WO2020110807A1 - Solar-powered electricity generating device - Google Patents

Solar-powered electricity generating device Download PDF

Info

Publication number
WO2020110807A1
WO2020110807A1 PCT/JP2019/045107 JP2019045107W WO2020110807A1 WO 2020110807 A1 WO2020110807 A1 WO 2020110807A1 JP 2019045107 W JP2019045107 W JP 2019045107W WO 2020110807 A1 WO2020110807 A1 WO 2020110807A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
power generation
solar power
generation device
displacement sensor
Prior art date
Application number
PCT/JP2019/045107
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 孝
宏治 森
靖和 古結
塁 三上
開路 杉山
山本 誠司
正貴 小林
博之 小中
義哉 安彦
鍛 平山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020110807A1 publication Critical patent/WO2020110807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar power generation device.
  • This application claims priority based on Japanese application No. 2018-223749 filed on Nov. 29, 2018, and incorporates all the contents described in the above Japanese application.
  • the solar tracking type solar power generation device has a limitation in the shape of the pillar in that it does not interfere with the movement of the light receiving panel, as compared with the fixed type solar power generation device, in that it supports a moving light receiving panel. Therefore, the light receiving panel is supported by, for example, one column.
  • a solar power generation device has a planar spread, supports a light receiving panel on which sunlight is incident, and the light receiving panel, and controls an attitude so that the light receiving panel tracks the sun.
  • a support mechanism including a drive unit, a pressure receiving plate that is provided in an end portion of the light receiving surface of the light receiving panel in parallel with the light receiving surface, and causes a displacement in response to static pressure and dynamic pressure of wind, and the pressure receiving plate. And a displacement sensor that is provided in proximity to detect that the displacement has reached a predetermined amount.
  • FIG. 1 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side, and shows the solar power generation device in a completed state.
  • FIG. 2 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side, and shows the solar power generation device in the state of being assembled.
  • FIG. 3 is a perspective view showing the posture of the light receiving panel facing the sun.
  • FIG. 4 is a perspective view showing an example of the retracted posture.
  • FIG. 5 is a side view when the light receiving panel of the solar power generation device has a vertical posture.
  • FIG. 6 is a side view when the light receiving panel of the solar power generation device is in an oblique posture while tracking the sun.
  • FIG. 7 is a side view similar to FIG. 4, showing an example of the retracted posture.
  • FIG. 8 is an enlarged perspective view of the right pressure receiving plate in FIG. 3 as an example.
  • FIG. 9 is a perspective view showing an example of a state in which wind is blown from the front side of the light receiving panel.
  • FIG. 10 is a perspective view showing an example of a state where wind is blown from the back surface side of the light receiving panel.
  • FIG. 11 is a schematic view showing an installation example of the displacement sensor in the image of the pressure receiving plate in FIGS. 8 to 10 as viewed from the side.
  • FIG. 12 is a schematic view showing another installation example of the displacement sensor in the image of the pressure receiving plate in FIGS. 8 to 10 as viewed from the side.
  • FIG. 13 is an example of a block diagram of control in one solar power generation device.
  • FIG. 14 is a first example of a flowchart executed by the control unit.
  • FIG. 15 is a second example of a flowchart executed by the control unit.
  • FIG. 16A is an example in which an optical sensor is used as a displacement sensor.
  • FIG. 16B is an example in which an optical sensor is used as a displacement sensor.
  • FIG. 16C is an example in which the optical sensor is a displacement sensor.
  • the wind flow is constantly changing at the location where the photovoltaic power generator is installed, and it is surprisingly difficult to accurately grasp how much wind is actually applied to the light receiving panel only by the wind speed and direction. .. Further, for example, when several tens of solar power generation devices are lined up in one area, the wind power may be different between the outside and the inside of the arrangement. For example, there is a case where the outer solar power generation device exerts a so-called windbreak effect and the load of wind on the inner solar power generation device is reduced.
  • the present disclosure aims to provide a solar power generation device capable of suppressing loss of power generation opportunity as much as possible while limiting the increase in mechanical strength of the support mechanism from the viewpoint of cost.
  • the gist of the embodiment of the present disclosure includes at least the following.
  • the solar power generation device of the present disclosure has a planar spread, supports a light receiving panel on which sunlight is incident, and the light receiving panel, and controls the posture so that the light receiving panel tracks the sun.
  • a support mechanism including a drive unit, a pressure receiving plate provided at an end of the light receiving surface of the light receiving panel in parallel with the light receiving surface and causing displacement in response to static pressure and dynamic pressure of wind, and close to the pressure receiving plate. And a displacement sensor that detects that the displacement has reached a predetermined amount.
  • the pressure receiving plate when a strong wind is received, the pressure receiving plate is displaced.
  • the displacement reaches a predetermined amount, the light receiving panel is in a state in which a corresponding wind load due to wind force including static pressure and dynamic pressure is applied. This state can be detected by the displacement sensor. Therefore, the wind load actually applied to each light receiving panel can be detected more accurately.
  • Accurate detection makes it possible to change the posture by the drive unit or set the retracted posture at an appropriate timing that is neither too early nor too late.
  • such a solar power generation device may be tracking by uniaxial driving (only azimuth angle) or may be tracking by biaxial driving (azimuth angle and elevation angle).
  • Such a solar power generation device can know the proper timing to take a posture such as evacuation for each group, there is an advantage that wasteful loss of power generation opportunity can be suppressed. Therefore, it is possible to provide a photovoltaic power generation device that can suppress the loss of power generation opportunities as much as possible while limiting the mechanical strength enhancement of the support mechanism from the viewpoint of cost. Note that the pressure receiving plate and the displacement sensor have a simple detection configuration, and visual inspection is easy.
  • one end of the pressure receiving plate is fixed to the end portion and the other end is a free end, and the outer edge portion is separated from the outer edge portion. It may have a leaf spring portion that is inside in the closed state. In this case, for example, the free end that receives a strong wind is bent by the wind force. At this time, the outer edge portion exerts an effect of suppressing formation of blade tip vortices behind the leaf spring portion, and facilitates displacement of the leaf spring portion.
  • the contour shape of the leaf spring portion may be a parabolic shape. Such a leaf spring portion is easily bent, and metal fatigue does not easily occur even if it is made of metal.
  • the pressure receiving plate is provided on the upper end of the light receiving panel in a state of tracking the sun. Since the upper end of the light receiving panel is susceptible to wind, it is a position suitable for detecting wind force.
  • the posture is changed with respect to the drive unit so as to reduce the displacement.
  • the control unit tries to reduce the wind load by changing the posture of the light receiving panel.
  • the control unit searches for a posture in which the wind load falls below the predetermined amount while changing the posture changing direction. It is possible to uniformly change the retracted posture, but if the wind load can be reduced without significantly changing the current posture, for example, do not go to the retracted position for wind conditions that can change from moment to moment. It is possible to reduce the time required for returning by keeping the posture.
  • the displacement sensor includes an evacuation displacement sensor that detects a timing of taking an evacuation posture and a timing at which the evacuation may return from the evacuation.
  • a return displacement sensor for detecting may be included. In this case, it is possible to quickly and surely detect the timing at which the return may be made.
  • the displacement sensor may be a limit switch that operates by directly receiving the displacement of the leaf spring portion.
  • the displacement sensor is inexpensive and the operation state can be easily confirmed.
  • the displacement sensor may be an optical sensor that optically detects the displacement of the leaf spring portion.
  • the displacement sensor since the displacement of the leaf spring portion can be detected in a non-contact manner, such a displacement sensor has excellent durability.
  • the light receiving panel is a concentrating solar power generation panel.
  • the concentrating solar power generation device is more likely to generate power loss due to the retracted posture than the tracking-type crystalline silicon solar power generation panel in that it cannot generate power at all if the tracking is largely deviated. Therefore, it is very significant that the posture can be controlled by the drive unit at an appropriate timing that is neither too early nor too late.
  • FIG. 1 and 2 are perspective views of an example of a concentrating solar power generation device for one unit as viewed from the light receiving surface side.
  • FIG. 1 shows the solar power generation device 100 in a completed state
  • FIG. 2 shows the solar power generation device 100 in a state where it is being assembled.
  • FIG. 2 shows a state in which the framework of the tracking mount 25 is visible in the right half, and shows a state in which the concentrating solar power generation module (hereinafter, also simply referred to as a module) 1M is attached to the left half.
  • the module 1M is actually attached to the tracking mount 25, the mounting is performed with the tracking mount 25 lying on the ground.
  • the photovoltaic power generation device 100 is a planar light receiving panel (also referred to as a photovoltaic power generation panel or array) 1 that is continuous on the upper side and is divided into left and right sides on the lower side, and a support mechanism 2 thereof. It has and.
  • the light receiving panel 1 is configured by arranging the modules 1M on the tracking mount 25 (FIG. 2) on the back side.
  • the module 1M a known configuration is provided in which optical systems that collect sunlight and guide the sunlight to the power generation elements are arranged side by side in a matrix.
  • the support mechanism 2 includes a column 21, a foundation 22, a drive unit 23, a horizontal shaft 24 (FIG. 2) serving as a drive shaft, and a tracking mount 25.
  • the column 21 has a lower end fixed to the foundation 22 and an upper end provided with a drive unit 23.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the pillar 21 is vertical and the horizontal shaft 24 (FIG. 2) is horizontal.
  • the drive unit 23 can rotate the horizontal shaft 24 in two directions of an azimuth angle (an angle with the column 21 as a central axis) and an elevation angle (an angle with the horizontal shaft 24 as a central axis).
  • a reinforcing member 25 a that reinforces the tracking mount 25 is attached to the horizontal shaft 24.
  • a plurality of horizontal rails 25b are attached to the reinforcing member 25a.
  • the module 1M is attached so as to fit into this rail.
  • the vertical direction of the light receiving panel 1 as shown in FIG. 1 is usually before dawn and before sunset.
  • the drive unit 23 operates so that the light receiving surface of the light receiving panel 1 always faces the sun, and the light receiving panel 1 performs the sun tracking operation.
  • FIG. 3 is a perspective view showing the attitude of the light receiving panel 1 facing the sun as an example. Also, for example, at the time of south-central time near the equator, the light receiving panel 1 is in a horizontal posture with its light receiving surface facing the sun.
  • FIG. 4 is a perspective view showing an example of a retracted posture in strong wind. In this case, the light receiving surface of the light receiving panel 1 is horizontal and faces upward. Note that the light receiving panel 1 in the night standby posture is in the opposite direction, that is, in a horizontal posture with the light receiving surface of the light receiving panel 1 facing the ground.
  • the solar power generation device 100 configured as described above is provided with a pressure receiving plate 30.
  • the pressure receiving plate 30 is provided at the end of the light receiving surface (XY plane in FIG. 3) of the light receiving panel 1 in parallel with the light receiving surface.
  • the pressure receiving plate 30 causes a displacement according to the wind force as a total pressure including static pressure and dynamic pressure of the wind hitting it.
  • the wind power in the present disclosure is wind energy, and does not mean the wind power class as a meteorological term.
  • the pressure receiving plates 30 are provided at both corners (corners) of the upper end of the light receiving panel 1 in the state of tracking the sun.
  • the upper end (especially the corner) of the light receiving panel 1 is a position that is suitable for detecting wind force because it is susceptible to wind. Further, it is generally understood that the wind becomes stronger at a position higher than the ground, so that the light receiving panel 1 can receive the maximum wind force.
  • a displacement sensor is actually provided near the pressure receiving plate 30, details will be described later.
  • FIG. 5 is a side view when the light receiving panel 1 of the solar power generation device 100 is in a vertical posture.
  • the wind basically blows laterally.
  • the wind load applied to the light receiving panel 1 is small with respect to the wind blowing from the front side to the back side of the drawing sheet in parallel with the light receiving panel 1.
  • the pressure receiving plate 30 is located at the highest ground clearance.
  • FIG. 6 is a side view when the light receiving panel 1 of the solar power generation device 100 is in an oblique posture while tracking the sun.
  • the light receiving panel 1 and the pressure receiving plate 30 receive not only the static pressure of the wind but also the dynamic pressure of the wind as a fluid.
  • FIG. 7 is a side view showing an example of a retracted posture similar to FIG. Even in the daytime, it is possible to take this retracted posture in strong winds. In this posture, the wind load received by the light receiving panel 1 and the pressure receiving plate 30 is very small even if a strong wind blows.
  • FIG. 8 is an enlarged perspective view of the pressure receiving plate 30 on the right side in FIG. 3 as an example.
  • the pressure receiving plate 30 is attached to the right end of the upper end of the module 1M in the light receiving panel 1.
  • the pressure receiving plate 30 is, for example, a thin metal plate, and has an outer edge portion 31 on the outer side and a leaf spring portion 32 on the inner side. There is a minute gap between the outer edge portion 31 and the leaf spring portion 32, and they are separated from each other.
  • the pressure receiving plate 30 is held like a “cantilever” with respect to the upper end of the module 1M. That is, one end (base end) on the lower side of the pressure receiving plate 30 is fixed to the upper end of the module 1M, and the other end on the upper side of the drawing is a free end.
  • the outer edge portion 31 and the leaf spring portion 32 have the two-piece structure as described above, the outer edge portion 31 exerts an effect of receiving the wing tip vortex, and wind wraps around the back side of the leaf spring portion 32. Suppress. As a result, the outer edge portion 31 is hard to bend, but the leaf spring portion 32 becomes easy to bend.
  • the contour shape of the leaf spring portion 32 is parabolic. The leaf spring portion 32 having such a shape is more likely to bend toward the apex side of the parabola, and is less likely to cause metal fatigue.
  • FIG. 9 is a perspective view showing an example of a state where wind is blown from the front side of the light receiving panel 1. In the figure, at this time, the leaf spring portion 32 bends rearward with respect to the outer edge portion 31.
  • FIG. 10 is a perspective view showing an example of a state where wind is blown from the back surface side of the light receiving panel 1. In the figure, at this time, the leaf spring portion 32 bends forward with respect to the outer edge portion 31.
  • FIG. 11 is a schematic view showing an installation example of the displacement sensor in a side view of the pressure receiving plate 30 in FIGS. 8 to 10.
  • the displacement sensor 40 is provided near the pressure receiving plate 30.
  • the displacement sensor 40 may be fixed to, for example, the outer edge portion 31 by using a suitable supporting material.
  • a small limit switch typically, a small limit switch (rainproof type), which is a mechanical sensor, can be used. Limit switches are widespread, inexpensive, and easy to check the operating status during installation.
  • the upper limit value of the wind load capable of maintaining safety is checked in advance from the mechanical strength of the support mechanism 2, and the leaf spring portion 32 is operated so that the displacement sensor 40 operates when the upper limit value is exceeded. And the operating position of the displacement sensor 40 are set.
  • (A) is the state of wind below the upper limit. Although the leaf spring portion 32 bends, the displacement sensor 40 still does not operate.
  • the wind load exceeds the upper limit value, the bending of the leaf spring portion 32 becomes large, and the displacement sensor 40 operates. Using this as a trigger, the light receiving panel 1 changes its posture or moves to the retracted position.
  • the displacement sensor 41 is provided at a position symmetrical with respect to the outer edge portion 31.
  • (C) is the wind condition below the upper limit. Although the leaf spring portion 32 bends, the displacement sensor 41 still does not operate.
  • the wind load exceeds the upper limit value, the deflection of the leaf spring portion 32 becomes large, and the displacement sensor 41 operates. Using this as a trigger, the light receiving panel 1 changes its posture or moves to the retracted position.
  • FIG. 12 is a schematic view showing another installation example of the displacement sensor in the image of the pressure receiving plate 30 in FIGS. 8 to 10 as viewed from the side.
  • the displacement sensor 40 is provided near the pressure receiving plate 30 as shown in FIG.
  • the displacement sensor 40 is similar to that shown in FIGS. 11(a) and 11(b).
  • a displacement sensor for return is further provided.
  • the return displacement sensor 42 for example, a limit switch that is operable between the retracting displacement sensor 40 and the outer edge portion 31 without interfering with the bending operation of the leaf spring portion 32 is used.
  • Fig. 12(a) shows the wind condition below the upper limit. Although the leaf spring portion 32 bends, the displacement sensor 40 still does not operate. The displacement sensor 42 operates in the middle of the bending operation, but this does not affect control. Next, when the wind becomes strong and becomes the state of (b), the wind load exceeds the upper limit value, the bending of the leaf spring portion 32 becomes large, and the displacement sensor 40 operates. Using this as a trigger, the light receiving panel 1 changes its posture or moves to the retracted position.
  • FIG. 12C is an example of a configuration that positively captures the timing at which the return may be made. That is, when the wind weakens, the leaf spring portion 32 operates the displacement sensor 42. In this way, if the displacement sensor 42 for return operates after the displacement sensor 40 for retreat once operates, it can be determined that it is time to return. By doing so, it is possible to quickly and surely detect the timing for returning.
  • FIGS. 11 and 12 show only a limited number of examples. Various designs are possible as to where and how the displacement sensors 40, 41, 42 are arranged. Further, various combinations of the purpose and type of the displacement sensor are possible.
  • FIG. 13 is an example of a block diagram of control in one solar power generation device 100.
  • the drive unit 23 receives the drive signal from the control unit 60, and drives the light receiving panel 1 to follow the sun with two axes of azimuth and elevation.
  • a tracking sensor 50 is provided, and the control unit 60 gives a drive signal to the drive unit 23 based on the signal thereof.
  • the displacement sensor 40 (41, 42) provides the control unit 60 with a trigger signal for retracting or returning from the retracting.
  • the control unit 60 can control the attitude of the light receiving panel 1 via the drive unit 23 based on the signal from the displacement sensor.
  • the control unit 60 includes, for example, a CPU 61, and the CPU 61 executes software (computer program) to realize a necessary control function.
  • the software is stored in the memory 62 (including an auxiliary storage device if necessary) 62 of the control unit 60.
  • the control unit 60 is provided, for example, for each solar power generation device 100.
  • FIG. 14 is a first example of a flowchart executed by the control unit 60.
  • the control unit 60 starts processing immediately before dawn based on a sunrise time signal from the tracking sensor 50, for example.
  • the control unit 60 sets the attitude of the light receiving panel 1 to the state of FIG. 1 so as to wait for the sun (step S1).
  • the control unit 60 repeats steps S1, S2, and S3 on the condition that it is during the day (Yes in step S3).
  • the control unit 60 causes the light receiving panel 1 to track the rising sun.
  • the control unit 60 sets the light receiving panel 1 to the night standby posture (step S7), and the processing for one day ends. Unless strong winds blow, such processing is repeated every day.
  • the control unit 60 changes the posture of the light receiving panel 1 to reduce the wind load or to take the retracted posture (step S4). ..
  • the control unit 60 searches for a posture in which the wind load falls below the upper limit value while changing the direction in which the posture is changed. It is possible to uniformly change the retracted posture, but if the wind load can be reduced without significantly changing the current posture, for example, do not go to the retracted position for wind conditions that can change from moment to moment. It is possible to reduce the time required for returning by keeping the posture.
  • step S5 After the wind load becomes equal to or lower than the upper limit value (Yes in step S5), the control unit 60 waits for a predetermined time (step S6) in which the wind is likely to subside, and during the daytime, tracks the sun again. Return (step S1). If the sunset comes while waiting for a predetermined time, the control unit 60 sets the light-receiving panel 1 to the night standby posture (step S7), and the processing for one day ends.
  • FIG. 15 is a second example of a flowchart executed by the control unit 60.
  • the control unit 60 starts processing immediately before dawn based on a sunrise time signal from the tracking sensor 50, for example.
  • the control unit 60 sets the attitude of the light receiving panel 1 to the state of FIG. 1 so as to wait for the sun (step S1).
  • the control unit 60 repeats steps S1, S2, and S3 on the condition that it is during the day (Yes in step S3).
  • the control unit 60 causes the light receiving panel 1 to track the rising sun.
  • the control unit 60 sets the light receiving panel 1 to the night standby posture (step S7), and the processing for one day ends. Unless strong winds blow, such processing is repeated every day.
  • the control unit 60 changes the posture of the light receiving panel 1 to reduce the wind load or to take the retracted posture (step S4). ..
  • the control unit 60 searches for a posture in which the wind load falls below the upper limit value while changing the direction in which the posture is changed.
  • step S8 when the control unit 60 knows that the wind load has been reduced to a level at which the attitude of the light receiving panel 1 can be returned to the sun tracking, for example, by a signal from the displacement sensor 42 (Yes in step S8), If it is daytime, the sun tracking is performed again (step S1). On the other hand, when the level is not yet at the recoverable level (No in step S8), the system waits for recovery (Yes in steps S9 and S10). If the sunset comes while waiting for the return (No in step S10), the control unit 60 sets the light receiving panel 1 to the night standby posture (step S7), and the one-day processing ends. Become.
  • displacement sensor 43 is an optical sensor.
  • a pressure receiving plate 30P having a shape as shown in the drawing is brought into contact with an optical displacement sensor (optical sensor) 43 having a light emitting/receiving section for LED laser light.
  • the pressure receiving plate 30P has an outer edge portion 31P and a leaf spring portion 32P shaped like a fan. The two are separated from each other at the contour shape of the leaf spring portion 32P.
  • the displacement sensor 43 can detect that the leaf spring portion 32P is in a state in which a wind load is applied so as to cause a certain amount of bending.
  • the displacement of the leaf spring portion 32P can be detected in a non-contact manner, so that it has excellent durability.
  • it since it is used in a place exposed to strong sunlight, it is necessary to make it difficult for sunlight to enter the light receiving portion of the displacement sensor 43 so that the detection accuracy does not deteriorate.
  • it is also possible to use a magnetic displacement sensor.
  • the photovoltaic power generation apparatus 100 of the present disclosure has a planar spread, a light receiving panel 1 on which sunlight is incident, and a drive that supports the light receiving panel 1 and controls the attitude so that the light receiving panel 1 tracks the sun.
  • a support mechanism 2 including a portion 23, a pressure receiving plate 30 (30P) that is provided at an end of the light receiving surface of the light receiving panel 1 in parallel with the light receiving surface, and that is displaced in response to static pressure and dynamic pressure of wind.
  • Displacement sensors 40, 41, 42 (43) that are provided close to the pressure receiving plate 30 (30P) and detect that the displacement has reached a predetermined amount are provided.
  • the pressure receiving plate 30 (30P) is displaced.
  • the light receiving panel 1 is in a state in which a corresponding wind load including wind pressure including static pressure and dynamic pressure is applied. This state can be detected by the displacement sensors 40, 41, 42 (43). Therefore, the wind load actually applied to each light receiving panel 1 can be detected more accurately. Accurate detection enables the drive unit 23 to change the posture or set the retracted posture at an appropriate timing that is neither too early nor too late.
  • the solar power generation device 100 may be uniaxially driven (azimuth only) or biaxially driven (azimuth and elevation).
  • Such a solar power generation device 100 can know the proper timing to take a posture such as evacuation for each solar power generation device 100, there is an advantage that wasteful power generation opportunities can be suppressed. Therefore, it is possible to provide the photovoltaic power generation device 100 capable of suppressing the loss of power generation opportunities as much as possible while limiting the increase in the mechanical strength of the support mechanism 2 from the viewpoint of cost.
  • the pressure receiving plate 30 (30P) and the displacement sensors 40, 41, 42 (43) have a simple detection configuration, and visual inspection is easy.
  • the solar power generation device 100 is a condensing type.
  • the concentrating solar power generation device is more likely to generate power loss due to the retracted posture than the tracking-type crystalline silicon solar power generation panel in that it cannot generate power at all if the tracking is largely deviated. Therefore, it is very significant that the posture can be controlled by the drive unit 23 at an appropriate timing that is neither too early nor too late.
  • the drive of the drive unit is not limited to the biaxial drive, and is applicable to other drive shafts.
  • the form of the pressure receiving plate in the above disclosure is merely an example, and various changes can be made. Basically, it is conceivable that the form and the mounting position should best reflect the static pressure and the dynamic pressure of the actual wind on the light receiving plate 1.
  • the pressure receiving plate disclosed above assumes wind, but a similar pressure receiving plate can be applied as a snow amount sensor, for example, in an area with a lot of snow.
  • a similar pressure receiving plate can be applied as a snow amount sensor, for example, in an area with a lot of snow.
  • the blade tip vortex since the blade tip vortex does not matter, it is necessary to make a change, for example, using an elongated pressure receiving plate so that the blade weight vortex reacts faithfully to the weight of the snow to cause displacement.
  • snowfall can be easily detected by devising a tip of a long limit switch (a type such as the displacement sensor 42 in FIG. 12) of the actuator in a spoon shape so that snow can easily be placed on the tip.
  • the snow accumulated on the light receiving panel can be naturally dropped by setting the light receiving panel in a vertical posture. As a result, it is possible to prevent the power generation opportunity from being lost or the power generation amount from decreasing due to snowfall.
  • the above-mentioned light receiving panel 1 is a planar solar power generation panel (array), in the solar power generation device, sunlight is concentrated at one point by a parabolic curved reflecting mirror, and power is generated at the concentrated location. It is also known to have a configuration. Such a curved reflecting mirror is also a kind of “light receiving surface”. Even with such a configuration, it is common to receive the wind load due to the spread of the curved reflecting mirror and track the sun. Therefore, by providing a pressure receiving plate and a displacement sensor similar to those of the present disclosure, for example, on the outer end portion of the curved reflecting mirror, it is possible to obtain the same effect.
  • solar power generation with a parabolic curved reflector that concentrates sunlight at one point, generates steam by heat at the concentrated point, and rotates a turbine like thermal power generation.
  • This device is also a solar power generation device in a broad sense, and by providing a pressure receiving plate and a displacement sensor similar to those of the present disclosure, it is possible to obtain the same operational effect.

Abstract

This solar-powered electricity generating device comprises: a light receiving panel on which solar light impinges, said panel having planar spread; a support mechanism that supports the light receiving panel and includes a drive unit that controls the orientation so that the light receiving panel tracks the sun; a pressure plate that is provided in parallel with the light receiving surface at the end part of the light receiving surface of the light receiving panel and generates displacement in response to the static pressure and dynamic pressure of the wind; and a displacement sensor that is provided near the pressure plate and detects when the displacement reaches a prescribed amount.

Description

太陽光発電装置Solar power generator
 本発明は、太陽光発電装置に関する。
 本出願は、2018年11月29日出願の日本出願第2018-223749号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a solar power generation device.
This application claims priority based on Japanese application No. 2018-223749 filed on Nov. 29, 2018, and incorporates all the contents described in the above Japanese application.
 太陽光発電装置は、受光パネルを地面や建造物に固定する固定型のものと、支持機構によって地上に支えられた受光パネルが太陽を追尾するように動く太陽追尾型のものとがある。太陽追尾型の場合、架台に載せた大型の受光パネルを、支柱により支持し、駆動部により追尾動作を行わせる。太陽追尾型の太陽光発電装置は、固定型の太陽光発電装置に比べて、動く受光パネルを支えるという点で支柱の形態に、受光パネルの動きと干渉しないという制限がかかる。そのため、例えば1本の支柱により、受光パネルを支持する。この場合、受光パネルに強風が吹き付けると架台を含む支持機構全体に負荷がかかり、特に支柱及び駆動部に大きな負荷が集中しやすい。そのため、強風荷重にも耐えられるよう十分な余裕を見た機械的強度を支持機構(支柱、駆動部、架台)に持たせる必要がある。 There are two types of solar power generators, a fixed type that fixes the light receiving panel to the ground or a building, and a solar tracking type that moves the light receiving panel supported on the ground by a support mechanism to follow the sun. In the case of the sun tracking type, a large light receiving panel mounted on a pedestal is supported by columns and a driving unit is caused to perform a tracking operation. The solar tracking type solar power generation device has a limitation in the shape of the pillar in that it does not interfere with the movement of the light receiving panel, as compared with the fixed type solar power generation device, in that it supports a moving light receiving panel. Therefore, the light receiving panel is supported by, for example, one column. In this case, if a strong wind blows on the light receiving panel, a load is applied to the entire support mechanism including the gantry, and particularly a large load is likely to be concentrated on the support column and the drive section. Therefore, it is necessary to give the supporting mechanism (the support, the drive unit, the pedestal) a mechanical strength with a sufficient margin to withstand a strong wind load.
 但し、現実には、コストとの兼ね合いも有り、どのような猛烈な風にも耐えられる支持機構を作製することは合理的ではない。そこで、センサにより風速や風向を把握し、風による荷重が閾値を超える場合には、例えば受光パネルを水平にした退避の姿勢をとり、風を通し、荷重を支持機構の強度範囲内に抑える、ということが現実的である(例えば、特許文献1,2参照。)。 However, in reality, there is a tradeoff with cost, and it is not rational to create a support mechanism that can withstand any furious wind. Therefore, if the wind speed and the wind direction are grasped by the sensor and the load due to the wind exceeds the threshold value, for example, the retracted posture with the light receiving panel in a horizontal position is passed, the wind is passed, and the load is suppressed within the strength range of the support mechanism. That is realistic (see, for example, Patent Documents 1 and 2).
特開2014-203911号公報JP, 2014-203911, A 国際公開第2012/073705号公報International Publication No. 2012/073705
 本開示は、以下の発明を含む。但し、本発明は、請求の範囲によって定められるものである。 The present disclosure includes the following inventions. However, the present invention is defined by the claims.
 本開示の一表現に係る太陽光発電装置は、面状の拡がりを有し、太陽光が入射する受光パネルと、前記受光パネルを支持し、前記受光パネルが太陽を追尾するように姿勢を制御する駆動部を含む支持機構と、前記受光パネルの受光面の端部に当該受光面と平行に設けられ、風の静圧及び動圧に反応して変位を生じる受圧板と、前記受圧板に近接して設けられ、前記変位が所定量に達したことを検出する変位センサと、を備えている。 A solar power generation device according to an expression of the present disclosure has a planar spread, supports a light receiving panel on which sunlight is incident, and the light receiving panel, and controls an attitude so that the light receiving panel tracks the sun. A support mechanism including a drive unit, a pressure receiving plate that is provided in an end portion of the light receiving surface of the light receiving panel in parallel with the light receiving surface, and causes a displacement in response to static pressure and dynamic pressure of wind, and the pressure receiving plate. And a displacement sensor that is provided in proximity to detect that the displacement has reached a predetermined amount.
図1は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、完成した状態での太陽光発電装置を示している。FIG. 1 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side, and shows the solar power generation device in a completed state. 図2は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、組立途中の状態での太陽光発電装置を示している。FIG. 2 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side, and shows the solar power generation device in the state of being assembled. 図3は、一例として、太陽に正対している受光パネルの姿勢を示す斜視図である。As an example, FIG. 3 is a perspective view showing the posture of the light receiving panel facing the sun. 図4は、退避の姿勢の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of the retracted posture. 図5は、図1と同様に、太陽光発電装置の受光パネルが鉛直な姿勢である場合の側面図である。Similar to FIG. 1, FIG. 5 is a side view when the light receiving panel of the solar power generation device has a vertical posture. 図6は、太陽を追尾している状態での、太陽光発電装置の受光パネルが斜めの姿勢である場合の側面図である。FIG. 6 is a side view when the light receiving panel of the solar power generation device is in an oblique posture while tracking the sun. 図7は、図4と同様の、退避の姿勢の一例を示す側面図である。FIG. 7 is a side view similar to FIG. 4, showing an example of the retracted posture. 図8は、一例として、図3における右側の受圧板を拡大した斜視図である。FIG. 8 is an enlarged perspective view of the right pressure receiving plate in FIG. 3 as an example. 図9は、受光パネルの正面側から風が吹き付けた状態の一例を示す斜視図である。FIG. 9 is a perspective view showing an example of a state in which wind is blown from the front side of the light receiving panel. 図10は、受光パネルの裏面側から風が吹き付けた状態の一例を示す斜視図である。FIG. 10 is a perspective view showing an example of a state where wind is blown from the back surface side of the light receiving panel. 図11は、図8から図10における受圧板を側面から見たイメージでの、変位センサの設置例を示す略図である。FIG. 11 is a schematic view showing an installation example of the displacement sensor in the image of the pressure receiving plate in FIGS. 8 to 10 as viewed from the side. 図12は、図8から図10における受圧板を側面から見たイメージでの、変位センサの他の設置例を示す略図である。FIG. 12 is a schematic view showing another installation example of the displacement sensor in the image of the pressure receiving plate in FIGS. 8 to 10 as viewed from the side. 図13は、太陽光発電装置の1基における制御のブロック図の一例である。FIG. 13 is an example of a block diagram of control in one solar power generation device. 図14は、制御部において実行されるフローチャートの第1例である。FIG. 14 is a first example of a flowchart executed by the control unit. 図15は、制御部において実行されるフローチャートの第2例である。FIG. 15 is a second example of a flowchart executed by the control unit. 図16Aは、光学的なセンサを変位センサとする一例である。FIG. 16A is an example in which an optical sensor is used as a displacement sensor. 図16Bは、光学的なセンサを変位センサとする一例である。FIG. 16B is an example in which an optical sensor is used as a displacement sensor. 図16Cは、光学的なセンサを変位センサとする一例である。FIG. 16C is an example in which the optical sensor is a displacement sensor.
 [本開示が解決しようとする課題]
 太陽光発電装置の設置場所において、風の流れは絶えず変化しており、風速や風向だけでは、受光パネルに現実にどれだけの風による荷重がかかっているのか正確に把握することは意外に難しい。また、例えば数十基の太陽光発電装置が、1つのエリアに並んでいる場合、配置の外側と内側とでは風力が違う場合がある。例えば外側の太陽光発電装置がいわば防風林のような効果を発揮して内側の太陽光発電装置への風による荷重は軽減される場合もある。
[Problems to be solved by the present disclosure]
The wind flow is constantly changing at the location where the photovoltaic power generator is installed, and it is surprisingly difficult to accurately grasp how much wind is actually applied to the light receiving panel only by the wind speed and direction. .. Further, for example, when several tens of solar power generation devices are lined up in one area, the wind power may be different between the outside and the inside of the arrangement. For example, there is a case where the outer solar power generation device exerts a so-called windbreak effect and the load of wind on the inner solar power generation device is reduced.
 このように、風速や風向だけでは、現実に1基ごとにかかっている風荷重を正確に把握することは困難である。そのため、風速や風向から太陽光発電装置の損傷の可能性が予想される場合には、早めに全基が退避姿勢をとることが、安全サイドの考え方からは、好ましいとされてきた。  In this way, it is difficult to accurately grasp the wind load that is actually applied to each unit only by the wind speed and direction. Therefore, it has been considered preferable from the viewpoint of the safety side to take the retracted posture of all the plants early when the possibility of damage to the photovoltaic power generation device is expected from the wind speed and the wind direction.
 しかしながら、その場合、現実には退避しなくてもよかったのに退避してしまう場合や、全基退避する必要はなかったのに全基退避してしまった、というような事態が生じることがある。すなわち、本来退避せずに発電することができたにも関わらず退避してしまい、結果的には発電機会を失ったという事態が生じていることになる。とりわけ、集光型太陽光発電装置の場合は、追尾が大きくずれると全く発電できないので、発電ロスが大きい。 However, in that case, there may occur a situation in which it may be necessary to evacuate without actually evacuating, or evacuate all the units without having to evacuate all the units. .. In other words, although it was originally possible to generate electricity without having to evacuate, it was evacuated, and as a result, there was a situation in which the opportunity to generate electricity was lost. In particular, in the case of a concentrating solar power generation device, if the tracking is largely deviated, power cannot be generated at all, and thus power generation loss is large.
 かかる課題に鑑み、本開示は、支持機構の機械的強度増強をコスト的見地から制限しつつも、発電機会を失うことをできるだけ抑制し得る太陽光発電装置を提供することを目的とする。 In view of such a problem, the present disclosure aims to provide a solar power generation device capable of suppressing loss of power generation opportunity as much as possible while limiting the increase in mechanical strength of the support mechanism from the viewpoint of cost.
 [本開示の効果]
 本開示によれば、支持機構の機械的強度増強をコスト的見地から制限しつつも、発電機会を失うことをできるだけ抑制し得る太陽光発電装置を提供することができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a solar power generation device that can suppress the loss of power generation opportunities as much as possible while limiting the increase in mechanical strength of the support mechanism from the viewpoint of cost.
 [実施形態の要旨]
 本開示の実施形態の要旨としては、少なくとも以下のものが含まれる。
[Summary of Embodiment]
The gist of the embodiment of the present disclosure includes at least the following.
 (1)本開示の太陽光発電装置は、面状の拡がりを有し、太陽光が入射する受光パネルと、前記受光パネルを支持し、前記受光パネルが太陽を追尾するように姿勢を制御する駆動部を含む支持機構と、前記受光パネルの受光面の端部に当該受光面と平行に設けられ、風の静圧及び動圧に反応して変位を生じる受圧板と、前記受圧板に近接して設けられ、前記変位が所定量に達したことを検出する変位センサと、を備えている。 (1) The solar power generation device of the present disclosure has a planar spread, supports a light receiving panel on which sunlight is incident, and the light receiving panel, and controls the posture so that the light receiving panel tracks the sun. A support mechanism including a drive unit, a pressure receiving plate provided at an end of the light receiving surface of the light receiving panel in parallel with the light receiving surface and causing displacement in response to static pressure and dynamic pressure of wind, and close to the pressure receiving plate. And a displacement sensor that detects that the displacement has reached a predetermined amount.
 上記のような太陽光発電装置では、例えば強風を受けた場合、受圧板が変位を生じる。変位が所定量に達する場合、受光パネルに、静圧及び動圧を含む風力による相応の風荷重がかかっている状態である。この状態を、変位センサにより検出することができる。従って、個々の受光パネルに対して実際にかかっている風荷重を、より正確に検出することができる。正確な検出により、早すぎず遅すぎずの適切なタイミングで駆動部により姿勢を変えるか又は退避の姿勢にすることが可能となる。なお、かかる太陽光発電装置は、1軸駆動(方位角のみ)による追尾であってもよいし、2軸駆動(方位角及び仰角)による追尾であってもよい。 In the above-mentioned solar power generation device, for example, when a strong wind is received, the pressure receiving plate is displaced. When the displacement reaches a predetermined amount, the light receiving panel is in a state in which a corresponding wind load due to wind force including static pressure and dynamic pressure is applied. This state can be detected by the displacement sensor. Therefore, the wind load actually applied to each light receiving panel can be detected more accurately. Accurate detection makes it possible to change the posture by the drive unit or set the retracted posture at an appropriate timing that is neither too early nor too late. In addition, such a solar power generation device may be tracking by uniaxial driving (only azimuth angle) or may be tracking by biaxial driving (azimuth angle and elevation angle).
 このような太陽光発電装置は、1基ごとに退避等の姿勢となるべき適切なタイミングを知ることができるので、発電機会を無駄に失うことを抑制できる、という利点を生じる。従って、支持機構の機械的強度増強をコスト的見地から制限しつつも、発電機会を失うことをできるだけ抑制し得る太陽光発電装置を提供することができる。なお、受圧板と変位センサという検出の構成は簡素であり、目視点検も容易である。  Since such a solar power generation device can know the proper timing to take a posture such as evacuation for each group, there is an advantage that wasteful loss of power generation opportunity can be suppressed. Therefore, it is possible to provide a photovoltaic power generation device that can suppress the loss of power generation opportunities as much as possible while limiting the mechanical strength enhancement of the support mechanism from the viewpoint of cost. Note that the pressure receiving plate and the displacement sensor have a simple detection configuration, and visual inspection is easy.
 (2)また、(1)の太陽光発電装置において、前記受圧板は、一端が前記端部に固定され、他端が自由端となっており、外縁部と、当該外縁部とは分離された状態で内側にある板バネ部と、を有するものであってもよい。
 この場合、例えば強風を受けた自由端は、風力により撓る。このとき外縁部は板バネ部の後方に翼端渦ができるのを抑制する効果を発揮し、板バネ部の変位を生じさせやすくする。
(2) Further, in the solar power generation device of (1), one end of the pressure receiving plate is fixed to the end portion and the other end is a free end, and the outer edge portion is separated from the outer edge portion. It may have a leaf spring portion that is inside in the closed state.
In this case, for example, the free end that receives a strong wind is bent by the wind force. At this time, the outer edge portion exerts an effect of suppressing formation of blade tip vortices behind the leaf spring portion, and facilitates displacement of the leaf spring portion.
 (3)また、(2)の太陽光発電装置      において、前記板バネ部の輪郭形状は、放物線状であってもよい。
 このような板バネ部は撓りやすく、金属であっても金属疲労を生じにくい。
(3) Moreover, in the solar power generation device of (2), the contour shape of the leaf spring portion may be a parabolic shape.
Such a leaf spring portion is easily bent, and metal fatigue does not easily occur even if it is made of metal.
 (4)また、(1)から(3)のいずれかの太陽光発電装置において、例えば、前記受圧板は、太陽を追尾する状態での前記受光パネルの上端に設けられている。
 受光パネルの上端は風を受けやすいので、風力の検出に適する位置である。
(4) Further, in the solar power generation device according to any one of (1) to (3), for example, the pressure receiving plate is provided on the upper end of the light receiving panel in a state of tracking the sun.
Since the upper end of the light receiving panel is susceptible to wind, it is a position suitable for detecting wind force.
 (5)また、(1)から(4)のいずれかの太陽光発電装置において、前記変位が所定量に達した場合に、前記駆動部に対して、前記変位を減らす方向に前記姿勢を変化させる制御部を備えていてもよい。
 この場合、制御部は、受光パネルの姿勢を変えて風荷重の軽減を試みる。姿勢を変えても風荷重が所定量以下にならないときは、制御部は、姿勢を変える方向を変化させながら、風荷重が所定量以下となる姿勢を探す。一律に退避の姿勢まで変化させることもできるが、現在の姿勢を大きく変化させなくても風荷重を減らすことができる場合は、例えば、刻々変わり得る風の状況に対して、退避位置まで行かない姿勢にとどめて、復帰に要する時間を短縮することができる。
(5) Further, in the solar power generation device according to any one of (1) to (4), when the displacement reaches a predetermined amount, the posture is changed with respect to the drive unit so as to reduce the displacement. It may be provided with a control unit.
In this case, the control unit tries to reduce the wind load by changing the posture of the light receiving panel. When the wind load does not fall below the predetermined amount even if the posture is changed, the control unit searches for a posture in which the wind load falls below the predetermined amount while changing the posture changing direction. It is possible to uniformly change the retracted posture, but if the wind load can be reduced without significantly changing the current posture, for example, do not go to the retracted position for wind conditions that can change from moment to moment. It is possible to reduce the time required for returning by keeping the posture.
 (6)また、(1)から(5)のいずれかの太陽光発電装置において、前記変位センサは、退避の姿勢をとるタイミングを検出する退避用変位センサと、退避から復帰してよいタイミングを検出する復帰用変位センサとを含むようにしてもよい。
 この場合、復帰してよいタイミングを迅速確実に検出することができる。
(6) Further, in the solar power generation device according to any one of (1) to (5), the displacement sensor includes an evacuation displacement sensor that detects a timing of taking an evacuation posture and a timing at which the evacuation may return from the evacuation. A return displacement sensor for detecting may be included.
In this case, it is possible to quickly and surely detect the timing at which the return may be made.
 (7)また、(2)の太陽光発電装置において、前記変位センサは、前記板バネ部の変位を直接受けて動作するリミットスイッチであってもよい。
 この場合、変位センサが安価で、動作状態の確認も容易である。
(7) Further, in the solar power generation device of (2), the displacement sensor may be a limit switch that operates by directly receiving the displacement of the leaf spring portion.
In this case, the displacement sensor is inexpensive and the operation state can be easily confirmed.
 (8)あるいは、(2)の太陽光発電装置において、前記変位センサは、光学的に前記板バネ部の変位を検出する光センサであってもよい。
 この場合、板バネ部の変位を非接触で検出できるため、かかる変位センサは耐久性に優れている。
In the solar power generation device of (8) or (2), the displacement sensor may be an optical sensor that optically detects the displacement of the leaf spring portion.
In this case, since the displacement of the leaf spring portion can be detected in a non-contact manner, such a displacement sensor has excellent durability.
 (9)なお、(1)から(8)のいずれかの太陽光発電装置において、例えば、前記受光パネルは集光型太陽光発電パネルである。
 集光型太陽光発電装置は、追尾が大きくずれると全く発電できなくなる点において、追尾型で結晶シリコンの太陽光発電パネルよりも、退避姿勢をとることによる発電ロスが大きくなり易い。従って、早すぎず遅すぎずの適切なタイミングで駆動部により姿勢を制御することが可能となることの意義が非常に大きい。
(9) In the solar power generation device according to any one of (1) to (8), for example, the light receiving panel is a concentrating solar power generation panel.
The concentrating solar power generation device is more likely to generate power loss due to the retracted posture than the tracking-type crystalline silicon solar power generation panel in that it cannot generate power at all if the tracking is largely deviated. Therefore, it is very significant that the posture can be controlled by the drive unit at an appropriate timing that is neither too early nor too late.
 [実施形態の詳細]
 《太陽光発電装置の主な構成》
 以下、本開示の一実施形態に係る太陽光発電装置について、図面を参照して説明する。
 図1及び図2はそれぞれ、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。図1は、完成した状態での太陽光発電装置100を示し、図2は、組立途中の状態での太陽光発電装置100を示している。図2は、追尾架台25の骨組みが見える状態を右半分に示し、集光型太陽光発電モジュール(以下、単にモジュールとも言う。)1Mが取り付けられた状態を左半分に示している。なお、実際にモジュール1Mを追尾架台25に取り付ける際は、追尾架台25を地面に寝かせた状態で取り付けを行う。
[Details of Embodiment]
<<Main composition of solar power generation system>>
Hereinafter, a solar power generation device according to an embodiment of the present disclosure will be described with reference to the drawings.
1 and 2 are perspective views of an example of a concentrating solar power generation device for one unit as viewed from the light receiving surface side. FIG. 1 shows the solar power generation device 100 in a completed state, and FIG. 2 shows the solar power generation device 100 in a state where it is being assembled. FIG. 2 shows a state in which the framework of the tracking mount 25 is visible in the right half, and shows a state in which the concentrating solar power generation module (hereinafter, also simply referred to as a module) 1M is attached to the left half. When the module 1M is actually attached to the tracking mount 25, the mounting is performed with the tracking mount 25 lying on the ground.
 図1において、この太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた全体として面状の受光パネル(太陽光発電パネル又はアレイともいう。)1と、その支持機構2とを備えている。受光パネル1は、背面側の追尾架台25(図2)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、受光パネル1が構成されている。モジュール1M内には、太陽光を集光させて発電素子に導く光学系がマトリックス状に並んで設けられた既知の構成が搭載されている。 In FIG. 1, the photovoltaic power generation device 100 is a planar light receiving panel (also referred to as a photovoltaic power generation panel or array) 1 that is continuous on the upper side and is divided into left and right sides on the lower side, and a support mechanism 2 thereof. It has and. The light receiving panel 1 is configured by arranging the modules 1M on the tracking mount 25 (FIG. 2) on the back side. In the example of FIG. 1, the light receiving panel 1 is formed as an assembly of 200 modules 1M in total (96 (=12×8)×2) constituting the left and right wings and 8 in the central crossover portion. Is configured. In the module 1M, a known configuration is provided in which optical systems that collect sunlight and guide the sunlight to the power generation elements are arranged side by side in a matrix.
 支持機構2は、支柱21と、基礎22と、駆動部23と、駆動軸となる水平軸24(図2)と、追尾架台25とを備えている。支柱21は、下端が基礎22に固定され、上端に駆動部23を備えている。 The support mechanism 2 includes a column 21, a foundation 22, a drive unit 23, a horizontal shaft 24 (FIG. 2) serving as a drive shaft, and a tracking mount 25. The column 21 has a lower end fixed to the foundation 22 and an upper end provided with a drive unit 23.
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24(図2)は水平となる。駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。図2において、水平軸24には、追尾架台25を補強する補強材25aが取り付けられている。また、補強材25aには、複数本の水平方向へのレール25bが取り付けられている。モジュール1Mは、このレールに嵌め込むように取り付けられる。水平軸24が方位角又は仰角の方向に回動すれば、受光パネル1もその方向に回動する。 In FIG. 1, the foundation 22 is firmly buried in the ground so that only the upper surface can be seen. With the foundation 22 buried in the ground, the pillar 21 is vertical and the horizontal shaft 24 (FIG. 2) is horizontal. The drive unit 23 can rotate the horizontal shaft 24 in two directions of an azimuth angle (an angle with the column 21 as a central axis) and an elevation angle (an angle with the horizontal shaft 24 as a central axis). In FIG. 2, a reinforcing member 25 a that reinforces the tracking mount 25 is attached to the horizontal shaft 24. A plurality of horizontal rails 25b are attached to the reinforcing member 25a. The module 1M is attached so as to fit into this rail. When the horizontal shaft 24 rotates in the azimuth or elevation direction, the light receiving panel 1 also rotates in that direction.
 図1のように受光パネル1が鉛直になっているのは、通常、夜明け及び日没前である。
 日中は、受光パネル1の受光面が常に太陽に正対する姿勢となるよう、駆動部23が動作し、受光パネル1は太陽の追尾動作を行う。
The vertical direction of the light receiving panel 1 as shown in FIG. 1 is usually before dawn and before sunset.
During the daytime, the drive unit 23 operates so that the light receiving surface of the light receiving panel 1 always faces the sun, and the light receiving panel 1 performs the sun tracking operation.
 図3は、一例として、太陽に正対している受光パネル1の姿勢を示す斜視図である。また、例えば赤道付近の南中時刻であれば、受光パネル1は受光面を太陽に向けて水平な姿勢となる。
 図4は、強風時の退避の姿勢の一例を示す斜視図である。この場合、受光パネル1の受光面は水平で上向きである。なお、夜間待機姿勢における受光パネル1は、この逆、すなわち、受光パネル1の受光面を地面に向けて水平な姿勢となる。
FIG. 3 is a perspective view showing the attitude of the light receiving panel 1 facing the sun as an example. Also, for example, at the time of south-central time near the equator, the light receiving panel 1 is in a horizontal posture with its light receiving surface facing the sun.
FIG. 4 is a perspective view showing an example of a retracted posture in strong wind. In this case, the light receiving surface of the light receiving panel 1 is horizontal and faces upward. Note that the light receiving panel 1 in the night standby posture is in the opposite direction, that is, in a horizontal posture with the light receiving surface of the light receiving panel 1 facing the ground.
 《受圧板の設置例》
 上記のように構成された太陽光発電装置100には、図1,図2,図3及び図4に示すように、受圧板30が設けられている。図3に示すように、受圧板30は、受光パネル1の受光面(図3のX-Y面)の端部に、受光面と平行に設けられている。受圧板30は、これに当たる風の静圧及び動圧を含む総圧としての風力に応じた変位を生じる。なお、本開示における風力とは風のエネルギーであり、気象用語としての風力階級のことではない。
<<Example of pressure plate installation>>
As shown in FIGS. 1, 2, 3, and 4, the solar power generation device 100 configured as described above is provided with a pressure receiving plate 30. As shown in FIG. 3, the pressure receiving plate 30 is provided at the end of the light receiving surface (XY plane in FIG. 3) of the light receiving panel 1 in parallel with the light receiving surface. The pressure receiving plate 30 causes a displacement according to the wind force as a total pressure including static pressure and dynamic pressure of the wind hitting it. The wind power in the present disclosure is wind energy, and does not mean the wind power class as a meteorological term.
 本開示の一例としては、受圧板30は、太陽を追尾する状態での、受光パネル1の上端の両方の角(かど)に設けられている。受光パネル1の上端(特にその角)は風を受けやすいので、風力の検出に適する位置である。また、一般に、風は地上から高い位置の方が強くなるので、受光パネル1が受け得る最大の風力を受けることができると解される。
 なお、実際には受圧板30に近接して変位センサが設けられるが、詳細は後述する。
As an example of the present disclosure, the pressure receiving plates 30 are provided at both corners (corners) of the upper end of the light receiving panel 1 in the state of tracking the sun. The upper end (especially the corner) of the light receiving panel 1 is a position that is suitable for detecting wind force because it is susceptible to wind. Further, it is generally understood that the wind becomes stronger at a position higher than the ground, so that the light receiving panel 1 can receive the maximum wind force.
Although a displacement sensor is actually provided near the pressure receiving plate 30, details will be described later.
 図5は、図1と同様に、太陽光発電装置100の受光パネル1が鉛直な姿勢である場合の側面図である。風は基本的に横に流れるように吹く。図5の姿勢の場合、例えば、図の紙面の手前側から奥側へ、受光パネル1と平行に吹く風に対しては、受光パネル1に対してかかる風荷重は僅かである。しかし、例えば図の左から右へ(又はその逆に)強い風が吹くと、受光パネル1は最も大きな風荷重を受け易い状態となる。ここで、受圧板30は地上高が最も高い位置にある。 Similarly to FIG. 1, FIG. 5 is a side view when the light receiving panel 1 of the solar power generation device 100 is in a vertical posture. The wind basically blows laterally. In the case of the posture shown in FIG. 5, for example, the wind load applied to the light receiving panel 1 is small with respect to the wind blowing from the front side to the back side of the drawing sheet in parallel with the light receiving panel 1. However, for example, when a strong wind blows from left to right in the figure (or vice versa), the light receiving panel 1 is in a state of being most likely to receive the largest wind load. Here, the pressure receiving plate 30 is located at the highest ground clearance.
 図6は、太陽を追尾している状態での、太陽光発電装置100の受光パネル1が斜めの姿勢である場合の側面図である。図6において、風が受光パネル1に吹き付けるとともに受光面に沿って流れると、受光パネル1及び受圧板30には、風の静圧に加えて、流体としての風による動圧も受ける。 FIG. 6 is a side view when the light receiving panel 1 of the solar power generation device 100 is in an oblique posture while tracking the sun. In FIG. 6, when the wind blows on the light receiving panel 1 and flows along the light receiving surface, the light receiving panel 1 and the pressure receiving plate 30 receive not only the static pressure of the wind but also the dynamic pressure of the wind as a fluid.
 図7は、図4と同様の、退避の姿勢の一例を示す側面図である。昼間であっても、強風時には、この退避姿勢をとることができる。この姿勢では、強風が吹いても、受光パネル1及び受圧板30が受ける風荷重は、ごく僅かである。 FIG. 7 is a side view showing an example of a retracted posture similar to FIG. Even in the daytime, it is possible to take this retracted posture in strong winds. In this posture, the wind load received by the light receiving panel 1 and the pressure receiving plate 30 is very small even if a strong wind blows.
 図8は、一例として、図3における右側の受圧板30を拡大した斜視図である。図において、この受圧板30は、受光パネル1におけるモジュール1Mの上端部の右端に寄せて取り付けられている。受圧板30は、例えば薄い金属板であり、外側にある外縁部31と、その内側にある板バネ部32とを有している。外縁部31と、板バネ部32との間には微小な隙間があり、両者は互いに分離されている。受圧板30は、モジュール1Mの上端に対して「片持ち梁」のように保持されている。すなわち、受圧板30の図の下側の一端(基端)は、モジュール1Mの上端部に固定され、図の上側の他端は自由端となっている。 FIG. 8 is an enlarged perspective view of the pressure receiving plate 30 on the right side in FIG. 3 as an example. In the figure, the pressure receiving plate 30 is attached to the right end of the upper end of the module 1M in the light receiving panel 1. The pressure receiving plate 30 is, for example, a thin metal plate, and has an outer edge portion 31 on the outer side and a leaf spring portion 32 on the inner side. There is a minute gap between the outer edge portion 31 and the leaf spring portion 32, and they are separated from each other. The pressure receiving plate 30 is held like a “cantilever” with respect to the upper end of the module 1M. That is, one end (base end) on the lower side of the pressure receiving plate 30 is fixed to the upper end of the module 1M, and the other end on the upper side of the drawing is a free end.
 仮に、受圧板が1枚板であったとすると、このような受圧板に対して強風が当たると、翼端渦ができ、受圧板の撓り(しなり)が生じにくい。しかしながら、上記のような外縁部31と板バネ部32との2枚構成であることにより、外縁部31は、翼端渦を引き受ける効果を発揮し、板バネ部32の裏側への風の回り込みを抑制する。これにより、外縁部31は撓りにくいが、板バネ部32は撓りやすくなる。また、板バネ部32の輪郭形状は放物線状である。このような形状の板バネ部32は放物線の頂点側ほど撓りやすく、しかも、金属疲労を生じにくい。 Assuming that there is only one pressure receiving plate, if a strong wind hits such a pressure receiving plate, a vortex at the blade tip will form and the pressure receiving plate will not easily bend (bend). However, since the outer edge portion 31 and the leaf spring portion 32 have the two-piece structure as described above, the outer edge portion 31 exerts an effect of receiving the wing tip vortex, and wind wraps around the back side of the leaf spring portion 32. Suppress. As a result, the outer edge portion 31 is hard to bend, but the leaf spring portion 32 becomes easy to bend. The contour shape of the leaf spring portion 32 is parabolic. The leaf spring portion 32 having such a shape is more likely to bend toward the apex side of the parabola, and is less likely to cause metal fatigue.
 図9は、受光パネル1の正面側から風が吹き付けた状態の一例を示す斜視図である。図において、このとき、板バネ部32が外縁部31に対して後方へ撓る。
 逆に、図10は、受光パネル1の裏面側から風が吹き付けた状態の一例を示す斜視図である。図において、このとき、板バネ部32が外縁部31に対して前方へ撓る。
FIG. 9 is a perspective view showing an example of a state where wind is blown from the front side of the light receiving panel 1. In the figure, at this time, the leaf spring portion 32 bends rearward with respect to the outer edge portion 31.
On the contrary, FIG. 10 is a perspective view showing an example of a state where wind is blown from the back surface side of the light receiving panel 1. In the figure, at this time, the leaf spring portion 32 bends forward with respect to the outer edge portion 31.
 《変位センサの設置例》
 図11は、図8から図10における受圧板30を側面から見たイメージでの、変位センサの設置例を示す略図である。まず、(a)に示すように、変位センサ40は、受圧板30の近傍に設けられる。変位センサ40は、例えば外縁部31に適当な支持材を用いて固定すればよい。変位センサ40としては、典型的には、例えばメカニカルセンサである小型のリミットスイッチ(防雨型)を用いることができる。リミットスイッチは広く普及しており、安価で、取付時に動作状態の確認も容易である。
<< Displacement sensor installation example >>
FIG. 11 is a schematic view showing an installation example of the displacement sensor in a side view of the pressure receiving plate 30 in FIGS. 8 to 10. First, as shown in (a), the displacement sensor 40 is provided near the pressure receiving plate 30. The displacement sensor 40 may be fixed to, for example, the outer edge portion 31 by using a suitable supporting material. As the displacement sensor 40, typically, a small limit switch (rainproof type), which is a mechanical sensor, can be used. Limit switches are widespread, inexpensive, and easy to check the operating status during installation.
 図11の(a)において、支持機構2の機械的強度から、安全を維持できる風荷重の上限値を予め調べ、その上限値を超えたとき変位センサ40が動作するように、板バネ部32の撓りと、変位センサ40の動作位置を設定する。(a)は上限値以下の風の状態である。板バネ部32は撓るが、変位センサ40は、まだ動作しない。次に、風が強くなり(b)の状態となると、風荷重は上限値を超え、板バネ部32の撓りが大きくなって変位センサ40が動作する。これをトリガとして、受光パネル1はその姿勢を変えるか又は退避位置に移動する。 In FIG. 11A, the upper limit value of the wind load capable of maintaining safety is checked in advance from the mechanical strength of the support mechanism 2, and the leaf spring portion 32 is operated so that the displacement sensor 40 operates when the upper limit value is exceeded. And the operating position of the displacement sensor 40 are set. (A) is the state of wind below the upper limit. Although the leaf spring portion 32 bends, the displacement sensor 40 still does not operate. Next, when the wind becomes strong and becomes the state of (b), the wind load exceeds the upper limit value, the bending of the leaf spring portion 32 becomes large, and the displacement sensor 40 operates. Using this as a trigger, the light receiving panel 1 changes its posture or moves to the retracted position.
 受光パネル1に対して裏側から吹く風に対しても同様であり、例えば、外縁部31に対して線対称となる位置に変位センサ41が設けられる。
 (c)は上限値以下の風の状態である。板バネ部32は撓るが、変位センサ41は、まだ動作しない。次に、風が強くなり(d)の状態となると、風荷重は上限値を超え、板バネ部32の撓りが大きくなって変位センサ41が動作する。これをトリガとして、受光パネル1はその姿勢を変えるか又は退避位置に移動する。
The same applies to the wind blown from the back side of the light receiving panel 1, and for example, the displacement sensor 41 is provided at a position symmetrical with respect to the outer edge portion 31.
(C) is the wind condition below the upper limit. Although the leaf spring portion 32 bends, the displacement sensor 41 still does not operate. Next, when the wind becomes strong and the state becomes (d), the wind load exceeds the upper limit value, the deflection of the leaf spring portion 32 becomes large, and the displacement sensor 41 operates. Using this as a trigger, the light receiving panel 1 changes its posture or moves to the retracted position.
 《変位センサの他の設置例》
 図12は、図8から図10における受圧板30を側面から見たイメージでの、変位センサの他の設置例を示す略図である。まず、図11と同様に、(a)に示すように、変位センサ40は、受圧板30の近傍に設けられる。変位センサ40は、図11の(a)、(b)に示したものと同様である。
<<Other installation examples of displacement sensor>>
FIG. 12 is a schematic view showing another installation example of the displacement sensor in the image of the pressure receiving plate 30 in FIGS. 8 to 10 as viewed from the side. First, similarly to FIG. 11, the displacement sensor 40 is provided near the pressure receiving plate 30 as shown in FIG. The displacement sensor 40 is similar to that shown in FIGS. 11(a) and 11(b).
 図12では、変位センサ40が退避用であるとすると、さらに、復帰用の変位センサが設けられる。復帰用の変位センサ42としては、例えば、退避用の変位センサ40と外縁部31との間に、板バネ部32の撓り動作を妨げず動作可能なリミットスイッチを用いる。 In FIG. 12, assuming that the displacement sensor 40 is for withdrawal, a displacement sensor for return is further provided. As the return displacement sensor 42, for example, a limit switch that is operable between the retracting displacement sensor 40 and the outer edge portion 31 without interfering with the bending operation of the leaf spring portion 32 is used.
 図12の(a)は上限値以下の風の状態である。板バネ部32は撓るが、変位センサ40は、まだ動作しない。撓り動作の途中で変位センサ42が動作するが、制御上は関係ない。次に、風が強くなり(b)の状態となると、風荷重は上限値を超え、板バネ部32の撓りが大きくなって変位センサ40が動作する。これをトリガとして、受光パネル1はその姿勢を変えるか又は退避位置に移動する。 Fig. 12(a) shows the wind condition below the upper limit. Although the leaf spring portion 32 bends, the displacement sensor 40 still does not operate. The displacement sensor 42 operates in the middle of the bending operation, but this does not affect control. Next, when the wind becomes strong and becomes the state of (b), the wind load exceeds the upper limit value, the bending of the leaf spring portion 32 becomes large, and the displacement sensor 40 operates. Using this as a trigger, the light receiving panel 1 changes its posture or moves to the retracted position.
 一方、一旦(b)の状態に達して例えば受光パネル1が退避姿勢をとったとする。その後、退避姿勢から通常の太陽追尾の姿勢に復帰する条件としては、例えば、変位センサ40が動作しなくなり、その時間が所定時間に達した場合に復帰することが考えられる。一方、図12の(c)は、積極的に、復帰してよいタイミングを捉える構成の一例である。すなわち、風が弱まると、板バネ部32は変位センサ42を動作させる。このように、一旦、退避用の変位センサ40が動作した後に、復帰用の変位センサ42が動作した場合、復帰してよいタイミングと判断することもできる。このようにすれば、復帰してよいタイミングを迅速確実に検出することができる。 On the other hand, assume that once the state of (b) is reached, for example, the light receiving panel 1 takes the retracted posture. After that, as a condition for returning from the retracted posture to the normal sun tracking posture, for example, it is conceivable that the displacement sensor 40 stops operating and returns when the time reaches a predetermined time. On the other hand, FIG. 12C is an example of a configuration that positively captures the timing at which the return may be made. That is, when the wind weakens, the leaf spring portion 32 operates the displacement sensor 42. In this way, if the displacement sensor 42 for return operates after the displacement sensor 40 for retreat once operates, it can be determined that it is time to return. By doing so, it is possible to quickly and surely detect the timing for returning.
 その後、風が治まれば、(d)に示すように、板バネ部32の撓りの無い初期状態に戻る。 After that, when the wind stops, as shown in (d), it returns to the initial state in which the leaf spring portion 32 is not bent.
 なお、図11,図12は、限られた例を示すに過ぎない。変位センサ40,41,42を、どこにどのように配置するかは、種々の設計が可能である。また、変位センサの目的や種類の色々な組み合わせも可能である。 Note that FIGS. 11 and 12 show only a limited number of examples. Various designs are possible as to where and how the displacement sensors 40, 41, 42 are arranged. Further, various combinations of the purpose and type of the displacement sensor are possible.
 《制御のブロック図》
 図13は、太陽光発電装置100の1基における制御のブロック図の一例である。駆動部23は、制御部60から駆動信号を受けて、方位角及び仰角の2軸で受光パネル1が太陽を追尾するように駆動する。太陽の追尾には種々の方法があるが、例えば追尾センサ50を設けて、その信号に基づいて、制御部60が駆動部23に駆動信号を与える。変位センサ40(41,42)は、退避、あるいは、退避からの復帰などのトリガ信号を制御部60に与える。制御部60は、変位センサの信号に基づいて、駆動部23を介して、受光パネル1の姿勢制御を行うことができる。
《Control block diagram》
FIG. 13 is an example of a block diagram of control in one solar power generation device 100. The drive unit 23 receives the drive signal from the control unit 60, and drives the light receiving panel 1 to follow the sun with two axes of azimuth and elevation. Although there are various methods for tracking the sun, for example, a tracking sensor 50 is provided, and the control unit 60 gives a drive signal to the drive unit 23 based on the signal thereof. The displacement sensor 40 (41, 42) provides the control unit 60 with a trigger signal for retracting or returning from the retracting. The control unit 60 can control the attitude of the light receiving panel 1 via the drive unit 23 based on the signal from the displacement sensor.
 制御部60は、例えばCPU61を含み、CPU61がソフトウェア(コンピュータプログラム)を実行することで、必要な制御機能を実現する。ソフトウェアは、制御部60のメモリ(必要に応じて補助記憶装置も含む。)62に格納される。制御部60は、例えば、太陽光発電装置100の1基ごとに設けられる。 The control unit 60 includes, for example, a CPU 61, and the CPU 61 executes software (computer program) to realize a necessary control function. The software is stored in the memory 62 (including an auxiliary storage device if necessary) 62 of the control unit 60. The control unit 60 is provided, for example, for each solar power generation device 100.
 《フローチャートの第1例》
 図14は、制御部60において実行されるフローチャートの第1例である。図において、制御部60は、例えば追尾センサ50からの日の出の時刻信号に基づいて、夜明け直前から日中として扱い、処理を開始する。制御部60は、太陽を待ち受けるべく受光パネル1の姿勢を図1の状態とする(ステップS1)。このとき風荷重が上限値以下であれば(ステップS2のYes)日中であることを条件に(ステップS3のYes)、制御部60は、ステップS1,S2,S3を繰り返す。その後、制御部60は、受光パネル1に、登ってきた太陽を追尾させる。日没になれば、制御部60は、受光パネル1を、夜間待機姿勢として(ステップS7)、1日の処理は終了となる。強風が吹かない限りは、このような処理が日々、繰り返される。
<<First Example of Flowchart>>
FIG. 14 is a first example of a flowchart executed by the control unit 60. In the figure, the control unit 60 starts processing immediately before dawn based on a sunrise time signal from the tracking sensor 50, for example. The control unit 60 sets the attitude of the light receiving panel 1 to the state of FIG. 1 so as to wait for the sun (step S1). At this time, if the wind load is less than or equal to the upper limit value (Yes in step S2), the control unit 60 repeats steps S1, S2, and S3 on the condition that it is during the day (Yes in step S3). After that, the control unit 60 causes the light receiving panel 1 to track the rising sun. When the sunset comes, the control unit 60 sets the light receiving panel 1 to the night standby posture (step S7), and the processing for one day ends. Unless strong winds blow, such processing is repeated every day.
 一方、強風が吹いて風荷重が上限値を超えると(ステップS2のNo)、制御部60は、受光パネル1の姿勢を変えて風荷重を軽減するか又は退避の姿勢とする(ステップS4)。姿勢を変えても風荷重が上限値以下にならないときは(ステップS5のNo)、制御部60は、姿勢を変える方向を変化させながら、風荷重が上限値以下となる姿勢を探す。一律に退避の姿勢まで変化させることもできるが、現在の姿勢を大きく変化させなくても風荷重を減らすことができる場合は、例えば、刻々変わり得る風の状況に対して、退避位置まで行かない姿勢にとどめて、復帰に要する時間を短縮することができる。 On the other hand, when a strong wind blows and the wind load exceeds the upper limit value (No in step S2), the control unit 60 changes the posture of the light receiving panel 1 to reduce the wind load or to take the retracted posture (step S4). .. When the wind load does not fall below the upper limit value even if the posture is changed (No in step S5), the control unit 60 searches for a posture in which the wind load falls below the upper limit value while changing the direction in which the posture is changed. It is possible to uniformly change the retracted posture, but if the wind load can be reduced without significantly changing the current posture, for example, do not go to the retracted position for wind conditions that can change from moment to moment. It is possible to reduce the time required for returning by keeping the posture.
 制御部60は、風荷重が上限値以下となってから(ステップS5のYes)、風が治まる可能性の高い所定時間の待機(ステップS6)を経て、日中であれば再び太陽の追尾に戻る(ステップS1)。もし、所定時間待機しているうちに日没を迎えた場合は、制御部60は、受光パネル1を夜間待機姿勢として(ステップS7)、1日の処理は終了となる。 After the wind load becomes equal to or lower than the upper limit value (Yes in step S5), the control unit 60 waits for a predetermined time (step S6) in which the wind is likely to subside, and during the daytime, tracks the sun again. Return (step S1). If the sunset comes while waiting for a predetermined time, the control unit 60 sets the light-receiving panel 1 to the night standby posture (step S7), and the processing for one day ends.
 《フローチャートの第2例》
 図12に示したように、強風からの復帰を変位センサ42で検出する場合には、例えば以下のようなフローチャートも可能である。
<<Second Example of Flowchart>>
As shown in FIG. 12, when the displacement sensor 42 detects the return from a strong wind, for example, the following flowchart is also possible.
 図15は、制御部60において実行されるフローチャートの第2例である。図において、制御部60は、例えば追尾センサ50からの日の出の時刻信号に基づいて、夜明け直前から日中として扱い、処理を開始する。制御部60は、太陽を待ち受けるべく受光パネル1の姿勢を図1の状態とする(ステップS1)。このとき風荷重が上限値以下であれば(ステップS2のYes)日中であることを条件に(ステップS3のYes)、制御部60は、ステップS1,S2,S3を繰り返す。その後、制御部60は、受光パネル1に、登ってきた太陽を追尾させる。日没になれば、制御部60は、受光パネル1を夜間待機姿勢として(ステップS7)、1日の処理は終了となる。強風が吹かない限りは、このような処理が日々、繰り返される。 FIG. 15 is a second example of a flowchart executed by the control unit 60. In the figure, the control unit 60 starts processing immediately before dawn based on a sunrise time signal from the tracking sensor 50, for example. The control unit 60 sets the attitude of the light receiving panel 1 to the state of FIG. 1 so as to wait for the sun (step S1). At this time, if the wind load is less than or equal to the upper limit value (Yes in step S2), the control unit 60 repeats steps S1, S2, and S3 on the condition that it is during the day (Yes in step S3). After that, the control unit 60 causes the light receiving panel 1 to track the rising sun. When the sunset comes, the control unit 60 sets the light receiving panel 1 to the night standby posture (step S7), and the processing for one day ends. Unless strong winds blow, such processing is repeated every day.
 一方、強風が吹いて風荷重が上限値を超える(ステップS2のNo)と、制御部60は、受光パネル1の姿勢を変えて風荷重を軽減するか又は退避の姿勢とする(ステップS4)。姿勢を変えても風荷重が上限値以下にならないときは(ステップS5のNo)、制御部60は、姿勢を変える方向を変化させながら、風荷重が上限値以下となる姿勢を探す。 On the other hand, when a strong wind blows and the wind load exceeds the upper limit value (No in step S2), the control unit 60 changes the posture of the light receiving panel 1 to reduce the wind load or to take the retracted posture (step S4). .. When the wind load does not fall below the upper limit value even if the posture is changed (No in step S5), the control unit 60 searches for a posture in which the wind load falls below the upper limit value while changing the direction in which the posture is changed.
 次に、制御部60は、受光パネル1の姿勢を太陽追尾に復帰させることが可能なレベルに風荷重が軽減されたことを、例えば変位センサ42の信号により知ると(ステップS8のYes)、日中であれば再び太陽の追尾に戻る(ステップS1)。一方、まだ復帰可能レベルになっていないときは(ステップS8のNo)、復帰待ちを行う(ステップS9,S10のYes)。もし、復帰待ちをしているうちに日没を迎えた場合は(ステップS10のNo)、制御部60は、受光パネル1を、夜間待機姿勢として(ステップS7)、1日の処理は終了となる。 Next, when the control unit 60 knows that the wind load has been reduced to a level at which the attitude of the light receiving panel 1 can be returned to the sun tracking, for example, by a signal from the displacement sensor 42 (Yes in step S8), If it is daytime, the sun tracking is performed again (step S1). On the other hand, when the level is not yet at the recoverable level (No in step S8), the system waits for recovery (Yes in steps S9 and S10). If the sunset comes while waiting for the return (No in step S10), the control unit 60 sets the light receiving panel 1 to the night standby posture (step S7), and the one-day processing ends. Become.
 《変位センサの他の例》
 上述の変位センサはすべてメカニカルなリミットスイッチとしたが、光学的なセンサを用いることも可能である。図16A,16B,16Cは、光学的なセンサを変位センサ43とする一例である。例えば、図16Aに示すように、LEDレーザ光の投受光部を有する光学的な変位センサ(光センサ)43に、例えば図示のような形状の受圧板30Pを当接させる。受圧板30Pは、外縁部31Pと、うちわのような形状の板バネ部32Pとを有している。板バネ部32Pの輪郭形状のところで、両者は互いに分離されている。
<<Other examples of displacement sensor>>
Although the displacement sensors described above are all mechanical limit switches, it is also possible to use optical sensors. 16A, 16B, and 16C are examples in which the displacement sensor 43 is an optical sensor. For example, as shown in FIG. 16A, a pressure receiving plate 30P having a shape as shown in the drawing is brought into contact with an optical displacement sensor (optical sensor) 43 having a light emitting/receiving section for LED laser light. The pressure receiving plate 30P has an outer edge portion 31P and a leaf spring portion 32P shaped like a fan. The two are separated from each other at the contour shape of the leaf spring portion 32P.
 図16Bに示すように、上記のような変位センサ43に受圧板30Pが当接している状態で、風が吹き付けなければ、板バネ部32Pは、光路を遮断せず、変位センサ43は何も検出しない。 As shown in FIG. 16B, when the pressure receiving plate 30P is in contact with the displacement sensor 43 as described above and the wind is not blown, the leaf spring portion 32P does not block the optical path, and the displacement sensor 43 does nothing. Not detected.
 次に、受圧板30Pに対して強風が吹き付けて板バネ部32Pが一定の変位を生じると、板バネ部32Pの撓りが光路を妨げる。これにより、変位センサ43は、板バネ部32Pが一定量の撓りを生じるほどの、風荷重が作用している状態であることを検出できる。 Next, when a strong wind blows against the pressure receiving plate 30P and the plate spring portion 32P undergoes a constant displacement, the bending of the plate spring portion 32P obstructs the optical path. Thereby, the displacement sensor 43 can detect that the leaf spring portion 32P is in a state in which a wind load is applied so as to cause a certain amount of bending.
 光学的な変位センサ43を用いると、板バネ部32Pの変位を非接触で検出できるため、耐久性に優れている。但し、強い太陽光の当たる場所での使用となるので、検出の精度が悪くならないよう、変位センサ43の受光部に太陽光が入りにくくする等の配慮が必要である。その他、磁気的な変位センサの使用も可能である。 By using the optical displacement sensor 43, the displacement of the leaf spring portion 32P can be detected in a non-contact manner, so that it has excellent durability. However, since it is used in a place exposed to strong sunlight, it is necessary to make it difficult for sunlight to enter the light receiving portion of the displacement sensor 43 so that the detection accuracy does not deteriorate. Besides, it is also possible to use a magnetic displacement sensor.
 《開示のまとめ》
 本開示の太陽光発電装置100は、面状の拡がりを有し、太陽光が入射する受光パネル1と、受光パネル1を支持し、受光パネル1が太陽を追尾するように姿勢を制御する駆動部23を含む支持機構2と、受光パネル1の受光面の端部に当該受光面と平行に設けられ、風の静圧及び動圧に反応して変位を生じる受圧板30(30P)と、受圧板30(30P)に近接して設けられ、変位が所定量に達したことを検出する変位センサ40,41,42(43)と、を備えている。
<<Summary of Disclosure>>
The photovoltaic power generation apparatus 100 of the present disclosure has a planar spread, a light receiving panel 1 on which sunlight is incident, and a drive that supports the light receiving panel 1 and controls the attitude so that the light receiving panel 1 tracks the sun. A support mechanism 2 including a portion 23, a pressure receiving plate 30 (30P) that is provided at an end of the light receiving surface of the light receiving panel 1 in parallel with the light receiving surface, and that is displaced in response to static pressure and dynamic pressure of wind. Displacement sensors 40, 41, 42 (43) that are provided close to the pressure receiving plate 30 (30P) and detect that the displacement has reached a predetermined amount are provided.
 上記のような太陽光発電装置100では、例えば強風を受けた場合、受圧板30(30P)が変位を生じる。変位が所定量に達する場合、受光パネル1に、静圧及び動圧を含む風力による相応の風荷重がかかっている状態である。この状態を、変位センサ40,41,42(43)により検出することができる。従って、個々の受光パネル1に対して実際にかかっている風荷重を、より正確に検出することができる。正確な検出により、早すぎず遅すぎずの適切なタイミングで駆動部23により姿勢を変えるか又は退避の姿勢にすることが可能となる。なお、かかる太陽光発電装置100は、1軸駆動(方位角のみ)による追尾であってもよいし、2軸駆動(方位角及び仰角)による追尾であってもよい。 In the solar power generation device 100 as described above, for example, when a strong wind is received, the pressure receiving plate 30 (30P) is displaced. When the displacement reaches a predetermined amount, the light receiving panel 1 is in a state in which a corresponding wind load including wind pressure including static pressure and dynamic pressure is applied. This state can be detected by the displacement sensors 40, 41, 42 (43). Therefore, the wind load actually applied to each light receiving panel 1 can be detected more accurately. Accurate detection enables the drive unit 23 to change the posture or set the retracted posture at an appropriate timing that is neither too early nor too late. The solar power generation device 100 may be uniaxially driven (azimuth only) or biaxially driven (azimuth and elevation).
 このような太陽光発電装置100は、1基ごとに退避等の姿勢となるべき適切なタイミングを知ることができるので、発電機会を無駄に失うことを抑制できる、という利点を生じる。従って、支持機構2の機械的強度増強をコスト的見地から制限しつつも、発電機会を失うことをできるだけ抑制し得る太陽光発電装置100を提供することができる。なお、受圧板30(30P)と変位センサ40,41,42(43)という検出の構成は簡素であり、目視点検も容易である。 Since such a solar power generation device 100 can know the proper timing to take a posture such as evacuation for each solar power generation device 100, there is an advantage that wasteful power generation opportunities can be suppressed. Therefore, it is possible to provide the photovoltaic power generation device 100 capable of suppressing the loss of power generation opportunities as much as possible while limiting the increase in the mechanical strength of the support mechanism 2 from the viewpoint of cost. The pressure receiving plate 30 (30P) and the displacement sensors 40, 41, 42 (43) have a simple detection configuration, and visual inspection is easy.
 《その他》
 上記の開示において、太陽光発電装置100は、集光型であるとした。集光型太陽光発電装置は、追尾が大きくずれると全く発電できなくなる点において、追尾型で結晶シリコンの太陽光発電パネルよりも、退避姿勢をとることによる発電ロスが大きくなり易い。従って、早すぎず遅すぎずの適切なタイミングで駆動部23により姿勢を制御することが可能となることの意義が非常に大きい。
《Others》
In the above disclosure, the solar power generation device 100 is a condensing type. The concentrating solar power generation device is more likely to generate power loss due to the retracted posture than the tracking-type crystalline silicon solar power generation panel in that it cannot generate power at all if the tracking is largely deviated. Therefore, it is very significant that the posture can be controlled by the drive unit 23 at an appropriate timing that is neither too early nor too late.
 但し、前述のように、集光型でない結晶シリコンの太陽光発電装置であっても、太陽を追尾する機能がある以上は、風荷重対策が同様に必要であり、本開示の適用範囲である。駆動部の駆動も、2軸に限られず、2軸以外でも適用範囲である。 However, as described above, even in the case of a non-concentrating crystalline silicon solar power generation device, as long as it has the function of tracking the sun, wind load countermeasures are similarly required, which is within the scope of the present disclosure. .. The drive of the drive unit is not limited to the biaxial drive, and is applicable to other drive shafts.
 また、上記開示における受圧板の形態は一例に過ぎず、種々変更が可能である。基本的には、受光板1への現実の風による静圧及び動圧を、最も良く反映するような形態及び取付位置であればよいと考えられる。 Also, the form of the pressure receiving plate in the above disclosure is merely an example, and various changes can be made. Basically, it is conceivable that the form and the mounting position should best reflect the static pressure and the dynamic pressure of the actual wind on the light receiving plate 1.
 また、上記開示の受圧板は、風を想定したものであるが、同様な受圧板を、例えば積雪の多い地域では積雪量センサとして応用することもできる。この場合、翼端渦は関係ないので、雪の重さに忠実に反応して変位を生じるように、例えば細長い受圧板とする等の変更をすればよい。あるいは、アクチュエータの長いリミットスイッチ(図12の変位センサ42のようなタイプ)の先端に雪が載りやすいようにスプーン状にする等の工夫しておけば、容易に積雪の検出ができる。受光パネルに積もった雪は、受光パネルを鉛直な姿勢にすることで自然落下させることができる。これにより、積雪によって発電機会が失われたり、発電量が低下したりすることを、抑制することができる。 Also, the pressure receiving plate disclosed above assumes wind, but a similar pressure receiving plate can be applied as a snow amount sensor, for example, in an area with a lot of snow. In this case, since the blade tip vortex does not matter, it is necessary to make a change, for example, using an elongated pressure receiving plate so that the blade weight vortex reacts faithfully to the weight of the snow to cause displacement. Alternatively, snowfall can be easily detected by devising a tip of a long limit switch (a type such as the displacement sensor 42 in FIG. 12) of the actuator in a spoon shape so that snow can easily be placed on the tip. The snow accumulated on the light receiving panel can be naturally dropped by setting the light receiving panel in a vertical posture. As a result, it is possible to prevent the power generation opportunity from being lost or the power generation amount from decreasing due to snowfall.
 《受光パネルのその他の意味について》
 なお、上述の受光パネル1は、平面状の太陽光発電パネル(アレイ)であるが、太陽光発電装置には、パラボラ状の曲面反射鏡で太陽光を一点に集中し、集中した箇所で発電する構成のものも知られている。このような曲面反射鏡も「受光面」の一種である。このような構成でも、曲面反射鏡の拡がりによって風荷重を受けやすく、太陽を追尾するという点において共通している。従って、曲面反射鏡の例えば外端部に、本開示と同様な受圧板及び変位センサを設けることにより、同様の作用効果を得ることができる。また、これとよく似た構成として、パラボラ状の曲面反射鏡で太陽光を一点に集中し、集中した箇所で熱により水蒸気を発生させ、火力発電と同様にタービンを回す、という構成の太陽熱発電装置も知られている。かかる装置も、広義の太陽光発電装置であり、本開示と同様な受圧板及び変位センサを設けることにより、同様の作用効果を得ることができる。
<Other meanings of light receiving panel>
Although the above-mentioned light receiving panel 1 is a planar solar power generation panel (array), in the solar power generation device, sunlight is concentrated at one point by a parabolic curved reflecting mirror, and power is generated at the concentrated location. It is also known to have a configuration. Such a curved reflecting mirror is also a kind of “light receiving surface”. Even with such a configuration, it is common to receive the wind load due to the spread of the curved reflecting mirror and track the sun. Therefore, by providing a pressure receiving plate and a displacement sensor similar to those of the present disclosure, for example, on the outer end portion of the curved reflecting mirror, it is possible to obtain the same effect. In addition, as a configuration similar to this, solar power generation with a parabolic curved reflector that concentrates sunlight at one point, generates steam by heat at the concentrated point, and rotates a turbine like thermal power generation. Devices are also known. This device is also a solar power generation device in a broad sense, and by providing a pressure receiving plate and a displacement sensor similar to those of the present disclosure, it is possible to obtain the same operational effect.
 《補記》
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
《Supplementary note》
It should be understood that the embodiments disclosed this time are exemplifications in all points and not restrictive. The scope of the present invention is shown by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 1 受光パネル
 1M モジュール(集光型太陽光発電モジュール)
 2 支持機構
 21 支柱
 22 基礎
 23 駆動部
 24 水平軸
 25 追尾架台
 25a 補強材
 25b レール
 30,30P 受圧板
 31,31P 外縁部
 32,32P 板バネ部
 40,41,42 変位センサ
 43 変位センサ
 50 追尾センサ
 60 制御部
 61 CPU
 62 メモリ
 100 太陽光発電装置
1 Light receiving panel 1M module (concentrating solar power generation module)
2 Support mechanism 21 Strut 22 Foundation 23 Drive part 24 Horizontal axis 25 Tracking stand 25a Reinforcing material 25b Rail 30, 30P Pressure receiving plate 31, 31P Outer edge part 32, 32P Leaf spring part 40, 41, 42 Displacement sensor 43 Displacement sensor 50 Tracking sensor 60 control unit 61 CPU
62 memory 100 solar power generation device

Claims (9)

  1.  面状の拡がりを有し、太陽光が入射する受光パネルと、
     前記受光パネルを支持し、前記受光パネルが太陽を追尾するように姿勢を制御する駆動部を含む支持機構と、
     前記受光パネルの受光面の端部に当該受光面と平行に設けられ、風の静圧及び動圧に反応して変位を生じる受圧板と、
     前記受圧板に近接して設けられ、前記変位が所定量に達したことを検出する変位センサと、
     を備えている太陽光発電装置。
    A light receiving panel that has a planar spread and receives sunlight.
    A support mechanism that supports the light receiving panel and includes a drive unit that controls the attitude so that the light receiving panel tracks the sun;
    A pressure receiving plate that is provided in parallel with the light receiving surface at the end of the light receiving surface of the light receiving panel and that is displaced in response to static pressure and dynamic pressure of wind;
    A displacement sensor that is provided in proximity to the pressure receiving plate and that detects that the displacement has reached a predetermined amount,
    Solar power generator equipped with.
  2.  前記受圧板は、一端が前記端部に固定され、他端が自由端となっており、外縁部と、当該外縁部とは分離された状態で内側にある板バネ部と、を有する請求項1に記載の太陽光発電装置。 The pressure receiving plate has one end fixed to the end portion and the other end being a free end, and has an outer edge portion and a leaf spring portion inside the outer edge portion in a state of being separated from the outer edge portion. 1. The solar power generation device according to 1.
  3.  前記板バネ部の輪郭形状は、放物線状である請求項2に記載の太陽光発電装置。 The solar power generation device according to claim 2, wherein the contour shape of the leaf spring portion is parabolic.
  4.  前記受圧板は、太陽を追尾する状態での前記受光パネルの上端に設けられている請求項1から請求項3のいずれか1項に記載の太陽光発電装置。 The solar power generation device according to any one of claims 1 to 3, wherein the pressure receiving plate is provided on an upper end of the light receiving panel in a state of tracking the sun.
  5.  前記変位が所定量に達した場合に、前記駆動部に対して、前記変位を減らす方向に前記姿勢を変化させる制御部を備えている請求項1から請求項4のいずれか1項に記載の太陽光発電装置。 5. The control unit according to claim 1, further comprising a control unit that changes the posture of the drive unit in a direction that reduces the displacement when the displacement reaches a predetermined amount. Solar power generator.
  6.  前記変位センサは、退避の姿勢をとるタイミングを検出する退避用変位センサと、退避から復帰してよいタイミングを検出する復帰用変位センサとを含む、請求項1から請求項5のいずれか1項に記載の太陽光発電装置。 The displacement sensor includes a retracting displacement sensor that detects a timing of taking a retracting posture, and a return displacement sensor that detects a timing at which the retracting can be resumed. The solar power generation device described in.
  7.  前記変位センサは、前記板バネ部の変位を直接受けて動作するリミットスイッチである請求項2に記載の太陽光発電装置。 The solar power generation device according to claim 2, wherein the displacement sensor is a limit switch that operates by directly receiving the displacement of the leaf spring portion.
  8.  前記変位センサは、光学的に前記板バネ部の変位を検出する光センサである請求項2に記載の太陽光発電装置。 The solar power generation device according to claim 2, wherein the displacement sensor is an optical sensor that optically detects the displacement of the leaf spring portion.
  9.  前記受光パネルは集光型太陽光発電パネルである請求項1から請求項8のいずれか1項に記載の太陽光発電装置。 The solar power generation device according to any one of claims 1 to 8, wherein the light receiving panel is a concentrating solar power generation panel.
PCT/JP2019/045107 2018-11-29 2019-11-18 Solar-powered electricity generating device WO2020110807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018223749 2018-11-29
JP2018-223749 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020110807A1 true WO2020110807A1 (en) 2020-06-04

Family

ID=70851973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045107 WO2020110807A1 (en) 2018-11-29 2019-11-18 Solar-powered electricity generating device

Country Status (1)

Country Link
WO (1) WO2020110807A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040779A (en) * 2008-08-05 2010-02-18 Ryokushu:Kk Sun-tracking solar power generating apparatus
WO2012073705A1 (en) * 2010-11-30 2012-06-07 株式会社Sp電機 Photovoltaic device
JP2014203911A (en) * 2013-04-03 2014-10-27 住友電気工業株式会社 Controller of solar tracking photovoltaic power generation system and solar tracking photovoltaic power generation system
US20160118929A1 (en) * 2014-10-27 2016-04-28 William Krause Solar Panel Rack Assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040779A (en) * 2008-08-05 2010-02-18 Ryokushu:Kk Sun-tracking solar power generating apparatus
WO2012073705A1 (en) * 2010-11-30 2012-06-07 株式会社Sp電機 Photovoltaic device
JP2014203911A (en) * 2013-04-03 2014-10-27 住友電気工業株式会社 Controller of solar tracking photovoltaic power generation system and solar tracking photovoltaic power generation system
US20160118929A1 (en) * 2014-10-27 2016-04-28 William Krause Solar Panel Rack Assembly

Similar Documents

Publication Publication Date Title
US8933322B2 (en) Methods, systems, and apparatuses for aligning light concentrator components with a light source
US7847228B2 (en) Solar energy collector with calculation of the trajectory of the sun according to the motion of a shadow of a projecting pointer
US10340839B2 (en) Dynamic damping system for solar trackers
JP5145427B2 (en) Optical tracking device
AU2016201948B2 (en) Solar concentrator, and heat collection apparatus and solar thermal power generation apparatus including same
AU2008319907B2 (en) Solar light tracking sensor direction setting/measuring/re-adjusting method and solar light collecting device
US20100205963A1 (en) Concentrated solar power generation system with distributed generation
US20100051015A1 (en) Linear solar energy collection system
US20100051018A1 (en) Linear solar energy collection system with secondary and tertiary reflectors
WO2015029978A1 (en) Sunlight tracking device
WO2011072449A1 (en) Heliostat device
EP2366965B1 (en) Solar energy system with wind vane
US4091799A (en) Self-tracking radiant energy collector
JP2015520350A (en) Lightweight solar concentrator
JP2010040779A (en) Sun-tracking solar power generating apparatus
AU2008318598B2 (en) Solar collector stabilized by cables and a compression element
JP3539729B1 (en) Solar tracking system
WO2020110807A1 (en) Solar-powered electricity generating device
US20040261786A1 (en) Solar energy conversion system
US20120227789A1 (en) Solar Collector Comprising Receiver Positioned External to Inflation Space of Reflective Solar Concentrator
US9203343B2 (en) Devices for optimizing individual solar modules/collector modules and composite collector module groups and stabilizing the operation thereof against environmental influences, especially wind and particles and objects carried along by the wind
AU2019375337A1 (en) Solar-powered electricity generating device
KR102484729B1 (en) A wind power generator with solar power generation function
US20120132254A1 (en) Solar tracker device
WO2015088809A1 (en) Hyperbolic paraboloid contoured mirrors for trough-type solar collector systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP