다.In the above, the housing 50 includes a conical rear housing 51 whose diameter of the cross section gradually increases as it moves from the front end to the rear end, and a front housing 53 formed in a cylindrical shape, but the front end of the rear housing The outer surface protrudes in the longitudinal direction of the housing and has the same cross-section diameter.
상기 리어하우징(51)은 리어하우징의 후단부 외측면을 따라 소정의 길이를 갖도록 돌출 된 제1 결합부(52);가 구비되되 이때 상기 제1 결합부의 내경은 상기 리어하우징의 내경과 일치하고 또한 상기 프론트 하우징(53)은 프론트 하우징의 전단부 외측면을 따라 소정의 길이를 갖도록 돌출 된 제2결합부(54);가 구비되되 상기 제2결합부의 외경은 상기 프론트 하우징의 외경과 일치하며 상기 제1 결합부의 외경이 상기 제2결합부의 내경과 일치함에 따라 제1 결합부가 상기 제2결합부와 끼움 결합된다.The rear housing 51 is provided with a first engaging portion 52 protruding to have a predetermined length along an outer surface of the rear end of the rear housing; wherein the inner diameter of the first engaging portion is identical to the inner diameter of the rear housing In addition, the front housing 53 is provided with a second engaging portion 54 protruding to have a predetermined length along the outer surface of the front end of the front housing; provided with the outer diameter of the second engaging portion coincides with the outer diameter of the front housing As the outer diameter of the first coupling portion coincides with the inner diameter of the second coupling portion, the first coupling portion is fitted with the second coupling portion.
또한 상기 프론트 하우징의 내측 후방에는 렌즈 실장부(300);가 구비되되 상기 제1공간부에는 렌즈가 실장되어 광섬유 스캐너 끝단에서 나온 빛을 집광시켜 소정의 영역에 초점이 맺히도록 한다.In addition, a lens mounting portion 300 is provided at the inner rear side of the front housing, but a lens is mounted in the first space portion so that light emitted from the end of the optical fiber scanner is focused to focus on a predetermined area.
그리고 상기 제1공간부에는 2개 이상의 렌즈를 배열시킴으로써 단일렌즈보다 수차를 줄일 수 있다.In addition, by arranging two or more lenses in the first space portion, aberrations may be reduced compared to a single lens.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야 한다.Prior to this, the terms or words used in the specification and claims should not be interpreted in a conventional and lexical sense, and the inventor can properly define the concept of terms in order to best describe his or her invention. Based on the principle of being present, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.
이상에서 살펴본 바와 같이 본 발명에 따르면, 비대칭 구조의 주파수 분리기 가 결합된 광섬유 스케너를 압전 튜브 내에 삽입하여 스케닝하되 상기 주파수 분리기의 단면에 대한 축방향의 탄성도를 다르게 함으로써 광섬유 스케너의 거동을 폭넓게 구현 할 수 있어 다양한 형태로 영상을 획득할 수 있는 효과가 기대된다.As described above, according to the present invention, an optical fiber scanner having an asymmetrical structure of a frequency separator is inserted into a piezoelectric tube for scanning, and the behavior of the optical fiber scanner is widely implemented by varying the elasticity in the axial direction of the cross section of the frequency separator. It is expected to have the effect of acquiring images in various forms.
도 1은 종래 기술의 비대칭 질량을 가진 주파수 분리기를 이용한 광섬유 스캐닝 프로브를 도시한 것이다.1 shows an optical fiber scanning probe using a frequency separator having an asymmetric mass of the prior art.
도 2는 종래 기술의 광섬유 스캐닝 프로브 형상을 도시한 것이다.Figure 2 shows a prior art optical fiber scanning probe shape.
도 3은 본 발명의 파이버 스캐닝 시스템의 결합상태 단면을 도시한 것이다.Figure 3 shows a cross-section of the coupled state of the fiber scanning system of the present invention.
도 4는 본 발명의 파이버 스캐닝 시스템의 결합상태 사시도를 도시한 것이다.4 is a perspective view showing a coupled state of the fiber scanning system of the present invention.
도 5는 본 발명의 비대칭 주파수 분리부가 광섬유 고정부와 광섬유 스캐너에 결합된 상태를 개략적으로 도시한 것이다.5 schematically shows a state in which the asymmetric frequency separation unit of the present invention is coupled to an optical fiber fixing unit and an optical fiber scanner.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 설명하기로 한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In this process, the thickness of the lines or the size of components shown in the drawings may be exaggerated for clarity and convenience.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 하여 내려져야 할 것이다.In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to a user's or operator's intention or practice. Therefore, definitions of these terms should be made based on the contents throughout the present specification.
아울러, 아래의 실시 예는 본 발명의 권리범위를 한정하는 것이 아니라 본 발명의 청구범위에 제시된 구성요소의 예시적인 사항에 불과하며, 본 발명의 명세서 전반에 걸친 기술사상에 포함되고 청구범위의 구성요소에서 균등물로서 치환 가능한 구성요소를 포함하는 실시 예는 본 발명의 권리범위에 포함될 수 있다.In addition, the following embodiments are not intended to limit the scope of the present invention, but are merely illustrative of the components presented in the claims of the present invention, and are included in the technical idea throughout the specification of the present invention and constitute the claims. Embodiments that include a substitutable component as an equivalent in the elements can be included in the scope of the present invention.
첨부된 도 3은 본 발명의 파이버 스캐닝 시스템의 결합상태 단면을 도시한 것이다.3 is a cross-sectional view showing a coupled state of the fiber scanning system of the present invention.
도3을 참조하면, 주사 광섬유 내시경에 있어서, 주사 광섬유 내시경의 하우징(50)과, 상기 하우징 내에는 원통형 압전 튜브(100)가 구비되고, 상기 원통형 압전 튜브의 일단부(101)는 상기 하우징 내면의 소정의 위치에 배치된 압전 튜브 결합부(130)에 물리적으로 고정 결합되며 상기 원통형 압전 튜브의 내부에는 한쪽만 고정된 외팔보 형태의 광섬유 스캐너(200)가 구비되되 상기 광섬유 스캐너의 타단부(102)는 상기 원통형 압전 튜브의 타단부(102)에서 광섬유고정부(110)에 의해 물리적으로 결합되고, 상기 광섬유 스캐너의 일단부(205)는 자유단이며 이때 상기 광섬유고정부(110)에 의해 고정되는 광섬유 스캐너는 상기 광섬유고정부에서 돌출된 형태로 상기 광섬유고정부(110)와 결합된 주파수 분리부(120)를 통과하도록 배치된다.Referring to FIG. 3, in a scanning optical fiber endoscope, a housing 50 of a scanning optical fiber endoscope and a cylindrical piezoelectric tube 100 are provided in the housing, and one end 101 of the cylindrical piezoelectric tube is an inner surface of the housing Physically fixedly coupled to the piezoelectric tube coupling portion 130 disposed at a predetermined position of the cantilever-shaped optical fiber scanner 200 fixed to one side inside the cylindrical piezoelectric tube, the other end portion 102 of the optical fiber scanner ) Is physically coupled by the optical fiber fixing unit 110 at the other end 102 of the cylindrical piezoelectric tube, and one end 205 of the optical fiber scanner is a free end and is fixed by the optical fiber fixing unit 110 at this time. The optical fiber scanner is arranged to pass through the frequency separation unit 120 coupled to the optical fiber fixing unit 110 in a form protruding from the optical fiber fixing unit.
이를 더욱 상세하게 설명하면, 상기 압전 튜브(200)의 z축방향의 길이를 L 이라하고, 상기 주파수 분리부(120)의 z축방향의 길이를 L1 라 하며, 광섬유 스캐너의 상기 광섬유고정부에서 자유단까지의 길이를 L2 라 할 때 L1 < L < L2 또는 L1 < L2 < L 또는 L<L1<L로 형성될 수 있다.In more detail, the length in the z-axis direction of the piezoelectric tube 200 is referred to as L, the length in the z-axis direction of the frequency separation unit 120 is referred to as L1, and the optical fiber fixing unit of the optical fiber scanner is used. When the length to the free end is L2, L1 <L <L2 or L1 <L2 <L or L<L1<L.
상기에서 하우징(50)은 전단부에서 후단부로 이동함에 따라 단면의 직경이 점차 증가하는 원뿔형 리어 하우징(51)과 원통형 형상으로 이루어지는 프론트 하우징(53)을 포함하여 이루어지되, 상기 리어하우징의 전단부 외측면은, 하우징의 길이방향으로 돌출되어 단면의 직경이 동일하다.In the above, the housing 50 includes a conical rear housing 51 whose diameter of the cross section gradually increases as it moves from the front end to the rear end, and a front housing 53 formed in a cylindrical shape, but the front end of the rear housing The outer surface protrudes in the longitudinal direction of the housing and has the same cross-section diameter.
상기 리어하우징(51)은 리어하우징의 후단부 외측면을 따라 소정의 길이를 갖도록 돌출 된 제1 결합부(52);가 구비되되 이때 상기 제1 결합부의 내경은 상기 리어하우징의 내경과 일치하고 또한 상기 프론트 하우징(53)은 프론트 하우징의 전단부 외측면을 따라 소정의 길이를 갖도록 돌출 된 제2결합부(54);가 구비되되 상기 제2결합부의 외경은 상기 프론트 하우징의 외경과 일치하며 상기 제1 결합부의 외경이 상기 제2결합부의 내경과 일치함에 따라 제1 결합부가 상기 제2결합부와 끼움 결합된다.The rear housing 51 is provided with a first engaging portion 52 protruding to have a predetermined length along an outer surface of the rear end of the rear housing; wherein the inner diameter of the first engaging portion is identical to the inner diameter of the rear housing In addition, the front housing 53 is provided with a second engaging portion 54 protruding to have a predetermined length along the outer surface of the front end of the front housing; provided with the outer diameter of the second engaging portion coincides with the outer diameter of the front housing As the outer diameter of the first coupling portion coincides with the inner diameter of the second coupling portion, the first coupling portion is fitted with the second coupling portion.
또한 상기 프론트 하우징의 내측 후방에는 렌즈 실장부(300);가 구비되되 상기 제1공간부에는 렌즈가 실장되어 광섬유 스캐너 끝단에서 나온 빛을 집광시켜 소정의 영역에 초점이 맺히도록 한다.In addition, a lens mounting portion 300 is provided on the inner rear side of the front housing, but a lens is mounted on the first space portion to condense light emitted from the end of the optical fiber scanner so that focus is focused on a predetermined area.
상기에서 제1공간부에는 2개 이상의 렌즈를 배열시킴으로써 단일렌즈보다 수차를 줄일 수 있다.In the above, by arranging two or more lenses in the first space portion, aberration can be reduced compared to a single lens.
첨부된 도 4는 본 발명의 파이버 스캐닝 시스템의 결합상태 사시도를 도시한 것이다.Attached Figure 4 shows a perspective view of the coupled state of the fiber scanning system of the present invention.
도 4를 참조하면, 상기 압전 튜브(100)에는 전류를 인가하는 전선이 연결되되 상기 압전 튜브의 중심축을 z 축이라 하고 상기 z 축에 수직이면서 상기 압전 튜브의 단면에 대해 평행하며 서로 수직 축을 x축과 y축이라 할 때 상기 압전 튜브가 상기 하우징에 고정 결합된 일단부(101)에 대해 상기 압전 튜브의 타단부(102)가 상기 x축 혹은 y축 방향으로 휘어져 변형이 이루어지도록 상기 전선이 배치되어 전원이 인가된다.Referring to Figure 4, the piezoelectric tube 100 is connected to a wire that applies a current, the central axis of the piezoelectric tube is referred to as the z-axis, and perpendicular to the z-axis, parallel to the cross section of the piezoelectric tube, and perpendicular to each other x When the axis and the y axis are referred to, the other end portion 102 of the piezoelectric tube is bent in the x-axis or y-axis direction with respect to one end 101 where the piezoelectric tube is fixedly coupled to the housing so that the electric wire is deformed. It is arranged and power is applied.
또한 상기 주파수 분리부(120)는 상기 광섬유 스캐너를 감싸는 원기둥 형태로서, 상기 주파수 분리부는 x축방향의 탄성계수와 y축방향의 탄성계수를 서로 다르게 형성됨에 따라 상기 압전 튜브의 거동에 의해 상기 광섬유 스캐너의 일단부(205)는 리사쥬 형태로 거동한다.In addition, the frequency separating part 120 is a cylindrical shape surrounding the optical fiber scanner, and the frequency separating part has different elastic modulus in the x-axis direction and elastic modulus in the y-axis direction, so that the optical fiber is driven by the behavior of the piezoelectric tube. One end 205 of the scanner behaves in the form of a Lissajous.
이때 상기 압전 튜브(100)는 외경이 1.0 - 2.0mm 내경이 0.6 - 1.3mm 길이는 대략 4 - 10mm 정도가 되는 것이 바람직하다.At this time, the piezoelectric tube 100 has an outer diameter of 1.0-2.0mm, an inner diameter of 0.6-1.3mm, and preferably a length of about 4-10mm.
첨부된 도 5는 본 발명의 비대칭 주파수 분리부가 광섬유 고정부와 광섬유 스캐너에 결합된 상태를 개략적으로 도시한 것이다.The attached FIG. 5 schematically shows a state in which the asymmetric frequency separation part of the present invention is coupled to an optical fiber fixing part and an optical fiber scanner.
도 5를 참조하면, 상기 광섬유 스캐너의 외경을 감싸는 상기 주파수 분리부(120)는 상기 광섬유 스캐너(200)와 접착제(60)로 접착되고, 또한 상기 주파수 분리부의 타단부는 상기 광섬유고정부(110)와 접착제(60)로 접착되어 상기 광섬유 스캐너가 진동할 때 상기 주파수 분리부도 함께 진동한다.5, the frequency separation unit 120 surrounding the outer diameter of the optical fiber scanner is bonded to the optical fiber scanner 200 and an adhesive 60, and the other end of the frequency separation unit is the optical fiber fixing unit 110 ) And the adhesive 60 to vibrate when the optical fiber scanner vibrates.
또한 상기 주파수 분리부의 단면 형상은 상기 x축방향의 곡률과 상기 y 축방향의 곡률이 다르게 형성됨에 따라 x축방향의 탄성도와 y축방향의 탄성도를 서로 다르게 형성시키는 것이 바람직하다.In addition, the cross-sectional shape of the frequency separation portion is preferably formed to have different elasticity in the x-axis direction and elasticity in the y-axis direction as the curvature in the x-axis direction and the curvature in the y-axis direction are formed differently.
나아가 본 발명에서는 원통형 압전 튜브의 일단부(101)는 상기 하우징 내면의 소정의 위치에 배치된 압전 튜브 결합부(130)에 의해 물리적으로 고정 결합시키고, 광섬유 스캐너의 타단부(102)를 원통형 압전 튜브의 타단부(102)에서 광섬유고정부(110)에 의해 물리적으로 결합시키며, 상기 광섬유고정부(110)에 의해 고정되는 광섬유 스캐너에는 상기 광섬유고정부에서 돌출된 형태로 상기 주파수 분리부(120)를 구비시키게 된다. Furthermore, in the present invention, one end 101 of the cylindrical piezoelectric tube is physically fixedly coupled by the piezoelectric tube coupling part 130 disposed at a predetermined position on the inner surface of the housing, and the other end 102 of the optical fiber scanner is cylindrically piezoelectric. The frequency separation unit 120 in a form protruding from the optical fiber fixing unit is physically coupled by the optical fiber fixing unit 110 at the other end portion 102 of the tube, and fixed by the optical fiber fixing unit 110. ).
이에 따라, 주사파 분리부의 공진 주파수 대역의 진동수로 압전 튜브를 거동시키면 작은 압전 튜브의 변위로 상기 광섬유 스캐너 끝단의 변위를 크게 만들어 관심영역을 스캔할 수 있으며, 광섬유 스캐너 끝단을 원하는 스캔 패턴으로 움직일 수 있어 스캔하고자 하는 영역의 스캔이 가능한 특징이 있다. Accordingly, when the piezoelectric tube is operated at the frequency of the resonance frequency band of the scanning wave separation unit, the displacement of the end of the optical fiber scanner is increased by the displacement of the small piezoelectric tube to scan the region of interest, and the optical fiber scanner end can be moved in a desired scan pattern. There is a feature that can scan the area to be scanned.
이상 본 발명을 구체적인 실시 예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.Although the present invention has been described in detail through specific embodiments, the present invention is specifically for describing the present invention, and the present invention is not limited to this, and by a person skilled in the art within the technical spirit of the present invention. It is clear that the modification and improvement are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 범주에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의해 명확해질 것이다.All simple modifications or changes of the present invention belong to the scope of the present invention, and the specific protection scope of the present invention will be clarified by the appended claims.
[부호의 설명][Description of codes]
50 하우징 51 리어 하우징50 housing 51 rear housing
52 제1 결합부 53 프론트 하우징52 First coupling 53 Front housing
54 제2 결합부 60 접착제54 Second joint 60 Glue
100 압전 튜브 110 광섬유 고정부100 piezoelectric tube 110 optical fiber fixture
120 주파수 분리부 130 압전 튜브 결합부120 Frequency separation 130 Piezoelectric tube coupling
200 광섬유 스캐너200 fiber optic scanner

Claims (9)

  1. 주사 광섬유 내시경에 있어서, In the scanning optical fiber endoscope,
    주사 광섬유 내시경의 하우징(50)과, The housing 50 of the scanning optical fiber endoscope,
    상기 하우징 내에는 원통형 압전 튜브(100)가 구비되고, A cylindrical piezoelectric tube 100 is provided in the housing,
    상기 원통형 압전 튜브의 일단부(101)는 상기 하우징 내면의 소정의 위치에 배치된 압전 튜브 결합부(130)에 물리적으로 고정 결합되며One end portion 101 of the cylindrical piezoelectric tube is physically fixedly coupled to the piezoelectric tube coupling portion 130 disposed at a predetermined position on the inner surface of the housing,
    상기 원통형 압전 튜브의 내부에는 한쪽만 고정된 외팔보 형태의 광섬유 스캐너(200)가 구비되되 The inside of the cylindrical piezoelectric tube is provided with a cantilever-type optical fiber scanner 200 fixed on one side only.
    상기 광섬유 스캐너의 타단부(206)는 상기 원통형 압전 튜브의 타단부(102)에서 광섬유고정부(110)에 의해 물리적으로 결합되고, The other end 206 of the optical fiber scanner is physically coupled by the optical fiber fixing unit 110 at the other end 102 of the cylindrical piezoelectric tube,
    상기 광섬유 스캐너의 일단부(205)는 자유단이며 One end 205 of the optical fiber scanner is a free end
    이때 상기 광섬유고정부(110)에 의해 고정되는 광섬유 스캐너는 상기 광섬유고정부에서 돌출된 형태로 상기 광섬유고정부(110)와 결합된 주파수 분리부(120)를 통과하도록 배치된 것을 특징으로 하는 파이버 스캐닝 시스템.At this time, the optical fiber scanner fixed by the optical fiber fixing part 110 is arranged to pass through the frequency separation unit 120 coupled with the optical fiber fixing part 110 in a form protruding from the optical fiber fixing part. Scanning system.
  2. 제1항에 있어서The method of claim 1
    상기 압전 튜브(100)에는 전류를 인가하는 전선이 연결되되The piezoelectric tube 100 is connected to a wire for applying a current
    상기 압전 튜브의 중심축을 z 축이라 하고 상기 z 축에 수직이면서 상기 압전 튜브의 단면에 대해 평행하며 서로 수직 축을 x축과 y축이라 할 때 When the central axis of the piezoelectric tube is called the z axis, and perpendicular to the z axis and parallel to the cross section of the piezoelectric tube, the vertical axis of each other is called the x axis and the y axis.
    상기 압전 튜브가 상기 하우징에 고정 결합된 일단부(101)에 대해 상기 압전 튜브의 타단부(102)가 상기 x축 혹은 y축 방향으로 휘어져 변형이 이루어지도록 상기 전선이 배치되어 전원이 인가되는 것을 특징으로 하는 파이버 스캐닝 시스템.With respect to one end portion 101 of which the piezoelectric tube is fixedly coupled to the housing, the electric wire is disposed and the power is applied so that the other end portion 102 of the piezoelectric tube is bent in the x-axis or y-axis direction to be deformed. Features a fiber scanning system.
  3. 제2항에 있어서The method of claim 2
    상기 주파수 분리부(120)는 상기 광섬유 스캐너를 감싸는 원기둥 형태로서, The frequency separation unit 120 is a cylindrical shape surrounding the optical fiber scanner,
    상기 주파수 분리부는 x축방향의 탄성계수와 y축방향의 탄성계수를 서로 다르게 형성됨에 따라 상기 압전 튜브의 거동에 의해 상기 광섬유 스캐너의 일단부(205)는 리사쥬 형태로 거동하는 것을 특징으로 하는 파이버 스캐닝 시스템. The frequency separation unit is characterized in that the elastic modulus in the x-axis direction and the elastic modulus in the y-axis direction are formed differently, so that one end 205 of the optical fiber scanner behaves in a resage shape by the behavior of the piezoelectric tube. Fiber scanning system.
  4. 제2항에 있어서The method of claim 2
    상기 광섬유 스캐너의 외경을 감싸는 상기 주파수 분리부는 상기 광섬유 스캐너와 접착제로 부착되고, 또한 상기 주파수 분리부의 타단부는 상기 광섬유고정부(110)와 접착제로 부착되어 상기 광섬유 스캐너가 진동할 때 상기 주파수 분리부도 함께 진동하는 것을 특징으로 하는 파이버 스캐닝 시스템. The frequency separating part surrounding the outer diameter of the optical fiber scanner is attached with the optical fiber scanner and an adhesive, and the other end of the frequency separating part is attached with the optical fiber fixing part 110 and an adhesive to separate the frequency when the optical fiber scanner vibrates. Fiber scanning system characterized by vibrating together.
  5. 제4항에 있어서The method of claim 4
    상기 주파수 분리부의 단면 형상은 상기 x축방향의 곡률과 상기 y 축방향의 곡률이 다르게 형성됨에 따라 x축방향의 탄성도와 y축방향의 탄성도를 서로 다르게 형성시키는 것을 특징으로 하는 파이버 스캐닝 시스템. The cross-sectional shape of the frequency separation unit is characterized in that the curvature in the x-axis direction and the curvature in the y-axis direction are formed differently, so that the elasticity in the x-axis direction and the elasticity in the y-axis direction are different.
  6. 제4항에 있어서The method of claim 4
    상기 주파수 분리부의 단면에서 상기 x축방향의 재질과 상기 y 축방향의 재질을 이종의 재질을 적용함에 따라 x축방향의 탄성도와 y축방향의 탄성도를 서로 다르게 형성시키는 것을 특징으로 하는 파이버 스캐닝 시스템.Fiber scanning characterized in that the x-axis direction material and the y-axis direction material are formed in different cross-sections of the frequency separation part to form elasticity in the x-axis direction and elasticity in the y-axis direction differently. system.
  7. 제4항에 있어서The method of claim 4
    상기 주파수 분리부의 단면에서 상기 x축방향이 길이와 상기 y 축방향의 길이를 서로 다르게 적용함에 따라 x축방향의 탄성도와 y축방향의 탄성도를 서로 다르게 형성시키는 것을 특징으로 하는 파이버 스캐닝 시스템.A fiber scanning system characterized in that the x-axis direction and the y-axis direction have different elasticity in the cross-section of the frequency separation unit, thereby forming elasticity in the x-axis direction and elasticity in the y-axis direction differently.
  8. 제4항에 있어서The method of claim 4
    상기 주파수 분리부의 단면에서 상기 x축방향의 단면 끝부분을 형성하는 면의 곡률과 상기 y 축방향의 단면 끝부분을 형성하는 면의 곡률을 서로 다르게 적용함에 따라 x축방향의 탄성도와 y축방향의 탄성도를 서로 다르게 형성시키는 것을 특징으로 하는 파이버 스캐닝 시스템.Elasticity in the x-axis direction and y-axis direction by differently applying a curvature of a surface forming a cross-section end in the x-axis direction and a curvature of a surface forming a cross-section end in the y-axis direction in the cross section of the frequency separation unit Fiber scanning system, characterized in that to form the elasticity of the different.
  9. 제5항 내지 8항 중 한 항에 있어서The method according to any one of claims 5 to 8,
    상기 압전 튜브의 z축방향의 길이를 L 이라하고, 상기 주파수 분리부의 z축방향의 길이를 L1 라 하며, 광섬유 스캐너의 상기 광섬유고정부에서 자유단까지의 길이를 L2 라 할 때 L1 < L < L2 또는 L<L1<L2로 형성되는 것을 특징으로 하는 파이버 스캐닝 시스템. When the length in the z-axis direction of the piezoelectric tube is L, the length in the z-axis direction of the frequency separation unit is L1, and when the length from the optical fiber fixing part of the optical fiber scanner to the free end is L2, L1 <L < A fiber scanning system characterized by being formed of L2 or L<L1<L2.
PCT/KR2019/012593 2018-11-29 2019-09-27 Fiber scanning system WO2020111487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180150965A KR102224891B1 (en) 2018-11-29 2018-11-29 Fiber Scanning System
KR10-2018-0150965 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111487A1 true WO2020111487A1 (en) 2020-06-04

Family

ID=70852850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012593 WO2020111487A1 (en) 2018-11-29 2019-09-27 Fiber scanning system

Country Status (2)

Country Link
KR (1) KR102224891B1 (en)
WO (1) WO2020111487A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102260138B1 (en) * 2019-07-05 2021-06-03 그린스펙(주) Optical Fiber Probe
KR102646079B1 (en) * 2021-08-20 2024-03-12 재단법인대구경북과학기술원 Sheet-type frequency separator and optical fiber-based scanning device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523198A (en) * 2007-04-05 2010-07-15 ユニヴァーシティ オブ ワシントン Compact scanning fiber device
KR20140003276A (en) * 2012-06-29 2014-01-09 삼성전자주식회사 Fiber scanning optical probe and medical imaging apparatus employoing the same
JP2014044265A (en) * 2012-08-24 2014-03-13 Olympus Corp Optical scanner
KR20150052672A (en) * 2013-11-06 2015-05-14 삼성전자주식회사 Fiber scanning optical probe and medical imaging apparatus including the same
KR101678552B1 (en) * 2015-01-30 2016-11-22 한국과학기술원 Voltage appling method of actuator having two resonance frequency components

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905326B1 (en) * 2007-10-01 2009-07-02 에프엔엔(주) Optical connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523198A (en) * 2007-04-05 2010-07-15 ユニヴァーシティ オブ ワシントン Compact scanning fiber device
KR20140003276A (en) * 2012-06-29 2014-01-09 삼성전자주식회사 Fiber scanning optical probe and medical imaging apparatus employoing the same
JP2014044265A (en) * 2012-08-24 2014-03-13 Olympus Corp Optical scanner
KR20150052672A (en) * 2013-11-06 2015-05-14 삼성전자주식회사 Fiber scanning optical probe and medical imaging apparatus including the same
KR101678552B1 (en) * 2015-01-30 2016-11-22 한국과학기술원 Voltage appling method of actuator having two resonance frequency components

Also Published As

Publication number Publication date
KR102224891B9 (en) 2021-08-23
KR20200064638A (en) 2020-06-08
KR102224891B1 (en) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2020111487A1 (en) Fiber scanning system
EP2134236B1 (en) Compact scanning fiber device
US7423794B2 (en) Device and method for stacked multi-level uncoupled electrostatic actuators
CA1158468A (en) Dynamic image enhancer for fiberscopes
JPS623926B2 (en)
US8665507B2 (en) Module mounting mirror endoscopy
WO2014157917A1 (en) Camera module
Takahashi et al. A two-dimensional ƒ-θ micro optical lens scanner with electrostatic comb-drive XY-stage
CN107870416B (en) Optical scanning device
Murakami et al. A miniature confocal optical microscope with MEMS gimbal scanner
CN103142201B (en) A kind of side scan forward optic probe based on MEMS and scan method thereof
KR102260138B1 (en) Optical Fiber Probe
AU2012256586A2 (en) Photographing apparatus
AU6557300A (en) Optical coupling device
JPH0389874A (en) Electromechanical convertor and positioning device equipped with such convertor
AU6557400A (en) Optical coupling device
JP2015128548A (en) Optical scanning endoscope
JPH0228966B2 (en)
KR102191673B1 (en) Endomicroscopic having ultra compact lensed fiber probe
US20230359023A1 (en) Micromechanical resonator assembly with external actuator
JP2015128549A (en) Optical scanning endoscope
JPH0217026A (en) Endoscope
JPH01112215A (en) Endoscope
CA2450675A1 (en) Modular optical switch fabric
JPH01227118A (en) Endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890270

Country of ref document: EP

Kind code of ref document: A1