WO2020110658A1 - Control device and control method for continuously variable transmission - Google Patents

Control device and control method for continuously variable transmission Download PDF

Info

Publication number
WO2020110658A1
WO2020110658A1 PCT/JP2019/043813 JP2019043813W WO2020110658A1 WO 2020110658 A1 WO2020110658 A1 WO 2020110658A1 JP 2019043813 W JP2019043813 W JP 2019043813W WO 2020110658 A1 WO2020110658 A1 WO 2020110658A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
primary
turbine
rotation speed
drum
Prior art date
Application number
PCT/JP2019/043813
Other languages
French (fr)
Japanese (ja)
Inventor
淳基 松井
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2020558267A priority Critical patent/JP6913258B2/en
Publication of WO2020110658A1 publication Critical patent/WO2020110658A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Definitions

  • the present invention relates to a control device and a control method for a continuously variable transmission mounted on a vehicle.
  • a power train control device capable of estimating and calculating an input rotation speed and continuing control even if a turbine sensor of an automatic transmission fails (for example, refer to Patent Document 1).
  • This conventional device normally performs high-precision shift control and line pressure control using the turbine sensor, and estimates and calculates the turbine speed using input information other than the turbine sensor when the turbine sensor fails.
  • the input speed of the automatic transmission is calculated from the vehicle speed signal and the gear ratio.
  • the input torque (pump torque) of the torque converter is obtained by using the engine torque map characteristic, and the input torque of the automatic transmission and the input speed of the automatic transmission are estimated and obtained.
  • the accessory torque value is learned to correct the accessory torque, and the torque due to the inertia moment of the engine is corrected to improve the accuracy of the input speed of the automatic transmission and the input torque of the automatic transmission. Make an estimate.
  • the turbine rotation sensor is not attached, the drum rotation sensor is provided on the drum of the forward/reverse switching mechanism, and the turbine is detected based on the detection values of the drum rotation sensor and the primary pulley rotation sensor. May estimate the rotation speed of.
  • the primary rotation speed is unknown, the gear ratio is also unknown. Therefore, the primary rotation speed cannot be estimated based on the gear ratio, and the turbine rotation speed cannot be estimated.
  • the present invention aims to ensure acquisition of turbine rotation information by estimation when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown.
  • the present invention includes a torque converter, a forward/reverse switching mechanism, a continuously variable transmission mechanism, and a transmission controller, and the transmission controller executes control using turbine speed information input to the forward/reverse switching mechanism.
  • a control device for a continuously variable transmission comprising: A turbine rotation shaft that connects the turbine runner of the torque converter and the sun gear of the planetary gear, A planetary gear carrier and a ring gear connected through a forward clutch, A drum rotation sensor for detecting the number of rotations of the drum member connected to the ring gear, A primary rotation sensor that detects the rotation speed of a primary rotation shaft that connects the carrier of the planetary gear and the primary pulley, Turbine rotation estimating means for calculating a turbine rotation estimated value of the turbine rotation shaft based on the detection values of the drum rotation sensor and the primary rotation sensor, Turbine rotation estimation means, when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown, the running/stopped state, the engagement/release state of the forward clutch and reverse brake, the gear ratio of the
  • FIG. 1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a control device for a continuously variable transmission according to an embodiment is applied.
  • FIG. 9 is a shift schedule diagram showing an example of a D range continuously variable shift schedule used when the continuously variable shift control in the automatic shift mode is executed by the variator. It is a schematic block diagram which shows the control apparatus of the Example in which control using turbine rotation speed information is performed in a CVT control unit. It is a flowchart which shows the flow of a turbine rotation estimated value calculation process performed by the turbine rotation estimation part of a CVT control unit.
  • FIG. 7 is a collinear diagram of the forward/reverse switching mechanism showing a scene in which the abnormality determination of the drum rotation sensor and the primary rotation sensor is prohibited.
  • FIG. 7 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when both the detection value of the drum rotation sensor and the detection value of the primary rotation sensor can be used.
  • FIG. 7 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown during engagement traveling of the forward clutch (FWD/C). .. FIG.
  • FIG. 6 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown during engagement travel of the reverse brake (REV/B). .. Forward clutch (FWD/C) and reverse brake (REV/B) are disengaged. During forward/backward, the turbine rotation estimated value calculation process is performed when the drum rotation sensor detection value or primary rotation sensor detection value is unknown. It is an alignment chart of a switching mechanism.
  • FIG. 6 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown while the forward clutch (FWD/C) is engaged and stopped.
  • FIG. 6 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown while the reverse brake (REV/B) is engaged and stopped.
  • Forward clutch (FWD/C) and reverse brake (REV/B) are disengaged. While the vehicle is stopped, the turbine rotation estimated value calculation process when the drum rotation sensor detection value or the primary rotation sensor detection value is unknown is indicated. It is an alignment chart of a switching mechanism.
  • the control device in the embodiment is applied to a small engine vehicle equipped with a belt type continuously variable transmission including a torque converter, a forward/reverse switching mechanism, a variator, and a final reduction mechanism.
  • a torque converter a forward/reverse switching mechanism
  • a variator a variator
  • a final reduction mechanism a final reduction mechanism.
  • FIG. 1 shows a drive system and a control system of an engine vehicle to which a control device for a continuously variable transmission according to an embodiment is applied.
  • the overall system configuration will be described below with reference to FIG.
  • a drive system of an engine vehicle includes an engine 1, a torque converter 2, a forward/reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, and drive wheels 6 and 6.
  • the belt type continuously variable transmission CVT is configured by incorporating a torque converter 2, a forward/reverse switching mechanism 3, a variator 4, and a final reduction mechanism 5 in a transmission case (not shown).
  • the engine 1 can control the output torque by an engine control signal from the outside, in addition to the control of the output torque by the accelerator operation by the driver.
  • the engine 1 has an output torque control actuator 10 that controls torque by opening/closing a throttle valve, cutting fuel, or the like. For example, the fuel cut control is executed during coast running by the accelerator foot release operation.
  • the torque converter 2 is a starting element with a fluid coupling having a torque amplification function and a torque fluctuation absorption function.
  • the torque converter 2 includes a pump impeller 23, a turbine runner 24, and a stator 26 as constituent elements.
  • the pump impeller 23 is connected to the engine output shaft 11 via the converter housing 22.
  • the turbine runner 24 is connected to the turbine rotating shaft 21.
  • the stator 26 is provided in the transmission case via the one-way clutch 25.
  • the forward/reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between the forward rotation direction when traveling forward and the reverse rotation direction when traveling backward.
  • the forward/reverse switching mechanism 3 includes a double pinion type planetary gear 30, a forward clutch 31 including a plurality of clutch plates, and a reverse brake 32 including a plurality of brake plates.
  • the forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when the forward traveling range such as the D range is selected.
  • the reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse traveling range such as the R range is selected.
  • the forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range) is selected.
  • the variator 4 includes a primary pulley 42, a secondary pulley 43, and a belt 44, and a continuously variable transmission that continuously changes a gear ratio (ratio between variator input rotation and variator output rotation) by a change in belt contact diameter. Equipped with mechanical capabilities.
  • the belt 44 is stretched around the V-shaped sheave surface of the primary pulley 42 and the V-shaped sheave surface of the secondary pulley 43.
  • This belt 44 is formed by two sets of laminated rings in which a plurality of annular rings are superposed from the inside to the outside and a punched plate material, and is attached by being laminated along the two sets of laminated rings in an annular shape by sandwiching them.
  • the belt 44 may be a chain type belt in which a large number of chain elements arranged in the pulley traveling direction are connected by a pin penetrating in the pulley axial direction.
  • the final deceleration mechanism 5 is a mechanism that decelerates the secondary output rotation from the secondary rotation shaft 41 and imparts a differential function to the left and right drive wheels 6 and 6.
  • the final reduction gear mechanism 5 is, as a reduction gear mechanism, an output gear 52 provided on the secondary rotary shaft 41, an idler gear 53 and a reduction gear 54 provided on the idler shaft 50, and a final gear provided on an outer peripheral position of the differential case. And a gear 55.
  • the differential gear mechanism has a differential gear 56 interposed between the left and right drive shafts 51, 51.
  • the control system of the engine vehicle includes a hydraulic control unit 7, a CVT control unit 8 (abbreviation “CVTCU”), and an engine control unit 9 (abbreviation “ECU”).
  • the CVT control unit 8 and the engine control unit 9, which are electronic control systems, are connected by a CAN communication line 13 capable of exchanging information with each other.
  • the hydraulic control unit 7 controls the primary pressure Ppri guided to the primary pressure chamber 45, the secondary pressure Psec guided to the secondary pressure chamber 46, the forward clutch pressure Pfc to the forward clutch 31, the reverse brake pressure Prb to the reverse brake 32, and the like. It is a unit that regulates pressure.
  • the hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1, and a hydraulic control circuit 71 that regulates various control pressures based on the discharge pressure from the oil pump 70. As the oil pump, the oil pump 70 and the electric oil pump may be used together.
  • the hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a select solenoid valve 75, and a lockup pressure solenoid valve 76.
  • the solenoid valves 72, 73, 74, 75, 76 perform pressure adjustment operation according to a control command value (instruction current) output from the CVT control unit 8.
  • the line pressure solenoid valve 72 regulates the discharge pressure from the oil pump 70 to the instructed line pressure PL according to the line pressure command value output from the CVT control unit 8.
  • the line pressure PL is an original pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip with respect to the torque transmitted through the drive system.
  • the primary pressure solenoid valve 73 adjusts the primary pressure command value output from the CVT control unit 8 to the commanded primary pressure Ppri using the line pressure PL as the source pressure.
  • the secondary pressure solenoid valve 74 reduces and adjusts the secondary pressure command value output from the CVT control unit 8 to the commanded secondary pressure Psec using the line pressure PL as the source pressure.
  • the select solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc or the backward brake pressure Prb commanded with the line pressure PL as the original pressure in accordance with the forward clutch pressure command value or the backward brake pressure command value output from the CVT control unit 8. To do.
  • the lockup pressure solenoid valve 76 regulates the LU command pressure Plu that engages/disengages/releases the lockup clutch 20 according to the command current Alu output from the CVT control unit 8.
  • the CVT control unit 8 performs line pressure control, shift control, forward/reverse switching control, lockup control, etc.
  • line pressure control a command value for obtaining a target line pressure according to the accelerator opening etc. is output to the line pressure solenoid valve 72.
  • shift control when the target gear ratio (target primary rotation NPRI*) is determined, a command value for obtaining the determined target gear ratio (target primary rotation NPRI*) is output to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74.
  • a command value for controlling engagement/disengagement of the forward clutch 31 and the reverse brake 32 is output to the select solenoid valve 75 according to the selected range position.
  • lockup control a command current Alu for controlling the LU command pressure Plu for engaging/slip-engaging/releasing the lockup clutch 20 is output to the lockup pressure solenoid valve 76.
  • the sensor information and switch information from the primary rotation sensor 90, the vehicle speed sensor 91, the secondary pressure sensor 92, the oil temperature sensor 93, the inhibitor switch 94, the brake switch 95, and the drum rotation sensor 96 are input to the CVT control unit 8. Further, sensor information from the secondary rotation sensor 97, the primary pressure sensor 98, the wheel speed sensor 99, etc. is input.
  • the sensor information from the engine rotation sensor 12, the accelerator opening sensor 14, etc. is input to the engine control unit 9.
  • the CVT control unit 8 requests the engine rotation information and the accelerator opening information to the engine control unit 9
  • the CVT control unit 8 receives the information on the engine speed NENG and the accelerator opening APO via the CAN communication line 13. Further, when the engine torque information is requested to the engine control unit 9, the estimated engine torque Te information is received via the CAN communication line 13.
  • the engine control unit 9 limits the upper limit torque of the engine 1 according to the request by the intake air amount control or the ignition timing retard control.
  • FIG. 2 shows an example of a D range continuously variable shift schedule used when the variator 4 executes the continuously variable shift control in the automatic shift mode when the D range is selected.
  • D-range shift mode is an automatic shift mode in which the gear ratio is automatically and steplessly changed according to the vehicle operating condition.
  • the shift control in the "D range shift mode” is performed at the operating point (on the D range continuously variable shift schedule of Fig. 2 specified by the vehicle speed VSP (vehicle speed sensor 91) and the accelerator opening APO (accelerator opening sensor 14).
  • VSP, APO determines the target primary speed NPRI*. Then, the actual primary rotation speed NPRI from the primary rotation sensor 90 is controlled by feedback control of the pulley hydraulic pressure to match the target primary rotation speed NPRI*.
  • the speed ratio is represented by the slope of the speed ratio line drawn from the zero operating point, as is clear from the lowest speed ratio line and the highest speed ratio line of the D range continuously variable speed change schedule. Therefore, determining the target primary speed NPRI* according to the operating point (VSP, APO) determines the target gear ratio of the variator 4.
  • the D-range continuously variable shift schedule used in the "D-range shift mode” is, as shown in FIG. It is set to continuously change the gear ratio within the range.
  • the target primary speed NPRI* increases and shifts in the downshift direction
  • the target primary speed NPRI* decreases and increases. Shift in the shift direction.
  • the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and shifts in the downshift direction when the vehicle speed VSP decreases.
  • FIG. 3 shows a control device of an embodiment in which control using the turbine speed information is executed in the CVT control unit 8.
  • control using the turbine speed information is executed in the CVT control unit 8.
  • the drive system to which the control device of the embodiment is applied includes an engine 1 (driving drive source), a torque converter 2, a forward/reverse switching mechanism 3, and a variator 4 (continuously variable transmission mechanism).
  • the final reduction mechanism 5 and the drive wheels 6 are provided.
  • the control system to which the control device of the embodiment is applied includes a CVT control unit 8 (transmission controller), an engine control unit 9, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74. , And a select solenoid valve 75.
  • the CVT control unit 8 and the engine control unit 9 are connected by a CAN communication line 13.
  • Information from the primary rotation sensor 90, the vehicle speed sensor 91, the drum rotation sensor 96, the secondary rotation sensor 97, etc. is input to the CVT control unit 8.
  • Information from the engine rotation sensor 12, the accelerator opening sensor 14, etc. is input to the engine control unit 9.
  • the CVT control unit 8 has many basic controls/functions such as lockup control, select control, idle stop control/coast stop control, and self-diagnosis function as controls using turbine speed information. Refer to.
  • the forward/reverse switching mechanism 3 is interposed between the torque converter 2 and the variator 4, and has a double pinion type planetary gear 30 (planetary gear), a forward clutch 31, and a reverse brake 32.
  • the double pinion type planetary gear 30 has a sun gear S, a carrier C, and a ring gear R as three rotating members whose rotational speed relationships are defined by linear characteristic lines in the collinear chart.
  • the forward/reverse switching mechanism 3 includes a turbine rotation shaft 21, a drum rotation sensor 96, and a primary rotation sensor 90.
  • the turbine rotary shaft 21 connects the turbine runner 24 of the torque converter 2 and the sun gear S of the double pinion type planetary gear 30.
  • the rotation speed of the turbine rotation shaft 21 is the turbine rotation speed NTBN.
  • the rotation speed of the engine output shaft 11 that connects the engine 1 and the pump impeller 23 of the torque converter 2 is the engine rotation speed NENG.
  • the drum rotation sensor 96 detects the rotation of the drum member 33 that connects the carrier C of the double pinion type planetary gear 30 and the ring gear R via the forward clutch 31.
  • the reverse brake 32 is disposed between the ring gear R of the double pinion type planetary gear 30 and the transmission case.
  • the primary rotation sensor 90 detects the rotation of the primary rotation shaft 40 that connects the carrier C of the double pinion type planetary gear 30 and the primary pulley 42.
  • the rotation speed of the primary rotation shaft 40 is the primary rotation speed NPRI.
  • the rotation speed of the secondary rotation shaft 41 connected to the secondary pulley 43 is the secondary rotation speed NSEC.
  • the CVT control unit 8 has a turbine rotation estimation unit 80 (turbine rotation estimation means) that calculates a turbine rotation estimated value NTBN′ of the turbine rotation shaft 21 based on the detection values of the drum rotation sensor 96 and the primary rotation sensor 90.
  • a turbine rotation estimation unit 80 turbine rotation estimation means
  • the turbine rotation speed information is calculated based on the detected values of the drum rotation sensor 96 and the primary rotation sensor 90 instead of the detected value of the turbine rotation sensor.
  • Estimated value NTBN' is used.
  • the turbine rotation estimation unit 80 determines the turbine rotation estimation value NTBN′ by the unknown one rotation estimation value and the other sensor detection value. calculate. At this time, the rotation estimated value is estimated using at least two of the running/stopped state, the engaged/released state of the forward clutch 31 and the reverse brake 32, and the gear ratio of the variator 4.
  • the traveling scene is divided into a forward clutch 31 engagement scene, a reverse brake 32 engagement scene, and a forward clutch 31 and reverse brake 32 release scene while traveling. Then, even when the vehicle is stopped, it is divided into the engagement scene of the forward clutch 31, the engagement scene of the reverse brake 32, and the release scene of the forward clutch 31 and the reverse brake 32.
  • the turbine rotation estimated value NTBN′ is divided into each of six scenes, and in each scene, the detection value of the drum rotation sensor 96 is unknown and the detection value of the primary rotation sensor 90 is unknown. Calculated separately for and.
  • the transitional scene of the engagement ⁇ release of the forward clutch 31 and the reverse brake 32 or the transitional scene of the release ⁇ engagement is dealt with by switching the turbine speed information in three scenes according to the range position. Further, when the forward clutch 31 and the reverse brake 32 are released and the rotation constraint condition is not determined on the collinear chart, the turbine rotation estimated value NTBN' is calculated without calculating the turbine rotation estimated value NTBN'.
  • the turbine rotation estimated value NTBN' is considered and estimated like the rotation speed NENG.
  • FIG. 4 shows a flow of turbine rotation estimated value calculation processing executed by the turbine rotation estimation unit 80 of the CVT control unit 8 of the embodiment. Hereinafter, each step of FIG. 4 will be described.
  • preconditions are the detection conditions of the engine speed NENG and the input conditions of the soft switch.
  • OBD On-Board Diagnostics
  • S2 following the YES judgment in S1, it is judged whether the scene is other than the sensor abnormality judgment prohibited scene. If YES (other than the sensor abnormality determination prohibited scene), the process proceeds to S3. If NO (sensor abnormality determination prohibited scene), the process returns to S1.
  • the "sensor abnormality determination prohibited scene” means a scene in which the drum rotation sensor 96 does not detect the drum rotation speed NDRUM even in a normal state, or the drum rotation speed NDRUM is low rotation and the primary rotation speed NPRI is low rotation. Say the scene.
  • the specific scenes of the "sensor abnormality determination prohibited scene” are the following scenes (1) to (7) and correspond to (1) to (7) shown in FIG.
  • the forward clutch 31 is called “FWD/C” and the reverse brake 32 is called “REV/B".
  • FWD/C forward clutch 31
  • REV/B reverse brake 32
  • the vehicle Moving forward with the conclusion of REV/B.
  • the vehicle Moving backward with REV/B concluded, and the vehicle is not traveling REV/B.
  • (6) Moving forward without REV/B (when the engine stall under the worst conditions and the turbine speed is 0 rpm, the planet is outside the detection range). (7) Turbine speed reverses when REV/B is not engaged (engine 1 does not reverse).
  • whether the sensor detection value is unknown or not is determined by determining the disconnection abnormality of each of the drum rotation sensor 96 and the primary rotation sensor 90, and continuously outputting the rotation speed of zero despite the rotation abnormality. If it is determined that the sensor detection value is unknown.
  • the turbine rotation speed estimated value NTBN' is calculated from the drum rotation speed NDRUM from the drum rotation sensor 96, the primary rotation speed NPRI from the primary rotation sensor 90, and the rotation speed relationship in the alignment chart. Calculate and proceed to return.
  • whether the vehicle is running or stopped is determined by the sensor detection value from the secondary rotation sensor 97. Specifically, when the secondary rotation speed NSEC is converted into the vehicle speed VSP, it is determined that the vehicle speed VSP is running when it is equal to or higher than the vehicle stop determination threshold value VSP1, and it is determined that the vehicle speed VSP is less than the vehicle stop determination threshold value VSP1. It is determined that the vehicle speed VSP is running when it is equal to or higher than the vehicle stop determination threshold value VSP1, and it is determined that the vehicle speed VSP is less than the vehicle stop determination threshold value VSP1. It
  • the forward clutch 31 is in the engaged state. If YES (during FWD/C running), proceed to S8. If NO (during FWD/C release), proceed to S7.
  • the engaged state of the forward clutch 31 is determined by, for example, the select range position being the forward traveling range such as the D range, the L range, or the S range.
  • the primary speed NPRI calculated from the collinear diagram is the primary speed upper limit value calculated from the secondary speed NSEC and the lowest gear ratio of the variator 4, and the primary speed NPRI calculated from the secondary speed NSEC and the highest gear ratio of the variator 4. Limited by the lower limit of rotation speed.
  • the forward clutch 31 is in the engaged state. If YES (while the FWD/C is stopped and stopped), proceed to S13, and if NO (when the FWD/C is released and stopped), proceed to S12.
  • the engaged state of the forward clutch 31 is determined by, for example, the select range position being the forward traveling range such as the D range, the L range, or the S range.
  • the reverse brake 32 is in the engaged state. If YES (when REV/B is stopped), proceed to S14, and if NO (when FWD/C and REV/B are released), proceed to S15.
  • the engagement state of the reverse brake 32 is determined by, for example, the select range position being the R range which is the reverse traveling range.
  • the forward/reverse switching mechanism of the comparative example is disposed between a torque converter and a variator (not shown), and includes a double pinion type planetary gear, a forward clutch, and a reverse brake.
  • the double pinion type planetary gear has a sun gear S, a carrier C, and a ring gear R.
  • the forward clutch is provided at an intermediate position of the member connecting the sun gear S of the double pinion type planetary gear and the carrier C.
  • the reverse brake is arranged between the ring gear R and the transmission case.
  • the turbine rotation sensor detects the rotation speed of the turbine rotation shaft that connects the turbine runner of the torque converter and the sun gear S.
  • the primary rotation sensor detects the rotation of the primary rotation shaft that connects the carrier C and the primary pulley of the variator.
  • the position of the forward clutch is at the middle position of the member connecting the sun gear S and the carrier C.
  • the position of the forward clutch is set to the middle position of the drum member 33 that connects the ring gear R and the carrier C, and the torque converter is aimed at a compact layout. And the setting interval between the forward/reverse switching mechanism is narrowed.
  • the setting position of the forward clutch is changed, so that the turbine rotation sensor provided in the forward/reverse switching mechanism of the comparative example cannot be provided in a layout. Therefore, a drum rotation sensor is provided instead of the turbine rotation sensor, and the turbine rotation speed information is estimated from the drum rotation speed and the primary rotation speed by using the rotation speed relationship based on the alignment chart of the double pinion type planetary gear. ..
  • the present inventor clarifies a scene in which the turbine rotation speed cannot be correctly read due to a change in the sensor position from the viewpoint of hardware, and refers to the turbine rotation speed and a derived signal from the viewpoint of software. The control was extracted and its effect was confirmed. The turbine rotation speed information can be acquired even if only one of the drum rotation speed and the primary rotation speed is unknown.
  • the detected value of the drum rotation sensor 96 or the detected value of the primary rotation sensor 90 is unknown, at least two of the running/stopped state, the engaged/released state of the forward clutch 31 and the reverse brake 32, and the gear ratio of the variator 4 are determined. One of them is used to estimate the rotation speed of an unknown detected value, and calculate the turbine rotation estimated value NTBN′ from the estimated rotation estimated value and the other sensor detected value.
  • the detected value of the drum rotation sensor 96 or the detected value of the primary rotation sensor 90 is unknown, at least two of the running/stopped state, the engaged state of the forward clutch 31 or the reverse brake 32, and the gear ratio of the variator 4 are determined. Can be used to estimate the drum speed or primary speed. That is, the rotation speed of the carrier C of the forward/reverse switching mechanism 3 becomes positive in the traveling state, and the rotation speed of the carrier C of the forward/reverse switching mechanism 3 becomes zero in the stopped state.
  • the forward clutch 31 is engaged, the three elements S, C, R of the forward/reverse switching mechanism 3 have the same rotational speed.
  • the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown, it is possible to ensure acquisition of turbine rotation information by estimation.
  • the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown, it is possible to continue the control using the turbine rotation speed information referred to by many basic controls/functions. Specifically, for example, during execution of basic control/functions such as lock-up control, select control, idle stop control/coast stop control, self-diagnosis function, etc., the detection value of the drum rotation sensor 96 or the detection of the primary rotation sensor 90 is detected. Even if the value becomes unknown, the basic control/function can continue to be executed.
  • FIG. 7 shows the calculation processing of the turbine rotation estimated value NTBN′ when both the detection value of the drum rotation sensor 96 and the detection value of the primary rotation sensor 90 can be used.
  • the turbine rotation estimation value calculation operation in a normal scene where two sensor detection values can be used will be described with reference to FIGS. 4 and 7.
  • the turbine rotation estimated value NTBN' is calculated from the drum rotation speed NDRUM from the drum rotation sensor 96, the primary rotation speed NPRI from the primary rotation sensor 90, and the rotation speed relationship in the alignment chart.
  • the tooth number ratio ⁇ is obtained by the formula of (the number of teeth of the sun gear S) ⁇ (the number of teeth of the ring gear R).
  • the turbine rotation estimated value NTBN' becomes according to the magnitude of the drum rotation speed NDRUM or the primary rotation speed NPRI, as shown in the collinear characteristic D in FIG. 7. , And matches the drum speed NDRUM or the primary speed NPRI.
  • FIG. 8 shows the calculation processing of the turbine rotation estimated value NTBN′ when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown during the engagement travel of the forward clutch (FWD/C).
  • FWD/C forward clutch
  • the process proceeds to S1 ⁇ S2 ⁇ S3 ⁇ S5 ⁇ S6 ⁇ S8 ⁇ Return.
  • the drum rotation speed NDRUM is unknown
  • the drum rotation speed NDRUM is replaced with the primary rotation speed NPRI to calculate the turbine rotation speed estimated value NTBN' as shown by the solid line characteristic in Fig. 8(c).
  • the turbine rotation speed estimated value NTBN' is calculated by replacing the primary rotation speed NPRI with the drum rotation speed NDRUM as shown by the solid line characteristic in FIG. 8(c).
  • the calculated turbine rotation speed estimated value NTBN' matches the actual turbine rotation speed NTBN.
  • the input torque is not overestimated when the drum rotation speed NDRUM is unknown as in the case of relying on the recognition of the CVT control unit 8, and the deterioration of fuel efficiency due to the increase in hydraulic pressure can be prevented.
  • the input torque is not underestimated when the primary rotation speed NPRI is unknown, and the occurrence of slippage of the forward clutch 31 and the belt 44 due to the reduction of the hydraulic pressure. It can be prevented.
  • FIG. 9 shows the calculation processing of the turbine rotation estimated value NTBN′ when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown during the engagement travel of the reverse brake (REV/B).
  • REV/B reverse brake
  • the precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the reverse brake 32 is engaged.
  • the process proceeds to S1 ⁇ S2 ⁇ S3 ⁇ S5 ⁇ S6 ⁇ S7 ⁇ S9 ⁇ Return.
  • the drum speed NDRUM is unknown
  • the primary speed NPRI is estimated and calculated by the lowest speed ratio of the variator 4 and the secondary speed NSEC.
  • the turbine rotation estimated value NTBN' is calculated from the primary rotation estimated value NPRI' and the reverse gear ratio (R gear ratio).
  • the calculated turbine rotation speed NTBN' will match the actual turbine rotation speed NTBN when the drum rotation speed NDRUM is unknown. Then, the calculated turbine rotation speed estimated value NTBN' is enhanced in agreement with the actual turbine rotation speed NTBN when the primary rotation speed NPRI is unknown. In other words, when the primary rotation speed NPRI is unknown, the input torque is not overestimated as in the case where the CVT control unit 8 is left to be recognized, and the deterioration of fuel efficiency due to the increase in hydraulic pressure can be prevented.
  • FIG. 10 is a turbine rotation estimated value NTBN when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown during the disengagement travel of the forward clutch (FWD/C) and the reverse brake (REV/B). 'Shows the calculation process.
  • the turbine rotation estimated value calculation operation in the open traveling scene in which the sensor detection value is unknown will be described with reference to FIGS. 4 and 10.
  • the precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch 31 and the reverse brake 32 are disengaged.
  • the process proceeds to S1 ⁇ S2 ⁇ S3 ⁇ S5 ⁇ S6 ⁇ S7 ⁇ S10 ⁇ Return.
  • the primary rotation speed NPRI calculated from the collinear chart is calculated from the primary rotation speed upper limit value calculated from the secondary rotation speed NSEC and the lowest gear ratio of the variator 4, and the secondary rotation speed NSEC and the highest gear ratio of the variator 4. It is limited by the lower limit of primary speed.
  • the estimated turbine speed NTBN' is regarded as the engine speed NENG, as shown by the solid line characteristics in Fig. 10(c).
  • the turbine rotation speed estimated value NTBN' is regarded as the engine rotation speed NENG, as in the case where the drum rotation speed NDRUM is unknown, as shown by the solid line characteristic in FIG. 10(c).
  • FIG. 11 shows the calculation processing of the turbine rotation estimated value NTBN′ when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch (FWD/C) is engaged and stopped.
  • the turbine rotation estimated value calculation operation in the forward clutch engagement/stop scene where the sensor detection value is unknown will be described with reference to FIGS. 4 and 11.
  • the precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch 31 is engaged and stopped.
  • the process proceeds to S1 ⁇ S2 ⁇ S3 ⁇ S5 ⁇ S11 ⁇ S13 ⁇ Return.
  • the drum rotation speed NDRUM is unknown
  • the primary rotation speed NPRI is unknown
  • FIG. 12 shows calculation processing of the turbine rotation estimated value NTBN′ when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the reverse brake (REV/B) is engaged and stopped.
  • the operation of the turbine rotation estimated value calculation operation in the reverse brake engagement/stop scene in which the sensor detection value is unknown will be described with reference to FIGS.
  • the precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the reverse brake 32 is engaged and stopped.
  • the process proceeds to S1 ⁇ S2 ⁇ S3 ⁇ S5 ⁇ S11 ⁇ S12 ⁇ S14 ⁇ Return.
  • FIG. 13 is a turbine rotation estimated value NTBN when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch (FWD/C) and the reverse brake (REV/B) are released and stopped. 'Shows the calculation process.
  • FWD/C forward clutch
  • REV/B reverse brake
  • the precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch 31 and the reverse brake 32 are released and stopped.
  • the process proceeds to S1 ⁇ S2 ⁇ S3 ⁇ S5 ⁇ S11 ⁇ S12 ⁇ S15 ⁇ return.
  • the drum rotation speed NDRUM is unknown
  • the rotation speed of each rotating member S, C, R is determined by the balance of forces when the accelerator is operated. It can be estimated basically by considering
  • the rotation speed of each rotating member S, C, R is determined by the balance of force when the accelerator is operated, but the estimated turbine rotation speed NTBN' is regarded as the engine rotation speed NENG. Basically, it can be estimated.
  • a torque converter 2 connected to a driving source (engine 1) for traveling, a forward/reverse switching mechanism 3 connected to the torque converter 2, and a continuously variable transmission mechanism (variator 4) connected to the forward/reverse switching mechanism 3.
  • the forward/reverse switching mechanism 3 has a planetary gear (double pinion type planetary gear 30), a forward clutch 31, and a reverse brake 32.
  • the continuously variable transmission mechanism (variator 4) is mounted on a primary pulley 42 and a secondary pulley 43.
  • the transmission controller (CVT control unit 8) has a belt 44 to be passed, and the transmission controller (CVT control unit 8) executes a control using the turbine speed information input to the forward/reverse switching mechanism 3 (a belt type continuously variable transmission CVT. ) Control device, A turbine rotary shaft 21 that connects a turbine runner 24 of the torque converter 2 and a sun gear S of a planetary gear (double pinion type planetary gear 30); A carrier C and a ring gear R of a planetary gear (double pinion type planetary gear 30) connected through a forward clutch 31; A drum rotation sensor 96 for detecting the number of rotations of the drum member 33 connected to the ring gear R; A primary rotation sensor 90 that detects the number of rotations of a primary rotation shaft 40 that connects the carrier C of the planetary gear (double pinion type planetary gear 30) and the primary pulley 42, Turbine rotation estimation means (turbine rotation estimation unit 80) for calculating a turbine rotation estimation value NTBN′ of the turbine rotation shaft 21 based on detection values
  • At least two of the gear ratios of the continuously variable transmission mechanism (variator 4) are used to estimate the rotation speed of an unknown detection value, and the turbine is determined by the estimated rotation speed and the other sensor detection value. Calculate the rotation estimate NTBN'. Therefore, when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown, it is possible to ensure acquisition of turbine rotation information by estimation.
  • the turbine rotation estimation means replaces the drum rotation speed NDRUM with the primary rotation speed NPRI when the forward clutch 31 is engaged during traveling and the drum rotation speed NDRUM is unknown.
  • the primary rotation speed NPRI is replaced with the drum rotation speed NDRUM to obtain the primary rotation estimated value NPRI′, and the turbine rotation estimated value NTBN′ is It is calculated by the primary rotation estimated value NPRI′ and the detection value from the drum rotation sensor 96.
  • the turbine rotation estimation means replaces the drum rotation speed NDRUM with zero and estimates the drum rotation when the reverse brake 32 is engaged and the drum rotation speed NDRUM is unknown during traveling.
  • the turbine rotation estimated value NTBN' is calculated by the drum rotation estimated value NDRUM' and the detection value from the primary rotation sensor 90.
  • the primary speed NPRI is calculated by the lowest speed ratio of the continuously variable transmission (variator 4) and the secondary speed PSEC.
  • the rotation speed estimated value NPRI′ is set, and the turbine rotation estimated value NTBN′ is calculated based on the primary rotation estimated value NPRI′ and the detection value from the drum rotation sensor 96.
  • the turbine rotation estimation means replaces the drum rotation speed NDRUM with the primary rotation speed NPRI when the forward clutch 31 is engaged and the drum rotation speed NDRUM is unknown while the vehicle is stopped.
  • the drum rotation estimated value NDRUM' is set, and the turbine rotation estimated value NTBN' is calculated by the drum rotation estimated value NDRUM' and the detection value from the primary rotation sensor 90,
  • the primary rotation speed NTPRI is set to the primary rotation estimated value NPRI' in which the primary rotation speed NPRI is replaced with zero. It is calculated by the value NPRI′ and the detection value from the drum rotation sensor 96.
  • the turbine rotation estimation means replaces the drum rotation speed NDRUM with zero and estimates the drum rotation when the reverse brake 32 is engaged and the drum rotation speed NDRUM is unknown while the vehicle is stopped.
  • the turbine rotation estimated value NTBN' is calculated by the drum rotation estimated value NDRUM' and the detection value from the primary rotation sensor 90.
  • the primary rotation speed NPRI is replaced with zero to set the primary rotation estimated value NPRI', and the turbine rotation estimated value NTBN' is set to the primary rotation estimation. It is calculated by the value NPRI′ and the detection value from the drum rotation sensor 96.
  • the unknown drum rotation estimated value NDRUM' or primary rotation estimated value NPRI' and the turbine rotation estimated value NTBN are unknown.
  • control device for the continuously variable transmission has been described above based on the embodiments.
  • specific configuration is not limited to this embodiment, and design changes and additions are allowed without departing from the gist of the invention according to each claim of the claims.
  • the forward/reverse switching mechanism 3 has the double pinion type planetary gear 30, the forward clutch 31, and the reverse brake 32.
  • the forward/reverse switching mechanism may be an example having a single pinion type planetary gear, a forward clutch and a reverse brake.
  • the double pinion type planetary gear the three rotating members S, C and R are arranged on the horizontal axis of the nomographic chart in the order of S ⁇ R ⁇ C (1- ⁇ ): ⁇ , while the single pinion type
  • the three rotating members S, C, and R are different in that they are arranged on the horizontal axis of the alignment chart in the order of S ⁇ C ⁇ R at a ratio of 1: ⁇ .
  • control device of the present invention is applied to an engine vehicle equipped with a belt type continuously variable transmission CVT as an automatic transmission.
  • the control device of the present invention may be applied to a vehicle equipped with a continuously variable transmission mechanism with an auxiliary transmission.
  • vehicle to be applied is not limited to an engine vehicle, but can be applied to a hybrid vehicle having an engine and a motor as a driving source for traveling, an electric vehicle having a motor as a driving source for traveling, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

This control device for a belt-type continuously variable transmission (CVT) has: a drum rotation sensor (96) that detects the rotation of a drum member (33) of a forward/reverse switching mechanism (3); a primary rotation sensor (90) that detects the rotation of a primary rotary shaft (40); and a turbine rotation estimation unit (80) that calculates the turbine estimation value (NTBN') of a turbine rotary shaft (21) on the basis of the detection value of the drum rotation sensor (96) and the primary rotation sensor (90). When the detection value of the drum rotation sensor (96) and the detection value of the primary rotation sensor (90) are unclear, the turbine rotation estimation unit (80) estimates the rotation speed of the unclear detection value by using at least two among the traveling/stop state, the fastened/released states of a forward clutch (31) and a reverse brake (32), and the transmission ratio of a variator (4), and calculates the turbine rotation estimation value (NTBN') by using the estimated rotation estimation value and the detection value of the other sensor.

Description

無段変速機の制御装置および制御方法Control device and control method for continuously variable transmission
 本発明は、車両に搭載される無段変速機の制御装置および制御方法に関する。 The present invention relates to a control device and a control method for a continuously variable transmission mounted on a vehicle.
 従来、自動変速機のタービンセンサが故障した場合でも、入力回転数を推定計算して制御を続けられるパワートレイン制御装置が知られている(例えば、特許文献1参照)。この従来装置は、通常時はタービンセンサを用いて高精度の変速制御やライン圧制御を行い、タービンセンサの故障時にはタービンセンサ以外の入力情報を用いてタービン回転数を推定計算する。変速中でない場合には車速信号とギア比から自動変速機の入力回転数を計算して求める。変速中の場合にはエンジントルクマップ特性を利用して、トルクコンバータの入力トルク(ポンプトルク)を求め、さらに、自動変速機の入力トルク、自動変速機の入力回転数を推定して求める。ここで変速開始時に補機トルク値を学習して補機トルク分を修正するとともに、エンジンの慣性モーメントによるトルクを補正して、自動変速機の入力回転数、自動変速機の入力トルクの高精度推定を行う。 Conventionally, there is known a power train control device capable of estimating and calculating an input rotation speed and continuing control even if a turbine sensor of an automatic transmission fails (for example, refer to Patent Document 1). This conventional device normally performs high-precision shift control and line pressure control using the turbine sensor, and estimates and calculates the turbine speed using input information other than the turbine sensor when the turbine sensor fails. When the gear is not being changed, the input speed of the automatic transmission is calculated from the vehicle speed signal and the gear ratio. When the gear is being changed, the input torque (pump torque) of the torque converter is obtained by using the engine torque map characteristic, and the input torque of the automatic transmission and the input speed of the automatic transmission are estimated and obtained. Here, at the start of gear shifting, the accessory torque value is learned to correct the accessory torque, and the torque due to the inertia moment of the engine is corrected to improve the accuracy of the input speed of the automatic transmission and the input torque of the automatic transmission. Make an estimate.
 しかし、ベルト式無段変速機のレイアウトによっては、タービン回転センサを取り付けらず、前後進切替機構のドラムにドラム回転センサを設け、ドラム回転センサとプライマリプーリ回転センサの検出値に基づいて、タービンの回転数を推定する場合がある。このようなベルト式無段変速機では、プライマリ回転数が不明だと変速比も不明になるので、変速比に基づくプライマリ回転数の推定ができなくなり、タービン回転数が推定できなくなる。 However, depending on the layout of the belt type continuously variable transmission, the turbine rotation sensor is not attached, the drum rotation sensor is provided on the drum of the forward/reverse switching mechanism, and the turbine is detected based on the detection values of the drum rotation sensor and the primary pulley rotation sensor. May estimate the rotation speed of. In such a belt-type continuously variable transmission, if the primary rotation speed is unknown, the gear ratio is also unknown. Therefore, the primary rotation speed cannot be estimated based on the gear ratio, and the turbine rotation speed cannot be estimated.
 本発明は、ドラム回転センサの検出値又はプライマリ回転センサの検出値が不明な場合、推定によるタービン回転情報の取得を確保することを目的とする。 The present invention aims to ensure acquisition of turbine rotation information by estimation when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown.
特開平9-2106号公報Japanese Patent Laid-Open No. 9-2106
 本発明は、トルクコンバータと、前後進切替機構と、無段変速機構と、変速機コントローラと、を備え、変速機コントローラは、前後進切替機構へ入力されるタービン回転数情報を用いる制御を実行する無段変速機の制御装置であって、
 トルクコンバータのタービンランナと遊星歯車のサンギアとを連結するタービン回転軸と、
 前進クラッチを介して連結された遊星歯車のキャリヤとリングギアと、
 リングギアと連結するドラムメンバの回転数を検出するドラム回転センサと、
 遊星歯車のキャリヤとプライマリプーリとを連結するプライマリ回転軸の回転数を検出するプライマリ回転センサと、
 ドラム回転センサとプライマリ回転センサの検出値に基づいてタービン回転軸のタービン回転推定値を計算するタービン回転推定手段と、を有し、
 タービン回転推定手段は、ドラム回転センサの検出値又はプライマリ回転センサの検出値が不明な場合、走行/停車状態、前進クラッチと後退ブレーキの締結/解放状態、無段変速機構の変速比のうち、少なくとも二つを用いて、不明な検出値の回転数を推定し、該推定された回転推定値と、他方のセンサ検出値とによってタービン回転推定値を計算する。
The present invention includes a torque converter, a forward/reverse switching mechanism, a continuously variable transmission mechanism, and a transmission controller, and the transmission controller executes control using turbine speed information input to the forward/reverse switching mechanism. A control device for a continuously variable transmission, comprising:
A turbine rotation shaft that connects the turbine runner of the torque converter and the sun gear of the planetary gear,
A planetary gear carrier and a ring gear connected through a forward clutch,
A drum rotation sensor for detecting the number of rotations of the drum member connected to the ring gear,
A primary rotation sensor that detects the rotation speed of a primary rotation shaft that connects the carrier of the planetary gear and the primary pulley,
Turbine rotation estimating means for calculating a turbine rotation estimated value of the turbine rotation shaft based on the detection values of the drum rotation sensor and the primary rotation sensor,
Turbine rotation estimation means, when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown, the running/stopped state, the engagement/release state of the forward clutch and reverse brake, the gear ratio of the continuously variable transmission mechanism, At least two are used to estimate the rotational speed of the unknown detection value, and the turbine rotation estimation value is calculated by the estimated rotation estimation value and the other sensor detection value.
 このため、ドラム回転センサの検出値又はプライマリ回転センサの検出値が不明な場合、推定によるタービン回転情報の取得を確保することができる。 Therefore, if the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown, it is possible to ensure acquisition of turbine rotation information by estimation.
実施例の無段変速機の制御装置が適用されたエンジン車の駆動系と制御系を示す全体システム図である。FIG. 1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a control device for a continuously variable transmission according to an embodiment is applied. 自動変速モードでの無段変速制御をバリエータにより実行する際に用いられるDレンジ無段変速スケジュールの一例を示す変速スケジュール図である。FIG. 9 is a shift schedule diagram showing an example of a D range continuously variable shift schedule used when the continuously variable shift control in the automatic shift mode is executed by the variator. CVTコントロールユニットにおいてタービン回転数情報を用いる制御が実行される実施例の制御装置を示す概要構成図である。It is a schematic block diagram which shows the control apparatus of the Example in which control using turbine rotation speed information is performed in a CVT control unit. CVTコントロールユニットのタービン回転推定部にて実行されるタービン回転推定値計算処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a turbine rotation estimated value calculation process performed by the turbine rotation estimation part of a CVT control unit. ドラム回転センサとプライマリ回転センサの異常判定を禁止するシーンを示す前後進切替機構の共線図である。FIG. 7 is a collinear diagram of the forward/reverse switching mechanism showing a scene in which the abnormality determination of the drum rotation sensor and the primary rotation sensor is prohibited. 比較例の前後進切替機構における遊星歯車・前進クラッチ・後退ブレーキ・タービン回転センサ・プライマリ回転センサを示す図である。It is a figure showing a planetary gear, a forward clutch, a reverse brake, a turbine rotation sensor, and a primary rotation sensor in a forward/reverse switching mechanism of a comparative example. ドラム回転センサの検出値とプライマリ回転センサの検出値が共に使える場合のタービン回転推定値の計算処理を示す前後進切替機構の共線図である。FIG. 7 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when both the detection value of the drum rotation sensor and the detection value of the primary rotation sensor can be used. 前進クラッチ(FWD/C)の締結走行中にドラム回転センサの検出値又はプライマリ回転センサの検出値が不明である場合のタービン回転推定値の計算処理を示す前後進切替機構の共線図である。FIG. 7 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown during engagement traveling of the forward clutch (FWD/C). .. 後退ブレーキ(REV/B)の締結走行中にドラム回転センサの検出値又はプライマリ回転センサの検出値が不明である場合のタービン回転推定値の計算処理を示す前後進切替機構の共線図である。FIG. 6 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown during engagement travel of the reverse brake (REV/B). .. 前進クラッチ(FWD/C)及び後退ブレーキ(REV/B)の解放走行中にドラム回転センサの検出値又はプライマリ回転センサの検出値が不明である場合のタービン回転推定値の計算処理を示す前後進切替機構の共線図である。Forward clutch (FWD/C) and reverse brake (REV/B) are disengaged. During forward/backward, the turbine rotation estimated value calculation process is performed when the drum rotation sensor detection value or primary rotation sensor detection value is unknown. It is an alignment chart of a switching mechanism. 前進クラッチ(FWD/C)の締結停車中にドラム回転センサの検出値又はプライマリ回転センサの検出値が不明である場合のタービン回転推定値の計算処理を示す前後進切替機構の共線図である。FIG. 6 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown while the forward clutch (FWD/C) is engaged and stopped. .. 後退ブレーキ(REV/B)の締結停車中にドラム回転センサの検出値又はプライマリ回転センサの検出値が不明である場合のタービン回転推定値の計算処理を示す前後進切替機構の共線図である。FIG. 6 is a collinear diagram of a forward/reverse switching mechanism showing a calculation process of a turbine rotation estimated value when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown while the reverse brake (REV/B) is engaged and stopped. .. 前進クラッチ(FWD/C)及び後退ブレーキ(REV/B)の解放停車中にドラム回転センサの検出値又はプライマリ回転センサの検出値が不明である場合のタービン回転推定値の計算処理を示す前後進切替機構の共線図である。Forward clutch (FWD/C) and reverse brake (REV/B) are disengaged. While the vehicle is stopped, the turbine rotation estimated value calculation process when the drum rotation sensor detection value or the primary rotation sensor detection value is unknown is indicated. It is an alignment chart of a switching mechanism.
 以下、本発明の無段変速機の制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。 Hereinafter, a mode for carrying out a control device for a continuously variable transmission according to the present invention will be described based on an embodiment shown in the drawings.
 実施例における制御装置は、トルクコンバータと前後進切替機構とバリエータと終減速機構により構成されるベルト式無段変速機を搭載した小型エンジン車に適用したものである。以下、実施例の構成を、「全体システム構成」、「制御装置の構成」、「タービン回転推定値計算処理構成」に分けて説明する。 The control device in the embodiment is applied to a small engine vehicle equipped with a belt type continuously variable transmission including a torque converter, a forward/reverse switching mechanism, a variator, and a final reduction mechanism. Hereinafter, the configuration of the embodiment will be described by being divided into an "overall system configuration", a "control device configuration", and a "turbine rotation estimated value calculation processing configuration".
 [全体システム構成]
 図1は、実施例の無段変速機の制御装置が適用されたエンジン車の駆動系と制御系を示す。以下、図1に基づいて、全体システム構成を説明する。
[Overall system configuration]
FIG. 1 shows a drive system and a control system of an engine vehicle to which a control device for a continuously variable transmission according to an embodiment is applied. The overall system configuration will be described below with reference to FIG.
 エンジン車の駆動系は、図1に示すように、エンジン1と、トルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6,6と、を備えている。ここで、ベルト式無段変速機CVTは、トルクコンバータ2と前後進切替機構3とバリエータ4と終減速機構5を図外の変速機ケースに内蔵することにより構成される。 As shown in FIG. 1, a drive system of an engine vehicle includes an engine 1, a torque converter 2, a forward/reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, and drive wheels 6 and 6. There is. Here, the belt type continuously variable transmission CVT is configured by incorporating a torque converter 2, a forward/reverse switching mechanism 3, a variator 4, and a final reduction mechanism 5 in a transmission case (not shown).
 エンジン1は、ドライバーによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号により出力トルクを制御可能である。このエンジン1には、スロットルバルブ開閉動作や燃料カット動作等によりトルク制御を行う出力トルク制御アクチュエータ10を有する。例えば、アクセル足離し操作によるコースト走行時、燃料カット制御が実行される。 The engine 1 can control the output torque by an engine control signal from the outside, in addition to the control of the output torque by the accelerator operation by the driver. The engine 1 has an output torque control actuator 10 that controls torque by opening/closing a throttle valve, cutting fuel, or the like. For example, the fuel cut control is executed during coast running by the accelerator foot release operation.
 トルクコンバータ2は、トルク増幅機能やトルク変動吸収機能を有する流体継手による発進要素である。トルク増幅機能やトルク変動吸収機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とタービン回転軸21(=トルクコンバータ出力軸)21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、ポンプインペラ23と、タービンランナ24と、ステータ26と、を構成要素とする。ポンプインペラ23は、エンジン出力軸11にコンバータハウジング22を介して連結される。タービンランナ24は、タービン回転軸21に連結される。ステータ26は、変速機ケースにワンウェイクラッチ25を介して設けられる。 The torque converter 2 is a starting element with a fluid coupling having a torque amplification function and a torque fluctuation absorption function. When the torque amplification function and the torque fluctuation absorption function are not required, the engine output shaft 11 (=torque converter input shaft) and the turbine rotation shaft 21 (=torque converter output shaft) 21 have a lockup clutch 20 that can be directly connected. The torque converter 2 includes a pump impeller 23, a turbine runner 24, and a stator 26 as constituent elements. The pump impeller 23 is connected to the engine output shaft 11 via the converter housing 22. The turbine runner 24 is connected to the turbine rotating shaft 21. The stator 26 is provided in the transmission case via the one-way clutch 25.
 前後進切替機構3は、バリエータ4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数枚のクラッチプレートによる前進クラッチ31と、複数枚のブレーキプレートによる後退ブレーキ32と、を有する。前進クラッチ31は、Dレンジ等の前進走行レンジ選択時に前進クラッチ圧Pfcにより油圧締結される。後退ブレーキ32は、Rレンジ等の後退走行レンジ選択時に後退ブレーキ圧Prbにより油圧締結される。なお、前進クラッチ31と後退ブレーキ32は、Nレンジ(ニュートラルレンジ)の選択時には、前進クラッチ圧Pfcと後退ブレーキ圧Prbをドレーンすることでいずれも解放される。 The forward/reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between the forward rotation direction when traveling forward and the reverse rotation direction when traveling backward. The forward/reverse switching mechanism 3 includes a double pinion type planetary gear 30, a forward clutch 31 including a plurality of clutch plates, and a reverse brake 32 including a plurality of brake plates. The forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when the forward traveling range such as the D range is selected. The reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse traveling range such as the R range is selected. The forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range) is selected.
 バリエータ4は、プライマリプーリ42と、セカンダリプーリ43と、ベルト44と、を有し、ベルト接触径の変化により変速比(バリエータ入力回転とバリエータ出力回転の比)を無段階に変化させる無段変速機構能を備える。プライマリプーリ42は、プライマリ回転軸40(=バリエータ入力軸)の同軸上に配された固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bはプライマリ圧室45に導かれるプライマリ圧Ppriによりスライド動作する。セカンダリプーリ43は、セカンダリ回転軸41(=バリエータ出力軸)の同軸上に配された固定プーリ43aとスライドプーリ43bにより構成され、スライドプーリ43bはセカンダリ圧室46に導かれるセカンダリ圧Psecによりスライド動作する。ベルト44は、プライマリプーリ42のV字形状をなすシーブ面と、セカンダリプーリ43のV字形状をなすシーブ面とに掛け渡されている。このベルト44は、環状リングを内から外へ多数重ね合わせた2組の積層リングと、打ち抜き板材により形成され、2組の積層リングに沿って挟み込みにより環状に積層して取り付けられた多数のエレメントと、により構成されている。なお、ベルト44としては、プーリ進行方向に多数配列したチェーンエレメントを、プーリ軸方向に貫通するピンにより結合したチェーンタイプのベルトであっても良い。 The variator 4 includes a primary pulley 42, a secondary pulley 43, and a belt 44, and a continuously variable transmission that continuously changes a gear ratio (ratio between variator input rotation and variator output rotation) by a change in belt contact diameter. Equipped with mechanical capabilities. The primary pulley 42 is composed of a fixed pulley 42a and a slide pulley 42b that are arranged coaxially with the primary rotation shaft 40 (=variator input shaft), and the slide pulley 42b slides by the primary pressure Ppri guided to the primary pressure chamber 45. To do. The secondary pulley 43 is composed of a fixed pulley 43a and a slide pulley 43b arranged coaxially with the secondary rotary shaft 41 (=variator output shaft), and the slide pulley 43b slides by the secondary pressure Psec guided to the secondary pressure chamber 46. To do. The belt 44 is stretched around the V-shaped sheave surface of the primary pulley 42 and the V-shaped sheave surface of the secondary pulley 43. This belt 44 is formed by two sets of laminated rings in which a plurality of annular rings are superposed from the inside to the outside and a punched plate material, and is attached by being laminated along the two sets of laminated rings in an annular shape by sandwiching them. And, The belt 44 may be a chain type belt in which a large number of chain elements arranged in the pulley traveling direction are connected by a pin penetrating in the pulley axial direction.
 終減速機構5は、セカンダリ回転軸41からのセカンダリ出力回転を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、減速ギア機構として、セカンダリ回転軸41に設けられたアウトプットギア52と、アイドラ軸50に設けられたアイドラギア53及びリダクションギア54と、デフケースの外周位置に設けられたファイナルギア55と、を有する。そして、差動ギア機構として、左右のドライブ軸51,51に介装されたディファレンシャルギア56を有する。 The final deceleration mechanism 5 is a mechanism that decelerates the secondary output rotation from the secondary rotation shaft 41 and imparts a differential function to the left and right drive wheels 6 and 6. The final reduction gear mechanism 5 is, as a reduction gear mechanism, an output gear 52 provided on the secondary rotary shaft 41, an idler gear 53 and a reduction gear 54 provided on the idler shaft 50, and a final gear provided on an outer peripheral position of the differential case. And a gear 55. The differential gear mechanism has a differential gear 56 interposed between the left and right drive shafts 51, 51.
 エンジン車の制御系は、図1に示すように、油圧制御ユニット7と、CVTコントロールユニット8(略称「CVTCU」)と、エンジンコントロールユニット9(略称「ECU」)と、を備えている。電子制御系であるCVTコントロールユニット8とエンジンコントロールユニット9は、互いの情報を交換可能なCAN通信線13により接続されている。 As shown in FIG. 1, the control system of the engine vehicle includes a hydraulic control unit 7, a CVT control unit 8 (abbreviation “CVTCU”), and an engine control unit 9 (abbreviation “ECU”). The CVT control unit 8 and the engine control unit 9, which are electronic control systems, are connected by a CAN communication line 13 capable of exchanging information with each other.
 油圧制御ユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppri、セカンダリ圧室46に導かれるセカンダリ圧Psec、前進クラッチ31への前進クラッチ圧Pfc、後退ブレーキ32への後退ブレーキ圧Prb、等を調圧するユニットである。この油圧制御ユニット7は、エンジン1により回転駆動されるオイルポンプ70と、オイルポンプ70からの吐出圧に基づいて各種の制御圧を調圧する油圧制御回路71と、を備える。なお、オイルポンプとしては、オイルポンプ70と電動オイルポンプとを併用しても良い。油圧制御回路71には、ライン圧ソレノイド弁72と、プライマリ圧ソレノイド弁73と、セカンダリ圧ソレノイド弁74と、セレクトソレノイド弁75と、ロックアップ圧ソレノイド弁76と、を有する。なお、各ソレノイド弁72,73,74,75,76は、CVTコントロールユニット8から出力される制御指令値(指示電流)によって調圧動作を行う。 The hydraulic control unit 7 controls the primary pressure Ppri guided to the primary pressure chamber 45, the secondary pressure Psec guided to the secondary pressure chamber 46, the forward clutch pressure Pfc to the forward clutch 31, the reverse brake pressure Prb to the reverse brake 32, and the like. It is a unit that regulates pressure. The hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1, and a hydraulic control circuit 71 that regulates various control pressures based on the discharge pressure from the oil pump 70. As the oil pump, the oil pump 70 and the electric oil pump may be used together. The hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a select solenoid valve 75, and a lockup pressure solenoid valve 76. The solenoid valves 72, 73, 74, 75, 76 perform pressure adjustment operation according to a control command value (instruction current) output from the CVT control unit 8.
 ライン圧ソレノイド弁72は、CVTコントロールユニット8から出力されるライン圧指令値に応じ、オイルポンプ70からの吐出圧を、指令されたライン圧PLに調圧する。このライン圧PLは、各種の制御圧を調圧する際の元圧であり、駆動系を伝達するトルクに対してベルト滑りやクラッチ滑りを抑える油圧とされる。 The line pressure solenoid valve 72 regulates the discharge pressure from the oil pump 70 to the instructed line pressure PL according to the line pressure command value output from the CVT control unit 8. The line pressure PL is an original pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip with respect to the torque transmitted through the drive system.
 プライマリ圧ソレノイド弁73は、CVTコントロールユニット8から出力されるプライマリ圧指令値に応じ、ライン圧PLを元圧として指令されたプライマリ圧Ppriに減圧調整する。セカンダリ圧ソレノイド弁74は、CVTコントロールユニット8から出力されるセカンダリ圧指令値に応じ、ライン圧PLを元圧として指令されたセカンダリ圧Psecに減圧調整する。 The primary pressure solenoid valve 73 adjusts the primary pressure command value output from the CVT control unit 8 to the commanded primary pressure Ppri using the line pressure PL as the source pressure. The secondary pressure solenoid valve 74 reduces and adjusts the secondary pressure command value output from the CVT control unit 8 to the commanded secondary pressure Psec using the line pressure PL as the source pressure.
 セレクトソレノイド弁75は、CVTコントロールユニット8から出力される前進クラッチ圧指令値又は後退ブレーキ圧指令値に応じ、ライン圧PLを元圧として指令された前進クラッチ圧Pfc又は後退ブレーキ圧Prbに減圧調整する。 The select solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc or the backward brake pressure Prb commanded with the line pressure PL as the original pressure in accordance with the forward clutch pressure command value or the backward brake pressure command value output from the CVT control unit 8. To do.
 ロックアップ圧ソレノイド弁76は、CVTコントロールユニット8から出力される指示電流Aluに応じ、ロックアップクラッチ20を締結/スリップ締結/解放するLU指示圧Pluに調圧する。 The lockup pressure solenoid valve 76 regulates the LU command pressure Plu that engages/disengages/releases the lockup clutch 20 according to the command current Alu output from the CVT control unit 8.
 CVTコントロールユニット8は、ライン圧制御や変速制御や前後進切替制御やロックアップ制御、等を行う。ライン圧制御では、アクセル開度等に応じた目標ライン圧を得る指令値をライン圧ソレノイド弁72に出力する。変速制御では、目標変速比(目標プライマリ回転NPRI*)を決めると、決めた目標変速比(目標プライマリ回転NPRI*)を得る指令値をプライマリ圧ソレノイド弁73及びセカンダリ圧ソレノイド弁74に出力する。前後進切替制御では、選択されているレンジ位置に応じて前進クラッチ31と後退ブレーキ32の締結/解放を制御する指令値をセレクトソレノイド弁75に出力する。ロックアップ制御では、ロックアップクラッチ20を締結/スリップ締結/解放するLU指示圧Pluを制御する指示電流Aluをロックアップ圧ソレノイド弁76に出力する。 The CVT control unit 8 performs line pressure control, shift control, forward/reverse switching control, lockup control, etc. In the line pressure control, a command value for obtaining a target line pressure according to the accelerator opening etc. is output to the line pressure solenoid valve 72. In the shift control, when the target gear ratio (target primary rotation NPRI*) is determined, a command value for obtaining the determined target gear ratio (target primary rotation NPRI*) is output to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74. In the forward/reverse switching control, a command value for controlling engagement/disengagement of the forward clutch 31 and the reverse brake 32 is output to the select solenoid valve 75 according to the selected range position. In the lockup control, a command current Alu for controlling the LU command pressure Plu for engaging/slip-engaging/releasing the lockup clutch 20 is output to the lockup pressure solenoid valve 76.
 CVTコントロールユニット8には、プライマリ回転センサ90、車速センサ91、セカンダリ圧センサ92、油温センサ93、インヒビタスイッチ94、ブレーキスイッチ95、ドラム回転センサ96からのセンサ情報やスイッチ情報が入力される。さらに、セカンダリ回転センサ97、プライマリ圧センサ98、車輪速センサ99等からのセンサ情報が入力される。 The sensor information and switch information from the primary rotation sensor 90, the vehicle speed sensor 91, the secondary pressure sensor 92, the oil temperature sensor 93, the inhibitor switch 94, the brake switch 95, and the drum rotation sensor 96 are input to the CVT control unit 8. Further, sensor information from the secondary rotation sensor 97, the primary pressure sensor 98, the wheel speed sensor 99, etc. is input.
 エンジンコントロールユニット9には、エンジン回転センサ12、アクセル開度センサ14、等からのセンサ情報が入力される。CVTコントロールユニット8は、エンジン回転情報やアクセル開度情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジン回転数NENGやアクセル開度APOの情報を受け取る。また、エンジントルク情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、推定エンジントルクTeの情報を受け取る。CVTコントロールユニット8からエンジンコントロールユニット9へエンジントルク制限要求を出力すると、エンジンコントロールユニット9は、吸気量制御や点火時期リタード制御により要求に応じてエンジン1の上限トルクを制限する。 The sensor information from the engine rotation sensor 12, the accelerator opening sensor 14, etc. is input to the engine control unit 9. When the CVT control unit 8 requests the engine rotation information and the accelerator opening information to the engine control unit 9, the CVT control unit 8 receives the information on the engine speed NENG and the accelerator opening APO via the CAN communication line 13. Further, when the engine torque information is requested to the engine control unit 9, the estimated engine torque Te information is received via the CAN communication line 13. When the engine torque limit request is output from the CVT control unit 8 to the engine control unit 9, the engine control unit 9 limits the upper limit torque of the engine 1 according to the request by the intake air amount control or the ignition timing retard control.
 図2は、Dレンジ選択時に自動変速モードでの無段変速制御をバリエータ4により実行する際に用いられるDレンジ無段変速スケジュールの一例を示す。 FIG. 2 shows an example of a D range continuously variable shift schedule used when the variator 4 executes the continuously variable shift control in the automatic shift mode when the D range is selected.
 「Dレンジ変速モード」は、車両運転状態に応じて変速比を自動的に無段階に変更する自動変速モードである。「Dレンジ変速モード」での変速制御は、車速VSP(車速センサ91)とアクセル開度APO(アクセル開度センサ14)により特定される図2のDレンジ無段変速スケジュール上での運転点(VSP,APO)により、目標プライマリ回転数NPRI*を決める。そして、プライマリ回転センサ90からの実プライマリ回転数NPRIを、目標プライマリ回転数NPRI*に一致させるプーリ油圧のフィードバック制御により行われる。なお、変速比は、Dレンジ無段変速スケジュールの最Low変速比線や最High変速比線から明らかなように、ゼロ運転点から引かれる変速比線の傾きであらわされる。よって、運転点(VSP,APO)により目標プライマリ回転数NPRI*を決めることは、バリエータ4の目標変速比を決めることになる。 "D-range shift mode" is an automatic shift mode in which the gear ratio is automatically and steplessly changed according to the vehicle operating condition. The shift control in the "D range shift mode" is performed at the operating point (on the D range continuously variable shift schedule of Fig. 2 specified by the vehicle speed VSP (vehicle speed sensor 91) and the accelerator opening APO (accelerator opening sensor 14). VSP, APO) determines the target primary speed NPRI*. Then, the actual primary rotation speed NPRI from the primary rotation sensor 90 is controlled by feedback control of the pulley hydraulic pressure to match the target primary rotation speed NPRI*. The speed ratio is represented by the slope of the speed ratio line drawn from the zero operating point, as is clear from the lowest speed ratio line and the highest speed ratio line of the D range continuously variable speed change schedule. Therefore, determining the target primary speed NPRI* according to the operating point (VSP, APO) determines the target gear ratio of the variator 4.
 即ち、「Dレンジ変速モード」で用いられるDレンジ無段変速スケジュールは、図2に示すように、運転点(VSP,APO)に応じて最Low変速比と最High変速比による変速比幅の範囲内で変速比を無段階に変更するように設定されている。例えば、車速VSPが一定のときは、アクセル踏み込み操作を行うと目標プライマリ回転数NPRI*が上昇してダウンシフト方向に変速し、アクセル戻し操作を行うと目標プライマリ回転数NPRI*が低下してアップシフト方向に変速する。アクセル開度APOが一定のときは、車速VSPが上昇するとアップシフト方向に変速し、車速VSPが低下するとダウンシフト方向に変速する。 That is, the D-range continuously variable shift schedule used in the "D-range shift mode" is, as shown in FIG. It is set to continuously change the gear ratio within the range. For example, when the vehicle speed VSP is constant, when the accelerator is depressed, the target primary speed NPRI* increases and shifts in the downshift direction, and when the accelerator is released, the target primary speed NPRI* decreases and increases. Shift in the shift direction. When the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and shifts in the downshift direction when the vehicle speed VSP decreases.
 [制御装置の構成]
 図3は、CVTコントロールユニット8においてタービン回転数情報を用いる制御が実行される実施例の制御装置を示す。以下、図3に基づいて制御装置の概要構成を説明する。
[Configuration of control device]
FIG. 3 shows a control device of an embodiment in which control using the turbine speed information is executed in the CVT control unit 8. Hereinafter, the schematic configuration of the control device will be described with reference to FIG.
 実施例の制御装置が適用される駆動系は、図3に示すように、エンジン1(走行用駆動源)と、トルクコンバータ2と、前後進切替機構3と、バリエータ4(無段変速機構)と、終減速機構5と、駆動輪6と、を備えている。 As shown in FIG. 3, the drive system to which the control device of the embodiment is applied includes an engine 1 (driving drive source), a torque converter 2, a forward/reverse switching mechanism 3, and a variator 4 (continuously variable transmission mechanism). The final reduction mechanism 5 and the drive wheels 6 are provided.
 実施例の制御装置が適用される制御系は、図3に示すように、CVTコントロールユニット8(変速機コントローラ)と、エンジンコントロールユニット9と、プライマリ圧ソレノイド弁73と、セカンダリ圧ソレノイド弁74と、セレクトソレノイド弁75と、を備えている。CVTコントロールユニット8とエンジンコントロールユニット9は、CAN通信線13により接続される。CVTコントロールユニット8には、プライマリ回転センサ90、車速センサ91、ドラム回転センサ96、セカンダリ回転センサ97等からの情報が入力される。エンジンコントロールユニット9には、エンジン回転センサ12、アクセル開度センサ14、等からの情報が入力される。 As shown in FIG. 3, the control system to which the control device of the embodiment is applied includes a CVT control unit 8 (transmission controller), an engine control unit 9, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74. , And a select solenoid valve 75. The CVT control unit 8 and the engine control unit 9 are connected by a CAN communication line 13. Information from the primary rotation sensor 90, the vehicle speed sensor 91, the drum rotation sensor 96, the secondary rotation sensor 97, etc. is input to the CVT control unit 8. Information from the engine rotation sensor 12, the accelerator opening sensor 14, etc. is input to the engine control unit 9.
 CVTコントロールユニット8は、タービン回転数情報を用いる制御として、例えば、ロックアップ制御、セレクト制御、アイドルストップ制御/コーストストップ制御、自己診断機能、等の多くの基本制御/機能で、タービン回転数情報を参照している。 The CVT control unit 8 has many basic controls/functions such as lockup control, select control, idle stop control/coast stop control, and self-diagnosis function as controls using turbine speed information. Refer to.
 前後進切替機構3は、トルクコンバータ2とバリエータ4との間に介装配置され、ダブルピニオン式遊星歯車30(遊星歯車)と前進クラッチ31と後退ブレーキ32とを有する。そして、ダブルピニオン式遊星歯車30は、共線図において直線特性線により回転数関係が規定される3つの回転メンバとして、サンギアSとキャリヤCとリングギアRとを有する。この前後進切替機構3は、タービン回転軸21と、ドラム回転センサ96と、プライマリ回転センサ90と、を備える。 The forward/reverse switching mechanism 3 is interposed between the torque converter 2 and the variator 4, and has a double pinion type planetary gear 30 (planetary gear), a forward clutch 31, and a reverse brake 32. The double pinion type planetary gear 30 has a sun gear S, a carrier C, and a ring gear R as three rotating members whose rotational speed relationships are defined by linear characteristic lines in the collinear chart. The forward/reverse switching mechanism 3 includes a turbine rotation shaft 21, a drum rotation sensor 96, and a primary rotation sensor 90.
 タービン回転軸21は、トルクコンバータ2のタービンランナ24とダブルピニオン式遊星歯車30のサンギアSとを連結する。ここで、タービン回転軸21の回転数がタービン回転数NTBNである。なお、エンジン1とトルクコンバータ2のポンプインペラ23を連結するエンジン出力軸11の回転数がエンジン回転数NENGである。 The turbine rotary shaft 21 connects the turbine runner 24 of the torque converter 2 and the sun gear S of the double pinion type planetary gear 30. Here, the rotation speed of the turbine rotation shaft 21 is the turbine rotation speed NTBN. The rotation speed of the engine output shaft 11 that connects the engine 1 and the pump impeller 23 of the torque converter 2 is the engine rotation speed NENG.
 ドラム回転センサ96は、ダブルピニオン式遊星歯車30のキャリヤCとリングギアRとを前進クラッチ31を介して連結するドラムメンバ33の回転を検出する。ドラム回転センサ96は、タービン回転軸21の回転を検出する“タービン回転センサ”がレイアウト上で配置できない代わりに、ドラムメンバ33(=リングギアR)の回転を検出する。なお、ドラムメンバ33(=リングギアR)の回転数がドラム回転数NDRUMである。後退ブレーキ32は、ダブルピニオン式遊星歯車30のリングギアRと変速機ケースの間に配置される。 The drum rotation sensor 96 detects the rotation of the drum member 33 that connects the carrier C of the double pinion type planetary gear 30 and the ring gear R via the forward clutch 31. The drum rotation sensor 96 detects the rotation of the drum member 33 (=ring gear R) in place of the fact that the “turbine rotation sensor” that detects the rotation of the turbine rotation shaft 21 cannot be arranged in the layout. The rotation speed of the drum member 33 (=ring gear R) is the drum rotation speed NDRUM. The reverse brake 32 is disposed between the ring gear R of the double pinion type planetary gear 30 and the transmission case.
 プライマリ回転センサ90は、ダブルピニオン式遊星歯車30のキャリヤCとプライマリプーリ42とを連結するプライマリ回転軸40の回転を検出する。ここで、プライマリ回転軸40の回転数がプライマリ回転数NPRIである。なお、セカンダリプーリ43に連結されるセカンダリ回転軸41の回転数がセカンダリ回転数NSECである。 The primary rotation sensor 90 detects the rotation of the primary rotation shaft 40 that connects the carrier C of the double pinion type planetary gear 30 and the primary pulley 42. Here, the rotation speed of the primary rotation shaft 40 is the primary rotation speed NPRI. The rotation speed of the secondary rotation shaft 41 connected to the secondary pulley 43 is the secondary rotation speed NSEC.
 CVTコントロールユニット8には、ドラム回転センサ96とプライマリ回転センサ90の検出値に基づいてタービン回転軸21のタービン回転推定値NTBN’を計算するタービン回転推定部80(タービン回転推定手段)を有する。つまり、“タービン回転センサ”を設けていないため、タービン回転数情報は、タービン回転センサからの検出値に代え、ドラム回転センサ96とプライマリ回転センサ90の検出値に基づいて推定計算されるタービン回転推定値NTBN’を用いている。 The CVT control unit 8 has a turbine rotation estimation unit 80 (turbine rotation estimation means) that calculates a turbine rotation estimated value NTBN′ of the turbine rotation shaft 21 based on the detection values of the drum rotation sensor 96 and the primary rotation sensor 90. In other words, since the “turbine rotation sensor” is not provided, the turbine rotation speed information is calculated based on the detected values of the drum rotation sensor 96 and the primary rotation sensor 90 instead of the detected value of the turbine rotation sensor. Estimated value NTBN' is used.
 タービン回転推定部80は、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明な場合、不明な一方の回転推定値と、他方のセンサ検出値とによってタービン回転推定値NTBN’を計算する。このとき、回転推定値は、走行/停車状態、前進クラッチ31と後退ブレーキ32の締結/解放状態、バリエータ4の変速比のうち、少なくとも二つを用いて推定する。 When the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown, the turbine rotation estimation unit 80 determines the turbine rotation estimation value NTBN′ by the unknown one rotation estimation value and the other sensor detection value. calculate. At this time, the rotation estimated value is estimated using at least two of the running/stopped state, the engaged/released state of the forward clutch 31 and the reverse brake 32, and the gear ratio of the variator 4.
 タービン回転推定値NTBN’の計算をする際、走行中においては、前進クラッチ31の締結シーンと、後退ブレーキ32の締結シーンと、前進クラッチ31及び後退ブレーキ32の解放シーンと、に分ける。そして、停車中においても、前進クラッチ31の締結シーンと、後退ブレーキ32の締結シーンと、前進クラッチ31及び後退ブレーキ32の解放シーンと、に分ける。 When calculating the estimated turbine rotation value NTBN', the traveling scene is divided into a forward clutch 31 engagement scene, a reverse brake 32 engagement scene, and a forward clutch 31 and reverse brake 32 release scene while traveling. Then, even when the vehicle is stopped, it is divided into the engagement scene of the forward clutch 31, the engagement scene of the reverse brake 32, and the release scene of the forward clutch 31 and the reverse brake 32.
 つまり、タービン回転推定値NTBN’は、6つのシーンのそれぞれに分け、その上で、各シーンについて、ドラム回転センサ96の検出値が不明な場合と、プライマリ回転センサ90の検出値が不明な場合とに分けて計算される。なお、前進クラッチ31と後退ブレーキ32の締結→解放の過渡シーン、又は、解放→締結の過渡シーンについては、レンジ位置に応じて3つのシーンでのタービン回転数情報を切り替えることで対応する。さらに、前進クラッチ31及び後退ブレーキ32の解放シーンであって共線図にて回転拘束条件が決まらないときには、タービン回転推定値NTBN’を計算することなく、例えば、タービン回転推定値NTBN’=エンジン回転数NENGというように、タービン回転推定値NTBN’をみなし推定する。 That is, the turbine rotation estimated value NTBN′ is divided into each of six scenes, and in each scene, the detection value of the drum rotation sensor 96 is unknown and the detection value of the primary rotation sensor 90 is unknown. Calculated separately for and. Incidentally, the transitional scene of the engagement→release of the forward clutch 31 and the reverse brake 32 or the transitional scene of the release→engagement is dealt with by switching the turbine speed information in three scenes according to the range position. Further, when the forward clutch 31 and the reverse brake 32 are released and the rotation constraint condition is not determined on the collinear chart, the turbine rotation estimated value NTBN' is calculated without calculating the turbine rotation estimated value NTBN'. The turbine rotation estimated value NTBN' is considered and estimated like the rotation speed NENG.
 [タービン回転推定値計算処理構成]
 図4は、実施例のCVTコントロールユニット8のタービン回転推定部80にて実行されるタービン回転推定値計算処理の流れを示す。以下、図4の各ステップについて説明する。
[Turbine rotation estimated value calculation processing configuration]
FIG. 4 shows a flow of turbine rotation estimated value calculation processing executed by the turbine rotation estimation unit 80 of the CVT control unit 8 of the embodiment. Hereinafter, each step of FIG. 4 will be described.
 S1では、スタート、又は、S1でのNO判断、又は、S2でのNO判断に続き、前提条件成立か否かを判断する。YES(前提条件成立)の場合はS2へ進み、NO(前提条件不成立)の場合はS1の判断を繰り返す。 In S1, following the start or NO judgment in S1 or NO judgment in S2, it is judged whether or not the precondition is satisfied. If YES (precondition is satisfied), the process proceeds to S2, and if NO (precondition is not satisfied), the determination of S1 is repeated.
 ここで、「前提条件」とは、エンジン回転数NENGの検出条件とソフトスイッチの入力条件である。なお、自己診断機能OBD(On-Board Diagnostics)の正常判定の前提条件も同じである。 Here, the "preconditions" are the detection conditions of the engine speed NENG and the input conditions of the soft switch. The preconditions for the normal judgment of the self-diagnosis function OBD (On-Board Diagnostics) are the same.
 S2では、S1でのYES判断に続き、センサ異常判定禁止シーン以外であるか否かを判断する。YES(センサ異常判定禁止シーン以外)の場合はS3へ進み、NO(センサ異常判定禁止シーン)の場合はS1へ戻る。 In S2, following the YES judgment in S1, it is judged whether the scene is other than the sensor abnormality judgment prohibited scene. If YES (other than the sensor abnormality determination prohibited scene), the process proceeds to S3. If NO (sensor abnormality determination prohibited scene), the process returns to S1.
 ここで、「センサ異常判定禁止シーン」とは、正常時でもドラム回転センサ96によりドラム回転数NDRUMを検出しないシーン、又は、ドラム回転数NDRUMが低回転、かつ、プライマリ回転数NPRIが低回転のシーンをいう。 Here, the "sensor abnormality determination prohibited scene" means a scene in which the drum rotation sensor 96 does not detect the drum rotation speed NDRUM even in a normal state, or the drum rotation speed NDRUM is low rotation and the primary rotation speed NPRI is low rotation. Say the scene.
 「センサ異常判定禁止シーン」の具体的シーンは、下記の(1)~(7)のシーンであり、図5に示す(1)~(7)に対応する。なお、前進クラッチ31を「FWD/C」、後退ブレーキ32を「REV/B」という。
(1) FWD/C締結またはREV/B締結で停車、アイドルストップ中(但し、プライマリ回転も検出しないので検知領域外)。
(2) REV/B締結で前進中。
(3) REV/B締結で後進中、REV/B非締結で後進中。
(4) REV/B非締結で後進中。
(5) REV/B非締結で後進中。
(6) REV/B非締結で前進中(最悪条件のエンジンストールでタービン回転数が0rpmの時、遊星では検知領域外になる)。
(7) REV/B非締結でタービン回転数が逆回転(エンジン1は逆回転しない)。
The specific scenes of the "sensor abnormality determination prohibited scene" are the following scenes (1) to (7) and correspond to (1) to (7) shown in FIG. The forward clutch 31 is called "FWD/C" and the reverse brake 32 is called "REV/B".
(1) Stopped by FWD/C engagement or REV/B engagement, idling stop (however, because primary rotation is not detected, it is outside the detection area).
(2) Moving forward with the conclusion of REV/B.
(3) The vehicle is moving backward with REV/B concluded, and the vehicle is not traveling REV/B.
(4) Being backwards without REV/B.
(5) Being in reverse with no REV/B concluded.
(6) Moving forward without REV/B (when the engine stall under the worst conditions and the turbine speed is 0 rpm, the planet is outside the detection range).
(7) Turbine speed reverses when REV/B is not engaged (engine 1 does not reverse).
 S3では、S2でのYES判断に続き、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明であるか否かを判断する。YES(一方の検出値が不明)の場合はS5へ進み、NO(両検出値が明らかである)の場合はS4へ進む。 In S3, following the YES judgment in S2, it is judged whether the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown. If YES (one detection value is unknown), the process proceeds to S5, and if NO (both detection values are clear), the process proceeds to S4.
 ここで、センサ検出値が不明かどうかの判断は、ドラム回転センサ96とプライマリ回転センサ90のそれぞれについて断線異常の判定を行い、回転しているにもかかわらず回転数ゼロを出力し続ける断線異常が判定されると、センサ検出値が不明と扱う。 Here, whether the sensor detection value is unknown or not is determined by determining the disconnection abnormality of each of the drum rotation sensor 96 and the primary rotation sensor 90, and continuously outputting the rotation speed of zero despite the rotation abnormality. If it is determined that the sensor detection value is unknown.
 S4では、S3でのNO判断に続き、ドラム回転センサ96からのドラム回転数NDRUMと、プライマリ回転センサ90からのプライマリ回転数NPRIと、共線図の回転数関係によりタービン回転推定値NTBN’を計算し、リターンへ進む。 In S4, following the NO determination in S3, the turbine rotation speed estimated value NTBN' is calculated from the drum rotation speed NDRUM from the drum rotation sensor 96, the primary rotation speed NPRI from the primary rotation sensor 90, and the rotation speed relationship in the alignment chart. Calculate and proceed to return.
 ここで、ダブルピニオン式遊星歯車30の場合、サンギアSとキャリヤCとリングギアRのうち2つの回転メンバの回転数が分かると、残りの1つの回転メンバの回転数は決まる。よって、ドラム回転数NDRUM(=リングギアRの回転数)とプライマリ回転数NPRI(=キャリヤCの回転数)がセンサ値により明らかであると、タービン回転推定値NTBN’(=サンギアSの回転数)は、両回転数NDRUM,NPRIと歯数比αにより計算される。 Here, in the case of the double pinion type planetary gear 30, if the rotation speeds of two rotation members of the sun gear S, the carrier C and the ring gear R are known, the rotation speed of the remaining one rotation member is determined. Therefore, if the drum rotation speed NDRUM (=ring gear R rotation speed) and the primary rotation speed NPRI (=carrier C rotation speed) are clear from the sensor values, the turbine rotation estimated value NTBN' (=sun gear S rotation speed) is obtained. ) Is calculated by both rotational speeds NDRUM, NPRI and the tooth ratio α.
 S5では、S3でのYES判断に続き、走行中であるか否かを判断する。YES(走行中)の場合はS6へ進み、NO(停車中)の場合はS11へ進む。 In S5, following the YES judgment in S3, it is judged whether or not the vehicle is running. If YES (running), proceed to S6, and if NO (while stopped), proceed to S11.
 ここで、走行中であるか停車中であるかどうかは、セカンダリ回転センサ97からのセンサ検出値により判断される。具体的には、セカンダリ回転数NSECを車速VSPに換算したとき、車速VSPが停車判定閾値VSP1以上であると走行中と判断され、車速VSPが停車判定閾値VSP1未満であると停車中と判断される。 Here, whether the vehicle is running or stopped is determined by the sensor detection value from the secondary rotation sensor 97. Specifically, when the secondary rotation speed NSEC is converted into the vehicle speed VSP, it is determined that the vehicle speed VSP is running when it is equal to or higher than the vehicle stop determination threshold value VSP1, and it is determined that the vehicle speed VSP is less than the vehicle stop determination threshold value VSP1. It
 S6では、S5でのYES判断に続き、前進クラッチ31が締結状態であるか否かを判断する。YES(FWD/C締結走行中)の場合はS8へ進み、NO(FWD/C解放走行中)の場合はS7へ進む。ここで、前進クラッチ31の締結状態は、例えば、セレクトレンジ位置が前進走行レンジであるDレンジやLレンジやSレンジ等であることで判断する。 In S6, following the YES judgment in S5, it is judged whether or not the forward clutch 31 is in the engaged state. If YES (during FWD/C running), proceed to S8. If NO (during FWD/C release), proceed to S7. Here, the engaged state of the forward clutch 31 is determined by, for example, the select range position being the forward traveling range such as the D range, the L range, or the S range.
 S7では、S6でのNO判断に続き、後退ブレーキ32が締結状態であるか否かを判断する。YES(REV/B締結走行中)の場合はS9へ進み、NO(FWD/C及びREV/B解放走行中)の場合はS10へ進む。ここで、後退ブレーキ32の締結状態は、例えば、セレクトレンジ位置が後退走行レンジであるRレンジであることで判断する。 In S7, following the NO determination in S6, it is determined whether or not the reverse brake 32 is in the engaged state. If YES (during REV/B running), proceed to S9. If NO (during FWD/C and REV/B release traveling), proceed to S10. Here, the engagement state of the reverse brake 32 is determined by, for example, the select range position being the R range which is the reverse traveling range.
 S8では、S6でのYES判断に続き、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なとき、前進クラッチ31が締結状態であるため、ドラム回転数NDRUMをプライマリ回転数NPRIに置き換え、タービン回転推定値NTBN’を計算し、リターンへ進む。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なとき、前進クラッチ31が締結状態であるため、プライマリ回転数NPRIをドラム回転数NDRUMに置き換え、タービン回転推定値NTBN’を計算し、リターンへ進む。 In S8, following the YES determination in S6, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the forward clutch 31 is in the engaged state, so the drum rotation speed NDRUM is replaced with the primary rotation speed NPRI, Calculate the estimated rotation value NTBN' and proceed to return. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the forward rotation clutch 31 is in the engaged state, so the primary rotation speed NPRI is replaced with the drum rotation speed NDRUM, the turbine rotation speed estimated value NTBN' is calculated, and the process returns. move on.
 S9では、S7でのYES判断に続き、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なとき、後退ブレーキ32が締結状態であるため、ドラム回転数NDRUMをNDRUM=0に置き換え、タービン回転推定値NTBN’を計算し、リターンへ進む。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なとき、後退ブレーキ32が締結状態である場合、バリエータ4の変速比は、最ロー変速比であるため、プライマリ回転数NPRIを、バリエータ4の最ロー変速比とセカンダリ回転数NSECにより推定計算する。そして、タービン回転推定値NTBN’を、プライマリ回転推定値NPRI’とリバースギヤ比(Rギヤ比)により計算し、リターンへ進む。 In S9, following the YES determination in S7, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the reverse brake 32 is in the engaged state, so the drum rotation speed NDRUM is replaced with NDRUM=0, and the turbine rotation speed is changed. Calculate the estimated value NTBN' and proceed to return. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90 and the reverse brake 32 is in the engaged state, the gear ratio of the variator 4 is the lowest gear ratio. Estimate and calculate from the lowest gear ratio and the secondary speed NSEC. Then, the turbine rotation estimated value NTBN' is calculated from the primary rotation estimated value NPRI' and the reverse gear ratio (R gear ratio), and the process returns.
 S10では、S7でのNO判断に続き、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なとき、タービン回転推定値NTBN’をエンジン回転数NENGとみなす。そして、ドラム回転数NDRUMを共線図でタービン回転推定値NTBN’(=NENG)とプライマリ回転数NPRIから算出し、リターンへ進む。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なとき、タービン回転推定値NTBN’をエンジン回転数NENGとみなす。そして、プライマリ回転数NPRIを共線図でタービン回転推定値NTBN’(=NENG)とドラム回転数NDRUMから算出し、リターンへ進む。なお、共線図で算出したプライマリ回転数NPRIは、セカンダリ回転数NSECとバリエータ4の最ローギヤ比から算出したプライマリ回転数上限値と、セカンダリ回転数NSECとバリエータ4の最ハイギヤ比から算出したプライマリ回転数下限値により制限する。 In S10, following the NO determination in S7, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the turbine rotation estimated value NTBN' is regarded as the engine rotation speed NENG. Then, the drum rotation speed NDRUM is calculated from the turbine rotation estimated value NTBN' (=NENG) and the primary rotation speed NPRI on the collinear chart, and the process proceeds to the return. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the turbine rotation estimated value NTBN' is regarded as the engine rotation speed NENG. Then, the primary rotational speed NPRI is calculated from the turbine rotational speed estimated value NTBN' (=NENG) and the drum rotational speed NDRUM on the collinear chart, and the process returns. The primary speed NPRI calculated from the collinear diagram is the primary speed upper limit value calculated from the secondary speed NSEC and the lowest gear ratio of the variator 4, and the primary speed NPRI calculated from the secondary speed NSEC and the highest gear ratio of the variator 4. Limited by the lower limit of rotation speed.
 S11では、S5でのNO判断に続き、前進クラッチ31が締結状態であるか否かを判断する。YES(FWD/C締結停車中)の場合はS13へ進み、NO(FWD/C解放停車中)の場合はS12へ進む。ここで、前進クラッチ31の締結状態は、例えば、セレクトレンジ位置が前進走行レンジであるDレンジやLレンジやSレンジ等であることで判断する。 In S11, following the NO determination in S5, it is determined whether or not the forward clutch 31 is in the engaged state. If YES (while the FWD/C is stopped and stopped), proceed to S13, and if NO (when the FWD/C is released and stopped), proceed to S12. Here, the engaged state of the forward clutch 31 is determined by, for example, the select range position being the forward traveling range such as the D range, the L range, or the S range.
 S12では、S11でのNO判断に続き、後退ブレーキ32が締結状態であるか否かを判断する。YES(REV/B締結停車中)の場合はS14へ進み、NO(FWD/C及びREV/B解放停車中)の場合はS15へ進む。ここで、後退ブレーキ32の締結状態は、例えば、セレクトレンジ位置が後退走行レンジであるRレンジであることで判断する。 In S12, following the NO determination in S11, it is determined whether or not the reverse brake 32 is in the engaged state. If YES (when REV/B is stopped), proceed to S14, and if NO (when FWD/C and REV/B are released), proceed to S15. Here, the engagement state of the reverse brake 32 is determined by, for example, the select range position being the R range which is the reverse traveling range.
 S13では、S11でのYES判断に続き、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なとき、ドラム回転数NDRUMをプライマリ回転数NPRIに置き換え、タービン回転推定値NTBN’を計算し、リターンへ進む。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なとき、プライマリ回転数NPRIをNPRI=0(停車しているため)に置き換え、タービン回転推定値NTBN’を計算し、リターンへ進む。 In S13, following the YES determination in S11, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the drum rotation speed NDRUM is replaced with the primary rotation speed NPRI, the turbine rotation estimated value NTBN' is calculated, and the return is made. Go to. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the primary rotation speed NPRI is replaced with NPRI=0 (because the vehicle is stopped), the turbine rotation estimated value NTBN′ is calculated, and the process returns.
 S14では、S14でのYES判断に続き、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なとき、ドラム回転数NDRUMをNDRUM=0に置き換え、タービン回転推定値NTBN’を計算し、リターンへ進む。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なとき、プライマリ回転数NPRIをNPRI=0に置き換え、タービン回転推定値NTBN’を計算し、リターンへ進む。 In S14, following the YES determination in S14, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the drum rotation speed NDRUM is replaced with NDRUM=0, the turbine rotation estimated value NTBN' is calculated, and the process returns. move on. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the primary rotation speed NPRI is replaced with NPRI=0, the turbine rotation estimated value NTBN' is calculated, and the routine proceeds to return.
 S15では、S14でのNO判断に続き、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なとき、タービン回転推定値NTBN’をエンジン回転数NENGとみなす。そして、ドラム回転数NDRUMを共線図でタービン回転推定値NTBN’(=NENG)とプライマリ回転数NPRIから算出し、リターンへ進む。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なとき、タービン回転推定値NTBN’をエンジン回転数NENGとみなす。そして、プライマリ回転数NPRIをNPRI=0(停車しているため)とし、リターンへ進む。 In S15, following the NO determination in S14, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the turbine rotation estimated value NTBN' is regarded as the engine rotation speed NENG. Then, the drum rotation speed NDRUM is calculated from the turbine rotation estimated value NTBN' (=NENG) and the primary rotation speed NPRI on the collinear chart, and the process proceeds to the return. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the turbine rotation estimated value NTBN' is regarded as the engine rotation speed NENG. Then, the primary rotational speed NPRI is set to NPRI=0 (because the vehicle is stopped), and the process proceeds to return.
 次に、「背景技術と課題」、「課題の解決対策」を説明する。そして、実施例の作用を「正常シーンでのタービン回転推定値計算作用」、「センサ検出値が不明な走行シーンでのタービン回転推定値計算作用」、「センサ検出値が不明な停車シーンでのタービン回転推定値計算作用」に分けて説明する。 Next, I will explain "background technology and issues" and "solutions to issues". Then, the operation of the embodiment is "a turbine rotation estimated value calculation operation in a normal scene", "a turbine rotation estimated value calculation operation in a traveling scene in which the sensor detection value is unknown", and "a turbine rotation estimated value calculation operation in a traveling scene in which the sensor detection value is unknown". Turbine rotation estimated value calculation operation" will be described separately.
 [背景技術と課題]
 比較例の前後進切替機構は、図6に示すように、図外のトルクコンバータとバリエータとの間に介装配置され、ダブルピニオン式遊星歯車と前進クラッチと後退ブレーキとを備えている。そして、ダブルピニオン式遊星歯車は、サンギアSとキャリヤCとリングギアRとを有する。
[Background Technology and Issues]
As shown in FIG. 6, the forward/reverse switching mechanism of the comparative example is disposed between a torque converter and a variator (not shown), and includes a double pinion type planetary gear, a forward clutch, and a reverse brake. The double pinion type planetary gear has a sun gear S, a carrier C, and a ring gear R.
 前進クラッチは、ダブルピニオン式遊星歯車のサンギアSとキャリヤCとを連結するメンバの途中位置に設けられる。後退ブレーキは、リングギアRと変速機ケースの間に配置される。タービン回転センサ(Ntセンサ)は、トルクコンバータのタービンランナとサンギアSとを連結するタービン回転軸の回転数を検出する。プライマリ回転センサ(Npriセンサ)は、キャリヤCとバリエータのプライマリプーリとを連結するプライマリ回転軸の回転を検出する。 ▽The forward clutch is provided at an intermediate position of the member connecting the sun gear S of the double pinion type planetary gear and the carrier C. The reverse brake is arranged between the ring gear R and the transmission case. The turbine rotation sensor (Nt sensor) detects the rotation speed of the turbine rotation shaft that connects the turbine runner of the torque converter and the sun gear S. The primary rotation sensor (Npri sensor) detects the rotation of the primary rotation shaft that connects the carrier C and the primary pulley of the variator.
 即ち、図6に示す比較例の前後進切替機構の場合、前進クラッチの位置がサンギアSとキャリヤCとを連結するメンバの途中位置になっている。これに対し、図3に示す実施例の前後進切替機構3の場合、前進クラッチの位置がリングギアRとキャリヤCとを連結するドラムメンバ33の途中位置とし、コンパクトなレイアウトを狙ってトルクコンバータと前後進切替機構との設定間隔を狭くしている。 That is, in the case of the forward/reverse switching mechanism of the comparative example shown in FIG. 6, the position of the forward clutch is at the middle position of the member connecting the sun gear S and the carrier C. On the other hand, in the case of the forward/reverse switching mechanism 3 of the embodiment shown in FIG. 3, the position of the forward clutch is set to the middle position of the drum member 33 that connects the ring gear R and the carrier C, and the torque converter is aimed at a compact layout. And the setting interval between the forward/reverse switching mechanism is narrowed.
 このように、実施例では、前進クラッチの設定位置を変更したことで、比較例の前後進切替機構に設けられていたタービン回転センサをレイアウト的に設けることができなくなった。このため、タービン回転センサに代えてドラム回転センサを設け、タービン回転数情報は、ダブルピニオン式遊星歯車の共線図による回転数関係を用いてドラム回転数とプライマリ回転数から推定する手法としている。 As described above, in the embodiment, the setting position of the forward clutch is changed, so that the turbine rotation sensor provided in the forward/reverse switching mechanism of the comparative example cannot be provided in a layout. Therefore, a drum rotation sensor is provided instead of the turbine rotation sensor, and the turbine rotation speed information is estimated from the drum rotation speed and the primary rotation speed by using the rotation speed relationship based on the alignment chart of the double pinion type planetary gear. ..
 よって、タービン回転数をドラム回転数とプライマリ回転数から推定する場合、ドラム回転数とプライマリ回転数の一方のみが不明であると、共線図上で回転関係を規定する直線特性を引けない。このため、ドラム回転数とプライマリ回転数の一方のみが不明である場合、共線図による回転数関係を用いたタービン回転推定値の計算を行うことができなくなる、という課題が生じる。 Therefore, when estimating the turbine rotation speed from the drum rotation speed and the primary rotation speed, if only one of the drum rotation speed and the primary rotation speed is unknown, it is not possible to draw the linear characteristic that defines the rotation relationship on the alignment chart. Therefore, when only one of the drum rotation speed and the primary rotation speed is unknown, there arises a problem that the turbine rotation estimated value cannot be calculated using the rotation speed relationship based on the alignment chart.
 [課題の解決対策]
 本発明者は、上記課題に対して、ハードウェアの観点からセンサ位置の変更に伴い、タービン回転数が正しく読めなくなるシーンを明確化し、ソフトウェアの観点からタービン回転数及び派生信号を参照している制御を抽出してその影響を確認した。そして、ドラム回転数とプライマリ回転数の一方のみが不明であってもタービン回転数情報を取得できるようにした。
[Measures to solve problems]
With respect to the above problem, the present inventor clarifies a scene in which the turbine rotation speed cannot be correctly read due to a change in the sensor position from the viewpoint of hardware, and refers to the turbine rotation speed and a derived signal from the viewpoint of software. The control was extracted and its effect was confirmed. The turbine rotation speed information can be acquired even if only one of the drum rotation speed and the primary rotation speed is unknown.
 即ち、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明な場合、走行/停車状態、前進クラッチ31と後退ブレーキ32の締結/解放状態、バリエータ4の変速比のうち、少なくとも二つを用いて、不明な検出値の回転数を推定し、該推定された回転推定値と、他方のセンサ検出値とによってタービン回転推定値NTBN’を計算する手段を採用した。 That is, when the detected value of the drum rotation sensor 96 or the detected value of the primary rotation sensor 90 is unknown, at least two of the running/stopped state, the engaged/released state of the forward clutch 31 and the reverse brake 32, and the gear ratio of the variator 4 are determined. One of them is used to estimate the rotation speed of an unknown detected value, and calculate the turbine rotation estimated value NTBN′ from the estimated rotation estimated value and the other sensor detected value.
 よって、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明な場合には、走行/停車状態、前進クラッチ31又は後退ブレーキ32の締結状態、バリエータ4の変速比のうち、少なくとも二つを用いてドラム回転数又はプライマリ回転数を推定することができる。つまり、走行状態では前後進切替機構3のキャリヤCの回転数が正となり、停車状態では前後進切替機構3のキャリヤCの回転数がゼロになる。前進クラッチ31の締結状態では前後進切替機構3の三要素S,C,Rが同じ回転数になる。後退ブレーキ32の締結状態では前後進切替機構3のリングギアRの回転数がゼロで、サンギアSが正で、キャリヤCが負になる。このとき、キャリヤCの回転数が、バリエータ4の変速比により推定されると、サンギアSの回転数(=タービン回転数)が決まる。 Therefore, when the detected value of the drum rotation sensor 96 or the detected value of the primary rotation sensor 90 is unknown, at least two of the running/stopped state, the engaged state of the forward clutch 31 or the reverse brake 32, and the gear ratio of the variator 4 are determined. Can be used to estimate the drum speed or primary speed. That is, the rotation speed of the carrier C of the forward/reverse switching mechanism 3 becomes positive in the traveling state, and the rotation speed of the carrier C of the forward/reverse switching mechanism 3 becomes zero in the stopped state. When the forward clutch 31 is engaged, the three elements S, C, R of the forward/reverse switching mechanism 3 have the same rotational speed. In the engaged state of the reverse brake 32, the rotation speed of the ring gear R of the forward/reverse switching mechanism 3 is zero, the sun gear S is positive, and the carrier C is negative. At this time, if the rotation speed of the carrier C is estimated by the gear ratio of the variator 4, the rotation speed of the sun gear S (=turbine rotation speed) is determined.
 このため、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明な場合、推定によるタービン回転情報の取得を確保することができる。この結果、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明な場合に、多くの基本制御/機能で参照しているタービン回転数情報を用いる制御を継続することができる。具体的には、例えば、ロックアップ制御、セレクト制御、アイドルストップ制御/コーストストップ制御、自己診断機能、等の基本制御/機能の実行中、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明になっても、基本制御/機能の実行を継続することができる。 Therefore, when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown, it is possible to ensure acquisition of turbine rotation information by estimation. As a result, when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown, it is possible to continue the control using the turbine rotation speed information referred to by many basic controls/functions. Specifically, for example, during execution of basic control/functions such as lock-up control, select control, idle stop control/coast stop control, self-diagnosis function, etc., the detection value of the drum rotation sensor 96 or the detection of the primary rotation sensor 90 is detected. Even if the value becomes unknown, the basic control/function can continue to be executed.
 [正常シーンでのタービン回転推定値計算作用]
 図7は、ドラム回転センサ96の検出値とプライマリ回転センサ90の検出値が共に使える場合のタービン回転推定値NTBN’の計算処理を示す。以下、図4及び図7に基づいて2つのセンサ検出値が使える正常シーンでのタービン回転推定値計算作用を説明する。
[Calculation of turbine rotation estimated value in normal scene]
FIG. 7 shows the calculation processing of the turbine rotation estimated value NTBN′ when both the detection value of the drum rotation sensor 96 and the detection value of the primary rotation sensor 90 can be used. Hereinafter, the turbine rotation estimation value calculation operation in a normal scene where two sensor detection values can be used will be described with reference to FIGS. 4 and 7.
 前提条件が成立し、センサ異常判定禁止シーン以外であり、かつ、ドラム回転センサ96の検出値とプライマリ回転センサ90の検出値が共に使える場合、図4のフローチャートにおいて、S1→S2→S3→S4→リターンへと進む。 When the precondition is satisfied, the scene is not a sensor abnormality determination prohibited scene, and both the detection value of the drum rotation sensor 96 and the detection value of the primary rotation sensor 90 can be used, S1→S2→S3→S4 in the flowchart of FIG. → Proceed to return.
 S4では、ドラム回転センサ96からのドラム回転数NDRUMと、プライマリ回転センサ90からのプライマリ回転数NPRIと、共線図の回転数関係によりタービン回転推定値NTBN’が計算される。タービン回転推定値NTBN’の計算式(1)は、
 NTBN’={NDRUM-NPRI(1-α)}/α    …(1)
である。但し、歯数比αは、(サンギアSの歯数)÷(リングギアRの歯数)の式により得る。
In S4, the turbine rotation estimated value NTBN' is calculated from the drum rotation speed NDRUM from the drum rotation sensor 96, the primary rotation speed NPRI from the primary rotation sensor 90, and the rotation speed relationship in the alignment chart. Turbine rotation estimated value NTBN' calculation formula (1) is
NTBN'={NDRUM-NPRI(1-α)}/α (1)
Is. However, the tooth number ratio α is obtained by the formula of (the number of teeth of the sun gear S)÷(the number of teeth of the ring gear R).
 よって、前進クラッチ31が締結状態のときは、図7の共線図特性Dに示すように、タービン回転推定値NTBN’は、ドラム回転数NDRUM又はプライマリ回転数NPRIの大きさに応じたものとなり、かつ、ドラム回転数NDRUM又はプライマリ回転数NPRIに一致する。 Therefore, when the forward clutch 31 is in the engaged state, the turbine rotation estimated value NTBN' becomes according to the magnitude of the drum rotation speed NDRUM or the primary rotation speed NPRI, as shown in the collinear characteristic D in FIG. 7. , And matches the drum speed NDRUM or the primary speed NPRI.
 後退ブレーキ32が締結状態のときは、図7の共線図特性Eに示すように、プライマリ回転数NPRIの大きさに応じたものとなり、タービン回転推定値NTBN’は、上記(1)式のドラム回転数NDRUMをゼロにした、
 NTBN’=NPRI(1-α)/α    …(1’)
の式により計算される。
When the reverse brake 32 is in the engaged state, as shown in the collinear chart characteristic E of FIG. 7, it corresponds to the magnitude of the primary rotation speed NPRI, and the turbine rotation estimated value NTBN′ is calculated by the equation (1) above. Drum speed NDRUM was set to zero,
NTBN'=NPRI(1-α)/α...(1')
It is calculated by the formula.
 前進クラッチ31と後退ブレーキ32とが共に解放状態のときは、図7の共線図特性Fに示すように、ドラム回転数NDRUMとプライマリ回転数NPRIの大きさに応じたものとなり、タービン回転推定値NTBN’は、上記式(1)により計算される。 When both the forward clutch 31 and the reverse brake 32 are in the disengaged state, as shown by the collinear chart characteristic F in FIG. 7, it becomes according to the magnitudes of the drum rotation speed NDRUM and the primary rotation speed NPRI, and the turbine rotation estimation is performed. The value NTBN' is calculated by the above equation (1).
 [センサ検出値が不明な走行シーンでのタービン回転推定値計算作用]
 タービン回転推定値計算作用の説明を、(前進クラッチ締結走行中)、(後退ブレーキ締結走行中)、(前進クラッチ及び後退ブレーキの解放走行中)に分ける。
[Estimated turbine rotation value calculation function in driving scenes where the sensor detection value is unknown]
The description of the turbine rotation estimated value calculation operation will be divided into (during forward clutch engagement traveling), (during backward brake engagement traveling), and (during forward clutch and backward brake release traveling).
 (前進クラッチ締結走行中)
 図8は、前進クラッチ(FWD/C)の締結走行中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である場合のタービン回転推定値NTBN’の計算処理を示す。以下、図4及び図8に基づいてセンサ検出値が不明な前進クラッチ締結走行シーンでのタービン回転推定値計算作用を説明する。
(While traveling with the forward clutch engaged)
FIG. 8 shows the calculation processing of the turbine rotation estimated value NTBN′ when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown during the engagement travel of the forward clutch (FWD/C). Hereinafter, the turbine rotation estimated value calculation operation in the forward clutch engagement traveling scene in which the sensor detection value is unknown will be described based on FIGS. 4 and 8.
 前提条件が成立し、センサ異常判定禁止シーン以外であり、かつ、前進クラッチ31の締結走行中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である。この場合、図4のフローチャートにおいて、S1→S2→S3→S5→S6→S8→リターンへと進む。 The precondition is satisfied, the scene is other than the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch 31 is engaged and traveling. In this case, in the flowchart of FIG. 4, the process proceeds to S1→S2→S3→S5→S6→S8→Return.
 S8では、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なときは、ドラム回転数NDRUMがプライマリ回転数NPRIに置き換えられ、タービン回転推定値NTBN’が計算される。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なときは、プライマリ回転数NPRIがドラム回転数NDRUMに置き換えられ、タービン回転推定値NTBN’が計算される。 In S8, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the drum rotation speed NDRUM is replaced with the primary rotation speed NPRI, and the turbine rotation estimated value NTBN' is calculated. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the primary rotation speed NPRI is replaced with the drum rotation speed NDRUM, and the turbine rotation estimated value NTBN' is calculated.
 ドラム回転センサ96の断線時であってドラム回転数NDRUMが不明な場合、CVTコントロールユニット8が認識する共線図は、図8(a)の○に示すようにNDRUM=0を通る破線特性になる。このため、タービン回転推定値NTBN’は、後退ブレーキ32を締結した後退走行時と同じ回転数になる。よって、タービン回転推定値NTBN’は、図8(a)の実線特性に示す共線図による実タービン回転数NTBNより5%程度低くなり、入力トルクを高く見積もる。入力トルクを高く見積もると、入力トルクが高い分、油圧を上昇させることになり、燃費の悪化につながる。 When the drum rotation sensor 96 is disconnected and the drum rotation speed NDRUM is unknown, the collinear diagram recognized by the CVT control unit 8 shows a broken line characteristic passing through NDRUM=0 as shown by ○ in FIG. 8(a). Become. Therefore, the turbine rotation estimated value NTBN' becomes the same number of revolutions as when the vehicle is running backward with the reverse brake 32 engaged. Therefore, the estimated turbine rotation speed NTBN' is about 5% lower than the actual turbine rotation speed NTBN according to the alignment chart shown in the solid line characteristic of FIG. 8(a), and the input torque is estimated to be high. If the input torque is overestimated, the hydraulic pressure is increased by the amount of the input torque, which leads to deterioration of fuel consumption.
 一方、プライマリ回転センサ90の断線時であってプライマリ回転数NPRIが不明な場合、CVTコントロールユニット8が認識する共線図は、図8(b)の○に示すようにNPRI=0を通る破線特性になる。このため、タービン回転推定値NTBN’は、図8(b)の実線特性に示す共線図による実タービン回転数NTBNの倍程度に高くなり、入力トルクを低く見積もる。入力トルクを低く見積もると、入力トルクが低い分、油圧を低下させることになり、前進クラッチ31やベルト44の滑りを招く。 On the other hand, when the primary rotation sensor 90 is disconnected and the primary rotation speed NPRI is unknown, the collinear diagram recognized by the CVT control unit 8 is a broken line passing through NPRI=0 as shown by ○ in FIG. 8(b). Become a characteristic. Therefore, the estimated turbine rotation speed NTBN' becomes about twice as high as the actual turbine rotation speed NTBN according to the alignment chart shown in the solid line characteristic of FIG. 8B, and the input torque is estimated to be low. If the input torque is estimated to be low, the oil pressure is reduced by the amount of the input torque being low, which causes the forward clutch 31 and the belt 44 to slip.
 これに対し、ドラム回転数NDRUMが不明なときは、図8(c)の実線特性に示すようにドラム回転数NDRUMがプライマリ回転数NPRIに置き換えられてタービン回転推定値NTBN’が計算される。プライマリ回転数NPRIが不明なときは、図8(c)の実線特性に示すようにプライマリ回転数NPRIがドラム回転数NDRUMに置き換えられてタービン回転推定値NTBN’が計算される。 On the other hand, when the drum rotation speed NDRUM is unknown, the drum rotation speed NDRUM is replaced with the primary rotation speed NPRI to calculate the turbine rotation speed estimated value NTBN' as shown by the solid line characteristic in Fig. 8(c). When the primary rotation speed NPRI is unknown, the turbine rotation speed estimated value NTBN' is calculated by replacing the primary rotation speed NPRI with the drum rotation speed NDRUM as shown by the solid line characteristic in FIG. 8(c).
 このため、計算されたタービン回転推定値NTBN’は、実タービン回転数NTBNと一致することになる。言い換えると、CVTコントロールユニット8の認識に任せた場合のように、ドラム回転数NDRUMが不明なときに入力トルクを高く見積もることがなく、油圧を上昇させることによる燃費の悪化を防止できる。また、CVTコントロールユニット8の認識に任せた場合のように、プライマリ回転数NPRIが不明なときに入力トルクを低く見積もることがなく、油圧を低下させることによる前進クラッチ31やベルト44の滑り発生を防止できる。 For this reason, the calculated turbine rotation speed estimated value NTBN' matches the actual turbine rotation speed NTBN. In other words, the input torque is not overestimated when the drum rotation speed NDRUM is unknown as in the case of relying on the recognition of the CVT control unit 8, and the deterioration of fuel efficiency due to the increase in hydraulic pressure can be prevented. Further, as in the case of relying on the recognition of the CVT control unit 8, the input torque is not underestimated when the primary rotation speed NPRI is unknown, and the occurrence of slippage of the forward clutch 31 and the belt 44 due to the reduction of the hydraulic pressure. It can be prevented.
 (後退ブレーキ締結走行中)
 図9は、後退ブレーキ(REV/B)の締結走行中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である場合のタービン回転推定値NTBN’の計算処理を示す。以下、図4及び図9に基づいてセンサ検出値が不明な後退ブレーキ締結走行シーンでのタービン回転推定値計算作用を説明する。
(While running reverse brake)
FIG. 9 shows the calculation processing of the turbine rotation estimated value NTBN′ when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown during the engagement travel of the reverse brake (REV/B). Hereinafter, a turbine rotation estimated value calculation operation in a reverse brake engagement traveling scene in which the sensor detection value is unknown will be described with reference to FIGS. 4 and 9.
 前提条件が成立し、センサ異常判定禁止シーン以外であり、かつ、後退ブレーキ32の締結走行中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である。この場合、図4のフローチャートにおいて、S1→S2→S3→S5→S6→S7→S9→リターンへと進む。 The precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the reverse brake 32 is engaged. In this case, in the flowchart of FIG. 4, the process proceeds to S1→S2→S3→S5→S6→S7→S9→Return.
 S9では、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なときは、ドラム回転数NDRUMがNDRUM=0に置き換えられ、タービン回転推定値NTBN’が計算される。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なときは、プライマリ回転数NPRIが、バリエータ4の最ロー変速比とセカンダリ回転数NSECにより推定計算される。そして、タービン回転推定値NTBN’が、プライマリ回転推定値NPRI’とリバースギヤ比(Rギヤ比)により計算される。 In S9, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the drum rotation speed NDRUM is replaced with NDRUM=0, and the turbine rotation estimated value NTBN' is calculated. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the primary rotation speed NPRI is estimated and calculated by the lowest gear ratio of the variator 4 and the secondary rotation speed NSEC. Then, the turbine rotation estimated value NTBN' is calculated from the primary rotation estimated value NPRI' and the reverse gear ratio (R gear ratio).
 ドラム回転センサ96の断線時であってドラム回転数NDRUMが不明な場合、CVTコントロールユニット8が認識する共線図は、図9(a)の○に示すようにNDRUM=0を通る破線特性になる。このため、タービン回転推定値NTBN’は、後退ブレーキ32を締結した後退走行時と同じ回転数になる。よって、タービン回転推定値NTBN’は、図9(a)の実線特性に示す共線図による実タービン回転数NTBNと変わらない。 When the drum rotation sensor 96 is disconnected and the drum rotation speed NDRUM is unknown, the collinear diagram recognized by the CVT control unit 8 shows a broken line characteristic passing through NDRUM=0 as shown by ○ in FIG. 9(a). Become. Therefore, the turbine rotation estimated value NTBN' becomes the same number of revolutions as when the vehicle is running backward with the reverse brake 32 engaged. Therefore, the estimated turbine rotation speed NTBN' is no different from the actual turbine rotation speed NTBN according to the alignment chart shown in the solid line characteristic of FIG. 9(a).
 一方、プライマリ回転センサ90の断線時であってプライマリ回転数NPRIが不明な場合、CVTコントロールユニット8が認識する共線図は、図9(b)の○に示すようにNPRI=0を通る破線特性になる。このため、タービン回転推定値NTBN’はセロ回転になる。つまり、図9(b)の実線特性に示す共線図による実タービン回転数NTBNより低くなり、入力トルクを高く見積もる。入力トルクを高く見積もると、入力トルクが高い分、油圧を上昇させることになり、燃費の悪化に繋がる。 On the other hand, when the primary rotation sensor 90 is disconnected and the primary rotation speed NPRI is unknown, the collinear diagram recognized by the CVT control unit 8 is a broken line passing through NPRI=0 as shown by ◯ in FIG. 9(b). Become a characteristic. Therefore, the turbine rotation estimated value NTBN' becomes zero rotation. In other words, it is lower than the actual turbine speed NTBN according to the collinear chart shown in the solid line characteristic of FIG. If the input torque is estimated to be high, the higher the input torque is, the higher the hydraulic pressure is, which leads to deterioration of fuel efficiency.
 これに対し、ドラム回転数NDRUMが不明なときは、図9(c)の実線特性に示すようにドラム回転数NDRUMがNDRUM=0に置き換えられてタービン回転推定値NTBN’が計算される。プライマリ回転数NPRIが不明なときは、プライマリ回転数NPRIが、バリエータ4の最ロー変速比とセカンダリ回転数NSECにより推定計算される。そして、タービン回転推定値NTBN’が、プライマリ回転推定値NPRI’とリバースギヤ比(Rギヤ比)により計算される。 On the other hand, when the drum speed NDRUM is unknown, the drum speed NDRUM is replaced with NDRUM=0 to calculate the estimated turbine speed NTBN' as shown by the solid line characteristics in Fig. 9(c). When the primary speed NPRI is unknown, the primary speed NPRI is estimated and calculated by the lowest speed ratio of the variator 4 and the secondary speed NSEC. Then, the turbine rotation estimated value NTBN' is calculated from the primary rotation estimated value NPRI' and the reverse gear ratio (R gear ratio).
 このため、計算されたタービン回転推定値NTBN’は、ドラム回転数NDRUMが不明なとき、実タービン回転数NTBNと一致することになる。そして、計算されたタービン回転推定値NTBN’は、プライマリ回転数NPRIが不明なとき、実タービン回転数NTBNとの一致性が高められたものになる。言い換えると、プライマリ回転数NPRIが不明なとき、CVTコントロールユニット8の認識に任せた場合のように、入力トルクを高く見積もることがなく、油圧を上昇させることによる燃費の悪化を防止できる。 For this reason, the calculated turbine rotation speed NTBN' will match the actual turbine rotation speed NTBN when the drum rotation speed NDRUM is unknown. Then, the calculated turbine rotation speed estimated value NTBN' is enhanced in agreement with the actual turbine rotation speed NTBN when the primary rotation speed NPRI is unknown. In other words, when the primary rotation speed NPRI is unknown, the input torque is not overestimated as in the case where the CVT control unit 8 is left to be recognized, and the deterioration of fuel efficiency due to the increase in hydraulic pressure can be prevented.
 (前進クラッチ及び後退ブレーキの解放走行中)
 図10は、前進クラッチ(FWD/C)及び後退ブレーキ(REV/B)の解放走行中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である場合のタービン回転推定値NTBN’の計算処理を示す。以下、図4及び図10に基づいてセンサ検出値が不明な解放走行シーンでのタービン回転推定値計算作用を説明する。
(While the forward clutch and reverse brake are released)
FIG. 10 is a turbine rotation estimated value NTBN when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown during the disengagement travel of the forward clutch (FWD/C) and the reverse brake (REV/B). 'Shows the calculation process. Hereinafter, the turbine rotation estimated value calculation operation in the open traveling scene in which the sensor detection value is unknown will be described with reference to FIGS. 4 and 10.
 前提条件が成立し、センサ異常判定禁止シーン以外であり、かつ、前進クラッチ31及び後退ブレーキ32の解放走行中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である。この場合、図4のフローチャートにおいて、S1→S2→S3→S5→S6→S7→S10→リターンへと進む。 The precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch 31 and the reverse brake 32 are disengaged. In this case, in the flowchart of FIG. 4, the process proceeds to S1→S2→S3→S5→S6→S7→S10→Return.
 S10では、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なときは、タービン回転推定値NTBN’がエンジン回転数NENGとみなされる。そして、ドラム回転数NDRUMは、共線図でタービン回転推定値NTBN’(=NENG)とプライマリ回転数NPRIから算出される。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なときは、タービン回転推定値NTBN’がエンジン回転数NENGとみなされる。そして、プライマリ回転数NPRIは、共線図でタービン回転推定値NTBN’(=NENG)とドラム回転数NDRUMから算出される。なお、共線図で算出したプライマリ回転数NPRIは、セカンダリ回転数NSECとバリエータ4の最ローギヤ比から算出されるプライマリ回転数上限値と、セカンダリ回転数NSECとバリエータ4の最ハイギヤ比から算出されるプライマリ回転数下限値により制限される。 In S10, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the estimated turbine rotation speed NTBN' is regarded as the engine rotation speed NENG. Then, the drum rotation speed NDRUM is calculated from the turbine rotation estimated value NTBN' (=NENG) and the primary rotation speed NPRI on the collinear chart. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the turbine rotation estimated value NTBN' is regarded as the engine rotation speed NENG. Then, the primary rotation speed NPRI is calculated from the turbine rotation estimated value NTBN' (=NENG) and the drum rotation speed NDRUM on the collinear chart. The primary rotation speed NPRI calculated from the collinear chart is calculated from the primary rotation speed upper limit value calculated from the secondary rotation speed NSEC and the lowest gear ratio of the variator 4, and the secondary rotation speed NSEC and the highest gear ratio of the variator 4. It is limited by the lower limit of primary speed.
 ドラム回転センサ96の断線時であってドラム回転数NDRUMが不明な場合、CVTコントロールユニット8が認識する共線図は、図10(a)の○に示すようにNDRUM=0を通る破線特性になる。このため、タービン回転推定値NTBN’は、後退ブレーキ32を締結した後退走行時と同じ回転数になる。よって、タービン回転推定値NTBN’は、図10(a)の実線特性に示す共線図による実タービン回転数NTBNより5%程度低くなり、入力トルクを高く見積もる。入力トルクを高く見積もると、入力トルクが高い分、油圧を上昇させることになり、燃費の悪化につながる。 When the drum rotation sensor 96 is disconnected and the drum rotation speed NDRUM is unknown, the collinear diagram recognized by the CVT control unit 8 shows a broken line characteristic passing through NDRUM=0 as shown by a circle in FIG. Become. Therefore, the turbine rotation estimated value NTBN' becomes the same number of revolutions as when the vehicle is running backward with the reverse brake 32 engaged. Therefore, the estimated turbine rotation speed NTBN' is about 5% lower than the actual turbine rotation speed NTBN according to the alignment chart shown in the solid line characteristic of FIG. 10(a), and the input torque is estimated to be high. If the input torque is overestimated, the hydraulic pressure is increased by the amount of the input torque, which leads to deterioration of fuel consumption.
 一方、プライマリ回転センサ90の断線時であってプライマリ回転数NPRIが不明な場合、CVTコントロールユニット8が認識する共線図は、図10(b)の○に示すようにNPRI=0を通る破線特性になる。このため、タービン回転推定値NTBN’は、図10(b)の実線特性に示す共線図による実タービン回転数NTBNの倍程度に高くなり、入力トルクを低く見積もる。入力トルクを低く見積もると、入力トルクが低い分、油圧を低下させることになり、前進クラッチ31やベルト44の滑りを招く。 On the other hand, when the primary rotation sensor 90 is disconnected and the primary rotation speed NPRI is unknown, the collinear diagram recognized by the CVT control unit 8 is a broken line passing through NPRI=0 as shown by ◯ in FIG. 10(b). Become a characteristic. Therefore, the estimated turbine rotation speed NTBN' becomes about twice as high as the actual turbine rotation speed NTBN according to the alignment chart shown in the solid line characteristic of FIG. 10(b), and the input torque is estimated to be low. If the input torque is estimated to be low, the oil pressure is reduced by the amount of the input torque being low, which causes the forward clutch 31 and the belt 44 to slip.
 これに対し、ドラム回転数NDRUMが不明なときは、図10(c)の実線特性に示すように、タービン回転推定値NTBN’がエンジン回転数NENGとみなされる。プライマリ回転数NPRIが不明なときは、図10(c)の実線特性に示すように、ドラム回転数NDRUMが不明なときと同様に、タービン回転推定値NTBN’がエンジン回転数NENGとみなされる。 On the other hand, when the drum speed NDRUM is unknown, the estimated turbine speed NTBN' is regarded as the engine speed NENG, as shown by the solid line characteristics in Fig. 10(c). When the primary rotation speed NPRI is unknown, the turbine rotation speed estimated value NTBN' is regarded as the engine rotation speed NENG, as in the case where the drum rotation speed NDRUM is unknown, as shown by the solid line characteristic in FIG. 10(c).
 このため、タービン回転推定値NTBN’がエンジン回転数NENGとみなされることで、実タービン回転数NTBNに近い値で与えることができる。なお、前進クラッチ31及び後退ブレーキ32の解放によるNレンジでの走行中においては、タービン回転情報を参照する制御はないため、ドラム回転センサ96又はプライマリ回転センサ90の異常によるタービン回転情報を用いる制御へ影響を及ぼすことはない。 Therefore, by considering the estimated turbine speed NTBN' as the engine speed NENG, it is possible to give a value close to the actual turbine speed NTBN. While the vehicle is traveling in the N range by releasing the forward clutch 31 and the reverse brake 32, there is no control for referring to the turbine rotation information, so control using turbine rotation information due to an abnormality in the drum rotation sensor 96 or the primary rotation sensor 90 is performed. Does not affect
 [センサ検出値が不明な停車シーンでのタービン回転推定値計算作用]
 タービン回転推定値計算作用の説明を、(前進クラッチ締結停車中)、(後退ブレーキ締結停車中)、(前進クラッチ及び後退ブレーキの解放停車中)に分ける。
[Evaluation of turbine rotation estimated value in stationary scene where sensor detection value is unknown]
The description of the turbine rotation estimated value calculation operation is divided into (while the forward clutch is engaged and stopped), (while the reverse brake is engaged and stopped), and (when the forward clutch and reverse brake are released and stopped).
 (前進クラッチの締結停車中)
 図11は、前進クラッチ(FWD/C)の締結停車中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である場合のタービン回転推定値NTBN’の計算処理を示す。以下、図4及び図11に基づいてセンサ検出値が不明な前進クラッチ締結停車シーンでのタービン回転推定値計算作用を説明する。
(While the forward clutch is engaged and stopped)
FIG. 11 shows the calculation processing of the turbine rotation estimated value NTBN′ when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch (FWD/C) is engaged and stopped. Hereinafter, the turbine rotation estimated value calculation operation in the forward clutch engagement/stop scene where the sensor detection value is unknown will be described with reference to FIGS. 4 and 11.
 前提条件が成立し、センサ異常判定禁止シーン以外であり、かつ、前進クラッチ31の締結停車中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である。この場合、図4のフローチャートにおいて、S1→S2→S3→S5→S11→S13→リターンへと進む。 The precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch 31 is engaged and stopped. In this case, in the flowchart of FIG. 4, the process proceeds to S1→S2→S3→S5→S11→S13→Return.
 S13では、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なときは、ドラム回転数NDRUMがプライマリ回転数NPRIに置き換えられ、タービン回転推定値NTBN’が計算される。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なときは、プライマリ回転数NPRIがNPRI=0(停車しているため)に置き換えられ、タービン回転推定値NTBN’が計算される。 In S13, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the drum rotation speed NDRUM is replaced with the primary rotation speed NPRI, and the turbine rotation estimated value NTBN' is calculated. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the primary rotation speed NPRI is replaced with NPRI=0 (because the vehicle is stopped), and the turbine rotation estimated value NTBN′ is calculated.
 このように、ドラム回転数NDRUMが不明なときは、前進クラッチ31を締結して停車しているため、図11の実線特性に示すように、ドラム回転数NDRUM=プライマリ回転数NPRI(=0)として通常通りにタービン回転推定値NTBN’(=0)を推定すればよい。プライマリ回転数NPRIが不明なときは、前進クラッチ31を締結して停車しているため、図11の実線特性に示すように、プライマリ回転数NPRI(=0)として通常通りにタービン回転推定値NTBN’(=0)を推定すればよい。なお、前進クラッチ31を締結しての停車中においては、走行中とは異なり、タービン回転情報を用いる制御での車両挙動による影響はない。 As described above, when the drum rotation speed NDRUM is unknown, the forward clutch 31 is engaged and the vehicle is stopped. Therefore, as shown by the solid line characteristics in FIG. 11, the drum rotation speed NDRUM=primary rotation speed NPRI (=0). As usual, the turbine rotation estimated value NTBN' (=0) may be estimated. When the primary rotation speed NPRI is unknown, the forward clutch 31 is engaged and the vehicle is stopped. Therefore, as shown by the solid line characteristics in FIG. 11, the estimated turbine rotation speed NTBN is set as the primary rotation speed NPRI (=0) as usual. '(=0) should be estimated. Note that, while the vehicle is stopped with the forward clutch 31 engaged, unlike during traveling, there is no influence of the vehicle behavior in the control using the turbine rotation information.
 (後退ブレーキの締結停車中)
 図12は、後退ブレーキ(REV/B)の締結停車中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である場合のタービン回転推定値NTBN’の計算処理を示す。以下、図4及び図12に基づいてセンサ検出値が不明な後退ブレーキ締結停車シーンでのタービン回転推定値計算作用を説明する。
(While the reverse brake is engaged and stopped)
FIG. 12 shows calculation processing of the turbine rotation estimated value NTBN′ when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the reverse brake (REV/B) is engaged and stopped. Hereinafter, the operation of the turbine rotation estimated value calculation operation in the reverse brake engagement/stop scene in which the sensor detection value is unknown will be described with reference to FIGS.
 前提条件が成立し、センサ異常判定禁止シーン以外であり、かつ、後退ブレーキ32の締結停車中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である。この場合、図4のフローチャートにおいて、S1→S2→S3→S5→S11→S12→S14→リターンへと進む。 The precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the reverse brake 32 is engaged and stopped. In this case, in the flowchart of FIG. 4, the process proceeds to S1→S2→S3→S5→S11→S12→S14→Return.
 S14では、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なときは、ドラム回転数NDRUMがNDRUM=0に置き換えられ、タービン回転推定値NTBN’が計算される。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なときは、プライマリ回転数NPRIがNPRI=0に置き換えられ、タービン回転推定値NTBN’が計算される。 In S14, if the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the drum rotation speed NDRUM is replaced with NDRUM=0, and the turbine rotation estimated value NTBN' is calculated. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the primary rotation speed NPRI is replaced with NPRI=0, and the turbine rotation estimated value NTBN′ is calculated.
 このように、ドラム回転数NDRUMが不明なときは、後退ブレーキ32を締結して停車しているため、図12の実線特性に示すように、ドラム回転数NDRUM=0として通常通りにタービン回転推定値NTBN’(=0)を推定すればよい。プライマリ回転数NPRIが不明なときは、後退ブレーキ32を締結して停車しているため、図12の実線特性に示すように、プライマリ回転数NPRI=0として通常通りにタービン回転推定値NTBN’(=0)を推定すればよい。なお、後退ブレーキ32を締結しての停車中においては、走行中とは異なり、タービン回転情報を用いる制御での車両挙動による影響はない。 As described above, when the drum speed NDRUM is unknown, the reverse brake 32 is engaged and the vehicle is stopped. Therefore, as shown by the solid line characteristics in FIG. 12, the turbine speed is estimated as usual with the drum speed NDRUM=0. The value NTBN' (=0) may be estimated. When the primary rotation speed NPRI is unknown, the reverse brake 32 is engaged and the vehicle is stopped. Therefore, as shown by the solid line characteristics in FIG. 12, the estimated turbine rotation speed NTBN' (normally with the primary rotation speed NPRI=0 ( =0) may be estimated. Note that, while the vehicle is stopped with the reverse brake 32 engaged, unlike the case of traveling, there is no influence of the vehicle behavior in the control using the turbine rotation information.
 (前進クラッチ及び後退ブレーキの解放停車中)
 図13は、前進クラッチ(FWD/C)及び後退ブレーキ(REV/B)の解放停車中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である場合のタービン回転推定値NTBN’の計算処理を示す。以下、図4及び図13に基づいてセンサ検出値が不明な解放停車シーンでのタービン回転推定値計算作用を説明する。
(While the forward clutch and reverse brake are released and stopped)
FIG. 13 is a turbine rotation estimated value NTBN when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch (FWD/C) and the reverse brake (REV/B) are released and stopped. 'Shows the calculation process. Hereinafter, the operation of calculating the estimated turbine rotation value in the released vehicle stop scene in which the sensor detection value is unknown will be described with reference to FIGS. 4 and 13.
 前提条件が成立し、センサ異常判定禁止シーン以外であり、かつ、前進クラッチ31及び後退ブレーキ32の解放停車中にドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明である。この場合、図4のフローチャートにおいて、S1→S2→S3→S5→S11→S12→S15→リターンへと進む。 The precondition is satisfied, it is outside the sensor abnormality determination prohibited scene, and the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown while the forward clutch 31 and the reverse brake 32 are released and stopped. In this case, in the flowchart of FIG. 4, the process proceeds to S1→S2→S3→S5→S11→S12→S15→return.
 S15では、ドラム回転センサ96の異常によりドラム回転数NDRUMが不明なときは、タービン回転推定値NTBN’がエンジン回転数NENGとみなされる。そして、ドラム回転数NDRUMは、共線図でタービン回転推定値NTBN’(=NENG)とプライマリ回転数NPRIから算出される。プライマリ回転センサ90の異常によりプライマリ回転数NPRIが不明なときは、タービン回転推定値NTBN’がエンジン回転数NENGとみなされる。そして、プライマリ回転数NPRIは、NPRI=0(停車しているため)とされる。 In S15, when the drum rotation speed NDRUM is unknown due to an abnormality in the drum rotation sensor 96, the turbine rotation speed estimated value NTBN' is regarded as the engine rotation speed NENG. Then, the drum rotation speed NDRUM is calculated from the turbine rotation estimated value NTBN' (=NENG) and the primary rotation speed NPRI on the collinear chart. When the primary rotation speed NPRI is unknown due to an abnormality in the primary rotation sensor 90, the turbine rotation estimated value NTBN' is regarded as the engine rotation speed NENG. Then, the primary rotation speed NPRI is set to NPRI=0 (because the vehicle is stopped).
 このように、ドラム回転数NDRUMが不明なときは、アクセル操作があると力のつり合い具合により各回転メンバS,C,Rの回転数が決まるが、タービン回転推定値NTBN’をエンジン回転数NENGとみなすことで基本的に推定可能である。そして、ドラム回転数NDRUMは、タービン回転推定値NTBN’(=NENG)とプライマリ回転数NPRIと共線図により基本的に推定可能である。 As described above, when the drum rotation speed NDRUM is unknown, the rotation speed of each rotating member S, C, R is determined by the balance of forces when the accelerator is operated. It can be estimated basically by considering The drum rotation speed NDRUM can be basically estimated by the turbine rotation estimated value NTBN' (=NENG), the primary rotation speed NPRI, and the alignment chart.
 プライマリ回転数NPRIが不明なときは、アクセル操作があると力のつり合い具合により各回転メンバS,C,Rの回転数が決まるが、タービン回転推定値NTBN’をエンジン回転数NENGとみなすことで基本的に推定可能である。そして、プライマリ回転数NPRIは、停車していてNPRI=0のはずであるために推定可能である。 When the primary rotation speed NPRI is unknown, the rotation speed of each rotating member S, C, R is determined by the balance of force when the accelerator is operated, but the estimated turbine rotation speed NTBN' is regarded as the engine rotation speed NENG. Basically, it can be estimated. The primary rotation speed NPRI can be estimated because the vehicle is stopped and NPRI=0.
 以上説明したように、実施例のベルト式無段変速機CVTの制御装置にあっては、下記に列挙する効果が得られる。 As described above, in the control device for the belt type continuously variable transmission CVT of the embodiment, the effects listed below can be obtained.
 (1) 走行用駆動源(エンジン1)に連結されるトルクコンバータ2と、トルクコンバータ2に連結される前後進切替機構3と、前後進切替機構3に連結される無段変速機構(バリエータ4)と、変速機コントローラ(CVTコントロールユニット8)と、を備え、
 前後進切替機構3は、遊星歯車(ダブルピニオン式遊星歯車30)と前進クラッチ31と後退ブレーキ32とを有し、無段変速機構(バリエータ4)は、プライマリプーリ42とセカンダリプーリ43とに架け渡されるベルト44を有し、変速機コントローラ(CVTコントロールユニット8)は、前後進切替機構3へ入力されるタービン回転数情報を用いる制御を実行する無段変速機(ベルト式無段変速機CVT)の制御装置であって、
 トルクコンバータ2のタービンランナ24と遊星歯車(ダブルピニオン式遊星歯車30)のサンギアSとを連結するタービン回転軸21と、
 前進クラッチ31を介して連結された遊星歯車(ダブルピニオン式遊星歯車30)のキャリヤCとリングギアRと、
 リングギアRと連結するドラムメンバ33の回転数を検出するドラム回転センサ96と、
 遊星歯車(ダブルピニオン式遊星歯車30)のキャリヤCとプライマリプーリ42とを連結するプライマリ回転軸40の回転数を検出するプライマリ回転センサ90と、
 ドラム回転センサ96とプライマリ回転センサ90の検出値に基づいてタービン回転軸21のタービン回転推定値NTBN’を計算するタービン回転推定手段(タービン回転推定部80)と、を有し、
 タービン回転推定手段(タービン回転推定部80)は、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明な場合、走行/停車状態、前進クラッチ31と後退ブレーキ32の締結/解放状態、無段変速機構(バリエータ4)の変速比のうち、少なくとも二つを用いて、不明な検出値の回転数を推定し、該推定された回転推定値と、他方のセンサ検出値とによってタービン回転推定値NTBN’を計算する。
 このため、ドラム回転センサ96の検出値又はプライマリ回転センサ90の検出値が不明な場合、推定によるタービン回転情報の取得を確保することができる。
(1) A torque converter 2 connected to a driving source (engine 1) for traveling, a forward/reverse switching mechanism 3 connected to the torque converter 2, and a continuously variable transmission mechanism (variator 4) connected to the forward/reverse switching mechanism 3. ) And a transmission controller (CVT control unit 8),
The forward/reverse switching mechanism 3 has a planetary gear (double pinion type planetary gear 30), a forward clutch 31, and a reverse brake 32. The continuously variable transmission mechanism (variator 4) is mounted on a primary pulley 42 and a secondary pulley 43. The transmission controller (CVT control unit 8) has a belt 44 to be passed, and the transmission controller (CVT control unit 8) executes a control using the turbine speed information input to the forward/reverse switching mechanism 3 (a belt type continuously variable transmission CVT. ) Control device,
A turbine rotary shaft 21 that connects a turbine runner 24 of the torque converter 2 and a sun gear S of a planetary gear (double pinion type planetary gear 30);
A carrier C and a ring gear R of a planetary gear (double pinion type planetary gear 30) connected through a forward clutch 31;
A drum rotation sensor 96 for detecting the number of rotations of the drum member 33 connected to the ring gear R;
A primary rotation sensor 90 that detects the number of rotations of a primary rotation shaft 40 that connects the carrier C of the planetary gear (double pinion type planetary gear 30) and the primary pulley 42,
Turbine rotation estimation means (turbine rotation estimation unit 80) for calculating a turbine rotation estimation value NTBN′ of the turbine rotation shaft 21 based on detection values of the drum rotation sensor 96 and the primary rotation sensor 90,
When the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown, the turbine rotation estimation means (turbine rotation estimation unit 80) is in the running/stopped state, the engaged/released state of the forward clutch 31 and the reverse brake 32. , At least two of the gear ratios of the continuously variable transmission mechanism (variator 4) are used to estimate the rotation speed of an unknown detection value, and the turbine is determined by the estimated rotation speed and the other sensor detection value. Calculate the rotation estimate NTBN'.
Therefore, when the detection value of the drum rotation sensor 96 or the detection value of the primary rotation sensor 90 is unknown, it is possible to ensure acquisition of turbine rotation information by estimation.
 (2) タービン回転推定手段(タービン回転推定部80)は、走行中、前進クラッチ31が締結状態で、かつ、ドラム回転数NDRUMが不明な場合、ドラム回転数NDRUMをプライマリ回転数NPRIに置き換えたドラム回転推定値NDRUM’とし、タービン回転推定値NTBN’を、
 ドラム回転推定値NDRUM’とプライマリ回転センサ90からの検出値とによって計算し、
 走行中、前進クラッチ31が締結状態で、かつ、プライマリ回転数NPRIが不明な場合、プライマリ回転数NPRIをドラム回転数NDRUMに置き換えたプライマリ回転推定値NPRI’とし、タービン回転推定値NTBN’を、プライマリ回転推定値NPRI’とドラム回転センサ96からの検出値とによって計算する。
 このため、走行中、前進クラッチ31が締結状態で、ドラム回転数NDRUM又はプライマリ回転数NPRIが不明な場合、不明なドラム回転推定値NDRUM’又はプライマリ回転推定値NPRI’と、タービン回転推定値NTBN’を計算することができる。
 即ち、前進クラッチ31が締結状態であることで、遊星歯車(ダブルピニオン式遊星歯車30)の前進ギヤ比が1になるため、ドラム回転数NDRUM=プライマリ回転数NPRIになるはずである。よって、ドラム回転推定値NDRUM’又はプライマリ回転推定値NPRI’を推定することが可能であるし、通常通りに共線図に基づいてタービン回転推定値NTBN’を推定することが可能である。
(2) The turbine rotation estimation means (turbine rotation estimation unit 80) replaces the drum rotation speed NDRUM with the primary rotation speed NPRI when the forward clutch 31 is engaged during traveling and the drum rotation speed NDRUM is unknown. Drum rotation estimated value NDRUM', turbine rotation estimated value NTBN',
Calculated by the drum rotation estimated value NDRUM' and the detection value from the primary rotation sensor 90,
During traveling, when the forward clutch 31 is in the engaged state, and the primary rotation speed NPRI is unknown, the primary rotation speed NPRI is replaced with the drum rotation speed NDRUM to obtain the primary rotation estimated value NPRI′, and the turbine rotation estimated value NTBN′ is It is calculated by the primary rotation estimated value NPRI′ and the detection value from the drum rotation sensor 96.
Therefore, when the forward clutch 31 is engaged and the drum rotation speed NDRUM or the primary rotation speed NPRI is unknown during traveling, the unknown drum rotation estimated value NDRUM' or primary rotation estimated value NPRI' and the turbine rotation estimated value NTBN are unknown. 'Can be calculated.
That is, since the forward gear ratio of the planetary gear (double pinion type planetary gear 30) becomes 1 when the forward clutch 31 is in the engaged state, the drum rotation speed NDRUM=the primary rotation speed NPRI should be obtained. Therefore, it is possible to estimate the drum rotation estimated value NDRUM' or the primary rotation estimated value NPRI', and it is possible to estimate the turbine rotation estimated value NTBN' based on the alignment chart as usual.
 (3) タービン回転推定手段(タービン回転推定部80)は、走行中、後退ブレーキ32が締結状態で、かつ、ドラム回転数NDRUMが不明な場合、ドラム回転数NDRUMをゼロに置き換えてドラム回転推定値NDRUM’とし、タービン回転推定値NTBN’を、ドラム回転推定値NDRUM’とプライマリ回転センサ90からの検出値とによって計算し、
 走行中、後退ブレーキ32が締結状態で、かつ、プライマリ回転数NPRIが不明な場合、プライマリ回転数NPRIを、無段変速機構(バリエータ4)の最ロー変速比とセカンダリ回転数PSECにより計算したプライマリ回転推定値NPRI’とし、タービン回転推定値NTBN’を、プライマリ回転推定値NPRI’とドラム回転センサ96からの検出値とによって計算する。
 このため、走行中、後退ブレーキ32が締結状態で、ドラム回転数NDRUM又はプライマリ回転数NPRIが不明な場合、不明なドラム回転推定値NDRUM’又はプライマリ回転推定値NPRI’と、タービン回転推定値NTBN’を計算することができる。
 即ち、ドラム回転数NDRUMが不明な場合は、後退ブレーキ32の締結によりドラム回転数NDRUM=0のはずであるため、ドラム回転推定値NDRUM’を推定することが可能である。そして、ドラム回転数NDRUM=0として通常通りに共線図に基づいてタービン回転推定値NTBN’を推定することが可能である。プライマリ回転数NPRIが不明な場合は、Rレンジのときバリエータ4が最ロー変速比に固定しているため、プライマリ回転推定値NPRI’を、バリエータ4の最ロー変速比とセカンダリ回転数NSECにより推定することが可能である。そして、プライマリ回転推定値NPRI’と遊星歯車(ダブルピニオン式遊星歯車30)の後退ギヤ比(=Rギヤ比)に基づいてタービン回転推定値NTBN’を推定することが可能である。
(3) The turbine rotation estimation means (turbine rotation estimation unit 80) replaces the drum rotation speed NDRUM with zero and estimates the drum rotation when the reverse brake 32 is engaged and the drum rotation speed NDRUM is unknown during traveling. As the value NDRUM', the turbine rotation estimated value NTBN' is calculated by the drum rotation estimated value NDRUM' and the detection value from the primary rotation sensor 90,
When the reverse brake 32 is engaged during traveling and the primary speed NPRI is unknown, the primary speed NPRI is calculated by the lowest speed ratio of the continuously variable transmission (variator 4) and the secondary speed PSEC. The rotation speed estimated value NPRI′ is set, and the turbine rotation estimated value NTBN′ is calculated based on the primary rotation estimated value NPRI′ and the detection value from the drum rotation sensor 96.
Therefore, when the reverse brake 32 is engaged and the drum rotation speed NDRUM or the primary rotation speed NPRI is unknown during traveling, the unknown drum rotation estimated value NDRUM' or primary rotation estimated value NPRI' and the turbine rotation estimated value NTBN are unknown. 'Can be calculated.
That is, when the drum rotation speed NDRUM is unknown, it is supposed that the drum rotation speed NDRUM=0 by the engagement of the reverse brake 32, and therefore the drum rotation estimated value NDRUM' can be estimated. Then, it is possible to estimate the turbine rotation estimated value NTBN′ based on the alignment chart as usual with the drum rotation speed NDRUM=0. If the primary speed NPRI is unknown, the variator 4 is fixed to the lowest speed ratio in the R range, so the estimated primary speed NPRI' is estimated from the lowest speed ratio of the variator 4 and the secondary speed NSEC. It is possible to Then, it is possible to estimate the turbine rotation estimated value NTBN' based on the primary rotation estimated value NPRI' and the reverse gear ratio (=R gear ratio) of the planetary gear (double pinion type planetary gear 30).
 (4) タービン回転推定手段(タービン回転推定部80)は、停車中、前進クラッチ31が締結状態で、かつ、ドラム回転数NDRUMが不明な場合、ドラム回転数NDRUMをプライマリ回転数NPRIに置き換えたドラム回転推定値NDRUM’とし、タービン回転推定値NTBN’を、ドラム回転推定値NDRUM’とプライマリ回転センサ90からの検出値とによって計算し、
 停車中、前進クラッチ31が締結状態で、かつ、プライマリ回転数NPRIが不明な場合、プライマリ回転数NPRIをゼロに置き換えたプライマリ回転推定値NPRI’とし、タービン回転推定値NTBN’を、プライマリ回転推定値NPRI’とドラム回転センサ96からの検出値とによって計算する。
 このため、停車中、前進クラッチ31が締結状態で、ドラム回転数NDRUM又はプライマリ回転数NPRIが不明な場合、不明なドラム回転推定値NDRUM’又はプライマリ回転推定値NPRI’と、タービン回転推定値NTBN’を計算することができる。
 即ち、前進クラッチ31が締結状態で停車しているため、ドラム回転数NDRUM=プライマリ回転数NPRI=0になるはずである。よって、ドラム回転推定値NDRUM’又はプライマリ回転推定値NPRI’を推定することが可能であるし、通常通りに共線図に基づいてタービン回転推定値NTBN’を推定することが可能である。
(4) The turbine rotation estimation means (turbine rotation estimation unit 80) replaces the drum rotation speed NDRUM with the primary rotation speed NPRI when the forward clutch 31 is engaged and the drum rotation speed NDRUM is unknown while the vehicle is stopped. The drum rotation estimated value NDRUM' is set, and the turbine rotation estimated value NTBN' is calculated by the drum rotation estimated value NDRUM' and the detection value from the primary rotation sensor 90,
When the forward clutch 31 is engaged while the vehicle is stopped and the primary rotation speed NPRI is unknown, the primary rotation speed NTPRI is set to the primary rotation estimated value NPRI' in which the primary rotation speed NPRI is replaced with zero. It is calculated by the value NPRI′ and the detection value from the drum rotation sensor 96.
Therefore, when the forward clutch 31 is engaged and the drum rotation speed NDRUM or the primary rotation speed NPRI is unknown while the vehicle is stopped, the unknown drum rotation estimated value NDRUM' or primary rotation estimated value NPRI' and the turbine rotation estimated value NTBN are unknown. 'Can be calculated.
That is, since the forward clutch 31 is stopped in the engaged state, the drum rotation speed NDRUM=primary rotation speed NPRI=0. Therefore, it is possible to estimate the drum rotation estimated value NDRUM' or the primary rotation estimated value NPRI', and it is possible to estimate the turbine rotation estimated value NTBN' based on the alignment chart as usual.
 (5) タービン回転推定手段(タービン回転推定部80)は、停車中、後退ブレーキ32が締結状態で、かつ、ドラム回転数NDRUMが不明な場合、ドラム回転数NDRUMをゼロに置き換えてドラム回転推定値NDRUM’とし、タービン回転推定値NTBN’を、ドラム回転推定値NDRUM’とプライマリ回転センサ90からの検出値とによって計算し、
 停車中、後退ブレーキ32が締結状態で、かつ、プライマリ回転数NPRIが不明な場合、プライマリ回転数NPRIをゼロに置き換えてプライマリ回転推定値NPRI’とし、タービン回転推定値NTBN’を、プライマリ回転推定値NPRI’とドラム回転センサ96からの検出値とによって計算する。
 このため、停車中、後退ブレーキ32が締結状態で、ドラム回転数NDRUM又はプライマリ回転数NPRIが不明な場合、不明なドラム回転推定値NDRUM’又はプライマリ回転推定値NPRI’と、タービン回転推定値NTBN’を計算することができる。
 即ち、ドラム回転数NDRUMが不明な場合は、後退ブレーキ32の締結によりドラム回転数NDRUM=0のはずであるため、ドラム回転推定値NDRUM’を推定することが可能である。そして、ドラム回転数NDRUM=0として通常通りに共線図に基づいてタービン回転推定値NTBN’を推定することが可能である。プライマリ回転数NPRIが不明な場合は、後退ブレーキ32を締結して停車していることで、プライマリ回転数NPRI=0のはずである。このため、プライマリ回転推定値NPRI’を推定することが可能である。そして、プライマリ回転数NPRI=0として通常通りに共線図に基づいてタービン回転推定値NTBN’を推定することが可能である。
(5) The turbine rotation estimation means (turbine rotation estimation unit 80) replaces the drum rotation speed NDRUM with zero and estimates the drum rotation when the reverse brake 32 is engaged and the drum rotation speed NDRUM is unknown while the vehicle is stopped. As the value NDRUM', the turbine rotation estimated value NTBN' is calculated by the drum rotation estimated value NDRUM' and the detection value from the primary rotation sensor 90,
When the reverse brake 32 is engaged and the primary rotation speed NPRI is unknown while the vehicle is stopped, the primary rotation speed NPRI is replaced with zero to set the primary rotation estimated value NPRI', and the turbine rotation estimated value NTBN' is set to the primary rotation estimation. It is calculated by the value NPRI′ and the detection value from the drum rotation sensor 96.
Therefore, when the reverse brake 32 is engaged and the drum speed NDRUM or the primary speed NPRI is unknown while the vehicle is stopped, the unknown drum rotation estimated value NDRUM' or primary rotation estimated value NPRI' and the turbine rotation estimated value NTBN are unknown. 'Can be calculated.
That is, when the drum rotation speed NDRUM is unknown, it is supposed that the drum rotation speed NDRUM=0 by the engagement of the reverse brake 32, and therefore the drum rotation estimated value NDRUM' can be estimated. Then, it is possible to estimate the turbine rotation estimated value NTBN′ based on the alignment chart as usual with the drum rotation speed NDRUM=0. When the primary rotation speed NPRI is unknown, the reverse rotation brake 32 is engaged and the vehicle is stopped, so that the primary rotation speed NPRI should be 0. Therefore, it is possible to estimate the primary rotation estimated value NPRI'. Then, it is possible to estimate the turbine rotation estimated value NTBN′ based on the alignment chart as usual with the primary rotation speed NPRI=0.
 以上、本発明の無段変速機の制御装置を実施例に基づき説明してきた。しかし、具体的な構成については、この実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The control device for the continuously variable transmission according to the present invention has been described above based on the embodiments. However, the specific configuration is not limited to this embodiment, and design changes and additions are allowed without departing from the gist of the invention according to each claim of the claims.
 実施例では、前後進切替機構3として、ダブルピニオン式遊星歯車30と前進クラッチ31と後退ブレーキ32とを有する例を示した。しかし、前後進切替機構としては、シングルピニオン式遊星歯車と前進クラッチと後退ブレーキとを有する例としても良い。ダブルピニオン式遊星歯車の場合、3つの回転メンバS,C,Rが共線図の横軸にS→R→Cの順に(1-α):αの比率で並ぶのに対し、シングルピニオン式遊星歯車の場合、3つの回転メンバS,C,Rが共線図の横軸にS→C→Rの順に1:αの比率で並ぶ点で相違する。 In the example, the forward/reverse switching mechanism 3 has the double pinion type planetary gear 30, the forward clutch 31, and the reverse brake 32. However, the forward/reverse switching mechanism may be an example having a single pinion type planetary gear, a forward clutch and a reverse brake. In the case of the double pinion type planetary gear, the three rotating members S, C and R are arranged on the horizontal axis of the nomographic chart in the order of S→R→C (1-α):α, while the single pinion type In the case of a planetary gear, the three rotating members S, C, and R are different in that they are arranged on the horizontal axis of the alignment chart in the order of S→C→R at a ratio of 1:α.
 実施例では、本発明の制御装置を、自動変速機としてベルト式無段変速機CVTを搭載したエンジン車に適用する例を示した。しかし、本発明の制御装置は、副変速機付き無段変速機構を搭載した車両に適用しても良い。また、適用される車両としても、エンジン車に限らず、走行用駆動源にエンジンとモータを搭載したハイブリッド車、走行用駆動源にモータを搭載した電気自動車等に対しても適用できる。 In the embodiment, an example in which the control device of the present invention is applied to an engine vehicle equipped with a belt type continuously variable transmission CVT as an automatic transmission has been shown. However, the control device of the present invention may be applied to a vehicle equipped with a continuously variable transmission mechanism with an auxiliary transmission. Further, the vehicle to be applied is not limited to an engine vehicle, but can be applied to a hybrid vehicle having an engine and a motor as a driving source for traveling, an electric vehicle having a motor as a driving source for traveling, and the like.

Claims (6)

  1.  走行用駆動源に連結されるトルクコンバータと、前記トルクコンバータに連結される前後進切替機構と、前記前後進切替機構に連結される無段変速機構と、変速機コントローラと、を備え、
     前記前後進切替機構は、遊星歯車と前進クラッチと後退ブレーキとを有し、前記無段変速機構は、プライマリプーリとセカンダリプーリとに架け渡されるベルトを有し、前記変速機コントローラは、前記前後進切替機構へ入力されるタービン回転数情報を用いる制御を実行する無段変速機の制御装置であって、
     前記トルクコンバータのタービンランナと前記遊星歯車のサンギアとを連結するタービン回転軸と、
     前記前進クラッチを介して連結された前記遊星歯車のキャリヤとリングギアと、
     前記リングギアと連結するドラムメンバの回転数を検出するドラム回転センサと、
     前記遊星歯車のキャリヤと前記プライマリプーリとを連結するプライマリ回転軸の回転数を検出するプライマリ回転センサと、
     前記ドラム回転センサと前記プライマリ回転センサの検出値に基づいて前記タービン回転軸のタービン回転推定値を計算するタービン回転推定手段と、を有し、
     前記タービン回転推定手段は、前記ドラム回転センサの検出値又は前記プライマリ回転センサの検出値が不明な場合、走行/停車状態、前記前進クラッチと前記後退ブレーキの締結/解放状態、前記無段変速機構の変速比のうち、少なくとも二つを用いて、前記不明な検出値の回転数を推定し、該推定された回転推定値と、他方のセンサ検出値とによって前記タービン回転推定値を計算する、
     無段変速機の制御装置。
    A torque converter connected to the drive source for traveling, a forward/reverse switching mechanism connected to the torque converter, a continuously variable transmission mechanism connected to the forward/reverse switching mechanism, and a transmission controller,
    The forward/reverse switching mechanism has a planetary gear, a forward clutch, and a reverse brake, the continuously variable transmission mechanism has a belt spanned between a primary pulley and a secondary pulley, and the transmission controller has the forward/backward movement. A control device for a continuously variable transmission that executes control using turbine speed information input to a forward switching mechanism,
    A turbine rotating shaft that connects the turbine runner of the torque converter and the sun gear of the planetary gear,
    A carrier and a ring gear of the planetary gear connected via the forward clutch,
    A drum rotation sensor for detecting the number of rotations of a drum member connected to the ring gear;
    A primary rotation sensor that detects the number of rotations of a primary rotation shaft that connects the carrier of the planetary gear and the primary pulley;
    Turbine rotation estimation means for calculating a turbine rotation estimation value of the turbine rotation shaft based on detection values of the drum rotation sensor and the primary rotation sensor,
    The turbine rotation estimation means, when the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown, a running/stopped state, an engagement/release state of the forward clutch and the reverse brake, the continuously variable transmission mechanism. Of at least two of the gear ratios, the estimated rotation speed of the unknown detected value is estimated, and the estimated turbine rotation speed is calculated by the estimated rotation speed estimated value and the other sensor detection value.
    Control device for continuously variable transmission.
  2.  請求項1に記載された無段変速機の制御装置において、
     前記タービン回転推定手段は、走行中、前記前進クラッチが締結状態で、かつ、ドラム回転数が不明な場合、前記ドラム回転数をプライマリ回転数に置き換えたドラム回転推定値とし、前記タービン回転推定値を、前記ドラム回転推定値と前記プライマリ回転センサからの検出値とによって計算し、
     走行中、前記前進クラッチが締結状態で、かつ、プライマリ回転数が不明な場合、前記プライマリ回転数をドラム回転数に置き換えたプライマリ回転推定値とし、前記タービン回転推定値を、前記プライマリ回転推定値と前記ドラム回転センサからの検出値とによって計算する、
     無段変速機の制御装置。
    The control device for a continuously variable transmission according to claim 1,
    The turbine rotation estimation means, while traveling, when the forward clutch is in the engaged state, and the drum rotation speed is unknown, sets the drum rotation estimation value by replacing the drum rotation speed with the primary rotation speed, and the turbine rotation estimation value. Is calculated by the drum rotation estimated value and the detection value from the primary rotation sensor,
    During traveling, when the forward clutch is in the engaged state, and if the primary rotation speed is unknown, the primary rotation speed is set to the primary rotation estimated value by replacing the primary rotation speed with the drum rotation speed, and the turbine rotation estimated value is set to the primary rotation estimated value. And calculated by the detection value from the drum rotation sensor,
    Control device for continuously variable transmission.
  3.  請求項1又は2に記載された無段変速機の制御装置において、
     前記タービン回転推定手段は、走行中、前記後退ブレーキが締結状態で、かつ、ドラム回転数が不明な場合、前記ドラム回転数をゼロに置き換えてドラム回転推定値とし、前記タービン回転推定値を、前記ドラム回転推定値と前記プライマリ回転センサからの検出値とによって計算し、
     走行中、前記後退ブレーキが締結状態で、かつ、プライマリ回転数が不明な場合、前記プライマリ回転数を、前記無段変速機構の最ロー変速比とセカンダリ回転数により計算したプライマリ回転推定値とし、前記タービン回転推定値を、プライマリ回転推定値と前記ドラム回転センサからの検出値とによって計算する、
     無段変速機の制御装置。
    A control device for a continuously variable transmission according to claim 1 or 2,
    The turbine rotation estimation means, during traveling, when the reverse brake is in the engaged state, and when the drum rotation speed is unknown, replaces the drum rotation speed with zero to set the drum rotation estimated value, and the turbine rotation estimated value, Calculated by the drum rotation estimated value and the detection value from the primary rotation sensor,
    During traveling, when the reverse brake is in the engaged state, and when the primary rotation speed is unknown, the primary rotation speed is the primary rotation estimated value calculated from the lowest speed ratio and the secondary rotation speed of the continuously variable transmission mechanism, The turbine rotation estimated value is calculated by a primary rotation estimated value and a detection value from the drum rotation sensor,
    Control device for continuously variable transmission.
  4.  請求項1から3までの何れか一項に記載された無段変速機の制御装置において、
     前記タービン回転推定手段は、停車中、前記前進クラッチが締結状態で、かつ、ドラム回転数が不明な場合、前記ドラム回転数をプライマリ回転数に置き換えたドラム回転推定値とし、前記タービン回転推定値を、前記ドラム回転推定値と前記プライマリ回転センサからの検出値とによって計算し、
     停車中、前記前進クラッチが締結状態で、かつ、プライマリ回転数が不明な場合、前記プライマリ回転数をゼロに置き換えたプライマリ回転推定値とし、前記タービン回転推定値を、前記プライマリ回転推定値と前記ドラム回転センサからの検出値とによって計算する、
     無段変速機の制御装置。
    A control device for a continuously variable transmission according to any one of claims 1 to 3,
    The turbine rotation estimation means, while the vehicle is stopped, when the forward clutch is in the engaged state, and the drum rotation speed is unknown, sets the drum rotation estimation value by replacing the drum rotation speed with the primary rotation speed, and the turbine rotation estimation value. Is calculated by the drum rotation estimated value and the detection value from the primary rotation sensor,
    While the vehicle is stopped, the forward clutch is in the engaged state, and, if the primary rotation speed is unknown, the primary rotation speed is replaced with a primary rotation estimated value, and the turbine rotation estimated value is the primary rotation estimated value and the turbine rotation estimated value. Calculated with the detection value from the drum rotation sensor,
    Control device for continuously variable transmission.
  5.  請求項1から4までの何れか一項に記載された無段変速機の制御装置において、
     前記タービン回転推定手段は、停車中、前記後退ブレーキが締結状態で、かつ、ドラム回転数が不明な場合、前記ドラム回転数をゼロに置き換えてドラム回転推定値とし、前記タービン回転推定値を、前記ドラム回転推定値と前記プライマリ回転センサからの検出値とによって計算し、
     停車中、前記後退ブレーキが締結状態で、かつ、プライマリ回転数が不明な場合、前記プライマリ回転数をゼロに置き換えてプライマリ回転推定値とし、前記タービン回転推定値を、プライマリ回転推定値と前記ドラム回転センサからの検出値とによって計算する、
     無段変速機の制御装置。
    A control device for a continuously variable transmission according to any one of claims 1 to 4,
    The turbine rotation estimation means, while the vehicle is stopped, and the reverse brake is in a fastening state, and when the drum rotation speed is unknown, replaces the drum rotation speed with zero to set the drum rotation estimated value, and the turbine rotation estimated value, Calculated by the drum rotation estimated value and the detection value from the primary rotation sensor,
    While the vehicle is stopped, when the reverse brake is in the engaged state and the primary rotation speed is unknown, the primary rotation speed is replaced with zero to obtain the primary rotation estimated value, and the turbine rotation estimated value is set to the primary rotation estimated value and the drum. Calculated by the detected value from the rotation sensor,
    Control device for continuously variable transmission.
  6.  走行用駆動源に連結されるトルクコンバータと、前記トルクコンバータに連結される前後進切替機構と、前記前後進切替機構に連結される無段変速機構と、変速機コントローラと、を備え、
     前記前後進切替機構は、遊星歯車と前進クラッチと後退ブレーキとを有し、前記無段変速機構は、プライマリプーリとセカンダリプーリとに架け渡されるベルトを有し、前記変速機コントローラは、前記前後進切替機構へ入力されるタービン回転数情報を用いる制御を実行し、
     前記トルクコンバータのタービンランナと前記遊星歯車のサンギアとを連結するタービン回転軸と、
     前記前進クラッチを介して連結された前記遊星歯車のキャリヤとリングギアと、
     前記リングギアと連結するドラムメンバの回転数を検出するドラム回転センサと、
     前記遊星歯車のキャリヤと前記プライマリプーリとを連結するプライマリ回転軸の回転数を検出するプライマリ回転センサと、
     を有する無段変速機の制御方法であって、
     前記タービン回転数情報として、前記ドラム回転センサと前記プライマリ回転センサの検出値に基づいて前記タービン回転軸のタービン回転推定値を計算し、
     前記ドラム回転センサの検出値又は前記プライマリ回転センサの検出値が不明な場合は、走行/停車状態、前記前進クラッチと前記後退ブレーキの締結/解放状態、前記無段変速機構の変速比のうち、少なくとも二つを用いて、前記不明な検出値の回転数を推定し、該推定された回転推定値と、他方のセンサ検出値とによって前記タービン回転推定値を計算する、
     無段変速機の制御方法。
    A torque converter connected to the drive source for traveling, a forward/reverse switching mechanism connected to the torque converter, a continuously variable transmission mechanism connected to the forward/reverse switching mechanism, and a transmission controller,
    The forward/reverse switching mechanism has a planetary gear, a forward clutch, and a reverse brake, the continuously variable transmission mechanism has a belt spanned between a primary pulley and a secondary pulley, and the transmission controller has the forward/backward movement. The control using the turbine speed information input to the forward switching mechanism is executed,
    A turbine rotating shaft that connects the turbine runner of the torque converter and the sun gear of the planetary gear,
    A carrier and a ring gear of the planetary gear connected via the forward clutch,
    A drum rotation sensor for detecting the number of rotations of a drum member connected to the ring gear;
    A primary rotation sensor that detects the number of rotations of a primary rotation shaft that connects the carrier of the planetary gear and the primary pulley;
    A control method for a continuously variable transmission having:
    As the turbine rotation speed information, a turbine rotation estimated value of the turbine rotation shaft is calculated based on detection values of the drum rotation sensor and the primary rotation sensor,
    If the detection value of the drum rotation sensor or the detection value of the primary rotation sensor is unknown, the running/stopped state, the engagement/release state of the forward clutch and the reverse brake, the gear ratio of the continuously variable transmission mechanism, At least two are used to estimate the rotation speed of the unknown detection value, and the turbine rotation estimation value is calculated by the estimated rotation estimation value and the other sensor detection value,
    Control method for continuously variable transmission.
PCT/JP2019/043813 2018-11-30 2019-11-08 Control device and control method for continuously variable transmission WO2020110658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558267A JP6913258B2 (en) 2018-11-30 2019-11-08 Control device and control method for continuously variable transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018225206 2018-11-30
JP2018-225206 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020110658A1 true WO2020110658A1 (en) 2020-06-04

Family

ID=70853731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043813 WO2020110658A1 (en) 2018-11-30 2019-11-08 Control device and control method for continuously variable transmission

Country Status (2)

Country Link
JP (1) JP6913258B2 (en)
WO (1) WO2020110658A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092106A (en) * 1995-06-21 1997-01-07 Hitachi Ltd Power train controller and its system
JP2002354604A (en) * 2001-05-21 2002-12-06 Toyota Motor Corp Hybrid automobile
JP2005172010A (en) * 2003-12-05 2005-06-30 Fuji Heavy Ind Ltd Control device for continuously variable transmission
JP2016089894A (en) * 2014-10-31 2016-05-23 ダイハツ工業株式会社 Control device of power split-type continuously variable transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092106A (en) * 1995-06-21 1997-01-07 Hitachi Ltd Power train controller and its system
JP2002354604A (en) * 2001-05-21 2002-12-06 Toyota Motor Corp Hybrid automobile
JP2005172010A (en) * 2003-12-05 2005-06-30 Fuji Heavy Ind Ltd Control device for continuously variable transmission
JP2016089894A (en) * 2014-10-31 2016-05-23 ダイハツ工業株式会社 Control device of power split-type continuously variable transmission

Also Published As

Publication number Publication date
JPWO2020110658A1 (en) 2021-04-30
JP6913258B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
US6908413B2 (en) Driving control apparatus for vehicle and driving control method for vehicle
US8326503B2 (en) Lock-up clutch control device
US8241178B2 (en) Continuously variable transmission and control method thereof
US9523400B2 (en) Lockup clutch control device
US9765886B2 (en) Control system and control method for vehicle
US6860833B2 (en) Driving control apparatus for vehicle and control method of same
US8532893B2 (en) Automatic transmission
US20140200112A1 (en) Control apparatus for vehicle
US9638318B2 (en) Control device for continuously variable transmission
EP1157874A2 (en) Method and apparatus for a control system of an automatic transmission
US11260869B2 (en) Control device for automatic transmission
US11059471B2 (en) Power transmission device and method for controlling same
US10690239B2 (en) Control device for vehicle and control method for vehicle
WO2020110658A1 (en) Control device and control method for continuously variable transmission
JP7169457B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP5994663B2 (en) Vehicle control device
JP4129161B2 (en) Automatic transmission lockup control device
US7678019B2 (en) Control device and control method for friction engagement element
WO2019044789A1 (en) Abnormality diagnosing device and abnormality diagnosing method for selection solenoid valve of automatic transmission
JP6065578B2 (en) Control device and control method for continuously variable transmission
JP6036484B2 (en) Control device for continuously variable transmission
JP2013160278A (en) Vehicle control unit
WO2020054263A1 (en) Hydraulic control device and hydraulic control method for automatic transmission
JP2020016297A (en) Power transmission device and control method therefor
JPS6343057A (en) Speed caange control device for automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891000

Country of ref document: EP

Kind code of ref document: A1