WO2020109832A1 - Electric motor unit - Google Patents

Electric motor unit Download PDF

Info

Publication number
WO2020109832A1
WO2020109832A1 PCT/IB2018/001477 IB2018001477W WO2020109832A1 WO 2020109832 A1 WO2020109832 A1 WO 2020109832A1 IB 2018001477 W IB2018001477 W IB 2018001477W WO 2020109832 A1 WO2020109832 A1 WO 2020109832A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
case
electric motor
motor unit
wall surface
Prior art date
Application number
PCT/IB2018/001477
Other languages
French (fr)
Japanese (ja)
Inventor
朝倉大輔
カリム ミカティ
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2018/001477 priority Critical patent/WO2020109832A1/en
Publication of WO2020109832A1 publication Critical patent/WO2020109832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to an electric motor unit.
  • a waterproof box-shaped case used for devices such as electric motors and transmissions is provided with a breathing film made of a synthetic resin such as PTFE in order to reduce the pressure difference between the inside and outside of the case. ing. It is also known to cool components housed in a case with a cooling liquid.
  • JP2017-125536A discloses a structure in which the opening of the passage communicating with the respiratory membrane is covered with a cover formed of a member different from the case in order to prevent the cooling liquid from adhering to the respiratory membrane.
  • the present invention aims to suppress the impregnation of the cooling fluid into the respiratory membrane without causing the above-mentioned problems.
  • An electric motor unit includes a stator, a case accommodating the stator, a rotating shaft rotatably supported by the case, a rotor fixedly supported by the rotating shaft, and a cooling liquid directed toward the stator.
  • the electric motor unit includes a barrier formed as a part of the case or a part of the stator between the supply port of the cooling device and the inner wall surface side opening of the ventilation path.
  • FIG. 1 is an exploded perspective view of the electric motor unit according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the electric motor unit according to the first embodiment as seen from the rotation axis direction.
  • FIG. 3 is a diagram for explaining the flow of the cooling liquid.
  • FIG. 4 is a cross-sectional view of the electric motor unit according to the second embodiment as seen from the rotation axis direction.
  • FIG. 1 is an exploded perspective view of an electric motor unit according to this embodiment.
  • FIG. 2 is a cross-sectional view of the electric motor unit of FIG. 1 seen from the axial direction of the rotary shaft 4 (Y-axis direction of FIG. 1) described later.
  • the electric motor unit according to this embodiment is used, for example, as a power source for an electric vehicle or a hybrid vehicle.
  • the Z-axis direction in FIG. 1 is the upward direction in use.
  • the direction along the X-axis is the left-right direction
  • the direction along the Y-axis is the front-back direction
  • the direction along the Z-axis is the vertical direction.
  • the electric motor unit includes a stator 2, a case 1 for housing the stator 2, a rotary shaft 4 rotatably supported by the case 1, and a rotor 3 fixedly supported by the rotary shaft 4.
  • a cooling device 5 that injects a cooling liquid toward the stator 2 and a pressure adjusting device 6 that adjusts the pressure inside the case 1 are provided.
  • the stator 2 includes a stator core 2A made of laminated steel plates, coils (not shown) arranged in slots of the stator core 2A, and a stator holder 2B that holds the stator core 2A from the outer peripheral side.
  • the stator core 2A, the coil, and the stator holder 2B are collectively referred to as the stator 2 unless otherwise specified.
  • the stator holder 2B has a plurality of bolt holes 7, and the stator 2 is fixed to the case 1 by bolts (not shown) through the plurality of bolt holes 7. The structure around the bolt hole 7 will be described later.
  • the case 1 is formed in a box shape having a space for housing the stator 2.
  • a cooling device 5 and a pressure adjusting device 6, which will be described later, are attached to the case 1.
  • a cooling liquid reservoir 1A is provided at the bottom of the case 1.
  • the cooling liquid reservoir 1A may be formed integrally with the case 1, or may be formed as a separate member and attached to the case 1. Note that the coolant reservoir 1A is omitted in FIG.
  • a ventilation passage 8 that penetrates from the inner wall surface to the outer wall surface of the case 1. As shown in FIG. 2, the ventilation passage 8 is provided horizontally with respect to the ground in a use state.
  • the rotating shaft 4 is rotatably supported by the case 1 via a bearing (not shown).
  • the rotor 3 is fixedly supported on the rotating shaft 4 by a method such as press fitting, and rotates integrally with the rotating shaft 4.
  • the cooling device 5 is a device for mainly cooling the coil end portion of the stator 2 housed in the case 1.
  • the cooling device 5 is arranged on the upper surface of the case 1 so that the supply port 5A faces the inside of the case at substantially the center in the left-right direction and the center in the front-rear direction, and supplies the cooling liquid vertically downward from the supply port 5A.
  • the position of the upper surface of the case 1 at the approximate center in the left-right direction and the approximate center in the front-rear direction is referred to as a “vertex”.
  • the cooling liquid is assembled from the cooling liquid reservoir 1A by an oil pump (not shown) and sent to the cooling device 5 via the cooling liquid passage (not shown).
  • the flow of the cooling liquid supplied from the supply port 5A will be described later.
  • the pressure regulator 6 is connected to the opening of the ventilation passage 8 on the outer wall surface of the case 1 (hereinafter, this opening is referred to as the outer wall surface side opening).
  • the pressure adjusting device 6 has a function of reducing the pressure difference between the inside and the outside of the case 1.
  • the pressure regulating device 6 includes a breathing film having a function of allowing air to pass while preventing dust and liquid from passing, and breathes through a passage communicating between the inside and outside of the case 1 when connected to the ventilation passage 8. It is configured to close with a membrane.
  • the breathing membrane is a thin film formed of a synthetic resin (for example, Poly Tetra Fluoro Ethylene: PTFE). Since the pressure adjusting device 6 having such a configuration is publicly known, detailed description thereof will be omitted.
  • protrusions 2C that project in the radial direction of the stator 2 and extend from the front end to the rear end of the stator holder 2B are provided by the number of bolts for fixing the stator 2 to the case 1.
  • Bolt holes 7 through which fixing bolts are inserted are formed in the protrusions 2C.
  • the protrusions 2C are provided at four places.
  • protrusions 2C are arranged at equal intervals in the circumferential direction of the stator 2, and one protrusion 2C is provided on the supply port 5A of the cooling device 5 and the opening of the ventilation passage 8 on the inner wall surface side of the case 1 (hereinafter, this The opening is referred to as an inner wall surface side opening).
  • the projection 2C located between the supply port 5A of the cooling device 5 and the inner wall surface side opening of the ventilation path 8 is also referred to as a barrier 2C.
  • the portion of the outer peripheral surface of the stator 2 from the protrusion 2C that faces the barrier 2C with the supply port 5A in between and the barrier 2 is referred to as the upper surface of the stator 2.
  • the length of the barrier 2 from the rotation center of the rotation shaft 4 to the most protruding portion is the length from the rotation center of the rotation shaft 4 to the portion that receives the cooling liquid of the stator 2 (L1 in FIG. 2). ) Longer.
  • the most protruding portion is a portion of the barrier 2 that is farthest from the rotation center of the rotation shaft 4.
  • the portion of the stator 2 that receives the cooling liquid is the portion that faces the supply port 5A.
  • FIG. 3 is a perspective view of the stator 2, the rotor 3, and the rotating shaft 4. Thick line arrows in the figure indicate the flow of the cooling liquid. Further, P in the figure indicates a portion that receives the above-described cooling liquid.
  • the cooling liquid is sprayed from the supply port 5A of the cooling device 5 arranged at the apex of the case 1 toward the stator 2, and collides with the portion P of the stator 2 that receives the cooling liquid.
  • the cooling liquid that has collided with the portion P radially disperses and flows on the outer peripheral surface of the stator 2, and a part of the cooling liquid reaches the respective end portions of the stator 2 in the front-rear direction as they are, and the coil ends that become hot by operating Cooling.
  • the cooling liquid that has collided with the barrier 2C before reaching each end of the stator 2 in the front-rear direction is accumulated in the reservoir 9 defined by the wall surface of the barrier 2C on the supply port 5A side and the upper surface of the stator 2. .. Since the end portion in the front-rear direction of the stator 2 which is indicated by the broken line in FIG. 3 is open, the cooling liquid accumulated in the reservoir portion 9 flows in the front-rear direction of the stator 2 along the barrier 2C, and the coil ends. To cool.
  • the cooling liquid that has collided with the projection 2C facing the barrier 2C with the supply port 5A interposed therebetween also flows along the projection 2C and cools the coil ends, as in the above.
  • the cooling liquid that has cooled the coil end is collected in the cooling liquid reservoir 1A below the case 1.
  • the volume of the reservoir 9 is set to a size such that even if the cooling liquid is continuously jetted from the supply port 5A, the cooling liquid does not get over the barrier 2C and overflow into the ventilation passage 8.
  • the amount of protrusion of the barrier 2C is set so that the cooling liquid does not get over the reservoir 9.
  • the barrier 2C Without the barrier 2C, a part of the flow having the circumferential component of the cooling liquid approaches the ventilation passage 8 along the outer peripheral surface of the stator 2. Then, a part of the cooling liquid that has approached the ventilation passage 8 may be scattered as droplets due to the vibration of the operating electric motor unit or the vibration of the vehicle and enter the ventilation passage 8. Further, if the barrier 2C is not provided, there is a possibility that the cooling liquid that has been ejected from the supply port 5A and collided with the stator 2 to become droplets may enter the ventilation passage 8.
  • the cooling liquid When the cooling liquid repeatedly enters the air passage 8, the cooling liquid is accumulated in the air passage 8, and eventually the breathing film of the pressure regulator 6 is impregnated with the cooling liquid and the breathability of the breathing film is lowered. , The pressure regulating function is deteriorated.
  • the flow of the cooling liquid becomes as described above, so that the entry of the cooling liquid into the ventilation passage 8 is suppressed, and as a result, the cooling liquid is prevented from entering the breathing membrane. Impregnation can be suppressed.
  • one end of the hose is connected to the opening provided in the case, and the other end of the hose is opened.
  • hose type Since the breathing membrane made of synthetic resin is not used in the hose type, the hose type is often used when the oil is circulated or agitated inside the case. Therefore, also in this embodiment, it seems that the problem of impregnating the breathing film with the cooling liquid does not occur if the hose type is used.
  • the electric motor unit swings due to the vibrations of its own operation and the vibrations of the vehicle body, so the distance between the fixed position of the open end of the hose and the fixed position of the hose on the case side changes. And, a long hose is required to cope with the variation in the distance.
  • the mounting position of the electric motor unit is below the vehicle body floor. It is difficult to set the position so that it will not be flooded even when submerged.
  • the ventilation path 8 is described as being horizontal with respect to the ground in the use state, but it may be inclined so that the end portion outside the case is higher than the end portion inside the case. .. If the air passage 8 is horizontal or inclined as described above, even if the cooling liquid reaches the inner wall surface side opening portion of the air passage 8, it is difficult to enter the inside of the air passage 8, so that the cooling film is cooled. The possibility of liquid impregnation is reduced.
  • the electric motor unit of this embodiment includes a stator 2, a case 1 that houses the stator 2, a rotating shaft 4 that is rotatably supported by the case 1, a rotor 3 that is fixedly supported by the rotating shaft 4, and a stator 2.
  • the pressure adjusting device 6 is provided.
  • the electric motor unit is provided with a barrier 2C formed as a part of the stator 2 between the supply port 5A of the cooling device 5 and the inner wall surface side opening of the ventilation path 8.
  • the barrier 2C is formed as a part of the stator 2, the number of parts and the cost are not increased.
  • the supply port 5A is opened at a position which is the upper surface when the case 1 is in use. Thereby, the coil end of the stator 2 can be cooled by utilizing the flow generated by the self-weight of the cooling liquid.
  • the barrier 2C of the present embodiment is a protrusion in which a part of the outer circumference of the stator 2 protrudes in the radial direction of the stator 2, and the length L2 from the most protruding portion to the rotation center of the rotation shaft 4 is the rotation of the rotation shaft 4. It is longer than the length L1 from the center to the portion P of the stator 2 that receives the cooling liquid. As a result, the flow of the cooling liquid in the direction of the ventilation passage 8 is blocked by the barrier 2C, so that the cooling liquid can be prevented from entering the ventilation passage 8.
  • the pressure regulating device 6 of the present embodiment is connected to a ventilation path 8 that communicates the inside and outside of the case 1, and the ventilation path 8 is horizontal to the ground in the use state, or an opening portion on the outer wall surface side rather than an opening portion on the inner wall surface side. Is inclined to be higher. As a result, even if the cooling liquid reaches the opening on the inner wall surface side of the ventilation passage 8, it is difficult for the cooling liquid to enter the inside of the ventilation passage 8, so that the possibility that the respiratory membrane is impregnated with the cooling liquid is reduced.
  • FIG. 4 is a sectional view of the electric motor unit according to the second embodiment as seen from the axial direction of the rotary shaft 4.
  • the barrier 2C of the first embodiment is a part of the stator 2, while the barrier 10 of the present embodiment is one of the cases 1. It is a department. Hereinafter, this difference will be mainly described.
  • the difference described above occurs because the method of fixing the stator 2 to the case 1 is bolt fixing in the first embodiment, but press fitting in the present embodiment. That is, in the first embodiment, it is necessary to provide the stator 2 with the plurality of bolt holes 7, and one of the plurality of protrusions 2C provided for that purpose is used as the barrier 2C.
  • the stator 2 since the stator 2 is fixed to the case 1 by press fitting, it is not necessary to provide the protrusion 2C on the stator 2.
  • a contact point between the outer wall surface of the stator 2 and the inner wall surface of the case 1 is required. Therefore, the inner wall surface of the case 1 is provided with a plurality of protrusions 10 that protrude radially inward and contact the outer periphery of the stator 2.
  • the contact between the plurality of protrusions 10 and the outer wall surface of the stator 2 is, for example, from one end to the other end of the stator holder 2B in the front-rear direction.
  • one of the plurality of protrusions 10 is arranged between the supply port 5A of the cooling device 5 and the inner wall surface side opening of the ventilation path 8 similarly to the barrier 2C of the first embodiment.
  • the protrusion 10 arranged between the cooling device 5 and the inner wall surface side opening of the ventilation path 8 is also referred to as a barrier 10.
  • the space between the case 1 and the stator 2 is divided by the four protrusions 10 in the cross section shown in FIG.
  • the spaces divided in FIG. 4 communicate with each other outside both ends of the stator holder 2B in the front-rear direction, the pressure of the entire case 1 can be adjusted by one pressure adjusting device 6.
  • the press-fitting projection 10 is formed as a part of the case 1, but a part of the outer wall surface of the stator 2 may be formed as a projection in contact with the inner wall surface of the case 1.
  • the barrier 10 formed as one part of the case or part of the stator 2 is provided between the supply port 5A of the cooling device 5 and the inner wall surface side opening of the ventilation path 8. Therefore, it is possible to suppress the inflow of the cooling liquid into the air passage 8 and to suppress the impregnation of the breathing film of the pressure regulator 6 with the cooling liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

This electric motor unit is provided with: a stator; a case for housing the stator; a rotating shaft rotatably supported in the case; a rotor supported on the rotating shaft in a stationary manner; a cooling device for injecting a cooling liquid toward the stator; a ventilation path penetrating from the inner wall surface of the case to the outer wall surface thereof; and a pressure adjusting device having a respiration film allowing air to pass and connected to the opening portion of the ventilation path on the outer wall surface side. The electric motor unit is further provided with a barrier formed as a part of the case or a part of the stator between the supply opening of the cooling device and the opening portion of the ventilation path on the inner wall surface side.

Description

電動モータユニットElectric motor unit
 本発明は、電動モータユニットに関する。 The present invention relates to an electric motor unit.
 電動モータや変速機等の機器に用いられる、防水性を有する箱型形状のケースに、ケース内外の圧力差を緩和するためにPTFE等の合成樹脂で形成された呼吸膜を設けることが知られている。また、冷却液を用いてケースに収容した部品を冷却することも知られている。 It is known that a waterproof box-shaped case used for devices such as electric motors and transmissions is provided with a breathing film made of a synthetic resin such as PTFE in order to reduce the pressure difference between the inside and outside of the case. ing. It is also known to cool components housed in a case with a cooling liquid.
 ところで、冷却液による冷却を行なう場合には、呼吸膜に冷却液が含浸すると呼吸膜の通気性が低下して、圧力差を緩和できなくなるという問題がある。JP2017−125536Aには、呼吸膜への冷却液の付着を防止するために、呼吸膜に連通する通路の開口部をケースとは別部材で形成したカバーで覆う構成が開示されている。 By the way, when cooling with a cooling liquid, if the respiratory film is impregnated with the cooling liquid, there is a problem that the breathability of the respiratory film is reduced and the pressure difference cannot be alleviated. JP2017-125536A discloses a structure in which the opening of the passage communicating with the respiratory membrane is covered with a cover formed of a member different from the case in order to prevent the cooling liquid from adhering to the respiratory membrane.
 しかし、上記文献に記載の構成では、カバーを別部材で形成することによる部品点数の増加及びコストの増大という問題、さらにはカバーを取り付けるためのスペースを確保するためにケースの大型化が避けられないという問題がある。 However, in the configuration described in the above document, the problem that the number of parts increases and the cost increases by forming the cover with another member, and further, the case is prevented from increasing in size to secure a space for attaching the cover. There is a problem that there is no.
 そこで本発明は、上記の各問題を生じさせることなく、呼吸膜への冷却液の含浸を抑制することを目的とする。 Therefore, the present invention aims to suppress the impregnation of the cooling fluid into the respiratory membrane without causing the above-mentioned problems.
 本発明のある態様による電動モータユニットは、ステータと、ステータを収容するケースと、ケースに回転自在に支持される回転軸と、回転軸に固定支持されるロータと、ステータに向けて冷却液を噴射する冷却装置と、ケースの内壁面から外壁面まで貫通する通気路と、空気の通過を許容する呼吸膜を有し通気路の外壁面側開口部に接続される調圧装置と、を備える。さらに、電動モータユニットは、冷却装置の供給口と通気路の内壁面側開口部との間に、ケースの一部またはステータの一部として形成された障壁を備える。 An electric motor unit according to an aspect of the present invention includes a stator, a case accommodating the stator, a rotating shaft rotatably supported by the case, a rotor fixedly supported by the rotating shaft, and a cooling liquid directed toward the stator. A cooling device for jetting, a ventilation path penetrating from an inner wall surface to an outer wall surface of the case, and a pressure adjusting device having a breathing film that allows passage of air and connected to an outer wall surface side opening portion of the ventilation path. .. Further, the electric motor unit includes a barrier formed as a part of the case or a part of the stator between the supply port of the cooling device and the inner wall surface side opening of the ventilation path.
図1は、第1実施形態にかかる電動モータユニットの分解斜視図である。FIG. 1 is an exploded perspective view of the electric motor unit according to the first embodiment. 図2は、第1実施形態にかかる電動モータユニットの、回転軸方向から見た断面図である。FIG. 2 is a cross-sectional view of the electric motor unit according to the first embodiment as seen from the rotation axis direction. 図3は、冷却液の流れを説明するための図である。FIG. 3 is a diagram for explaining the flow of the cooling liquid. 図4は、第2実施形態にかかる電動モータユニットの、回転軸方向から見た断面図である。FIG. 4 is a cross-sectional view of the electric motor unit according to the second embodiment as seen from the rotation axis direction.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 (第1実施形態)
 図1は、本実施形態にかかる電動モータユニットの分解斜視図である。図2は、図1の電動モータユニットを後述する回転軸4の軸方向(図1のY軸方向)から見た断面図である。
(First embodiment)
FIG. 1 is an exploded perspective view of an electric motor unit according to this embodiment. FIG. 2 is a cross-sectional view of the electric motor unit of FIG. 1 seen from the axial direction of the rotary shaft 4 (Y-axis direction of FIG. 1) described later.
 本実施形態にかかる電動モータユニットは、例えば電動車両やハイブリッド車両の動力源として用いられる。電動モータユニットは、図1のZ軸方向が使用状態における上方向となる。以下の説明では、X軸に沿った方向を左右方向、Y軸に沿った方向を前後方向、Z軸に沿った方向を上下方向とする。 The electric motor unit according to this embodiment is used, for example, as a power source for an electric vehicle or a hybrid vehicle. In the electric motor unit, the Z-axis direction in FIG. 1 is the upward direction in use. In the following description, the direction along the X-axis is the left-right direction, the direction along the Y-axis is the front-back direction, and the direction along the Z-axis is the vertical direction.
 図1に示すように、電動モータユニットは、ステータ2と、ステータ2を収容するケース1と、ケース1に回転自在に支持される回転軸4と、回転軸4に固定支持されるロータ3と、ステータ2に向けて冷却液を噴射する冷却装置5と、ケース1内の圧力を調整する調圧装置6と、を備える。 As shown in FIG. 1, the electric motor unit includes a stator 2, a case 1 for housing the stator 2, a rotary shaft 4 rotatably supported by the case 1, and a rotor 3 fixedly supported by the rotary shaft 4. A cooling device 5 that injects a cooling liquid toward the stator 2 and a pressure adjusting device 6 that adjusts the pressure inside the case 1 are provided.
 ステータ2は、積層鋼板からなるステータコア2Aと、ステータコア2Aのスロットに配置されるコイル(図示省略)と、ステータコア2Aを外周側から保持するステータホルダ2Bと、で構成される。なお、本明細書では、特に区別する必要がある場合を除き、ステータコア2Aとコイルとステータホルダ2Bとをまとめてステータ2と称する。 The stator 2 includes a stator core 2A made of laminated steel plates, coils (not shown) arranged in slots of the stator core 2A, and a stator holder 2B that holds the stator core 2A from the outer peripheral side. In the present specification, the stator core 2A, the coil, and the stator holder 2B are collectively referred to as the stator 2 unless otherwise specified.
 ステータホルダ2Bは複数のボルト孔7を備え、ステータ2は複数のボルト孔7を介して図示しないボルトによりケース1に固定される。ボルト孔7の周辺の構造については後述する。 The stator holder 2B has a plurality of bolt holes 7, and the stator 2 is fixed to the case 1 by bolts (not shown) through the plurality of bolt holes 7. The structure around the bolt hole 7 will be described later.
 ケース1は、ステータ2を収容するスペースを有する箱型形状に形成されている。ケース1には、後述する冷却装置5及び調圧装置6が取り付けられる。ケース1の下部には、冷却液リザーバ1Aが設けられる。冷却液リザーバ1Aはケース1と一体として形成してもよいし、別部材として形成したものをケース1に取り付けてもよい。なお、図2では冷却液リザーバ1Aが省略されている。 The case 1 is formed in a box shape having a space for housing the stator 2. A cooling device 5 and a pressure adjusting device 6, which will be described later, are attached to the case 1. A cooling liquid reservoir 1A is provided at the bottom of the case 1. The cooling liquid reservoir 1A may be formed integrally with the case 1, or may be formed as a separate member and attached to the case 1. Note that the coolant reservoir 1A is omitted in FIG.
 また、ケース1の側面には、ケース1の内壁面から外壁面まで貫通する通気路8が設けられる。通気路8は、図2に示す通り、使用状態において地面に対して水平に設けられる。 Also, on the side surface of the case 1, there is provided a ventilation passage 8 that penetrates from the inner wall surface to the outer wall surface of the case 1. As shown in FIG. 2, the ventilation passage 8 is provided horizontally with respect to the ground in a use state.
 回転軸4は、軸受(図示省略)を介してケース1に回転自在に支持される。ロータ3は、回転軸4に圧入等の方法により固定支持され、回転軸4と一体に回転する。 The rotating shaft 4 is rotatably supported by the case 1 via a bearing (not shown). The rotor 3 is fixedly supported on the rotating shaft 4 by a method such as press fitting, and rotates integrally with the rotating shaft 4.
 冷却装置5は、ケース1に収容されるステータ2の主にコイルエンド部を冷却するための装置である。冷却装置5は、ケース1の上面の、左右方向の略中央かつ前後方向の略中央に、供給口5Aがケース内に臨むよう配置され、供給口5Aから鉛直方向下向きに冷却液を供給する。なお、ケース1の上面の、左右方向の略中央かつ前後方向の略中央の位置を、「頂点」と称する。 The cooling device 5 is a device for mainly cooling the coil end portion of the stator 2 housed in the case 1. The cooling device 5 is arranged on the upper surface of the case 1 so that the supply port 5A faces the inside of the case at substantially the center in the left-right direction and the center in the front-rear direction, and supplies the cooling liquid vertically downward from the supply port 5A. The position of the upper surface of the case 1 at the approximate center in the left-right direction and the approximate center in the front-rear direction is referred to as a “vertex”.
 冷却液は、冷却液リザーバ1Aからオイルポンプ(図示省略)により組み上げられて、冷却液通路(図示省略)を介して冷却装置5に送られる。供給口5Aから供給される冷却液の流れについては後述する。 The cooling liquid is assembled from the cooling liquid reservoir 1A by an oil pump (not shown) and sent to the cooling device 5 via the cooling liquid passage (not shown). The flow of the cooling liquid supplied from the supply port 5A will be described later.
 調圧装置6は、ケース1の外壁面にある通気路8の開口部(以下、この開口部を外壁面側開口部と称する)に接続される。調圧装置6はケース1の内外の圧力差を緩和する機能を有する。具体的には、調圧装置6は、空気を通過させる一方で塵埃や液体を通過させない機能を有する呼吸膜を備え、通気路8に接続されたときにケース1の内外を連通する通路を呼吸膜で塞ぐよう構成される。呼吸膜は、合成樹脂(例えばPoly Tetra Fluoro Ethylene:PTFE)で形成される薄膜である。このような構成の調圧装置6は公知なので、詳細な説明は省略する。 The pressure regulator 6 is connected to the opening of the ventilation passage 8 on the outer wall surface of the case 1 (hereinafter, this opening is referred to as the outer wall surface side opening). The pressure adjusting device 6 has a function of reducing the pressure difference between the inside and the outside of the case 1. Specifically, the pressure regulating device 6 includes a breathing film having a function of allowing air to pass while preventing dust and liquid from passing, and breathes through a passage communicating between the inside and outside of the case 1 when connected to the ventilation passage 8. It is configured to close with a membrane. The breathing membrane is a thin film formed of a synthetic resin (for example, Poly Tetra Fluoro Ethylene: PTFE). Since the pressure adjusting device 6 having such a configuration is publicly known, detailed description thereof will be omitted.
 ここで、ステータ2の、ボルト孔7の周辺の構造について説明する。 Here, the structure around the bolt hole 7 of the stator 2 will be described.
 ステータ2の外周には、ステータ2の径方向に突出し、かつステータホルダ2Bの前方端から後方端にかけて延びる突起2Cが、ステータ2をケース1に固定するボルトの数だけ設けられる。この突起2Cに、固定用のボルトを通すボルト孔7が形成される。本実施形態では、4本のボルトでステータ2をケース1に固定するので、突起2Cは4箇所に設けられる。これら4つの突起2Cは、ステータ2の周方向に等間隔に並び、かつ1つの突起2Cが冷却装置5の供給口5Aとケース1の内壁面側にある通気路8の開口部(以下、この開口部を内壁面側開口部と称する)との間に位置するよう設けられる。この、冷却装置5の供給口5Aと通気路8の内壁面側開口部との間に位置する突起2Cを、障壁2Cとも称する。 On the outer circumference of the stator 2, protrusions 2C that project in the radial direction of the stator 2 and extend from the front end to the rear end of the stator holder 2B are provided by the number of bolts for fixing the stator 2 to the case 1. Bolt holes 7 through which fixing bolts are inserted are formed in the protrusions 2C. In this embodiment, since the stator 2 is fixed to the case 1 with four bolts, the protrusions 2C are provided at four places. These four protrusions 2C are arranged at equal intervals in the circumferential direction of the stator 2, and one protrusion 2C is provided on the supply port 5A of the cooling device 5 and the opening of the ventilation passage 8 on the inner wall surface side of the case 1 (hereinafter, this The opening is referred to as an inner wall surface side opening). The projection 2C located between the supply port 5A of the cooling device 5 and the inner wall surface side opening of the ventilation path 8 is also referred to as a barrier 2C.
 なお、以下の説明において、ステータ2の外周面のうち、供給口5Aを挟んで障壁2Cと対向する突起2Cから障壁2までの部分を、ステータ2の上面と称する。 In the following description, the portion of the outer peripheral surface of the stator 2 from the protrusion 2C that faces the barrier 2C with the supply port 5A in between and the barrier 2 is referred to as the upper surface of the stator 2.
 障壁2の、回転軸4の回転中心から最突出部までの長さ(図2のL2)は、回転軸4の回転中心からステータ2の冷却液を受ける部位までの長さ(図2のL1)より長い。ここでいう最突出部とは、障壁2の、回転軸4の回転中心から最も遠い部位のことである。また、ステータ2の冷却液を受ける部位とは、供給口5Aと対向する部位のことである。 The length of the barrier 2 from the rotation center of the rotation shaft 4 to the most protruding portion (L2 in FIG. 2) is the length from the rotation center of the rotation shaft 4 to the portion that receives the cooling liquid of the stator 2 (L1 in FIG. 2). ) Longer. Here, the most protruding portion is a portion of the barrier 2 that is farthest from the rotation center of the rotation shaft 4. The portion of the stator 2 that receives the cooling liquid is the portion that faces the supply port 5A.
 次に、図3を参照して冷却液の流れについて説明する。 Next, the flow of the cooling liquid will be described with reference to FIG.
 図3は、ステータ2、ロータ3、及び回転軸4の斜視図である。図中の太線矢印は、冷却液の流れを示している。また、図中のPは、上述した冷却液を受ける部位を示している。 FIG. 3 is a perspective view of the stator 2, the rotor 3, and the rotating shaft 4. Thick line arrows in the figure indicate the flow of the cooling liquid. Further, P in the figure indicates a portion that receives the above-described cooling liquid.
 冷却液は、ケース1の頂点に配置される冷却装置5の供給口5Aからステータ2に向けて噴射され、ステータ2の冷却液を受ける部位Pに衝突する。部位Pに衝突した冷却液は、ステータ2の外周面を放射状に分散して流れ、その一部はそのままステータ2の前後方向の各端部に到達し、稼働することで高温になるコイルエンドを冷却する。 The cooling liquid is sprayed from the supply port 5A of the cooling device 5 arranged at the apex of the case 1 toward the stator 2, and collides with the portion P of the stator 2 that receives the cooling liquid. The cooling liquid that has collided with the portion P radially disperses and flows on the outer peripheral surface of the stator 2, and a part of the cooling liquid reaches the respective end portions of the stator 2 in the front-rear direction as they are, and the coil ends that become hot by operating Cooling.
 一方、ステータ2の前後方向の各端部に到達する前に障壁2Cに衝突した冷却液は、障壁2Cの供給口5A側の壁面とステータ2の上面とで画成される溜まり部9に溜まる。図3に破線で示した溜まり部9はステータ2の前後方向の端部が開放されているので、溜まり部9に溜まった冷却液は障壁2Cに沿ってステータ2の前後方向に流れてコイルエンドを冷却する。供給口5Aを挟んで障壁2Cと対向する突起2Cに衝突した冷却液も、上記と同様に突起2Cに沿って流れてコイルエンドを冷却する。 On the other hand, the cooling liquid that has collided with the barrier 2C before reaching each end of the stator 2 in the front-rear direction is accumulated in the reservoir 9 defined by the wall surface of the barrier 2C on the supply port 5A side and the upper surface of the stator 2. .. Since the end portion in the front-rear direction of the stator 2 which is indicated by the broken line in FIG. 3 is open, the cooling liquid accumulated in the reservoir portion 9 flows in the front-rear direction of the stator 2 along the barrier 2C, and the coil ends. To cool. The cooling liquid that has collided with the projection 2C facing the barrier 2C with the supply port 5A interposed therebetween also flows along the projection 2C and cools the coil ends, as in the above.
 コイルエンドを冷却した冷却液は、ケース1の下方にある冷却液リザーバ1Aに回収される。 The cooling liquid that has cooled the coil end is collected in the cooling liquid reservoir 1A below the case 1.
 なお、溜まり部9の容積は、供給口5Aから冷却液が噴射され続けても冷却液が障壁2Cを乗り越えて通気路8の方向に溢れ出ることがない大きさに設定されている。換言すると、障壁2Cの突出量は、冷却液が溜まり部9を乗り越えることがないように設定されている。 Note that the volume of the reservoir 9 is set to a size such that even if the cooling liquid is continuously jetted from the supply port 5A, the cooling liquid does not get over the barrier 2C and overflow into the ventilation passage 8. In other words, the amount of protrusion of the barrier 2C is set so that the cooling liquid does not get over the reservoir 9.
 次に、障壁2Cを設けることによる効果について説明する。 Next, the effect of providing the barrier 2C will be described.
 障壁2Cがなければ、冷却液の周方向成分を有する流れの一部は、ステータ2の外周面に沿って通気路8に近づく。そして、通気路8に近づいた冷却液の一部が、稼働中の電動モータユニットの振動や車両の振動によって液滴として飛散し、通気路8に進入するおそれがある。また、障壁2Cがなければ、供給口5Aから噴射されてステータ2に衝突することによって液滴となった冷却液が通気路8に進入するおそれもある。 Without the barrier 2C, a part of the flow having the circumferential component of the cooling liquid approaches the ventilation passage 8 along the outer peripheral surface of the stator 2. Then, a part of the cooling liquid that has approached the ventilation passage 8 may be scattered as droplets due to the vibration of the operating electric motor unit or the vibration of the vehicle and enter the ventilation passage 8. Further, if the barrier 2C is not provided, there is a possibility that the cooling liquid that has been ejected from the supply port 5A and collided with the stator 2 to become droplets may enter the ventilation passage 8.
 通気路8への冷却液の進入が繰り返されると、通気路8に冷却液が蓄積され、やがて調圧装置6の呼吸膜に冷却液が含浸して呼吸膜の通気性が低下し、その結果、調圧機能が低下してしまう。 When the cooling liquid repeatedly enters the air passage 8, the cooling liquid is accumulated in the air passage 8, and eventually the breathing film of the pressure regulator 6 is impregnated with the cooling liquid and the breathability of the breathing film is lowered. , The pressure regulating function is deteriorated.
 これに対し、本実施形態のように障壁2Cを設けると、冷却液の流れが上述したようになることで通気路8への冷却液の進入が抑制され、その結果、呼吸膜に冷却液が含浸することを抑制できる。 On the other hand, when the barrier 2C is provided as in the present embodiment, the flow of the cooling liquid becomes as described above, so that the entry of the cooling liquid into the ventilation passage 8 is suppressed, and as a result, the cooling liquid is prevented from entering the breathing membrane. Impregnation can be suppressed.
 ところで、ケース内外の圧力差を緩和する装置としては、本実施形態の調圧装置6の他に、ケースに設けた開口部にホースの一端を接続し、ホースの他端を開放状態にする、いわゆるホースタイプもある。ホースタイプでは合成樹脂製の呼吸膜を使用しないので、ケース内部で油が循環したり撹拌されたりする場合には、ホースタイプが用いられることが多い。したがって、本実施形態においても、ホースタイプを用いれば呼吸膜に冷却液が含浸するという問題が生じないようにも思われる。 By the way, as a device for relaxing the pressure difference between the inside and outside of the case, in addition to the pressure regulator 6 of the present embodiment, one end of the hose is connected to the opening provided in the case, and the other end of the hose is opened. There is also a so-called hose type. Since the breathing membrane made of synthetic resin is not used in the hose type, the hose type is often used when the oil is circulated or agitated inside the case. Therefore, also in this embodiment, it seems that the problem of impregnating the breathing film with the cooling liquid does not occur if the hose type is used.
 しかし、本実施形態のように車両の動力源として用いられる電動モータユニットの場合には、ホースタイプを用いると以下の問題が生じる。 However, in the case of the electric motor unit used as the power source of the vehicle as in the present embodiment, the use of the hose type causes the following problems.
 第1に、ホースの開放端を、電動モータユニットが水没した場合でも内部への浸水を防ぐことができる高さの位置に固定する必要がある。電動モータユニットは、車体の比較的低い位置に搭載されるので、ホースの開放端は電動モータユニットとは別の部材に固定することになる。このため、ホースの取り回しが煩雑になる。 First, it is necessary to fix the open end of the hose at a position where it can prevent water from entering the inside even if the electric motor unit is submerged. Since the electric motor unit is mounted at a relatively low position on the vehicle body, the open end of the hose is fixed to a member different from the electric motor unit. Therefore, the handling of the hose becomes complicated.
 第2に、電動モータユニットは自身の稼働に伴う振動や車体の振動等の影響により揺動するので、ホースの開放端の固定位置とホースのケース側の固定位置との距離が変動する。そして、この距離の変動に対応するために、長いホースが必要となる。 Secondly, the electric motor unit swings due to the vibrations of its own operation and the vibrations of the vehicle body, so the distance between the fixed position of the open end of the hose and the fixed position of the hose on the case side changes. And, a long hose is required to cope with the variation in the distance.
 第3に、電動モータユニットの周辺は作業スペースが限られているので、ホースを固定する作業が困難である。 Thirdly, the work space around the electric motor unit is limited, so it is difficult to fix the hose.
 第4に、後輪を駆動するために電動モータユニットを後輪車軸上またはその付近に搭載する場合には、電動モータユニットの搭載位置は車体フロアの下になるので、ホースの開放端の固定位置を水没時でも浸水しない高さにすることが困難である。 Fourth, when the electric motor unit is mounted on or near the rear wheel axle to drive the rear wheel, the mounting position of the electric motor unit is below the vehicle body floor. It is difficult to set the position so that it will not be flooded even when submerged.
 一方、本実施形態の調圧装置6はケース1に固定するだけで済むので、上記の各問題は生じない。 On the other hand, since the pressure regulator 6 of the present embodiment only needs to be fixed to the case 1, the above problems do not occur.
 なお、本実施形態では、通気路8は使用状態において地面に対して水平であると説明したが、ケース内側の端部よりケース外側の端部の方が高くなるように傾斜していてもよい。このように通気路8が水平または傾斜していれば、仮に冷却液が通気路8の内壁面側開口部に到達したとしても、通気路8の内部に進入し難くなるので、呼吸膜に冷却液が含浸する可能性が低くなる。 In the present embodiment, the ventilation path 8 is described as being horizontal with respect to the ground in the use state, but it may be inclined so that the end portion outside the case is higher than the end portion inside the case. .. If the air passage 8 is horizontal or inclined as described above, even if the cooling liquid reaches the inner wall surface side opening portion of the air passage 8, it is difficult to enter the inside of the air passage 8, so that the cooling film is cooled. The possibility of liquid impregnation is reduced.
 次に、本実施形態の効果についてまとめる。 Next, the effects of this embodiment will be summarized.
 本実施形態の電動モータユニットは、ステータ2と、ステータ2を収容するケース1と、ケース1に回転自在に支持される回転軸4と、回転軸4に固定支持されるロータ3と、ステータ2に向けて冷却液を噴射する冷却装置5と、ケースの内壁面から外壁面まで貫通する通気路8と、空気の通過を許容する呼吸膜を有し通気路8の外壁面側開口部に接続される調圧装置6と、を備える。そして、電動モータユニットは、冷却装置5の供給口5Aと通気路8の内壁面側開口部との間に、ステータ2の一部として形成された障壁2Cを備える。これにより、通気路8への冷却液の進入を抑制して、調圧装置6の呼吸膜への冷却液の含浸を抑制できる。また、障壁2Cをステータ2の一部として形成するので、部品点数の増加及びコストの増加を招くことがない。 The electric motor unit of this embodiment includes a stator 2, a case 1 that houses the stator 2, a rotating shaft 4 that is rotatably supported by the case 1, a rotor 3 that is fixedly supported by the rotating shaft 4, and a stator 2. A cooling device 5 for injecting a cooling liquid toward the air passage, a ventilation passage 8 penetrating from the inner wall surface to the outer wall surface of the case, and a breathing membrane that allows passage of air, and is connected to the outer wall surface side opening portion of the ventilation passage 8. The pressure adjusting device 6 is provided. The electric motor unit is provided with a barrier 2C formed as a part of the stator 2 between the supply port 5A of the cooling device 5 and the inner wall surface side opening of the ventilation path 8. As a result, it is possible to suppress the inflow of the cooling liquid into the ventilation passage 8 and to suppress the impregnation of the breathing film of the pressure adjusting device 6 with the cooling liquid. Further, since the barrier 2C is formed as a part of the stator 2, the number of parts and the cost are not increased.
 本実施形態では、ケース1の使用状態において上面となる位置に供給口5Aが開口する。これにより、冷却液の自重により生じる流れを利用して、ステータ2のコイルエンドを冷却することができる。 In this embodiment, the supply port 5A is opened at a position which is the upper surface when the case 1 is in use. Thereby, the coil end of the stator 2 can be cooled by utilizing the flow generated by the self-weight of the cooling liquid.
 本実施形態の障壁2Cは、ステータ2の外周の一部がステータ2の径方向に突出した突起であり、最突出部から回転軸4の回転中心までの長さL2が、回転軸4の回転中心からステータ2の冷却液を受ける部位Pまでの長さL1より長い。これにより、冷却液の通気路8の方向への流れが障壁2Cにより遮断されるので、冷却液の通気路8への進入を抑制できる。 The barrier 2C of the present embodiment is a protrusion in which a part of the outer circumference of the stator 2 protrudes in the radial direction of the stator 2, and the length L2 from the most protruding portion to the rotation center of the rotation shaft 4 is the rotation of the rotation shaft 4. It is longer than the length L1 from the center to the portion P of the stator 2 that receives the cooling liquid. As a result, the flow of the cooling liquid in the direction of the ventilation passage 8 is blocked by the barrier 2C, so that the cooling liquid can be prevented from entering the ventilation passage 8.
 本実施形態の調圧装置6は、ケース1の内外を連通する通気路8に接続され、通気路8は、使用状態において地面に対して水平、または内壁面側開口部より外壁面側開口部の方が高くなるように傾斜している。これにより、仮に冷却液が通気路8の内壁面側開口部に到達したとしても、通気路8の内部に進入し難くなるので、呼吸膜に冷却液が含浸する可能性が低くなる。 The pressure regulating device 6 of the present embodiment is connected to a ventilation path 8 that communicates the inside and outside of the case 1, and the ventilation path 8 is horizontal to the ground in the use state, or an opening portion on the outer wall surface side rather than an opening portion on the inner wall surface side. Is inclined to be higher. As a result, even if the cooling liquid reaches the opening on the inner wall surface side of the ventilation passage 8, it is difficult for the cooling liquid to enter the inside of the ventilation passage 8, so that the possibility that the respiratory membrane is impregnated with the cooling liquid is reduced.
 (第2実施形態)
 図4は、第2実施形態にかかる電動モータユニットの、回転軸4の軸方向から見た断面図である。
(Second embodiment)
FIG. 4 is a sectional view of the electric motor unit according to the second embodiment as seen from the axial direction of the rotary shaft 4.
 図2に示した第1実施形態にかかる電動モータユニットとの相違点は、第1実施形態の障壁2Cはステータ2の一部であるのに対し、本実施形態の障壁10はケース1の一部であることである。以下、この相違点を中心に説明する。 The difference from the electric motor unit according to the first embodiment shown in FIG. 2 is that the barrier 2C of the first embodiment is a part of the stator 2, while the barrier 10 of the present embodiment is one of the cases 1. It is a department. Hereinafter, this difference will be mainly described.
 上記の相違点が生じるのは、ケース1へのステータ2の固定方法が第1実施形態ではボルト固定なのに対し、本実施形態では圧入であることに起因する。すなわち、第1実施形態では、ステータ2に複数のボルト孔7を設ける必要があり、そのために設けた複数の突起2Cの1つを障壁2Cとして利用する。 The difference described above occurs because the method of fixing the stator 2 to the case 1 is bolt fixing in the first embodiment, but press fitting in the present embodiment. That is, in the first embodiment, it is necessary to provide the stator 2 with the plurality of bolt holes 7, and one of the plurality of protrusions 2C provided for that purpose is used as the barrier 2C.
 これに対し、本実施形態では圧入によりステータ2をケース1に固定するので、ステータ2に突起2Cを設ける必要がない。しかし、圧入により固定するためには、ステータ2の外壁面とケース1の内壁面との接点が必要になる。そこで、ケース1の内壁面に、径方向内側に突出し、かつステータ2の外周に接する突起10を複数設ける。複数の突起10とステータ2の外壁面とが接するのは、例えばステータホルダ2Bの前後方向の一端から他端までとする。そして、複数の突起10のうちの1つを、第1実施形態の障壁2Cと同様に、冷却装置5の供給口5Aと通気路8の内壁面側開口部との間に配置する。以下の説明において、冷却装置5と通気路8の内壁面側開口部との間に配置された突起10を、障壁10とも称する。 On the other hand, in this embodiment, since the stator 2 is fixed to the case 1 by press fitting, it is not necessary to provide the protrusion 2C on the stator 2. However, in order to fix by press fitting, a contact point between the outer wall surface of the stator 2 and the inner wall surface of the case 1 is required. Therefore, the inner wall surface of the case 1 is provided with a plurality of protrusions 10 that protrude radially inward and contact the outer periphery of the stator 2. The contact between the plurality of protrusions 10 and the outer wall surface of the stator 2 is, for example, from one end to the other end of the stator holder 2B in the front-rear direction. Then, one of the plurality of protrusions 10 is arranged between the supply port 5A of the cooling device 5 and the inner wall surface side opening of the ventilation path 8 similarly to the barrier 2C of the first embodiment. In the following description, the protrusion 10 arranged between the cooling device 5 and the inner wall surface side opening of the ventilation path 8 is also referred to as a barrier 10.
 障壁10を設けることにより、第1実施形態の障壁2Cを設ける場合と同様に、通気路8への冷却液の進入を抑制することができる。 By providing the barrier 10, as in the case of providing the barrier 2C of the first embodiment, it is possible to prevent the coolant from entering the ventilation passage 8.
 なお、上記のように複数の突起10を設けると、図4に示す断面では、ケース1とステータ2との間の空間が4つの突起10によって分割されている。しかし、図4において分割されている各空間は、ステータホルダ2Bの前後方向の両端部より外側で連通しているので、1つの調圧装置6でケース1の全体を調圧することができる。 If a plurality of protrusions 10 are provided as described above, the space between the case 1 and the stator 2 is divided by the four protrusions 10 in the cross section shown in FIG. However, since the spaces divided in FIG. 4 communicate with each other outside both ends of the stator holder 2B in the front-rear direction, the pressure of the entire case 1 can be adjusted by one pressure adjusting device 6.
 なお、本実施形態では圧入用の突起10をケース1の一部として形成したが、ステータ2の外壁面の一部をケース1の内壁面と接する突起として形成してもよい。 In this embodiment, the press-fitting projection 10 is formed as a part of the case 1, but a part of the outer wall surface of the stator 2 may be formed as a projection in contact with the inner wall surface of the case 1.
 以上のように、本実施形態では冷却装置5の供給口5Aと通気路8の内壁面側開口部との間に、ケースの1一部またはステータ2の一部として形成された障壁10を備えるので、通気路8への冷却液の進入を抑制して、調圧装置6の呼吸膜への冷却液の含浸を抑制できる。 As described above, in the present embodiment, the barrier 10 formed as one part of the case or part of the stator 2 is provided between the supply port 5A of the cooling device 5 and the inner wall surface side opening of the ventilation path 8. Therefore, it is possible to suppress the inflow of the cooling liquid into the air passage 8 and to suppress the impregnation of the breathing film of the pressure regulator 6 with the cooling liquid.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiment of the present invention has been described above, the above embodiment merely shows a part of the application example of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

Claims (4)

  1.  ステータと、
     前記ステータを収容するケースと、
     前記ケースに回転自在に支持される回転軸と、
     前記回転軸に固定支持されるロータと、
     前記ステータに向けて冷却液を噴射する冷却装置と、
     前記ケースの内壁面から外壁面まで貫通する通気路と、
     空気の通過を許容する呼吸膜を有し前記通気路の外壁面側開口部に接続される調圧装置と、
    を備える電動モータユニットにおいて、
     前記冷却装置の供給口と前記通気路の内壁面側開口部との間に、前記ケースの一部または前記ステータの一部として形成された障壁を備える、電動モータユニット。
    A stator,
    A case accommodating the stator,
    A rotation shaft rotatably supported by the case,
    A rotor fixedly supported on the rotating shaft,
    A cooling device for injecting a cooling liquid toward the stator;
    A ventilation path that penetrates from the inner wall surface to the outer wall surface of the case,
    A pressure regulator having a breathing membrane that allows passage of air, and connected to the outer wall surface side opening of the ventilation passage,
    In an electric motor unit including
    An electric motor unit comprising a barrier formed as a part of the case or a part of the stator between the supply port of the cooling device and the inner wall surface side opening of the ventilation path.
  2.  請求項1に記載の電動モータユニットにおいて、
     前記供給口は、前記ケースの使用状態において上面となる位置に開口する、電動モータユニット。
    The electric motor unit according to claim 1,
    The electric motor unit, wherein the supply port is opened at a position serving as an upper surface when the case is in use.
  3.  請求項1または2に記載の電動モータユニットにおいて、
     前記障壁は、前記ステータの外周の一部が前記ステータの径方向に突出した突起であり、最突出部から前記回転軸の回転中心までの長さが、前記回転軸の回転中心から前記ステータの前記冷却液を受ける部位までの長さより長い、電動モータユニット。
    The electric motor unit according to claim 1 or 2,
    The barrier is a protrusion in which a part of the outer circumference of the stator projects in the radial direction of the stator, and the length from the most protruding portion to the rotation center of the rotation shaft is the rotation center of the rotation shaft of the stator. An electric motor unit that is longer than the length up to the portion that receives the cooling liquid.
  4.  請求項1から3のいずれかに記載の電動モータユニットにおいて、
     前記通気路は、使用状態において地面に対して水平、または前記ケースの内壁面側の端部より前記ケースの外壁面側の端部の方が高くなるように傾斜している、電動モータユニット。
    The electric motor unit according to any one of claims 1 to 3,
    The electric motor unit, wherein the air passage is horizontal with respect to the ground in a use state, or is inclined so that an end portion on the outer wall surface side of the case is higher than an end portion on the inner wall surface side of the case.
PCT/IB2018/001477 2018-11-27 2018-11-27 Electric motor unit WO2020109832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/001477 WO2020109832A1 (en) 2018-11-27 2018-11-27 Electric motor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/001477 WO2020109832A1 (en) 2018-11-27 2018-11-27 Electric motor unit

Publications (1)

Publication Number Publication Date
WO2020109832A1 true WO2020109832A1 (en) 2020-06-04

Family

ID=70853882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/001477 WO2020109832A1 (en) 2018-11-27 2018-11-27 Electric motor unit

Country Status (1)

Country Link
WO (1) WO2020109832A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105321A (en) * 2015-12-09 2017-06-15 トヨタ自動車株式会社 Power transmission device for vehicle
JP2017118688A (en) * 2015-12-24 2017-06-29 三菱自動車工業株式会社 motor
CN108631512A (en) * 2017-03-20 2018-10-09 浙江绿源电动车有限公司 Motor and electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105321A (en) * 2015-12-09 2017-06-15 トヨタ自動車株式会社 Power transmission device for vehicle
JP2017118688A (en) * 2015-12-24 2017-06-29 三菱自動車工業株式会社 motor
CN108631512A (en) * 2017-03-20 2018-10-09 浙江绿源电动车有限公司 Motor and electric vehicle

Similar Documents

Publication Publication Date Title
JP6435726B2 (en) Cooling structure of rotating electric machine
CN111585394B (en) Motor unit
US9450473B2 (en) Motor for vehicle and railway vehicle
JP2010022148A (en) Outer rotor type vehicular generator
JP2013106366A (en) Rotary electric machine
JP7400365B2 (en) motor unit
JP2012157194A (en) Rotary electric machine assembly
CN114600346A (en) Drive device
CN111817499B (en) Drive device
TW202221244A (en) Drive device and vehicle
JP2018014857A (en) Cooling structure of electric motor
WO2020032026A1 (en) Motor unit
WO2020109832A1 (en) Electric motor unit
JP4456347B2 (en) Fan motor
JP7386262B2 (en) electric motor unit
JP2013172555A (en) Motor unit for hybrid system
WO2019171535A1 (en) Dynamo-electric machine and method for manufacturing dynamo-electric machine
JP2017093002A (en) Motor drive unit
JP4423271B2 (en) Electric motor
JP2015188977A (en) Main shaft apparatus of machine tool
JP2017187086A (en) Vibration control bearing device
TWI797895B (en) Rotating Motors and Drives
JP6302023B2 (en) Rotating electric machine
JP6871077B2 (en) Motor generator device
JP7318287B2 (en) drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP