WO2020110198A1 - Method and facility for producing lead - Google Patents

Method and facility for producing lead Download PDF

Info

Publication number
WO2020110198A1
WO2020110198A1 PCT/JP2018/043568 JP2018043568W WO2020110198A1 WO 2020110198 A1 WO2020110198 A1 WO 2020110198A1 JP 2018043568 W JP2018043568 W JP 2018043568W WO 2020110198 A1 WO2020110198 A1 WO 2020110198A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
solution
producing
acid
paste
Prior art date
Application number
PCT/JP2018/043568
Other languages
French (fr)
Japanese (ja)
Inventor
ベヘナム ラーマンルー
メイサン アラキ
アレン ナイミ
Original Assignee
株式会社ジェーエフシーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェーエフシーテック filed Critical 株式会社ジェーエフシーテック
Priority to JP2019507961A priority Critical patent/JP6550582B1/en
Priority to PCT/JP2018/043568 priority patent/WO2020110198A1/en
Publication of WO2020110198A1 publication Critical patent/WO2020110198A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a novel process for extracting and recycling lead from a battery paste using a harmless chemical method to produce a lead compound including a lead salt and metallic lead. More specifically, the method allows for the conversion of PbS ores (galena) to metallic lead by using nano or micro metal powders after dissolution and recovery.
  • dry lead battery paste contains carbon black, plastics, fibers, and sulfates such as lead and sulfuric acid. The compound is included.
  • the particular method used to obtain the battery paste requires accurate battery composition determination.
  • the battery waste composing a dry lead battery contains 55-65 wt% compound, 15-40 wt% carbon black, 5-25 wt% plastic and 1-5 wt% fiber, respectively.
  • the battery paste may include sulfuric acid.
  • the main component of the separated used battery is sulfate (PbSO 4 ), which is treated with a solution of an alkaline substance such as sodium hydroxide (NaOH) or sodium carbonate (Na 2 CO 3 ). 2 reduces the emission of sulfur dioxide (SO 2 ).
  • the metal paste is obtained by filling a conventional smelting blast furnace with the battery paste and decomposing at high temperature.
  • This metal paste material contains a large amount of sulfur in the form of sulphate (PbSO 4 ). Decomposition of this compound occurs at relatively high temperatures, typically above 1100°C.
  • Patent Document 3 U.S. Pat. No. 8,323,376 Pat is to prevent the harmful gases such as sulfur dioxide (SO 2) is released to the environment, many by pyrometallurgical process of sulfate (PbSO 4) Taking steps. In addition, processes performed at high temperatures produce significant amounts of harmful lead-containing fumes, dust and slag. Special equipment is required to control expensive hazardous substances. Moreover, the process of removing harmful by-products is tedious and time consuming. Lead is produced after crushing and producing a lead concentrate from a sulfide mineral (PbS ore). This lead is contaminated.
  • PbS ore sulfide mineral
  • Patent Document 3 The disadvantages of the pyrometallurgical method described in Patent Document 3 are listed below. 1. Emissions of pollutant gases such as carbon dioxide and sulfuric acid play an important role in air pollution and change the local ecosystem. 2. There is a possibility of acid rain caused by local SOx gas. 3. Undesirable odors in the environment and the potential for lead to leak sewage. 4. Some evaporation of lead compounds from lead plants with harmful environmental and human impacts is always regarded as a risk to the residential environment. 5. In this way much wastewater is produced. 6. The process performed in the furnace requires high temperatures of around 1000°C. These temperatures are achieved by using fossil fuels or pollutants or expensive electricity. 7. It is not possible to completely remove the metal components using this method.
  • Patent document 4 shows a hydrometallurgical process for lead.
  • the purpose of using the hydrometallurgical process is to convert the existing sulfur in the battery paste into the form of soluble metal sulphate, which can be separated from the insoluble lead product formed in the process.
  • soluble metal sulphate which can be separated from the insoluble lead product formed in the process.
  • PbSO 4 sulfur in the form of sulfate
  • Appropriate measures need to be taken to ensure that sulfur dioxide (SO 2 ) emissions are fully controlled.
  • This hydrometallurgical method has the following drawbacks. 1. The production process is slow. 2. Emissions of sulfur and carbon dioxide are lower than those of other methods. 3. Initial production and filters are very expensive. 4. A melting furnace is required for extraction and ingot casting.
  • Patent Document 1 discloses a process of collecting used batteries.
  • Lead components such as sulfates (PbSO 4 ) are converted to lead (Pb) and lead monoxide (PbO) using sulfuric acid.
  • Calcination or other chemical reducing agent such as hydrogen peroxide is used to reduce the lead dioxide (PbO 2 ) in the battery paste, which is then reacted with sulfuric acid to form sulfate (PbSO 4 ).
  • the obtained sulfate (PbSO 4 ) is dissolved in a high-concentration leaching solution containing an ammonium sulfate aqueous solution.
  • the aqueous solution (leaching solution) is filtered to remove impurities from the dissolved lead.
  • lead in the form of a carbonate of lead is precipitated and separated from dissolved impurities and unreacted lead (Pb) and lead monoxide (PbO). Then, the lead carbonate is fired into lead monoxide (PbO) or lead (Pb) in a furnace.
  • Patent Document 5 discloses that a ground battery component contains sodium carbonate (Na 2 Co 3 ) or sodium hydroxide (NaOH) as shown in (Formula 1) and (Formula 2).
  • a method of desulfurizing a lead battery by adding an aqueous solution of a reducing agent is disclosed.
  • the sulfate (PbSO 4 ) component of a used battery produces a soluble metal sulfate such as sodium sulfate
  • the lead compounds include carbonate (PbCO 3 ) and lead hydroxide (Pb(OH) 2 ). Is converted to a compound containing and precipitated.
  • the precipitated lead compound is separated with solid lead monoxide (PbO) and Pb 2 using conventional separation techniques such as sedimentation or centrifugation.
  • Patent Document 3 (US Pat. No. 8,323,376) describes a method of recycling lead from lead-containing waste. This method produces lead citrate by adding an aqueous citric acid solution to the battery paste. Lead and/or lead oxide is obtained by isolating lead citrate from an aqueous solution.
  • U.S. Pat. No. 4,460,442 discloses crushing lead and lead dioxide and reacting with a strongly alkaline solution to produce minimal solid lead tetroxide (Pb 3 O 4 ), which is then dissolved. In order to do so, a lead recovery process is further reacted with high temperature fluorosilyl or fluoroboric acid and electrodeposited (electroplated) on a graphite cathode.
  • US Pat. No. 4,769,116 discloses that a carbonation reaction of a lead paste followed by a reaction with fluorosilyl or fluoroboric acid forms a lead-plated electrolyte. ing. Such processes prohibit smelting, but nonetheless leave various obstacles. Most notably, digestion (decomposition) of lead compounds using fluorosilyl or fluoroboric acid is a pollutant production process, which is environmentally undesirable and often leaves significant amounts of lead sulfate.
  • the lead paste desulfurization process can be performed with caustic soda (NaOH) or soda ash (Na 2 Co 3 ) to produce lead hydroxide or lead carbonate from lead sulfate.
  • Non-Patent Document 1 (Journal of Achievements in in Materials and Engineering 2012, Vol.55(2), 855-859)) the lead paste is desulfurized using an amine solvent, Purified lead sulfate and recycled amine solvents can be produced. Unfortunately, such a process produces pure elemental lead.
  • wet chemical method is used to produce lead from lead ore. This method produces a concentrated lead solution based on grinding and flotation.
  • the metallic lead is recycled using an electrosmelting process that uses fluorotitanate as the electrolyte, impure lead as the anode, and deposits lead on the cathode or cathode. This method is disclosed as a Betts process in US Pat.
  • Patent Document 13 discloses that lead oxide is treated with an acid and a reducing agent to form a lead salt, which is then heated at a high temperature in a carbon dioxide (CO 2 )-free atmosphere. It is disclosed to react with an oxidant to produce lead monoxide (PbO).
  • CO 2 carbon dioxide
  • Patent Document 14 discloses a method of first dissolving lead oxide in an acid and recovering a highly pure lead compound from a paste obtained by reducing insoluble lead dioxide.
  • the lead oxide obtained is converted to lead sulfate and contains the corresponding carbonate, oxide or hydroxide.
  • Unfortunately, such a process is relatively complex and therefore not economically attractive.
  • Electrowinning can also be complicated. Appropriate forms of dissolved lead need to be processed in an electrochemical cell produced by a complex mixture of chemicals. Such cells are energy intensive. This method has the following drawbacks. 1. Initial investment costs are high for the construction of reservoirs and electrodes. 2. Use the electrodes over time. 3. Highly pure with low efficiency. 4. The large power consumption increases the overall manufacturing cost.
  • US Patent Publication No. US 2016/0294024 discloses that lead is recycled in an aqueous electroprocessing solvent using a continuous process, and electrorefining and spent electroprocessing solvent are recycled using a recovery process. It is disclosed.
  • Patent Document 16 US Pat. No. 5,262,020
  • Patent Document 17 US Pat. No. 5,520,794 disclose a method for solving this problem by dissolving a desulfurized active lead material in methanesulfonic acid. Have been described. Lead sulphate is hardly soluble in methane sulphonic acid and requires pre-desulfurization treatment. The remaining insoluble material reduces overall efficiency and is not economically attractive.
  • the slurry is filtered to separate the plastic and separator from the lead-rich filtrate and the lead-rich filtrate is contacted with sulfuric acid to obtain a lead sulfate paste and nitric acid.
  • the metal-containing component is treated to form a paste containing lead and other metal sulfate present in the metal-containing component, and the lead sulfate paste and the paste containing lead and other metal sulfate are treated with an alkaline solution.
  • Contact is made to precipitate lead oxide and contact with a carboxylic acid to form a soluble lead carboxylate.
  • Lead monoxide is obtained by treating a soluble lead carboxylate salt.
  • rare lead compounds are manufactured using desulfurized solutions, but these compounds pollute the environment.
  • An object of the present invention is to provide a lead manufacturing method and a lead manufacturing facility by a wet chemical method, which can lower the lead extraction temperature and can significantly reduce the pollution during lead manufacturing. ..
  • the method for producing lead that achieves the object of the present invention makes an attempt to reduce or eliminate the temperature.
  • the use of new materials has significantly reduced pollution.
  • harmless use produces soluble compounds of various concentrations of lead.
  • the lead compound is completely soluble in the aqueous solvent.
  • This solvent is a mixture of acidic and industrial oxidants capable of dissolving lead compounds such as nitric acid, hydrochloric acid, formic acid, ammonium citrate solution, sodium citrate solution, sodium citrate, ammonium acetate, ammonium citrate, etc. ..
  • the conducted experiment shows that highly purified lead can be produced by implementing this method.
  • This method can convert galena ore PbS to metallic lead after dissolution and recovery by nano-metal powder.
  • lead sulfide was converted to lead sulfate by adding sulfuric acid.
  • this new method allows the dissolution of lead sulfate and sulfide without the use of sulfuric acid.
  • the procedure of this method is shown below. The first is to dissolve the lead paste in a non-toxic solution. The second is that a clear solution can be obtained in a very short time. The third is to add nano metal powder or micro powder to the transparent lead complex solution. Fourth, the resulting lead is obtained from the solution to which the nanometal powder is added.
  • This method is environmentally friendly and comparable to the old method for some aspects including low initial investment requirements.
  • rare lead compounds are produced using desulfurization solutions, but these compounds pollute the environment.
  • the main purpose of the method of the present invention is to lower the extraction temperature.
  • the use of new materials has significantly reduced pollution. All products obtained from this process can be recycled for sale.
  • the effects of the present invention for extracting lead from old batteries and PbS ore are as follows. 1. Faster processing: Lead extraction process is much faster than other existing methods. 2. Less energy is required for the process due to low initial and reaction temperatures. 3. The reduction time and temperature of the extraction process prevent the oxidation and overshoot of lead as slag. 4. It enables operation at a low temperature (up to 75°C) and minimizes the amount of sulfur gas released. 5. Since only the tank having the heating and stirring ability is required, the initial manufacturing cost can be reduced. 6. By-products can be sold to industry. 7. The solution can be reused. 8. Lead compounds can be selectively treated. Among the plurality of steps for manufacturing lead, for example, the last step enables extraction of lead. 9.
  • FIG. 1 is a block diagram of a mass production process for recycling lead from a lead paste for carrying out the method of the present invention. It should be noted that as a raw material for producing lead, a crushed lead ore can be applied instead of the lead paste.
  • a lead production facility 1 includes a separator 10, a crusher 11, a conveyor 12, a liquid filling tank 20 with a built-in pump, and a first tank 30 serving as a synthetic solvent accommodating unit including an agitator 31.
  • a second tank 40 forming a lead dissolving part equipped with a stirrer 41, a third tank 50 forming a lead precipitation part equipped with a stirrer 51, and a fourth tank forming a lead salt precipitation part equipped with a stirrer 61 It has 60 and the 5th tank 70 which comprises an acid salt supply part.
  • the second tank 40 is provided with a heater 42 so that the temperature of the solution in the tank can be controlled, for example, 70°C.
  • the liquid filling tank 20 and the first tank 30 are made of industrial propylene or SUS316 stainless steel, low carbon steel, and have resistance to oxidizing agents and acidic substances.
  • the lead battery 2 is crushed by the crusher 11, sorted by the separator 11 into the lead paste 3 and the plastics 4, and the lead paste 2 is sent to the conveyor 12.
  • the lead paste 3 is transferred to the second tank 40 by the conveyor 12.
  • the first feeder 13 supplies, for example, ammonia or citric acid to the first tank 30.
  • a liquid citrate or acetate liquid compound can be placed in the liquid fill tank 20.
  • the second feeder 14 supplies a reducing agent such as hydrazine hydrate to the second tank 40.
  • the third feeder 15 supplies, for example, hydrogen peroxide and a promoter of metal powder to the third tank 50. Further, for example, acetate nitrate or nitrate is supplied from the fifth tank 70 to the fourth tank 60.
  • the production facility 1 includes filters 80A and 80B having a cleaning function, a first liquid feed pump 81, a second liquid feed pump 82, a third liquid feed pump 83, and a dryer 84 for low temperature drying. ..
  • This lead production facility 1 recycles lead (PbSO 4 ) 3 in a lead battery 2 and takes out, for example, metallic lead 100, and also produces various lead salts 101.
  • each tank 20, 30, 40, 50, 60 is, for example, 300 liters, and the inner diameter of the pipe connecting each tank changes depending on the power of the pump.
  • the power of the pump is 50 liters per minute.
  • each agitator may have a single row of blades.
  • the bottom portion of the first tank 30 may be formed in a conical shape so that the lead is filled therein.
  • lead salt powders such as lead nitrate (lead(II) nitrate), lead citrate, and lead(II) chloride can be manufactured.
  • a synthetic solvent capable of dissolving various lead compounds such as oxides, hydroxides and sulfates is stored together with water. ..
  • Necessary amounts of ammonia, citrate, and acetate compounds are supplied to the liquid filling tank 20 by the first feeder 13, and the adjusted liquid (referred to as the first solution) is the first tank 30 which is the dissolution liquid filling tank. Is supplied to.
  • the first solution in the first tank 30 is agitated and mixed by the first agitator 31, pumped to the second tank 40 by the first liquid feed pump 81, and heated to a predetermined temperature.
  • the first solution containing a citrate or an acetic acid compound (for example, ammonium citrate or citric acid) is transferred to the second tank 40 via the first liquid feed pump 81.
  • the second tank 40 to which the lead paste 3 has been transferred is supplied with a predetermined amount of a soluble substance for the lead compound through the second feeder 14.
  • the stirrer 41 mixes the solution in the second tank 40.
  • the second tank 40 at this stage contains the lead paste 3 of the battery and the liquid pumped from the first tank 30.
  • the solution in the second tank 40 is heated to a temperature of 70° C. to completely dissolve the lead paste (this solution is referred to as a second solution).
  • the second feeder 14 adds the reducing agent to the second solution in the second tank 40, and then the second solution is supplied to the second liquid feed pump 82 after the time required for the lead paste 3 to dissolve. Is injected into the third tank 50.
  • a predetermined amount of hydrogen peroxide, human rhazine hydrate and a reducing catalyst are added via the third feeder 15.
  • the solution in the third tank 50 is agitated by the agitator 51.
  • a predetermined amount of reduced metal promoter is added via the third feeder 15 having a predetermined capacity.
  • the solution in the third tank 50 is agitated and mixed by the third agitator 51 (this solution is referred to as a third solution).
  • lead is precipitated in the third solution.
  • the precipitated lead is isolated from the third solution by the first filter 80A and dried by the dryer 84 to extract the metallic lead 100.
  • the metallic lead 100 can be manufactured into an ingot.
  • the solution from which the precipitated lead has been removed from the third solution is returned to the first tank 30 as a regenerating solution and reused. Furthermore, a metal oxide or metal salt containing a metal promoter can be produced from the third solution.
  • the third solution pump 85 transfers the third solution in the sixth tank 90, which is a metal regenerating section having the heater 91, and adds some amount of acid to the sixth tank 90. Then, after heating the sixth tank 90, the metal salt or metal oxide 102 of the metal accelerator is obtained. This metal salt or metal oxide 102 can be reused in another way.
  • the second solution in the second tank 40 is transferred to the fourth tank 60 via the third liquid feed pump 83, and acetic acid nitrate or nitrate is supplied from the fifth tank 70 to the fourth tank 60.
  • the lead salt precipitates when stirred at.
  • the precipitate is washed with the second filter 80B and isolated to obtain the lead salt 101.
  • a lead battery has a lead electrode plate in dilute sulfuric acid, which is an electrolytic solution filled in a plastic battery case (container).
  • a plastic battery case for example, lead dioxide is used for the positive electrode (anode) and sponge is used for the negative electrode (cathode).
  • Lead (sponge) is used.
  • the paste-type lead battery is used for both the positive and negative electrodes by applying a paste-like active material to the skeleton of an electrode plate called a lead alloy grid to form an electrode plate (grid lead). ..
  • the positive electrode and the negative electrode are separated by a separator made of cellulose fiber.
  • Battery paste containing lead sulfate, lead oxide, and metallic lead needs to be separated from other plastic parts. This separation process removes as much battery acid as possible.
  • a lead battery 2 transported by a truck or the like is first put into a crusher 11 and crushed to remove a small amount of dissolved lead sulfate and acid containing sulfuric acid.
  • the lead grid having the surface coated with the sulfate paste and the lead oxide active material is then crushed by the spiral crusher 11 to separate the active material.
  • a pretreatment of drying the obtained lead paste at a temperature of 100° C. to 150° C. is performed.
  • the dried lead paste (raw material) 3 is transferred to the second tank 40, which is a dissolution tank, via the conveyor 12. Liquids such as sulfuric acid and plastics crushed by the crusher 11 are separated from the lead paste 3 by the separator 10.
  • the cellulose fibers in the battery paste are removed with an organic solvent at a temperature of 500° C. or higher, and then washed with water.
  • the advantage of using this pretreatment is that sodium carbonate need not be neutralized in the recycling system. Therefore, a lead sulphate compound containing 20-30% lead oxide and low in metallic lead is prepared for recycling.
  • the lead manufacturing method of this embodiment includes a first method and a second method, and includes the following steps.
  • the first method is as follows. ⁇ 1: The raw material is crushed lead ore or lead of battery. *2: A soluble substance for a lead compound is supplied from the first tank 30 to the second tank 40. *3: A reducing agent (hydrazine hydrate) in which ions and molecules are combined with the dissolved lead metal ions in the first solution is added to the second tank 40. *4: The raw material is transferred to the second tank 40, the temperature of the second tank 40 is raised to a predetermined temperature, and the raw material is melted. The dissolved solution becomes a lead ion enriched solution. As the dissolution progresses, the solution becomes transparent, and this is referred to as the second solution. 5: Transfer the second solution in the second tank 40 to the third tank 50.
  • a reduction accelerator is added to the second solution in the third tank 50 (further, hydrazine hydrate and hydrogen peroxide are added).
  • the second method is as follows. ⁇ 1: The raw material is crushed lead ore or lead of battery. *2: The solution in the first tank 30 is transferred to the second tank 40. *3: Supply the availability substance for lead compounds to the 2nd tank 40. *4: The raw material is transferred to the second tank 40, the temperature of the second tank 40 is raised, and the raw material is melted. 5: The solution in the second tank 40 is transferred to the third tank 50. *6: Add required sodium citrate or other acid to the third tank 50. 7: Lead metal is precipitated in the third tank 50, and the precipitated lead is isolated and dried. 8: Reuse the solution in the third tank 50 as a regenerating solution for dissolving the raw materials. ⁇ 9: The isolated lead is dried to enable the production of an ingot. *10: The solution in the 2nd tank 40 is transferred to the 4th tank 60, and a lead salt is extracted.
  • a synthetic solvent capable of dissolving various lead compounds such as oxides, hydroxides and sulfates is used to dissolve lead derivatives such as lead paste.
  • the existing metallic lead in the second solution is precipitated by the double substitution reaction. After filtration, the remaining metal compound is reduced by changing the pH range and precipitates in the oxide form when a strong base is added with the metal nanopowder.
  • the oxide compound of the present invention is applied as a by-product (metal oxide such as zinc oxide) in other industries depending on its type.
  • the recycled solution is used in the next cycle of lead recycling after refilling. This solution has a neutral pH and does not have dangerous pollution to the environment.
  • Example 1 A common lead ore such as lead sulfide (Galena: PbS) can be used for dissolution of lead ore and extraction of metallic lead.
  • lead sulfide was milled to produce particles having a particle size of 5 microns to 1 mm using an industrial or mill. The best dissolution rates and total costs are associated with particles having a size of 10-50 microns. After grinding, 25% pure industrial ammonia (ammonia diluted with 75% by weight of water) was added to the ore in the proper purity range of 35-60%.
  • Equation 3 shows that graphite sulfide is converted to lead white sulfate.
  • labile lead sulfate is converted to lead oxide.
  • the active lead complex formed by contacting lead oxide with ammonia uses metal nanopowder or a reducing agent such as hydrazine to precipitate as sponge-like lead at the bottom of the tank.
  • the reactions of Equations 4 and 5 below show dissolution and precipitation processes.
  • Experimental example 1 In this Experimental Example 1, 100 g of lead sulfide which was pulverized to produce particles having an average particle size of 5 microns was used. The purity of ammonia is 25% and the impurity is water. In Experimental Example 1, the time (minutes) for converting lead sulfide (PbS) into lead sulfate (PbSO 4 ) was measured. The experimental results are shown in Table 1.
  • Sample Nos. 1, 3, 5, and 7 have the same ammonia solution and lead sulfide (PbS), and Sample Nos. 2, 4, 6, and 8 have the ammonia solution with half the weight of lead sulfide. Further, regarding the weight ratio (wt %) of hydrogen peroxide in the ammonia solution, the values of sample numbers 1 and 2 are both 15, the values of sample numbers 3 and 4 are both 25, and the values of sample numbers 5 and 6 are both 35. , The values of sample numbers 7 and 8 are both 45.
  • sample number 5 had the shortest conversion time (38 minutes), and sample numbers 3 and 4 took the next shortest time (50 minutes). Conversely, sample number 2 had the longest conversion time (154 minutes). Further, if the proportion of hydrogen peroxide is the same, the larger the amount of ammonia, the shorter the heading time tends to be.
  • Example 2 Various states of the sulphide oxidation process, which depend mainly on the pH of the aqueous medium, which is controlled by the ammonia solution, are carried out with H 2 O 2 .
  • the increased reactivity of H 2 O 2 at alkaline pH leads to the reaction being accomplished faster.
  • Alkaline compounds such as ammonia, potassium hydroxide and sodium hydroxide are used in varying proportions with acids including citric acid, hydrochloric acid, acetic acid and nitric acid for the dissolution of lead sulfate and other lead compounds.
  • the dissolution rate of lead compounds is controlled by changing the above ratio and changing the pH within the alkaline range, for example.
  • Additives can be used to form active lead complexes to improve and enhance solubility. These substances, such as hydrogen peroxide, hydrazine hydrate, hydrogen disulfide and hydroxylamine triphosphate, are used to dissolve lead oxides in various proportions and lead oxide in different proportions of metallic lead. It is an agent.
  • the liquid filling tank 20 which is a stainless steel tank is filled with water.
  • This water can be industrial or deionized. The use of deionized water without inorganic minerals modifies the dissolution and precipitation process.
  • about 30-50% of the total liquid weight of technical acetic acid is added to the liquid fill tank 20.
  • the acidic properties of the first solution increase up to 60% of the total liquid weight.
  • the best proportion of conventional lead paste is obtained at about 30-45% by weight.
  • 20-60% by weight of the total liquid phase of ammonia is added to the first solution. Best results are achieved with 30% by weight ammonia with a purity of 25%.
  • the stirring speed affects the dissolution process and varies from 500 to 1050 rpm. This rate is related to the size and type of battery paste or the particle size of the ore. If the size of the lead paste exceeds 5 microns, higher stirring speeds can be applied to accelerate the dissolution process. The best dissolution efficiency was achieved with the battery paste having a particle size of 45 microns and stirring at a speed of 600 rpm. When the particle size of the lead paste was larger than 1 mm, the reservoir (second tank 40) was heated to increase the dissolution rate of the lead paste. The desired temperature for dissolution is determined based on the size and formulation of the lead paste particles and varies from 50-89°C.
  • the dissolution time for all desired lead pastes is about 15-60 minutes. The duration is determined according to the lead paste type and size. After completely dissolving the battery paste in the solvent, a clear solution was obtained. Achieve conversion of sulfides to sulphates when using ores and other steps, including addition of acetic acid and hydrazine hydrate, to achieve faster lead reduction with nanometal powders Should.
  • an oxidizing agent such as sodium hydroxide or potassium hydroxide can be added to oxidize lead, and then it can be separated from other parts of the lead paste by using a filter.
  • the most efficient method is to use different ratios of citric acid and sodium citrate. This acid can dissolve lead and lead oxide. The highest dissolution efficiency is obtained up to a temperature of 60° C. and 10-50% by weight of citric acid.
  • acetic acid can be replaced with citric acid.
  • Increasing the amount of citric acid and sodium citrate with a small amount of sodium hydroxide can extract some by-products such as lead citrate.
  • Lead citrate is a white powder for military use that uses combustion reactions as catalysts.
  • Ammonia reacts with sulfate and other similar compositions, results in the production of unstable NH 4 HS.
  • Hydrazine hydrate is a reducing agent. This composition produces an unstable lead hydroxide that dissolves in water.
  • displacement compositions such as sodium citrate and ammonium citrate or ammonium acetate and sodium citrate can control the pH to the alkaline range. As a result, the high pH-controlled sodium and ammonium citrate contents enhance the solubility of lead sulfate and lead oxide.
  • Acetic acid and ammonium acetate produce a clear solution on contact with hydrogen peroxide and hydrazine.
  • the lead of PbO 2 is reduced and converted to PbO using ammonia and hydrogen peroxide and then to lead acetate.
  • the acetate salt is dissolved in a solution of alkaline pH and contacted with hydrazine to form a clear solution.
  • Acetic acid can be used to accelerate this process, but the pH should not drop below 8-10.
  • the PbO 2 conversion reaction stops.
  • the proportion of ammonium citrate varies between 50 and 80% of the primary substance, the hydrogen peroxide and hydrazine contents are 10 to 20% and 0.1 to 10% of the total water content, respectively. In this way, the presence of the sulphate composition results in the formation of oxides which is improved by the addition of ammonia.
  • the citrate composition is effective in converting zinc sulphate into the oxide used to transform lead ores, improving the dissolution process.
  • the content of this substance added to the system is 20 to 50% by weight of the raw ore.
  • Experimental example 2 In this formulation, the use of sodium acetate and ammonium acetate reduces the potential for precipitation of citric acid compounds.
  • An experiment was conducted in which 100 g of a battery paste having a particle size of 5 to 10 microns was added to a solution containing acetic acid, ammonia, hydrogen peroxide and hydrazine hydrate. The first experiment and the second experiment were performed on the dissolution process until dissolution of the lead paste, and the dissolution time (minutes) was measured. The results of the first experiment are shown in Table 2 and the results of the second experiment are shown in Table 3.
  • the first experiment and the second experiment are different in that the type of the solvent in the first solution is sodium acetate or ammonia acetate.
  • the first experiment hydrazine hydrate, ammonia, hydrogen peroxide, and acetic acid are used. And a first solution composed of sodium acetate was used.
  • the second experiment the first solution composed of hydrazine hydrate, ammonia, hydrogen peroxide, acetic acid and ammonia acetate was used.
  • the ratio of each composition of the first solution is the weight ratio (wt%) to the weight of the first solution.
  • the amounts of human radine hydrate and hydrogen peroxide were both 5%, and the amount of ammonia was 30% in the first experiment and 45% in the second experiment. All materials are contained in 600 g of water.
  • sample Nos. 14 to 16 had a short dissolution time and sample Nos. 11 and 12 had a long dissolution time.
  • the dissolution times of sample numbers 24 to 26 tended to be short, and the dissolution times of sample numbers 21 and 22 tended to be long.
  • citric acid can be added to precipitate lead citrate, which is used for strategic production.
  • Example 3 In Example 3, 100 g of dry battery lead paste having a particle size of 5-10 microns was added to a base solution containing citric acid, ammonia, hydrogen peroxide and hydrazine hydrate to obtain a clear solution of lead compound. .. In this step, the dissolution time (minutes) was determined as the experimental basis. The citric acid is then replaced with varying proportions of ammonium citrate and sodium citrate. Table 4 below shows the dissolution time process for each sample (Sample Nos. 31-36). The dissolution time in Example 3 is the time until the solution becomes transparent.
  • Example 3 the sum of citric acid and ammonium citrate was set to 60 wt% with respect to the weight of the first solution, and the ratio of humanradine hydrate, ammonia and hydrogen peroxide was the ratio with respect to the weight of the first solution. ..
  • the lead pastes of sample numbers 31 to 36 were mixed in the first solution containing different ratios of citric acid and ammonium citrate, and the time until the first solution became transparent was measured.
  • Example 4 an experiment was conducted using sodium citrate instead of ammonium citrate of Example 3. Therefore, in Example 4 described below, the results of Example 3 will be considered together with Example 4. All materials are contained in 600 g of water.
  • Example 4 In Example 4, the experimental conditions of Example 3 were repeated using sodium citrate. The experimental results are shown in Table 5. As shown in Table 5, the lead pastes of sample numbers 41 to 46 were mixed in the first solutions containing different ratios of citric acid and sodium citrate, and the time until the first solution became transparent was measured.
  • Example 4 a mixture containing 1 mole of PbO 2 , 2 moles of H 2 O 2 and 4 moles of C 6 H 8 O 7 H 2 O containing the mixture was treated with ammonium solution of pH 8 at 20° C. for 60 minutes. As a result, lead citrate Pb(C 6 H 6 O 7 ).H 2 O was obtained.
  • ammonium citrate Na 3 (C 6 H 5 O 7 ).2H 2 O
  • sodium hydroxide sodium hydroxide
  • Example 5 The presence of a compound similar to citric acid along with a basic formulation containing acetic acid, ammonium acetate and sodium acetate is effective in dissolving the lead compound, and the reduction of the lead compound occurs in the next step (step after the dissolution step). become.
  • Alternative citric acid compounds can be substituted with about 10-35% acetic acid, and other similar compounds that improve dissolution yields.
  • Example 5 experiments were conducted for the following purposes.
  • the parameters of the above-mentioned example were used (5 wt% of human razine hydrate, 30 wt% of ammonia, peroxide
  • the experiment was conducted using hydrogen (5 wt %).
  • the contents of hydrogen peroxide, ammonia and hydrazine hydrate were considered to be constant, and the results were compared using 100 g of lead battery paste with a size of 5-10 microns.
  • the experimental results are shown in Table 6.
  • the citrate compound is the second part, 20 wt% citric acid for sample number 51, 20 wt% ammonium citrate for sample number 52, and 20 wt% sodium citrate for sample number 53.
  • sample No. 54 a solution containing ammonium acetate was used.
  • the proportion of acetic acid was 35 wt% with respect to sample numbers 51 to 54.
  • Example 6 Another method of recycling lead from battery pastes containing a high percentage of lead sulfate does not require the presence of ammonia during the dissolution reaction of the lead paste.
  • a solution of sodium citrate, ammonium citrate, ammonium acetate and sodium acetate can be used to slowly dissolve lead sulfate in an aqueous solution in the range of 50-70°C.
  • Example 6 An experiment was conducted to dissolve 0.1 to 6 wt% lead sulfate in the weight ratio of the lead paste using ammonium acetate, ammonium citrate and sodium citrate.
  • the experimental results of Example 6 are shown in Tables 7, 8 and 9.
  • the hydrazine hydrate was 10 wt% in the experiment of Table 7 (Experiment 3), 0.1 wt% in the experiment of Table 8 (Experiment 4), and 600 wt.
  • an ammonium acetate solution was used
  • Experiment 4 an ammonium acetate solution was used
  • Experiment 5 an ammonium citrate solution was used.
  • the ratio of hydrazine hydrate in this sample is 0.1-5% by weight.
  • the dissolution rates of lead sulfate with a constant proportion of lead paste and different amounts of ammonium citrate and ammonium acetate were measured in the following experiments. The amount of ammonium sulfate was 100 g for each test.
  • ammonium sulfate can be dissolved in the presence of a compound containing ammonium citrate and ammonium acetate without using ammonia.
  • Example 7 shows the reduction of a lead solution. Reduction of Lead Solution Using a divalent or trivalent nanometal powder, a transparent solution of lead is produced as described above, and the complete dissolution of lead performs a double substitution process based on a stoichiometric reaction. When achieved, lead sponge metal is deposited. The presence of hydrazine hydrate and citric acid as reducing agents results in a faster pace of lead reduction. When the content of hydrazine reaches 10 to 20% by weight, the possibility of lead oxidation after the initial reduction increases, so the change of content is very important.
  • Nanometer- or micrometer-scale metal compounds can be used to increase the production rate of metallic lead from the clear solution obtained by the above method (the maximum size of particles is 5-10 micrometers) .. Therefore, four kinds of metal elements (Zn, Al, Cu, Fe) having different valences were examined. Table 11 shows the experimental results for different metal percentages. The optimal solution of ammonium acetate and ammonium citrate was investigated at a fixed ratio. The hydrazine hydrate ratio remains constant at 5 weight percent.
  • sample number 101 is zinc
  • sample number 102 is metal aluminum
  • sample number 103 is metal copper
  • sample number 104 is metal iron.
  • the ratio (wt%) of the lead paste was tested in four different ratios for each metal. Then, the lead recovery efficiency was expressed as a weight ratio (wt %) by measuring the weight of the recovered lead.
  • Example 8 Organic and inorganic reducing agents can be used to reduce the lead solution.
  • the redox reaction is a chemical reaction in which electrons are exchanged between atoms, ions, or compounds in the process of producing a product from a reaction product.
  • Sodium citrate is a redox, and lead crystals reduced by sodium citrate appear in tank crusts when the system is inactive for 2-10 days for an extended period.
  • Some reducing agents, such as sodium borohydride can be used in stoichiometric ratios of the dissolved lead paste to enhance the reduction rate.
  • Various ratios of reducing agents can be used, depending on the amount of lead paste dissolved. Hydrazine can be used in combination with other acids to dissolve the lead paste. Table 12 shows the experimental results of Example 8.
  • the weight of the lead paste was 100 g as in each experiment described above, and the amount of hydrazine hydrate was also constant. Hydrazine hydrate was 30 wt% with respect to 600 g of water.
  • the reducing agent nitrate or ammonium nitrate, hydrochloric acid and ammonium chloride were used, and the ratio in the solution was varied.
  • Example 9 In Example 9, experiments were conducted on solvent regeneration. Metal hydroxides and some acids can be added for solvent regeneration. The addition amount of the acid and hydroxide is a stoichiometric amount for removing the sulfate in the lead paste, and is a metal powder added for the recovery of lead. The experimental results are shown in Table 13.
  • Example 10 Sufficient water is needed for better results.
  • the experiment was conducted by changing the amount of water of sample number 91 shown in Table 10 of Example 6 to 100 g, 300 g, 600 g and 1000 g.
  • the experimental results are shown in Table 14.
  • FIG. 3 shows a spectrum diagram of an X-ray diffraction analysis of lead collected by the above-described example, and Table 15 shows a result of XRF-X-ray fluorescence of lead. As shown in Table 15, the resulting lead product was up to 99.55% pure.
  • Lead production equipment 3 Lead paste 11: Crusher 12: Conveyor 13: First feeder 14: Second feeder 15: Third feeder 20: Liquid filling tank 30: First tank 40: Second tank 50: Second 3 tanks 60: 4th tank 70: 5th tank 90: 6th tank

Abstract

A method for producing lead is a method for producing lead using a lead paste having or not having grid lead or galena ore as a raw material, the method comprising bringing the raw material into contact with a solvent that contains, in an aqueous solution, some compounds selected from an acetate salt, a chloride, a nitrate salt, a citrate salt and salts thereof and a material having the form of an ion or a molecule and capable of bonding to a lead metal ion to dissolve the desired lead in a selective manner, thereby producing a lead-ion-rich solution. The method includes the step of adding a lead reduction accelerator comprising a powder of a metal different from lead and selected from aluminum, iron, copper and zinc or a chemical reduction accelerator comprising hydrazine, sodium bromide or sodium metabisulfite to the lead-ion-rich solution to accelerate the reduction of a lead ion and then collecting lead, wherein a solvent obtained after the precipitation of lead is recycled from the lead-ion-rich solution.

Description

鉛の製造方法および製造設備Lead manufacturing method and manufacturing facility
 本発明は、無害な化学的方法を用いてバッテリペーストから鉛を抽出およびリサイクルし、鉛塩や金属鉛を含む鉛化合物を生産する新規のプロセスに関する。より詳細には、本方法によれば、溶解および回収の後、ナノまたはマイクロ金属粉末を用いることによって、PbS鉱石(方鉛鉱)を金属鉛に変換することが可能となる。 The present invention relates to a novel process for extracting and recycling lead from a battery paste using a harmless chemical method to produce a lead compound including a lead salt and metallic lead. More specifically, the method allows for the conversion of PbS ores (galena) to metallic lead by using nano or micro metal powders after dissolution and recovery.
 現在、鉛の85%以上が鉛バッテリーの製造に使用されている。そのうち略100%が回収とリサイクルが容易である。2013年には、世界のリサイクル鉛の生産量は670万トンで、世界の総鉛生産量の54%に相当する。米国での鉛生産は全てリサイクルプロセスで得られ、ヨーロッパでは回収率は74%に達する。現在、北米および欧州における鉛リサイクル率は略100%である。 Currently, over 85% of lead is used in the manufacture of lead batteries. About 100% of them are easy to collect and recycle. In 2013, the world's recycled lead production was 6.7 million tons, which is 54% of the world's total lead production. All lead production in the US comes from a recycling process, with recovery rates in Europe reaching 74%. Currently, the lead recycling rate in North America and Europe is approximately 100%.
 廃棄されたバッテリーおよび鉛鉱石の鉛ペーストから鉛の回収と抽出することは、原材料の供給源としても、有害廃棄物の処理が困難であることより、経済的に重要である。長年にわたり、バッテリースクラップおよび硫化鉱物(PbS鉱石)中の硫黄および塩化物の存在は、広範な抽出プロセスにおいて重大な問題を引き起こしている。鉛バッテリーのバッテリーペーストから鉛を抽出することは、広義の産業活動であり、様々な周知の抽出方法を使用する主な理由である。 It is economically important to recover and extract lead from discarded batteries and lead paste of lead ore, even as a source of raw materials, because it is difficult to treat hazardous waste. Over the years, the presence of sulfur and chloride in battery scrap and sulfide minerals (PbS ores) has caused significant problems in a wide range of extraction processes. Extracting lead from the battery paste of a lead battery is a broad industry activity and is the main reason for using various known extraction methods.
 製錬に基づく鉛のリサイクルプロセスは、非常に汚染され、エネルギー集約的で危険である。特許文献1(米国特許第4,118,219号明細書)に開示されているように、この鉛のリサイクルプロセスにおいて、乾式鉛バッテリーペーストには、カーボンブラック、プラスチック、繊維、鉛と硫酸のような硫酸塩含有化合物が含まれている。バッテリーペーストを得るために使用される特定の方法は、正確なバッテリー組成の決定が必要である。乾式鉛バッテリーを組成するバッテリー廃棄物は、化合物55~65wt%、カーボンブラック15~40wt%、プラスチック5~25wt%および1~5wt%の繊維%をそれぞれ含有する。バッテリーペーストは、硫酸を含んでいてもよい。 Smelting-based lead recycling process is highly polluted, energy intensive and dangerous. As disclosed in US Pat. No. 4,118,219, in this lead recycling process, dry lead battery paste contains carbon black, plastics, fibers, and sulfates such as lead and sulfuric acid. The compound is included. The particular method used to obtain the battery paste requires accurate battery composition determination. The battery waste composing a dry lead battery contains 55-65 wt% compound, 15-40 wt% carbon black, 5-25 wt% plastic and 1-5 wt% fiber, respectively. The battery paste may include sulfuric acid.
 分離した使用済みバッテリーの主成分は硫酸塩(PbSO)であり、水酸化ナトリウム(NaOH)または炭酸ナトリウム(NaCO)などのアルカリ物質の溶液で処理して、以下の反応式1、2によって二酸化硫黄(SO)の放出を減少させる。
PbSO+2NaOH→Pb(OH)+NaS0・・・・(式1)
PbSO+NaC0→PbC0+NaS0・・・・・(式2)
 (式1)、(式2)に示すように、リサイクルにより脱硫された鉛は、硫酸塩(PbSO)中にかなりの量の硫黄を含むスラッジの形態であり、硫黄成分を脱硫するために過剰量のアルカリ試薬で繰り返し洗浄しても未反応のままである。非脱硫ペースト中の硫黄比は6wt%が測定され、脱硫ペースト中の硫黄含有量は通常、全硫黄の約1%以下である。
The main component of the separated used battery is sulfate (PbSO 4 ), which is treated with a solution of an alkaline substance such as sodium hydroxide (NaOH) or sodium carbonate (Na 2 CO 3 ). 2 reduces the emission of sulfur dioxide (SO 2 ).
PbSO 4 +2 NaOH→Pb(OH) 2 +Na 2 S0 4 ... (Formula 1)
PbSO 4 +Na 2 C0 3 →PbC0 3 +Na 2 S0 4 (Equation 2)
As shown in (Equation 1) and (Equation 2), lead desulfurized by recycling is in the form of sludge containing a considerable amount of sulfur in sulfate (PbSO 4 ), and in order to desulfurize sulfur components, It remains unreacted after repeated washings with excess alkaline reagent. A sulfur ratio of 6% by weight in the non-desulfurized paste is measured, and the sulfur content in the desulfurized paste is usually about 1% or less of the total sulfur.
 製錬炉内の硫化ペーストと硫黄の製錬プロセスは、大量の二酸化硫黄(SO)を放出するため、硫黄を結合させるためにフラックスの添加が必要とされる。これらの廃棄物の量は、脱硫酸化によって減少する。この方法は、特許文献2(米国特許第6,177,056号明細書)に開示されている。 The sulfiding paste and sulfur smelting process in the smelting furnace releases large amounts of sulfur dioxide (SO 2 ), which requires the addition of a flux to combine the sulfur. The amount of these wastes is reduced by desulfation. This method is disclosed in US Pat. No. 6,177,056.
 最も古い一般的な方法では、金属ペーストは、従来の製錬用高炉にバッテリーペーストを充填し、高温で分解することによって得られる。この金属ペースト材料は、硫酸塩(PbSO)の形態の多量の硫黄を含有する。この化合物の分解は、比較的高い温度、典型的には1100℃以上で起こる。 In the oldest common method, the metal paste is obtained by filling a conventional smelting blast furnace with the battery paste and decomposing at high temperature. This metal paste material contains a large amount of sulfur in the form of sulphate (PbSO 4 ). Decomposition of this compound occurs at relatively high temperatures, typically above 1100°C.
 特許文献3(米国特許第8,323,376号明細書)は、二酸化硫黄(SO)のような有害なガスが環境に放出されるのを防ぐために、硫酸塩(PbSO)の乾式冶金プロセスにより多くのステップを行っている。さらに、高温で行われるプロセスは、有害な鉛を含む煙霧、粉塵およびスラグが相当量生成される。高価な有害物質を管理するためには特別な装置が必要である。さらに、有害な副生成物を除去するプロセスは面倒で時間がかかる。硫化鉱物(PbS鉱石)から鉛濃縮物を粉砕して製造した後、鉛が製造される。この鉛は汚染されている。 Patent Document 3 (U.S. Pat. No. 8,323,376 Pat) is to prevent the harmful gases such as sulfur dioxide (SO 2) is released to the environment, many by pyrometallurgical process of sulfate (PbSO 4) Taking steps. In addition, processes performed at high temperatures produce significant amounts of harmful lead-containing fumes, dust and slag. Special equipment is required to control expensive hazardous substances. Moreover, the process of removing harmful by-products is tedious and time consuming. Lead is produced after crushing and producing a lead concentrate from a sulfide mineral (PbS ore). This lead is contaminated.
 特許文献3に記載されている乾式冶金法の欠点を以下に列挙する。
1.二酸化炭素や硫酸ガスなどの汚染ガスの排出は大気汚染の重要な役割を果たし、地域の生態系を変化させる。
2.地域のSOxガスに起因する酸性雨の可能性がある。
3.環境中の望ましくない臭いと、鉛による汚水の漏れの可能性がある。
4.有害な環境および人間の影響を有する鉛工場からの鉛化合物のいくつかの蒸発は、常に居住環境のリスクとみなされる。
5.このようにして、多くの廃水が生成される。
6.炉内で行われるプロセスは、約1000℃の高温が必要である。これらの温度は、化石燃料または汚染物質または高価な電気を使用することによって達成される。
7.この方法を使用して金属成分が完全に除去される可能性はない。
The disadvantages of the pyrometallurgical method described in Patent Document 3 are listed below.
1. Emissions of pollutant gases such as carbon dioxide and sulfuric acid play an important role in air pollution and change the local ecosystem.
2. There is a possibility of acid rain caused by local SOx gas.
3. Undesirable odors in the environment and the potential for lead to leak sewage.
4. Some evaporation of lead compounds from lead plants with harmful environmental and human impacts is always regarded as a risk to the residential environment.
5. In this way much wastewater is produced.
6. The process performed in the furnace requires high temperatures of around 1000°C. These temperatures are achieved by using fossil fuels or pollutants or expensive electricity.
7. It is not possible to completely remove the metal components using this method.
 特許文献4(米国特許第6340423号明細書)は鉛の湿式製錬法を示す。湿式製錬法を使用する目的は、バッテリーペースト中の既存の硫黄を可溶性金属硫酸塩の形態に変換することであり、これは処理工程で形成される不溶性鉛生成物から分離することができる。しかし、硫酸塩(PbSO)の形の相当量の硫黄は、分離された鉛製品にしばしば残る。二酸化硫黄(SO)の排出が完全に制御されることを確実にするための適切な措置を講じる必要がある。 Patent document 4 (US Pat. No. 6,340,423) shows a hydrometallurgical process for lead. The purpose of using the hydrometallurgical process is to convert the existing sulfur in the battery paste into the form of soluble metal sulphate, which can be separated from the insoluble lead product formed in the process. However, a significant amount of sulfur in the form of sulfate (PbSO 4 ) often remains in the separated lead product. Appropriate measures need to be taken to ensure that sulfur dioxide (SO 2 ) emissions are fully controlled.
 この湿式製錬法には次のような欠点がある。
1.生産プロセスが遅い。
2.硫黄と二酸化炭素の排出量は、他の方法と比較して、排出量のレベルは低い。
3.初期生産とフィルターは非常に高価である。
4.抽出およびインゴット鋳造には溶融炉が必要である。
This hydrometallurgical method has the following drawbacks.
1. The production process is slow.
2. Emissions of sulfur and carbon dioxide are lower than those of other methods.
3. Initial production and filters are very expensive.
4. A melting furnace is required for extraction and ingot casting.
 特許文献1は、使い古したバッテリーを回収するプロセスを明らかにしている。硫酸塩(PbSO)などの鉛成分は、硫酸を使用して鉛(Pb)および一酸化鉛(PbO)に変換される。か焼または過酸化水素のような他の化学還元剤を用いてバッテリーペースト中の二酸化鉛(PbO)を還元し、次いでこれを硫酸と反応させて硫酸塩(PbSO)を生成させる。得られた硫酸塩(PbSO)を、硫酸アンモニウム水溶液を含む高濃度の浸出溶液に溶解する。水溶液(浸出溶液)を濾過して溶解した鉛から不純物を除去する。このプロセスに続いて、鉛の炭酸塩の形の鉛を沈殿させ、それを溶解した不純物および未反応の鉛(Pb)および一酸化鉛(PbO)から分離する。次いで、炭酸鉛を炉内で一酸化鉛(PbO)または鉛(Pb)に焼成する。 Patent Document 1 discloses a process of collecting used batteries. Lead components such as sulfates (PbSO 4 ) are converted to lead (Pb) and lead monoxide (PbO) using sulfuric acid. Calcination or other chemical reducing agent such as hydrogen peroxide is used to reduce the lead dioxide (PbO 2 ) in the battery paste, which is then reacted with sulfuric acid to form sulfate (PbSO 4 ). The obtained sulfate (PbSO 4 ) is dissolved in a high-concentration leaching solution containing an ammonium sulfate aqueous solution. The aqueous solution (leaching solution) is filtered to remove impurities from the dissolved lead. Following this process, lead in the form of a carbonate of lead is precipitated and separated from dissolved impurities and unreacted lead (Pb) and lead monoxide (PbO). Then, the lead carbonate is fired into lead monoxide (PbO) or lead (Pb) in a furnace.
 特許文献5(米国特許第4,269,810号明細書)は、(式1)、(式2)のように、粉砕されたバッテリー成分に炭酸ナトリウム(NaCo)または水酸化ナトリウム(NaOH)などの還元剤の水溶液を添加することによって鉛バッテリーを脱硫する方法を開示している。この方法において、使い古したバッテリーの硫酸塩(PbSO)成分は硫酸ナトリウムのような可溶性の金属硫酸塩を生成し、鉛化合物は炭酸塩(PbCO)と水酸化鉛(Pb(OH))を含む化合物に転化して析出する。沈殿した鉛化合物は、沈降または遠心分離のような従来の分離技術を用いて、固体の一酸化鉛(PbO)およびPbと共に分離される。 Patent Document 5 (US Pat. No. 4,269,810) discloses that a ground battery component contains sodium carbonate (Na 2 Co 3 ) or sodium hydroxide (NaOH) as shown in (Formula 1) and (Formula 2). A method of desulfurizing a lead battery by adding an aqueous solution of a reducing agent is disclosed. In this method, the sulfate (PbSO 4 ) component of a used battery produces a soluble metal sulfate such as sodium sulfate, and the lead compounds include carbonate (PbCO 3 ) and lead hydroxide (Pb(OH) 2 ). Is converted to a compound containing and precipitated. The precipitated lead compound is separated with solid lead monoxide (PbO) and Pb 2 using conventional separation techniques such as sedimentation or centrifugation.
 特許文献3(米国特許第8,323,376号明細書)は、鉛含有廃棄物から鉛をリサイクルする方法を記載している。この方法は、バッテリーペーストにクエン酸水溶液を添加することによってクエン酸鉛を生成する。鉛および/または酸化鉛は、水溶液からクエン酸鉛を単離することによって得られる。 Patent Document 3 (US Pat. No. 8,323,376) describes a method of recycling lead from lead-containing waste. This method produces lead citrate by adding an aqueous citric acid solution to the battery paste. Lead and/or lead oxide is obtained by isolating lead citrate from an aqueous solution.
 特許文献6(米国特許第4,460,442号明細書)は、鉛および二酸化鉛を粉砕し、強アルカリ性溶液と反応させて最小固体の四酸化鉛(Pb)を生成させ、その後、鉛を溶解するために高温のフルオロシリルまたはフルオロホウ酸とさらに反応させる鉛回収プロセスを開示し、グラファイトカソード上に電着(電気めっき)される。 U.S. Pat. No. 4,460,442 discloses crushing lead and lead dioxide and reacting with a strongly alkaline solution to produce minimal solid lead tetroxide (Pb 3 O 4 ), which is then dissolved. In order to do so, a lead recovery process is further reacted with high temperature fluorosilyl or fluoroboric acid and electrodeposited (electroplated) on a graphite cathode.
 同様に、特許文献7(米国特許第4,769,116号明細書)は、鉛ペーストの炭酸化反応と、それに続くフルオロシリルまたはフルオロホウ酸との反応によって、鉛がメッキされる電解質を形成することを開示している。そのようなプロセスは製錬を禁止するが、それにもかかわらず様々な障害が残る。最も注目すべきことは、フルオロシリルまたはフルオロホウ酸を使用する鉛化合物の消化(分解)は汚染物質の生成プロセスであり、環境的に望ましくなく、相当量の硫酸鉛がしばしば残る。鉛ペーストの脱硫プロセスは、苛性ソーダ(NaOH)またはソーダ灰(NaCo)を用いて実施して、鉛の水酸化物または硫酸鉛からの鉛の炭酸塩を生成することができる。 Similarly, US Pat. No. 4,769,116 discloses that a carbonation reaction of a lead paste followed by a reaction with fluorosilyl or fluoroboric acid forms a lead-plated electrolyte. ing. Such processes prohibit smelting, but nonetheless leave various obstacles. Most notably, digestion (decomposition) of lead compounds using fluorosilyl or fluoroboric acid is a pollutant production process, which is environmentally undesirable and often leaves significant amounts of lead sulfate. The lead paste desulfurization process can be performed with caustic soda (NaOH) or soda ash (Na 2 Co 3 ) to produce lead hydroxide or lead carbonate from lead sulfate.
 あるいは、非特許文献1((Journal of Achievements in Materials and Manufacturing Engineering 2012、Vol.55(2)、855~859頁))に開示のように、アミン溶媒を使用して、鉛ペーストを脱硫し、精製硫酸鉛およびリサイクルアミン溶媒を製造することができる。残念ながら、そのようなプロセスは純粋な元素の鉛を生成する。 Alternatively, as disclosed in Non-Patent Document 1 ((Journal of Achievements in in Materials and Engineering 2012, Vol.55(2), 855-859)), the lead paste is desulfurized using an amine solvent, Purified lead sulfate and recycled amine solvents can be produced. Unfortunately, such a process produces pure elemental lead.
 一般的に、鉛鉱石からの鉛を生成するには湿式化学的方法が用いられる。この方法は、粉砕と浮遊選鉱に基づいて濃縮鉛溶液を生成する。金属鉛は、電解質としてフルオロチタン酸塩を使用し、アノードとして不純な鉛を使用し、カソードまたはカソードに鉛を析出させる電気製錬プロセスを用いて再循環される。この方法はベッツ(Betts)プロセスとして特許文献8-12に開示されている。 Generally, wet chemical method is used to produce lead from lead ore. This method produces a concentrated lead solution based on grinding and flotation. The metallic lead is recycled using an electrosmelting process that uses fluorotitanate as the electrolyte, impure lead as the anode, and deposits lead on the cathode or cathode. This method is disclosed as a Betts process in US Pat.
 脱硫について、特許文献13(WO2015/057189号)には、鉛酸化物を酸および還元剤で処理して鉛塩を形成し、次いでこれを高温で二酸化炭素(CO)を含まない雰囲気下で酸化剤と反応させて一酸化鉛(PbO)を生成させることが開示されている。 Regarding desulfurization, Patent Document 13 (WO2015/057189) discloses that lead oxide is treated with an acid and a reducing agent to form a lead salt, which is then heated at a high temperature in a carbon dioxide (CO 2 )-free atmosphere. It is disclosed to react with an oxidant to produce lead monoxide (PbO).
 しかし、特許文献13に記載された方法を用いて一酸化鉛(PbO)を製造するためには、いくつかの溶媒処理工程および種々の試薬を必要とする。さらに、純粋な元素の鉛は、そのようなプロセスから直ちに生成されない。 However, in order to produce lead monoxide (PbO) using the method described in Patent Document 13, several solvent treatment steps and various reagents are required. Moreover, the pure elemental lead is not immediately produced from such processes.
 特許文献14(US2010/043600号公報)は、酸化鉛を最初に酸に溶解し、不溶性二酸化鉛を還元したペーストから高純度の鉛化合物を回収する方法を開示している。得られた鉛酸化物は硫酸鉛に変換され、対応する炭酸塩、酸化物または水酸化物を含む。残念なことに、そのようなプロセスは比較的複雑であり、したがって経済的に魅力的ではない。 Patent Document 14 (US2010/043600) discloses a method of first dissolving lead oxide in an acid and recovering a highly pure lead compound from a paste obtained by reducing insoluble lead dioxide. The lead oxide obtained is converted to lead sulfate and contains the corresponding carbonate, oxide or hydroxide. Unfortunately, such a process is relatively complex and therefore not economically attractive.
 電解採取も複雑になる可能性がある。溶解した鉛の適切な形態は、化学物質の複雑な混合物によって生成される電気化学セルで処理する必要がある。そのようなセルはエネルギー集約的である。この方法には、以下の欠点がある。
1.リザーバーおよび電極の建設には初期投資コストが高い。
2.時間の経過とともに電極を使用する。
3.効率は低いが高純度である。
4.消費電力が大きいため、全体の製造コストが高くなる。
Electrowinning can also be complicated. Appropriate forms of dissolved lead need to be processed in an electrochemical cell produced by a complex mixture of chemicals. Such cells are energy intensive. This method has the following drawbacks.
1. Initial investment costs are high for the construction of reservoirs and electrodes.
2. Use the electrodes over time.
3. Highly pure with low efficiency.
4. The large power consumption increases the overall manufacturing cost.
 特許文献15(米国特許公開2016/0294024号明細書)には、連続プロセスを用いて水性電気処理溶媒中で鉛をリサイクルし、電気精製および使用済み電気処理溶媒が回収プロセスを用いてリサイクルされることが開示されている。 US Patent Publication No. US 2016/0294024 discloses that lead is recycled in an aqueous electroprocessing solvent using a continuous process, and electrorefining and spent electroprocessing solvent are recycled using a recovery process. It is disclosed.
 次に、フッ素含有電解質は、脱硫プロセスにいくつかの困難を生じさせる可能性がある。特許文献16(米国特許第5,262,020号明細書)、特許文献17(米国特許第5,520,794号明細書)には、脱硫された活性鉛材料をメタンスルホン酸に溶解することによってこの問題を解決する方法が記載されている。硫酸鉛はメタンスルホン酸にはほとんど溶けにくいので、脱硫前処理が必要である。残りの不溶性材料は、全体的な効率を低下させ、経済的に魅力的ではない。 Next, the fluorine-containing electrolyte can cause some difficulties in the desulfurization process. Patent Document 16 (US Pat. No. 5,262,020) and Patent Document 17 (US Pat. No. 5,520,794) disclose a method for solving this problem by dissolving a desulfurized active lead material in methanesulfonic acid. Have been described. Lead sulphate is hardly soluble in methane sulphonic acid and requires pre-desulfurization treatment. The remaining insoluble material reduces overall efficiency and is not economically attractive.
 硫酸鉛に関連する問題の少なくともいくつかを克服するために、特許文献18(国際公開2014/076544号)に記載されているように、酸素および/またはメタンスルホン酸第二鉄を添加することができ、または特許文献19(国際公開2014/076547号)に開示されているように種々の混合酸化物を製造することができる。 In order to overcome at least some of the problems associated with lead sulphate it is possible to add oxygen and/or ferric methane sulphonate as described in WO 2006/076544. Alternatively, various mixed oxides can be prepared as disclosed in WO 02/075647.
 しかしながら、効率の改善がなされたが、いくつかの欠点が残る。とりわけ、これらのプロセスにおける溶媒の再使用は、しばしばさらなる努力を必要とし、残留硫酸塩は廃棄物として失われる。さらに、カソードが除去され、鉛が剥がされ、バッチ運転が最も問題にならない限り、電解鉛回収操作では、予期せぬプロセス条件または停電中にめっきされた金属鉛の電解液への溶解が可能である。
 このプロセスでは、使い古した鉛バッテリーのリサイクルについて開示されている。この方法では、残留鉛化合物および合金の一部を含む破砕された非金属成分は、硝酸の混合物によって還元され、不溶性+4状態の鉛を可溶性+2状態鉛のスラリーに変換する。この方法に続いて、スラリーを濾過して、鉛が豊富な濾液からプラスチックおよびセパレータを分離し、鉛が豊富な濾液を硫酸と接触させて、硫酸鉛ペーストおよび硝酸を得る。金属含有成分は、金属含有成分中に存在する鉛および他の金属の硫酸塩を含むペーストを形成するように処理され、硫酸鉛ペーストおよび鉛および他の金属の硫酸塩を含むペーストをアルカリ溶液と接触させて鉛酸化物を析出させ、カルボン酸と接触させて可溶性鉛カルボン酸塩を形成する。一酸化鉛は、可溶性鉛カルボン酸塩を処理することによって得られる。
However, despite the improved efficiency, some drawbacks remain. Among other things, solvent reuse in these processes often requires additional effort and residual sulfate is lost as waste. In addition, the electrolytic lead recovery operation allows for the dissolution of plated metallic lead into the electrolyte during unexpected process conditions or power outages, unless the cathode is removed, the lead stripped and batch operation is of the highest concern. is there.
The process discloses recycling of used lead batteries. In this method, crushed non-metallic components, including residual lead compounds and a portion of the alloy, are reduced by a mixture of nitric acid, converting insoluble +4 state lead into a soluble +2 state lead slurry. Following this method, the slurry is filtered to separate the plastic and separator from the lead-rich filtrate and the lead-rich filtrate is contacted with sulfuric acid to obtain a lead sulfate paste and nitric acid. The metal-containing component is treated to form a paste containing lead and other metal sulfate present in the metal-containing component, and the lead sulfate paste and the paste containing lead and other metal sulfate are treated with an alkaline solution. Contact is made to precipitate lead oxide and contact with a carboxylic acid to form a soluble lead carboxylate. Lead monoxide is obtained by treating a soluble lead carboxylate salt.
米国特許第4,118,219号明細書U.S. Pat.No. 4,118,219 米国特許第6,177,056号明細書U.S. Pat.No. 6,177,056 米国特許第8,323,376号明細書U.S. Pat.No. 8,323,376 米国特許第6,340,423号明細書U.S. Pat.No. 6,340,423 米国特許第4,269,810号明細書U.S. Pat.No. 4,269,810 米国特許第4,460,442号明細書U.S. Pat.No. 4,460,442 米国特許第4,769,116号明細書U.S. Pat.No. 4,769,116 米国特許第679,824号明細書U.S. Pat.No. 679,824 米国特許第713,277号明細書U.S. Pat.No. 713,277 米国特許第713,278号明細書U.S. Pat.No. 713,278 米国特許第4,177,117号明細書U.S. Pat.No. 4,177,117 米国特許第4,416,746号明細書U.S. Pat.No. 4,416,746 国際公開2015/057189号International Publication 2015/057189 米国特許公開2010/043600号明細書U.S. Patent Publication No. 2010/043600 米国特許公開2016/0294024号明細書U.S. Patent Publication No. 2016/0294024 米国特許第5,262,020号明細書U.S. Pat.No. 5,262,020 米国特許第5,520,794号明細書U.S. Pat.No. 5,520,794 国際公開2014/076544号International publication 2014/076544 国際公開2014/076547号International publication 2014/076547
 従来の鉛の製造方法では、脱硫された溶液を用いて希少な鉛化合物を製造するが、これらの化合物は環境を汚染する。 In the conventional lead manufacturing method, rare lead compounds are manufactured using desulfurized solutions, but these compounds pollute the environment.
 本発明の目的は、鉛の抽出温度を下げることができ、それに加えて、鉛製造時の汚染を大幅に減少できる湿式化学的方法による鉛の製造方法及び鉛の製造設備を提供することにある。 An object of the present invention is to provide a lead manufacturing method and a lead manufacturing facility by a wet chemical method, which can lower the lead extraction temperature and can significantly reduce the pollution during lead manufacturing. ..
 本発明の目的を実現する鉛の製造方法は、温度を低下させ、または排除する試みがなされている。それに加えて、新しい材料の使用は汚染を大幅に減少させた。例えば、無害の使用は、種々の濃度の鉛の可溶性化合物を生産する。本発明の鉛の製造方法では、鉛化合物は水性溶媒に完全に可溶である。この溶媒は、硝酸、塩酸、ギ酸、クエン酸アンモニウム溶液、クエン酸ナトリウム溶液、クエン酸ナトリウム、酢酸アンモニウム、クエン酸アンモニウムなどの鉛化合物を溶解することができる酸性および工業用酸化剤の混合物である。 The method for producing lead that achieves the object of the present invention makes an attempt to reduce or eliminate the temperature. In addition, the use of new materials has significantly reduced pollution. For example, harmless use produces soluble compounds of various concentrations of lead. In the lead manufacturing method of the present invention, the lead compound is completely soluble in the aqueous solvent. This solvent is a mixture of acidic and industrial oxidants capable of dissolving lead compounds such as nitric acid, hydrochloric acid, formic acid, ammonium citrate solution, sodium citrate solution, sodium citrate, ammonium acetate, ammonium citrate, etc. ..
 したがって、環境条件の鉛の製造方法や、環境リスクを低減し、経済性を高めたナノ金属粉を添加して分解することも可能である。このプロセスで得られた製品は、すべてリサイクルして販売することが可能である(金属鉛が必要である)。 Therefore, it is also possible to decompose by adding a method of manufacturing lead under environmental conditions, or adding nano metal powder that reduces environmental risk and improves economic efficiency. All products obtained from this process can be recycled for sale (requires metallic lead).
 さらに、実施された実験は、この方法を実施することにより、高純度化された鉛が生産可能であることを示している。この方法は、溶解し、ナノ金属粉末によって回収した後、ガレナ鉱石PbSを金属鉛に変換することができる。従来の方法では、硫酸を添加することによって硫化鉛を硫酸鉛に変換した。しかしながら、この新しい方法では、硫酸を使用せずに硫酸鉛と硫化物の溶解を可能とする。 Furthermore, the conducted experiment shows that highly purified lead can be produced by implementing this method. This method can convert galena ore PbS to metallic lead after dissolution and recovery by nano-metal powder. In the conventional method, lead sulfide was converted to lead sulfate by adding sulfuric acid. However, this new method allows the dissolution of lead sulfate and sulfide without the use of sulfuric acid.
 この方法の手順を以下に示す。
1つ目は、無毒溶液に鉛ペーストを溶解することである。
2つ目は、非常に短時間で透明な溶液が得られることである。
3つ目は、透明な鉛錯体溶液にナノ金属粉末またはマイクロ粉末を添加することである。
4つ目は、ナノ金属粉末を添加された溶液から結果として鉛が得られることである。
The procedure of this method is shown below.
The first is to dissolve the lead paste in a non-toxic solution.
The second is that a clear solution can be obtained in a very short time.
The third is to add nano metal powder or micro powder to the transparent lead complex solution.
Fourth, the resulting lead is obtained from the solution to which the nanometal powder is added.
 この方法は、環境にやさしく低初期投資要件を含むいくつかの態様のための古い方法に匹敵する。従来の方法において、希少な鉛化合物は脱硫溶液を使用して生成されるが、これらの化合物は環境を汚染する。本発明方法の主な目的は抽出温度を下げることにある。それに加えて、新しい材料の使用は汚染を大幅に減少させた。このプロセスで得られた製品は、すべてリサイクルして販売することができる。 This method is environmentally friendly and comparable to the old method for some aspects including low initial investment requirements. In conventional methods, rare lead compounds are produced using desulfurization solutions, but these compounds pollute the environment. The main purpose of the method of the present invention is to lower the extraction temperature. In addition, the use of new materials has significantly reduced pollution. All products obtained from this process can be recycled for sale.
 古い電池やPbSの鉱石から鉛を抽出する本発明の効果は以下の通りである。
1.迅速な処理:鉛抽出処理の時間が他の既存の方法よりもずっと速い。
2.低初期および反応温度のために、プロセスに必要なエネルギーがより少ない。
3.抽出プロセスの還元時間および温度は、スラグとしての鉛の酸化およびオーバーシュートを防止する。
4.低温度での動作(最大75℃)を可能とし、硫黄ガスの放出量を最小にできる。
5.加熱撹拌能力を有するタンクのみが必要とされるので、初期の製造コストの低減が図れる。
6.副産物を産業界に販売可能である。
7.溶液の再利用が可能である。
8.鉛化合物を選択的に処理可能である。鉛を製造するための複数のステップの中で、例えば最後のステップで鉛を抽出可能とする。
9.インゴット鋳造の必要はない。
10.クエン酸鉛、硝酸鉛、酸化物などの各種鉛塩を製造する能力を有する。
11.製造工程に炉を不要とする。
12.製造工程中に有害なガスが存在しない。
13.硫黄化合物が溶解プロセスで使用されない。
The effects of the present invention for extracting lead from old batteries and PbS ore are as follows.
1. Faster processing: Lead extraction process is much faster than other existing methods.
2. Less energy is required for the process due to low initial and reaction temperatures.
3. The reduction time and temperature of the extraction process prevent the oxidation and overshoot of lead as slag.
4. It enables operation at a low temperature (up to 75°C) and minimizes the amount of sulfur gas released.
5. Since only the tank having the heating and stirring ability is required, the initial manufacturing cost can be reduced.
6. By-products can be sold to industry.
7. The solution can be reused.
8. Lead compounds can be selectively treated. Among the plurality of steps for manufacturing lead, for example, the last step enables extraction of lead.
9. There is no need for ingot casting.
10. It has the ability to produce various lead salts such as lead citrate, lead nitrate and oxides.
11. No furnace is required in the manufacturing process.
12. No harmful gases are present during the manufacturing process.
13. No sulfur compounds are used in the dissolution process.
本発明方法を実施する鉛ペーストから鉛をリサイクルする大量生産プロセスのブロック図である。It is a block diagram of a mass production process of recycling lead from a lead paste for carrying out the method of the present invention. Pb(C)のX線回折スペクトラム図。X-ray diffraction spectrum view of Pb (C 6 H 6 0 7 ). 鉛のX線回折解析スペクトラム図。X-ray diffraction analysis spectrum diagram of lead.
 以下本発明による鉛の製造方法を図面に示す実施形態に基づいて説明する。
 なお、詳細な説明、図面、および特許請求の範囲に記載された様々な実施形態は、例示的なものであり、限定を意味するものではない。本明細書に提示される主題の精神または範囲から逸脱することなく、他の実施形態が使用されてもよく、他の変更が行われてもよい。本明細書に一般的に記載され、図に示されるような本開示の態様は、本明細書ですべて企図される多種多様な異なる構成で配置、置換、組み合わせ、分離、および設計され得ることが理解される。
Hereinafter, a method for producing lead according to the present invention will be described based on an embodiment shown in the drawings.
It should be noted that the various embodiments described in the detailed description, drawings, and claims are merely illustrative and are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. Aspects of the disclosure as generally described herein and as illustrated in the figures may be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all contemplated herein. To be understood.
 図1は本発明方法を実施する鉛ペーストから鉛をリサイクルする大量生産プロセスのブロック図である。なお、鉛製造の原材料として鉛ペーストに代えて鉛鉱石を粉砕したものも適用することができる。 FIG. 1 is a block diagram of a mass production process for recycling lead from a lead paste for carrying out the method of the present invention. It should be noted that as a raw material for producing lead, a crushed lead ore can be applied instead of the lead paste.
 図1において、鉛の生産設備1は、セパレータ10と、粉砕機11と、コンベヤ12と、ポンプ内蔵の液体充填タンク20と、撹拌機31を備えた合成溶媒収容部をなす第1タンク30と、撹拌機41を備えた鉛溶解部をなす第2タンク40と、撹拌機51を備えた鉛沈殿部をなす第3タンク50と、撹拌機61を備えた鉛塩沈殿部をなす第4タンク60と、酸塩供給部をなす第5タンク70を有する。第2タンク40はヒータ42を備え、タンク内溶液の温度を制御可能とし、例えば70℃に制御可能とする。液体充填タンク20と第1タンク30は、工業用プロピレンまたはSUS316ステンレス鋼、低炭素鋼で形成され、酸化剤および酸性物質に耐性を有する。鉛バッテリー2は、粉砕機11で粉砕され、セパレータ11により、鉛ペースト3とプラスチック類4等に仕分けされ、鉛ペースト2がコンベヤ12に送られる。コンベヤ12により鉛ペースト3は第2タンク40に移送される。 In FIG. 1, a lead production facility 1 includes a separator 10, a crusher 11, a conveyor 12, a liquid filling tank 20 with a built-in pump, and a first tank 30 serving as a synthetic solvent accommodating unit including an agitator 31. , A second tank 40 forming a lead dissolving part equipped with a stirrer 41, a third tank 50 forming a lead precipitation part equipped with a stirrer 51, and a fourth tank forming a lead salt precipitation part equipped with a stirrer 61 It has 60 and the 5th tank 70 which comprises an acid salt supply part. The second tank 40 is provided with a heater 42 so that the temperature of the solution in the tank can be controlled, for example, 70°C. The liquid filling tank 20 and the first tank 30 are made of industrial propylene or SUS316 stainless steel, low carbon steel, and have resistance to oxidizing agents and acidic substances. The lead battery 2 is crushed by the crusher 11, sorted by the separator 11 into the lead paste 3 and the plastics 4, and the lead paste 2 is sent to the conveyor 12. The lead paste 3 is transferred to the second tank 40 by the conveyor 12.
 第1フィーダ13は例えばアンモニア又はクエン酸を第1タンク30に供給する。液体充填タンク20内に、クエン酸塩または酢酸塩の液体化合物を入れることができる。第2フィーダ14は例えばヒドラジン水和物のような還元剤を第2タンク40に供給する。第3フィーダ15は例えば過酸化水素および金属粉末の促進剤を第3タンク50に供給する。さらに、例えば、第5タンク70から第4タンク60に酢酸硝酸塩または硝酸塩が供給される。 The first feeder 13 supplies, for example, ammonia or citric acid to the first tank 30. A liquid citrate or acetate liquid compound can be placed in the liquid fill tank 20. The second feeder 14 supplies a reducing agent such as hydrazine hydrate to the second tank 40. The third feeder 15 supplies, for example, hydrogen peroxide and a promoter of metal powder to the third tank 50. Further, for example, acetate nitrate or nitrate is supplied from the fifth tank 70 to the fourth tank 60.
 また、生産設備1は、洗浄機能を備えたろ過器80A、80Bと、第1送液ポンプ81と、第2送液ポンプ82と、第3送液ポンプ83と、低温乾燥用のドライヤー84有する。この鉛の生産設備1は、鉛バッテリー2内の鉛(PbSO)3をリサイクルし、例えば金属鉛100として取り出し、また各種の鉛塩101を製造する。 Further, the production facility 1 includes filters 80A and 80B having a cleaning function, a first liquid feed pump 81, a second liquid feed pump 82, a third liquid feed pump 83, and a dryer 84 for low temperature drying. .. This lead production facility 1 recycles lead (PbSO 4 ) 3 in a lead battery 2 and takes out, for example, metallic lead 100, and also produces various lead salts 101.
 各タンク20、30、40、50、60の容量は、例えば300リットルで、各タンクを接続するパイプの内径はポンプの動力により変わる。ポンプの動力は毎分50リッターである。また、各撹拌機はブレードを一列にすることができる。さらに、第1タンク30の底部を円錐形状とし、鉛が埋まるようにしても良い。前記各種の鉛塩101としては、鉛の硝酸塩(lead(II) nitrate)、クエン酸鉛および塩化鉛(II)などの鉛塩粉末を製造することができる。 The capacity of each tank 20, 30, 40, 50, 60 is, for example, 300 liters, and the inner diameter of the pipe connecting each tank changes depending on the power of the pump. The power of the pump is 50 liters per minute. Also, each agitator may have a single row of blades. Further, the bottom portion of the first tank 30 may be formed in a conical shape so that the lead is filled therein. As the various lead salts 101, lead salt powders such as lead nitrate (lead(II) nitrate), lead citrate, and lead(II) chloride can be manufactured.
 第2タンク40内には、鉛ペースト3等の鉛誘導体を溶解するために、酸化物,水酸化物,硫酸塩等の各種鉛化合物を溶解することができる合成溶媒が水と共に収容されている。アンモニア、クエン酸塩および酢酸塩化合物の必要量は、第1フィーダ13によって液体充填タンク20に供給され、調整された液体(第1溶液とする)は、溶解液充填タンクである第1タンク30に供給される。第1タンク30内の第1溶液は、第1撹拌機31によって攪拌され、混合され、第2タンク40に第1送液ポンプ81によりポンプ輸送されて所定の温度に加熱される。 In the second tank 40, in order to dissolve the lead derivative such as the lead paste 3, a synthetic solvent capable of dissolving various lead compounds such as oxides, hydroxides and sulfates is stored together with water. .. Necessary amounts of ammonia, citrate, and acetate compounds are supplied to the liquid filling tank 20 by the first feeder 13, and the adjusted liquid (referred to as the first solution) is the first tank 30 which is the dissolution liquid filling tank. Is supplied to. The first solution in the first tank 30 is agitated and mixed by the first agitator 31, pumped to the second tank 40 by the first liquid feed pump 81, and heated to a predetermined temperature.
 第2タンク40には、第1送液ポンプ81を介してクエン酸塩や酢酸化合物(例えば、クエン酸アンモニウムやクエン酸)を含む第1溶液が移送される。鉛ペースト3が移送された第2タンク40には、鉛化合物のための所定量の可溶性物質が第2フィーダ14を介して供給される。撹拌機41は、第2タンク40内の溶液を混合する。 The first solution containing a citrate or an acetic acid compound (for example, ammonium citrate or citric acid) is transferred to the second tank 40 via the first liquid feed pump 81. The second tank 40 to which the lead paste 3 has been transferred is supplied with a predetermined amount of a soluble substance for the lead compound through the second feeder 14. The stirrer 41 mixes the solution in the second tank 40.
 この段階の第2タンク40には、バッテリーの鉛ペースト3および第1タンク30からポンプで移送された液体を含む。第2タンク40内の溶液を溶解反応速度を高めるために、70℃の温度に加熱して、鉛ペーストを完全に溶解させる(この溶液を第2溶液とする)。第2フィーダ14は、還元剤を第2タンク40内の第2溶液に添加し、次に第2溶液を、鉛ペースト3が溶解するのに必要な時間の経過後に、第2送液ポンプ82により第3タンク50に注入する。 The second tank 40 at this stage contains the lead paste 3 of the battery and the liquid pumped from the first tank 30. In order to increase the dissolution reaction rate, the solution in the second tank 40 is heated to a temperature of 70° C. to completely dissolve the lead paste (this solution is referred to as a second solution). The second feeder 14 adds the reducing agent to the second solution in the second tank 40, and then the second solution is supplied to the second liquid feed pump 82 after the time required for the lead paste 3 to dissolve. Is injected into the third tank 50.
 第2溶液が移送された第3タンク50には、所定量の過酸化水素とヒトラジン水和物と還元触媒が第3フィーダ15を介して所定量添加される。第3タンク50内の溶液は撹拌機51により撹拌される。第2溶液が移送された第3タンク50内には、所定容量の第3フィーダ15を介して所定量の還元金属促進剤が添加される。第3タンク50内の溶液は、第3撹拌機51によって撹拌され、混合される(この溶液を第3溶液とする)。そして、第3溶液中に鉛が沈殿する。沈殿した鉛を第1濾過器80Aにより第3溶液から単離し、ドライヤー84により乾燥し、金属鉛100が抽出される。金属鉛100はインゴットに製造することができる。 To the third tank 50 to which the second solution has been transferred, a predetermined amount of hydrogen peroxide, human rhazine hydrate and a reducing catalyst are added via the third feeder 15. The solution in the third tank 50 is agitated by the agitator 51. Into the third tank 50 to which the second solution has been transferred, a predetermined amount of reduced metal promoter is added via the third feeder 15 having a predetermined capacity. The solution in the third tank 50 is agitated and mixed by the third agitator 51 (this solution is referred to as a third solution). Then, lead is precipitated in the third solution. The precipitated lead is isolated from the third solution by the first filter 80A and dried by the dryer 84 to extract the metallic lead 100. The metallic lead 100 can be manufactured into an ingot.
 第3溶液から析出した鉛が除去された溶液は、再生液として第1タンク30に戻されて再利用される。さらに、第3溶液から金属促進剤を含む金属酸化物、金属塩を製造することができる。この段階では、第3送液ポンプ85によりヒータ91を備えた金属再生部をなす第6タンク90内の第3溶液を移送し、第6タンク90にいくらかの量の酸を添加する。そして、第6タンク90を加熱後、金属促進剤の金属塩又は金属酸化物102が得られる。この金属塩又は金属酸化物102は別の方法で再び使用することができる。 The solution from which the precipitated lead has been removed from the third solution is returned to the first tank 30 as a regenerating solution and reused. Furthermore, a metal oxide or metal salt containing a metal promoter can be produced from the third solution. At this stage, the third solution pump 85 transfers the third solution in the sixth tank 90, which is a metal regenerating section having the heater 91, and adds some amount of acid to the sixth tank 90. Then, after heating the sixth tank 90, the metal salt or metal oxide 102 of the metal accelerator is obtained. This metal salt or metal oxide 102 can be reused in another way.
 また、第2タンク40中の第2溶液を第3送液ポンプ83を介して第4タンク60に移送し、第4タンク60に第5タンク70から酢酸硝酸塩又は硝酸塩を供給し、撹拌機61で撹拌すると、鉛塩が沈殿する。この沈殿物を第2濾過器80Bにより洗浄し、単離すると鉛塩101が得られる。 In addition, the second solution in the second tank 40 is transferred to the fourth tank 60 via the third liquid feed pump 83, and acetic acid nitrate or nitrate is supplied from the fifth tank 70 to the fourth tank 60. The lead salt precipitates when stirred at. The precipitate is washed with the second filter 80B and isolated to obtain the lead salt 101.
 鉛バッテリーは、プラスチック電槽(容器)内に充填された電解液である希硫酸の中に鉛の電極板が入っており、例えば正極(陽極)には二酸化鉛、負極(陰極)には海綿状(スポンジ状)の鉛が使われている。また、ペースト式の鉛バッテリーは、鉛合金製の格子体とよばれる極板の骨組みにペースト状にした活物質を塗り込んで極板(グリッドリード)にし、正極と負極両方に使用されている。正極と負極の間はセルロース繊維で構成されたセパレータによりセパレートされている。 A lead battery has a lead electrode plate in dilute sulfuric acid, which is an electrolytic solution filled in a plastic battery case (container). For example, lead dioxide is used for the positive electrode (anode) and sponge is used for the negative electrode (cathode). Lead (sponge) is used. In addition, the paste-type lead battery is used for both the positive and negative electrodes by applying a paste-like active material to the skeleton of an electrode plate called a lead alloy grid to form an electrode plate (grid lead). .. The positive electrode and the negative electrode are separated by a separator made of cellulose fiber.
 硫酸鉛、酸化鉛、および金属鉛を含むバッテリーペーストは、他のプラスチック部品と分離する必要がある。この分離プロセスでは、バッテリーの酸をできるだけ除去する。 Battery paste containing lead sulfate, lead oxide, and metallic lead needs to be separated from other plastic parts. This separation process removes as much battery acid as possible.
 図1において、トラック等により運搬された鉛バッテリー2は、まず粉砕機11に投入されて粉砕され、少量の溶解した硫酸鉛および硫酸を含む酸が除去される。硫酸塩ペーストおよび酸化鉛の活物質で被覆された表面を有する鉛グリッドは、その後、螺旋状の粉砕機11によって粉砕され、活物質が分離される。次に、得られた鉛ペーストを100℃~150℃の温度で乾燥する前処理を行う。乾燥した鉛ペースト(原材料とする)3は、コンベア12を介して溶解タンクである第2タンク40へ移送される。なお、粉砕機11で粉砕された硫酸等の液体やプラスチックは、セパレータ10により鉛ペースト3と分別される。 In FIG. 1, a lead battery 2 transported by a truck or the like is first put into a crusher 11 and crushed to remove a small amount of dissolved lead sulfate and acid containing sulfuric acid. The lead grid having the surface coated with the sulfate paste and the lead oxide active material is then crushed by the spiral crusher 11 to separate the active material. Next, a pretreatment of drying the obtained lead paste at a temperature of 100° C. to 150° C. is performed. The dried lead paste (raw material) 3 is transferred to the second tank 40, which is a dissolution tank, via the conveyor 12. Liquids such as sulfuric acid and plastics crushed by the crusher 11 are separated from the lead paste 3 by the separator 10.
 また、前記前処理において、バッテリーペースト中のセルロース繊維は、500℃以上の温度で有機溶媒を用いて除去され、次いで水で洗浄される。この前処理を用いる利点は、リサイクルシステムにおいて、炭酸ナトリウムを中和する必要がないことである。したがって、20~30%の酸化鉛を含み、金属鉛の量が少ない硫酸鉛化合物がリサイクルのために準備される。 Also, in the pretreatment, the cellulose fibers in the battery paste are removed with an organic solvent at a temperature of 500° C. or higher, and then washed with water. The advantage of using this pretreatment is that sodium carbonate need not be neutralized in the recycling system. Therefore, a lead sulphate compound containing 20-30% lead oxide and low in metallic lead is prepared for recycling.
 本実施形態の鉛の製造方法には第1の方法と第2の方法があり、以下のステップが含まれる。 The lead manufacturing method of this embodiment includes a first method and a second method, and includes the following steps.
 第1の方法は以下の通りである。
・1:鉛鉱石又はバッテリーの鉛を粉砕したものを原材料とする。
・2:第2タンク40に鉛化合物用の可溶性物質を第1タンク30から供給する。
・3:第2タンク40に、イオン及び分子が第1溶液中の溶解した鉛金属イオンと結合する還元剤(ヒドラジン水和物)を添加する。
・4:原材料を第2タンク40に移送し、第2タンク40の温度を所定の温度まで上昇させ、原材料を溶解する。溶解した溶液は、高濃度鉛イオン溶液(Lead ion enriched solution)となる。溶解が進むにつれて溶液が透明になり、これを第2溶液とする。
・5:第2タンク40内の第2溶液を第3タンク50に移送する。
・6:第3タンク50内の第2溶液に還元促進剤を添加する(更に、ヒドラジン水和物と過酸化水素を添加する)。
・7:第3タンク50に金属鉛が沈殿し、沈殿した金属鉛の単離と乾燥。
・8:第3タンク50内に鉛が沈殿した後の溶液を第3溶液とし、原材料を溶解する再生溶液として再利用する。
・9:単離した鉛を乾燥し、インゴットの製造を可能とする。
・10:第2タンク40内の第2溶液を第4タンク40に移送し、鉛塩を抽出する。
The first method is as follows.
・1: The raw material is crushed lead ore or lead of battery.
*2: A soluble substance for a lead compound is supplied from the first tank 30 to the second tank 40.
*3: A reducing agent (hydrazine hydrate) in which ions and molecules are combined with the dissolved lead metal ions in the first solution is added to the second tank 40.
*4: The raw material is transferred to the second tank 40, the temperature of the second tank 40 is raised to a predetermined temperature, and the raw material is melted. The dissolved solution becomes a lead ion enriched solution. As the dissolution progresses, the solution becomes transparent, and this is referred to as the second solution.
5: Transfer the second solution in the second tank 40 to the third tank 50.
*6: A reduction accelerator is added to the second solution in the third tank 50 (further, hydrazine hydrate and hydrogen peroxide are added).
7: Lead metal was precipitated in the third tank 50, and the precipitated lead metal was isolated and dried.
8: The solution after lead is precipitated in the third tank 50 is used as the third solution and reused as a regenerating solution for dissolving the raw materials.
・9: The isolated lead is dried to enable the production of an ingot.
*10: The 2nd solution in the 2nd tank 40 is transferred to the 4th tank 40, and a lead salt is extracted.
 第2の方法は、以下の通りである。
・1:鉛鉱石又はバッテリーの鉛を粉砕したものを原材料とする。
・2:第1タンク30内の溶液を第2タンク40に移送する。
・3:第2タンク40に鉛化合物用の可用性物質を供給する。
・4:原材料を第2タンク40に移送し、第2タンク40の温度を上昇させ、原材料を溶解する。
・5:第2タンク40内の溶液を第3タンク50に移送する。
・6:第3タンク50に必要なクエン酸ナトリウム又は他の酸を添加する。
・7:第3タンク50に金属鉛が沈殿し、沈殿した鉛を単離し、乾燥する。
・8:第3タンク50内の溶液を原材料を溶解する再生溶液として再利用する。
・9:単離した鉛を乾燥し、インゴットの製造を可能とする。
・10:第2タンク40内の溶液を第4タンク60に移送し、鉛塩を抽出する。
The second method is as follows.
・1: The raw material is crushed lead ore or lead of battery.
*2: The solution in the first tank 30 is transferred to the second tank 40.
*3: Supply the availability substance for lead compounds to the 2nd tank 40.
*4: The raw material is transferred to the second tank 40, the temperature of the second tank 40 is raised, and the raw material is melted.
5: The solution in the second tank 40 is transferred to the third tank 50.
*6: Add required sodium citrate or other acid to the third tank 50.
7: Lead metal is precipitated in the third tank 50, and the precipitated lead is isolated and dried.
8: Reuse the solution in the third tank 50 as a regenerating solution for dissolving the raw materials.
・9: The isolated lead is dried to enable the production of an ingot.
*10: The solution in the 2nd tank 40 is transferred to the 4th tank 60, and a lead salt is extracted.
 本方法では、鉛ペースト等の鉛誘導体を溶解するために、酸化物、水酸化物、硫酸塩等の各種鉛化合物を溶解することができる合成溶媒を使用する。次のステップでは、2価または3価の金属ナノ金属粉末を使用すると、二重置換反応によって、第2溶液中の既存の金属性鉛が析出する。濾過後、残った金属化合物はpH範囲を変えることによって還元され、金属ナノ粉末と共に強塩基を添加すると酸化物の形態で沈殿する。 In this method, a synthetic solvent capable of dissolving various lead compounds such as oxides, hydroxides and sulfates is used to dissolve lead derivatives such as lead paste. In the next step, when the divalent or trivalent metal nanometal powder is used, the existing metallic lead in the second solution is precipitated by the double substitution reaction. After filtration, the remaining metal compound is reduced by changing the pH range and precipitates in the oxide form when a strong base is added with the metal nanopowder.
 本発明の酸化物化合物は、そのタイプに応じて他の産業において副生物(酸化亜鉛のような金属酸化物)として適用される。リサイクルされた溶液は、再充填後の鉛リサイクルの次のサイクルで使用される。この溶液は中性のpHを有し、環境に対して危険な汚染を有しない。 The oxide compound of the present invention is applied as a by-product (metal oxide such as zinc oxide) in other industries depending on its type. The recycled solution is used in the next cycle of lead recycling after refilling. This solution has a neutral pH and does not have dangerous pollution to the environment.
 実施例1
 鉛鉱石の溶解および金属鉛の抽出には、硫化鉛(ガレナ:PbS)のような一般的な鉛鉱石を用いることができる。この点に関して、硫化鉛を粉砕して、工業用または粉砕機を使用して、5ミクロン~1mmの粒度を有する粒子を生成した。最良の溶解速度および総コストは、10~50ミクロンのサイズを有する粒子に関連する。粉砕後、純度25%の工業用アンモニア(アンモニアを75重量%の水で希釈)を適正純度で35~60%の範囲で鉱石に添加した。
Example 1
A common lead ore such as lead sulfide (Galena: PbS) can be used for dissolution of lead ore and extraction of metallic lead. In this regard, lead sulfide was milled to produce particles having a particle size of 5 microns to 1 mm using an industrial or mill. The best dissolution rates and total costs are associated with particles having a size of 10-50 microns. After grinding, 25% pure industrial ammonia (ammonia diluted with 75% by weight of water) was added to the ore in the proper purity range of 35-60%.
 硫化物の硫酸塩への変換は、アンモニアとHの添加によって開始する。このプロセスを促進するために、種々の過酸化水素含有量が系に添加され、硫化物の硫酸鉛への転化率に影響を及ぼす可能性がある。この含有量は、アンモニアの10~50重量%の範囲内である。溶解速度を評価するために、純度25%のアンモニアと比較して過酸化水素の異なる比率について以下の実験を行った。これによれば、最高転化率は、過酸化水素の重量で35%(65重量%の水で希釈されたH)で得られる。 Conversion to the sulfate of sulfide is initiated by addition of ammonia and H 2 O 2. To accelerate this process, various hydrogen peroxide contents can be added to the system to affect the conversion of sulfide to lead sulfate. This content is in the range of 10 to 50% by weight of ammonia. To evaluate the dissolution rate, the following experiments were performed with different ratios of hydrogen peroxide compared to 25% pure ammonia. According to this, the highest conversion is obtained with 35% by weight of hydrogen peroxide (H 2 O 2 diluted with 65% by weight of water).
 式3の反応は、黒鉛硫化物が白硫酸鉛に変換されることを示す。
 PbS+4H→PbSO+4HO・・・(式3)
 現在のステップでは、不安定な硫酸鉛は酸化鉛に変換される。鉛酸化物がアンモニアと接触して形成された活性鉛錯体が金属ナノ粉末またはヒドラジンのような還元剤を使用すると、タンクの底部にスポンジ状の鉛として沈殿する。以下の式4、式5の反応は、溶解および沈殿プロセスを示す。
 PbSO+H→Pb(SO+HO・・・(式4)
 3PbO(S)+2NHOH(l)→3Pb(S)+N(g)+5HO(l)・・・(式5)
  (S)は固体、(l)は液体、(g)は気体を示す。
The reaction of Equation 3 shows that graphite sulfide is converted to lead white sulfate.
PbS+4H 2 O 2 →PbSO 4 +4H 2 O (Equation 3)
In the current step, labile lead sulfate is converted to lead oxide. The active lead complex formed by contacting lead oxide with ammonia uses metal nanopowder or a reducing agent such as hydrazine to precipitate as sponge-like lead at the bottom of the tank. The reactions of Equations 4 and 5 below show dissolution and precipitation processes.
PbSO 4 + H 2 O 2 → Pb 2 (SO 3) 3 + H 2 O ··· ( Equation 4)
3PbO(S)+2NH 4 OH(l)→3Pb(S)+N 2 (g)+5H 2 O(l)... (Formula 5)
(S) is a solid, (l) is a liquid, and (g) is a gas.
 このサンプルでは、硫化鉛(PbS)の硫酸鉛(PbSO)への転化率は、硫化鉛鉱石とアンモニアの異なる比率、ならびに過酸化水素の様々な比率で実験を行った。 In this sample, the conversion of lead sulfide (PbS) to lead sulfate (PbSO 4 ) was run at different ratios of lead sulfide ore and ammonia, as well as different ratios of hydrogen peroxide.
実験例1
 この実験例1では、粉砕して平均粒径5ミクロンの粒子を生成した硫化鉛100gを使用した。アンモニアの純度は25%であり、不純物は水である。実験例1では、硫化鉛(PbS)が硫酸鉛(PbSO)に転化する時間(分)を計測した。実験結果を表1に示す。
Experimental example 1
In this Experimental Example 1, 100 g of lead sulfide which was pulverized to produce particles having an average particle size of 5 microns was used. The purity of ammonia is 25% and the impurity is water. In Experimental Example 1, the time (minutes) for converting lead sulfide (PbS) into lead sulfate (PbSO 4 ) was measured. The experimental results are shown in Table 1.
 試料番号1、3、5、7は、アンモニア溶液と硫化鉛(PbS)は等しく、試料番号2、4、6、8は、アンモニア溶液を硫化鉛の半分の重さとしている。また、アンモニア溶液中の過酸化水素の重量比(wt%)は、試料番号1と2の値が共に15、試料番号3と4の値が共に25、試料番号5と6の値が共に35、試料番号7と8の値が共に45、としている。 Sample Nos. 1, 3, 5, and 7 have the same ammonia solution and lead sulfide (PbS), and Sample Nos. 2, 4, 6, and 8 have the ammonia solution with half the weight of lead sulfide. Further, regarding the weight ratio (wt %) of hydrogen peroxide in the ammonia solution, the values of sample numbers 1 and 2 are both 15, the values of sample numbers 3 and 4 are both 25, and the values of sample numbers 5 and 6 are both 35. , The values of sample numbers 7 and 8 are both 45.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実験結果は、試料番号5が最も転化時間が短く(38分)、試料番号3と4が次に短かかった(50分)。逆に、試料番号2が最も転化時間が長かった(154分)。また、過酸化水素の割合が同じであると、アンモニアの量が多い方がてな時間が短くなる傾向がある。 The experimental results show that sample number 5 had the shortest conversion time (38 minutes), and sample numbers 3 and 4 took the next shortest time (50 minutes). Conversely, sample number 2 had the longest conversion time (154 minutes). Further, if the proportion of hydrogen peroxide is the same, the larger the amount of ammonia, the shorter the heading time tends to be.
 実施例2
 主としてアンモニア溶液によって制御される水性媒体のpHに依存する硫化物酸化プロセスの種々の状態は、Hを用いて行われる。アルカリ性pHでのHの反応性の増加は、前記反応がより速く達成されるように導く。
Example 2
Various states of the sulphide oxidation process, which depend mainly on the pH of the aqueous medium, which is controlled by the ammonia solution, are carried out with H 2 O 2 . The increased reactivity of H 2 O 2 at alkaline pH leads to the reaction being accomplished faster.
 大量の硫化物を含有する溶液を処理するとかなりの熱が発生し、分解のさらなる工程を行うことがある。これには2つのメカニズムがある。先に言及したものと、硫化物のSOxのような種類のガスを発生させる硫酸塩への変換を説明しているものがある。得られたガスはアンモニアと反応し、不安定なNHHSを生成する。したがって、汚染ガスが発生しない。前記反応は、アルカリ性溶液でより効率的に作用するので、反応の生成、進行、吸収および中和におけるアンモニアの重要性は明らかである。 The treatment of solutions containing large amounts of sulphides may generate considerable heat and may carry out further steps of decomposition. There are two mechanisms for this. Some have been mentioned above and others describe the conversion of sulfides to sulphates which generate gases of the type SOx. The resulting gas reacts with ammonia to produce an unstable NH 4 HS. Therefore, no pollutant gas is generated. The importance of ammonia in the formation, progress, absorption and neutralization of the reaction is clear, as the reaction works more efficiently in alkaline solution.
 数千mg/Lの硫化物を含む溶液を処理する場合、熱を分解する必要があるかもしれない。熱の進行に加えて、特にHが過剰に又は不適切に混合され、特に11~12を超えるpHで非生産的分解が重大な問題になる可能性がある。pHが7から9に変化すると、以下の結果が得られる。
1.反応生成物は、硫黄元素から硫酸塩に移行する。
2.反応速度が速くなる。
When processing solutions containing thousands of mg/L of sulphide, it may be necessary to decompose the heat. In addition to the heat development, especially H 2 O 2 can be mixed excessively or improperly, and unproductive decomposition can be a serious problem, especially at pH above 11-12. When the pH changes from 7 to 9, the following results are obtained.
1. The reaction product is converted from elemental sulfur to sulfate.
2. The reaction speed becomes faster.
 NHOHの効果は非常に興味深い。この反応において、硫酸塩は、それ以上の吸収が起こらなくなるまで、濃NHOH溶液の3部と反応する。次いで、濃NHOH溶液の2部を添加してNHHSを中和する。 NH 4 effect of OH is very interesting. In this reaction, sulfate reacts with 3 parts of concentrated NH 4 OH solution until no further absorption occurs. Then, 2 parts of concentrated NH 4 OH solution is added to neutralize NH 4 HS.
 硫酸鉛および他の鉛化合物の溶解のために、クエン酸、塩酸、酢酸および硝酸を含む酸と共に、アンモニア、水酸化カリウムおよび水酸化ナトリウムのようなアルカリ性化合物が様々な割合で使用される。 Alkaline compounds such as ammonia, potassium hydroxide and sodium hydroxide are used in varying proportions with acids including citric acid, hydrochloric acid, acetic acid and nitric acid for the dissolution of lead sulfate and other lead compounds.
 前記割合を異ならせてpHを例えばアルカリ性の範囲で変更することにより、鉛化合物の溶解速度を制御する。溶解性を向上させ、促進するために、添加物を用いて活性鉛錯体を形成することができる。過酸化水素、ヒドラジン水和物、二硫化水素およびヒドロキシルアミン三リン酸のようなこれらの物質は、様々な割合で酸化鉛および金属鉛の異なる割合で鉛ペーストを溶解させるために使用される酸化剤である。 -The dissolution rate of lead compounds is controlled by changing the above ratio and changing the pH within the alkaline range, for example. Additives can be used to form active lead complexes to improve and enhance solubility. These substances, such as hydrogen peroxide, hydrazine hydrate, hydrogen disulfide and hydroxylamine triphosphate, are used to dissolve lead oxides in various proportions and lead oxide in different proportions of metallic lead. It is an agent.
 第1溶液を生成するために、ステンレス鋼製タンクである液体充填タンク20の容積の30~50%が水で満たされる。この水は工業用または脱イオン化することができる。無機鉱物のない脱イオン水を使用すると、溶解と沈殿のプロセスが変更される。次に、全液体重量の約30~50%の工業用酢酸を液体充填タンク20に加える。 In order to generate the first solution, 30 to 50% of the volume of the liquid filling tank 20 which is a stainless steel tank is filled with water. This water can be industrial or deionized. The use of deionized water without inorganic minerals modifies the dissolution and precipitation process. Next, about 30-50% of the total liquid weight of technical acetic acid is added to the liquid fill tank 20.
 鉛ペーストに依存して、第1溶液の酸性の特性は全液体重量の60%まで増加する。従来の鉛ペーストの最良の比率は、約30~45重量%で得られる。次いで、全液相の20~60重量%のアンモニアを第1溶液に加える。最良の結果は、純度25%のアンモニア30重量%で達成される。 Depending on the lead paste, the acidic properties of the first solution increase up to 60% of the total liquid weight. The best proportion of conventional lead paste is obtained at about 30-45% by weight. Then 20-60% by weight of the total liquid phase of ammonia is added to the first solution. Best results are achieved with 30% by weight ammonia with a purity of 25%.
 鉛ペーストの酸化速度を高め、活性鉛錯体を形成するために、全液体の20~~45%の酢酸アンモニウムおよび酢酸を過酸化水素系または他の従来の酸化剤、例えば純度50~65%のヒドラジン水和物、二硫化炭素およびヒドロキシルアミン三リン酸に加える。純度50%(50重量%の水で希釈)で30重量%のヒドラジン水和物、および第1溶液の10重量%の二硫化水素について、最高の溶解効率が達成される。溶解タンクである第2タンク40内で溶液を調製した後、ドライバッテリーペーストをコンベヤ11によって第2タンク40に充填し、混合する。 To enhance the oxidation rate of the lead paste and to form the active lead complex, 20~~45% of the total liquid ammonium acetate and acetic acid are added to hydrogen peroxide system or other conventional oxidizers, such as 50~65% purity. Add to hydrazine hydrate, carbon disulfide and hydroxylamine triphosphate. The highest dissolution efficiency is achieved for 30% by weight hydrazine hydrate with a purity of 50% (diluted with 50% by weight water) and 10% by weight hydrogen disulfide in the first solution. After preparing the solution in the second tank 40 which is a dissolution tank, the dry battery paste is filled in the second tank 40 by the conveyor 11 and mixed.
 したがって、アルカリ性環境における過酸化水素の意図は、硫黄を酸化および排出することである。
  PbSO+H→Pb(SO+HO・・・(式6)
Therefore, the intention of hydrogen peroxide in an alkaline environment is to oxidize and emit sulfur.
PbSO 4 +H 2 O 2 →Pb 2 (SO 3 ) 3 +H 2 O (Equation 6)
 濃度10~40%過酸化水素(H)および濃度10~40%のクエン酸の溶液をミキサーおよびホットベルト要素を備えたタンク内で調製した。汚れたセパレータを、過酸化水素およびクエン酸溶液を含有する反応槽中で攪拌し、20~70℃で15~30分間攪拌した。セパレータ対溶液の重量比は、約1:2~3に維持した。所望の攪拌速度は200~500rpmである。以下の反応が起こり、その後、クリーンなセパレータは溶液上に浮遊し、リサイクルすることができる。この式は、種々の鉛化合物の溶解能力に起因する塩基および溶液と考えられる。以下の式7、式8は、変換プロセスおよび過酸化水素の役割を説明する。
 PbO+H→PbO+HO+O・・・(式7)
 Pb+H→PbO+HO・・・・・・(式8)
A solution of 10-40% strength hydrogen peroxide (H 2 O 2 ) and 10-40% strength citric acid was prepared in a tank equipped with a mixer and a hot belt element. The dirty separator was stirred in a reaction vessel containing hydrogen peroxide and citric acid solution and stirred at 20-70°C for 15-30 minutes. The separator to solution weight ratio was maintained at about 1:2-3. The desired stirring speed is 200-500 rpm. The following reactions occur, after which the clean separator floats on the solution and can be recycled. This formula is believed to be the base and solution due to the solubility of various lead compounds. Equations 7 and 8 below describe the conversion process and the role of hydrogen peroxide.
PbO 2 +H 2 O 2 →PbO+H 2 O+O 2 (Equation 7)
Pb+H 2 O 2 →PbO+H 2 O... (Equation 8)
 ヒドラジン水和物の存在は、ゆっくりと達成することができるより速い反応をもたらし、PbOの形態の酸化鉛全体が還元される。次のステップでは、金属ナノ粉末を使用して置換反応を行うと、金属の鉛が沈殿する。 The presence of hydrazine hydrate results in a faster reaction that can be achieved slowly, reducing the overall lead oxide in the form of PbO 2 . In the next step, when the substitution reaction is performed using the metal nanopowder, the lead metal is precipitated.
 撹拌速度は溶解プロセスに影響し、500~1050rpmで変動する。この速度は、バッテリーペーストのサイズおよびタイプまたは鉱石の粒径に関連する。鉛ペーストのサイズが5ミクロンを超えると、溶解プロセスを促進するために、より速い撹拌速度を適用することができる。粒子のサイズが45ミクロンで、600rpmの速度で攪拌しているバッテリーペーストについて、最良の溶解効率が達成された。鉛ペーストの粒径が1mmよりも大きと、リザーバ(第2タンク40)を加熱し、鉛ペーストの溶解速度を高めた。溶解のための所望の温度は、鉛ペースト粒子のサイズおよび配合に基づいて決定され、50~89℃で変化する。 The stirring speed affects the dissolution process and varies from 500 to 1050 rpm. This rate is related to the size and type of battery paste or the particle size of the ore. If the size of the lead paste exceeds 5 microns, higher stirring speeds can be applied to accelerate the dissolution process. The best dissolution efficiency was achieved with the battery paste having a particle size of 45 microns and stirring at a speed of 600 rpm. When the particle size of the lead paste was larger than 1 mm, the reservoir (second tank 40) was heated to increase the dissolution rate of the lead paste. The desired temperature for dissolution is determined based on the size and formulation of the lead paste particles and varies from 50-89°C.
 全ての所望の鉛ペーストの溶解時間は約15~60分である。持続時間は、鉛ペーストのタイプおよびサイズに従って決定される。バッテリーペーストを溶媒に完全に溶解した後、透明な溶液が得られた。鉱石を使用し、酢酸およびヒドラジン水和物の添加を含む他の工程を実施して、ナノ金属粉末を用いてより速い鉛還元を達成する場合には、硫化物の硫酸塩への転化を達成すべきである。 The dissolution time for all desired lead pastes is about 15-60 minutes. The duration is determined according to the lead paste type and size. After completely dissolving the battery paste in the solvent, a clear solution was obtained. Achieve conversion of sulfides to sulphates when using ores and other steps, including addition of acetic acid and hydrazine hydrate, to achieve faster lead reduction with nanometal powders Should.
 多くの場合、電池は大量の鉛酸化物および金属相を有する。鉛と酸化鉛を完全に溶解させるために、水酸化ナトリウムや水酸化カリウムなどの酸化剤を添加して、鉛を酸化した後、フィルターを用いて鉛ペーストの他の部分から分離することが可能である。最も効率的な方法は、異なる割合でクエン酸とクエン酸ナトリウムを使用することである。この酸は鉛および酸化鉛を溶解することができる。最も高い溶解効率は、温度60℃までおよび10~50重量%のクエン酸で得られる。 Batteries often have large amounts of lead oxide and metal phases. In order to completely dissolve lead and lead oxide, an oxidizing agent such as sodium hydroxide or potassium hydroxide can be added to oxidize lead, and then it can be separated from other parts of the lead paste by using a filter. Is. The most efficient method is to use different ratios of citric acid and sodium citrate. This acid can dissolve lead and lead oxide. The highest dissolution efficiency is obtained up to a temperature of 60° C. and 10-50% by weight of citric acid.
 場合によっては、酢酸をクエン酸で置き換えることができる。少量の水酸化ナトリウムとともにクエン酸およびクエン酸ナトリウムの量を増加させると、クエン酸鉛のようないくつかの副生成物を抽出することができる。クエン酸鉛は、燃焼反応を触媒として使用する軍事用途の白色粉末である。 In some cases, acetic acid can be replaced with citric acid. Increasing the amount of citric acid and sodium citrate with a small amount of sodium hydroxide can extract some by-products such as lead citrate. Lead citrate is a white powder for military use that uses combustion reactions as catalysts.
 アンモニアは硫酸塩および他の同様の組成物と反応して、不安定なNHHSの生成をもたらす。ヒドラジン水和物は還元剤である。この組成物は、水に溶解する不安定な鉛水酸化物を生成する。クエン酸ナトリウムおよびクエン酸アンモニウム、または酢酸アンモニウムおよびクエン酸ナトリウムなどの置換組成物の適用は、pHをアルカリ性範囲に制御することができる。その結果、pHを制御したクエン酸ナトリウムおよびクエン酸アンモニウムの高い含量は、硫酸鉛および酸化鉛の溶解能力を高める。 Ammonia reacts with sulfate and other similar compositions, results in the production of unstable NH 4 HS. Hydrazine hydrate is a reducing agent. This composition produces an unstable lead hydroxide that dissolves in water. Application of displacement compositions such as sodium citrate and ammonium citrate or ammonium acetate and sodium citrate can control the pH to the alkaline range. As a result, the high pH-controlled sodium and ammonium citrate contents enhance the solubility of lead sulfate and lead oxide.
 酢酸および酢酸アンモニウムは、過酸化水素およびヒドラジンと接触すると透明な溶液を生成する。この方法では、PbOの鉛が還元され、アンモニアと過酸化水素を用いてPbOに変換され、次いで酢酸鉛に変換される。酢酸塩をpHがアルカリ性の溶液に溶解し、ヒドラジンと接触させて透明な溶液を形成する。 Acetic acid and ammonium acetate produce a clear solution on contact with hydrogen peroxide and hydrazine. In this method, the lead of PbO 2 is reduced and converted to PbO using ammonia and hydrogen peroxide and then to lead acetate. The acetate salt is dissolved in a solution of alkaline pH and contacted with hydrazine to form a clear solution.
 このプロセスを促進するために、酢酸を使用することができるが、pHは8-10未満に低下すべきではない。プロセスが崩壊すると、PbOの転化反応が停止する。クエン酸アンモニウムの割合は、第一次物質の50~80%の間で変化し、過酸化水素およびヒドラジンの含量は、総水量のそれぞれ10~20%および0.1~10%である。この方法では、硫酸塩組成物の存在は、アンモニアを添加することによって改善される酸化物の形成をもたらす。 Acetic acid can be used to accelerate this process, but the pH should not drop below 8-10. When the process collapses, the PbO 2 conversion reaction stops. The proportion of ammonium citrate varies between 50 and 80% of the primary substance, the hydrogen peroxide and hydrazine contents are 10 to 20% and 0.1 to 10% of the total water content, respectively. In this way, the presence of the sulphate composition results in the formation of oxides which is improved by the addition of ammonia.
 クエン酸塩組成物は、硫酸亜鉛を鉛鉱石を変えるために使用された酸化物に変換するのに有効であり、溶解プロセスを改善する。系に添加されるこの物質の含有量は、原鉱石の20~50重量%である。鉛成分の溶解に対する代替材料の影響を評価するために、鉛を含む電池ペーストを用いていくつかの実験を行った。 The citrate composition is effective in converting zinc sulphate into the oxide used to transform lead ores, improving the dissolution process. The content of this substance added to the system is 20 to 50% by weight of the raw ore. In order to evaluate the influence of alternative materials on the dissolution of lead components, several experiments were performed with lead containing battery pastes.
 実験例2
 本処方では、酢酸ナトリウムおよび酢酸アンモニウムを使用すると、クエン酸化合物の沈殿の可能性が低下する。酢酸、アンモニア、過酸化水素およびヒドラジン水和物を含む溶液に、粒径5~10ミクロンの電池ペースト100gを添加した実験を行った。鉛ペーストの溶解まで溶解プロセスについて、第1実験と第2実験を行い、溶解時間(分)を測定した。第1実験の結果を表2、第2実験の結果を表3に示す。
Experimental example 2
In this formulation, the use of sodium acetate and ammonium acetate reduces the potential for precipitation of citric acid compounds. An experiment was conducted in which 100 g of a battery paste having a particle size of 5 to 10 microns was added to a solution containing acetic acid, ammonia, hydrogen peroxide and hydrazine hydrate. The first experiment and the second experiment were performed on the dissolution process until dissolution of the lead paste, and the dissolution time (minutes) was measured. The results of the first experiment are shown in Table 2 and the results of the second experiment are shown in Table 3.
 第1実験と第2実験では、第1溶液中の溶媒の種類が酢酸ナトリウムであるか酢酸アンモニアであるかの点で相違し、第1実験ではヒドラジン水和物とアンモニアと過酸化水素と酢酸と酢酸ナトリウムで組成された第1溶液を使用した。第2実験ではヒドラジン水和物とアンモニアと過酸化水素と酢酸と酢酸アンモニアで組成された第1溶液を使用した。第1実験と第2実験において、第1溶液の各組成物の割合は、第1溶液の重さに対する重量比(wt%)としている。また、第1実験と第2実験において、ヒトラジン水和物と過酸化水素の量は共に5%とし、アンモニアの量は第1実験では30%、第2実験では45%とした。なお、全ての材料は600gの水の中に入っている。 The first experiment and the second experiment are different in that the type of the solvent in the first solution is sodium acetate or ammonia acetate. In the first experiment, hydrazine hydrate, ammonia, hydrogen peroxide, and acetic acid are used. And a first solution composed of sodium acetate was used. In the second experiment, the first solution composed of hydrazine hydrate, ammonia, hydrogen peroxide, acetic acid and ammonia acetate was used. In the first experiment and the second experiment, the ratio of each composition of the first solution is the weight ratio (wt%) to the weight of the first solution. Further, in the first and second experiments, the amounts of human radine hydrate and hydrogen peroxide were both 5%, and the amount of ammonia was 30% in the first experiment and 45% in the second experiment. All materials are contained in 600 g of water.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実験1において、試料番号14~16の溶解時間が短く、試料番号11,12の溶解時間が長い傾向にあった。実験2において、試料番号24~26の溶解時間が短く、試料番号21,22の溶解時間が長い傾向にあった。 In Experiment 1, sample Nos. 14 to 16 had a short dissolution time and sample Nos. 11 and 12 had a long dissolution time. In Experiment 2, the dissolution times of sample numbers 24 to 26 tended to be short, and the dissolution times of sample numbers 21 and 22 tended to be long.
 実験1、2の結果によれば、酢酸化合物がアルカリpHで使用されている場合、鉛化合物の溶解がより高いペースで発生することが明確になった。 According to the results of Experiments 1 and 2, it became clear that the dissolution of the lead compound occurs at a higher pace when the acetic acid compound is used at an alkaline pH.
 したがって、2つの別個の方法が生じる。一つは前のシステムに基づくものであり、もう一つはクエン酸またはクエン酸アンモニウムによる鉛および酸化鉛の溶解方法である。この方法では、クエン酸を添加してクエン酸鉛を沈殿させることが可能であり、これを戦略的生産に使用する。 Therefore, two separate methods occur. One is based on the previous system and another is a method of dissolving lead and lead oxide with citric acid or ammonium citrate. In this method, citric acid can be added to precipitate lead citrate, which is used for strategic production.
 具体的には、アンモニア溶液と過酸化水素を用いて脱硫したPbOをクエン酸水溶液と50~70℃で反応させた。反応終了後、得られた沈殿物を15~30分間静置した後、ろ過し、蒸留水で洗浄し、100℃で乾燥させた。 Specifically, PbO desulfurized using ammonia solution and hydrogen peroxide was reacted with an aqueous citric acid solution at 50 to 70°C. After the reaction was completed, the obtained precipitate was allowed to stand for 15 to 30 minutes, then filtered, washed with distilled water, and dried at 100°C.
 実施例3
 実施例3では、鉛化合物の透明溶液を得るために、クエン酸、アンモニア、過酸化水素及びヒドラジン水和物を含む塩基溶液に5~10ミクロンの粒子径を有するドライバッテリー鉛ペースト100gを加えた。本工程では、溶解時間(分)を実験ベースとして決定した。次いで、クエン酸を様々な割合でクエン酸アンモニウムおよびクエン酸ナトリウムで置換する。以下の表4は、各試料(試料番号31~36)の溶解時間プロセスを示す。この実施例3における溶解時間は、溶液が透明になるまでの時間としている。
Example 3
In Example 3, 100 g of dry battery lead paste having a particle size of 5-10 microns was added to a base solution containing citric acid, ammonia, hydrogen peroxide and hydrazine hydrate to obtain a clear solution of lead compound. .. In this step, the dissolution time (minutes) was determined as the experimental basis. The citric acid is then replaced with varying proportions of ammonium citrate and sodium citrate. Table 4 below shows the dissolution time process for each sample (Sample Nos. 31-36). The dissolution time in Example 3 is the time until the solution becomes transparent.
 実施例3ではクエン酸とクエン酸アンモニウムの和は第1溶液の重量に対して60wt%とし、ヒトラジン水和物とアンモニアと過酸化水素の割合は、第1溶液の重量に対する割合を示している。 In Example 3, the sum of citric acid and ammonium citrate was set to 60 wt% with respect to the weight of the first solution, and the ratio of humanradine hydrate, ammonia and hydrogen peroxide was the ratio with respect to the weight of the first solution. ..
 表4に示すように、異なった割合のクエン酸とクエン酸アンモニウムを含む第1溶液中に試料番号31~36の鉛ペーストを混合し、第1溶液が透明になるまでの時間を測定した。 As shown in Table 4, the lead pastes of sample numbers 31 to 36 were mixed in the first solution containing different ratios of citric acid and ammonium citrate, and the time until the first solution became transparent was measured.
 また、実施例4において、実施例3のクエン酸アンモニウムに代えてクエン酸ナトリウムを用いた実験を行った。このため、下記する実施例4において、実施例3の結果について実施例4と共に考察する。なお、全ての材料は600gの水の中に入っている。 Also, in Example 4, an experiment was conducted using sodium citrate instead of ammonium citrate of Example 3. Therefore, in Example 4 described below, the results of Example 3 will be considered together with Example 4. All materials are contained in 600 g of water.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例4
 実施例4では、クエン酸ナトリウムを用いて実施例3の実験条件を繰り返し行った。実験結果を表5に示す。表5に示すように、異なった割合のクエン酸とクエン酸ナトリウムを含む第1溶液中に試料番号41~46の鉛ペーストを混合し、第1溶液が透明になるまでの時間を測定した。
Example 4
In Example 4, the experimental conditions of Example 3 were repeated using sodium citrate. The experimental results are shown in Table 5. As shown in Table 5, the lead pastes of sample numbers 41 to 46 were mixed in the first solutions containing different ratios of citric acid and sodium citrate, and the time until the first solution became transparent was measured.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4と表5より、クエン酸アンモニウムとクエン酸ナトリウムが30wt%~35wt%の割合で存在すると、溶解時間が短い傾向にあり(試料番号33、34、43、44)、クエン酸アンモニウムとクエン酸ナトリウムが40wt%~60wt%の割合で存在する場合にクエン酸鉛が沈殿した。 From Table 4 and Table 5, when ammonium citrate and sodium citrate were present at a ratio of 30 wt% to 35 wt %, the dissolution time tended to be short (Sample Nos. 33, 34, 43, 44), and ammonium citrate and citrate Lead citrate precipitated when sodium citrate was present in a proportion of 40 wt% to 60 wt %.
 実施例4において、混合物を含む1モルのPbO、2モルのHと4モルのCOを含む混合物を20℃でpH8のアンモニウム溶液で60分間処理した結果、クエン酸鉛Pb(C)・HOが得られた。 In Example 4, a mixture containing 1 mole of PbO 2 , 2 moles of H 2 O 2 and 4 moles of C 6 H 8 O 7 H 2 O containing the mixture was treated with ammonium solution of pH 8 at 20° C. for 60 minutes. As a result, lead citrate Pb(C 6 H 6 O 7 ).H 2 O was obtained.
 また、鉛組成物の析出が必要の場合、あるいはクエン酸ナトリウム、溶解のために使用されているクエン酸アンモニウム(Na(C)・2HO)は、水酸化ナトリウムを加えることにより沈殿する。 In addition, when precipitation of the lead composition is necessary, or sodium citrate, ammonium citrate (Na 3 (C 6 H 5 O 7 ).2H 2 O) used for dissolution is sodium hydroxide. It precipitates upon addition.
 実施例3、4において、最も高い溶解収率は、以下の条件で得られる。過酸化水素が第1溶液の10~20重量%で、ヒドラジン水和物が第1溶液の2~10重量%で、硫酸鉛、クエン酸アンモニウム、クエン酸およびクエン酸ナトリウムの割合が1:1の場合である。このサンプルから得られたX線回折は、図2において高純度のクエン酸鉛相の存在を証明する。 In Examples 3 and 4, the highest dissolution yield is obtained under the following conditions. Hydrogen peroxide is 10 to 20% by weight of the first solution, hydrazine hydrate is 2 to 10% by weight of the first solution, and the ratio of lead sulfate, ammonium citrate, citric acid and sodium citrate is 1:1. Is the case. X-ray diffraction obtained from this sample demonstrates the presence of the highly pure lead citrate phase in FIG.
 実施例5
 酢酸、酢酸アンモニウムおよび酢酸ナトリウムを含む塩基性製剤と共にクエン酸と同様の化合物の存在は、鉛化合物の溶解に有効であり、次の工程(溶解工程後の工程)では鉛化合物の還元が起こることになる。代替のクエン酸化合物は、約10~35%の酢酸、および溶解収率を改善する他の同様の化合物で置換することができる。
Example 5
The presence of a compound similar to citric acid along with a basic formulation containing acetic acid, ammonium acetate and sodium acetate is effective in dissolving the lead compound, and the reduction of the lead compound occurs in the next step (step after the dissolution step). become. Alternative citric acid compounds can be substituted with about 10-35% acetic acid, and other similar compounds that improve dissolution yields.
 実施例5では、以下の事項を目的として実験を行った。クエン酸塩化合物の効果を検証するために、一定量のクエン酸ナトリウム、クエン酸アンモニウム、クエン酸および酢酸を用い、前記した実施例のパラメーター(ヒトラジン水和物5wt%、アンモニア30wt%、過酸化水素5wt%)を用いて実験を行った。過酸化水素、アンモニア及びヒドラジン水和物の含有量は一定と考えられ、5~10ミクロンのサイズの鉛電池ペースト100gを用いて結果を比較した。 In Example 5, experiments were conducted for the following purposes. In order to verify the effect of the citrate compound, the parameters of the above-mentioned example were used (5 wt% of human razine hydrate, 30 wt% of ammonia, peroxide The experiment was conducted using hydrogen (5 wt %). The contents of hydrogen peroxide, ammonia and hydrazine hydrate were considered to be constant, and the results were compared using 100 g of lead battery paste with a size of 5-10 microns.
 実験結果を表6に示す。クエン酸塩化合物を第2部とし、試料番号51に対しては20wt%のクエン酸、試料番号52に対しては20wt%のクエン酸アンモニウム、試料番号53に対しては20wt%のクエン酸ナトリウム、試料番号54に対しては酢酸アンモニウムを含む溶液を用いた。また、酢酸の割合は試料番号51~54に対して35wt%とした。 The experimental results are shown in Table 6. The citrate compound is the second part, 20 wt% citric acid for sample number 51, 20 wt% ammonium citrate for sample number 52, and 20 wt% sodium citrate for sample number 53. For sample No. 54, a solution containing ammonium acetate was used. The proportion of acetic acid was 35 wt% with respect to sample numbers 51 to 54.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、試料番号52、53、54の溶解時間(分)が試料番号51よりも短かった。実験結果によれば、最良の溶解時間収率は、pH上昇(アルカリ性pH)をもたらした化合物(クエン酸アンモニウム、クエン酸ナトリウム、クエン酸アンモニウム)に関連する。なお、全ての材料は600gの水の中に入っている。 As shown in Table 6, the dissolution time (minutes) of sample numbers 52, 53, and 54 was shorter than that of sample number 51. Experimental results show that the best dissolution time yields are associated with the compounds (ammonium citrate, sodium citrate, ammonium citrate) that led to a pH increase (alkaline pH). All materials are contained in 600 g of water.
 実施例6
 高率の硫酸鉛を含有するバッテリーペーストから鉛をリサイクルする別の方法では、鉛ペーストの溶解反応中にアンモニアが存在する必要はない。この方法では、クエン酸ナトリウム、クエン酸アンモニウム、酢酸アンモニウムおよび酢酸ナトリウムの溶液を用いて、50~70℃の範囲の水溶液中に硫酸鉛をゆっくり溶解させることができる。
Example 6
Another method of recycling lead from battery pastes containing a high percentage of lead sulfate does not require the presence of ammonia during the dissolution reaction of the lead paste. In this method, a solution of sodium citrate, ammonium citrate, ammonium acetate and sodium acetate can be used to slowly dissolve lead sulfate in an aqueous solution in the range of 50-70°C.
 システムのpHは、中性範囲で制御することができる。実施例6では、酢酸アンモニア、クエン酸アンモニウムおよびクエン酸ナトリウムを用いて、鉛ペーストの重量比で0.1~6wt%の硫酸鉛を溶解する実験を行った。実施例6の実験結果を表7、表8、表9に示す。表7~表9に示す実験において、ヒドラジン水和物は、水600gに対して表7の実験(実験3)では10wt%、表8の実験(実験4)では0.1wt%、表9の実験(実験5)では30wt%とした。また、実験3では酢酸アンモニウム溶液、実験4では酢酸アンモニウム溶液、実験5ではクエン酸アンモニウム溶液を用いた。 The system pH can be controlled in the neutral range. In Example 6, an experiment was conducted to dissolve 0.1 to 6 wt% lead sulfate in the weight ratio of the lead paste using ammonium acetate, ammonium citrate and sodium citrate. The experimental results of Example 6 are shown in Tables 7, 8 and 9. In the experiments shown in Tables 7 to 9, the hydrazine hydrate was 10 wt% in the experiment of Table 7 (Experiment 3), 0.1 wt% in the experiment of Table 8 (Experiment 4), and 600 wt. In the experiment (Experiment 5), it was set to 30 wt %. In Experiment 3, an ammonium acetate solution was used, in Experiment 4, an ammonium acetate solution was used, and in Experiment 5, an ammonium citrate solution was used.
 実験3~実験5において、各試料(試料番号61~65、試料番号71~75、試料番号81~85)に対し、ヒドラジン水和物の量は一定とした。 In Experiments 3 to 5, the amount of hydrazine hydrate was constant for each sample (Sample Nos. 61 to 65, Sample Nos. 71 to 75, Sample Nos. 81 to 85).
 実験3~実験5において、酢酸アンモニウム溶液、酢酸アンモニウム溶液、クエン酸アンモニウム溶液の割合は、水600gに対する重量比で、各試料に対して80wt%、60wt%、40wt%、20wt%、10wt%とした。 In Experiment 3 to Experiment 5, the proportions of the ammonium acetate solution, the ammonium acetate solution, and the ammonium citrate solution were 80 wt%, 60 wt%, 40 wt%, 20 wt%, and 10 wt% with respect to each sample in a weight ratio to 600 g of water. did.
 この試料中のヒドラジン水和物の比は0.1~5重量%である。鉛ペーストの比率が一定である硫酸鉛および異なる量のクエン酸アンモニウムおよび酢酸アンモニウムの溶解速度を、以下の実験で測定した。硫酸アンモニウムの量は、各試験について100gであった。 The ratio of hydrazine hydrate in this sample is 0.1-5% by weight. The dissolution rates of lead sulfate with a constant proportion of lead paste and different amounts of ammonium citrate and ammonium acetate were measured in the following experiments. The amount of ammonium sulfate was 100 g for each test.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施された実験3~実験5によれば、硫酸アンモニウムの溶解は、アンモニアを使用することなく、クエン酸アンモニウムおよび酢酸アンモニウムを含む化合物の存在下で可能である。 According to Experiments 3 to 5 conducted, ammonium sulfate can be dissolved in the presence of a compound containing ammonium citrate and ammonium acetate without using ammonia.
 そこで、クエン酸アンモニウムと酢酸アンモニウムを80重量%含む水溶液を調製し、ヒドラジン水和物と硫酸鉛の含有量を一定とすると共に、50~70℃(最適温度70℃)で一定に保った。得られた溶解速度の結果を表10に示す。硫酸鉛およびヒドラジン水和物の含量は、全溶解タンクの20重量%で一定に保った。 Therefore, an aqueous solution containing 80% by weight of ammonium citrate and ammonium acetate was prepared, and the contents of hydrazine hydrate and lead sulfate were kept constant and kept constant at 50 to 70°C (optimum temperature 70°C). Table 10 shows the results of the dissolution rates obtained. The content of lead sulphate and hydrazine hydrate was kept constant at 20% by weight of the total dissolution tank.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例7
 実施例7は鉛溶液の還元を示す。
 鉛溶液の還元
 前述したように透明な鉛の溶液が生成され、鉛の完全な溶解が、化学量論的反応に基づいて二重置換プロセスを実施する二価または三価のナノ金属粉末を使用して達成されるとき、スポンジ金属の鉛が析出する。還元剤としてのヒドラジン水和物およびクエン酸の存在は、より高いペースで鉛還元をもたらす。ヒドラジン含有量が10~20重量%に達すると、初期還元後の鉛酸化の可能性が高まるので、内容の変更は非常に重要である。
Example 7
Example 7 shows the reduction of a lead solution.
Reduction of Lead Solution Using a divalent or trivalent nanometal powder, a transparent solution of lead is produced as described above, and the complete dissolution of lead performs a double substitution process based on a stoichiometric reaction. When achieved, lead sponge metal is deposited. The presence of hydrazine hydrate and citric acid as reducing agents results in a faster pace of lead reduction. When the content of hydrazine reaches 10 to 20% by weight, the possibility of lead oxidation after the initial reduction increases, so the change of content is very important.
 前述した方法で得られた透明溶液から金属鉛の生成速度を増加させるために、ナノメートルまたはマイクロメートルスケールの金属化合物を使用することができる(粒子の最大サイズは5~10マイクロメートルである)。そこで、価数の異なる4種の金属元素(Zn,Al,Cu,Fe)について検討した。表11は、異なる金属パーセンテージの実験結果を示す。酢酸アンモニウムとクエン酸アンモニウムの最適溶液を一定の比率で調べた。ヒドラジン水和物の比は、5重量パーセントで一定に保たれる。 Nanometer- or micrometer-scale metal compounds can be used to increase the production rate of metallic lead from the clear solution obtained by the above method (the maximum size of particles is 5-10 micrometers) .. Therefore, four kinds of metal elements (Zn, Al, Cu, Fe) having different valences were examined. Table 11 shows the experimental results for different metal percentages. The optimal solution of ammonium acetate and ammonium citrate was investigated at a fixed ratio. The hydrazine hydrate ratio remains constant at 5 weight percent.
 表11に示すように、試料番号101は金属が亜鉛、試料番号102は金属がアルミニウム、試料番号103は金属が銅、試料番号104は金属が鉄である。 As shown in Table 11, sample number 101 is zinc, sample number 102 is metal aluminum, sample number 103 is metal copper, and sample number 104 is metal iron.
 鉛ペーストの割合(wt%)は、各金属において、異なる4つの割合で実験を行った。そして、鉛の回収効率は、回収した鉛の重量を測定し、重量比(wt%)で表した。 The ratio (wt%) of the lead paste was tested in four different ratios for each metal. Then, the lead recovery efficiency was expressed as a weight ratio (wt %) by measuring the weight of the recovered lead.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に示す実験結果によれば、いずれの金属元素も鉛の回収効率が良いことが確認できた。 According to the experimental results shown in Table 11, it was confirmed that all the metal elements have good lead recovery efficiency.
 実施例8
 有機および無機の還元剤を使用して、鉛溶液を還元することができる。酸化還元反応(レドックス)は化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のことである。クエン酸ナトリウムはレドックスであり、システムが長期間2~10日間動かないと、クエン酸ナトリウムによって還元された鉛結晶がタンククラストに現れる。水素化ホウ素ナトリウムのようないくつかの還元剤は、還元速度を高めるために溶解した鉛ペーストの化学量論比で使用することができる。溶解した鉛ペーストの量に応じて、様々な比率の還元剤を使用することができる。ヒドラジンを他の酸と併用して鉛ペーストを溶解することができる。実施例8の実験結果を表12に示す。
Example 8
Organic and inorganic reducing agents can be used to reduce the lead solution. The redox reaction is a chemical reaction in which electrons are exchanged between atoms, ions, or compounds in the process of producing a product from a reaction product. Sodium citrate is a redox, and lead crystals reduced by sodium citrate appear in tank crusts when the system is inactive for 2-10 days for an extended period. Some reducing agents, such as sodium borohydride, can be used in stoichiometric ratios of the dissolved lead paste to enhance the reduction rate. Various ratios of reducing agents can be used, depending on the amount of lead paste dissolved. Hydrazine can be used in combination with other acids to dissolve the lead paste. Table 12 shows the experimental results of Example 8.
 表12に示すように、試料番号111~115において、鉛ペーストの重量は前述した各実験と同様に100gとし、ヒドラジン水和物の量も一定とした。ヒドラジン水和物は、水600gに対して30wt%とした。還元剤は硝酸塩又は硝酸アンモニウム、塩酸と塩化アンモニウムを使用し、溶液中の割合を異ならせた。 As shown in Table 12, in the sample numbers 111 to 115, the weight of the lead paste was 100 g as in each experiment described above, and the amount of hydrazine hydrate was also constant. Hydrazine hydrate was 30 wt% with respect to 600 g of water. As the reducing agent, nitrate or ammonium nitrate, hydrochloric acid and ammonium chloride were used, and the ratio in the solution was varied.
 表12に示す実験結果によれば、還元剤として硝酸塩又は硝酸アンモニウム、塩酸と塩化アンモニウムを使用可能であることが確認できた。 According to the experimental results shown in Table 12, it was confirmed that nitrate or ammonium nitrate, hydrochloric acid and ammonium chloride can be used as the reducing agent.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例9
 実施例9では、溶媒の再生について実験を行った。
 溶媒再生のために、金属水酸化物およびいくつかの酸を添加することができる。酸および水酸化物の添加量は、鉛ペースト中の硫酸塩を除去するための化学量論的量であり、鉛の回収に添加される金属粉末である。実験結果を表13に示す。
Example 9
In Example 9, experiments were conducted on solvent regeneration.
Metal hydroxides and some acids can be added for solvent regeneration. The addition amount of the acid and hydroxide is a stoichiometric amount for removing the sulfate in the lead paste, and is a metal powder added for the recovery of lead. The experimental results are shown in Table 13.
 表13において、水酸化物として水酸化カルシウムと酸化カルシウムを使用し、酸として、リン酸、硝酸、塩酸、酢酸を用いた。試料番号121、122、123では酸としてリン酸が用いられ、水酸化物として水酸化カルシウム、酸化カルシウムの併用の場合に高い溶液再生効率が得られた。溶液再生効率の計算は、再生溶液を再利用し、それを溶解した鉛ペーストの初期状態と比較した。 In Table 13, calcium hydroxide and calcium oxide were used as hydroxides, and phosphoric acid, nitric acid, hydrochloric acid, and acetic acid were used as acids. In sample numbers 121, 122, and 123, phosphoric acid was used as the acid, and high solution regeneration efficiency was obtained when calcium hydroxide and calcium oxide were used in combination as the hydroxide. The solution regeneration efficiency was calculated by reusing the regenerated solution and comparing it with the initial state of the dissolved lead paste.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例10
 より良い結果を得るには十分な水が必要である。水の量が溶解時間に及ぼす影響を知見するために、実施例6の表10に示す試料番号91の水の量を100g、300g、600g、1000gの4通りに変更して実験を行った。実験結果を表14に示す。
Example 10
Sufficient water is needed for better results. In order to find out the effect of the amount of water on the dissolution time, the experiment was conducted by changing the amount of water of sample number 91 shown in Table 10 of Example 6 to 100 g, 300 g, 600 g and 1000 g. The experimental results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実験結果より、水の量が多くなると、溶解時間が早くなる傾向にあることが確認された。 From the experimental results, it was confirmed that the dissolution time tends to become faster as the amount of water increases.
 実施例11
 前述した実施例により回収した鉛のX線回折分析のスペクトラム図を図3に示し、鉛のXRF-X線蛍光による結果を表15に示す。表15に示すように、得られる鉛の生成物は純度が99.55%までであった。
Example 11
FIG. 3 shows a spectrum diagram of an X-ray diffraction analysis of lead collected by the above-described example, and Table 15 shows a result of XRF-X-ray fluorescence of lead. As shown in Table 15, the resulting lead product was up to 99.55% pure.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
1:鉛の生産設備   3:鉛ペースト
11:粉砕機   12:コンベヤ
13:第1フィーダ   14:第2フィーダ   15:第3フィーダ
20:液体充填タンク   30:第1タンク   40:第2タンク
50:第3タンク   60:第4タンク   70:第5タンク
90:第6タンク
 
 

 
 
1: Lead production equipment 3: Lead paste 11: Crusher 12: Conveyor 13: First feeder 14: Second feeder 15: Third feeder 20: Liquid filling tank 30: First tank 40: Second tank 50: Second 3 tanks 60: 4th tank 70: 5th tank 90: 6th tank



Claims (18)

  1.  グリッドリードを有しまたは有しない鉛ペースト、またはガレナ鉱石を原材料とする鉛の製造方法であって、
     水溶液に酢酸塩、塩化物、硝酸塩、又はクエン酸塩又はこれらの塩の化合物のいくつかと、イオンおよび分子の金属鉛イオンへ結合する材料とを含む溶媒と接触させ、所望の鉛を選択的に溶解させ、それにより高濃度鉛イオン溶液を生成することを特徴とする鉛の製造方法。
    A lead paste with or without a grid lead, or a method for producing lead using a galena ore as a raw material,
    The aqueous solution is contacted with a solvent containing acetate, chloride, nitrate, or citrate, or some of the compounds of these salts, and a material that binds to the ions and the metallic lead ions of the molecule, to selectively select the desired lead. A method for producing lead, which comprises dissolving and thereby producing a high concentration lead ion solution.
  2.  請求項1に記載の鉛の製造方法において、
     前記高濃度鉛イオン溶液に、鉛とは別のアルミニウム、鉄、銅又は亜鉛の金属粉末の鉛還元促進剤、またはヒドラジン、臭化ナトリウム、メタ重亜硫酸ナトリウムの化学還元促進剤を加えて鉛イオンの還元を促進し、鉛を回収する工程を有し、高濃度鉛イオン溶液から鉛が析出した後の溶媒を再生することを特徴とする鉛の製造方法。
    The method for producing lead according to claim 1,
    In the high-concentration lead ion solution, a lead reduction promoter of a metal powder of aluminum, iron, copper, or zinc other than lead, or a chemical reduction promoter of hydrazine, sodium bromide, or sodium metabisulfite is added. A method for producing lead, comprising a step of accelerating the reduction of lead and recovering lead, and regenerating a solvent after lead is deposited from a high concentration lead ion solution.
  3.  請求項2に記載の鉛の製造方法において、
    前記鉛高濃度鉛イオン溶液中の溶媒の再生は、酸、燐酸、硝酸、塩酸、酢酸のいずれかの酸、酸化カルシウム、酸化カルシウムのいずれかの金属酸化物および/または水酸化ナトリウム、およびそれらを組合せたものを前記鉛を抽出した後の溶液に添加することを特徴とする鉛の製造方法。
    The method for producing lead according to claim 2,
    Regeneration of the solvent in the lead-rich lead ion solution is carried out by acid, phosphoric acid, nitric acid, hydrochloric acid, any acid of acetic acid, calcium oxide, any metal oxide of calcium oxide and/or sodium hydroxide, and those. A method for producing lead, characterized in that a combination of the above is added to the solution after extracting the lead.
  4. 請求項1に記載の鉛の製造方法において、
    前記原料の鉛ペーストは電池ペースト中の鉛の活物質を予め脱硫されることを特徴とする鉛の製造方法。
    The method for producing lead according to claim 1,
    A method for producing lead, wherein the lead paste as a raw material is desulfurized beforehand with a lead active material in a battery paste.
  5.  請求項1に記載の鉛の製造方法において、
    前記原材料がガレナ鉱石の場合、まず酸化物形態に変換され、次いで溶解されることを特徴とする鉛の製造方法。
    The method for producing lead according to claim 1,
    When the raw material is galena ore, it is first converted into an oxide form and then dissolved, and the method for producing lead.
  6.  請求項2に記載の鉛の製造方法において、
     前記回収された鉛の純度は少なくとも98%であることを特徴とする鉛の製造方法。
    The method for producing lead according to claim 2,
    The method for producing lead, wherein the purity of the recovered lead is at least 98%.
  7.  請求項1に記載の鉛の製造方法において、
    前記イオンおよび分子の金属鉛イオンへ結合する溶媒は、0.1~30重量%の量で存在するヒドラジンであることを特徴とする鉛の製造方法。
    The method for producing lead according to claim 1,
    The method for producing lead, wherein the solvent that binds to the metallic lead ions of the ions and molecules is hydrazine present in an amount of 0.1 to 30% by weight.
  8. 請求項1から7のいずれかに記載の鉛の製造方法において、
     前記溶媒は、酢酸塩(酢酸、酢酸ナトリウム、酢酸アンモニウム)、クエン酸塩(クエン酸、クエン酸ナトリウムクエン酸アンモニウム)、硝酸塩(硝酸、硝酸アンモニウム)、塩化物(塩酸アンモニウム塩化物)のいずれかまたはこれらの組み合わせであることを特徴とする鉛の製造方法。
    The method for producing lead according to any one of claims 1 to 7,
    The solvent is any of acetate (acetic acid, sodium acetate, ammonium acetate), citrate (citric acid, sodium citrate ammonium citrate), nitrate (nitric acid, ammonium nitrate), chloride (ammonium chloride chloride), or A method for producing lead, which is a combination of these.
  9.  請求項1から8のいずれかに記載の鉛の製造方法において、
     前記水溶液の加熱温度は20℃から80℃の間であることを特徴とする鉛の製造方法。
    The method for producing lead according to any one of claims 1 to 8,
    The method for producing lead, wherein the heating temperature of the aqueous solution is between 20°C and 80°C.
  10.  請求項1から9のいずれかに記載の鉛の製造方法において、
     前記水中の溶媒の量は、鉛の活性物質の10~600重量%であることを特徴とする鉛の製造方法。
    The method for producing lead according to any one of claims 1 to 9,
    The method for producing lead, wherein the amount of the solvent in the water is 10 to 600% by weight of the active substance of lead.
  11.  請求項10に記載の鉛の製造方法において、
     前記水の量は、鉛の活物質の少なくとも100重量%であることを特徴とする鉛の製造方法。
    The method for producing lead according to claim 10,
    The method for producing lead, wherein the amount of water is at least 100% by weight of the active material of lead.
  12.  請求項2から11のいずれかに記載の鉛の製造方法において、
     前記還元剤の量は鉛の活性材料の10~300重量%であることを特徴とする鉛の製造方法。
    The method for producing lead according to any one of claims 2 to 11,
    The method for producing lead, wherein the amount of the reducing agent is 10 to 300% by weight of the lead active material.
  13.  請求項2から12のいずれかに記載の鉛の製造方法において、
    前記還元剤はマイクロまたはナノスケールの金属粉末である場合、この粉末のサイズが100ミクロン未満であることを特徴とする鉛の製造方法。
    The method for producing lead according to any one of claims 2 to 12,
    When the reducing agent is a micro- or nano-scale metal powder, the size of the powder is less than 100 microns.
  14.  グリッドリードを有しまたは有しない鉛ペースト、またはガレナ鉱石を原材料として鉛を製造する鉛の製造設備であって、
     水に酢酸塩、塩化物、硝酸塩、又はクエン酸塩又はこれらの塩の化合物のいくつかと、金属鉛イオンにイオンおよび分子が結合する還元剤とを含む合成溶媒を含む第1溶液と共に前記原材料が収容され、第1溶液と前記原材料を撹拌する撹拌手段を備えた鉛溶解部と、
     前記溶解部で撹拌済みの第2溶液が収容され、前記第2溶液を撹拌する撹拌手段を備えた鉛沈殿部と、
     前記鉛溶解部に前記還元剤を供給する還元剤供給部と、
     前記鉛沈殿部に、第2溶液中の金属鉛イオンへイオンおよび分子が結合する還元促進剤を供給する促進剤供給部と、
     を有する鉛の製造設備。
    A lead production facility for producing lead using a lead paste with or without a grid lead, or a galena ore as a raw material,
    Said raw material together with a first solution comprising in water a synthetic solvent containing acetate, chloride, nitrate or citrate or some of these salt compounds and a reducing agent for binding ions and molecules to metallic lead ions A lead-dissolving section that is housed and provided with stirring means for stirring the first solution and the raw material;
    A lead precipitation part that stores a second solution that has been stirred in the dissolution part and that includes a stirring means that stirs the second solution;
    A reducing agent supply unit that supplies the reducing agent to the lead dissolving unit,
    An accelerator supply unit for supplying, to the lead precipitation unit, a reduction promoter for binding ions and molecules to metallic lead ions in the second solution;
    Lead manufacturing equipment with.
  15.  請求項14に記載の鉛の製造設備において、
     前記鉛溶解部は、収容物を加熱する加熱手段を有することを特徴とする鉛の製造設備。
    The lead manufacturing facility according to claim 14,
    The lead melting facility has a heating means for heating the contained material.
  16.  請求項14または15に記載の鉛の製造設備において、
     前記溶解部に、前記第1溶液を収容する合成溶媒収容部を有することを特徴とする鉛の製造設備。
    The lead manufacturing facility according to claim 14 or 15,
    The lead production facility, wherein the dissolution section has a synthetic solvent storage section for storing the first solution.
  17.  請求項14から16のいずれかに記載の鉛の製造設備において、
     前記鉛溶解部中の第2溶液が収容される鉛塩沈殿部を有し、前記鉛塩沈殿部に酢酸硝酸塩又は硝酸塩を供給する酸塩供給部を有することを特徴とする鉛の製造設備。
    The lead manufacturing facility according to any one of claims 14 to 16,
    A lead manufacturing facility, comprising: a lead salt precipitation part for accommodating the second solution in the lead dissolution part; and an acid salt supply part for supplying acetate nitrate or nitrate to the lead salt precipitation part.
  18.  請求項14から17のいずれかに記載の鉛の製造設備において、
     前記鉛沈殿部中の第2溶液から鉛が沈殿した後の第3溶液が収容され、収容物を撹拌する撹拌手段と収容物を加熱する加熱手段を備えた金属再生部と、前記金属再生部に酸を供給する酸供給部とを有することを特徴とする鉛の製造設備。
    The lead manufacturing facility according to any one of claims 14 to 17,
    A metal regenerating unit that accommodates a third solution after lead is precipitated from the second solution in the lead precipitating unit, and includes a stirring unit that stirs the contained item and a heating unit that heats the contained item, and the metal regenerating unit. And an acid supply unit for supplying acid to the lead.
PCT/JP2018/043568 2018-11-27 2018-11-27 Method and facility for producing lead WO2020110198A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019507961A JP6550582B1 (en) 2018-11-27 2018-11-27 Lead manufacturing method and manufacturing equipment
PCT/JP2018/043568 WO2020110198A1 (en) 2018-11-27 2018-11-27 Method and facility for producing lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043568 WO2020110198A1 (en) 2018-11-27 2018-11-27 Method and facility for producing lead

Publications (1)

Publication Number Publication Date
WO2020110198A1 true WO2020110198A1 (en) 2020-06-04

Family

ID=67473234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043568 WO2020110198A1 (en) 2018-11-27 2018-11-27 Method and facility for producing lead

Country Status (2)

Country Link
JP (1) JP6550582B1 (en)
WO (1) WO2020110198A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501023A (en) * 1985-09-27 1988-04-14 エキストラメツト Method for separation and recovery of metals in metal sulfide mixtures such as lead ore
US5944869A (en) * 1996-06-14 1999-08-31 Ente Per Le Nuove Technologie, L'energia E L'ambiente (Enea) Method for the recovery of lead from exhausted lead acid storage batteries
WO2011013149A1 (en) * 2009-07-30 2011-02-03 Millbrook Lead Recycling Technologies Limited Reclaiming of lead in form of high purity lead compound from recovered electrode paste slime of dismissed lead batteries and/or of lead minerals
WO2016183428A1 (en) * 2015-05-13 2016-11-17 Aqua Metals Inc. Systems and methods for recovery of lead from lead acid batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501023A (en) * 1985-09-27 1988-04-14 エキストラメツト Method for separation and recovery of metals in metal sulfide mixtures such as lead ore
US5944869A (en) * 1996-06-14 1999-08-31 Ente Per Le Nuove Technologie, L'energia E L'ambiente (Enea) Method for the recovery of lead from exhausted lead acid storage batteries
WO2011013149A1 (en) * 2009-07-30 2011-02-03 Millbrook Lead Recycling Technologies Limited Reclaiming of lead in form of high purity lead compound from recovered electrode paste slime of dismissed lead batteries and/or of lead minerals
WO2016183428A1 (en) * 2015-05-13 2016-11-17 Aqua Metals Inc. Systems and methods for recovery of lead from lead acid batteries

Also Published As

Publication number Publication date
JPWO2020110198A1 (en) 2021-02-15
JP6550582B1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
CN104039991B (en) Lead is reclaimed from mixed oxidization section bar material
KR101160752B1 (en) Method for treatment of arsenic-containing nonferrous smelting intermediate product
JP6070898B2 (en) Method and facility for recovering valuable components from waste dry batteries
US9322105B2 (en) Recovering lead from a lead material including lead sulfide
JPH08505902A (en) Hydrometallurgical recovery method of metal from complex ore
KR20100049593A (en) Method of treating arsenical matter with alkali
CN103781923B (en) Process for purifying zinc oxide
CN103526017A (en) Extraction method of valuable elements from acid mud produced in sulfuric acid production by copper smelting flue gas
WO2015103845A1 (en) Method for treating lead-containing raw material
CN105274565A (en) Method for electrolyzing metals through wet method
JP7016463B2 (en) How to collect tellurium
CN108138258B (en) Method for removing arsenic from arsenic-containing material
JP7052635B2 (en) Separation method of copper, nickel and cobalt
JP4529969B2 (en) Method for removing selenium from selenate-containing liquid
JP2013542321A (en) Selective leaching recovery of zinc from complex sulfide deposits, tailings, crushed ores or mine sludge
CN108486379B (en) The efficient separation method of arsenic and alkali in a kind of arsenic alkaline slag
CN103880630A (en) Method for preparing high-purity lead acetate and nanometer lead powder from waste lead paste
WO2020110198A1 (en) Method and facility for producing lead
CN110373541A (en) A kind of method that manganese oxide ore direct reducing leaching prepares manganese sulfate solution
CN103221557A (en) Method for producing nickel-ontaining acidic solution
CN102796880A (en) Method and equipment for extracting manganese from manganese alloy smelting slag
JP2012219316A (en) Method for treating manganese ore extraction residue
EA009503B1 (en) Method for processing concentrates from coppersulfide-based ores
JP5962487B2 (en) Method for separating rare earth elements contained in nickel metal hydride battery and method for recovering valuable metals from nickel metal hydride battery
JP7410361B2 (en) Separation method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019507961

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941449

Country of ref document: EP

Kind code of ref document: A1