WO2020110646A1 - Chip for detecting material derived from living body, apparatus for detecting material derived from living body, and system for detecting material derived from living body - Google Patents

Chip for detecting material derived from living body, apparatus for detecting material derived from living body, and system for detecting material derived from living body Download PDF

Info

Publication number
WO2020110646A1
WO2020110646A1 PCT/JP2019/043641 JP2019043641W WO2020110646A1 WO 2020110646 A1 WO2020110646 A1 WO 2020110646A1 JP 2019043641 W JP2019043641 W JP 2019043641W WO 2020110646 A1 WO2020110646 A1 WO 2020110646A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
substance detection
holding surface
biogenic
detection chip
Prior art date
Application number
PCT/JP2019/043641
Other languages
French (fr)
Japanese (ja)
Inventor
佳明 桝田
慎太郎 中食
幸香 大久保
山崎 知洋
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/287,591 priority Critical patent/US20210318247A1/en
Priority to EP19890530.9A priority patent/EP3889584A4/en
Priority to CN201980077118.5A priority patent/CN113167730A/en
Publication of WO2020110646A1 publication Critical patent/WO2020110646A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning

Definitions

  • the present technology relates to a biogenic substance detection chip, a biogenic substance detection device, and a biogenic substance detection system.
  • Optical detection including at least a third substrate provided with a plurality of light irradiation means and a fourth substrate provided with a plurality of light detection means positioned corresponding to the positions of the respective wells A device is disclosed. This optical detection device can measure various reactions progressing in each well.
  • Patent Document 2 discloses a chemical sensor including a substrate on which a photodetection portion is formed, and a plasmon absorption layer having a metal nanostructure that causes plasmon absorption and is stacked on the substrate. There is. With this chemical sensor, it is possible to detect the luminescence due to the bond between the probe material and the target material fixed on the sensor.
  • the main purpose of the present technology is to provide a biogenic substance detection chip with high detection accuracy.
  • the pixel includes at least a holding surface that holds a biological substance, and a photoelectric conversion unit that is provided below the holding surface and that is provided on a semiconductor substrate.
  • a biogenic substance detection chip in which a color mixture suppressing unit is provided between the pixels.
  • the pixel and the color mixing suppression unit may have different conductivity types.
  • the pixel may be an N-type region and the color mixture suppressing unit may be a P-type region.
  • the pixel may be a P-type region and the color mixture suppressing portion may be an N-type region.
  • each of the plurality of pixels has a photoelectric conversion region, and a trench can be provided between the photoelectric conversion regions.
  • at least one selected from an oxide film and a metal may be included inside the trench.
  • a recess may be provided on the holding surface above the photoelectric conversion unit.
  • the holding surface may be provided on a film formed on the semiconductor substrate.
  • the film may have a first refractive index
  • the semiconductor substrate may have a second refractive index different from the first refractive index.
  • the film may be one or more films selected from an inorganic film and an organic film.
  • the biogenic substance detection chip according to the present technology may include a light-shielding film provided above the adjacent pixels.
  • the space between the light shielding films may be formed to have one or more shapes selected from a circle, an ellipse, and a polygon having an R shape in a top view.
  • the holding surface may be provided on an on-chip lens (OCL) provided on the semiconductor substrate.
  • OCL on-chip lens
  • the holding surface may be provided on a flattening film formed on the on-chip lens (OCL).
  • the biogenic substance that can be detected by the biogenic substance detection chip according to the present technology is selected from nucleic acids, proteins, cells, microorganisms, chromosomes, liposomes, mitochondria, organelles (organelles), and complexes thereof.
  • One or more biological materials can be mentioned.
  • the pixel includes at least a holding surface for holding a biological substance, and a photoelectric conversion unit provided below the holding surface, A color mixing suppression part is provided between the pixels, a chip for detecting a biological substance, An analysis unit that analyzes electrical information acquired by the biological substance detection chip, An apparatus for detecting a substance derived from a living body, comprising:
  • the present technology further includes a plurality of pixels,
  • the pixel includes at least a holding surface for holding a biological substance, and a photoelectric conversion unit provided below the holding surface, A color mixing suppression part is provided between the pixels, a chip for detecting a biological substance, An analysis device that analyzes the electrical information acquired by the biogenic substance detection chip,
  • a biological substance detection system comprising:
  • living material shall broadly include nucleic acids, proteins, cells, microorganisms, chromosomes, liposomes, mitochondria, organelles (organelles), complexes thereof, and the like.
  • Cells include animal cells (such as blood cells) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, fungi such as yeast.
  • FIG. 2 is a schematic conceptual diagram schematically showing the interaction of the biogenic substance S that can be detected by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology.
  • FIG. 2 is a schematic conceptual diagram schematically showing the interaction of the biogenic substance S that can be detected by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology.
  • FIG. 2 is a schematic conceptual diagram schematically showing the interaction of the biogenic substance S that can be detected by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology. ..
  • A is a schematic end view schematically showing a second embodiment of the biogenic substance detection chip 1 according to the present technology
  • B is a schematic cross-sectional view schematically showing a modified example of the second embodiment.
  • .. It is a schematic cross section which shows typically 3rd Embodiment of the chip
  • FIG. 25 is a schematic cross-sectional view taken along the line AA of FIG. 24 in which the internal structure is omitted. It is a block diagram which shows the concept of the biological substance detection apparatus 2 which concerns on this technique. It is a block diagram which shows the concept of the biological substance detection system 3 which concerns on this technique.
  • the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology include (1) detection of the biogenic substance S itself, and (2) interaction of the biogenic substance S. And (3) screening of other substances (for example, medicinal components) using the biogenic substance S. In addition, each detection is performed on the holding surface 111 of the biogenic substance detection chip 1 described later.
  • Detection of the body-derived substance S itself
  • biological substances such as red blood cells, white blood cells, platelets, cytokines, hormonal substances, sugars, lipids and proteins contained in body fluids such as blood, urine, feces and saliva
  • the present technology can be used for detecting microorganisms such as bacteria, fungi, and viruses contained in water; genes in cells and microorganisms.
  • the presence of the substance to be detected can be detected by the presence or absence of the desired light detection after dyeing with a dye that specifically acts on the substance to be detected or the substance not to be detected.
  • the detected results can be used for diagnosis of diseases, internal environment diagnosis, water quality test and the like.
  • the present technology can be used for detection of interaction such as protein interaction, nucleic acid hybridization, and binding between cytokine or hormone substance and receptor.
  • detection of interaction such as protein interaction, nucleic acid hybridization, and binding between cytokine or hormone substance and receptor.
  • a specific detection example will be described with reference to FIGS.
  • a biological substance S1 such as a protein or a receptor (or a model imitating a receptor) is immobilized on the holding surface 111 (see A in FIG. 1).
  • a substance in which a dye such as fluorescence F1 to F3 is immobilized is added to the biogenic substances S2 to S4 for confirming the interaction with (see B in FIG. 1).
  • the biological substances S3 and S4 that have not interacted with each other are washed (see C in FIG. 1), and the fluorescence F1 is detected from the holding surface 111 (see D in FIG. 1), whereby the biological substance S1 and the biological substance The interaction with the derived substance S2 can be detected.
  • a biogenic substance S1 such as cells is immobilized on the holding surface 111, and the transporter t of the biogenic substance S1 (for example, a transporter in a cell membrane). It is possible to detect the illuminant F1 that is taken in through.
  • a probe S5 made of DNA, RNA or the like is immobilized on the holding surface 111 (see A in FIG. 2), and a sample containing DNAs S6 and S7 that can be targets and Add Calculator I (see B in Figure 2). Then, when DNA S6 having a sequence complementary to probe S5 is contained in the sample, a hybridization reaction occurs. By washing the DNAS7 that has not been hybridized (see C in FIG. 2) and detecting the light from the intercalator I from the holding surface 111 (see D in FIG. 2), the probe S5 and the target DNAS6 are detected. Hybridization can be detected.
  • the biogenic substance S8 is fixed on the holding surface 111 (see A in FIG. 3), and interacts with this to form a new substance S10, the biogenic substance S9. Is added (see B in FIG. 3).
  • a dye such as fluorescent F4 that specifically binds to the substance S10 is added (see C in FIG. 3), and the fluorescent F4 is detected from the holding surface 111 (see D in FIG. 3) to obtain the biologically derived substance S8.
  • the interaction with the biological substance S9 can be detected.
  • the receptor R1 (or a model imitating the receptor R1) is fixed to the holding surface 111 (see A in FIG. 4), and the operability of the receptor R1 is increased.
  • dyes such as fluorescent dyes F5 to F7 immobilized are added (see B in FIG. 4).
  • the substances d2 and d3 that have not bound to the receptor R1 are washed (see C in FIG. 4), and the fluorescence F5 is detected from the holding surface 111 (see D in FIG. 3) to activate the receptor R1. It is possible to screen the substance d1 which can be a drug.
  • the receptor R2 (or a model imitating the receptor R2) is immobilized on the holding surface 111 (see A in FIG. 5), and the receptor R2 has an antagonistic property.
  • the substance d4 for confirming is confirmed (see B in FIG. 5).
  • a ligand L1 that binds to the receptor R2 on which a dye such as fluorescent F8 is immobilized is added (see C in FIG. 5).
  • the substance d4 can be an antagonist of the receptor R2
  • the ligand L1 cannot bind to the receptor R2 because the receptor R2 and the substance d4 are already bound (see FIG. 5). (See C).
  • the receptor R3 (or a model imitating the receptor R3) is fixed to the holding surface 111 (see A in FIG. 6), and the receptor R3 A substance d5 for confirming antagonisticity is added (see B in FIG. 6).
  • a ligand L2 that binds to a receptor R3 having a dye such as fluorescent F9 immobilized thereon is added (see C in FIG. 6).
  • the substance d5 cannot be an antagonist of the receptor R3
  • the ligand L2 binds to the receptor R3 (see D in FIG. 6).
  • fluorescence F9 is detected from the holding surface 111 (see E in FIG. 6).
  • the substance d4 that can be an antagonist of the receptor R3 can be screened depending on whether or not the fluorescence F8 or the fluorescence F9 is detected from the holding surface 111.
  • the biogenic substance detection chip 1 includes a plurality of pixels 11.
  • the pixel 11 is provided on a holding surface 111 that holds the biogenic substance S, and is provided below the holding surface 111. At least the provided photoelectric conversion unit 112 is provided.
  • a color mixture suppression unit 13 is provided between each pixel 11.
  • FIG. 7 is a schematic cross-sectional view schematically showing a first embodiment of the biogenic substance detection chip 1 according to the present technology.
  • the biogenic substance detection chip 1 according to the first embodiment includes an effective pixel region 11E in which a plurality of pixels 11 are two-dimensionally arranged in a matrix.
  • Each pixel 11 includes at least a holding surface 111 that holds the biological substance S and a photoelectric conversion unit 112.
  • a photoelectric conversion element such as a photodiode can be freely used.
  • each pixel 11 may include a pixel circuit including a charge storage section, a plurality of transistors, a capacitive element, and the like.
  • an optical black pixel, a wiring region, or the like can be provided on the outside O of the effective pixel region 11E.
  • the holding surface 111 is not particularly limited as long as it can hold the biological substance S, and surface treatment can be freely used.
  • the holding surface 111 can be formed by applying a photosensitive silane coupling agent or the like that is hydrophilically modified by irradiation with ultraviolet rays and selectively irradiating the area where the biological substance S is desired to be retained with ultraviolet rays.
  • a biological substance S such as a nucleic acid having one end thereof biotinylated can be held by avidin-biotin bond.
  • a color mixture suppression unit 13 is provided between each pixel 11.
  • the pixels 11 and the color mixing suppression unit 13 have different conductivity types, thereby suppressing color mixing between the adjacent pixels 11.
  • the pixels 11 are N-type regions and the pixels 11 are P-type regions, or conversely, the pixels 11 are P-type regions and the pixels 11 are N-type regions. Color mixing between adjacent pixels 11 can be suppressed.
  • biogenic substance S is described for the sake of explanation, but the biogenic substance detection chip 1 according to the present technology does not include the biogenic substance S. ..
  • FIG. 8A is a schematic end view schematically showing a second embodiment of the biogenic substance detection chip 1 according to the present technology, and FIG. 8B shows the second embodiment. It is a schematic cross section which shows the modification of a form typically.
  • the biogenic substance detection chip 1 according to the second embodiment includes trenches 13T between the photoelectric conversion regions 112A, and the trenches 13T function as the color mixing suppression unit 13.
  • An oxide film 14 can be provided inside the trench 13T as shown in FIG. 8B.
  • Examples of the material of the oxide film 14 include materials having a negative fixed charge such as hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), and tantalum oxide (Ta 2 O 5 ). These oxide films may be provided as a single film or a plurality of films may be stacked. By providing the oxide film, dark current can be suppressed and erroneous determination can be suppressed.
  • an oxide film 14 and a metal 15 can be provided inside the trench 13T.
  • the metal 15 it is possible to enhance the light blocking effect, suppress color mixture to adjacent pixels, and suppress erroneous determination.
  • the oxide film 14 and the metal 15 inside the trench 13T it is possible to improve the color mixture suppressing effect between the adjacent pixels 11 while suppressing the dark current.
  • the oxide film described with reference to FIG. 8 can be used. That is, a silicon oxide film (SiO 2 film), a hafnium oxide film (HfO 2 film), an aluminum oxide film (Al 2 O 3 film), a tantalum oxide film (Ta 2 O 5 film), and the like can be given.
  • tungsten (W), aluminum (Al), copper (Cu), titanium (Ti) or the like can be used as the metal.
  • FIG. 10A is a schematic cross-sectional view schematically showing a fourth embodiment of the biogenic substance detection chip 1 according to the present technology.
  • the living body-derived substance detection chip 1 according to the fourth embodiment has a recess 111C on the holding surface 111 above the photoelectric conversion unit 112. By holding the biogenic substance S to be detected in the recess 111C, it is possible to prevent light from being scattered from the biogenic substance S.
  • the recess 111C can be provided with an oxide film 14 as shown in FIG. 10B.
  • the oxide film 14 it is possible to eliminate the color mixing path and improve the sensitivity.
  • the shape of the concave portion 111C is not particularly limited, and in addition to the substantially triangular shape in cross section as shown in FIGS. 10A and 10B, the substantially rectangular shape in cross section as shown in FIG. It can be designed in a substantially semicircular shape in cross section.
  • FIG. 11 is a schematic cross-sectional view schematically showing a fifth embodiment of the biogenic substance detection chip 1 according to the present technology.
  • the holding surface 111 is provided on the film 16 formed on the semiconductor substrate 12.
  • an inorganic film such as a tantalum oxide film (Ta 2 O 5 film), an organic film made of a resin material such as a styrene resin, an acrylic resin, a styrene-acryl copolymer resin, or a siloxane resin. it can.
  • the refractive index of the film 16 is preferably different from that of the semiconductor substrate 12.
  • the film 16 has a first refractive index and the semiconductor substrate 12 has a second refractive index different from the first refractive index. Since the refractive index of the film 16 and the refractive index of the semiconductor substrate 12 are different from each other, an angle-dependent optical design of the reflectance can be performed, and the lateral direction of the light from the biological substance S held on the holding surface 111 can be obtained. It is possible to prevent the light from being reflected to enter the semiconductor substrate 12, and as a result, it is possible to prevent color mixing between the pixels 11.
  • the film 16 can be included in the above-mentioned trench 13T as in the sixth to eighth embodiments shown in FIGS. 12 to 14. Further, the film 16 can be formed by laminating a plurality of films 16 or by laminating it with the oxide film 14 as in the eighth embodiment shown in FIG. 14, depending on the purpose.
  • FIG. 15 is a schematic cross-sectional view schematically showing a ninth embodiment of the biogenic substance detection chip 1 according to the present technology.
  • the biogenic substance detection chip 1 according to the ninth embodiment includes the light shielding film 17 provided above the adjacent pixels 11. Providing the light-shielding film 17 can further prevent color mixing between the pixels 11. Further, by providing the light shielding film 17, the liquid sample can be held on the holding surface 111, and the biological substance S can be held in the liquid.
  • the light-shielding film 17 can be freely selected as long as it is a film formed of a light-shielding material.
  • a metal film of tungsten (W), aluminum (Al), copper (Cu), titanium (Ti), etc., an optical black filter, etc. may be mentioned.
  • the form of the light-shielding film 17 is not particularly limited and can be freely designed according to the purpose. However, as shown in FIGS. 16A to 16C, a portion between the light-shielding films 17 (that is, the holding surface 111) is viewed from above. In, it is preferable to exhibit one or more shapes selected from a circle, an ellipse, and a polygon having R-shaped corners. As described above, by eliminating the corners in the top view between the light shielding films 17, it is possible to prevent uneven supply when the sample is supplied to the holding surface 111, cleaning defects when cleaning the holding surface 111, and the like. As a result, the detection accuracy can be further improved.
  • a method for preventing the uneven supply during the supply of the sample to the holding surface 111 and the cleaning defect during the cleaning of the holding surface 111 as another method, as in the tenth embodiment shown in FIG.
  • a method of providing the flattening film 19 using, for example, can also be adopted.
  • the light shielding film 17 can be embedded in the above-described trench 13T to form a light shielding wall from above the pixels 11 to the semiconductor substrate 12.
  • the light-shielding film 17 can be provided for each pixel 11 as shown in FIGS. 15 to 19, but it is also possible to provide the light-shielding film 17 for each of a plurality of pixels 11.
  • FIG. 20 is a schematic cross-sectional view schematically showing a thirteenth embodiment of the biogenic substance detection chip 1 according to the present technology.
  • the holding surface 111 is provided on the on-chip lens (OCL) 18 provided on the semiconductor substrate 12.
  • OCL on-chip lens
  • the specific configuration of the on-chip lens (OCL) 18 is not particularly limited, and the configuration of the on-chip lens (OCL) (antireflection layer etc.) can be freely selected and used.
  • the on-chip lens (OCL) 18 can be provided with a flattening film 19 as in the fourteenth embodiment shown in FIG.
  • the holding surface 111 can be provided on the flattening film 19 formed on the on-chip lens (OCL) 18.
  • OCL on-chip lens
  • the fourteenth embodiment shown in FIG. 21 includes a flattening film 19a for flattening the light shielding film 17 and a flattening film 19b for flattening the on-chip lens (OCL).
  • the flattening films 19a and 19b may be made of different materials or the same material.
  • FIG. 22 is a schematic cross-sectional view schematically showing a fifteenth embodiment of the biogenic substance detection chip 1 according to the present technology.
  • the biogenic substance detection chip 1 according to the fifteenth embodiment includes a protective film 20 on the chip surface.
  • the provision of the protective film 20 improves weather resistance to heat, light, water, acid, alkali, drug, etc., and allows contact with water, acid, alkali, or drug for a long period of time.
  • any material having weatherability against heat, light, water, acid, alkali, chemicals or the like can be freely selected and used according to the purpose.
  • silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON) and the like can be mentioned.
  • FIG. 23 is a schematic cross-sectional view schematically showing a sixteenth embodiment of the biogenic substance detection chip 1 according to the present technology.
  • the biogenic substance detection chip 1 according to the sixteenth embodiment includes an excitation light cut filter 21 on the chip surface. By including the excitation light cut filter 21, it is possible to prevent the excitation light from leaking into the photoelectric conversion unit 112. As a result, the detection accuracy can be further improved.
  • FIG. 24 is a schematic plan view from above showing a seventeenth embodiment of the biogenic substance detection chip 1 according to the present technology
  • FIG. 25 is a diagram with an internal structure omitted.
  • FIG. 24 is a schematic cross-sectional view taken along line AA of 24.
  • the biogenic substance detection chip 1 according to the seventeenth embodiment includes a step portion 22a on the outer side O of the effective pixel region 11E. More specifically, in the biogenic substance detection chip 1 according to the seventeenth embodiment, an intermediate region 22, a wiring region 23, and a peripheral region 24 are provided outward from the effective pixel region 11E, and the intermediate region 22 is provided. , A step 22a.
  • the wiring region 23 provided on the outside O of the effective pixel region 11E generally has a step, but in the seventeenth embodiment, a step is formed in the intermediate region 22 between the wiring region 23 and the effective pixel region 11E.
  • the corners of the step portion 22a are formed in an R shape in a top view.
  • the corners of the step portion 22a are formed into an R shape in a top view.
  • a stepped portion can be provided in the peripheral region 24.
  • the wiring region 23 is provided on the surface side of the chip 1 opposite to the holding surface 111 (light receiving surface), so that the unevenness of supply when the sample is supplied to the holding surface 111 and the holding surface 111. It is also possible to prevent cleaning defects and the like during cleaning.
  • FIG. 26 is a block diagram showing the concept of the biological material detection device 2 according to the present technology.
  • the biological substance detection device 2 according to the present technology includes at least the biological substance detection chip 1 according to the present technology described above, and the analysis unit 21. Further, the light irradiation unit 22, the storage unit 23, the display unit 24, the temperature control unit 25, and the like may be provided according to the purpose. Hereinafter, each part will be described. Since the biological substance detection chip 1 is as described above, the description thereof is omitted here.
  • the analysis unit 21 analyzes the electrical information acquired by the biogenic substance detection chip 1. For example, based on the electrical information acquired by the biogenic substance detection chip 1, presence/absence of the biogenic substance S, presence/absence of interaction in the biogenic substance S, screening of a medicinal component, and the like are performed.
  • the analysis unit 21 may be implemented by a personal computer or a CPU, and is stored as a program in a hardware resource including a recording medium (for example, non-volatile memory (USB memory), HDD, CD, etc.). It is also possible to make it function by a personal computer or a CPU.
  • a recording medium for example, non-volatile memory (USB memory), HDD, CD, etc.
  • the living body-derived substance detection device 2 can be provided with a light irradiation unit 22 for, for example, excitation light irradiation.
  • the light irradiation unit 22 irradiates the biological substance S held on the holding surface 111 of the biological substance detection chip 1 with light.
  • the light irradiation unit 22 is not essential, and the living body-derived substance S can be irradiated with light using an external light irradiation device or the like.
  • the type of light emitted from the light irradiation unit 22 is not particularly limited, but in order to reliably generate fluorescence or scattered light from fine particles, it is desirable that the light has a constant light direction, wavelength, and light intensity.
  • a laser, LED, etc. can be mentioned as an example.
  • the kind is not particularly limited, but an argon ion (Ar) laser, a helium-neon (He-Ne) laser, a die (dye) laser, a krypton (Cr) laser, a semiconductor laser, or a semiconductor laser is used.
  • argon ion (Ar) laser argon ion (Ar) laser
  • He-Ne helium-neon
  • He-Ne helium-neon
  • Cr krypton
  • semiconductor laser or a semiconductor laser is used.
  • One type or two or more types of solid-state lasers or the like combined with wavelength conversion optical elements can be freely combined and used.
  • a plurality of light irradiation units 22 may be provided according to the purpose.
  • one light irradiation unit 22 may be provided for each pixel 11 of the biogenic substance detection chip 1.
  • the biogenic substance S is obtained. It is also possible to irradiate this light.
  • the living body-derived substance detection device 2 may include a storage unit 23 that stores various types of information.
  • a storage unit 23 that stores various types of information.
  • all items related to detection such as electrical data acquired by the biogenic substance detection chip 1, analysis data generated by the analysis unit 21, optical data irradiated by the light irradiation unit 22, and the like. It is possible to store
  • the storage unit 23 is not essential, and an external storage device may be connected.
  • the storage unit 23 for example, a hard disk or the like can be used.
  • the living body-derived substance detection device 2 can include a display unit 24 that displays various types of information.
  • the electrical data acquired by the biogenic substance detection chip 1, the analysis data generated by the analysis unit 21, the optical data irradiated by the light irradiation unit 22, and the storage unit 23 are stored. All items related to detection such as data can be displayed.
  • the display unit 24 is not essential, and an external display device may be connected.
  • the display unit 24 for example, a display or a printer can be used.
  • Temperature control unit 25 The biogenic substance detection device 2 according to the present technology is for holding the biogenic substance S held on the holding surface 111 of the biogenic substance detection chip 1 at a predetermined temperature, or for heating or cooling to a predetermined temperature.
  • a temperature controller 25 can be provided.
  • the temperature control unit 25 can perform temperature control so as to maintain the optimum temperature.
  • the temperature control unit 25 can control the temperature so that the temperature range can be hybridized. ..
  • a thermoelectric element such as a Peltier element can be used.
  • a plurality of temperature control units 25 may be provided according to the purpose.
  • one temperature control unit 25 may be provided for each pixel 11 of the biogenic substance detection chip 1. Further, by stacking a substrate on which thermoelectric elements are arranged at positions corresponding to the respective pixels 11 of the biogenic substance detection chip 1 on the biogenic substance detection chip 1, temperature control of the biogenic substance S is performed. It is also possible to do.
  • the temperature control unit 25 is not essential in the biological substance detection device 2 according to the present technology, and the temperature of the biological substance S can be controlled using an external temperature control device or the like.
  • FIG. 27 is a block diagram showing the concept of the biological material detection system 3 according to the present technology.
  • the biogenic substance detection system 3 according to the present technology includes at least the biogenic substance detection chip 1 according to the present technology described above, and the analysis device 31. Further, the light irradiation device 32, the storage device 33, the display device 34, the temperature control device 35, and the like may be provided according to the purpose.
  • the biogenic substance detection chip 1 and each device can be connected via a wired or wireless network. Since the details of each device are the same as the details of each part of the biological substance detection device 2 in the present technology described above, the description thereof is omitted here.
  • the present technology may also have the following configurations.
  • the pixel includes at least a holding surface that holds a biological substance, and a photoelectric conversion unit that is provided below the holding surface and that is provided on a semiconductor substrate.
  • a biogenic substance detection chip in which a color mixture suppressing unit is provided between the pixels.
  • the biogenic substance detection chip according to (1), wherein the pixel and the color mixing suppression unit have different conductivity types.
  • the living body-derived substance detection chip according to (8) wherein the film has a first refractive index, and the semiconductor substrate has a second refractive index different from the first refractive index.
  • the biological substance is one or more biological substances selected from nucleic acids, proteins, cells, microorganisms, chromosomes, liposomes, mitochondria, organelles (organelles), and complexes thereof, (1) to ( The photodetection chip according to any one of 14).
  • the pixel includes at least a holding surface for holding a biological substance, and a photoelectric conversion unit provided below the holding surface, A color mixing suppression part is provided between the pixels, a chip for detecting a biological substance, An analysis unit that analyzes electrical information acquired by the biological substance detection chip, An apparatus for detecting a substance derived from a living body, comprising: (17) It consists of multiple pixels, The pixel includes at least a holding surface that holds a biological substance, and a photoelectric conversion unit provided below the holding surface, A color mixture suppressing part is provided between the pixels, and a biological substance detection chip, An analysis device for analyzing the electrical information acquired by the biogenic substance detection chip, A biological substance detection system comprising:

Abstract

The purpose of the present invention is to provide a chip for detecting a material derived from a living body with high detection accuracy. The present technology provides a chip for detecting a material derived from a living body, the chip comprising a plurality of pixels each of which is provided with at least: a holding surface for holding a material derived from a living body; and a photoelectric converting unit that is provided below the holding surface and is provided on a semiconductor substrate, wherein a color mixture suppressing unit is provided between the pixels. Also provided are an apparatus and system for detecting a material derived from a living body using said chip for detecting a material derived from the living body.

Description

生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システムBiogenic substance detection chip, biogenic substance detection device, and biogenic substance detection system
 本技術は、生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システムに関する。 The present technology relates to a biogenic substance detection chip, a biogenic substance detection device, and a biogenic substance detection system.
 近年、医療分野、創薬分野、臨床検査分野、食品分野、農業分野、工学分野等の様々な分野で、遺伝子解析、タンパク質解析、細胞解析等に関する技術研究が進められている。特に最近では、核酸、タンパク質、細胞、微生物等の生体由来物質の検出や解析等の各種反応を、チップに設けられたマイクロスケールの流路やウエル内で行うラボ・オン・チップを代表とするチップ上での検出技術の開発や実用化が進められている。これらは、生体由来物質等を簡便に計測する手法として注目を集めている。 In recent years, technical research on gene analysis, protein analysis, cell analysis, etc. has been advanced in various fields such as medical field, drug discovery field, clinical test field, food field, agricultural field, and engineering field. Especially recently, a lab-on-a-chip is a typical example, in which various reactions such as detection and analysis of biological substances such as nucleic acids, proteins, cells and microorganisms are carried out in microscale channels and wells provided on the chip. On-chip detection technology is being developed and put into practical use. These have attracted attention as a method for easily measuring substances derived from a living body.
 例えば、特許文献1では、複数のウエルが形成された第1の基板と、前記ウエルに接するように加熱手段が設けられた第2の基板と、前記各ウエルの位置に対応して位置決めされた複数の光照射手段が設けられた第3の基板と、前記各ウエルの位置に対応して位置決めされた複数の光検出手段が設けられた第4の基板と、が少なくとも備えられた光学的検出装置が開示されている。この光学的検出装置では、各ウエル中で進行する各種反応を測定することができる。 For example, in Patent Document 1, a first substrate having a plurality of wells formed therein, a second substrate provided with heating means so as to be in contact with the wells, and the wells are positioned corresponding to the positions of the respective wells. Optical detection including at least a third substrate provided with a plurality of light irradiation means and a fourth substrate provided with a plurality of light detection means positioned corresponding to the positions of the respective wells A device is disclosed. This optical detection device can measure various reactions progressing in each well.
 また、例えば、特許文献2では、光検出部が形成された基板と、前記基板に積層された、プラズモン吸収性を生じる金属ナノ構造を有するプラズモン吸収層と、を具備するケミカルセンサが開示されている。このケミカルセンサでは、センサ上に固定化されたプローブ材料とターゲット材料との結合に起因する発光を検出することができる。 Further, for example, Patent Document 2 discloses a chemical sensor including a substrate on which a photodetection portion is formed, and a plasmon absorption layer having a metal nanostructure that causes plasmon absorption and is stacked on the substrate. There is. With this chemical sensor, it is possible to detect the luminescence due to the bond between the probe material and the target material fixed on the sensor.
特開2010-284152号公報JP, 2010-284152, A WO2013/080473WO2013/080473
 チップ上の複数の領域(例えば、複数のウエル等)内において、生体関連物質から発せられる光を、各領域に対応する複数の光検出部を用いて検出する場合、各光検出部への隣接する領域からの光の漏れ込みの問題がある。例えば、各領域において、それぞれ異なる反応を進行させ、それぞれの反応に起因した発光を検出する場合、他の領域からの発光を誤って検出することにより、誤判定がなされる可能性がある。 When light emitted from a biological substance is detected in a plurality of regions (for example, a plurality of wells) on a chip by using a plurality of photodetection units corresponding to each region, it is adjacent to each photodetection unit. There is a problem of light leakage from the area to be illuminated. For example, when a different reaction is made to proceed in each region and light emission caused by each reaction is detected, there is a possibility that an erroneous determination is made by erroneously detecting the light emission from another region.
 そこで、本技術では、検出精度の高い生体由来物質検出用チップを提供することを主目的とする。 Therefore, the main purpose of the present technology is to provide a biogenic substance detection chip with high detection accuracy.
 即ち、本技術では、まず、複数の画素から構成され、
 前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられ、半導体基板に設けられた光電変換部と、を少なくとも備え、
 前記画素間には混色抑制部が設けられた、生体由来物質検出用チップを提供する。
 本技術に係る生体由来物質検出用チップにおいて、前記画素と前記混色抑制部とは異なる導電型とすることができる。
 この場合、前記画素はN型領域とし、前記混色抑制部はP型領域とすることができる。逆に、前記画素はP型領域とし、前記混色抑制部はN型領域とすることもできる。
 本技術に係る生体由来物質検出用チップにおいて、前記複数の画素は、各々、光電変換領域を有し、各光電変換領域間にトレンチを設けることができる。
 この場合、前記トレンチの内部に、酸化膜、及び金属から選択される1種以上を含ませることができる。
 本技術に係る生体由来物質検出用チップには、前記光電変換部の上方であって、前記保持表面に凹部を設けることができる。
 本技術に係る生体由来物質検出用チップにおいて、前記保持表面は、前記半導体基板上に形成された膜上に設けることができる。
 この場合、前記膜は第1の屈折率を有し、前記半導体基板は前記第1の屈折率とは異なる第2の屈折率を有していてもよい。
 また、前記膜は、無機膜、及び有機膜から選択される1以上の膜であってもよい。
 本技術に係る生体由来物質検出用チップには、隣接する前記画素間の上方に設けられた遮光膜を備えることができる。
 前記遮光膜間は、上面視において、円形、楕円形、及び角がR形状の多角形から選択される1以上の形状を呈するように成形することができる。
 本技術に係る生体由来物質検出用チップにおいて、前記保持表面は、前記半導体基板上に備えられたオンチップレンズ(OCL)上に設けることができる。
 この場合、前記保持表面は、前記オンチップレンズ(OCL)上に形成された平坦化膜上に設けることもできる。
 本技術に係る生体由来物質検出用チップが検出可能な生体由来物質としては、核酸、タンパク質、細胞、微生物、染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)、及びこれらの複合体から選択される1以上の生体由来物質を挙げることができる。
That is, in the present technology, first, it is composed of a plurality of pixels,
The pixel includes at least a holding surface that holds a biological substance, and a photoelectric conversion unit that is provided below the holding surface and that is provided on a semiconductor substrate.
Provided is a biogenic substance detection chip, in which a color mixture suppressing unit is provided between the pixels.
In the biogenic substance detection chip according to an embodiment of the present technology, the pixel and the color mixing suppression unit may have different conductivity types.
In this case, the pixel may be an N-type region and the color mixture suppressing unit may be a P-type region. On the contrary, the pixel may be a P-type region and the color mixture suppressing portion may be an N-type region.
In the biogenic substance detection chip according to the present technology, each of the plurality of pixels has a photoelectric conversion region, and a trench can be provided between the photoelectric conversion regions.
In this case, at least one selected from an oxide film and a metal may be included inside the trench.
In the biogenic substance detection chip according to the present technology, a recess may be provided on the holding surface above the photoelectric conversion unit.
In the chip for detecting a biological substance according to the present technology, the holding surface may be provided on a film formed on the semiconductor substrate.
In this case, the film may have a first refractive index, and the semiconductor substrate may have a second refractive index different from the first refractive index.
Further, the film may be one or more films selected from an inorganic film and an organic film.
The biogenic substance detection chip according to the present technology may include a light-shielding film provided above the adjacent pixels.
The space between the light shielding films may be formed to have one or more shapes selected from a circle, an ellipse, and a polygon having an R shape in a top view.
In the chip for detecting a biological substance according to the present technology, the holding surface may be provided on an on-chip lens (OCL) provided on the semiconductor substrate.
In this case, the holding surface may be provided on a flattening film formed on the on-chip lens (OCL).
The biogenic substance that can be detected by the biogenic substance detection chip according to the present technology is selected from nucleic acids, proteins, cells, microorganisms, chromosomes, liposomes, mitochondria, organelles (organelles), and complexes thereof. One or more biological materials can be mentioned.
 本技術では、次に、複数の画素から構成され、
前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
前記画素間には混色抑制部が設けられた、生体由来物質検出用チップと、
 前記生体由来物質検出用チップによって取得された電気的情報を解析する解析部と、
 を備える、生体由来物質検出装置を提供する。
In the present technology, next, it is composed of a plurality of pixels,
The pixel includes at least a holding surface for holding a biological substance, and a photoelectric conversion unit provided below the holding surface,
A color mixing suppression part is provided between the pixels, a chip for detecting a biological substance,
An analysis unit that analyzes electrical information acquired by the biological substance detection chip,
An apparatus for detecting a substance derived from a living body, comprising:
 本技術では、更に、複数の画素から構成され、
前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
前記画素間には混色抑制部が設けられた、生体由来物質検出用チップと、
 前記生体由来物質検出用チップによって取得された電気的情報を解析する解析装置と、
 を備える、生体由来物質検出システムを提供する。
The present technology further includes a plurality of pixels,
The pixel includes at least a holding surface for holding a biological substance, and a photoelectric conversion unit provided below the holding surface,
A color mixing suppression part is provided between the pixels, a chip for detecting a biological substance,
An analysis device that analyzes the electrical information acquired by the biogenic substance detection chip,
There is provided a biological substance detection system comprising:
 本技術において、「生体由来物質」には、核酸、タンパク質、細胞、微生物、染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)、及びこれらの複合体などが広く含まれるものとする。細胞には、動物細胞(血球系細胞など)および植物細胞が含まれる。微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。 In the present technology, "living material" shall broadly include nucleic acids, proteins, cells, microorganisms, chromosomes, liposomes, mitochondria, organelles (organelles), complexes thereof, and the like. Cells include animal cells (such as blood cells) and plant cells. Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, fungi such as yeast.
本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が検出することが可能な生体由来物質Sの相互作用を模式的に示す模式概念図である。FIG. 2 is a schematic conceptual diagram schematically showing the interaction of the biogenic substance S that can be detected by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology. .. 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が検出することが可能な生体由来物質Sの相互作用を模式的に示す模式概念図である。FIG. 2 is a schematic conceptual diagram schematically showing the interaction of the biogenic substance S that can be detected by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology. .. 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が検出することが可能な生体由来物質Sの相互作用を模式的に示す模式概念図である。FIG. 2 is a schematic conceptual diagram schematically showing the interaction of the biogenic substance S that can be detected by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology. .. 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が行うことが可能な他の物質のスクリーニングを模式的に示す模式概念図である。It is a schematic conceptual diagram which shows typically the screening of the other substance which can be performed by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology. 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が行うことが可能な他の物質のスクリーニングを模式的に示す模式概念図である。It is a schematic conceptual diagram which shows typically the screening of the other substance which can be performed by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology. 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が行うことが可能な他の物質のスクリーニングを模式的に示す模式概念図である。It is a schematic conceptual diagram which shows typically the screening of the other substance which can be performed by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology. 本技術に係る生体由来物質検出用チップ1の第1実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 1st Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. Aは、本技術に係る生体由来物質検出用チップ1の第2実施形態を模式的に示す模式端面図であり、Bは、第2実施形態の変形例を模式的に示す模式断面図である。A is a schematic end view schematically showing a second embodiment of the biogenic substance detection chip 1 according to the present technology, and B is a schematic cross-sectional view schematically showing a modified example of the second embodiment. .. 本技術に係る生体由来物質検出用チップ1の第3実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 3rd Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第4実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 4th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第5実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 5th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第6実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 6th Embodiment of the chip|tip 1 for biological substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第7実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 7th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第8実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 8th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第9実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 9th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の遮光膜17の例を模式的に示す上方視模式平面図である。It is an upper side view schematic plan view which shows typically the example of the light shielding film 17 of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第10実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 10th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第11実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 11th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第12実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 12th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第13実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 13th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第14実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 14th Embodiment of the chip|tip 1 for biological substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第15実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 15th Embodiment of the chip|tip 1 for biological substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第16実施形態を模式的に示す模式断面図である。It is a schematic cross section which shows typically 16th Embodiment of the chip|tips 1 for biogenic substance detection which concerns on this technique. 本技術に係る生体由来物質検出用チップ1の第17実施形態を模式的に示す上方視模式平面図である。It is an upper side view schematic plan view which shows typically the 17th Embodiment of the chip|tip 1 for biogenic substance detection which concerns on this technique. 内部構造を省略した図24のA-A視断面模式図である。FIG. 25 is a schematic cross-sectional view taken along the line AA of FIG. 24 in which the internal structure is omitted. 本技術に係る生体由来物質検出装置2の概念を示すブロック図である。It is a block diagram which shows the concept of the biological substance detection apparatus 2 which concerns on this technique. 本技術に係る生体由来物質検出システム3の概念を示すブロック図である。It is a block diagram which shows the concept of the biological substance detection system 3 which concerns on this technique.
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
 1.本技術で行う生体由来物質検出の概要
 (1)生体由来物質Sのそのものの検出
 (2)生体由来物質Sの相互作用の検出
 (3)他の物質のスクリーニング
 2.生体由来物質検出用チップ1
 (1)第1実施形態
 (2)第2実施形態、第3実施形態
 (3)第4実施形態
 (4)第5実施形態~第7実施形態
 (5)第9実施形態~第12実施形態
 (6)第13実施形態、第14実施形態
 (7)第15実施形態
 (8)第16実施形態
 (9)第17実施形態
 3.生体由来物質検出装置2
 4.生体由来物質検出システム3
Hereinafter, a suitable mode for carrying out the present technology will be described with reference to the drawings. The embodiment described below shows an example of a typical embodiment of the present technology, and the scope of the present technology is not narrowly construed by this. The description will be given in the following order.
1. 1. Outline of detection of biogenic substance performed by the present technology (1) Detection of biogenic substance S itself (2) Detection of interaction of biogenic substance S (3) Screening of other substances Chip 1 for detecting biological substances
(1) First embodiment (2) Second embodiment, third embodiment (3) Fourth embodiment (4) Fifth embodiment to seventh embodiment (5) Ninth embodiment to twelfth embodiment (6) 13th embodiment, 14th embodiment (7) 15th embodiment (8) 16th embodiment (9) 17th embodiment 3. Biological substance detection device 2
4. Biological substance detection system 3
<1.本技術で行う生体由来物質検出の概要>
 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が行う生体由来物質Sの検出の概要を説明する。本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3は、(1)生体由来物質Sのそのものの検出、(2)生体由来物質Sの相互作用の検出、(3)生体由来物質Sを用いた他の物質(例えば、薬効成分等)のスクリーニング等に用いることができる。なお、各検出は、後述する生体由来物質検出用チップ1の保持表面111にて行われる。
<1. Overview of detection of biological substances by this technology>
The outline of the detection of the biogenic substance S performed by the biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology will be described. The biogenic substance detection chip 1, the biogenic substance detection device 2, and the biogenic substance detection system 3 according to the present technology include (1) detection of the biogenic substance S itself, and (2) interaction of the biogenic substance S. And (3) screening of other substances (for example, medicinal components) using the biogenic substance S. In addition, each detection is performed on the holding surface 111 of the biogenic substance detection chip 1 described later.
 (1)生体由来物質Sのそのものの検出
 例えば、血液、尿、便、唾液等の体液中に含まれる赤血球、白血球、血小板、サイトカイン、ホルモン物質、糖、脂質、タンパク質等の生体物質;体液や水中に含まれる細菌類、菌類、ウイルス等の微生物;細胞や微生物中の遺伝子等の検出に、本技術を用いることができる。例えば、検出対象の物質あるいは非検出対象の物質に特異的に作用する色素を用いて染色した後、目的の光検出の有無によって、検出対象の物質の存在を検出することができる。検出された結果は、疾患の診断、体内環境診断、水質検査等に用いることができる。
(1) Detection of the body-derived substance S itself For example, biological substances such as red blood cells, white blood cells, platelets, cytokines, hormonal substances, sugars, lipids and proteins contained in body fluids such as blood, urine, feces and saliva; The present technology can be used for detecting microorganisms such as bacteria, fungi, and viruses contained in water; genes in cells and microorganisms. For example, the presence of the substance to be detected can be detected by the presence or absence of the desired light detection after dyeing with a dye that specifically acts on the substance to be detected or the substance not to be detected. The detected results can be used for diagnosis of diseases, internal environment diagnosis, water quality test and the like.
 (2)生体由来物質Sの相互作用の検出
 例えば、タンパク質の相互作用、核酸のハイブリダイゼーション、サイトカインやホルモン物質と受容体との結合等の相互作用の検出に、本技術を用いることができる。具体的な検出例について、図1~3を用いて説明する。
(2) Detection of interaction of biological substance S For example, the present technology can be used for detection of interaction such as protein interaction, nucleic acid hybridization, and binding between cytokine or hormone substance and receptor. A specific detection example will be described with reference to FIGS.
 例えば、図1のA~Dに示すように、保持表面111にタンパク質や受容体(あるいは受容体を模したもの)等の生体由来物質S1を固定しておき(図1中A参照)、これとの相互作用を確認する生体由来物質S2~S4に蛍光F1~F3等の色素を固定したものを加える(図1中B参照)。そして、相互作用しなかった生体由来物質S3及びS4の洗浄を行い(図1中C参照)、保持表面111から蛍光F1を検出することで(図1中D参照)、生体由来物質S1と生体由来物質S2との相互作用を検出することができる。 For example, as shown in FIGS. 1A to 1D, a biological substance S1 such as a protein or a receptor (or a model imitating a receptor) is immobilized on the holding surface 111 (see A in FIG. 1). A substance in which a dye such as fluorescence F1 to F3 is immobilized is added to the biogenic substances S2 to S4 for confirming the interaction with (see B in FIG. 1). Then, the biological substances S3 and S4 that have not interacted with each other are washed (see C in FIG. 1), and the fluorescence F1 is detected from the holding surface 111 (see D in FIG. 1), whereby the biological substance S1 and the biological substance The interaction with the derived substance S2 can be detected.
 例えば、図1のE~Hに示すように、保持表面111に細胞等の生体由来物質S1を固定しておき、この生体由来物質S1が有する輸送体t(例えば、細胞膜中のトランスポーター等)を介して取り込まれる発光体F1を検知することができる。 For example, as shown in E to H of FIG. 1, a biogenic substance S1 such as cells is immobilized on the holding surface 111, and the transporter t of the biogenic substance S1 (for example, a transporter in a cell membrane). It is possible to detect the illuminant F1 that is taken in through.
 例えば、図2のA~Dに示すように、保持表面111にDNAやRNA等からなるプローブS5を固定しておき(図2中A参照)、ターゲットとなり得るDNAS6及びS7を含むサンプルと、インターカレーターIとを加える(図2中B参照)。そして、プローブS5と相補的な配列を有するDNAS6が、サンプルに含有されていると、ハイブリダーゼーション反応が起きる。ハイブリダーゼーションが行われなかったDNAS7の洗浄を行い(図2中C参照)、保持表面111からインターカレーターIからの光を検出することで(図2中D参照)、プローブS5とターゲットDNAS6とのハイブリダーゼーションを検出することができる。 For example, as shown in FIGS. 2A to 2D, a probe S5 made of DNA, RNA or the like is immobilized on the holding surface 111 (see A in FIG. 2), and a sample containing DNAs S6 and S7 that can be targets and Add Calculator I (see B in Figure 2). Then, when DNA S6 having a sequence complementary to probe S5 is contained in the sample, a hybridization reaction occurs. By washing the DNAS7 that has not been hybridized (see C in FIG. 2) and detecting the light from the intercalator I from the holding surface 111 (see D in FIG. 2), the probe S5 and the target DNAS6 are detected. Hybridization can be detected.
 例えば、図3のA~Dに示すように、保持表面111に生体由来物質S8を固定しておき(図3中A参照)、これと相互作用して新たな物質S10になる生体由来物質S9を加える(図3中B参照)。次に、物質S10に特異的に結合する蛍光F4等の色素を加え(図3中C参照)、保持表面111から蛍光F4を検出することで(図3中D参照)、生体由来物質S8と生体由来物質S9との相互作用を検出することができる。 For example, as shown in FIGS. 3A to 3D, the biogenic substance S8 is fixed on the holding surface 111 (see A in FIG. 3), and interacts with this to form a new substance S10, the biogenic substance S9. Is added (see B in FIG. 3). Next, a dye such as fluorescent F4 that specifically binds to the substance S10 is added (see C in FIG. 3), and the fluorescent F4 is detected from the holding surface 111 (see D in FIG. 3) to obtain the biologically derived substance S8. The interaction with the biological substance S9 can be detected.
 (3)他の物質のスクリーニング
 例えば、各種受容体の作動薬(アゴニスト)や拮抗薬(アンタゴニスト)となり得る物質のスクリーニングや、各種微生物の産生抑制剤、抗菌剤、殺菌剤等のスクリーニングに、本技術を用いることができる。具体的な検出例について、図4~図6を用いて説明する。
(3) Screening for other substances For example, for screening for substances that can be agonists (agonists) or antagonists (antagonists) of various receptors, and for screening various microorganism production inhibitors, antibacterial agents, bactericides, etc. Technology can be used. A specific detection example will be described with reference to FIGS. 4 to 6.
 例えば、図4のA~Dに示すように、保持表面111に受容体R1(あるいは受容体R1を模したもの)を固定しておき(図4中A参照)、この受容体R1の作動性を確認する物質d1~d3に蛍光F5~F7等の色素を固定したものを加える(図4中B参照)。そして、受容体R1に結合しなかった物質d2及びd3の洗浄を行い(図4中C参照)、保持表面111から蛍光F5を検出することで(図3中D参照)、受容体R1の作動薬となり得る物質d1のスクリーニングを行うことができる。 For example, as shown in FIGS. 4A to 4D, the receptor R1 (or a model imitating the receptor R1) is fixed to the holding surface 111 (see A in FIG. 4), and the operability of the receptor R1 is increased. To the substances d1 to d3 for confirming the above, dyes such as fluorescent dyes F5 to F7 immobilized are added (see B in FIG. 4). Then, the substances d2 and d3 that have not bound to the receptor R1 are washed (see C in FIG. 4), and the fluorescence F5 is detected from the holding surface 111 (see D in FIG. 3) to activate the receptor R1. It is possible to screen the substance d1 which can be a drug.
 例えば、図5のA~Eに示すように、保持表面111に受容体R2(あるいは受容体R2を模したもの)を固定しておき(図5中A参照)、この受容体R2の拮抗性を確認する物質d4を加える(図5中B参照)。次に、蛍光F8等の色素を固定した受容体R2と結合するリガンドL1を加える(図5中C参照)。この時、物質d4が受容体R2の拮抗薬となり得る場合は、既に、受容体R2と物質d4が結合等しているため、リガンドL1は、受容体R2に結合することができない(図5中C参照)。この状態で、受容体R2に結合しなかったリガンドL1の洗浄を行った後(図5中D参照)、保持表面111から蛍光F8を検出しようとしても、蛍光F8は洗浄により保持表面111に存在しないため、光検出がされない(図5中E参照)。 For example, as shown in FIGS. 5A to 5E, the receptor R2 (or a model imitating the receptor R2) is immobilized on the holding surface 111 (see A in FIG. 5), and the receptor R2 has an antagonistic property. The substance d4 for confirming is confirmed (see B in FIG. 5). Next, a ligand L1 that binds to the receptor R2 on which a dye such as fluorescent F8 is immobilized is added (see C in FIG. 5). At this time, if the substance d4 can be an antagonist of the receptor R2, the ligand L1 cannot bind to the receptor R2 because the receptor R2 and the substance d4 are already bound (see FIG. 5). (See C). In this state, after washing the ligand L1 which did not bind to the receptor R2 (see D in FIG. 5), even if an attempt is made to detect the fluorescence F8 from the holding surface 111, the fluorescence F8 is present on the holding surface 111 by washing. Since no light is detected, no light is detected (see E in FIG. 5).
 一方、例えば、図6のA~Eに示すように、保持表面111に受容体R3(あるいは受容体R3を模したもの)を固定しておき(図6中A参照)、この受容体R3の拮抗性を確認する物質d5を加える(図6中B参照)。次に、蛍光F9等の色素を固定した受容体R3と結合するリガンドL2を加える(図6中C参照)。この時、物質d5が受容体R3の拮抗薬となり得ない場合は、リガンドL2は、受容体R3に結合する(図6中D参照)。この状態で、受容体R3に結合しなかった物質d5の洗浄を行うと(図6中D参照)、保持表面111から蛍光F9が検出される(図6中E参照)。 On the other hand, for example, as shown in FIGS. 6A to 6E, the receptor R3 (or a model imitating the receptor R3) is fixed to the holding surface 111 (see A in FIG. 6), and the receptor R3 A substance d5 for confirming antagonisticity is added (see B in FIG. 6). Next, a ligand L2 that binds to a receptor R3 having a dye such as fluorescent F9 immobilized thereon is added (see C in FIG. 6). At this time, when the substance d5 cannot be an antagonist of the receptor R3, the ligand L2 binds to the receptor R3 (see D in FIG. 6). In this state, when the substance d5 that has not bound to the receptor R3 is washed (see D in FIG. 6), fluorescence F9 is detected from the holding surface 111 (see E in FIG. 6).
 このように、図5及び図6に示すように、保持表面111から蛍光F8又は蛍光F9の検出の有無によって、受容体R3の拮抗薬となり得る物質d4のスクリーニングを行うことができる。 As described above, as shown in FIGS. 5 and 6, the substance d4 that can be an antagonist of the receptor R3 can be screened depending on whether or not the fluorescence F8 or the fluorescence F9 is detected from the holding surface 111.
<2.生体由来物質検出用チップ1>
 本技術に係る生体由来物質検出用チップ1は、複数の画素11から構成され、画素11は、生体由来物質Sを保持する保持表面111と、保持表面111の下方に設けられ、半導体基板12に設けられた光電変換部112を少なくとも備える。そして、各画素11間には、混色抑制部13が設けられている。以下、各実施形態を参照しながら、説明する。
<2. Bio-derived substance detection chip 1>
The biogenic substance detection chip 1 according to an embodiment of the present technology includes a plurality of pixels 11. The pixel 11 is provided on a holding surface 111 that holds the biogenic substance S, and is provided below the holding surface 111. At least the provided photoelectric conversion unit 112 is provided. A color mixture suppression unit 13 is provided between each pixel 11. Hereinafter, description will be made with reference to each embodiment.
 (1)第1実施形態
 図7は、本技術に係る生体由来物質検出用チップ1の第1実施形態を模式的に示す模式断面図である。第1実施形態に係る生体由来物質検出用チップ1は、複数の画素11が行列状に2次元配置された有効画素領域11Eを備える。各画素11は、生体由来物質Sを保持する保持表面111と、光電変換部112と、を少なくとも備える。光電変換部112には、例えば、フォトダイオードのような光電変換素子を自由に用いることができる。また、図示しないが、各画素11には、電荷蓄積部、複数のトランジスタ、及び容量素子等で構成された画素回路を備えていても良い。有効画素領域11Eの外側Oには、図示しないが、光学的黒画素や配線領域等を備えることができる。
(1) First Embodiment FIG. 7 is a schematic cross-sectional view schematically showing a first embodiment of the biogenic substance detection chip 1 according to the present technology. The biogenic substance detection chip 1 according to the first embodiment includes an effective pixel region 11E in which a plurality of pixels 11 are two-dimensionally arranged in a matrix. Each pixel 11 includes at least a holding surface 111 that holds the biological substance S and a photoelectric conversion unit 112. For the photoelectric conversion unit 112, for example, a photoelectric conversion element such as a photodiode can be freely used. Although not shown, each pixel 11 may include a pixel circuit including a charge storage section, a plurality of transistors, a capacitive element, and the like. Although not shown, an optical black pixel, a wiring region, or the like can be provided on the outside O of the effective pixel region 11E.
 保持表面111は、生体由来物質Sが保持できる構成であれば特に限定されず、表面処理を自由に用いることができる。例えば、紫外線照射により親水性に変性する感光性シランカップリング剤等を塗布し、生体由来物質Sを保持したい領域を選択的に紫外線照射することにより、保持表面111を形成することができる。また、例えば、保持表面111をアビジン処理しておくことで、その一端がビオチン化された核酸等の生体由来物質Sを、アビジン-ビオチン結合により、保持することもできる。 The holding surface 111 is not particularly limited as long as it can hold the biological substance S, and surface treatment can be freely used. For example, the holding surface 111 can be formed by applying a photosensitive silane coupling agent or the like that is hydrophilically modified by irradiation with ultraviolet rays and selectively irradiating the area where the biological substance S is desired to be retained with ultraviolet rays. Further, for example, by treating the holding surface 111 with avidin, a biological substance S such as a nucleic acid having one end thereof biotinylated can be held by avidin-biotin bond.
 また、後述する遮光膜17や隔壁等を、隣接する画素11間の上方(チップ表面上側)に設け、チップ1表面に液体を保持できる構成とすることで、液体中に生体由来物質Sを保持することも可能である。 Further, by providing a light-shielding film 17, a partition wall, and the like, which will be described later, between adjacent pixels 11 (on the upper side of the chip surface) so that the liquid can be held on the surface of the chip 1, the biological substance S is held in the liquid. It is also possible to do so.
 各画素11間には、混色抑制部13が設けられている。本技術に係る生体由来物質検出用チップ1の第1実施形態では、画素11と混色抑制部13とを、異なる導電型とすることにより、隣接する画素11間における混色を抑制する。具体的には、例えば、画素11をN型領域とし、各画素11間をP型領域としたり、逆に、画素11をP型領域とし、各画素11間をN型領域とすることで、隣接する画素11間における混色を抑制することができる。 A color mixture suppression unit 13 is provided between each pixel 11. In the first embodiment of the biogenic substance detection chip 1 according to the present technology, the pixels 11 and the color mixing suppression unit 13 have different conductivity types, thereby suppressing color mixing between the adjacent pixels 11. Specifically, for example, the pixels 11 are N-type regions and the pixels 11 are P-type regions, or conversely, the pixels 11 are P-type regions and the pixels 11 are N-type regions. Color mixing between adjacent pixels 11 can be suppressed.
 なお、図7に示す第1実施形態には、説明のために、生体由来物質Sを記載しているが、本技術に係る生体由来物質検出用チップ1には、生体由来物質Sは包含されない。 In addition, in the first embodiment shown in FIG. 7, the biogenic substance S is described for the sake of explanation, but the biogenic substance detection chip 1 according to the present technology does not include the biogenic substance S. ..
 (2)第2実施形態、第3実施形態
 図8Aは、本技術に係る生体由来物質検出用チップ1の第2実施形態を模式的に示す模式端面図であり、図8Bは、第2実施形態の変形例を模式的に示す模式断面図である。第2実施形態に係る生体由来物質検出用チップ1は、光電変換領域112A間にトレンチ13Tを備え、このトレンチ13Tが、混色抑制部13として機能する。
(2) Second Embodiment, Third Embodiment FIG. 8A is a schematic end view schematically showing a second embodiment of the biogenic substance detection chip 1 according to the present technology, and FIG. 8B shows the second embodiment. It is a schematic cross section which shows the modification of a form typically. The biogenic substance detection chip 1 according to the second embodiment includes trenches 13T between the photoelectric conversion regions 112A, and the trenches 13T function as the color mixing suppression unit 13.
 トレンチ13T内部には、図8Bに示すように、酸化膜14を設けることができる。酸化膜14の材料としては、例えば、酸化ハフニウム(HfO)、酸化アルミニウム(Al)、酸化タンタル(Ta)等の負の固定電荷を有する材料が挙げられる。これらの酸化膜を単膜で設けても良いし、複数の膜を重ねて設けても良い。酸化膜を設けることにより暗電流を抑制することができ、誤判定を抑制することができる。 An oxide film 14 can be provided inside the trench 13T as shown in FIG. 8B. Examples of the material of the oxide film 14 include materials having a negative fixed charge such as hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), and tantalum oxide (Ta 2 O 5 ). These oxide films may be provided as a single film or a plurality of films may be stacked. By providing the oxide film, dark current can be suppressed and erroneous determination can be suppressed.
 トレンチ13Tの内部には、図9に示す第3実施形態のように、酸化膜14及び金属15等を備えることができる。金属15を設けることにより、遮光効果を高めて、隣接画素への混色を抑制することができ、誤判定を抑制することができる。トレンチ13T内部に酸化膜14及び金属15を備えることで、暗電流を抑制しつつも隣接する画素11間における混色抑制効果を向上させることができる。 Inside the trench 13T, as in the third embodiment shown in FIG. 9, an oxide film 14 and a metal 15 can be provided. By providing the metal 15, it is possible to enhance the light blocking effect, suppress color mixture to adjacent pixels, and suppress erroneous determination. By providing the oxide film 14 and the metal 15 inside the trench 13T, it is possible to improve the color mixture suppressing effect between the adjacent pixels 11 while suppressing the dark current.
 酸化膜14としては、図8で説明した酸化膜を用いることができる。すなわち、酸化シリコン膜(SiO膜)、酸化ハフニウム膜(HfO膜)、酸化アルミニウム膜(Al膜)、酸化タンタル膜(Ta膜)等を挙げることができる。 As the oxide film 14, the oxide film described with reference to FIG. 8 can be used. That is, a silicon oxide film (SiO 2 film), a hafnium oxide film (HfO 2 film), an aluminum oxide film (Al 2 O 3 film), a tantalum oxide film (Ta 2 O 5 film), and the like can be given.
 金属としては、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、チタン(Ti)等を用いることができる。 As the metal, for example, tungsten (W), aluminum (Al), copper (Cu), titanium (Ti) or the like can be used.
 なお、第2実施形態及び第3実施形態において、その他の構造は、前述した第1実施形態と同一であるため、ここでは説明を割愛する。以下、他の実施形態においても、第1実施形態と異なる部分のみ説明する。 The other structures of the second and third embodiments are the same as those of the first embodiment described above, and therefore the description thereof is omitted here. Hereinafter, also in the other embodiments, only parts different from the first embodiment will be described.
 (3)第4実施形態
 図10Aは、本技術に係る生体由来物質検出用チップ1の第4実施形態を模式的に示す模式断面図である。第4実施形態に係る生体由来物質検出用チップ1は、光電変換部112の上方であって、保持表面111に凹部111Cが設けられている。この凹部111Cに、検出対象となる生体由来物質Sを保持することで、生体由来物質Sからの光の散乱を防止することができる。
(3) Fourth Embodiment FIG. 10A is a schematic cross-sectional view schematically showing a fourth embodiment of the biogenic substance detection chip 1 according to the present technology. The living body-derived substance detection chip 1 according to the fourth embodiment has a recess 111C on the holding surface 111 above the photoelectric conversion unit 112. By holding the biogenic substance S to be detected in the recess 111C, it is possible to prevent light from being scattered from the biogenic substance S.
 凹部111Cには、図10Bに示すように、酸化膜14を備えることができる。酸化膜14を備えることで、混色経路を無くし感度を向上することができる。 The recess 111C can be provided with an oxide film 14 as shown in FIG. 10B. By providing the oxide film 14, it is possible to eliminate the color mixing path and improve the sensitivity.
 また、凹部111Cの形状は特に限定されず、図10A及びBに示すような断面視略三角形状の他に、図10Cに示すような断面視略四角形状や断面視略台形形状、図示しないが、断面視略半円形状等に設計することができる。 The shape of the concave portion 111C is not particularly limited, and in addition to the substantially triangular shape in cross section as shown in FIGS. 10A and 10B, the substantially rectangular shape in cross section as shown in FIG. It can be designed in a substantially semicircular shape in cross section.
 (4)第5実施形態~第7実施形態
 図11は、本技術に係る生体由来物質検出用チップ1の第5実施形態を模式的に示す模式断面図である。第5実施形態に係る生体由来物質検出用チップ1は、保持表面111が、半導体基板12上に形成された膜16上に設けられている。
(4) Fifth Embodiment to Seventh Embodiment FIG. 11 is a schematic cross-sectional view schematically showing a fifth embodiment of the biogenic substance detection chip 1 according to the present technology. In the biogenic substance detection chip 1 according to the fifth embodiment, the holding surface 111 is provided on the film 16 formed on the semiconductor substrate 12.
 膜16としては、半導体基板12上に形成される膜を、目的に応じて1種又は2種以上自由に選択することができる。例えば、酸化シリコン膜(SiO膜)、窒化シリコン膜(Si膜)、シリコン酸窒化膜(SiON膜)、酸化ハフニウム膜(HfO膜)、酸化アルミニウム膜(Al膜)、酸化タンタル膜(Ta膜)等の無機膜や、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂等の樹脂系材料からなる有機膜等を挙げることができる。 As the film 16, one kind or two or more kinds of films formed on the semiconductor substrate 12 can be freely selected according to the purpose. For example, a silicon oxide film (SiO 2 film), a silicon nitride film (Si 3 N 4 film), a silicon oxynitride film (SiON film), a hafnium oxide film (HfO film), an aluminum oxide film (Al 2 O 3 film), Examples thereof include an inorganic film such as a tantalum oxide film (Ta 2 O 5 film), an organic film made of a resin material such as a styrene resin, an acrylic resin, a styrene-acryl copolymer resin, or a siloxane resin. it can.
 膜16の屈折率は、半導体基板12の屈折率と異なることが好ましい。換言すると、膜16は第1の屈折率を有し、半導体基板12は前記第1の屈折率とは異なる第2の屈折率を有することが好ましい。膜16の屈折率と、半導体基板12の屈折率とが異なることで、反射率の角度依存の光学設計が可能となり、保持表面111に保持された生体由来物質Sからの光のうち、横方向の光を反射させて半導体基板12内に入射するのを防止することができ、その結果、画素11間における混色を防止することができる。 The refractive index of the film 16 is preferably different from that of the semiconductor substrate 12. In other words, it is preferable that the film 16 has a first refractive index and the semiconductor substrate 12 has a second refractive index different from the first refractive index. Since the refractive index of the film 16 and the refractive index of the semiconductor substrate 12 are different from each other, an angle-dependent optical design of the reflectance can be performed, and the lateral direction of the light from the biological substance S held on the holding surface 111 can be obtained. It is possible to prevent the light from being reflected to enter the semiconductor substrate 12, and as a result, it is possible to prevent color mixing between the pixels 11.
 膜16は、図12~図14に示す第6実施形態~第8実施形態のように、前述したトレンチ13T内にも含ませることができる。また、膜16は、目的に応じて、複数の膜16を積層させたり、図14に示す第8実施形態のように、酸化膜14と積層させることも可能である。 The film 16 can be included in the above-mentioned trench 13T as in the sixth to eighth embodiments shown in FIGS. 12 to 14. Further, the film 16 can be formed by laminating a plurality of films 16 or by laminating it with the oxide film 14 as in the eighth embodiment shown in FIG. 14, depending on the purpose.
 (5)第9実施形態~第12実施形態
 図15は、本技術に係る生体由来物質検出用チップ1の第9実施形態を模式的に示す模式断面図である。第9実施形態に係る生体由来物質検出用チップ1は、隣接する画素11間の上方に設けられた遮光膜17を備える。遮光膜17を備えることで、画素11間における混色を更に防止することができる。また、遮光膜17を備えることで、保持表面111に液体サンプルを保持することができ、液体中に生体由来物質Sを保持することができる。
(5) Ninth Embodiment to Twelfth Embodiment FIG. 15 is a schematic cross-sectional view schematically showing a ninth embodiment of the biogenic substance detection chip 1 according to the present technology. The biogenic substance detection chip 1 according to the ninth embodiment includes the light shielding film 17 provided above the adjacent pixels 11. Providing the light-shielding film 17 can further prevent color mixing between the pixels 11. Further, by providing the light shielding film 17, the liquid sample can be held on the holding surface 111, and the biological substance S can be held in the liquid.
 遮光膜17としては、遮光可能な素材で形成された膜であれば、膜を自由に選択することができる。例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、チタン(Ti)等の金属膜、光学黒色フィルター等が挙げられる。 The light-shielding film 17 can be freely selected as long as it is a film formed of a light-shielding material. For example, a metal film of tungsten (W), aluminum (Al), copper (Cu), titanium (Ti), etc., an optical black filter, etc. may be mentioned.
 遮光膜17の形態は特に限定されず、目的に応じて自由に設計することができるが、図16のA~Cに示すように、遮光膜17間(即ち、保持表面111)が、上面視において、円形、楕円形、及び角がR形状の多角形から選択される1以上の形状を呈することが好ましい。このように、遮光膜17間の上面視において、角を無くすことで、保持表面111へのサンプルの供給時の供給ムラや、保持表面111の洗浄時の洗浄不備等を防止することができる。その結果、検出精度の更なる向上を図ることができる。 The form of the light-shielding film 17 is not particularly limited and can be freely designed according to the purpose. However, as shown in FIGS. 16A to 16C, a portion between the light-shielding films 17 (that is, the holding surface 111) is viewed from above. In, it is preferable to exhibit one or more shapes selected from a circle, an ellipse, and a polygon having R-shaped corners. As described above, by eliminating the corners in the top view between the light shielding films 17, it is possible to prevent uneven supply when the sample is supplied to the holding surface 111, cleaning defects when cleaning the holding surface 111, and the like. As a result, the detection accuracy can be further improved.
 保持表面111へのサンプルの供給時の供給ムラや、保持表面111の洗浄時の洗浄不備等を防止する方法としては、その他の方法として、図17に示す第10実施形態のように、有機膜等を用いた平坦化膜19を備える方法も採用可能である。 As a method for preventing the uneven supply during the supply of the sample to the holding surface 111 and the cleaning defect during the cleaning of the holding surface 111, as another method, as in the tenth embodiment shown in FIG. A method of providing the flattening film 19 using, for example, can also be adopted.
 遮光膜17の下には、図18に示す第11実施形態のように、酸化膜14のような他の膜を備えていても良い。また、遮光膜17は、図19に示す第12実施形態のように、前述したトレンチ13T内に埋め込んで、画素11間の上方から半導体基板12まで遮光壁を形成することも可能である。 Under the light shielding film 17, another film such as the oxide film 14 may be provided as in the eleventh embodiment shown in FIG. Further, as in the twelfth embodiment shown in FIG. 19, the light shielding film 17 can be embedded in the above-described trench 13T to form a light shielding wall from above the pixels 11 to the semiconductor substrate 12.
 なお、遮光膜17は、図15~図19に示すように、画素11毎に備えることもできるが、複数の画素11単位で、遮光膜17を設けることも可能である。 The light-shielding film 17 can be provided for each pixel 11 as shown in FIGS. 15 to 19, but it is also possible to provide the light-shielding film 17 for each of a plurality of pixels 11.
 (6)第13実施形態、第14実施形態
 図20は、本技術に係る生体由来物質検出用チップ1の第13実施形態を模式的に示す模式断面図である。第13実施形態に係る生体由来物質検出用チップ1は、保持表面111が、半導体基板12上に備えられたオンチップレンズ(OCL)18上に設けられている。オンチップレンズ(OCL)を備えることで、生体由来物質Sからの光を、光電変換部112に集光することができ、各画素11間における混色を更に防止することができる。
(6) Thirteenth Embodiment, Fourteenth Embodiment FIG. 20 is a schematic cross-sectional view schematically showing a thirteenth embodiment of the biogenic substance detection chip 1 according to the present technology. In the biogenic substance detection chip 1 according to the thirteenth embodiment, the holding surface 111 is provided on the on-chip lens (OCL) 18 provided on the semiconductor substrate 12. By providing the on-chip lens (OCL), the light from the biogenic substance S can be focused on the photoelectric conversion unit 112, and color mixing between the pixels 11 can be further prevented.
 オンチップレンズ(OCL)18の具体的な構成は特に限定されず、オンチップレンズ(OCL)の構成(反射防止層等)を自由に選択して用いることができる。 The specific configuration of the on-chip lens (OCL) 18 is not particularly limited, and the configuration of the on-chip lens (OCL) (antireflection layer etc.) can be freely selected and used.
 オンチップレンズ(OCL)18には、図21に示す第14実施形態のように、平坦化膜19を備えることができる。換言すると、保持表面111は、オンチップレンズ(OCL)18上に形成された平坦化膜19上に設けることができる。平坦化膜19を設けることで、保持表面111へのサンプルの供給時の供給ムラや、保持表面111の洗浄時の洗浄不備等を防止することができる。その結果、検出精度の更なる向上を図ることができる。 The on-chip lens (OCL) 18 can be provided with a flattening film 19 as in the fourteenth embodiment shown in FIG. In other words, the holding surface 111 can be provided on the flattening film 19 formed on the on-chip lens (OCL) 18. By providing the flattening film 19, it is possible to prevent uneven supply when the sample is supplied to the holding surface 111, cleaning defects when cleaning the holding surface 111, and the like. As a result, the detection accuracy can be further improved.
 なお、図21に示す第14実施形態では、遮光膜17を平坦化するための平坦化膜19aと、オンチップレンズ(OCL)を平坦化するための平坦化膜19bとをそれぞれ備えているが、それぞれの平坦化膜19aと19bとは、異なる材料で形成しても、同じ材料で形成してもよい。 The fourteenth embodiment shown in FIG. 21 includes a flattening film 19a for flattening the light shielding film 17 and a flattening film 19b for flattening the on-chip lens (OCL). The flattening films 19a and 19b may be made of different materials or the same material.
 (7)第15実施形態
 図22は、本技術に係る生体由来物質検出用チップ1の第15実施形態を模式的に示す模式断面図である。第15実施形態に係る生体由来物質検出用チップ1は、チップ表面に、保護膜20を備える。保護膜20を備えることで、熱、光、水、酸、アルカリ、又は薬剤等への対候性が向上し、水、酸、アルカリ、または薬剤に、長期間接触させることも可能となる。
(7) Fifteenth Embodiment FIG. 22 is a schematic cross-sectional view schematically showing a fifteenth embodiment of the biogenic substance detection chip 1 according to the present technology. The biogenic substance detection chip 1 according to the fifteenth embodiment includes a protective film 20 on the chip surface. The provision of the protective film 20 improves weather resistance to heat, light, water, acid, alkali, drug, etc., and allows contact with water, acid, alkali, or drug for a long period of time.
 保護層20を形成する素材としては、熱、光、水、酸、アルカリ、又は薬剤等への対候性のある素材であれば、目的に応じて自由に選択して用いることができる。例えば、酸化シリコン(SiO)、窒化シリコン(Si)、シリコン酸窒化(SiON)等を挙げることができる。 As a material for forming the protective layer 20, any material having weatherability against heat, light, water, acid, alkali, chemicals or the like can be freely selected and used according to the purpose. For example, silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON) and the like can be mentioned.
 (8)第16実施形態
 図23は、本技術に係る生体由来物質検出用チップ1の第16実施形態を模式的に示す模式断面図である。第16実施形態に係る生体由来物質検出用チップ1は、チップ表面に、励起光カットフィルタ21を備える。励起光カットフィルタ21を備えることで、励起光の光電変換部112への漏れ込みを防止することができる。その結果、検出精度の更なる向上を図ることができる。
(8) Sixteenth Embodiment FIG. 23 is a schematic cross-sectional view schematically showing a sixteenth embodiment of the biogenic substance detection chip 1 according to the present technology. The biogenic substance detection chip 1 according to the sixteenth embodiment includes an excitation light cut filter 21 on the chip surface. By including the excitation light cut filter 21, it is possible to prevent the excitation light from leaking into the photoelectric conversion unit 112. As a result, the detection accuracy can be further improved.
 (9)第17実施形態
 図24は、本技術に係る生体由来物質検出用チップ1の第17実施形態を模式的に示す上方視模式平面図であり、図25は、内部構造を省略した図24のA-A視断面模式図である。第17実施形態に係る生体由来物質検出用チップ1は、有効画素領域11Eの外側Oに段差部22aを備える。より詳細には、第17実施形態に係る生体由来物質検出用チップ1は、有効画素領域11Eから外側に向かって、中間領域22、配線領域23、周辺領域24が設けられ、前記中間領域22に、段差部22aを備える。有効画素領域11Eの外側Oに備えられる配線領域23には、段差があるのが一般的であるが、第17実施形態では、配線領域23と有効画素領域11Eとの間の中間領域22に段差部22aを設けることで、保持表面111へのサンプルの供給時の供給ムラや、保持表面111の洗浄時の洗浄不備等を防止することができる。その結果、検出精度の更なる向上を図ることができる。
(9) Seventeenth Embodiment FIG. 24 is a schematic plan view from above showing a seventeenth embodiment of the biogenic substance detection chip 1 according to the present technology, and FIG. 25 is a diagram with an internal structure omitted. FIG. 24 is a schematic cross-sectional view taken along line AA of 24. The biogenic substance detection chip 1 according to the seventeenth embodiment includes a step portion 22a on the outer side O of the effective pixel region 11E. More specifically, in the biogenic substance detection chip 1 according to the seventeenth embodiment, an intermediate region 22, a wiring region 23, and a peripheral region 24 are provided outward from the effective pixel region 11E, and the intermediate region 22 is provided. , A step 22a. The wiring region 23 provided on the outside O of the effective pixel region 11E generally has a step, but in the seventeenth embodiment, a step is formed in the intermediate region 22 between the wiring region 23 and the effective pixel region 11E. By providing the portion 22a, it is possible to prevent supply unevenness when the sample is supplied to the holding surface 111, cleaning defects when cleaning the holding surface 111, and the like. As a result, the detection accuracy can be further improved.
 図24に示す通り、第7実施形態では、上面視において、段差部22aの角をR状に形成している。上面視において、段差部22aの角をR状に形成することで、保持表面111へのサンプルの供給時の供給ムラや、保持表面111の洗浄時の洗浄不備等を更に防止することができる。なお、図示しないが、上面視において、配線領域23の角をR状に形成することも可能である。また、図示しないが、周辺領域24に、段差部を設けることも可能である。 As shown in FIG. 24, in the seventh embodiment, the corners of the step portion 22a are formed in an R shape in a top view. By forming the corners of the step portion 22a into an R shape in a top view, it is possible to further prevent supply unevenness when the sample is supplied to the holding surface 111, cleaning defects when cleaning the holding surface 111, and the like. Although not shown, it is also possible to form the corners of the wiring region 23 in an R shape in a top view. Although not shown, a stepped portion can be provided in the peripheral region 24.
 なお、図示しないが、配線領域23を、チップ1の保持表面111(受光面)とは反対側の表面側に設けることで、保持表面111へのサンプルの供給時の供給ムラや、保持表面111の洗浄時の洗浄不備等を防止することも可能である。 Although not shown, the wiring region 23 is provided on the surface side of the chip 1 opposite to the holding surface 111 (light receiving surface), so that the unevenness of supply when the sample is supplied to the holding surface 111 and the holding surface 111. It is also possible to prevent cleaning defects and the like during cleaning.
<3.生体由来物質検出装置2>
 図26は、本技術に係る生体由来物質検出装置2の概念を示すブロック図である。本技術に係る生体由来物質検出装置2は、前述した本技術に係る生体由来物質検出用チップ1と、解析部21と、を少なくとも備える。また、目的に応じて、光照射部22、記憶部23、表示部24、温度制御部25等を備えることもできる。以下、各部について説明する。なお、生体由来物質検出用チップ1については、前述の通りであるため、ここでは説明を割愛する。
<3. Biological substance detection device 2>
FIG. 26 is a block diagram showing the concept of the biological material detection device 2 according to the present technology. The biological substance detection device 2 according to the present technology includes at least the biological substance detection chip 1 according to the present technology described above, and the analysis unit 21. Further, the light irradiation unit 22, the storage unit 23, the display unit 24, the temperature control unit 25, and the like may be provided according to the purpose. Hereinafter, each part will be described. Since the biological substance detection chip 1 is as described above, the description thereof is omitted here.
 (1)解析部21
 解析部21では、生体由来物質検出用チップ1によって取得された電気的情報の解析が行われる。例えば、生体由来物質検出用チップ1によって取得された電気的情報に基づいて、生体由来物質Sの存在の有無、生体由来物質Sにおける相互作用の有無、薬効成分のスクリーニング等が行われる。
(1) Analysis unit 21
The analysis unit 21 analyzes the electrical information acquired by the biogenic substance detection chip 1. For example, based on the electrical information acquired by the biogenic substance detection chip 1, presence/absence of the biogenic substance S, presence/absence of interaction in the biogenic substance S, screening of a medicinal component, and the like are performed.
 なお、解析部21としては、パーソナルコンピュータや、CPUにて実施してもよく、記録媒体(例えば、不揮発性メモリ(USBメモリ)、HDD、CDなど)等を備えるハードウェア資源にプログラムとして格納し、パーソナルコンピュータやCPUによって機能させることも可能である。 The analysis unit 21 may be implemented by a personal computer or a CPU, and is stored as a program in a hardware resource including a recording medium (for example, non-volatile memory (USB memory), HDD, CD, etc.). It is also possible to make it function by a personal computer or a CPU.
 (2)光照射部22
 本技術に係る生体由来物質検出装置2には、例えば、励起光照射等のために光照射部22を備えることができる。光照射部22では、前記生体由来物質検出用チップ1の保持表面111に保持された生体由来物質Sへの光の照射が行われる。なお、本技術に係る生体由来物質検出装置2において、光照射部22は必須ではなく、外部の光照射装置等を用いて生体由来物質Sへの光照射を行うことも可能である。
(2) Light irradiation unit 22
The living body-derived substance detection device 2 according to the present technology can be provided with a light irradiation unit 22 for, for example, excitation light irradiation. The light irradiation unit 22 irradiates the biological substance S held on the holding surface 111 of the biological substance detection chip 1 with light. In the living body-derived substance detection device 2 according to the present technology, the light irradiation unit 22 is not essential, and the living body-derived substance S can be irradiated with light using an external light irradiation device or the like.
 光照射部22から照射される光の種類は特に限定されないが、微小粒子から蛍光や散乱光を確実に発生させるためには、光方向、波長、光強度が一定の光が望ましい。一例としては、レーザー、LED等を挙げることができる。レーザーを用いる場合、その種類も特に限定されないが、アルゴンイオン(Ar)レーザー、ヘリウム-ネオン(He-Ne)レーザー、ダイ(dye)レーザー、クリプトン(Cr)レーザー、半導体レーザー、または、半導体レーザーと波長変換光学素子を組み合わせた固体レーザー等を、1種又は2種以上、自由に組み合わせて用いることができる。 The type of light emitted from the light irradiation unit 22 is not particularly limited, but in order to reliably generate fluorescence or scattered light from fine particles, it is desirable that the light has a constant light direction, wavelength, and light intensity. A laser, LED, etc. can be mentioned as an example. When a laser is used, the kind is not particularly limited, but an argon ion (Ar) laser, a helium-neon (He-Ne) laser, a die (dye) laser, a krypton (Cr) laser, a semiconductor laser, or a semiconductor laser is used. One type or two or more types of solid-state lasers or the like combined with wavelength conversion optical elements can be freely combined and used.
 光照射部22は、目的に応じて、複数備えてもよい。例えば、前記生体由来物質検出用チップ1の各画素11に対して、一つの光照射部22を備えてもよい。また、前記生体由来物質検出用チップ1の各画素11に対応する位置にLED等の発光素子が配列された基板を、前記生体由来物質検出用チップ1に積層させることで、生体由来物質Sへの光の照射を行うことも可能である。 A plurality of light irradiation units 22 may be provided according to the purpose. For example, one light irradiation unit 22 may be provided for each pixel 11 of the biogenic substance detection chip 1. In addition, by stacking a substrate on which light-emitting elements such as LEDs are arranged at positions corresponding to the respective pixels 11 of the biogenic substance detection chip 1 on the biogenic substance detection chip 1, the biogenic substance S is obtained. It is also possible to irradiate this light.
 (3)記憶部23
 本技術に係る生体由来物質検出装置2には、各種情報を記憶する記憶部23を備えることができる。記憶部23には、前記生体由来物質検出用チップ1によって取得された電気的データ、解析部21にて生成された解析データ、光照射部22において照射した光学的データ等、検出に関わるあらゆる事項を記憶することが可能である。
(3) Storage unit 23
The living body-derived substance detection device 2 according to the present technology may include a storage unit 23 that stores various types of information. In the storage unit 23, all items related to detection, such as electrical data acquired by the biogenic substance detection chip 1, analysis data generated by the analysis unit 21, optical data irradiated by the light irradiation unit 22, and the like. It is possible to store
 本技術に係る生体由来物質検出装置2において、記憶部23は必須ではなく、外部の記憶装置を接続してもよい。記憶部23としては、例えば、ハードディスクなどを用いることができる。 In the biological substance detection device 2 according to the present technology, the storage unit 23 is not essential, and an external storage device may be connected. As the storage unit 23, for example, a hard disk or the like can be used.
 (4)表示部24
 本技術に係る生体由来物質検出装置2には、各種情報を表示する表示部24を備えることができる。表示部24では、前記生体由来物質検出用チップ1によって取得された電気的データ、解析部21にて生成された解析データ、光照射部22において照射した光学的データ、記憶部23に記憶されたデータ等、検出に関わるあらゆる事項を表示することができる。
(4) Display unit 24
The living body-derived substance detection device 2 according to the present technology can include a display unit 24 that displays various types of information. In the display unit 24, the electrical data acquired by the biogenic substance detection chip 1, the analysis data generated by the analysis unit 21, the optical data irradiated by the light irradiation unit 22, and the storage unit 23 are stored. All items related to detection such as data can be displayed.
 本技術に係る生体由来物質検出装置2において、表示部24は必須ではなく、外部の表示装置を接続してもよい。表示部24としては、例えば、ディスプレイやプリンタなどを用いることができる。 In the biological substance detection device 2 according to the present technology, the display unit 24 is not essential, and an external display device may be connected. As the display unit 24, for example, a display or a printer can be used.
 (5)温度制御部25
 本技術に係る生体由来物質検出装置2には、生体由来物質検出用チップ1の保持表面111に保持された生体由来物質Sを所定の温度に保ったり、所定の温度に加熱又は冷却するための温度制御部25を備えることができる。例えば、生体由来物質Sが酵素の場合、温度制御部25よって、至適温度に保つように温度制御を行うことができる。また、生体由来物質Sが核酸であって、本技術を用いてハイブリダイゼーションの有無を検出する場合等には、ハイブリダイゼーション可能な温度範囲に保つように、温度制御部25によって制御することができる。温度制御部25としては、ペルチェ素子等の熱電素子を使用することができる。
(5) Temperature control unit 25
The biogenic substance detection device 2 according to the present technology is for holding the biogenic substance S held on the holding surface 111 of the biogenic substance detection chip 1 at a predetermined temperature, or for heating or cooling to a predetermined temperature. A temperature controller 25 can be provided. For example, when the biological substance S is an enzyme, the temperature control unit 25 can perform temperature control so as to maintain the optimum temperature. When the biogenic substance S is a nucleic acid and the presence or absence of hybridization is detected using the present technique, the temperature control unit 25 can control the temperature so that the temperature range can be hybridized. .. As the temperature control unit 25, a thermoelectric element such as a Peltier element can be used.
 温度制御部25は、目的に応じて、複数備えてもよい。例えば、前記生体由来物質検出用チップ1の各画素11に対して、一つの温度制御部25を備えてもよい。また、前記生体由来物質検出用チップ1の各画素11に対応する位置に熱電素子が配列された基板を、前記生体由来物質検出用チップ1に積層させることで、生体由来物質Sへの温度制御を行うことも可能である。 A plurality of temperature control units 25 may be provided according to the purpose. For example, one temperature control unit 25 may be provided for each pixel 11 of the biogenic substance detection chip 1. Further, by stacking a substrate on which thermoelectric elements are arranged at positions corresponding to the respective pixels 11 of the biogenic substance detection chip 1 on the biogenic substance detection chip 1, temperature control of the biogenic substance S is performed. It is also possible to do.
 なお、本技術に係る生体由来物質検出装置2において、温度制御部25は必須ではなく、外部の温度制御装置等を用いて生体由来物質Sの温度制御を行うことも可能である。 Note that the temperature control unit 25 is not essential in the biological substance detection device 2 according to the present technology, and the temperature of the biological substance S can be controlled using an external temperature control device or the like.
<4.生体由来物質検出システム3>
 図27は、本技術に係る生体由来物質検出システム3の概念を示すブロック図である。本技術に係る生体由来物質検出システム3は、前述した本技術に係る生体由来物質検出用チップ1と、解析装置31と、を少なくとも備える。また、目的に応じて、光照射装置32、記憶装置33、表示装置34、温度制御装置35等を備えることもできる。
<4. Biological substance detection system 3>
FIG. 27 is a block diagram showing the concept of the biological material detection system 3 according to the present technology. The biogenic substance detection system 3 according to the present technology includes at least the biogenic substance detection chip 1 according to the present technology described above, and the analysis device 31. Further, the light irradiation device 32, the storage device 33, the display device 34, the temperature control device 35, and the like may be provided according to the purpose.
 生体由来物質検出用チップ1と、各装置とは、有線又は無線のネットワークを介して接続することが可能である。なお、各装置の詳細は、前述した本技術に生体由来物質検出装置2の各部の詳細と同一であるため、ここでは説明を割愛する。 The biogenic substance detection chip 1 and each device can be connected via a wired or wireless network. Since the details of each device are the same as the details of each part of the biological substance detection device 2 in the present technology described above, the description thereof is omitted here.
 なお、本技術では、以下の構成を取ることもできる。
(1)
 複数の画素から構成され、
 前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられ、半導体基板に設けられた光電変換部と、を少なくとも備え、
 前記画素間には混色抑制部が設けられた、生体由来物質検出用チップ。
(2)
 前記画素と前記混色抑制部とは異なる導電型である、(1)に記載の生体由来物質検出用チップ。
(3)
 前記画素はN型領域であり、前記混色抑制部はP型領域である、(2)に記載の生体由来物質検出用チップ。
(4)
 前記画素はP型領域であり、前記混色抑制部はN型領域である、(2)に記載の生体由来物質検出用チップ。
(5)
 前記複数の画素は、各々、光電変換領域を有し、各光電変換領域間にトレンチが設けられた、(1)から(4)のいずれかに記載の生体由来物質検出用チップ。
(6)
 前記トレンチの内部に、酸化膜、及び金属から選択される1種以上を含む、(5)に記載の生体由来物質検出用チップ。
(7)
 前記光電変換部の上方であって、前記保持表面に凹部が設けられている、(1)から(6)のいずれかに記載の生体由来物質検出用チップ。
(8)
 前記保持表面が、前記半導体基板上に形成された膜上に設けられた、(1)から(7)のいずれかに記載の生体由来物質検出用チップ。
(9)
 前記膜は第1の屈折率を有し、前記半導体基板は前記第1の屈折率とは異なる第2の屈折率を有する、(8)に記載の生体由来物質検出用チップ。
(10)
 前記膜は、無機膜、及び有機膜から選択される1以上の膜からなる、(8)又は(9)に記載の生体由来物質検出用チップ。
(11)
 隣接する前記画素間の上方に設けられた遮光膜を備える、(1)から(10)のいずれかに記載の生体由来物質検出用チップ。
(12)
 前記遮光膜間は、上面視において、円形、楕円形、及び角がR形状の多角形から選択される1以上の形状を呈する、(11)に記載の生体由来物質検出用チップ。
(13)
 前記保持表面が、前記半導体基板上に備えられたオンチップレンズ(OCL)上に設けられた、(1)から(12)のいずれかに記載の生体由来物質検出用チップ。
(14)
 前記保持表面が、前記オンチップレンズ(OCL)上に形成された平坦化膜上に設けられた、(13)に記載の光検出用チップ。
(15)
 前記生体由来物質は、核酸、タンパク質、細胞、微生物、染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)、及びこれらの複合体から選択される1以上の生体由来物質である、(1)から(14)のいずれかに記載の光検出用チップ。
(16)
 複数の画素から構成され、
前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
前記画素間には混色抑制部が設けられた、生体由来物質検出用チップと、
 前記生体由来物質検出用チップによって取得された電気的情報を解析する解析部と、
 を備える、生体由来物質検出装置。
(17)
 複数の画素から構成され、
前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
前記画素間には混色抑制部が設けられた、生体由来物質検出用チップと、
 前記生体由来物質検出用チップによって取得された電気的情報を解析する解析装置と、
 を備える、生体由来物質検出システム。
Note that the present technology may also have the following configurations.
(1)
It consists of multiple pixels,
The pixel includes at least a holding surface that holds a biological substance, and a photoelectric conversion unit that is provided below the holding surface and that is provided on a semiconductor substrate.
A biogenic substance detection chip, in which a color mixture suppressing unit is provided between the pixels.
(2)
The biogenic substance detection chip according to (1), wherein the pixel and the color mixing suppression unit have different conductivity types.
(3)
The biogenic substance detection chip according to (2), wherein the pixel is an N-type region, and the color mixture suppressing portion is a P-type region.
(4)
The biogenic substance detection chip according to (2), wherein the pixel is a P-type region, and the color mixture suppressing portion is an N-type region.
(5)
The living body-derived substance detection chip according to any one of (1) to (4), wherein each of the plurality of pixels has a photoelectric conversion region, and a trench is provided between the photoelectric conversion regions.
(6)
The biogenic substance detection chip according to (5), wherein the inside of the trench contains at least one selected from an oxide film and a metal.
(7)
The biogenic substance detection chip according to any one of (1) to (6), wherein a recess is provided on the holding surface above the photoelectric conversion unit.
(8)
The biogenic substance detection chip according to any one of (1) to (7), wherein the holding surface is provided on a film formed on the semiconductor substrate.
(9)
The living body-derived substance detection chip according to (8), wherein the film has a first refractive index, and the semiconductor substrate has a second refractive index different from the first refractive index.
(10)
The biogenic substance detection chip according to (8) or (9), wherein the film is made of one or more films selected from an inorganic film and an organic film.
(11)
The biogenic substance detection chip according to any one of (1) to (10), comprising a light-shielding film provided above the adjacent pixels.
(12)
The chip for detecting a biological substance according to (11), wherein the space between the light shielding films has one or more shapes selected from a circle, an ellipse, and a polygon having an R shape in a top view.
(13)
The chip for detecting a biological substance according to any one of (1) to (12), wherein the holding surface is provided on an on-chip lens (OCL) provided on the semiconductor substrate.
(14)
The photodetection chip according to (13), wherein the holding surface is provided on a flattening film formed on the on-chip lens (OCL).
(15)
The biological substance is one or more biological substances selected from nucleic acids, proteins, cells, microorganisms, chromosomes, liposomes, mitochondria, organelles (organelles), and complexes thereof, (1) to ( The photodetection chip according to any one of 14).
(16)
It consists of multiple pixels,
The pixel includes at least a holding surface for holding a biological substance, and a photoelectric conversion unit provided below the holding surface,
A color mixing suppression part is provided between the pixels, a chip for detecting a biological substance,
An analysis unit that analyzes electrical information acquired by the biological substance detection chip,
An apparatus for detecting a substance derived from a living body, comprising:
(17)
It consists of multiple pixels,
The pixel includes at least a holding surface that holds a biological substance, and a photoelectric conversion unit provided below the holding surface,
A color mixture suppressing part is provided between the pixels, and a biological substance detection chip,
An analysis device for analyzing the electrical information acquired by the biogenic substance detection chip,
A biological substance detection system comprising:
1 生体由来物質検出用チップ
11 画素
S 生体由来物質
111 保持表面
12 半導体基板
112 光電変換部
13 混色抑制部
112A 光電変換領域
13T トレンチ
14 酸化膜
15 金属
111C 凹部
16 膜
17 遮光膜
18 オンチップレンズ
19 平坦化膜
20 保護層
21 励起光カットフィルタ
22 中間領域
23 配線領域
24 周辺領域
21 解析部
22 光照射部
23 記憶部
24 表示部
25 温度制御部
31 解析装置
32 光照射装置
33 記憶装置
34 表示装置
35 温度制御装置
1 Biogenic Substance Detection Chip 11 Pixel S Biogenic Substance 111 Holding Surface 12 Semiconductor Substrate 112 Photoelectric Conversion Section 13 Color Mixing Suppression Section 112A Photoelectric Conversion Area 13T Trench 14 Oxide Film 15 Metal 111C Recess 16 Film 17 Light-Shielding Film 18 On-chip Lens 19 Flattening film 20 Protective layer 21 Excitation light cut filter 22 Intermediate area 23 Wiring area 24 Peripheral area 21 Analysis part 22 Light irradiation part 23 Storage part 24 Display part 25 Temperature control part 31 Analysis device 32 Light irradiation device 33 Storage device 34 Display device 35 Temperature control device

Claims (17)

  1.  複数の画素から構成され、
     前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられ、半導体基板に設けられた光電変換部と、を少なくとも備え、
     前記画素間には混色抑制部が設けられた、生体由来物質検出用チップ。
    It consists of multiple pixels,
    The pixel includes at least a holding surface that holds a biological substance, and a photoelectric conversion unit that is provided below the holding surface and that is provided on a semiconductor substrate.
    A biogenic substance detection chip, in which a color mixture suppressing unit is provided between the pixels.
  2.  前記画素と前記混色抑制部とは異なる導電型である、請求項1記載の生体由来物質検出用チップ。 The biogenic substance detection chip according to claim 1, wherein the pixel and the color mixture suppressing unit have different conductivity types.
  3.  前記画素はN型領域であり、前記混色抑制部はP型領域である、請求項2に記載の生体由来物質検出用チップ。 The biogenic substance detection chip according to claim 2, wherein the pixel is an N-type region, and the color mixture suppressing portion is a P-type region.
  4.  前記画素はP型領域であり、前記混色抑制部はN型領域である、請求項2に記載の生体由来物質検出用チップ。 The biogenic substance detection chip according to claim 2, wherein the pixel is a P-type region and the color mixture suppressing portion is an N-type region.
  5.  前記複数の画素は、各々、光電変換領域を有し、各光電変換領域間にトレンチが設けられた、請求項1記載の生体由来物質検出用チップ。 The biogenic substance detection chip according to claim 1, wherein each of the plurality of pixels has a photoelectric conversion region, and a trench is provided between the photoelectric conversion regions.
  6.  前記トレンチの内部に、酸化膜、及び金属から選択される1種以上を含む、請求項5に記載の生体由来物質検出用チップ。 The chip for detecting a biological substance according to claim 5, wherein the trench contains at least one selected from an oxide film and a metal.
  7.  前記光電変換部の上方であって、前記保持表面に凹部が設けられている、請求項1記載の生体由来物質検出用チップ。 The biogenic substance detection chip according to claim 1, wherein a recess is provided on the holding surface above the photoelectric conversion unit.
  8.  前記保持表面が、前記半導体基板上に形成された膜上に設けられた、請求項1記載の生体由来物質検出用チップ。 The bio-derived substance detection chip according to claim 1, wherein the holding surface is provided on a film formed on the semiconductor substrate.
  9.  前記膜は第1の屈折率を有し、前記半導体基板は前記第1の屈折率とは異なる第2の屈折率を有する、請求項8記載の生体由来物質検出用チップ。 The chip for detecting a biological substance according to claim 8, wherein the film has a first refractive index and the semiconductor substrate has a second refractive index different from the first refractive index.
  10.  前記膜は、無機膜、及び有機膜から選択される1以上の膜からなる、請求項8記載の生体由来物質検出用チップ。 The chip for detecting a biological substance according to claim 8, wherein the film comprises one or more films selected from an inorganic film and an organic film.
  11.  隣接する前記画素間の上方に設けられた遮光膜を備える、請求項1記載の生体由来物質検出用チップ。 The biogenic substance detection chip according to claim 1, further comprising a light-shielding film provided above the adjacent pixels.
  12.  前記遮光膜間は、上面視において、円形、楕円形、及び角がR形状の多角形から選択される1以上の形状を呈する、請求項11記載の生体由来物質検出用チップ。 The chip for detecting a biological substance according to claim 11, wherein a space between the light shielding films has one or more shapes selected from a circle, an ellipse, and a polygon having an R shape in a top view.
  13.  前記保持表面が、前記半導体基板上に備えられたオンチップレンズ(OCL)上に設けられた、請求項1記載の生体由来物質検出用チップ。 The biogenic substance detection chip according to claim 1, wherein the holding surface is provided on an on-chip lens (OCL) provided on the semiconductor substrate.
  14.  前記保持表面が、前記オンチップレンズ(OCL)上に形成された平坦化膜上に設けられた、請求項13記載の光検出用チップ。 The photodetection chip according to claim 13, wherein the holding surface is provided on a flattening film formed on the on-chip lens (OCL).
  15.  前記生体由来物質は、核酸、タンパク質、細胞、微生物、染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)、及びこれらの複合体から選択される1以上の生体由来物質である、請求項1記載の光検出用チップ。 The biological substance is one or more biological substances selected from nucleic acids, proteins, cells, microorganisms, chromosomes, liposomes, mitochondria, organelles (organelles), and complexes thereof. Light detection chip.
  16.  複数の画素から構成され、
    前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
    前記画素間には混色抑制部が設けられた、生体由来物質検出用チップと、
     前記生体由来物質検出用チップによって取得された電気的情報を解析する解析部と、
     を備える、生体由来物質検出装置。
    It consists of multiple pixels,
    The pixel includes at least a holding surface for holding a biological substance, and a photoelectric conversion unit provided below the holding surface,
    A color mixing suppression part is provided between the pixels, a chip for detecting a biological substance,
    An analysis unit that analyzes electrical information acquired by the biological substance detection chip,
    An apparatus for detecting a substance derived from a living body, comprising:
  17.  複数の画素から構成され、
    前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
    前記画素間には混色抑制部が設けられた、生体由来物質検出用チップと、
     前記生体由来物質検出用チップによって取得された電気的情報を解析する解析装置と、
     を備える、生体由来物質検出システム。
    It consists of multiple pixels,
    The pixel includes at least a holding surface for holding a biological substance, and a photoelectric conversion unit provided below the holding surface,
    A color mixing suppression part is provided between the pixels, a chip for detecting a biological substance,
    An analysis device that analyzes the electrical information acquired by the biogenic substance detection chip,
    A biological substance detection system comprising:
PCT/JP2019/043641 2018-11-26 2019-11-07 Chip for detecting material derived from living body, apparatus for detecting material derived from living body, and system for detecting material derived from living body WO2020110646A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/287,591 US20210318247A1 (en) 2018-11-26 2019-11-07 Chip for detecting a biological substance, biological-substance detection apparatus, and biological-substance detection system
EP19890530.9A EP3889584A4 (en) 2018-11-26 2019-11-07 Chip for detecting material derived from living body, apparatus for detecting material derived from living body, and system for detecting material derived from living body
CN201980077118.5A CN113167730A (en) 2018-11-26 2019-11-07 Chip for detecting biological substance, biological substance detection device, and biological substance detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018220688A JP2020085666A (en) 2018-11-26 2018-11-26 Tissue-derived substance detection chip, tissue-derived substance detection device, and tissue-derived substance detection system
JP2018-220688 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020110646A1 true WO2020110646A1 (en) 2020-06-04

Family

ID=70853769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043641 WO2020110646A1 (en) 2018-11-26 2019-11-07 Chip for detecting material derived from living body, apparatus for detecting material derived from living body, and system for detecting material derived from living body

Country Status (6)

Country Link
US (1) US20210318247A1 (en)
EP (1) EP3889584A4 (en)
JP (1) JP2020085666A (en)
CN (1) CN113167730A (en)
TW (1) TW202030480A (en)
WO (1) WO2020110646A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003061A (en) * 2006-06-26 2008-01-10 Fujifilm Corp Device for analyzing dna, and dna analyzer
JP2009222583A (en) * 2008-03-17 2009-10-01 Casio Comput Co Ltd Imaging device, biopolymer analysis chip and analysis method
US20100108865A1 (en) * 2008-11-05 2010-05-06 Samsung Electronics Co., Ltd. Substrate for detecting samples, bio-chip employing the substrate, method of fabricating the substrate for detecting samples, and apparatus for detecting bio-material
JP2010186818A (en) * 2009-02-10 2010-08-26 Sony Corp Solid-state imaging apparatus and method of manufacturing the same, and electronic equipment
JP2010284152A (en) 2009-05-14 2010-12-24 Sony Corp Optical detector
WO2013080473A1 (en) 2011-11-30 2013-06-06 ソニー株式会社 Chemical sensor, chemical sensor module, chemical substance detector and method for detecting chemical substance
JP2013175494A (en) * 2011-03-02 2013-09-05 Sony Corp Solid state imaging device, method of fabricating solid state imaging device, and electronic instrument
JP2015162679A (en) * 2014-02-27 2015-09-07 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor having trench including negative charge material and method of fabricating the same
JP2018517127A (en) * 2015-04-22 2018-06-28 シェンゼン・ジェノリビジョン・テクノロジー・カンパニー・リミテッド Biosensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045857A (en) * 2011-08-24 2013-03-04 Sony Corp Image sensor, manufacturing method of the same, and inspection device
JP2013088378A (en) * 2011-10-21 2013-05-13 Sony Corp Chemical sensor, chemical sensor module, biomolecule detection device, and biomolecule detection method
US8906320B1 (en) * 2012-04-16 2014-12-09 Illumina, Inc. Biosensors for biological or chemical analysis and systems and methods for same
US8941204B2 (en) * 2012-04-27 2015-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for reducing cross talk in image sensors
US9683937B2 (en) * 2013-08-23 2017-06-20 Semiconductor Components Industries, Llc Imaging devices for molecule detection
WO2016104517A1 (en) * 2014-12-26 2016-06-30 株式会社 東芝 Biosensor
KR20230074836A (en) * 2015-03-09 2023-05-31 소니 세미컨덕터 솔루션즈 가부시키가이샤 Image capture element and method for manufacturing same, and electronic device
TWI571626B (en) * 2015-07-15 2017-02-21 力晶科技股份有限公司 Integrated bio-sensor with nanocavity and fabrication method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003061A (en) * 2006-06-26 2008-01-10 Fujifilm Corp Device for analyzing dna, and dna analyzer
JP2009222583A (en) * 2008-03-17 2009-10-01 Casio Comput Co Ltd Imaging device, biopolymer analysis chip and analysis method
US20100108865A1 (en) * 2008-11-05 2010-05-06 Samsung Electronics Co., Ltd. Substrate for detecting samples, bio-chip employing the substrate, method of fabricating the substrate for detecting samples, and apparatus for detecting bio-material
JP2010186818A (en) * 2009-02-10 2010-08-26 Sony Corp Solid-state imaging apparatus and method of manufacturing the same, and electronic equipment
JP2010284152A (en) 2009-05-14 2010-12-24 Sony Corp Optical detector
JP2013175494A (en) * 2011-03-02 2013-09-05 Sony Corp Solid state imaging device, method of fabricating solid state imaging device, and electronic instrument
WO2013080473A1 (en) 2011-11-30 2013-06-06 ソニー株式会社 Chemical sensor, chemical sensor module, chemical substance detector and method for detecting chemical substance
JP2015162679A (en) * 2014-02-27 2015-09-07 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor having trench including negative charge material and method of fabricating the same
JP2018517127A (en) * 2015-04-22 2018-06-28 シェンゼン・ジェノリビジョン・テクノロジー・カンパニー・リミテッド Biosensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889584A4

Also Published As

Publication number Publication date
CN113167730A (en) 2021-07-23
TW202030480A (en) 2020-08-16
US20210318247A1 (en) 2021-10-14
JP2020085666A (en) 2020-06-04
EP3889584A4 (en) 2021-12-22
EP3889584A1 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP6764002B2 (en) Detecting and using light that is representative of the sample
US20230164299A1 (en) Detecting and using light representative of a sample
US10745748B2 (en) Optical lens system and method for microfluidic devices
US20040234417A1 (en) Fluorescence biosensor chip and fluorescence biosensor chip arrangement
US20100105035A1 (en) Electroluminescent-based fluorescence detection device
US20160243550A1 (en) Microfluidic device
US7993583B2 (en) Passive microfluidic array card and reader
CN102713720A (en) Microscopy imaging
JP4569346B2 (en) Biopolymer analysis method
WO2020110646A1 (en) Chip for detecting material derived from living body, apparatus for detecting material derived from living body, and system for detecting material derived from living body
WO2021166598A1 (en) Chip for detecting living body-derived material, device for detecting living body-derived material and system for detecting living body-derived material
WO2021166597A1 (en) Biological substance detection chip, biological substance detection device, and biological substance detection system
WO2021182175A1 (en) Sensor for detecting tissue-derived biomaterial, tissue-derived biomaterial detection device, and tissue-derived biomaterial detection system
JP2009222583A (en) Imaging device, biopolymer analysis chip and analysis method
JP2006098187A (en) Biopolymer analysis support device and its control method
Tsai et al. Enhanced fluorescence signal using stray light shutter in a quantitative PCR chip
TWI581861B (en) Microfluidic device, system for detection, detection method using the system and use of the system
Tian et al. Nanoparticle-on-chip: A CMOS DNA analyzer
JP2009192368A (en) Biopolymer analyzing chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890530

Country of ref document: EP

Effective date: 20210628