WO2020111376A1 - 기계 학습 기반의 채무불이행 예측 장치 및 방법 - Google Patents

기계 학습 기반의 채무불이행 예측 장치 및 방법 Download PDF

Info

Publication number
WO2020111376A1
WO2020111376A1 PCT/KR2018/016965 KR2018016965W WO2020111376A1 WO 2020111376 A1 WO2020111376 A1 WO 2020111376A1 KR 2018016965 W KR2018016965 W KR 2018016965W WO 2020111376 A1 WO2020111376 A1 WO 2020111376A1
Authority
WO
WIPO (PCT)
Prior art keywords
default
model
machine learning
debt
time
Prior art date
Application number
PCT/KR2018/016965
Other languages
English (en)
French (fr)
Inventor
최대선
박소희
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Publication of WO2020111376A1 publication Critical patent/WO2020111376A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/02Banking, e.g. interest calculation or account maintenance

Definitions

  • the present invention relates to a machine learning based debt default prediction apparatus and method, and more particularly, to a machine learning based debt default prediction apparatus and method for predicting a debt default by a machine learning model.
  • the profit structure of financial institutions such as banks can be divided into interest income through loan-to-margin and commission-based interest income, which is 80% of the financial institution's revenue, accounting for a significant portion of the total profit. Therefore, in order to minimize losses from the bank's point of view, a process of accurately predicting the default of the debtor (ie, the borrower) is essential.
  • financial institutions have their own credit scoring system to assess the debtor's default, and based on this credit rating system, the loan applicant's income, employment status, loan and delinquency history, etc. Based on the basic information and credit rating provided by the credit bureau, the credit risk of the loan applicant, the ability to repay the debt, and the likelihood of default are assessed, and then the approval of the loan, the loan limit and the interest rate are determined. . In addition, it is used to determine whether to extend the loan, whether to change the interest rate and the limit of the loan, by reevaluating the possibility of default in the future for each customer at a certain point in time.
  • the present invention was devised to solve the above-described problems, and an object according to an aspect of the present invention is a machine learning-based debt default prediction apparatus capable of ensuring reliability and objectivity of a prediction result for the debt defaultability of the debtor, and Is to provide a way.
  • a machine learning-based debt default prediction apparatus is a data generation unit for generating time-series learning data by time-serializing debt history information of a debtor for a set period in the past based on a current time point, the data generation unit Generating a predictive model for generating a default performance prediction model for predicting default performance of the debtor after the current time by applying the time series learning data generated in step to a predefined machine learning model to perform learning on the machine learning model And a debt default prediction unit for predicting default defaults of the debtor by inputting time-series learning data generated by the data generation unit to the default default prediction model generated by the prediction model generation unit. It is characterized by.
  • the data generation unit generates time-series learning data by time-serializing the debt history information for the past set period, wherein the debt history information includes demographic information of the debtor and a corresponding month. Characterized in that it includes the loan information and delinquency information of the month.
  • the machine learning model is characterized by being a model according to a Recurrent Neural Network (RNN).
  • RNN Recurrent Neural Network
  • the prediction model generation unit sequentially inputs monthly debt history information of the debtor included in the time series learning data into the machine learning model to perform learning on the machine learning model, thereby performing the debt default prediction model. It is characterized by generating.
  • the debt default prediction unit by inputting time series learning data generated by the data generation unit into the default default prediction model, pays the debtor of the debtor in the next month of the last month reflected in the generation of the time series learning data. It is characterized by predicting default.
  • a machine learning based debt default prediction method includes a step in which the data generation unit generates time series learning data by time-serializing debt history information of a debtor for a set period in the past based on a current time point, a prediction model The generation unit predicts the default of the debtor to predict the default of the debtor by performing learning on the machine learning model by applying the time series learning data generated by the data generation unit to a predefined machine learning model.
  • a model generation step, and the default performance prediction unit inputs time-series learning data generated by the data generation unit to the default performance prediction model generated by the prediction model generation unit, thereby defaulting to the debtor of the debtor after the current time point. It characterized in that it comprises a step of predicting.
  • the present invention learns a machine learning model based on predetermined time-series data reflecting debt history information of a debtor, and uses the default performance prediction model generated through the learning to perform default performance of the debtor. By predicting, it is possible to eliminate the problem of deterioration caused by artificial evaluation of default, and to ensure the objectivity of the prediction result.
  • FIG. 1 is a block diagram illustrating a machine default prediction apparatus based on machine learning according to an embodiment of the present invention.
  • FIG. 2 is an exemplary view showing time series learning data in a machine default prediction apparatus based on machine learning according to an embodiment of the present invention.
  • 3 and 4 are exemplary diagrams showing a structure of an RNN that can be applied as a machine learning model in a machine learning-based debt default prediction apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a machine learning based debt default prediction method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram for describing a machine learning-based debt default prediction apparatus according to an embodiment of the present invention
  • FIG. 2 is a time series learning in a machine learning-based debt default prediction apparatus according to an embodiment of the present invention
  • 3 and 4 are exemplary views showing a structure of an RNN that can be applied as a machine learning model in a machine learning-based debt default prediction apparatus according to an embodiment of the present invention.
  • a machine learning based debt default prediction apparatus includes a database unit (DB), a data generation unit (100), a prediction model generation unit (200), and a default default prediction unit (300). ).
  • DB database unit
  • data generation unit 100
  • prediction model generation unit 200
  • default default prediction unit 300
  • the debt history information of the debtor may be stored in the database unit DB.
  • the debt history information may include demographic information of the debtor, loan information in the month, and delinquency information in the month.
  • the database unit DB may store financial information including the debtor's income information, property information, credit information, and dependent family information together with the debt history information.
  • the debt history information among the information stored in the database unit DB may be used to generate time-series learning data by the data generation unit 100 as described later.
  • the data generation unit 100 may extract the debtor's debt history information for the past set period based on the current time point from the database unit DB, and time-series the extracted debt history information to generate time series learning data.
  • the period set in the past means a period set by the designer as a period that is reversed from the current point in time to the past (eg, 6 months).
  • debt history information may include demographic information of the debtor, loan information of the month, and delinquency information of the month, and Table 1 below shows an example of the debt history information.
  • the data generation unit 100 may generate time series learning data by time-serializing debt history information for a set period in the past. For example, assuming that the set period is set to 6 months, the data generation unit 100 may display each debt history information by adding a timestep according to the month to each of the six debt history information shown in Table 1.
  • Time-series learning data can be generated by time-serializing each time (that is, time-series learning data means a set of six debt history information).
  • nominal data such as gender and default of Table 1 can be converted into binary data through a Label Encoder.
  • FIG. 2 illustrates an example applied to a machine learning model described later after time-series learning data is generated by time-series of six debt history information extracted from the database unit DB.
  • the prediction model generator 200 applies the time series learning data generated by the data generator 100 to a predefined machine learning model to perform learning on the machine learning model to predict the default of the debtor after the current time. It can generate a default model for debt default.
  • a model according to a Recurrent Neural Network may be employed as a machine learning model used to generate a default prediction model.
  • FIG. 3 and 4 show the structure of a circulatory neural network.
  • X t , h t , O t are input values, output values, and hidden states at time t, respectively, and h t And O t follows Equation 1 below.
  • U is a parameter for sending an input value to the hidden state
  • V is a parameter for sending from the previous hidden state to the next hidden state
  • W is a parameter for sending the output value from the hidden state
  • parameters are shared at all time steps.
  • the time t the information at t and the output of the hidden state at the time t-1 are combined to become the output value of the hidden state at t, and the process of affecting the time t+1 is repeated U, V, Learning about W progresses.
  • a BPTT BackPropagatino Through Time
  • the parameters U, V, and W are updated by back propagating a gradient of error for the parameters U, V, and W.
  • the prediction model generator 200 Based on the machine learning model according to the RNN described above, the prediction model generator 200 performs learning on the machine learning model by sequentially entering monthly debt history information of the debtor included in the time series training data into the machine learning model. By doing so, it is possible to generate a default model. Accordingly, the prediction model generation unit 200 may generate the debt default prediction model by sequentially receiving the monthly debt history information of the debtor and learning and completing parameters.
  • the default performance prediction unit 300 inputs time-series learning data generated by the data generation unit 100 into the default default prediction model generated by the prediction model generation unit 200 to predict the default of the debtor after the current time. Can be.
  • the default performance prediction unit 300 inputs the time series learning data generated by the data generation unit 100 into the default performance prediction model, so that the debtor in the next month of the last month reflected in the generation of the time series learning data.
  • the default is predictable. For example, when the debt history information included in the time series learning data is the debt history information corresponding to January to June, the default performance prediction unit 300 defaults each debt history information for January to June. By inputting into the forecasting model, it is possible to predict the default of the debtor for July.
  • FIG. 5 is a flowchart illustrating a machine learning based debt default prediction method according to an embodiment of the present invention.
  • the data generating unit 100 displays debtor's debt history information for a past set period based on a current time point.
  • Time series to generate time series learning data S100.
  • the debt history information of the debtor may include demographic information of the debtor, loan information of the month, and delinquency information of the month. Accordingly, in step S100, the data generation unit 100 is set in the past setting period.
  • Time-series learning data can be generated by time-serializing the debt history information for each month.
  • the prediction model generation unit 200 applies the time series learning data generated by the data generation unit 100 to a predefined machine learning model to perform learning on the machine learning model, thereby making the debtor default due to the current time.
  • a default model for predicting default is generated (S200).
  • a machine learning model used in step S200 a model according to a circulating neural network may be employed. Accordingly, in step S200, the prediction model generator 200 sequentially inputs monthly debt history information included in the time series learning data into the machine learning model to perform learning on the machine learning model, thereby performing the default prediction model. Can be created.
  • the debt default prediction unit 300 inputs time-series learning data generated by the data generation unit 100 to the default default prediction model generated by the prediction model generation unit 200 to perform the debt default of the debtor after the current time.
  • Predict (S300).
  • the default performance prediction unit 300 inputs time-series learning data generated by the data generation unit 100 into the default performance prediction model, so that the debtor in the next month of the last month reflected in the generation of the time-series learning data The default is predictable.
  • steps S100 to S300 may be implemented in a time-series configuration that is continuously performed, and after generating a debt default prediction model through steps S100 and S200, and then through the step S100, the debtor's monthly debt history information. By extracting and performing step S300, it may be implemented in a time series configuration to predict the default of the debtor.
  • the machine learning model is trained based on predetermined time series data reflecting the debt history information of the debtor, and the debt default is predicted by predicting the default of the debtor using the default prediction model generated through the learning. It is possible to eliminate the problem of deterioration caused by an artificial evaluation of the object and at the same time ensure the objectivity of the prediction result.
  • the implementation described herein can be implemented, for example, as a method or process, apparatus, software program, data stream or signal. Although discussed only in the context of a single form of implementation (eg, discussed only as a method), implementation of the features discussed may also be implemented in other forms (eg, devices or programs).
  • the device can be implemented with suitable hardware, software and firmware.
  • the method can be implemented in an apparatus, such as a processor, generally referring to a processing device, including, for example, a computer, microprocessor, integrated circuit, or programmable logic device.
  • the processor also includes communication devices such as computers, cell phones, portable/personal digital assistants ("PDAs”) and other devices that facilitate communication of information between end-users.
  • PDAs portable/personal digital assistants

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Educational Administration (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Technology Law (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

본 발명은 기계 학습 기반의 채무불이행 예측 장치 및 방법에 관한 것으로서, 현재 시점을 기준으로 과거의 설정 기간에 대한 채무자의 채무 이력 정보를 시계열화하여 시계열 학습 데이터를 생성하는 데이터 생성부, 데이터 생성부에 의해 생성된 시계열 학습 데이터를 미리 정의된 기계 학습 모델에 적용하여 기계 학습 모델에 대한 학습을 수행함으로써 현재 시점 이후 채무자의 채무불이행을 예측하기 위한 채무불이행 예측 모델을 생성하는 예측 모델 생성부, 및 예측 모델 생성부에 의해 생성된 채무불이행 예측 모델에, 데이터 생성부에 의해 생성된 시계열 학습 데이터를 입력하여 현재 시점 이후 채무자의 채무불이행을 예측하는 채무불이행 예측부를 포함하는 것을 특징으로 한다.

Description

기계 학습 기반의 채무불이행 예측 장치 및 방법
본 발명은 기계 학습 기반의 채무불이행 예측 장치 및 방법에 관한 것으로서, 더욱 상세하게는 기계 학습 모델을 이용하여 채무자의 채무불이행을 예측하기 위한 기계 학습 기반의 채무불이행 예측 장치 및 방법에 관한 것이다.
은행과 같은 금융기관의 수익 구조는 예대마진을 통한 이자이익과 수수료 기반의 이자이익으로 구분될 수 있으며, 이러한 이자이익은 금융기관 수익의 80% 수준으로 전체 수익 중에서 상당한 부분을 차지한다. 따라서, 은행의 입장에서 손실을 최소화하기 위해서는 보다 정확하게 대출 채무자(즉, 차주)의 채무불이행을 예측하는 과정이 필수적으로 요구되고 있다.
일반적으로 금융기관은 채무자의 채무불이행 가능성을 평가하기 위한 자체 신용 평가 시스템(Credit Scoring System)을 보유하고 있으며, 이러한 신용 평가 시스템을 기반으로 대출 신청자가 제출한 소득, 재직상태, 대출 및 연체 이력 등의 기본 정보와 개인 신용 평가 기관(Credit Bureau)이 제공하는 신용 등급을 고려하여 대출 신청자의 신용 위험, 채무 상환 능력 및 채무불이행 가능성을 평가한 후 대출 승인여부, 대출 한도 및 금리 등을 결정하게 된다. 또한, 현재 거래 중인 고객을 대상으로 일정 시점마다 향후의 채무불이행 가능성을 재평가하여 대출 연장 여부, 대출 금리 및 한도 변경 여부 등을 결정하는데 활용하고 있다.
전술한 종래의 방식에 있어서, 채무자의 신용, 채무 상환 능력 및 채무불이행 가능성에 대한 평가는 금융기관 내에서 인위적인 심사 과정을 통해 이루어지는 한계가 있기 때문에 그 평가 결과에 대한 신뢰성이 보장될 수 없는 문제점이 존재한다. 또한, 금융기관이 채용하고 있는 신용 평가 시스템은 금융기관 별로 상이하기 때문에 그 평가 결과의 객관성도 담보되지 못하는 한계를 갖는다.
본 발명의 배경기술은 대한민국 공개특허공보 제10-2004-0014712호(2004.02.18. 공개)에 개시되어 있다.
본 발명은 전술한 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 일 측면에 따른 목적은 채무자의 채무불이행 가능성에 대한 예측 결과의 신뢰성 및 객관성을 담보할 수 있는 기계 학습 기반의 채무불이행 예측 장치 및 방법을 제공하는 것이다.
본 발명의 일 측면에 따른 기계 학습 기반의 채무불이행 예측 장치는 현재 시점을 기준으로 과거의 설정 기간에 대한 채무자의 채무 이력 정보를 시계열화하여 시계열 학습 데이터를 생성하는 데이터 생성부, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 미리 정의된 기계 학습 모델에 적용하여 상기 기계 학습 모델에 대한 학습을 수행함으로써 상기 현재 시점 이후 상기 채무자의 채무불이행을 예측하기 위한 채무불이행 예측 모델을 생성하는 예측 모델 생성부, 및 상기 예측 모델 생성부에 의해 생성된 채무불이행 예측 모델에, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 입력하여 상기 현재 시점 이후 상기 채무자의 채무불이행을 예측하는 채무불이행 예측부를 포함하는 것을 특징으로 한다.
본 발명에 있어 상기 데이터 생성부는, 상기 과거의 설정 기간에 대한 상기 채무 이력 정보를 월 별로 시계열화하여 상기 시계열 학습 데이터를 생성하되, 상기 채무 이력 정보는, 상기 채무자의 인구통계정보와, 해당 월의 대출정보 및 해당 월의 연체정보를 포함하는 것을 특징으로 한다.
본 발명에 있어 상기 기계 학습 모델은, 순환 신경망(RNN: Recurrent Neural Network)에 따른 모델인 것을 특징으로 한다.
본 발명에 있어 상기 예측 모델 생성부는, 상기 시계열 학습 데이터에 포함된 상기 채무자의 월 별 채무 이력 정보를 상기 기계 학습 모델에 순차적으로 입력하여 상기 기계 학습 모델에 대한 학습을 수행함으로써 상기 채무불이행 예측 모델을 생성하는 것을 특징으로 한다.
본 발명에 있어 상기 채무불이행 예측부는, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 상기 채무불이행 예측 모델에 입력함으로써, 상기 시계열 학습 데이터의 생성에 반영된 마지막 월의 차기 월에서의 상기 채무자의 채무불이행을 예측하는 것을 특징으로 한다.
본 발명의 일 측면에 따른 기계 학습 기반의 채무불이행 예측 방법은 데이터 생성부가, 현재 시점을 기준으로 과거의 설정 기간에 대한 채무자의 채무 이력 정보를 시계열화하여 시계열 학습 데이터를 생성하는 단계, 예측 모델 생성부가, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 미리 정의된 기계 학습 모델에 적용하여 상기 기계 학습 모델에 대한 학습을 수행함으로써 상기 현재 시점 이후 상기 채무자의 채무불이행을 예측하기 위한 채무불이행 예측 모델을 생성하는 단계, 및 채무불이행 예측부가, 상기 예측 모델 생성부에 의해 생성된 채무불이행 예측 모델에, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 입력하여 상기 현재 시점 이후 상기 채무자의 채무불이행을 예측하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 일 측면에 따르면, 본 발명은 채무자의 채무 이력 정보가 반영된 소정의 시계열 데이터를 기반으로 기계 학습 모델을 학습하고, 그 학습을 통해 생성되는 채무불이행 예측 모델을 이용하여 채무자의 채무 불이행을 예측함으로써, 채무불이행에 대한 인위적인 평가로 인해 야기되는 신뢰성 저하 문제를 제거함과 동시에 그 예측 결과의 객관성을 보장할 수 있다.
도 1은 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 장치를 설명하기 위한 블록구성도이다.
도 2는 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 장치에서 시계열 학습 데이터를 보인 예시도이다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 장치에서 기계 학습 모델로 적용될 수 있는 RNN의 구조를 보인 예시도이다.
도 5는 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 방법을 설명하기 위한 흐름도이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 기계 학습 기반의 채무불이행 예측 장치 및 방법의 실시예를 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 장치를 설명하기 위한 블록구성도이고, 도 2는 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 장치에서 시계열 학습 데이터를 보인 예시도이며, 도 3 및 도 4는 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 장치에서 기계 학습 모델로 적용될 수 있는 RNN의 구조를 보인 예시도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 장치는 데이터베이스부(DB), 데이터 생성부(100), 예측 모델 생성부(200) 및 채무불이행 예측부(300)를 포함할 수 있다.
데이터베이스부(DB)에는 채무자의 채무 이력 정보가 저장되어 있을 수 있다. 여기서, 채무 이력 정보는 채무자의 인구통계정보, 해당 월에서의 대출정보, 및 해당 월에서의 연체정보를 포함할 수 있다. 또한, 데이터베이스부(DB)에는 상기한 채무 이력 정보와 함께, 채무자의 수입정보, 재산정보, 신용정보 및 부양가족정보를 포함하는 금융정보가 저장되어 있을 수 있다. 데이터베이스부(DB)에 저장된 정보 중 채무 이력 정보는 후술하는 것과 같이 데이터 생성부(100)에 의한 시계열 학습 데이터의 생성에 사용될 수 있다.
데이터 생성부(100)는 현재 시점을 기준으로 과거의 설정 기간에 대한 채무자의 채무 이력 정보를 데이터베이스부(DB)로부터 추출하고, 추출된 채무 이력 정보를 시계열화하여 시계열 학습 데이터를 생성할 수 있다. 여기서, 과거의 설정 기간이라 함은 현재 시점으로부터 과거로 역산되는 기간으로 설계자가 설정한 기간을 의미한다(예: 6개월)
전술한 것과 같이 채무 이력 정보는 채무자의 인구통계정보와, 해당 월의 대출정보 및 해당 월의 연체정보를 포함할 수 있으며, 하기 표 1은 채무 이력 정보의 예시를 나타낸다.
항목 속성
인구통계정보 나이
성별 남: 0
여: 1
대출정보 해당 월의 보유 대출 개수
해당 월의 업권 코드 별 개수
해당 월의 대출 상품 별 개수
마지막 대출 월로부터 경과 일수
해당 월의 대출 잔액의 평균
전 달 대비 대출 평균 잔액 증가량
연체정보 채무불이행 여부 정상: 0
채무불이행: 1
데이터 생성부(100)는 과거의 설정 기간에 대한 채무 이력 정보를 월 별로 시계열화하여 시계열 학습 데이터를 생성할 수 있다. 예를 들어, 설정 기간이 6개월로 설정된 경우를 가정하면, 데이터 생성부(100)는 표 1과 같은 6개의 채무 이력 정보에 각각 해당 월에 따른 timestep을 부가하는 방식으로 각 채무 이력 정보를 월 별로 시계열화함으로써 시계열 학습 데이터를 생성할 수 있다(즉, 시계열 학습 데이터는 6개의 채무 이력 정보의 세트(set)를 의미한다). 이 경우, 표 1의 성별 및 채무불이행 여부와 같은 명목형 데이터는 Label Encoder를 통해 바이너리 형식의 데이터로 변환될 수 있다. 도 2는 데이터베이스부(DB)로부터 추출된 6개의 채무 이력 정보가 시계열화되어 시계열 학습 데이터가 생성된 후, 후술하는 기계 학습 모델에 적용되는 예시를 도시하고 있다. 예측 모델 생성부(200)는 데이터 생성부(100)에 의해 생성된 시계열 학습 데이터를 미리 정의된 기계 학습 모델에 적용하여 기계 학습 모델에 대한 학습을 수행함으로써 현재 시점 이후 채무자의 채무불이행을 예측하기 위한 채무불이행 예측 모델을 생성할 수 있다. 여기서, 채무불이행 예측 모델을 생성하기 위해 사용되는 기계 학습 모델로서 순환 신경망(RNN: Recurrent Neural Network)에 따른 모델이 채용될 수 있다.
도 3 및 도 4는 순환 신경망의 구조를 도시하고 있다. 도 3 및 도 4를 참조하여 순환 신경망의 구조에 대하여 개괄적으로 설명하면, Xt, ht, Ot는 각각 시점 t에서의 입력값, 출력값, 히든 스테이트(hidden state)를 의미하며, ht 및 Ot는 하기 수학식 1에 따른다.
Figure PCTKR2018016965-appb-M000001
도 3의 U는 입력값을 히든 스테이트로 보내는 파라미터, V는 이전 히든 스테이트에서 다음 히든 스테이트로 보내는 파라미터, W는 히든 스테이트에서 출력값으로 보내는 파라미터를 의미하며, 모든 시점(timestep)에서 파라미터는 공유된다. 자세히는, 시점 t일 때 t에서의 정보와 t-1 시점의 히든 스테이트의 출력값이 결합하여 t의 히든 스테이트의 출력값이 되고, 이것이 t+1 시점에 영향을 주는 과정이 반복되면서 U, V, W에 대한 학습이 진행된다. 학습 시 BPTT(BackPropagatino Through Time) 알고리즘이 적용될 수 있으며, 파라미터(U, V, W)에 대한 오차의 그레디언트(gradient)를 역전파함으로써 파라미터(U, V, W)가 업데이트된다.
전술한 RNN에 따른 기계 학습 모델을 기반으로, 예측 모델 생성부(200)는 시계열 학습 데이터에 포함된 채무자의 월 별 채무 이력 정보를 기계 학습 모델에 순차적으로 입력하여 기계 학습 모델에 대한 학습을 수행함으로써 채무불이행 예측 모델을 생성할 수 있다. 이에 따라, 예측 모델 생성부(200)는 채무자의 월 별 채무 이력 정보를 순차적으로 입력받아 파라미터에 대한 학습을 수행하고 완료함으로써 채무불이행 예측 모델을 생성할 수 있다.
채무불이행 예측부(300)는 예측 모델 생성부(200)에 의해 생성된 채무불이행 예측 모델에, 데이터 생성부(100)에 의해 생성된 시계열 학습 데이터를 입력하여 현재 시점 이후 채무자의 채무불이행을 예측할 수 있다.
구체적으로는, 채무불이행 예측부(300)는 데이터 생성부(100)에 의해 생성된 시계열 학습 데이터를 채무불이행 예측 모델에 입력함으로써, 시계열 학습 데이터의 생성에 반영된 마지막 월의 차기 월에서의 채무자의 채무불이행을 예측할 수 있다. 예를 들어, 시계열 학습 데이터에 포함된 채무 이력 정보가 1월 내지 6월에 해당하는 채무 이력 정보인 경우, 채무불이행 예측부(300)는 1월 내지 6월에 대한 각 채무 이력 정보를 채무불이행 예측 모델에 입력함으로써 7월에 대한 채무자의 채무불이행을 예측할 수 있다.
도 5는 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 방법을 설명하기 위한 흐름도이다.
도 5를 참조하여 본 발명의 일 실시예에 따른 기계 학습 기반의 채무불이행 예측 방법을 설명하면, 먼저 데이터 생성부(100)는 현재 시점을 기준으로 과거의 설정 기간에 대한 채무자의 채무 이력 정보를 시계열화하여 시계열 학습 데이터를 생성한다(S100). 전술한 것과 같이 채무자의 채무 이력 정보는 채무자의 인구통계정보, 해당 월의 대출정보 및 해당 월의 연체정보를 포함할 수 있으며, 이에 따라 S100 단계에서 데이터 생성부(100)는 과거의 설정 기간에 대한 채무 이력 정보를 월 별로 시계열화하여 시계열 학습 데이터를 생성할 수 있다.
이어서, 예측 모델 생성부(200)는 데이터 생성부(100)에 의해 생성된 시계열 학습 데이터를 미리 정의된 기계 학습 모델에 적용하여 기계 학습 모델에 대한 학습을 수행함으로써 현재 시점 이후 채무자의 채무불이행을 예측하기 위한 채무불이행 예측 모델을 생성한다(S200). S200 단계에서 사용되는 기계 학습 모델로서 순환 신경망에 따른 모델이 채용될 수 있다. 이에 따라, S200 단계에서 예측 모델 생성부(200)는 시계열 학습 데이터에 포함된 채무자의 월 별 채무 이력 정보를 기계 학습 모델에 순차적으로 입력하여 기계 학습 모델에 대한 학습을 수행함으로써 채무불이행 예측 모델을 생성할 수 있다.
이어서, 채무불이행 예측부(300)는 예측 모델 생성부(200)에 의해 생성된 채무불이행 예측 모델에, 데이터 생성부(100)에 의해 생성된 시계열 학습 데이터를 입력하여 현재 시점 이후 채무자의 채무불이행을 예측한다(S300). S300 단계에서, 채무불이행 예측부(300)는 데이터 생성부(100)에 의해 생성된 시계열 학습 데이터를 채무불이행 예측 모델에 입력함으로써, 시계열 학습 데이터의 생성에 반영된 마지막 월의 차기 월에서의 채무자의 채무불이행을 예측할 수 있다.
한편, S100 단계 내지 S300 단계는 연속적으로 수행되는 시계열적 구성으로 구현될 수도 있고, S100 단계 및 S200 단계를 통해 채무불이행 예측 모델을 생성한 후, 차후 S100 단계를 통해 채무자의 월 별 채무 이력 정보를 추출하고 S300 단계를 수행함으로써 채무자의 채무불이행을 예측하는 시계열적 구성으로 구현될 수도 있다.
이와 같이 본 실시예는 채무자의 채무 이력 정보가 반영된 소정의 시계열 데이터를 기반으로 기계 학습 모델을 학습하고, 그 학습을 통해 생성되는 채무불이행 예측 모델을 이용하여 채무자의 채무 불이행을 예측함으로써, 채무불이행에 대한 인위적인 평가로 인해 야기되는 신뢰성 저하 문제를 제거함과 동시에 그 예측 결과의 객관성을 보장할 수 있다.
본 명세서에서 설명된 구현은, 예컨대, 방법 또는 프로세스, 장치, 소프트웨어 프로그램, 데이터 스트림 또는 신호로 구현될 수 있다. 단일 형태의 구현의 맥락에서만 논의(예컨대, 방법으로서만 논의)되었더라도, 논의된 특징의 구현은 또한 다른 형태(예컨대, 장치 또는 프로그램)로도 구현될 수 있다. 장치는 적절한 하드웨어, 소프트웨어 및 펌웨어 등으로 구현될 수 있다. 방법은, 예컨대, 컴퓨터, 마이크로프로세서, 집적 회로 또는 프로그래밍가능한 로직 디바이스 등을 포함하는 프로세싱 디바이스를 일반적으로 지칭하는 프로세서 등과 같은 장치에서 구현될 수 있다. 프로세서는 또한 최종-사용자 사이에 정보의 통신을 용이하게 하는 컴퓨터, 셀 폰, 휴대용/개인용 정보 단말기(personal digital assistant: "PDA") 및 다른 디바이스 등과 같은 통신 디바이스를 포함한다.
이상으로 본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (10)

  1. 현재 시점을 기준으로 과거의 설정 기간에 대한 채무자의 채무 이력 정보를 시계열화하여 시계열 학습 데이터를 생성하는 데이터 생성부;
    상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 미리 정의된 기계 학습 모델에 적용하여 상기 기계 학습 모델에 대한 학습을 수행함으로써 상기 현재 시점 이후 상기 채무자의 채무불이행을 예측하기 위한 채무불이행 예측 모델을 생성하는 예측 모델 생성부; 및
    상기 예측 모델 생성부에 의해 생성된 채무불이행 예측 모델에, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 입력하여 상기 현재 시점 이후 상기 채무자의 채무불이행을 예측하는 채무불이행 예측부;
    를 포함하는 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 장치.
  2. 제1항에 있어서,
    상기 데이터 생성부는, 상기 과거의 설정 기간에 대한 상기 채무 이력 정보를 월 별로 시계열화하여 상기 시계열 학습 데이터를 생성하되,
    상기 채무 이력 정보는, 상기 채무자의 인구통계정보, 해당 월의 대출정보 및 해당 월의 연체정보를 포함하는 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 장치.
  3. 제2항에 있어서,
    상기 기계 학습 모델은, 순환 신경망(RNN: Recurrent Neural Network)에 따른 모델인 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 장치.
  4. 제3항에 있어서,
    상기 예측 모델 생성부는, 상기 시계열 학습 데이터에 포함된 상기 채무자의 월 별 채무 이력 정보를 상기 기계 학습 모델에 순차적으로 입력하여 상기 기계 학습 모델에 대한 학습을 수행함으로써 상기 채무불이행 예측 모델을 생성하는 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 장치.
  5. 제4항에 있어서,
    상기 채무불이행 예측부는, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 상기 채무불이행 예측 모델에 입력함으로써, 상기 시계열 학습 데이터의 생성에 반영된 마지막 월의 차기 월에서의 상기 채무자의 채무불이행을 예측하는 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 장치.
  6. 데이터 생성부가, 현재 시점을 기준으로 과거의 설정 기간에 대한 채무자의 채무 이력 정보를 시계열화하여 시계열 학습 데이터를 생성하는 단계;
    예측 모델 생성부가, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 미리 정의된 기계 학습 모델에 적용하여 상기 기계 학습 모델에 대한 학습을 수행함으로써 상기 현재 시점 이후 상기 채무자의 채무불이행을 예측하기 위한 채무불이행 예측 모델을 생성하는 단계; 및
    채무불이행 예측부가, 상기 예측 모델 생성부에 의해 생성된 채무불이행 예측 모델에, 상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 입력하여 상기 현재 시점 이후 상기 채무자의 채무불이행을 예측하는 단계;
    를 포함하는 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 방법.
  7. 제6항에 있어서,
    상기 시계열 학습 데이터를 생성하는 단계에서, 상기 데이터 생성부는,
    상기 과거의 설정 기간에 대한 상기 채무 이력 정보를 월 별로 시계열화하여 상기 시계열 학습 데이터를 생성하되,
    상기 채무 이력 정보는, 상기 채무자의 인구통계정보, 해당 월의 대출정보 및 해당 월의 연체정보를 포함하는 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 방법.
  8. 제7항에 있어서,
    상기 기계 학습 모델은, 순환 신경망(RNN: Recurrent Neural Network)에 따른 모델인 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 방법.
  9. 제8항에 있어서,
    상기 채무불이행 예측 모델을 생성하는 단계에서, 상기 예측 모델 생성부는,
    상기 시계열 학습 데이터에 포함된 상기 채무자의 월 별 채무 이력 정보를 상기 기계 학습 모델에 순차적으로 입력하여 상기 기계 학습 모델에 대한 학습을 수행함으로써 상기 채무불이행 예측 모델을 생성하는 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 방법.
  10. 제9항에 있어서,
    상기 채무불이행을 예측하는 단계에서, 상기 채무불이행 예측부는,
    상기 데이터 생성부에 의해 생성된 시계열 학습 데이터를 상기 채무불이행 예측 모델에 입력함으로써, 상기 시계열 학습 데이터의 생성에 반영된 마지막 월의 차기 월에서의 상기 채무자의 채무불이행을 예측하는 것을 특징으로 하는 기계 학습 기반의 채무불이행 예측 방법.
PCT/KR2018/016965 2018-11-27 2018-12-31 기계 학습 기반의 채무불이행 예측 장치 및 방법 WO2020111376A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180148511A KR102174608B1 (ko) 2018-11-27 2018-11-27 기계 학습 기반의 채무불이행 예측 장치 및 방법
KR10-2018-0148511 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020111376A1 true WO2020111376A1 (ko) 2020-06-04

Family

ID=70853433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016965 WO2020111376A1 (ko) 2018-11-27 2018-12-31 기계 학습 기반의 채무불이행 예측 장치 및 방법

Country Status (2)

Country Link
KR (1) KR102174608B1 (ko)
WO (1) WO2020111376A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022204779A1 (en) * 2021-04-01 2022-10-06 The Toronto-Dominion Bank Predicting future events of predetermined duration using adaptively trained artificial-intelligence processes
US11995714B1 (en) * 2021-09-14 2024-05-28 Stripe, Inc. Machine learning-based loss forecasting model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430125B1 (ko) * 2020-09-07 2022-08-08 김성호 P2p 금융을 위한 차주 계좌 리스크 관리 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170079161A (ko) * 2015-12-30 2017-07-10 주식회사 솔리드웨어 빅데이터와 기계학습을 이용한 타겟 정보 예측 시스템 및 예측 방법
US20170206464A1 (en) * 2016-01-14 2017-07-20 Preferred Networks, Inc. Time series data adaptation and sensor fusion systems, methods, and apparatus
JP2018049400A (ja) * 2016-09-20 2018-03-29 株式会社ココペリインキュベート 財務情報分析システム、及びプログラム
KR20180092189A (ko) * 2017-02-08 2018-08-17 사회복지법인 삼성생명공익재단 생존율 예측 모델 생성 방법, 장치 및 컴퓨터 프로그램

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170079161A (ko) * 2015-12-30 2017-07-10 주식회사 솔리드웨어 빅데이터와 기계학습을 이용한 타겟 정보 예측 시스템 및 예측 방법
US20170206464A1 (en) * 2016-01-14 2017-07-20 Preferred Networks, Inc. Time series data adaptation and sensor fusion systems, methods, and apparatus
JP2018049400A (ja) * 2016-09-20 2018-03-29 株式会社ココペリインキュベート 財務情報分析システム、及びプログラム
KR20180092189A (ko) * 2017-02-08 2018-08-17 사회복지법인 삼성생명공익재단 생존율 예측 모델 생성 방법, 장치 및 컴퓨터 프로그램

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, SOHUI.: "Prediction on Overdue Debt Using Sample DB about Personal Credit Information", CONFERENCE ON INFORMATION SECURITY AND CRYPTOGRAPHY 2018., 19 July 2018 (2018-07-19), pages 31 - 33 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022204779A1 (en) * 2021-04-01 2022-10-06 The Toronto-Dominion Bank Predicting future events of predetermined duration using adaptively trained artificial-intelligence processes
US11995714B1 (en) * 2021-09-14 2024-05-28 Stripe, Inc. Machine learning-based loss forecasting model

Also Published As

Publication number Publication date
KR20200068069A (ko) 2020-06-15
KR102174608B1 (ko) 2020-11-05

Similar Documents

Publication Publication Date Title
US10891161B2 (en) Method and device for virtual resource allocation, modeling, and data prediction
US20190325514A1 (en) Credit risk prediction method and device based on lstm model
WO2021174966A1 (zh) 训练风险识别模型的方法及装置
EP3413221A1 (en) Risk assessment method and system
WO2020111376A1 (ko) 기계 학습 기반의 채무불이행 예측 장치 및 방법
CN109242672A (zh) 贷款的还款信息预测方法、装置以及计算机可读存储介质
CN107330741A (zh) 分品类电子券使用预测方法、装置及电子设备
EP4109377A1 (en) System, method and apparatus for modeling loan transitions
US11055772B1 (en) Instant lending decisions
CN109118376A (zh) 医疗保险保费定价方法、装置、计算机设备和存储介质
US11037236B1 (en) Algorithm and models for creditworthiness based on user entered data within financial management application
CN112116245A (zh) 信贷风险评估方法、装置、计算机设备及存储介质
CN113705362A (zh) 图像检测模型的训练方法、装置、电子设备及存储介质
CN115545886A (zh) 逾期风险识别方法、装置、设备及存储介质
CN110689425A (zh) 基于收益进行额度定价的方法、装置和电子设备
CN108876604A (zh) 股市风险预测方法、装置、计算机设备及存储介质
CN114742645B (zh) 基于多阶段时序多任务的用户安全等级识别方法及装置
CN111310931A (zh) 参数生成方法、装置、计算机设备及存储介质
CN115860505A (zh) 对象评价方法、装置、终端设备及存储介质
CN107172311A (zh) 业务评估方法及终端设备
CN110705975B (zh) 一种扣款指令发起方法及装置
JP7298286B2 (ja) モデル提供プログラム、モデル提供方法及びモデル提供装置
US20210201394A1 (en) Dynamic financial health predictor
CN111179070A (zh) 一种基于lstm的借贷风险时效性预测系统及方法
CN116644372B (zh) 一种账户类型的确定方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941707

Country of ref document: EP

Kind code of ref document: A1