WO2020108482A1 - Mechanochemical activation in solvent-free zeolite synthesis - Google Patents

Mechanochemical activation in solvent-free zeolite synthesis Download PDF

Info

Publication number
WO2020108482A1
WO2020108482A1 PCT/CN2019/120954 CN2019120954W WO2020108482A1 WO 2020108482 A1 WO2020108482 A1 WO 2020108482A1 CN 2019120954 W CN2019120954 W CN 2019120954W WO 2020108482 A1 WO2020108482 A1 WO 2020108482A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
range
cha
zeolitic material
ppm
Prior art date
Application number
PCT/CN2019/120954
Other languages
French (fr)
Inventor
Marion Winkelmann
Andreas Luz
Andrei-Nicolae PARVULESCU
Xiana ROMANI FERNANDEZ
Ulrich Mueller
Frank Kleine Jaeger
Frank Mueller
Michael NETSCHER
Ralph TAUBER
Frank STREBEL
Dieter ROLLAR
Stefan Maurer
Yu DAI
Reiner Hermann WITT
Original Assignee
Basf Se
Basf (China) Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf (China) Company Limited filed Critical Basf Se
Publication of WO2020108482A1 publication Critical patent/WO2020108482A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Definitions

  • the present invention relates to a process for the preparation of a zeolitic material including the mechanochemical activation of the reaction mixture prior to crystallization, as well as to a cata-lyst per se as obtainable or obtained according to said process. Furthermore, the present inven-tion relates to the use of the inventive zeolitic material, in particular as a catalyst.
  • Molecular sieves are classified by the Structure Commission of the International Zeolite Associ-ation according to the rules of the IUPAC Commission on Zeolite Nomenclature. According to this classification, framework-type zeolites and other crystalline microporous molecular sieves, for which a structure has been established, are assigned a three letter code and are described in the Atlas of Zeolite Framework Types, 6th edition, Elsevier, London, England (2007) .
  • Chabazite is a well studied example, wherein it is the classical representative of the class of zeolitic materials having a CHA framework structure.
  • the class of zeolitic materials having a CHA framework structure comprises a large number of compounds further comprising phosphorous in the framework structure are known which are accordingly referred to as silicoaluminophosphates (SAPO) .
  • SAPO silicoaluminophosphates
  • further molecular sieves of the CHA structure type are known which contain aluminum and phosphorous in their framework, yet contain little or no sili-ca, and are accordingly referred to as aluminophosphates (APO) .
  • Zeolitic materials belonging to the class of molecular sieves having the CHA-type framework structure are employed in a varie-ty of applications, and in particular serve as heterogeneous catalysts in a wide range of reac-tions such as in methanol to olefin catalysis and selective catalytic reduction of nitrogen oxides NO x to name some two of the most important applications.
  • Zeolitic materials of the CHA frame-work type are characterized by three-dimensional 8-membered-ring (8MR) pore/channel sys-tems containing double-six-rings (D6R) and cages.
  • Zeolitic materials having a CHA-type framework structure and in particular Chabazite with incor-porated copper ions (Cu-CHA) are widely used as heterogeneous catalyst for the selective cata-lytic reduction (SCR) of NO x fractions in automotive emissions.
  • SCR selective cata-lytic reduction
  • these catalyst systems Based on the small pore open-ings and the alignment of the copper ions in the CHA cages, these catalyst systems have a unique thermal stability, which tolerates temperatures higher than 700°C in presence of H 2 O.
  • high silica aluminosilicate zeolite chabazite (CHA) , SSZ-13, has a three-dimensional pore system with ellipsoidal-shaped large cages that are accessible via 8-membered ring windows which have attracted great interest because they exhibit extraordinary catalytic properties not only in selective catalytic reduction of NO x with NH 3 (NH 3 -SCR) in recent years, but also in methanol to olefin (MTO) and in the conversion of syngas to olefins.
  • NH 3 -SCR NH 3 -SCR
  • MTO methanol to olefin
  • Wu et al. in J. Am. Chem. Soc. 2014, 136, 4019-4025 relates to the solvent-free synthesis of zeolites in the absence of organotemplates, and in particular of ZSM-5 and Beta zeolite.
  • WO 2016/058541 A1 concerns the solidothermal synthesis of zeolitic material in the presence of a fluoride containing compound.
  • WO 2018/059316 A1 relates to a method for the solidothermal synthesis of zeolitic materials which affords improved space-time yields.
  • WO 2018/059316 A1 relates to a specific process for preparing a zeolitic material having a zeolitic framework structure which exhibits a molar ratio (a Al 2 O 3 ) : SiO 2 or a crystalline precursor the-reof, wherein a is a number in the range of from 0 to 0.5.
  • Preparing a mixture of starting mate-rials may comprise grinding, preferably for a duration of 0.1 to 30 min according to the examples.
  • WO 2018/046481 A1 concerns a solidothermal methodology for the prepa-ration of a layered zeolitic precursor of the MWW framework structure.
  • WO 2005/039761 A2 relates to a method for making a molecular sieve catalyst involving the aging of the reaction mixture and its analysis via 27 Al NMR.
  • US 7,528,089 B2 on the other hand, relates to the processing of a high solids material for the formation of a microporous material including a rotary calciner or rotary screw as a means of conveying the synthesis mixture conti-nuously or semi-continuously.
  • WO 2016/153950 A1 describes methods for the synthesis of zeolitic materials involving a step of subjecting the reaction mixture to high shear processing conditions.
  • CN 104709917 A relates to a method for synthesizing SSZ-13 molecular sieve comprising a step of solid phase grinding, whereby grinding may be performed in a mortar, for a duration of 5-10 min according to the examples.
  • N, N-dimethyl-N'-ethylcyclohexyl am-monium bromide may be used as templating agent.
  • CN 107285334 A relates to a method for synthesizing an AEI type molecular sieve comprising a step of solid phase grinding.
  • An alkyl piperidinium compound may be used as templating agent.
  • CN 103979574 A relates to a method for solid phase synthesis of ITQ-13 or ZSM-5 molecular sieves, wherein ammonium fluoride is used as a mineralizer and a brominated organic template as a templating agent, preferably dimethylammonium bromide.
  • the method comprises grinding of a mixture of the starting materials, whereby grinding may be performed in a mortar, for a du-ration of 5-10 min according to the examples.
  • CN 102627287 A relates to a method for synthesizing ZSM-5, beta, ZSM-39 and SOD molecu-lar sieves under solvent-free conditions wherein the method comprises grinding of a mixture of starting materials.
  • the templating agent may be tetrapropylammonium bromide, tetraethylam-monium bromide or diaminoguanidine hydrochloride. Grinding may be performed in a mortar, for a duration of 1 min or 15 min according to the examples.
  • CN 102992343 A relates to an organotemplate-free solid-state method for the synthesis of ZSM-5, Beta, FAU, MOR, LTA and GIS zeolite molecular sieves. According to the examples mixing may be performed in a mortar and grinding for 10 min or 10-20 min.
  • the solidothermal synthesis Compared with the conventional synthesis, the solidothermal synthesis not only has all advan-tages associated with solvent-free synthesis, but also uses minimal organic templates. Taking all of the these advantages into account, it is assumed that the methodology of solidothermal synthesis opens a new door for synthesizing zeolites and may be of great importance for indus-trial production in the near future.
  • the object of the present invention to provide an improved process for the prep-aration of zeolitic materials using a solidothermal methodology, in particular with regard to the efficiency of the reaction.
  • the crystallization process in solidothermal synthesis may be considerably increased by applying a step of me-chanochemical activation to the reaction mixture prior to the step of crystallization.
  • a specific amount of controlled grinding and/or mixing of the reaction mixture prior to the hydrothermal crystallization leads to a substantial increase in the rate of crystallization, such that the space-time yield of the reaction may be considerably in-creased.
  • the mechanical activation creates pre-crystalline zeolite pre-cursors and re-ordering of Al and Si species. More specifically, Al moves into tetrahedral coor-dination, while still having some octahedral Al. After crystallization all Al is in tetrahedral coordi-nation.
  • the present inventive method is furthermore clearly advantageous to the aging of reac-tion mixtures or other procedures which are known in the art for activating a reaction mixture prior to crystallization since it requires far less time than the latter, and is therefore leads to a substantial increase in the efficiency of the process for the production of a zeolitic material.
  • the present invention relates to a process for the preparation of a zeolitic material comprising YO 2 and X 2 O 3 in its framework structure, wherein Y stands for a tetravalent element and X stands for a trivalent element, wherein said process comprises:
  • the mixture prepared in (i) contains from 5 to 200 wt. -%of H 2 O based on 100 wt. -%of the one or more sources of YO 2 , calculated as YO 2 , contained in the mixture prepared in (i) and heated in (iii) .
  • the energy intake is determined via de-termination of the torque with a given mill, preferably with a stirred media mill.
  • the torque has to be determined, first without the material of which the energy intake is to be determined and, second, with said material.
  • the torque determined for the experiment without the material of which the energy intake is to be determined is subtracted from the torque determined for the experiment with said material.
  • the specific energy input in kJ/kg is calculated. It is also possible to determine the torque with other devices.
  • the torque with and without material load can be determined and the energy intake calcu-lated as described above or the power input with material (load value) and without material (no-load value) is determined. With regards to the latter, the no-load value is subtracted from the load value und the energy intake as introduced into the product can be calculated.
  • the energy intake is determined as described in reference exam-ple 1 as disclosed herein.
  • peaks in the range of from -20 to 15 ppm, preferably of from -10 to 12 ppm, more preferably of from -5 to 10 ppm, more preferably of from -3 to 8 ppm, more prefera-bly of from -2 to 7 ppm, more preferably of from -1.5 to 6.5 ppm, more preferably of from -1 to 6 ppm, more preferably of from -0.5 to 5.5 ppm, and more preferably of from 0.5 to 5.0 ppm;
  • the relative 27 Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1 ) and within the range of 15 to -20 ppm (I 2 ) of the zeolitic material offer a ratio of the inte-gration values I 2 : (I 1 + I 2 ) comprised in the range of from 0.5 to 50%, preferably of from 1 to 35%, more preferably of from 3 to 25%, more preferably of from 5 to 18%, more preferably of from 8 to 15%, more preferably of from 9 to 14%, more preferably of from 10 to 13%, and more preferably of from 11 to 12%,
  • the one or more peaks (PX) consists of one or two peaks (PX) , more prefer-ably of one peak (PX) .
  • the 27 Al MAS NMR of the mixture obtained in (ii) comprises:
  • the 27 Al MAS NMR is determined according to Reference Example 2 as disclosed herein.
  • the 27 Al MAS NMR of the mix-ture obtained in (ii) is determined as described in the experimental section of the present appli-cation. It is particularly preferred that the 27 Al MAS NMR is determined according to Reference Example 2 disclosed herein.
  • the energy intake of the energy intake of the mixture during the grinding and/or mixing procedure in (ii) is in the range of from 0.5 to 120 kJ/kg of the mixture, preferably of from 0.8 to 80 kJ/kg of the mixture, more pre- ferably of from 1 to 50 kJ/kg of the mixture, more preferably of from 2 to 25 kJ/kg of the mixture, more preferably of from 3 to 15 kJ/kg of the mixture, more preferably of from 4 to 10 kJ/kg of the mixture, and more preferably of from 5 to 7 kJ/kg. It is particularly preferred that the energy in-take is determined as described herein, more preferably as described in reference example 1 as disclosed herein.
  • said mixture contains from 10 to 150 wt. -%of H 2 O based on 100 wt. -%of the one or more sources of YO 2 , calculated as YO 2 , contained in the mixture prepared in (i) and heated in (iii) , preferably of from 15 to 120 wt. -%, more preferably of from 20 to 100 wt. -%, more preferably of from 25 to 90 wt. -%, more preferably of from 30 to 80 wt. -%, more preferably of from 35 to 75 wt.
  • heating of the mixture obtained in (ii) in (iii) it is preferred according to the present invention that said heating is conducted at a temperature in the range of from 100 to 280 °C, preferably of from 120 to 260 °C, more preferably of from 140 to 250 °C, more prefera-bly of from 160 to 245 °C, more preferably of from 180 to 240 °C.
  • a zeolitic material comprising YO 2 and X 2 O 3 in its framework structure may be crystallized from the mixture.
  • the mixture obtained in (ii) is heated for a period in the range of from 0.2 to 96 h, preferably of from 0.4 to 48 h, more preferably of from 0.6 to 36 h, more preferably of from 0.8 to 24 h, more preferably of from 1 to 12 h, more preferably of from 1.3 to 8 h, more preferably of from 1.5 to 5 h, more pre-ferably of from 1.6 to 3 h, more preferably of from 1.7 to 2.5 h, and more preferably of from 1.8 to 2.2 h.
  • a zeolitic material comprising YO 2 and X 2 O 3 in its framework structure may be crystallized from the mixture.
  • grinding and/or mixing in (ii) is carried out for a duration in the range of from 0.01 to 120 min, preferably of from 0.05 to 60 min, more preferably of from 0.1 to 30 min, more preferably of from 0.3 to 10 min, more preferably of from 0.5 to 5 min.
  • the rate of energy transfer to the mixture in (ii) is in the range of from 10 to 1,500 kJ/ (kg*h) , preferably from 50 to 1,200 kJ/ (kg*h) , more preferably from 100 to 1,000 kJ/ (kg*h) , more preferably from 150 to 800 kJ/ (kg*h) , more preferably from 200 to 600 kJ/ (kg*h) , more preferably from 250 to 500 kJ/ (kg*h) , more preferably from 300 to 450 kJ/ (kg*h) , more preferably from 330 to 400 kJ/ (kg*h) , and more preferably from 350 to 370 kJ/ (kg*h) .
  • the mixture obtained in (i) may have any suitable temperature prior to the grinding and/or mixing in (ii) , wherein it is preferred according to the present invention that the mixture prepared in (i) has an initial temperature in the range of from 10 to 50°C when sub-ject to grinding and/or mixing in (ii) , preferably in the range of from 15 to 40°C, and more prefer-ably in the range of from 20 to 30°C.
  • any suitable apparatus may be employed to said effect, provided that the energy intake of the mixture during the grinding and/or mixing proce-dure is in the range of from 0.3 to 200 kJ/kg of the mixture.
  • grinding and/or mixing in (ii) is carried out in a mill selected from the group con-sisting of a stirred media mill, a planetary ball mill, a ball mill, a roller mill, a kneader, a high shear mixer, and a mix muller,
  • a stirred media mill preferably from the group consisting of a stirred media mill, a ball mill, a roller mill, a planetary mill, and a high shear mixer
  • grinding and/or mixing in (ii) is car-ried out in a ball mill, preferably using balls made of a material selected from the group consist-ing of stainless steel, ceramic, and rubber, more preferably from the group consisting of chrome steel, flint, zirconia, and lead antimony alloy, wherein more preferably the balls of the ball mill are made of chrome steel and/or zirconia, preferably of zirconia.
  • grinding and/or mixing in (ii) is carried out in a ball mill using grind-ing media, preferably grinding balls, having a diameter in the range of from 0.5 to 50 mm, pre-ferably of from 0.8 to 30 mm, more preferably of from 1 to 20 mm, more preferably of from 1.2 to 10 mm, and more preferably of from 2 to 8 mm.
  • the filling degree of the grinding media in the ball mill is in the range of from 20 to 60%, preferably of from 15 to 75%, more preferably of from 20 to 70%, more preferably of from 25 to 55%, and more preferably of from 40 to 50%.
  • the ball mill is operated at a speed in the range of from 10 to 250 rpm, preferably of from 30 to 220 rpm, more preferably of from 50 to 200 rpm, more preferably of from 60 to 180 rpm, more preferably of from 70 to 150 rpm, more preferably of from 80 to 120 rpm, and more preferably of from 90 to 100 rpm.
  • the ball mill comprises a volume having a cylindrical geometry, wherein the diameter of the volume having a cylindrical geometry is in the range of from 200 to 400 mm, preferably in the range of from 250 to 350 mm, more preferably in the range of from 280 to 320 mm, more preferably in the range of from 290 to 310 mm, more preferably in the range of from 295 to 305 mm.
  • the ball mill is operated at a relative rota- tion speed of from 30 to 150 %of the critical rotation speed, preferably of from 40 to 125 %of the critical rotation speed, more preferably of from 45 to 120 %of the critical rotation speed, more preferably of from 50 to 95 %of the critical rotation speed, more preferably of from 60 to 90 %of the critical rotation speed and more preferably of from 70 to 90 %of the critical rotation speed.
  • the critical rotation speed is in the range of from 40 to 80 rpm, more preferably in the range of from 50 to 70 rpm, more prefer-ably in the range of from 55 to 65 rpm, more preferably in the range of from 58 to 62 rpm, more preferably in the range of from 59 to 61 rpm.
  • grinding and/or mixing in (ii) is car-ried out in a stirred media mill, preferably using beads having a diameter in the range of from 0.1 to 10 mm, preferably of from 0.4 to 8 mm, more preferably of from 0.8 to 6 mm, and more preferably of from 1.2 to 4 mm.
  • the filling degree of the grinding media in the ball mill is in the range of from 20 to 80%, preferably of from 15 to 75%, more preferably of from 20 to 70%, more preferably of from 25 to 65%, more preferably of from 30 to 60%, and more preferably of from 35 to 55%.
  • the tip speed of the stirred media mill is in the range of from 1 to 15 m/s, preferably of from 3 to 13 m/s, more preferably of from 4 to 11 m/s, and more preferably of from 5 to 10 m/s.
  • grinding and/or mixing in (ii) is carried out in a roller mill, wherein the velocity of the rolls is preferably in the range of from 2 to 15 m/s, more preferably from 2.2 to 10 m/s, and more preferably from 2.4 to 8.4 m/s. Further-more and independently thereof, it is preferred that the tip speed ratio of the rolls is from 1 to 7, preferably from 1.2 to 5 and more preferably from 1.4 to 3. Furthermore and independently the-reof, it is preferred that the rolls are plain or corrugated. Furthermore and independently thereof, it is preferred that the gap width of the rolls is in the range of from 0.05 to 1 mm, preferably from 0.1 to 0.7 mm, and more preferably from 0.15 to 0.3 mm.
  • grinding and/or mixing in (ii) is carried out in a high shear mixer, preferably at tip speeds from 5 to 30 m/s, more preferably from 10 to 27 m/s, more preferably from 16 to 25 m/s, more preferably from 18 to 23 m/s.
  • the filling degree in the high shear mixer is from 20 to 80%, preferably from 40 to 60%.
  • the mixing tool of the high shear mixer is of star geometry or propeller geometry, wherein optionally the mixing tool comprises vertical pins.
  • the mixing tool of the high shear mixer generates vertical and/or axial and/or tangential flow.
  • heating in (iii) may be conducted under any suitable condi-tions, provided that a zeolitic material comprising YO 2 and X 2 O 3 in its framework structure is crystallized from the mixture. It is however preferred that in (iii) the mixture is heated under au- togenous pressure, wherein preferably heating in (ii) is performed in a pressure tight vessel, preferably in an autoclave.
  • any conceivable zeolitic material may be ob-tained, wherein it is preferred that the zeolitic material obtained in (iii) has a framework structure type selected from the group consisting of AEI, AFX, ANA, BEA, BEC, CAN, CHA, CDO, EMT, ERI, EUO, FAU, FER, GME, HEU, ITH, ITW, KFI, LEV, MEI, MEL, MFI, MOR, MTN, MWW, OFF, RRO, RTH, SAV, SFW, SZR, and TON, including mixed structures of two or more thereof, preferably from the group consisting of CAN, AEI, EMT, SAV, SZR, KFI, ERI, OFF, RTH, GME, AFX, SFW, BEA, CHA, FAU, FER, HEU, LEV, MEI, MEL, MFI, MOR, and
  • the zeolitic material obtained in (iii) has a CHA-type framework structure, wherein preferably the zeolitic material having a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21,
  • (v) calcination is performed at a temperature in the range of from 300 to 900 °C, preferably of from 400 to 700 °C, more preferably of from 450 to 650 °C, and more preferably of from 500 to 600 °C. Furthermore and independently thereof, it is pre- ferred that in (v) the calcination is performed for a duration in the range of from 0.5 to 12 h, pre-ferably in the range of from 1 to 9 h, more preferably in the range of from 2 to 6 h.
  • inventive process further comprises
  • the process further comprises
  • Y may stand for any conceivable tetravalent element where-in it is preferred that Y is selected from the group consisting of Si, Sn, Ti, Zr, Ge, and mixtures of two or more thereof, Y preferably being Si.
  • the one or more sources for YO 2 are one or more solid sources for YO 2 , wherein preferably the one or more sources for YO 2 comprises one or more compounds se-lected from the group consisting of silicas, silicates, silicic acid and combinations of two or more thereof, preferably selected from the group consisting of silicas, alkali metal silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, colloidal silica, reactive amorphous solid silica, silica gel, pyrogenic silica, lithium silicates, sodium silicates, potassium silicates, silicic acid, and combinations of two or more the-reof, more preferably selected from the group consisting of fumed silica, silica gel, pyrogenic silica, Na 2 SiO 3 , silicic acid, and combinations of two or more
  • the silica gel preferably used as the one or more sources for YO 2 according to particular and preferred embodiments of the inventive process, it is preferred that the silica gel has the formula SiO 2 ⁇ x H 2 O, wherein x is in the range of from 0.1 to 1.165, preferably from 0.3 to 1.155, more preferably from 0.5 to 1.15, more preferably from 0.8 to 1.13, and more preferably from 1 to 1.1.
  • X may stand for any conceivable trivalent element wherein it is preferred that X is selected from the group consisting of Al, B, In, Ga, and combinations of two or more thereof, X preferably being Al and/or B, preferably Al.
  • the one or more sources for X 2 O 3 are one or more solid sources for X 2 O 3 , wherein preferably the one or more sources for X 2 O 3 comprises one or more compounds se-lected from the group consisting of aluminum sulfates, sodium aluminates, and boehmite, wherein preferably the one or more sources for X 2 O 3 comprises Al 2 (SO 4 ) 3 and/or NaAlO 2 , pre-ferably Al 2 (SO 4 ) 3 , wherein more preferably the one or more sources for X 2 O 3 is Al 2 (SO 4 ) 3 and/or NaAlO 2 , preferably Al 2 (SO 4 ) 3 .
  • YO 2 X 2 O 3 molar ratio of the one or more sources of YO 2 , calculated as YO 2 , to the one or more sources for X 2 O 3 , calculated as X 2 O 3 , in the mixture prepared in (i) , it is pre-ferred that it is in the range of from 1 to 100, preferably of from 2 to 70, more preferably of from 4 to 50, more preferably of from 6 to 40, more preferably of from 8 to 35, more preferably of from 12 to 30, more preferably of from 15 to 25, more preferably of from 17 to 22, and more preferably of from 19 to 20.
  • the one or more sources for YO 2 are one or more solid sources for YO 2 .
  • the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, more preferably from the group consisting of BEA, FAU, GIS, MOR, LTA, and a mixed structure of two or more thereof, more preferably having an FAU framework structure type.
  • the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof
  • X is selected from the group consisting of Al, B, In, Ga, and combinations of two or more thereof, X preferably being Al and/or B, preferably Al.
  • the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof
  • the one or more sources for X 2 O 3 are one or more solid sources for X 2 O 3
  • the one or more sources for X 2 O 3 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, preferably selected from the group consisting of BEA, FAU, GIS, MOR, LTA, and a mixed structure of two or more thereof, preferably having an FAU framework structure type.
  • the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof
  • the zeolitic material has a molar ratio of silica to alumina, silica : alumina, in the range of from 10 to 50, preferably in the range of from 20 to 40, more preferably in the range of from 23 to 37.
  • the one or more alkali metals M comprised in the mixture prepared in (i) it is preferred that the one or more alkali met-als are selected from the group consisting of Li, Na, K, Rb, Cs, and combinations of two or more thereof, more preferably from the group consisting of Li, Na, Rb and combinations of two or more thereof, wherein more preferably the one or more alkali metals M are Li and/or Na, more preferably Na, wherein more preferably the one or more alkali metals M is sodium.
  • the one or more alkali metals M comprise or consist of sodium
  • sodium is comprised in the mixture prepared in (i) in a compound selected from the group consisting of sodium hydroxide, sodium aluminates, and sodium silicates, wherein preferably sodium is comprised in the mixture prepared in (i) as Na 2 SiO 3 and/or NaAlO 2 , preferably as Na 2 SiO 3 .
  • the mixture prepared in (i) further contains one or more structure directing agents, wherein preferably one or more organotem-plates are employed as the one or more structure directing agents.
  • the molar ratio SDA : YO 2 of the one or more structure directing agents (SDA) to the one or more sources of YO 2 , calculated as YO 2 , in the mixture prepared in (i) and heated in (iii) it is preferred that it ranges from 0.01 to 0.5, wherein the one or more structure directing agents do not include structure directing agents optionally contained in seed crystals optionally con-tained in the mixture prepared in (i) , and more preferably from 0.03 to 0.2, more preferably from 0.06 to 0.15, more preferably from 0.09 to 0.13, and more preferably from 0.11 to 0.12.
  • the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, preferably for 1-adamantyl.
  • R 1 , R 2 , and R 3 independently from one another stand for optionally substituted and/or op-tionally branched (C 1 -C 6 ) alkyl, preferably (C 1 -C 5 ) alkyl, more preferably (C 1 -C 4 ) alkyl, more pre-ferably (C 1 -C 3 ) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 1 , R 2 , and R 3 independently from one another stand for optionally substituted me-thyl or ethyl, preferably unsubstituted methyl or ethyl, wherein more preferably R 1 , R 2 , and R 3 independently from one another stand for optionally substituted methyl, preferably unsubstituted methyl.
  • R 4 stands for optionally hete-rocyclic and/or optionally substituted adamantyl and/or benzyl, preferably for optionally hetero-cyclic and/or optionally substituted 1-adamantyl, more preferably for optionally substituted ada-mantyl and/or benzyl, more preferably for optionally substituted 1-adamantyl, more preferably for unsubstituted adamantyl and/or benzyl, and more preferably for unsubstituted 1-adamantyl.
  • the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more N, N, N-tri (C 1 -C 4 ) alkyl-1-adamantylammonium compounds, preferably one or more N, N, N-tri (C 1 -C 3 ) alkyl-1-adamantylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantylammonium and/or one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantylammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-1-adamantylammonium
  • the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds are salts, pre-ferably one or more salts selected from the group consisting of halides, sulfate, nitrate, phos-phate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of bromide, chloride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more pre-ferably the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds are te-traalkylammonium hydroxides and/or bromides, and more preferably tetraalkylammonium hy-droxides.
  • the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl.
  • R 1 and R 2 independently from one another stand for optionally substituted and/or optionally branched (C 1 -C 6 ) alkyl, preferably (C 1 -C 5 ) alkyl, more preferably (C 1 -C 4 ) alkyl, more preferably (C 1 -C 3 ) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 1 and R 2 independently from one another stand for optionally substituted methyl or ethyl, preferably unsubstituted methyl or ethyl, wherein more preferably R 1 and R 2 independently from one another stand for optionally substituted methyl, preferably un-substituted methyl.
  • R 3 stands for optionally substituted and/or optionally branched (C 1 -C 6 ) alkyl, preferably (C 1 -C 5 ) alkyl, more pre-ferably (C 1 -C 4 ) alkyl, more preferably (C 1 -C 3 ) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 3 stands for optionally substituted ethyl, preferably unsubstituted ethyl.
  • R 4 stands for optionally heterocyclic and/or optionally substituted 5-to 8-membered cycloalkyl, preferably for 5-to 7-membered cycloalkyl, more preferably for 5-or 6-membered cycloalkyl, wherein more preferably R 4 stands for optionally heterocyclic and/or optionally substituted 6-membered cyc-loalkyl, preferably optionally substituted cyclohexyl, and more preferably unsubstituted cyclo-hexyl.
  • the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more N, N, N-tri (C 1 -C 4 ) alkyl- (C 5 -C 7 ) cycloalkylammonium compounds, preferably one or more N, N, N-tri (C 1 -C 3 ) alkyl- (C 5 -C 6 ) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl- (C 5 -C 6 ) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-cyclopentylammonium and/or one or more N, N, N-tri (C 1 -C 2 ) alkyl-cyclohexylammonium compounds
  • the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds are salts, preferably one or more salts selected from the group consist-ing of halides, sulfate, nitrate, phosphate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of bromide, chloride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds are tetraalkylammonium hydroxides and/or bromides, and more preferably tetraalkylammonium hydroxides.
  • the crystallinity of the zeolitic material ob-tained in (iv) is in the range of from 75 to 99.9%, preferably from 80 to 99%, more preferably from 85 to 98%, more preferably from 88 to 97%, more preferably from 90 to 95%, and more preferably from 92 to 94%.
  • the mixture prepared in (i) and ground in (ii) contains 5 wt. -%or less of fluoride calcu-lated as the element based on 100 wt. -%of the one or more sources of YO 2 , calculated as YO 2 , preferably 3 wt. -%or less, more preferably 2 wt. -%or less, more preferably 1 wt. -%or less, more preferably 0.5 wt. -%or less, more preferably 0.1 wt.
  • -%or less more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more pre-ferably 0.001 wt. -%or less of fluoride calculated as the element and based on 100 wt. -%of the one or more sources of YO 2 , calculated as YO 2 .
  • the mixture prepared in (i) and crystallized in (iii) further comprises seed crystals, wherein the amount of the seed crystals contained in the mixture prepared in (i) and heated in (iii) preferably ranges from 1 to 30 wt. -%based on 100 wt. -%of the one or more sources of YO 2 , calculated as YO 2 , preferably from 3 to 25 wt. -%, more preferably from 5 to 20 wt. -%, more preferably from 8 to 18 wt. -%, more preferably from 10 to 16 wt. -%, and more preferably from 12 to 14 wt. -%.
  • the one or more zeolitic materials having a CHA-type framework structure is se-lected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chaba-zite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21,
  • the seed crystal preferably contained in the mixture prepared in (i) these may be obtained according to any suitable procedure. It is preferred according to the inventive process that the seed crystals contained in the mixture prepared in (i) and heated in (iii) comprise one or more zeolitic materials having the framework structure of the zeolitic material comprising YO 2 and X 2 O 3 in its framework structure obtained according to any of the particular and preferred embodiments of the inventive process as described in the present application, wherein prefera-bly the one or more zeolitic materials of the seed crystals is obtainable and/or obtained accord-ing to any of the particular and preferred embodiments of the inventive process as described in the present application.
  • the present invention further relates to a zeolitic material comprising YO 2 and X 2 O 3 in its framework structure obtainable and/or obtained according to any of the particular and preferred embodiments of the inventive process as described in the present application.
  • the zeolitic material of the present invention has a CHA-type framework structure, wherein it is further preferred that the zeolitic material hav-ing a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21,
  • Chabazite more preferably from the group consisting of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consist-ing of Chabazite, SSZ-13, and SSZ-62, including mixtures of two or three thereof,
  • the zeolitic material comprises chabazite and/or SSZ-13, preferably SSZ-13, and wherein more preferably the zeolitic material is chabazite and/or SSZ-13, prefera-bly SSZ-13.
  • the mean particle size D50 by volume of the zeolitic material as determined according to ISO 13320: 2009 is in the range of from 0.1 to 10 ⁇ m, and is preferably in the range of from 0.3 to 6.0 ⁇ m, more preferably in the range of from 1.5 to 4.5 ⁇ m, and more preferably in the range of from 2.5 to 3.6 ⁇ m.
  • the zeolitic materials obtained according to the inventive process with at least one other catalytically active material or a material being active with respect to the in-tended purpose. It is also possible to blend at least two different inventive materials which may differ in their YO 2 : X 2 O 3 molar ratio, and in particular in their SiO 2 : Al 2 O 3 molar ratio, and/or in the presence or absence of one or more further metals such as one or more transition metals and/or in the specific amounts of a further metal such as a transition metal, wherein according to particularly preferred embodiments, the one or more transition metal comprises Cu and/or Fe, more preferably Cu. It is also possible to blend at least two different inventive materials with at least one other catalytically active material or a material being active with respect to the in-tended purpose.
  • the catalyst may be disposed on a substrate.
  • the substrate may be any of those materials typically used for preparing catalysts, and will usually comprise a ceramic or metal honeycomb structure. Any suitable substrate may be employed, such as a monolithic substrate of the type having fine, parallel gas flow passages extending there through from an inlet or an outlet face of the substrate, such that passages are open to fluid flow there through (referred to as honey-comb flow through substrates) .
  • honey-comb flow through substrates honey-comb flow through substrates
  • the passages which are essentially straight paths from their fluid inlet to their fluid outlet, are defined by walls on which the catalytic material is disposed as a washcoat so that the gases flowing through the passages contact the catalytic material.
  • the flow passages of the monolithic substrate are thin-walled channels, which can be of any suitable cross-sectional shape and size such as trapezoidal, rectangular, square, sinusoidal, hexagonal, oval, circular, etc.
  • Such structures may contain from about 60 to about 400 or more gas inlet openings (i.e., cells) per square inch (2.54 cm x 2.54 cm) of cross section.
  • the substrate can also be a wall-flow filter substrate, where the channels are alternately blocked, allowing a gaseous stream entering the channels from one direction (inlet direction) , to flow through the channel walls and exit from the channels from the other direction (outlet direc-tion) .
  • the catalyst composition can be coated on the flow through or wall-flow filter. If a wall flow substrate is utilized, the resulting system will be able to remove particulate matter along with gaseous pollutants.
  • the wall-flow filter substrate can be made from materials commonly known in the art, such as cordierite, aluminum titanate or silicon carbide. It will be understood that the loading of the catalytic composition on a wall flow substrate will depend on substrate properties such as porosity and wall thickness, and typically will be lower than loading on a flow through substrate.
  • the ceramic substrate may be made of any suitable refractory material, e.g., cordierite, cordie-rite-alumina, silicon nitride, zircon mullite, spodumene, alumina-silica magnesia, zircon silicate, sillimanite, a magnesium silicate, zircon, petalite, alpha-alumina, an aluminosilicate, and the like.
  • suitable refractory material e.g., cordierite, cordie-rite-alumina, silicon nitride, zircon mullite, spodumene, alumina-silica magnesia, zircon silicate, sillimanite, a magnesium silicate, zircon, petalite, alpha-alumina, an aluminosilicate, and the like.
  • the substrates useful for the catalysts may also be metallic in nature and be composed of one or more metals or metal alloys.
  • the metallic substrates may be employed in various shapes such as corrugated sheet or monolithic form.
  • Suitable metallic supports include the heat resis-tant metals and metal alloys such as titanium and stainless steel as well as other alloys in which iron is a substantial or major component.
  • Such alloys may contain one or more of nickel, chro-mium and/or aluminum, and the total amount of these metals may advantageously comprise at least 15 wt. %of the alloy, e.g., 10-25 wt. %of chromium, 3-8 wt. %of aluminum and up to 20 wt. %of nickel.
  • the alloys may also contain small or trace amounts of one or more other metals such as manganese, copper, vanadium, titanium, and the like.
  • the surface or the metal sub-strates may be oxidized at high temperatures, e.g., 1000 °C and higher, to improve the resis-tance to corrosion of the alloys by forming an oxide layer on the surfaces of the substrates. Such high temperature-induced oxidation may enhance the adherence of the refractory metal oxide support and catalytically promoting metal components to the substrate.
  • zeolitic material obtained according to the inventive process may be deposited on an open cell foam substrate.
  • substrates are well known in the art, and are typically formed of refractory ceramic or metallic materials.
  • a catalyst containing the zeolitic material obtained according to the inventive process for removal of nitrogen oxides NO x from exhaust gases of internal com-bustion engines, in particular diesel engines, which operate at combustion conditions with air in excess of that required for stoichiometric combustion, i.e., lean.
  • the present invention further relates to the use of the inventive zeolitic material according to any of the particular and preferred embodiments as described in the present application as a molecular sieve, as an ad-sorbent, for ion-exchange, as a catalyst or a precursor thereof, and/or as a catalyst support or a precursor thereof, preferably as a catalyst or a precursor thereof and/or as a catalyst support or a precursor thereof, more preferably as a catalyst or a precursor thereof, more preferably as a catalyst for the selective catalytic reduction (SCR) of nitrogen oxides NO x ; for the storage and/or adsorption of CO 2 ; for the oxidation of NH 3 , in particular for the oxidation of NH 3 slip in diesel systems; for the decomposition of N 2 O; as an additive in fluid catalytic cracking (FCC) processes; and/or as a catalyst in organic conversion reactions, preferably in the conversion of alcohols to o
  • SCR selective catalytic reduction
  • a process for the preparation of a zeolitic material comprising YO 2 and X 2 O 3 in its frame-work structure, wherein Y stands for a tetravalent element and X stands for a trivalent element, wherein said process comprises:
  • the mixture prepared in (i) contains from 5 to 200 wt. -%of H 2 O based on 100 wt. -%of the one or more sources of YO 2 , calculated as YO 2 , contained in the mixture pre-pared in (i) and heated in (iii) ,
  • peaks in the range of from -20 to 15 ppm, preferably of from -10 to 12 ppm, more preferably of from -5 to 10 ppm, more preferably of from -3 to 8 ppm, more preferably of from -2 to 7 ppm, more preferably of from -1.5 to 6.5 ppm, more preferably of from -1 to 6 ppm, more preferably of from -0.5 to 5.5 ppm, and more preferably of from 0.5 to 5.0 ppm;
  • the relative 27 Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1 ) and within the range of 15 to -20 ppm (I 2 ) of the zeolitic material offer a ratio of the integration values I 2 : (I 1 + I 2 ) comprised in the range of from 0.5 to 50%, preferably of from 1 to 35%, more preferably of from 3 to 25%, more preferably of from 5 to 18%, more preferably of from 8 to 15%, more preferably of from 9 to 14%, more preferably of from 10 to 13%, and more preferably of from 11 to 12%,
  • the one or more peaks (PX) consists of one or two peaks (PX) , more preferably of one peak (PX) ,
  • the energy intake of the mixture during the grinding and/or mixing procedure is in the range of from 0.5 to 120 kJ/kg of the mixture, preferably of from 0.8 to 80 kJ/kg of the mixture, more preferably of from 1 to 50 kJ/kg of the mixture, more preferably of from 2 to 25 kJ/kg of the mixture, more preferably of from 3 to 15 kJ/kg of the mixture, more preferably of from 4 to 10 kJ/kg of the mixture, and more preferably of from 5 to 7 kJ/kg, wherein the energy intake is preferably deter-mined as described in reference example 1.
  • the rate of energy transfer to the mix-ture in (ii) is in the range of from 10 to 1,500 kJ/ (kg*h) , preferably from 50 to 1,200 kJ/ (kg*h) , more preferably from 100 to 1,000 kJ/ (kg*h) , more preferably from 150 to 800 kJ/ (kg*h) , more preferably from 200 to 600 kJ/ (kg*h) , more preferably from 250 to 500 kJ/ (kg*h) , more preferably from 300 to 450 kJ/ (kg*h) , more preferably from 330 to 400 kJ/ (kg*h) , and more preferably from 350 to 370 kJ/ (kg*h) .
  • a stirred media mill preferably from the group consisting of a stirred media mill, a ball mill, a roller mill, a pla- netary mill, and a high shear mixer,
  • the ball mill comprises a volume having a cylindrical geometry, wherein the diameter of the volume having a cylindrical geometry is in the range of from 200 to 400 mm, preferably in the range of from 250 to 350 mm, more preferably in the range of from 280 to 320 mm, more preferably in the range of from 290 to 310 mm, more preferably in the range of from 295 to 305 mm.
  • zeolitic material obtained in (iii) has a framework structure type selected from the group consisting of AEI, AFX, ANA, BEA, BEC, CAN, CHA, CDO, EMT, ERI, EUO, FAU, FER, GME, HEU, ITH, ITW, KFI, LEV, MEI, MEL, MFI, MOR, MTN, MWW, OFF, RRO, RTH, SAV, SFW, SZR, and TON, including mixed structures of two or more thereof, preferably from the group consisting of CAN, AEI, EMT, SAV, SZR, KFI, ERI, OFF, RTH, GME, AFX, SFW, BEA, CHA, FAU, FER, HEU, LEV, MEI, MEL, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, BEA, CHA, FAU, FER, HEU,
  • the one or more sources for YO 2 are one or more solid sources for YO 2
  • the one or more sources for YO 2 comprises one or more compounds selected from the group consisting of silicas, silicates, silicic acid and combinations of two or more thereof, preferably selected from the group consisting of silicas, alkali metal silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, colloidal silica, reactive amorphous solid silica, silica gel, pyrogenic silica, lithium silicates, sodium sili-cates, potassium silicates, silicic acid, and combinations of two or more thereof, more pre-ferably selected from the group consisting of fumed silica, silica gel, pyrogenic silica, Na 2 SiO 3 , silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed si
  • silica gel has the formula SiO 2 ⁇ x H 2 O, wherein x is in the range of from 0.1 to 1.165, preferably from 0.3 to 1.155, more prefera-bly from 0.5 to 1.15, more preferably from 0.8 to 1.13, and more preferably from 1 to 1.1.
  • the one or more sources for X 2 O 3 are one or more solid sources for X 2 O 3 , wherein preferably the one or more sources for X 2 O 3 comprises one or more compounds selected from the group consisting of aluminum sulfates, sodium aluminates, and boehmite, wherein preferably the one or more sources for X 2 O 3 comprises Al 2 (SO 4 ) 3 and/or NaAlO 2 , preferably Al 2 (SO 4 ) 3 , wherein more prefera-bly the one or more sources for X 2 O 3 is Al 2 (SO 4 ) 3 and/or NaAlO 2 , preferably Al 2 (SO 4 ) 3 .
  • the one or more sources for YO 2 are one or more solid sources for YO 2
  • the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, more preferably from the group consisting of BEA, FAU, GIS, MOR, LTA, and a mixed structure of two or more thereof, more preferably having an FAU framework structure type.
  • the one or more sources for X 2 O 3 are one or more solid sources for X 2 O 3 , wherein preferably the one or more sources for X 2 O 3 com-prises a zeolitic material having a framework structure type selected from the group con-sisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, more preferably selected from the group consist-ing of BEA, FAU, GIS, MOR, LTA, and a mixed structure of two or more thereof, prefera-bly having an FAU framework structure type.
  • a framework structure type selected from the group con-sisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, more preferably selected from the group consist-ing of BEA, FAU, GIS, MOR,
  • any one of embodiments 38 to 40, wherein the zeolitic material has a mo-lar ratio of silica to alumina, silica : alumina, in the range of from 10 to 50, preferably in the range of from 20 to 40, more preferably in the range of from 23 to 37.
  • the mixture prepared in (i) comprises one or more alkali metals M, wherein the molar ratio M : YO 2 of the one or more alkali metals M to the one or more sources of YO 2 , calculated as YO 2 , ranges from 0.05 to 3, preferably of from 0.1 to 2, more preferably of from 0.2 to 1.5, more preferably of from 0.3 to 1, more preferably of from 0.35 to 0.8, and more preferably of from 0.4 to 0.5.
  • the one or more alkali metals M comprise one or more alkali metals selected from the group consisting of Li, Na, K, Rb, Cs, and combina-tions of two or more thereof, more preferably from the group consisting of Li, Na, Rb and combinations of two or more thereof, wherein more preferably the one or more alkali met-als M are Li and/or Na, more preferably Na, wherein more preferably the one or more al-kali metals M is sodium.
  • the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, preferably for 1-adamantyl.
  • R 4 stands for optionally heterocyclic and/or optionally substituted adamantyl and/or benzyl, preferably for optionally heterocyclic and/or optionally substituted 1-adamantyl, more preferably for optionally substituted ada-mantyl and/or benzyl, more preferably for optionally substituted 1-adamantyl, more prefer-ably for unsubstituted adamantyl and/or benzyl, and more preferably for unsubstituted 1-adamantyl.
  • any of embodiments 47 to 49, wherein the one or more tetraalkylammo-nium cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more N, N, N-tri (C 1 -C 4 ) alkyl-1-adamantylammonium compounds, preferably one or more N, N, N-tri (C 1 -C 3 ) alkyl-1-adamantylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantylammonium and/or one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantylammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-1-adamantyl
  • any of embodiments 47 to 50 wherein the one or more tetraalkylammo-nium cation R 1 R 2 R 3 R 4 N + -containing compounds are salts, preferably one or more salts se-lected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mix-tures of two or more thereof, more preferably from the group consisting of bromide, chlo-ride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds are tetraalky-lammonium hydroxides and/or bromides, and more preferably tetraalkylammonium hy-droxides.
  • the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl.
  • R 3 stands for optionally substituted and/or optionally branched (C 1 -C 6 ) alkyl, preferably (C 1 -C 5 ) alkyl, more preferably (C 1 -C 4 ) alkyl, more preferably (C 1 -C 3 ) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 3 stands for optionally substituted ethyl, preferably unsubsti-tuted ethyl.
  • R 4 stands for optionally heterocyclic and/or optionally substituted 5-to 8-membered cycloalkyl, preferably for 5-to 7-membered cycloalkyl, more preferably for 5-or 6-membered cycloalkyl, wherein more preferably R 4 stands for optionally heterocyclic and/or optionally substituted 6-membered cycloalkyl, preferably optionally substituted cyclohexyl, and more preferably unsubstituted cyclohexyl.
  • any of embodiments 52 to 55, wherein the one or more tetraalkylammo-nium cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more N, N, N-tri (C 1 -C 4 ) alkyl- (C 5 -C 7 ) cycloalkylammonium compounds, preferably one or more N, N, N-tri (C 1 -C 3 ) alkyl- (C 5 -C 6 ) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl- (C 5 -C 6 ) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-cyclopentylammonium and/or one or more N, N, N-tri (C 1 -C 2 ) alkyl-cyclohexylammonium compounds, more
  • any of embodiments 52 to 56, wherein the one or more tetraalkylammo-nium cation R 1 R 2 R 3 R 4 N + -containing compounds are salts, preferably one or more salts se-lected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mix-tures of two or more thereof, more preferably from the group consisting of bromide, chlo-ride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds are tetraalky-lammonium hydroxides and/or bromides, and more preferably tetraalkylammonium hy-droxides.
  • the zeolitic material obtained in (iii) has a CHA-type framework structure, wherein preferably the zeolitic material having a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21,
  • the zeolitic material obtained in (iii) comprises chabazite and/or SSZ-13, preferably chabazite, and wherein more preferably the zeolitic material obtained in (iii) is chabazite and/or SSZ-13, preferably SSZ-13.
  • the mixture prepared in (i) and crys-tallized in (iii) further comprises seed crystals, wherein the amount of the seed crystals contained in the mixture prepared in (i) and heated in (iii) preferably ranges from 1 to 30 wt. -%based on 100 wt. -%of the one or more sources of YO 2 , calculated as YO 2 , prefera-bly from 3 to 25 wt. -%, more preferably from 5 to 20 wt. -%, more preferably from 8 to 18 wt. -%, more preferably from 10 to 16 wt. -%, and more preferably from 12 to 14 wt. -%.
  • the seed crystals contained in the mixture pre-pared in (i) and heated in (iii) comprise one or more zeolitic materials, wherein the one or more zeolitic materials preferably have a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, and TON, including mixed structures of two or more thereof, pre-ferably from the group consisting of AEI, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consist-ing of AEI, BEA, CHA, MFI, MOR, and MWW, including mixed structures of two or more thereof, wherein more preferably the one or more zeolitic materials have an AEI-and/or CHA-type framework structure, preferably
  • the one or more zeolitic materials having a CHA-type framework structure comprised in the seed crystals is chabazite and/or SSZ-13, preferably SSZ-13.
  • the seed crystals contained in the mixture prepared in (i) and heated in (iii) comprise one or more zeolitic materials having the framework structure of the zeolitic material comprising YO 2 and X 2 O 3 in its framework structure obtained according to the process of any of embodiments 1 to 66, wherein pre-ferably the one or more zeolitic materials of the seed crystals is obtainable and/or ob-tained according to the process of any of embodiments 1 to 66.
  • a zeolitic material comprising YO 2 and X 2 O 3 in its framework structure obtainable and/or obtained according to the process of any of embodiments 1 to 70.
  • zeolitic material of embodiment 71 wherein the zeolitic material has a CHA-type framework structure, wherein preferably the zeolitic material is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21,
  • the zeolitic material comprises chabazite and/or SSZ-13, prefer-ably SSZ-13, and wherein more preferably the zeolitic material is chabazite and/or SSZ-13, preferably SSZ-13.
  • the zeolitic material of embodiment 71 or 72, wherein the mean particle size D50 by vo-lume of the zeolitic material as determined according to ISO 13320: 2009 is in the range of from 0.1 to 10 ⁇ m, and is preferably in the range of from 0.3 to 6.0 ⁇ m, more preferably in the range of from 1.5 to 4.5 ⁇ m, and more preferably in the range of from 2.5 to 3.6 ⁇ m.
  • zeolitic material according to any of embodiments 71 to 73 as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst or a precursor thereof, and/or as a catalyst support or a precursor thereof, preferably as a catalyst or a precursor thereof and/or as a catalyst support or a precursor thereof, more preferably as a catalyst or a pre-cursor thereof, more preferably as a catalyst for the selective catalytic reduction (SCR) of nitrogen oxides NO x ; for the storage and/or adsorption of CO 2 ; for the oxidation of NH 3 , in particular for the oxidation of NH 3 slip in diesel systems; for the decomposition of N 2 O; as an additive in fluid catalytic cracking (FCC) processes; and/or as a catalyst in organic conversion reactions, preferably in the conversion of alcohols to olefins, and more prefer-ably in methanol to olefin (MTO) cat
  • SCR selective
  • Figure 1 displays the 27 Al MAS NMR of the mechanochemically activated reaction mixture of example 1, wherein the chemical shift in ppm is plotted along the abscissa and the relative intensity in arbitrary units is shown along the ordinate. Furthermore, the in-tegration values for the relative intensity integral within the range of 80 to 20 ppm and within the range of 15 to -20 ppm are respectively indicated along the ordinate.
  • Figure 2 displays the 27 Al MAS NMR of the mechanochemically activated reaction mixture of example 8, wherein the chemical shift in ppm is plotted along the abscissa and the relative intensity in arbitrary units is shown along the ordinate. Furthermore, the in-tegration values for the relative intensity integral within the range of 80 to 20 ppm and within the range of 15 to -20 ppm are respectively indicated along the ordinate.
  • Figure 3 displays the results from catalytic testing in a standard selective catalytic reduction test for Examples 13, 14, 15, and 16, respectively.
  • the temperature in °C is shown on the abscissa and the NOx conversion, X -NOx, in %is shown on the ordinate.
  • the circles refer to samples tested in fresh state, the diamonds refer to samples tested after aging at 650 °C, and the triangles refer to samples tested after aging at 820 °C.
  • the energy intake of a mixture which is subject to grinding is determined by measuring the torque of the given mill with and without the mixture subject to milling and calcu-lating the difference.
  • the no-load value is then subtracted of the value as received during the trial. With this value the specific energy input in kJ/kg can be calculated.
  • the torque with and without material load is determined and the specific energy input is calculated, or the power input with and without material is determined.
  • the no-load value is subtracted from the load value and the specific energy input as actually intro-duced into the product is calculated.
  • the energy intake was determined via determination of the torque using a torque-determination apparatus IC3001-Ex (German: “Drehmoment-Mess worn IC3001-Ex” ; Dr. Staiger, Mohilo & Co. GmbH, Schorndorf) and a torque-rotation speed determination apparatus IC3001-Ex-n (German: “Drehmoment-Drehiere-Mess responded IC3001-Ex-n” ; Dr. Staiger, Mo-hilo & Co. GmbH, Schorndorf) , whereby manual no. 1294 dated May 13, 1993 (German: “Prüfantechnisch Nr. 1294” ) was used.
  • the torque-determination apparatus was used according to the suggested installation under item 5.1 in manual no. 1234 (German: “Bedienungsantechnisch Nr. 1234” ) , the mechanical installation (German: “3.1 Mechanischer philosophical” ) was done accord-ing to the suggested installation under item 3.1 of said manual, and the electrical installation (German: “3.2 Elektrischer philosophical” ) according to the suggested installation under item 3.2 of said manual.
  • samples were 27 Al solid-state nuclear magnetic reson-ance (NMR) was performed using the following devices, procedures and parameters: Storage of samples at 62%relative humidity for at least 60 hours prior to packing, packing of samples into 4mm ZrO 2 rotors with Kel-F caps, Bruker Avance III spectrometer with 9.4 Tesla magnet, 10 kHz ( ⁇ /2 ⁇ ) magic angle spinning, one-pulse radiofrequency excitation corresponding to a 0.83 ⁇ s 15°-pulse on AlCl 3 -solution (1%in H 2 O) , 10 ms acquisition of the free induction decay, no heteronuclear 1 H radiofrequency decoupling, averaging of at least 5120 scans with a recycle delay of 0.5s, Fourier transform with 10 Hz exponential line broadening for noise suppression, manual phasing and baseline correction in Bruker Topspin 3.0.
  • the 27 Al solid-state nuclear magnetic resonance (NMR) can be performed as fol-lows.
  • 27 Al solid-state nuclear magnetic resonance (NMR) was performed using the following devices, procedures and parameters: Storage of samples at 62 %relative humidity for at least 60 hours prior to packing, packing of samples into 3.2 mm ZrO 2 rotors with Vespel or Kel-F caps, Bruker Avance Neo spectrometer with 14.1 Tesla magnet, 15 kHz ( ⁇ /2 ⁇ ) magic angle spinning, one-pulse radiofrequency excitation corresponding to a 0.83 to 0.92 ⁇ s 15°-pulse on AlCl 3 -solution (1 %in H 2 O) , 7 to 15 ms acquisition of the free induction decay, no heteronuclear 1 H radiofrequency decoupling, averaging of at least 5120 scans with a recycle delay of 0.5 s, Fourier transform with 0 to 20 Hz exponential line broadening for noise suppression, manual phasing and baseline correction in Bruker Topspin 3.
  • Powder X-ray diffraction (PXRD) data was collected using a diffractometer (D8 Advance Series II, Bruker AXS GmbH) equipped with a LYNXEYE detector operated with a Copper anode X-ray tube running at 40kV and 40mA. The geometry was Bragg-Brentano, and air scattering was reduced using an air scatter shield. The crystallinity was determined using DIFFRAC. EVA soft-ware (User Manual for DIFFRAC. EVA, Bruker AXS GmbH, Düsseldorf) .
  • the resulting material had a particle size distribu-tion affording a Dv10 value of 1.4 micrometer, a Dv50 value of 5.0 micrometer, and a Dv90 val-ue of 16.2 micrometer.
  • the material displayed a BET specific surface area of 558 m 2 /g, a silica to alumina ratio of 34, a crystallinity of 105 %as determined by powder X-ray diffraction.
  • the sodium content of the product was determined to be 0.75 weight-%calculated as Na 2 O.
  • Example 1 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
  • the 27 Al MAS NMR of the mechanochemically activated reaction mixture is displayed in figure 1 and shows a relative 27 Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1 ) of 88.7 and within the range of 15 to -20 ppm (I 2 ) of 11.3 such as to afford a ratio of the integra-tion values I 2 : (I 1 + I 2 ) of 11.3.
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and calcined at 600 °C.
  • the crystallinity of the sample was 92 %and consisted of CHA with small traces of MTN (not quantifiable) .
  • Example 2 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and calcined at 600 °C.
  • the crystallinity of the sample was 94 %and consisted of 98 %CHA and 2 %MOR.
  • Example 3 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
  • the sample was crystallized for 18 hours at 240 °C, washed, filtrated and calcined at 550 °C.
  • the crystallinity of the sample was 89 %.
  • CHA a high quantity of side products such as MOR, FER, MTN, RUV-10 and Quartz were formed by mechanochemical syn-thesis.
  • Example 5 Solidothermal synthesis of a zeolitic material having framework type CHA via me-chanochemical activation
  • silica gel (SiO 2 ⁇ 1.16 H 2 O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 91.24 g Na 2 SiO 3 ⁇ 9 H 2 O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd.
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and calcined at 550 °C.
  • the crystallinity of the sample was 85 %consisting of CHA and small traces of MTN (could not be quantified) .
  • Example 6 Solidothermal synthesis of a zeolitic material having framework type CHA via me-chanochemical activation
  • silica gel (SiO 2 ⁇ 1.16 H 2 O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 76.04 g Na 2 SiO 3 ⁇ 9 H 2 O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd.
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and calcined at 550 °C.
  • the crystallinity of the sample was 82 %consisting of CHA and small traces of MTN (could not be quantified) .
  • Example 7 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation 27.73 g Silicagel (SiO 2 ⁇ 1.16 H 2 O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 28.58 g Na 2 SiO 3 ⁇ 9 H 2 O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 12.31 g Al 2 (SO 4 ) 3 hydrate (analytical grade, 98 %; ABCR GmbH Düsseldorf) , 3.37 g CHA seeds were gently mixed in a vessel with a spatula.
  • Silicagel SiO 2 ⁇ 1.16 H 2 O; Qingdao Haiyang Chemical Reagent Co, Ltd.
  • 28.58 g Na 2 SiO 3 ⁇ 9 H 2 O analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd.
  • the powder was then introduced into a stirred media mill (PML Drais from Bühler) with a grinding volume of 0.94 l. As grinding media zircon oxide beads with a diameter of 2.8 –3.3 mm were taken. The filling degree of the grinding media was 50 %. 22 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%N, N, N-trimethyl-1-adamantylammonium hydroxide (TMAdAOH) in deionized water) were introduced into the mill. Afterwards the mill was closed and operated in batch mode. The tip speed was set to 5 m/s. The mixture was ground for 2 minutes.
  • N, N, N-1-trimethyladamantylammonium hydroxide 47.8 weight-%N, N, N-trimethyl-1-adamantylammonium hydroxide (TMAdAOH) in deionized water
  • the 27 Al MAS NMR of the mechanochemically activated reaction mixture displayed a relative 27 Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1 ) of 88.8 and within the range of 15 to -20 ppm (I 2 ) of 11.2 such as to afford a ratio of the integration values I 2 : (I 1 + I 2 ) of 11.2.
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and calcined at 600 °C.
  • the crystallinity of the sample was 90 %and consisted of CHA and some traces of MTN.
  • Example 8 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
  • the 27 Al MAS NMR of the mechanochemically activated reaction mixture is displayed in figure 2 and shows a relative 27 Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1 ) of 91.2 and within the range of 15 to -20 ppm (I 2 ) of 8.8 such as to afford a ratio of the integra-tion values I 2 : (I 1 + I 2 ) of 8.8.
  • the mill was closed and operated in batch mode.
  • the tip speed was set to 5 m/s.
  • the mixture was ground for 2 minutes.
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and calcined at 600 °C.
  • the crystallinity of the sample was 91 %and consisted of CHA and some traces of MTN.
  • Example 9 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
  • the 27 Al MAS NMR of the mechanochemically activated reaction mixture displayed a relative 27 Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1 ) of 89.4 and within the range of 15 to -20 ppm (I 2 ) of 10.6 such as to afford a ratio of the integration values I 2 : (I 1 + I 2 ) of 10.6.
  • the mill was closed and operated in batch mode.
  • the tip speed was set to 8 m/s.
  • the mixture was ground for 2 minutes.
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and calcined at 600 °C.
  • the crystallinity of the sample was 91 %and consisted of CHA and some traces of MTN.
  • Example 10 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
  • the 27 Al MAS NMR of the mechanochemically activated reaction mixture displayed a relative 27 Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1 ) of 86.2 and within the range of 15 to -20 ppm (I 2 ) of 13.8 such as to afford a ratio of the integration values I 2 : (I 1 + I 2 ) of 13.8.
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and calcined at 600 °C.
  • the crystallinity of the sample was 93 %and consisted of CHA.
  • Example 11 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
  • the 27 Al MAS NMR of the mechanochemically activated reaction mixture displayed a relative 27 Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1 ) of 85.7 and within the range of 15 to -20 ppm (I 2 ) of 14.3 such as to afford a ratio of the integration values I 2 : (I 1 + I 2 ) of 14.3.
  • Example 12 Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
  • silica gel (SiO 2 ⁇ 1.16 H 2 O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 456.22 g Na 2 SiO 3 ⁇ 9 H 2 O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd.
  • the sample was crystallized for 2 hours at 240 °C, washed, filtrated and cal-cined at 550 °C.
  • the final product displayed a crystallinity of 85 %and consisted of 98.5 wt. -%CHA and 1.5 wt. -%ZSM-39.
  • Example 13 Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
  • the XRD of the mechanochemically activated reaction mixture showed a crystallinity of 35 %consisting of 28 %CHA and 72 %Thenardite.
  • the resulting material had a carbon content of 0.21 g/100 g, a silicon content of 38 g/100 g, an aluminum content of 3.6 g/100 g, and a sodium con-tent of 2.1 g/100 g. Further, the resulting material had a BET specific surface area of 491 m 2 /g.
  • aqueous solution of ammonium nitrate (10 weight-%of ammonium nitrate in water) is pre-pared in a 500 ml flask and heated to 80 °C.
  • a portion of the zeolitic material prepared accord-ing to a) was then added to the solution under heating, wherein the weight ratios of zeolite : ammonium nitrate : deionized water in the heated mixture were 1 : 1 : 10.
  • the resulting mixture was then stirred for 2 h at 80 °C.
  • the suspension was then filtered off and washed with water.
  • the filter cake was then dried at 120 °C over night and subsequently calcined at 450 °C for 6 h.
  • the resulting material had a carbon content of 0.12 g/100 g, a silicon content of 39 g/100 g, an aluminum content of 3.4 g/100 g, and a sodium content of 0.24 g/100 g.
  • a sample of the zeolitic material prepared according to a) was ion-exchanged with copper using incipient wetness impregnation.
  • the impregnated materials was then sealed and stored in an oven for 20 h at a temperature of 50 °C. Subsequently, the impregnated material was dried and then calcined for 5 h at 450 °C.
  • the copper loading of the obtained material was 3.95 weight-%.
  • a sample of the impregnated material obtained from c) was mixed with pre-milled alumina (TM 100/150 slurry; pre-milled in a ball-mill at 500 rpm for 10 min) in a weight ratio of 70 %sample to 30 %alumina.
  • the resulting mixture was dried under stirring and subsequently calcined for 1 h at a temperature of 550 °C. Then, the obtained calcined material was crushed and sieved to obtain particles having a particle size in the range of from 250 to 500 ⁇ m.
  • Example 14 Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
  • zeolite Y (DY-43 Zeolite from Shandong Qilu Huaxin) , 87.81 g NaOH powder (Sigma Aldrich) , 15.0 g CHA seeds and 240.8 g of an aqueous solution of N, N, N-1-trimethyl-adamantylammonium hydroxide (TMAdAOH; 50 weight-%TMAdAOH in deioinized water; SA-CHEM) were introduced into a batch kneader equipped with sigma blades (LK II from Linden) . The material was stressed for 5 minutes with 23 rpm (faster blade) at a temperature in the range of 25-65 °C.
  • TMAdAOH N, N-1-trimethyl-adamantylammonium hydroxide
  • the resulting material had a carbon content of 0.14 g/100 g, a silicon content of 39 g/100 g, an alu-minum content of 2.9 g/100 g, and a sodium content of 1.3 g/100 g. Further, the resulting ma-terial had a BET specific surface area of 669.0 m 2 /g.
  • aqueous solution of ammonium nitrate (10 weight-%of ammonium nitrate in water) is pre-pared in a 500 ml flask and heated to 80 °C.
  • a portion of the zeolitic material prepared accord-ing to a) was then added to the solution under heating, wherein the weight ratios of zeolite : ammonium nitrate : deionized water in the heated mixture were 1 : 1 : 10.
  • the resulting mixture was then stirred for 2 h at 80 °C.
  • the suspension was then filtered off and washed with water.
  • the filter cake was then dried at 120 °C over night and subsequently calcined at 450 °C for 6 h.
  • the resulting material had a silicon content of 41 g/100 g, an aluminum content of 2.8 g/100 g, and a sodium content of 0.06 g/100 g.
  • a sample of the zeolitic material prepared according to a) was ion-exchanged with copper using incipient wetness impregnation.
  • the impregnated materials was then sealed and stored in an oven for 20 h at a temperature of 50 °C. Subsequently, the impregnated material was dried and then calcined for 5 h at 450 °C.
  • the copper loading of the obtained material was 3.17 weight-%.
  • a sample of the impregnated material obtained from c) was mixed with pre-milled alumina (TM 100/150 slurry; pre-milled in a ball-mill at 500 rpm for 10 min) in a weight ratio of 70 %sample to 30 %alumina.
  • the resulting mixture was dried under stirring and subsequently calcined for 1 h at a temperature of 550 °C. Then, the obtained calcined material was crushed and sieved to obtain particles having a particle size in the range of from 250 to 500 ⁇ m.
  • Example 15 Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
  • zeolite Y 162.6 g zeolite Y (DY-43 Zeolite from Shandong Qilu Huaxin) , 35.1 g NaOH powder (Sigma Aldrich) , 6.0 g CHA seeds and 96.3 g of an aqueous solution of N, N, N-1-trimethyl-adamantylammonium hydroxide (TMAdAOH; 50 weight-%TMAdAOH in deioinized water; SA-CHEM) were introduced into a laboratory high shear mixer equipped with a micro granulation tool (Eirich EL1 mixer from Eirich) . The material was stressed for 5 minutes at a rotor tip speed of 21 m/swhile the mixing pan rotated countercurrent at 170 rpm, whereby the material had at a temperature in the range of 20-53 °C.
  • TMAdAOH N, N-1-trimethyl-adamantylammonium hydroxide
  • the 27 Al MAS NMR of the mechanochemically activated reaction mixture displayed a peak hav-ing a maximum at 61.6 ppm.
  • the resulting material had a carbon content of 0.06 g/100 g, a silicon content of 38 g/100 g, an aluminum content of 2.7 g/100 g, and a sodium content of 1.1 g/100 g. Further, the resulting material had a BET specific surface area of 699.1 m 2 /g.
  • aqueous solution of ammonium nitrate (10 weight-%of ammonium nitrate in water) is pre-pared in a 500 ml flask and heated to 80 °C.
  • a portion of the zeolitic material prepared accord-ing to a) was then added to the solution under heating, wherein the weight ratios of zeolite: ammonium nitrate: deionized water in the heated mixture were 1: 1: 10.
  • the resulting mixture was then stirred for 2 h at 80 °C.
  • the suspension was then filtered off and washed with water.
  • the filter cake was then dried at 120 °C over night and subsequently calcined at 450 °C for 6 h.
  • the resulting material had a silicon content of 37 g/100 g, an aluminum content of 2.5 g/100 g, and a sodium content of less than 0.01 g/100 g.
  • a sample of the zeolitic material prepared according to a) was ion-exchanged with copper using incipient wetness impregnation.
  • the impregnated materials was then sealed and stored in an oven for 20 h at a temperature of 50 °C. Subsequently, the impregnated material was dried and then calcined for 5 h at 450 °C.
  • the copper loading of the obtained material was 3.14 weight-%.
  • a sample of the impregnated material obtained from c) was mixed with pre-milled alumina (TM 100/150 slurry; pre-milled in a ball-mill at 500 rpm for 10 min) in a weight ratio of 70 %sample to 30 %alumina.
  • the resulting mixture was dried under stirring and subsequently calcined for 1 h at a temperature of 550 °C. Then, the obtained calcined material was crushed and sieved to obtain particles having a particle size in the range of from 250 to 500 ⁇ m.
  • Example 16 Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
  • the 27 Al MAS NMR of the mechanochemically activated reaction mixture displayed a peak hav-ing a maximum at 61.8 ppm.
  • the sample was crystallized for 4 hours at 190 °C, washed, centrifuged and calcined at 550 °C.
  • the crystallinity of the resulting material was 91 %and consisted of 100 weight-%CHA.
  • the resulting material had a silicon content of 37 g/100 g, an aluminum content of 2.6 g/100 g, and a sodium content of 1.1 g/100 g. Further, the resulting material had a BET specific surface area of 677.0 m 2 /g.
  • aqueous solution of ammonium nitrate (10 weight-%of ammonium nitrate in water) is pre-pared in a 500 ml flask and heated to 80 °C.
  • a portion of the zeolitic material prepared accord-ing to a) was then added to the solution under heating, wherein the weight ratios of zeolite : ammonium nitrate : deionized water in the heated mixture were 1 : 1 : 10.
  • the resulting mixture was then stirred for 2 h at 80 °C.
  • the suspension was then filtered off and washed with water.
  • the filter cake was then dried at 120 °C over night and subsequently calcined at 450 °C for 6 h.
  • the resulting material had a silicon content of 37 g/100 g, an aluminum content of 2.5 g/100 g, and a sodium content of less than 0.01 g/100 g.
  • a sample of the zeolitic material prepared according to a) was ion-exchanged with copper using incipient wetness impregnation.
  • the impregnated materials was then sealed and stored in an oven for 20 h at a temperature of 50 °C. Subsequently, the impregnated material was dried and then calcined for 5 h at 450 °C.
  • the copper loading of the obtained material was 3.14 weight-%.
  • a sample of the impregnated material obtained from c) was mixed with pre-milled alumina (TM 100/150 slurry; pre-milled in a ball-mill at 500 rpm for 10 min) in a weight ratio of 70 %sample to 30 %alumina.
  • the resulting mixture was dried under stirring and subsequently calcined for 1 h at a temperature of 550 °C. Then, the obtained calcined material was crushed and sieved to obtain particles having a particle size in the range of from 250 to 500 ⁇ m.
  • Example 17 Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
  • zeolite Y 162.6 g zeolite Y (DY-43 Zeolite from Shandong Qilu Huaxin) , 35.1 g NaOH powder (Sigma Aldrich) , 6.0 g CHA seeds and 96.3 g of an aqueous solution of N, N, N-1-trimethyl- adamantylammonium hydroxide (TMAdAOH; 50 weight-%TMAdAOH in deioinized water; SA-CHEM) were introduced into a single shaft batch kneader (DTB kneader from List) . The material was stressed for 3 minutes with 21 rpm.
  • TMAdAOH N, N, N-1-trimethyl- adamantylammonium hydroxide
  • Example 18 Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
  • the crystallization process in solidothermal synthesis may be considerably increased by applying a step of mechanochemical activation to the reaction mixture prior to the step of crystallization.
  • a specific amount of controlled grinding and/or mixing of the reaction mixture prior to the hydrothermal crystallization leads to a substantial in-crease in the rate of crystallization, such that the space-time yield of the reaction may be consi-derably increased. This effect is even apparent even in view of prior art documents relating to solidothermal synthesis which teach a grinding step prior to the crystallization process.
  • Example 5 and Figure 10 of WO 2018/059316 A1 which displays the results from crystallization of a zeolitic material having the CHA-type framework structure in solidother-mal synthesis at different temperatures
  • crystallization at 240 °C requires 5 h
  • the ma-terials of the examples of the present application may be obtained after only 2 h at the same temperature.
  • This result is all the more surprising considering the fact that WO 2018/059316 A1 teaches the manual grinding of the reaction mixture for 5 min prior to the crystallization thereof.
  • Example 19 Production of a shaped body with the CHA material of example 11
  • Comparative Example 20 Production of a shaped body with a CHA material from conventional synthesis
  • the mixture was charged to a 23-mL Teflon-lined au-toclave.
  • the tightly closed autoclave was placed in an oven pre-heated at 175 °C.
  • Hydrothermal treatment was carried out at 175 °C with 20 rpm tumbling for 48 h.
  • the sample was collected using centrifugation at 14,000 rpm and washed with water until the pH of the washing water was in the range of from 7–8.
  • the solid product was dried in air at 80 °C and calcined in air at 600 °Cfor 5 h.
  • the product displayed a CHA-type framework structure and had a crystallinity of 100%.
  • zeolitic material as obtained from larger scale synthesis according to the foregoing procedure were placed in a kneader and admixed with 5 g of methyl cellulose (Walocel) and 27.78 g of colloidal silica (Ludox AS 40) and the mixture kneaded for 10 min. 79 ml of distilled water were then added to the mixture which was then further kneaded for 60 min. The mixture was then extruded at 64 bars to strands having a diameter of 2.5 mm. The strands were dried at 120 °C for 6 h and then calcined at 500 °C for 5 h.
  • reactor entrance filled to 6cm before the end of the reactor
  • Methanol (ca. 30%in nitrogen) was guided through a saturator (60 °C) with cooling spiral (40 °C) to a pre-evaporator (200 °C) and then through the reactor (400-500 °C) at a WHSV of about 0.8 for 24 h, and the gas produced in the reactor was then continuously analyzed with a gas chro-matograph.
  • the zeolitic material ob-tained according to the inventive method leads to an improved selectivity towards propylene than when using a zeolitic material obtained without mechanochemical activation.
  • the selectivity towards etheylene is comparable, such that it has furthermore surprising-ly been found that the C2+C3 selectivity is noticeably higher than when using a zeolitic material obtained without mechanochemical activation.
  • Example 22 Catalyst Testing in Selective catalytic reduction with ammonia (NH 3 -SCR)
  • Samples of the prepared zeolitic materials according to the present invention were tested with respect to their performance in a standard selective catalytic reduction test. Samples were tested in fresh state, after aging for 50 h at a temperature of 650 °C in a gas atmosphere com-prising 10 %steam and air, and after aging for 16 h at a temperature of 820 °C in a gas atmos-phere comprising 10 %steam and air.
  • the feed stream had a gas hourly space velocity of 80000 h -1 , and comprised 500 ppm NO, 500 ppm ammonia, 5 %water, 10 %oxygen, and was balanced with nitrogen.
  • a sample was adjusted to amount 120 mg per reactor, where-by a sample was diluted with corundum to approximately 1 ml.
  • the copper-exchanged material of Example 13 showed high activity in the fresh state and slightly inferior activity after aging.
  • the material of Example 13 showed an activity of 72 %for the fresh state, of 63 %for the material aged at 650 °C and of 44 %for the material aged at 820 °C.
  • the material of Example 13 showed an activity of 97 %for the fresh state, of 98 %for the ma-terial aged at 650 °C and of 90 %for the material aged at 650 °C.
  • the zeolitic materials of Examples 14 to 16 showed a good activity, especially when used in the fresh state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Provided is a process for the preparation of a zeolitic material comprising YO 2 and X 2O 3 in its framework structure, wherein Y stands for a tetravalent element and X stands for a trivalent element, wherein the process comprises:(i) preparing a mixture comprising one or more sources of YO 2, one or more sources of X 2O 3, and H 2O; (ii) grinding and/or mixing the mixture prepared in (i), wherein the energy intake of the mixture during the grinding and/or mixing procedure is in the range of from 0.3 to 200 kJ/kg of the mixture; (iii) heating the mixture obtained in (ii) at a temperature in the range of from 80 to 300 ℃ for crystallizing a zeolitic material comprising YO 2 and X 2O 3 in its framework structure from the mixture; wherein the mixture prepared in (i) contains from 5 to 200 wt.% of H 2O based on 100 wt.% of the one or more sources of YO 2, calculated as YO 2, contained in the mixture prepared in (i) and heated in (iii). Furthermore, a zeolitic material comprising YO 2 and X 2O 3 in its framework structure as obtainable and/or obtained according to the process as well as the use of the material are provided.

Description

Mechanochemical Activation in Solvent-Free Zeolite Synthesis TECHNICAL FIELD
The present invention relates to a process for the preparation of a zeolitic material including the mechanochemical activation of the reaction mixture prior to crystallization, as well as to a cata-lyst per se as obtainable or obtained according to said process. Furthermore, the present inven-tion relates to the use of the inventive zeolitic material, in particular as a catalyst.
INTRODUCTION
Molecular sieves are classified by the Structure Commission of the International Zeolite Associ-ation according to the rules of the IUPAC Commission on Zeolite Nomenclature. According to this classification, framework-type zeolites and other crystalline microporous molecular sieves, for which a structure has been established, are assigned a three letter code and are described in the Atlas of Zeolite Framework Types, 6th edition, Elsevier, London, England (2007) .
Among said zeolitic materials, Chabazite is a well studied example, wherein it is the classical representative of the class of zeolitic materials having a CHA framework structure. Besides aluminosilicates such as Chabazite, the class of zeolitic materials having a CHA framework structure comprises a large number of compounds further comprising phosphorous in the framework structure are known which are accordingly referred to as silicoaluminophosphates (SAPO) . In addition to said compounds, further molecular sieves of the CHA structure type are known which contain aluminum and phosphorous in their framework, yet contain little or no sili-ca, and are accordingly referred to as aluminophosphates (APO) . Zeolitic materials belonging to the class of molecular sieves having the CHA-type framework structure are employed in a varie-ty of applications, and in particular serve as heterogeneous catalysts in a wide range of reac-tions such as in methanol to olefin catalysis and selective catalytic reduction of nitrogen oxides NO x to name some two of the most important applications. Zeolitic materials of the CHA frame-work type are characterized by three-dimensional 8-membered-ring (8MR) pore/channel sys-tems containing double-six-rings (D6R) and cages.
Zeolitic materials having a CHA-type framework structure and in particular Chabazite with incor-porated copper ions (Cu-CHA) are widely used as heterogeneous catalyst for the selective cata-lytic reduction (SCR) of NO x fractions in automotive emissions. Based on the small pore open-ings and the alignment of the copper ions in the CHA cages, these catalyst systems have a unique thermal stability, which tolerates temperatures higher than 700℃ in presence of H 2O.
Among zeolitic materials having the CHA-type framework structure, high silica aluminosilicate zeolite chabazite (CHA) , SSZ-13, has a three-dimensional pore system with ellipsoidal-shaped large cages
Figure PCTCN2019120954-appb-000001
that are accessible via 8-membered ring windows
Figure PCTCN2019120954-appb-000002
which have attracted great interest because they exhibit extraordinary catalytic properties not only in selective catalytic reduction of NO x with NH 3 (NH 3-SCR) in recent years, but also in methanol to olefin (MTO) and in the conversion of syngas to olefins.
The synthesis of zeolitic materials from simple starting compounds and involves a complex process of self organization which often necessitates special conditions such as elevated tem-peratures and/or pressure, wherein such reactions typically require the heating of starting mate-rials under autogenous pressure for obtaining the zeolitic material after lengthy reaction times ranging from days to several weeks. Accordingly, due to the often harsh reaction conditions and the long reaction times, batch synthesis has long been the method of choice for synthesizing zeolitic materials. Batch reactions however present numerous limitations, in particular relative to the levels of space-time-yield which may be attained.
Efforts have accordingly been invested in finding improved batch reaction procedures as well as alternative methodologies which offer advantages to the classical batch synthetic procedures employed for the synthesis of zeolitic materials. One method which has been investigated in this respect involves the preparation of zeolitic materials which may be performed in the presence of only very little amounts of water or even in the total absence of any solvent. Thus, Ren et al. in J. Am. Chem. Soc. 2012, 134, 15173-15176 and Jin et al. in Angew. Chern. Int. Ed. 2013, 52, 9172-9175 reported the solvent-free synthesis of aluminosilicate and aluminophosphate-based zeolites, emphasizing the advantages linked thereto such as increasing zeolite yield, reducing water pollution, and eliminating high pressure conditions encountered in conventional synthetic methodologies. The importance of solvent-free synthetic methodologies has also been hig-hlighted by Morris et al. in Angew. Chem. Int. Ed. 2013, 52, 2163-2165.
Wu et al. in J. Am. Chem. Soc. 2014, 136, 4019-4025 relates to the solvent-free synthesis of zeolites in the absence of organotemplates, and in particular of ZSM-5 and Beta zeolite. WO 2016/058541 A1 concerns the solidothermal synthesis of zeolitic material in the presence of a fluoride containing compound. WO 2018/059316 A1 relates to a method for the solidothermal synthesis of zeolitic materials which affords improved space-time yields. In particular, WO 2018/059316 A1 relates to a specific process for preparing a zeolitic material having a zeolitic framework structure which exhibits a molar ratio (a Al 2O 3) : SiO 2 or a crystalline precursor the-reof, wherein a is a number in the range of from 0 to 0.5. Preparing a mixture of starting mate-rials may comprise grinding, preferably for a duration of 0.1 to 30 min according to the examples. WO 2018/046481 A1, on the other hand, concerns a solidothermal methodology for the prepa-ration of a layered zeolitic precursor of the MWW framework structure.
WO 2005/039761 A2 relates to a method for making a molecular sieve catalyst involving the aging of the reaction mixture and its analysis via  27Al NMR. US 7,528,089 B2, on the other hand, relates to the processing of a high solids material for the formation of a microporous material  including a rotary calciner or rotary screw as a means of conveying the synthesis mixture conti-nuously or semi-continuously. Finally, WO 2016/153950 A1 describes methods for the synthesis of zeolitic materials involving a step of subjecting the reaction mixture to high shear processing conditions.
CN 104709917 A relates to a method for synthesizing SSZ-13 molecular sieve comprising a step of solid phase grinding, whereby grinding may be performed in a mortar, for a duration of 5-10 min according to the examples. In CN 104709917 A, N, N-dimethyl-N'-ethylcyclohexyl am-monium bromide may be used as templating agent.
CN 107285334 A relates to a method for synthesizing an AEI type molecular sieve comprising a step of solid phase grinding. An alkyl piperidinium compound may be used as templating agent.
CN 103979574 A relates to a method for solid phase synthesis of ITQ-13 or ZSM-5 molecular sieves, wherein ammonium fluoride is used as a mineralizer and a brominated organic template as a templating agent, preferably dimethylammonium bromide. The method comprises grinding of a mixture of the starting materials, whereby grinding may be performed in a mortar, for a du-ration of 5-10 min according to the examples.
CN 102627287 A relates to a method for synthesizing ZSM-5, beta, ZSM-39 and SOD molecu-lar sieves under solvent-free conditions wherein the method comprises grinding of a mixture of starting materials. The templating agent may be tetrapropylammonium bromide, tetraethylam-monium bromide or diaminoguanidine hydrochloride. Grinding may be performed in a mortar, for a duration of 1 min or 15 min according to the examples.
CN 102992343 A relates to an organotemplate-free solid-state method for the synthesis of ZSM-5, Beta, FAU, MOR, LTA and GIS zeolite molecular sieves. According to the examples mixing may be performed in a mortar and grinding for 10 min or 10-20 min.
Compared with the conventional synthesis, the solidothermal synthesis not only has all advan-tages associated with solvent-free synthesis, but also uses minimal organic templates. Taking all of the these advantages into account, it is assumed that the methodology of solidothermal synthesis opens a new door for synthesizing zeolites and may be of great importance for indus-trial production in the near future.
Although progress has been made relative to developing methods for the synthesis of zeolites in the absence of a solvent and in particular in the absence of water, there remains a need for further optimization of the process, in particular with regard to the efficiency of the reaction.
DETAILED DESCRIPTION
It was therefore the object of the present invention to provide an improved process for the prep-aration of zeolitic materials using a solidothermal methodology, in particular with regard to the efficiency of the reaction. Thus, it has quite unexpectedly been found that the crystallization process in solidothermal synthesis may be considerably increased by applying a step of me-chanochemical activation to the reaction mixture prior to the step of crystallization. In particular, it has surprisingly been found that a specific amount of controlled grinding and/or mixing of the reaction mixture prior to the hydrothermal crystallization leads to a substantial increase in the rate of crystallization, such that the space-time yield of the reaction may be considerably in-creased. In particular, as shown by investigation of the mechanochemically activated materials with NMR spectroscopic methods, the mechanical activation creates pre-crystalline zeolite pre-cursors and re-ordering of Al and Si species. More specifically, Al moves into tetrahedral coor-dination, while still having some octahedral Al. After crystallization all Al is in tetrahedral coordi-nation. The present inventive method is furthermore clearly advantageous to the aging of reac-tion mixtures or other procedures which are known in the art for activating a reaction mixture prior to crystallization since it requires far less time than the latter, and is therefore leads to a substantial increase in the efficiency of the process for the production of a zeolitic material.
Therefore, the present invention relates to a process for the preparation of a zeolitic material comprising YO 2 and X 2O 3 in its framework structure, wherein Y stands for a tetravalent element and X stands for a trivalent element, wherein said process comprises:
(i) preparing a mixture comprising one or more sources of YO 2, one or more sources of X 2O 3, and H 2O;
(ii) grinding and/or mixing the mixture prepared in (i) , wherein the energy intake of the mixture during the grinding and/or mixing procedure is in the range of from 0.3 to 200 kJ/kg of the mix-ture;
(iii) heating the mixture obtained in (ii) at a temperature in the range of from 80 to 300 ℃ for crystallizing a zeolitic material comprising YO 2 and X 2O 3 in its framework structure from the mix-ture;
wherein the mixture prepared in (i) contains from 5 to 200 wt. -%of H 2O based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, contained in the mixture prepared in (i) and heated in (iii) .
According to the present invention, it is preferred that the energy intake is determined via de-termination of the torque with a given mill, preferably with a stirred media mill. The torque has to be determined, first without the material of which the energy intake is to be determined and, second, with said material. The torque determined for the experiment without the material of which the energy intake is to be determined is subtracted from the torque determined for the experiment with said material. Based on the result from said calculation, the specific energy input in kJ/kg is calculated. It is also possible to determine the torque with other devices. Thus, either the torque with and without material load can be determined and the energy intake calcu-lated as described above or the power input with material (load value) and without material (no-load value) is determined. With regards to the latter, the no-load value is subtracted from the load value und the energy intake as introduced into the product can be calculated.
It is particularly preferred that the energy intake is determined as described in reference exam-ple 1 as disclosed herein.
No particular restriction applies according to the present invention regarding the mixture ob-tained in (ii) , provided that it has been subject to a grinding and or mixing treatment according to any of the particular or preferred embodiments of the inventive process. It is, however, preferred that the  27Al MAS NMR of the mixture obtained in (ii) comprises:
a first peak (P1) in the range of from 20 to 80 ppm, preferably of from 45 to 65 ppm, pre-ferably of from 50 to 60 ppm, more preferably of from 52 to 58 ppm, more preferably of from 53 to 57 ppm, more preferably of from 53.5 to 56.5 ppm, more preferably of from 54 to 56 ppm, more preferably of from 54.5 to 55.5 ppm, and more preferably of from 55.0 to 55.5 ppm; and
one or more peaks (PX) in the range of from -20 to 15 ppm, preferably of from -10 to 12 ppm, more preferably of from -5 to 10 ppm, more preferably of from -3 to 8 ppm, more prefera-bly of from -2 to 7 ppm, more preferably of from -1.5 to 6.5 ppm, more preferably of from -1 to 6 ppm, more preferably of from -0.5 to 5.5 ppm, and more preferably of from 0.5 to 5.0 ppm;
wherein the relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1) and within the range of 15 to -20 ppm (I 2) of the zeolitic material offer a ratio of the inte-gration values I 2 : (I 1 + I 2) comprised in the range of from 0.5 to 50%, preferably of from 1 to 35%, more preferably of from 3 to 25%, more preferably of from 5 to 18%, more preferably of from 8 to 15%, more preferably of from 9 to 14%, more preferably of from 10 to 13%, and more preferably of from 11 to 12%,
wherein preferably the relative  27Al solid-state NMR intensity integral ratio is measured at 9.4 Tesla and 10 kHz Magic Angle Spinning, and
wherein preferably the one or more peaks (PX) consists of one or two peaks (PX) , more prefer-ably of one peak (PX) .
Alternatively, it is preferred that the  27Al MAS NMR of the mixture obtained in (ii) comprises:
a peak (P1) having a maximum in the range of from 45 to 80 ppm, preferably of from 53 to 72 ppm, preferably of from 55 to 68 ppm, more preferably of from 56 to 67 ppm, more preferably of from 57 to 66 ppm, more preferably of from 58.0 to 65.0 ppm, more preferably of from 59.0 to 64.0 ppm, more preferably of from 60.0 to 63.0 ppm, and more preferably of from 61.4 to 62.2 ppm. As noted above, it is particularly preferred that the  27Al MAS NMR is determined according to Reference Example 2 as disclosed herein.
According to the present invention, it is particularly preferred that the  27Al MAS NMR of the mix-ture obtained in (ii) is determined as described in the experimental section of the present appli-cation. It is particularly preferred that the  27Al MAS NMR is determined according to Reference Example 2 disclosed herein.
As concerns the energy intake of the energy intake of the mixture during the grinding and/or mixing procedure in (ii) , it is preferred according to the present invention that it is in the range of from 0.5 to 120 kJ/kg of the mixture, preferably of from 0.8 to 80 kJ/kg of the mixture, more pre- ferably of from 1 to 50 kJ/kg of the mixture, more preferably of from 2 to 25 kJ/kg of the mixture, more preferably of from 3 to 15 kJ/kg of the mixture, more preferably of from 4 to 10 kJ/kg of the mixture, and more preferably of from 5 to 7 kJ/kg. It is particularly preferred that the energy in-take is determined as described herein, more preferably as described in reference example 1 as disclosed herein.
With respect to the H 2O content of the mixture prepared in (i) and ground in (ii) , it is preferred according to the present invention that said mixture contains from 10 to 150 wt. -%of H 2O based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, contained in the mixture prepared in (i) and heated in (iii) , preferably of from 15 to 120 wt. -%, more preferably of from 20 to 100 wt. -%, more preferably of from 25 to 90 wt. -%, more preferably of from 30 to 80 wt. -%, more preferably of from 35 to 75 wt. -%, more preferably of from 40 to 70 wt. -%, more preferably of from 45 to 65 wt. -%, more preferably of from 50 to 60 wt. -%, and more preferably of from 52 to 56 wt. -%.
As regards the heating of the mixture obtained in (ii) in (iii) , it is preferred according to the present invention that said heating is conducted at a temperature in the range of from 100 to 280 ℃, preferably of from 120 to 260 ℃, more preferably of from 140 to 250 ℃, more prefera-bly of from 160 to 245 ℃, more preferably of from 180 to 240 ℃.
Concerning the duration of the heating in (iii) , no particular restrictions apply provided that a zeolitic material comprising YO 2 and X 2O 3 in its framework structure may be crystallized from the mixture. According to the present invention it is however preferred that in (iii) the mixture obtained in (ii) is heated for a period in the range of from 0.2 to 96 h, preferably of from 0.4 to 48 h, more preferably of from 0.6 to 36 h, more preferably of from 0.8 to 24 h, more preferably of from 1 to 12 h, more preferably of from 1.3 to 8 h, more preferably of from 1.5 to 5 h, more pre-ferably of from 1.6 to 3 h, more preferably of from 1.7 to 2.5 h, and more preferably of from 1.8 to 2.2 h.
With regard to the duration of the grinding and/or mixing in (ii) , no particular restrictions apply provided that in (iii) a zeolitic material comprising YO 2 and X 2O 3 in its framework structure may be crystallized from the mixture. According to the present invention it is however preferred that grinding and/or mixing in (ii) is carried out for a duration in the range of from 0.01 to 120 min, preferably of from 0.05 to 60 min, more preferably of from 0.1 to 30 min, more preferably of from 0.3 to 10 min, more preferably of from 0.5 to 5 min.
In principle, no particular restrictions apply according to the present invention relative to the grinding and/or mixing of the mixture in (ii) , provided that the energy intake of the mixture during the grinding and/or mixing is in the range of from 0.3 to 200 kJ/kg of the mixture, or of any of the preferred ranges described in the present application. It is, however, preferred according to the present invention that the rate of energy transfer to the mixture in (ii) is in the range of from 10 to 1,500 kJ/ (kg*h) , preferably from 50 to 1,200 kJ/ (kg*h) , more preferably from 100 to 1,000 kJ/ (kg*h) , more preferably from 150 to 800 kJ/ (kg*h) , more preferably from 200 to 600 kJ/ (kg*h) ,  more preferably from 250 to 500 kJ/ (kg*h) , more preferably from 300 to 450 kJ/ (kg*h) , more preferably from 330 to 400 kJ/ (kg*h) , and more preferably from 350 to 370 kJ/ (kg*h) .
According to the invention, the mixture obtained in (i) may have any suitable temperature prior to the grinding and/or mixing in (ii) , wherein it is preferred according to the present invention that the mixture prepared in (i) has an initial temperature in the range of from 10 to 50℃ when sub-ject to grinding and/or mixing in (ii) , preferably in the range of from 15 to 40℃, and more prefer-ably in the range of from 20 to 30℃.
Concerning the grinding and/or mixing in (ii) , any suitable apparatus may be employed to said effect, provided that the energy intake of the mixture during the grinding and/or mixing proce-dure is in the range of from 0.3 to 200 kJ/kg of the mixture. According to the present invention it is preferred that grinding and/or mixing in (ii) is carried out in a mill selected from the group con-sisting of a stirred media mill, a planetary ball mill, a ball mill, a roller mill, a kneader, a high shear mixer, and a mix muller,
preferably from the group consisting of a stirred media mill, a ball mill, a roller mill, a planetary mill, and a high shear mixer,
and more preferably from the group consisting of a ball mill, a roller mill, a high shear mixer, and a mix muller,
wherein more preferably grinding and/or mixing in (ii) is carried out in a ball mill and/or in a roller mill.
It is further preferred according to the present invention that grinding and/or mixing in (ii) is car-ried out in a ball mill, preferably using balls made of a material selected from the group consist-ing of stainless steel, ceramic, and rubber, more preferably from the group consisting of chrome steel, flint, zirconia, and lead antimony alloy, wherein more preferably the balls of the ball mill are made of chrome steel and/or zirconia, preferably of zirconia. Furthermore and independent-ly thereof, it is preferred that grinding and/or mixing in (ii) is carried out in a ball mill using grind-ing media, preferably grinding balls, having a diameter in the range of from 0.5 to 50 mm, pre-ferably of from 0.8 to 30 mm, more preferably of from 1 to 20 mm, more preferably of from 1.2 to 10 mm, and more preferably of from 2 to 8 mm. Furthermore and independently thereof, it is preferred that the filling degree of the grinding media in the ball mill is in the range of from 20 to 60%, preferably of from 15 to 75%, more preferably of from 20 to 70%, more preferably of from 25 to 55%, and more preferably of from 40 to 50%. Furthermore and independently thereof, it is preferred that the ball mill is operated at a speed in the range of from 10 to 250 rpm, preferably of from 30 to 220 rpm, more preferably of from 50 to 200 rpm, more preferably of from 60 to 180 rpm, more preferably of from 70 to 150 rpm, more preferably of from 80 to 120 rpm, and more preferably of from 90 to 100 rpm. Furthermore and independently thereof, it is preferred that the ball mill comprises a volume having a cylindrical geometry, wherein the diameter of the volume having a cylindrical geometry is in the range of from 200 to 400 mm, preferably in the range of from 250 to 350 mm, more preferably in the range of from 280 to 320 mm, more preferably in the range of from 290 to 310 mm, more preferably in the range of from 295 to 305 mm. Fur-thermore and independently thereof, it is preferred that the ball mill is operated at a relative rota- tion speed of from 30 to 150 %of the critical rotation speed, preferably of from 40 to 125 %of the critical rotation speed, more preferably of from 45 to 120 %of the critical rotation speed, more preferably of from 50 to 95 %of the critical rotation speed, more preferably of from 60 to 90 %of the critical rotation speed and more preferably of from 70 to 90 %of the critical rotation speed. Furthermore and independently thereof, it is preferred that the critical rotation speed is in the range of from 40 to 80 rpm, more preferably in the range of from 50 to 70 rpm, more prefer-ably in the range of from 55 to 65 rpm, more preferably in the range of from 58 to 62 rpm, more preferably in the range of from 59 to 61 rpm.
According to the present invention, it is further preferred that grinding and/or mixing in (ii) is car-ried out in a stirred media mill, preferably using beads having a diameter in the range of from 0.1 to 10 mm, preferably of from 0.4 to 8 mm, more preferably of from 0.8 to 6 mm, and more preferably of from 1.2 to 4 mm. Furthermore and independently thereof, it is preferred that the filling degree of the grinding media in the ball mill is in the range of from 20 to 80%, preferably of from 15 to 75%, more preferably of from 20 to 70%, more preferably of from 25 to 65%, more preferably of from 30 to 60%, and more preferably of from 35 to 55%. Furthermore and inde-pendently thereof, it is preferred that the tip speed of the stirred media mill is in the range of from 1 to 15 m/s, preferably of from 3 to 13 m/s, more preferably of from 4 to 11 m/s, and more preferably of from 5 to 10 m/s.
According to the present invention, it is yet further preferred that grinding and/or mixing in (ii) is carried out in a roller mill, wherein the velocity of the rolls is preferably in the range of from 2 to 15 m/s, more preferably from 2.2 to 10 m/s, and more preferably from 2.4 to 8.4 m/s. Further-more and independently thereof, it is preferred that the tip speed ratio of the rolls is from 1 to 7, preferably from 1.2 to 5 and more preferably from 1.4 to 3. Furthermore and independently the-reof, it is preferred that the rolls are plain or corrugated. Furthermore and independently thereof, it is preferred that the gap width of the rolls is in the range of from 0.05 to 1 mm, preferably from 0.1 to 0.7 mm, and more preferably from 0.15 to 0.3 mm.
According to the present invention, it is yet further preferred that grinding and/or mixing in (ii) is carried out in a high shear mixer, preferably at tip speeds from 5 to 30 m/s, more preferably from 10 to 27 m/s, more preferably from 16 to 25 m/s, more preferably from 18 to 23 m/s. Fur-thermore and independently thereof, it is preferred that the filling degree in the high shear mixer is from 20 to 80%, preferably from 40 to 60%. Furthermore and independently thereof, it is pre-ferred that the mixing tool of the high shear mixer is of star geometry or propeller geometry, wherein optionally the mixing tool comprises vertical pins. Furthermore and independently the-reof, it is preferred that the mixing tool of the high shear mixer generates vertical and/or axial and/or tangential flow.
According to the present invention, heating in (iii) may be conducted under any suitable condi-tions, provided that a zeolitic material comprising YO 2 and X 2O 3 in its framework structure is crystallized from the mixture. It is however preferred that in (iii) the mixture is heated under au- togenous pressure, wherein preferably heating in (ii) is performed in a pressure tight vessel, preferably in an autoclave.
As concerns the zeolitic material obtained in (iii) , any conceivable zeolitic material may be ob-tained, wherein it is preferred that the zeolitic material obtained in (iii) has a framework structure type selected from the group consisting of AEI, AFX, ANA, BEA, BEC, CAN, CHA, CDO, EMT, ERI, EUO, FAU, FER, GME, HEU, ITH, ITW, KFI, LEV, MEI, MEL, MFI, MOR, MTN, MWW, OFF, RRO, RTH, SAV, SFW, SZR, and TON, including mixed structures of two or more thereof, preferably from the group consisting of CAN, AEI, EMT, SAV, SZR, KFI, ERI, OFF, RTH, GME, AFX, SFW, BEA, CHA, FAU, FER, HEU, LEV, MEI, MEL, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, BEA, CHA, FAU, FER, GME, LEV, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, BEA, CHA, GME, MFI, MOR, and MWW, including mixed structures of two or more thereof, and more preferably from the group consisting of AEI, BEA, CHA, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, CHA, and MWW, including mixed structures of two or more thereof, wherein more preferably the zeolitic material obtained in (iii) has an AEI-and/or CHA-type framework structure, preferably a CHA-type framework structure. Furthermore and independently thereof, it is preferred that the zeolitic material obtained in (iii) has a CHA-type framework structure, wherein preferably the zeolitic material having a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21, |Li-Na| [Al-Si-O] -CHA, (Ni (deta) 2) -UT-6, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consisting of ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, Phi, DAF-5, UiO-21, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consisting of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consisting of Chabazite, SSZ-13, and SSZ-62, including mixtures of two or three thereof, wherein more preferably the zeolitic material obtained in (iii) comprises chabazite and/or SSZ-13, preferably chabazite, and wherein more preferably the zeolitic material obtained in (iii) is chabazite and/or SSZ-13, preferably SSZ-13.
Unless otherwise indicated in particular or preferred embodiments of the inventive process as described in the present application, there is generally no restriction as to the steps which in addition to steps (i) to (iv) may be comprised by the inventive process. Thus, it is preferred that the process further comprises
(iv) calcining the zeolitic material obtained in (iii) .
Furthermore, it is preferred that in (v) calcination is performed at a temperature in the range of from 300 to 900 ℃, preferably of from 400 to 700 ℃, more preferably of from 450 to 650 ℃, and more preferably of from 500 to 600 ℃. Furthermore and independently thereof, it is pre- ferred that in (v) the calcination is performed for a duration in the range of from 0.5 to 12 h, pre-ferably in the range of from 1 to 9 h, more preferably in the range of from 2 to 6 h.
Furthermore and independently thereof, it is preferred that after (iii) and prior to (iv) the process further comprises
(a) isolating the zeolitic material obtained in (iii) , preferably by filtration,
(b) optionally washing the zeolitic material obtained in (a) , preferably with distilled water,
(c) optionally drying the zeolitic material obtained in (a) or (b) .
Furthermore, it is preferred according to the present invention that the inventive process further comprises
(v) subjecting the zeolitic material obtained in (a) , (b) , (c) , or (iv) to one or more ion exchange procedures with H + and/or NH 4 +, preferably with NH 4 +.
Furthermore and independently thereof, it is preferred that the process further comprises
(vi) subjecting the zeolitic material obtained in (a) , (b) , (c) , (iv) , or (v) to one or more ion ex-change procedures with one or more cations and/or cationic elements selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof, more preferably from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and mixtures of two or more thereof, more preferably from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cation and/or cationic elements com-prise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cation and/or cationic elements consist of Cu and/or Fe, preferably of Cu.
According to the present invention, Y may stand for any conceivable tetravalent element where-in it is preferred that Y is selected from the group consisting of Si, Sn, Ti, Zr, Ge, and mixtures of two or more thereof, Y preferably being Si.
As regards the one or more sources for YO 2, any conceivable source may be employed wherein it is preferred that the one or more sources for YO 2 are one or more solid sources for YO 2, wherein preferably the one or more sources for YO 2 comprises one or more compounds se-lected from the group consisting of silicas, silicates, silicic acid and combinations of two or more thereof, preferably selected from the group consisting of silicas, alkali metal silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, colloidal silica, reactive amorphous solid silica, silica gel, pyrogenic silica, lithium silicates, sodium silicates, potassium silicates, silicic acid, and combinations of two or more the-reof, more preferably selected from the group consisting of fumed silica, silica gel, pyrogenic silica, Na 2SiO 3, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, silica gel, pyrogenic silica, Na 2SiO 3, and combinations  of two or more thereof, wherein more preferably the one or more sources for YO 2 comprises Na 2SiO 3 and/or silica gel, preferably Na 2SiO 3 and silica gel, wherein more preferably the one or more sources for YO 2 is Na 2SiO 3 and/or silica gel, preferably Na 2SiO 3 and silica gel. As regards the silica gel preferably used as the one or more sources for YO 2 according to particular and preferred embodiments of the inventive process, it is preferred that the silica gel has the formula SiO 2 ·x H 2O, wherein x is in the range of from 0.1 to 1.165, preferably from 0.3 to 1.155, more preferably from 0.5 to 1.15, more preferably from 0.8 to 1.13, and more preferably from 1 to 1.1.
According to the present invention, X may stand for any conceivable trivalent element wherein it is preferred that X is selected from the group consisting of Al, B, In, Ga, and combinations of two or more thereof, X preferably being Al and/or B, preferably Al.
As regards the one or more sources for X 2O 3, any conceivable source may be employed where-in it is preferred that the one or more sources for X 2O 3 are one or more solid sources for X 2O 3, wherein preferably the one or more sources for X 2O 3 comprises one or more compounds se-lected from the group consisting of aluminum sulfates, sodium aluminates, and boehmite, wherein preferably the one or more sources for X 2O 3 comprises Al 2 (SO 43 and/or NaAlO 2, pre-ferably Al 2 (SO 43, wherein more preferably the one or more sources for X 2O 3 is Al 2 (SO 43 and/or NaAlO 2, preferably Al 2 (SO 43.
Regarding the YO 2 : X 2O 3 molar ratio of the one or more sources of YO 2, calculated as YO 2, to the one or more sources for X 2O 3, calculated as X 2O 3, in the mixture prepared in (i) , it is pre-ferred that it is in the range of from 1 to 100, preferably of from 2 to 70, more preferably of from 4 to 50, more preferably of from 6 to 40, more preferably of from 8 to 35, more preferably of from 12 to 30, more preferably of from 15 to 25, more preferably of from 17 to 22, and more preferably of from 19 to 20.
In accordance with the above, it is preferred that the one or more sources for YO 2 are one or more solid sources for YO 2. As an alternative to the above definition of the one or more sources for YO 2, it is preferred that the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, more preferably from the group consisting of BEA, FAU, GIS, MOR, LTA, and a mixed structure of two or more thereof, more preferably having an FAU framework structure type.
In the case where the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, it is preferred that X is selected from the group consisting of Al, B, In, Ga, and combinations of two or more thereof, X preferably being Al and/or B, preferably Al.
Further in the case where the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER,  TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, it is preferred that the one or more sources for X 2O 3 are one or more solid sources for X 2O 3, wherein preferably the one or more sources for X 2O 3 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, preferably selected from the group consisting of BEA, FAU, GIS, MOR, LTA, and a mixed structure of two or more thereof, preferably having an FAU framework structure type.
Further in the case where the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, it is preferred that the zeolitic material has a molar ratio of silica to alumina, silica : alumina, in the range of from 10 to 50, preferably in the range of from 20 to 40, more preferably in the range of from 23 to 37.
It is further preferred according to the inventive process that the mixture prepared in (i) compris-es one or more alkali metals M, wherein the molar ratio M : YO 2 of the one or more alkali metals M to the one or more sources of YO 2, calculated as YO 2, ranges from 0.05 to 3, preferably of from 0.1 to 2, more preferably of from 0.2 to 1.5, more preferably of from 0.3 to 1, more prefera-bly of from 0.35 to 0.8, and more preferably of from 0.4 to 0.5. As regards the one or more alkali metals M comprised in the mixture prepared in (i) , it is preferred that the one or more alkali met-als are selected from the group consisting of Li, Na, K, Rb, Cs, and combinations of two or more thereof, more preferably from the group consisting of Li, Na, Rb and combinations of two or more thereof, wherein more preferably the one or more alkali metals M are Li and/or Na, more preferably Na, wherein more preferably the one or more alkali metals M is sodium. Furthermore, according to particular and preferred embodiments wherein the one or more alkali metals M comprise or consist of sodium, it is preferred that sodium is comprised in the mixture prepared in (i) in a compound selected from the group consisting of sodium hydroxide, sodium aluminates, and sodium silicates, wherein preferably sodium is comprised in the mixture prepared in (i) as Na 2SiO 3 and/or NaAlO 2, preferably as Na 2SiO 3.
According to the present invention, it is further preferred that the mixture prepared in (i) further contains one or more structure directing agents, wherein preferably one or more organotem-plates are employed as the one or more structure directing agents.
As regards the molar ratio SDA : YO 2 of the one or more structure directing agents (SDA) to the one or more sources of YO 2, calculated as YO 2, in the mixture prepared in (i) and heated in (iii) , it is preferred that it ranges from 0.01 to 0.5, wherein the one or more structure directing agents do not include structure directing agents optionally contained in seed crystals optionally con-tained in the mixture prepared in (i) , and more preferably from 0.03 to 0.2, more preferably from 0.06 to 0.15, more preferably from 0.09 to 0.13, and more preferably from 0.11 to 0.12. Fur-thermore and independently thereof, it is preferred that the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds,  wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, preferably for 1-adamantyl. In this respect, it is further preferred that R 1 , R 2, and R 3 independently from one another stand for optionally substituted and/or op-tionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more pre-ferably (C 1-C 3) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 1 , R 2, and R 3 independently from one another stand for optionally substituted me-thyl or ethyl, preferably unsubstituted methyl or ethyl, wherein more preferably R 1 , R 2, and R 3 independently from one another stand for optionally substituted methyl, preferably unsubstituted methyl. Furthermore and independently thereof, it is preferred that R 4 stands for optionally hete-rocyclic and/or optionally substituted adamantyl and/or benzyl, preferably for optionally hetero-cyclic and/or optionally substituted 1-adamantyl, more preferably for optionally substituted ada-mantyl and/or benzyl, more preferably for optionally substituted 1-adamantyl, more preferably for unsubstituted adamantyl and/or benzyl, and more preferably for unsubstituted 1-adamantyl. According to said particular and preferred embodiments of the inventive process it is preferred that the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N-tri (C 1-C 4) alkyl-1-adamantylammonium compounds, preferably one or more N, N, N-tri (C 1-C 3) alkyl-1-adamantylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantylammonium and/or one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantylammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-1-adamantylammonium, N, N-diethyl-N -methyl-1-adamantylammonium, N, N-dimethyl-N -ethyl-1-adamantylammonium, N, N, N -trimethyl-1-adamantylammonium compounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammo-nium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N -trimethyl-1-adamantylammonium compounds. Furthermore and independently thereof, it is preferred that the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds are salts, pre-ferably one or more salts selected from the group consisting of halides, sulfate, nitrate, phos-phate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of bromide, chloride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more pre-ferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds are te-traalkylammonium hydroxides and/or bromides, and more preferably tetraalkylammonium hy-droxides.
Alternatively, it is preferred that the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl. In this respect, it is further preferred that R 1 and R 2 independently from one another stand for optionally substituted and/or optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 1 and R 2 independently from one another stand for optionally substituted methyl or ethyl, preferably unsubstituted methyl or ethyl, wherein more preferably R 1 and R 2 independently from one another stand for optionally substituted methyl, preferably un-substituted methyl. Furthermore and independently thereof, it is preferred that R 3 stands for  optionally substituted and/or optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more pre-ferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 3 stands for optionally substituted ethyl, preferably unsubstituted ethyl. Furthermore and independently thereof, it is preferred that R 4 stands for optionally heterocyclic and/or optionally substituted 5-to 8-membered cycloalkyl, preferably for 5-to 7-membered cycloalkyl, more preferably for 5-or 6-membered cycloalkyl, wherein more preferably R 4 stands for optionally heterocyclic and/or optionally substituted 6-membered cyc-loalkyl, preferably optionally substituted cyclohexyl, and more preferably unsubstituted cyclo-hexyl. According to said particular and preferred embodiments of the inventive process it is pre-ferred that the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N-tri (C 1-C 4) alkyl- (C 5-C 7) cycloalkylammonium compounds, preferably one or more N, N, N-tri (C 1-C 3) alkyl- (C 5-C 6) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl- (C 5-C 6) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-cyclopentylammonium and/or one or more N, N, N-tri (C 1-C 2) alkyl-cyclohexylammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-cyclohexylammonium, N, N-diethyl-N -methyl-cyclohexylammonium, N, N-dimethyl-N -ethyl-cyclohexylammonium, N, N, N -trimethyl-cyclohexylammonium compounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammo-nium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N-dimethyl-N -ethyl-cyclohexylammonium and/or N, N, N -trimethyl-cyclohexylammonium compounds, more prefera-bly one or more N, N, N -trimethyl-cyclohexylammonium compounds. Furthermore and indepen-dently thereof, it is preferred that the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds are salts, preferably one or more salts selected from the group consist-ing of halides, sulfate, nitrate, phosphate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of bromide, chloride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds are tetraalkylammonium hydroxides and/or bromides, and more preferably tetraalkylammonium hydroxides.
According to the present invention, it is preferred that the crystallinity of the zeolitic material ob-tained in (iv) is in the range of from 75 to 99.9%, preferably from 80 to 99%, more preferably from 85 to 98%, more preferably from 88 to 97%, more preferably from 90 to 95%, and more preferably from 92 to 94%.
As regards the components which may be contained in the mixture prepared in (i) and ground in (ii) , no particular restrictions apply. Nevertheless, it is preferred according to the present inven-tion that the mixture prepared in (i) and ground in (ii) contains 5 wt. -%or less of fluoride calcu-lated as the element based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, preferably 3 wt. -%or less, more preferably 2 wt. -%or less, more preferably 1 wt. -%or less, more preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more pre-ferably 0.001 wt. -%or less of fluoride calculated as the element and based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2.
According to the inventive process it is preferred that the mixture prepared in (i) and crystallized in (iii) further comprises seed crystals, wherein the amount of the seed crystals contained in the mixture prepared in (i) and heated in (iii) preferably ranges from 1 to 30 wt. -%based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, preferably from 3 to 25 wt. -%, more preferably from 5 to 20 wt. -%, more preferably from 8 to 18 wt. -%, more preferably from 10 to 16 wt. -%, and more preferably from 12 to 14 wt. -%. In this respect, it is further preferred that the seed crystals contained in the mixture prepared in (i) and heated in (iii) comprise one or more zeolitic materials, wherein the one or more zeolitic materials preferably have a framework struc-ture type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, and TON, including mixed structures of two or more thereof, preferably from the group consisting of AEI, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, BEA, CHA, MFI, MOR, and MWW, including mixed structures of two or more thereof, wherein more preferably the one or more zeolitic materials have an AEI-and/or CHA-type framework structure, preferably a CHA-type framework structure. Furthermore, according to particular and preferred embodiments wherein one or more zeolitic materials having a CHA-type framework structure are comprised in the seed crystals , it is preferred that the one or more zeolitic materials having a CHA-type framework structure comprised in the seed crystals is se-lected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chaba-zite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21, |Li-Na| [Al-Si-O] -CHA, (Ni (deta) 2) -UT-6, SSZ-13, and SSZ-62, including mixtures of two or more thereof, preferably from the group consisting of ZYT-6, SAPO-47, Na-Chabazite, Chaba-zite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, Phi, DAF-5, UiO-21, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consist-ing of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consisting of Chabazite, SSZ-13, and SSZ-62, including mixtures of two or three thereof, wherein more preferably the one or more zeolitic ma-terials having a CHA-type framework structure comprised in the seed crystals is chabazite and/or SSZ-13, preferably SSZ-13.
As regards the seed crystal preferably contained in the mixture prepared in (i) , these may be obtained according to any suitable procedure. It is preferred according to the inventive process that the seed crystals contained in the mixture prepared in (i) and heated in (iii) comprise one or more zeolitic materials having the framework structure of the zeolitic material comprising YO 2 and X 2O 3 in its framework structure obtained according to any of the particular and preferred embodiments of the inventive process as described in the present application, wherein prefera-bly the one or more zeolitic materials of the seed crystals is obtainable and/or obtained accord-ing to any of the particular and preferred embodiments of the inventive process as described in the present application.
In addition to the inventive process, the present invention further relates to a zeolitic material comprising YO 2 and X 2O 3 in its framework structure obtainable and/or obtained according to any  of the particular and preferred embodiments of the inventive process as described in the present application. Furthermore it is preferred that the zeolitic material of the present invention has a CHA-type framework structure, wherein it is further preferred that the zeolitic material hav-ing a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21, |Li-Na| [Al-Si-O] -CHA, (Ni (deta) 2) -UT-6, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consist-ing of ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, Phi, DAF-5, UiO-21, SSZ-13, and SSZ-62, including mixtures of two or more the-reof,
more preferably from the group consisting of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consist-ing of Chabazite, SSZ-13, and SSZ-62, including mixtures of two or three thereof,
wherein more preferably the zeolitic material comprises chabazite and/or SSZ-13, preferably SSZ-13, and wherein more preferably the zeolitic material is chabazite and/or SSZ-13, prefera-bly SSZ-13. Furthermore and independently thereof, it is preferred that the mean particle size D50 by volume of the zeolitic material as determined according to ISO 13320: 2009 is in the range of from 0.1 to 10 μm, and is preferably in the range of from 0.3 to 6.0 μm, more preferably in the range of from 1.5 to 4.5 μm, and more preferably in the range of from 2.5 to 3.6 μm.
When preparing specific catalytic compositions or compositions for different purposes, it is also conceivable to blend the zeolitic materials obtained according to the inventive process with at least one other catalytically active material or a material being active with respect to the in-tended purpose. It is also possible to blend at least two different inventive materials which may differ in their YO 2 : X 2O 3 molar ratio, and in particular in their SiO 2 : Al 2O 3 molar ratio, and/or in the presence or absence of one or more further metals such as one or more transition metals and/or in the specific amounts of a further metal such as a transition metal, wherein according to particularly preferred embodiments, the one or more transition metal comprises Cu and/or Fe, more preferably Cu. It is also possible to blend at least two different inventive materials with at least one other catalytically active material or a material being active with respect to the in-tended purpose.
Also, the catalyst may be disposed on a substrate. The substrate may be any of those materials typically used for preparing catalysts, and will usually comprise a ceramic or metal honeycomb structure. Any suitable substrate may be employed, such as a monolithic substrate of the type having fine, parallel gas flow passages extending there through from an inlet or an outlet face of the substrate, such that passages are open to fluid flow there through (referred to as honey-comb flow through substrates) . The passages, which are essentially straight paths from their fluid inlet to their fluid outlet, are defined by walls on which the catalytic material is disposed as a washcoat so that the gases flowing through the passages contact the catalytic material. The flow passages of the monolithic substrate are thin-walled channels, which can be of any suitable cross-sectional shape and size such as trapezoidal, rectangular, square, sinusoidal, hexagonal,  oval, circular, etc. Such structures may contain from about 60 to about 400 or more gas inlet openings (i.e., cells) per square inch (2.54 cm x 2.54 cm) of cross section.
The substrate can also be a wall-flow filter substrate, where the channels are alternately blocked, allowing a gaseous stream entering the channels from one direction (inlet direction) , to flow through the channel walls and exit from the channels from the other direction (outlet direc-tion) . The catalyst composition can be coated on the flow through or wall-flow filter. If a wall flow substrate is utilized, the resulting system will be able to remove particulate matter along with gaseous pollutants. The wall-flow filter substrate can be made from materials commonly known in the art, such as cordierite, aluminum titanate or silicon carbide. It will be understood that the loading of the catalytic composition on a wall flow substrate will depend on substrate properties such as porosity and wall thickness, and typically will be lower than loading on a flow through substrate.
The ceramic substrate may be made of any suitable refractory material, e.g., cordierite, cordie-rite-alumina, silicon nitride, zircon mullite, spodumene, alumina-silica magnesia, zircon silicate, sillimanite, a magnesium silicate, zircon, petalite, alpha-alumina, an aluminosilicate, and the like.
The substrates useful for the catalysts may also be metallic in nature and be composed of one or more metals or metal alloys. The metallic substrates may be employed in various shapes such as corrugated sheet or monolithic form. Suitable metallic supports include the heat resis-tant metals and metal alloys such as titanium and stainless steel as well as other alloys in which iron is a substantial or major component. Such alloys may contain one or more of nickel, chro-mium and/or aluminum, and the total amount of these metals may advantageously comprise at least 15 wt. %of the alloy, e.g., 10-25 wt. %of chromium, 3-8 wt. %of aluminum and up to 20 wt. %of nickel. The alloys may also contain small or trace amounts of one or more other metals such as manganese, copper, vanadium, titanium, and the like. The surface or the metal sub-strates may be oxidized at high temperatures, e.g., 1000 ℃ and higher, to improve the resis-tance to corrosion of the alloys by forming an oxide layer on the surfaces of the substrates. Such high temperature-induced oxidation may enhance the adherence of the refractory metal oxide support and catalytically promoting metal components to the substrate.
In alternative embodiments, zeolitic material obtained according to the inventive process may be deposited on an open cell foam substrate. Such substrates are well known in the art, and are typically formed of refractory ceramic or metallic materials.
Especially preferred is the use of a catalyst containing the zeolitic material obtained according to the inventive process for removal of nitrogen oxides NO x from exhaust gases of internal com-bustion engines, in particular diesel engines, which operate at combustion conditions with air in excess of that required for stoichiometric combustion, i.e., lean.
In addition to the inventive process and to the inventive zeolitic material, the present invention further relates to the use of the inventive zeolitic material according to any of the particular and  preferred embodiments as described in the present application as a molecular sieve, as an ad-sorbent, for ion-exchange, as a catalyst or a precursor thereof, and/or as a catalyst support or a precursor thereof, preferably as a catalyst or a precursor thereof and/or as a catalyst support or a precursor thereof, more preferably as a catalyst or a precursor thereof, more preferably as a catalyst for the selective catalytic reduction (SCR) of nitrogen oxides NO x; for the storage and/or adsorption of CO 2; for the oxidation of NH 3, in particular for the oxidation of NH 3 slip in diesel systems; for the decomposition of N 2O; as an additive in fluid catalytic cracking (FCC) processes; and/or as a catalyst in organic conversion reactions, preferably in the conversion of alcohols to olefins, and more preferably in methanol to olefin (MTO) catalysis; more preferably for the selective catalytic reduction (SCR) of nitrogen oxides NO x, and more preferably for the selective catalytic reduction (SCR) of nitrogen oxides NO x in exhaust gas from a combustion engine, preferably from a diesel engine or from a lean burn gasoline engine.
The present invention is further illustrated by the following embodiments and combinations of embodiments as indicated by the respective dependencies and back-references. In particular, it is noted that in each instance where a range of embodiments is mentioned, for example in the context of a term such as "The ... of any of embodiments 1 to 4" , every embodiment in this range is meant to be explicitly disclosed for the skilled person, i.e. the wording of this term is to be understood by the skilled person as being synonymous to "The ... of any of embodiments 1, 2, 3, and 4" . Further, it is explicitly noted that the following set of embodiments is not the set of claims determining the extent of protection, but represents a suitably structured part of the de-scription directed to general and preferred aspects of the present invention.
1. A process for the preparation of a zeolitic material comprising YO 2 and X 2O 3 in its frame-work structure, wherein Y stands for a tetravalent element and X stands for a trivalent element, wherein said process comprises:
(i) preparing a mixture comprising one or more sources of YO 2, one or more sources of X 2O 3, and H 2O;
(ii) grinding and/or mixing the mixture prepared in (i) , wherein the energy intake of the mix-ture during the grinding and/or mixing procedure is in the range of from 0.3 to 200 kJ/kg of the mixture;
(iii) heating the mixture obtained in (ii) at a temperature in the range of from 80 to 300 ℃ for crystallizing a zeolitic material comprising YO 2 and X 2O 3 in its framework structure from the mixture;
wherein the mixture prepared in (i) contains from 5 to 200 wt. -%of H 2O based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, contained in the mixture pre-pared in (i) and heated in (iii) ,
wherein the energy intake is preferably determined as described in reference example 1.
2. The process of embodiment 1, wherein the  27Al MAS NMR of the mixture obtained in (ii) comprises:
a first peak (P1) in the range of from 20 to 80 ppm, preferably of from 45 to 65 ppm, preferably of from 50 to 60 ppm, more preferably of from 52 to 58 ppm, more preferably of  from 53 to 57 ppm, more preferably of from 53.5 to 56.5 ppm, more preferably of from 54 to 56 ppm, more preferably of from 54.5 to 55.5 ppm, and more preferably of from 55.0 to 55.5 ppm; and
one or more peaks (PX) in the range of from -20 to 15 ppm, preferably of from -10 to 12 ppm, more preferably of from -5 to 10 ppm, more preferably of from -3 to 8 ppm, more preferably of from -2 to 7 ppm, more preferably of from -1.5 to 6.5 ppm, more preferably of from -1 to 6 ppm, more preferably of from -0.5 to 5.5 ppm, and more preferably of from 0.5 to 5.0 ppm;
wherein the relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1) and within the range of 15 to -20 ppm (I 2) of the zeolitic material offer a ratio of the integration values I 2 : (I 1 + I 2) comprised in the range of from 0.5 to 50%, preferably of from 1 to 35%, more preferably of from 3 to 25%, more preferably of from 5 to 18%, more preferably of from 8 to 15%, more preferably of from 9 to 14%, more preferably of from 10 to 13%, and more preferably of from 11 to 12%,
wherein preferably the relative  27Al solid-state NMR intensity integral ratio is measured at 9.4 Tesla and 10 kHz Magic Angle Spinning, and
wherein preferably the one or more peaks (PX) consists of one or two peaks (PX) , more preferably of one peak (PX) ,
wherein the  27Al MAS NMR is preferably determined according to Reference Example 2 as disclosed herein.
3. The process of embodiment 1, wherein the  27Al MAS NMR of the mixture obtained in (ii) comprises:
a peak (P1) having a maximum in the range of from 45 to 80 ppm, preferably of from 53 to 72 ppm, preferably of from 55 to 68 ppm, more preferably of from 56 to 67 ppm, more preferably of from 57 to 66 ppm, more preferably of from 58.0 to 65.0 ppm, more preferably of from 59.0 to 64.0 ppm, more preferably of from 60.0 to 63.0 ppm, and more preferably of from 61.4 to 62.2 ppm,
wherein the  27Al MAS NMR is preferably determined according to Reference Example 2 as disclosed herein.
4. The process of any of embodiments 1 to 3, wherein in (ii) the energy intake of the mixture during the grinding and/or mixing procedure is in the range of from 0.5 to 120 kJ/kg of the mixture, preferably of from 0.8 to 80 kJ/kg of the mixture, more preferably of from 1 to 50 kJ/kg of the mixture, more preferably of from 2 to 25 kJ/kg of the mixture, more preferably of from 3 to 15 kJ/kg of the mixture, more preferably of from 4 to 10 kJ/kg of the mixture, and more preferably of from 5 to 7 kJ/kg, wherein the energy intake is preferably deter-mined as described in reference example 1.
5. The process of any of embodiments 1 to 4, wherein in (iii) the mixture obtained in (ii) is heated at a temperature in the range of from 100 to 280 ℃, preferably of from 120 to  260 ℃, more preferably of from 140 to 250 ℃, more preferably of from 160 to 245 ℃, more preferably of from 180 to 240 ℃.
6. The process of any of embodiments 1 to 5, wherein in (iii) the mixture obtained in (ii) is heated for a period in the range of from 0.2 to 96 h, preferably of from 0.4 to 48 h, more preferably of from 0.6 to 36 h, more preferably of from 0.8 to 24 h, more preferably of from 1 to 12 h, more preferably of from 1.3 to 8 h, more preferably of from 1.5 to 5 h, more pre-ferably of from 1.6 to 3 h, more preferably of from 1.7 to 2.5 h, and more preferably of from 1.8 to 2.2 h.
7. The process of any of embodiments 1 to 6, wherein the mixture prepared in (i) and ground in (ii) contains from 10 to 150 wt. -%of H 2O based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, contained in the mixture prepared in (i) and heated in (iii) , preferably of from 15 to 120 wt. -%, more preferably of from 20 to 100 wt. -%, more preferably of from 25 to 90 wt. -%, more preferably of from 30 to 80 wt. -%, more preferably of from 35 to 75 wt. -%, more preferably of from 40 to 70 wt. -%, more preferably of from 45 to 65 wt. -%, more preferably of from 50 to 60 wt. -%, and more preferably of from 52 to 56 wt. -%.
8. The process of any of embodiments 1 to 7, wherein grinding and/or mixing in (ii) is carried out for a duration in the range of from 0.01 to 120 min, preferably of from 0.05 to 60 min, more preferably of from 0.1 to 30 min, more preferably of from 0.3 to 10 min, more prefer-ably of from 0.5 to 5 min.
9. The process of any of embodiments 1 to 8, wherein the rate of energy transfer to the mix-ture in (ii) is in the range of from 10 to 1,500 kJ/ (kg*h) , preferably from 50 to 1,200 kJ/ (kg*h) , more preferably from 100 to 1,000 kJ/ (kg*h) , more preferably from 150 to 800 kJ/ (kg*h) , more preferably from 200 to 600 kJ/ (kg*h) , more preferably from 250 to 500 kJ/ (kg*h) , more preferably from 300 to 450 kJ/ (kg*h) , more preferably from 330 to 400 kJ/ (kg*h) , and more preferably from 350 to 370 kJ/ (kg*h) .
10. The process of any of embodiments 1 to 9, wherein the mixture prepared in (i) has an initial temperature in the range of from 5 to 70℃ when subject to grinding and/or mixing in (ii) , preferably in the range of from 10 to 50 ℃, more preferably in the range of from 15 to 40℃, and more preferably in the range of from 20 to 30℃.
11. The process of any of embodiments 1 to 10, wherein grinding and/or mixing in (ii) is car-ried out in a mill selected from the group consisting of a stirred media mill, a planetary ball mill, a ball mill, a roller mill, a kneader, a high shear mixer, and a mix muller,
preferably from the group consisting of a stirred media mill, a ball mill, a roller mill, a pla- netary mill, and a high shear mixer,
and more preferably from the group consisting of a ball mill, a roller mill, a high shear mix-er, and a mix muller,
wherein more preferably grinding and/or mixing in (ii) is carried out in a ball mill and/or in a roller mill.
12. The process of any of embodiments 1 to 11, wherein grinding and/or mixing in (ii) is car-ried out in a ball mill, preferably using balls made of a material selected from the group consisting of stainless steel, ceramic, and rubber, more preferably from the group consist-ing of chrome steel, flint, zirconia, and lead antimony alloy, wherein more preferably the balls of the ball mill are made of chrome steel and/or zirconia, preferably of zirconia.
13. The process of embodiment 12, wherein grinding and/or mixing in (ii) is carried out in a ball mill using grinding media, preferably grinding balls, having a diameter in the range of from 0.5 to 50 mm, preferably of from 0.8 to 30 mm, more preferably of from 1 to 20 mm, more preferably of from 1.2 to 10 mm, and more preferably of from 2 to 8 mm.
14. The process of embodiment 12 or 13, wherein the filling degree of the grinding media in the ball mill is in the range of from 20 to 60%, preferably of from 15 to 75%, more prefera-bly of from 20 to 70%, more preferably of from 25 to 55%, and more preferably of from 40 to 50%.
15. The process of any of embodiments 12 to 14, wherein the ball mill is operated at a speed in the range of from 10 to 250 rpm, preferably of from 30 to 220 rpm, more preferably of from 50 to 200 rpm, more preferably of from 60 to 180 rpm, more preferably of from 70 to 150 rpm, more preferably of from 80 to 120 rpm, and more preferably of from 90 to 100 rpm.
16. The process of any of embodiments 12 to 15, wherein the ball mill comprises a volume having a cylindrical geometry, wherein the diameter of the volume having a cylindrical geometry is in the range of from 200 to 400 mm, preferably in the range of from 250 to 350 mm, more preferably in the range of from 280 to 320 mm, more preferably in the range of from 290 to 310 mm, more preferably in the range of from 295 to 305 mm.
17. The process of any of embodiments 12 to 16, wherein the ball mill is operated at a relative rotation speed of from 30 to 150 %of the critical rotation speed, preferably of from 40 to 125 %of the critical rotation speed, more preferably of from 45 to 120 %of the critical ro-tation speed, more preferably of from 50 to 95 %of the critical rotation speed, more pre-ferably of from 60 to 90 %of the critical rotation speed and more preferably of from 70 to 90 %of the critical rotation speed.
18. The process of any of embodiments 12 to 17, wherein the critical rotation speed is in the range of from 40 to 80 rpm, preferably in the range of from 50 to 70 rpm, more preferably in the range of from 55 to 65 rpm, more preferably in the range of from 58 to 62 rpm, more preferably in the range of from 59 to 61 rpm.
19. The process of any of embodiments 1 to 11, wherein grinding and/or mixing in (ii) is car-ried out in a stirred media mill, preferably using beads having a diameter in the range of from 0.1 to 10 mm, preferably of from 0.4 to 8 mm, more preferably of from 0.8 to 6 mm, and more preferably of from 1.2 to 4 mm.
20. The process of embodiment 19, wherein the filling degree of the grinding media in the ball mill is in the range of from 20 to 80%, preferably of from 15 to 75%, more preferably of from 20 to 70%, more preferably of from 25 to 65%, more preferably of from 30 to 60%, and more preferably of from 35 to 55%.
21. The process of embodiment 19 or 20, wherein the tip speed of the stirred media mill is in the range of from 1 to 15 m/s, preferably of from 3 to 13 m/s, more preferably of from 4 to 11 m/s, and more preferably of from 5 to 10 m/s.
22. The process of any of embodiments 1 to 11, wherein grinding and/or mixing in (ii) is car-ried out in a roller mill, wherein the velocity of the rolls is preferably in the range of from 2 to 15 m/s, more preferably from 2.2 to 10 m/s, and more preferably from 2.4 to 8.4 m/s.
23. The process of embodiment 22, wherein the tip speed ratio of the rolls is from 1 to 7, pre-ferably from 1.2 to 5 and more preferably from 1.4 to 3.
24. The process of embodiment 22 or 23, wherein the rolls are plain or corrugated.
25. The process of any of embodiments 22 to 24, wherein the gap width is in the range of from 0.05 to 1 mm, preferably from 0.1 to 0.7 mm, and more preferably from 0.15 to 0.3 mm.
26. The process of any of embodiments 1 to 11, wherein grinding and/or mixing in (ii) is car-ried out in a high shear mixer, preferably at tip speeds from 5 to 30 m/s, more preferably from 10 to 27 m/s, more preferably from 16 to 25 m/s, more preferably from 18 to 23 m/s.
27. The process of embodiment 26, wherein the filling degree in the high shear mixer is from 20 to 80%, preferably from 40 to 60%.
28. The process of embodiment 27, wherein the mixing tool of the high shear mixer is of star geometry or propeller geometry, wherein optionally the mixing tool comprises vertical pins.
29. The process of embodiment 27 or 28, wherein the mixing tool of the high shear mixer ge-nerates vertical and/or axial and/or tangential flow.
30. The process of any of embodiments 1 to 29, wherein in (iii) the mixture is heated under autogenous pressure, wherein preferably heating in (ii) is performed in a pressure tight vessel, preferably in an autoclave.
31. The process of any of embodiments 1 to 30, wherein the zeolitic material obtained in (iii) has a framework structure type selected from the group consisting of AEI, AFX, ANA, BEA, BEC, CAN, CHA, CDO, EMT, ERI, EUO, FAU, FER, GME, HEU, ITH, ITW, KFI, LEV, MEI, MEL, MFI, MOR, MTN, MWW, OFF, RRO, RTH, SAV, SFW, SZR, and TON, including mixed structures of two or more thereof, preferably from the group consisting of CAN, AEI, EMT, SAV, SZR, KFI, ERI, OFF, RTH, GME, AFX, SFW, BEA, CHA, FAU, FER, HEU, LEV, MEI, MEL, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, BEA, CHA, FAU, FER, GME, LEV, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, BEA, CHA, GME, MFI, MOR, and MWW, including mixed structures of two or more thereof, and more preferably from the group consisting of AEI, BEA, CHA, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, CHA, and MWW, including mixed struc-tures of two or more thereof, wherein more preferably the zeolitic material obtained in (iii) has an AEI-and/or CHA-type framework structure, preferably a CHA-type framework structure.
32. The process of any of embodiments 1 to 31, wherein Y is selected from the group consist-ing of Si, Sn, Ti, Zr, Ge, and mixtures of two or more thereof, Y preferably being Si.
33. The process of any of embodiments 1 to 32, wherein the one or more sources for YO 2 are one or more solid sources for YO 2, wherein preferably the one or more sources for YO 2 comprises one or more compounds selected from the group consisting of silicas, silicates, silicic acid and combinations of two or more thereof, preferably selected from the group consisting of silicas, alkali metal silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, colloidal silica, reactive amorphous solid silica, silica gel, pyrogenic silica, lithium silicates, sodium sili-cates, potassium silicates, silicic acid, and combinations of two or more thereof, more pre-ferably selected from the group consisting of fumed silica, silica gel, pyrogenic silica, Na 2SiO 3, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, silica gel, pyrogenic silica, Na 2SiO 3, and combi- nations of two or more thereof, wherein more preferably the one or more sources for YO 2 comprises Na 2SiO 3 and/or silica gel, preferably Na 2SiO 3 and silica gel, wherein more pre-ferably the one or more sources for YO 2 is Na 2SiO 3 and/or silica gel, preferably Na 2SiO 3 and silica gel.
34. The process of embodiment 33, wherein the silica gel has the formula SiO 2 ·x H 2O, wherein x is in the range of from 0.1 to 1.165, preferably from 0.3 to 1.155, more prefera-bly from 0.5 to 1.15, more preferably from 0.8 to 1.13, and more preferably from 1 to 1.1.
35. The process of any of embodiments 1 to 34, wherein X is selected from the group consist-ing of Al, B, In, Ga, and combinations of two or more thereof, X preferably being Al and/or B, preferably Al.
36. The process of any of embodiments 1 to 35, wherein the one or more sources for X 2O 3 are one or more solid sources for X 2O 3, wherein preferably the one or more sources for X 2O 3 comprises one or more compounds selected from the group consisting of aluminum sulfates, sodium aluminates, and boehmite, wherein preferably the one or more sources for X 2O 3 comprises Al 2 (SO 43 and/or NaAlO 2, preferably Al 2 (SO 43, wherein more prefera-bly the one or more sources for X 2O 3 is Al 2 (SO 43 and/or NaAlO 2, preferably Al 2 (SO 43.
37. The process of any of embodiments 1 to 36, wherein the molar ratio YO 2 : X 2O 3 of the one or more sources of YO 2, calculated as YO 2, to the one or more sources for X 2O 3, calcu-lated as X 2O 3, in the mixture prepared in (i) is in the range of from 1 to 100, preferably of from 2 to 70, more preferably of from 4 to 50, more preferably of from 6 to 40, more pre-ferably of from 8 to 35, more preferably of from 12 to 30, more preferably of from 15 to 25, more preferably of from 17 to 22, and more preferably of from 19 to 20.
38. The process of any one of embodiments 1 to 32, wherein the one or more sources for YO 2 are one or more solid sources for YO 2, wherein preferably the one or more sources for YO 2 comprises a zeolitic material having a framework structure type selected from the group consisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, more preferably from the group consisting of BEA, FAU, GIS, MOR, LTA, and a mixed structure of two or more thereof, more preferably having an FAU framework structure type.
39. The process of embodiment 38, wherein X is selected from the group consisting of Al, B, In, Ga, and combinations of two or more thereof, X preferably being Al and/or B, prefera-bly Al.
40. The process of embodiment 38 or 39, wherein the one or more sources for X 2O 3 are one or more solid sources for X 2O 3, wherein preferably the one or more sources for X 2O 3 com-prises a zeolitic material having a framework structure type selected from the group con-sisting of FAU, GIS, MOR, LTA, FER, TON, MTT, BEA, MEL, MWW, MFS, MFI, and a mixed structure of two or more thereof, more preferably selected from the group consist-ing of BEA, FAU, GIS, MOR, LTA, and a mixed structure of two or more thereof, prefera-bly having an FAU framework structure type.
41. The process of any one of embodiments 38 to 40, wherein the zeolitic material has a mo-lar ratio of silica to alumina, silica : alumina, in the range of from 10 to 50, preferably in the range of from 20 to 40, more preferably in the range of from 23 to 37.
42. The process of any of embodiments 1 to 41, wherein the mixture prepared in (i) comprises one or more alkali metals M, wherein the molar ratio M : YO 2 of the one or more alkali metals M to the one or more sources of YO 2, calculated as YO 2, ranges from 0.05 to 3, preferably of from 0.1 to 2, more preferably of from 0.2 to 1.5, more preferably of from 0.3 to 1, more preferably of from 0.35 to 0.8, and more preferably of from 0.4 to 0.5.
43. The process of embodiment 42, wherein the one or more alkali metals M comprise one or more alkali metals selected from the group consisting of Li, Na, K, Rb, Cs, and combina-tions of two or more thereof, more preferably from the group consisting of Li, Na, Rb and combinations of two or more thereof, wherein more preferably the one or more alkali met-als M are Li and/or Na, more preferably Na, wherein more preferably the one or more al-kali metals M is sodium.
44. The process of embodiment 43, wherein sodium is comprised in the mixture prepared in (i) in a compound selected from the group consisting of sodium hydroxide, sodium alumi-nates, and sodium silicates, wherein preferably sodium is comprised in the mixture pre-pared in (i) as Na 2SiO 3 and/or NaAlO 2, preferably as Na 2SiO 3.
45. The process of any of embodiments 1 to 44, wherein the mixture prepared in (i) further contains one or more structure directing agents, wherein preferably one or more organo-templates are employed as the one or more structure directing agents.
46. The process of embodiment 45, wherein the molar ratio SDA : YO 2 of the one or more structure directing agents (SDA) to the one or more sources of YO 2, calculated as YO 2, in the mixture prepared in (i) and heated in (iii) ranges from 0.01 to 0.5, wherein the one or more structure directing agents do not include structure directing agents optionally con-tained in seed crystals optionally contained in the mixture prepared in (i) , preferably from  0.03 to 0.2, more preferably from 0.06 to 0.15, more preferably from 0.09 to 0.13, and more preferably from 0.11 to 0.12.
47. The process of embodiment 45 or 46, wherein the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, preferably for 1-adamantyl.
48. The process of embodiment 47, wherein R 1 , R 2, and R 3 independently from one another stand for optionally substituted and/or optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 1 , R 2, and R 3 inde-pendently from one another stand for optionally substituted methyl or ethyl, preferably un-substituted methyl or ethyl, wherein more preferably R 1 , R 2, and R 3 independently from one another stand for optionally substituted methyl, preferably unsubstituted methyl.
49. The process of embodiment 47 or 48, wherein R 4 stands for optionally heterocyclic and/or optionally substituted adamantyl and/or benzyl, preferably for optionally heterocyclic and/or optionally substituted 1-adamantyl, more preferably for optionally substituted ada-mantyl and/or benzyl, more preferably for optionally substituted 1-adamantyl, more prefer-ably for unsubstituted adamantyl and/or benzyl, and more preferably for unsubstituted 1-adamantyl.
50. The process of any of embodiments 47 to 49, wherein the one or more tetraalkylammo-nium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N-tri (C 1-C 4) alkyl-1-adamantylammonium compounds, preferably one or more N, N, N-tri (C 1-C 3) alkyl-1-adamantylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantylammonium and/or one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantylammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-1-adamantylammonium, N, N-diethyl-N -methyl-1-adamantylammonium, N, N-dimethyl-N -ethyl-1-adamantylammonium, N, N, N -trimethyl-1-adamantylammonium compounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing com-pounds comprise one or more N, N, N -trimethyl-1-adamantylammonium compounds.
51. The process of any of embodiments 47 to 50, wherein the one or more tetraalkylammo-nium cation R 1R 2R 3R 4N +-containing compounds are salts, preferably one or more salts se-lected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mix-tures of two or more thereof, more preferably from the group consisting of bromide, chlo-ride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the  one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds are tetraalky-lammonium hydroxides and/or bromides, and more preferably tetraalkylammonium hy-droxides.
52. The process of embodiment 45 or 46, wherein the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl.
53. The process of embodiment 52, wherein R 1 and R 2 independently from one another stand for optionally substituted and/or optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for option-ally substituted methyl or ethyl, wherein more preferably R 1 and R 2 independently from one another stand for optionally substituted methyl or ethyl, preferably unsubstituted me-thyl or ethyl, wherein more preferably R 1 and R 2 independently from one another stand for optionally substituted methyl, preferably unsubstituted methyl.
54. The process of embodiment 52 or 53, wherein R 3 stands for optionally substituted and/or optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for optionally substituted methyl or ethyl, wherein more preferably R 3 stands for optionally substituted ethyl, preferably unsubsti-tuted ethyl.
55. The process of any of embodiments 52 to 54, wherein R 4 stands for optionally heterocyclic and/or optionally substituted 5-to 8-membered cycloalkyl, preferably for 5-to 7-membered cycloalkyl, more preferably for 5-or 6-membered cycloalkyl, wherein more preferably R 4 stands for optionally heterocyclic and/or optionally substituted 6-membered cycloalkyl, preferably optionally substituted cyclohexyl, and more preferably unsubstituted cyclohexyl.
56. The process of any of embodiments 52 to 55, wherein the one or more tetraalkylammo-nium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N-tri (C 1-C 4) alkyl- (C 5-C 7) cycloalkylammonium compounds, preferably one or more N, N, N-tri (C 1-C 3) alkyl- (C 5-C 6) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl- (C 5-C 6) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-cyclopentylammonium and/or one or more N, N, N-tri (C 1-C 2) alkyl-cyclohexylammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-cyclohexylammonium, N, N-diethyl-N -methyl-cyclohexylammonium, N, N-dimethyl-N -ethyl-cyclohexylammonium, N, N, N -trimethyl-cyclohexylammonium com-pounds, and mixtures of two or more thereof, wherein more preferably the one or more te-traalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N-dimethyl-N -ethyl-cyclohexylammonium and/or N, N, N -trimethyl-cyclohexylammonium  compounds, more preferably one or more N, N, N -trimethyl-cyclohexylammonium com-pounds.
57. The process of any of embodiments 52 to 56, wherein the one or more tetraalkylammo-nium cation R 1R 2R 3R 4N +-containing compounds are salts, preferably one or more salts se-lected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mix-tures of two or more thereof, more preferably from the group consisting of bromide, chlo-ride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds are tetraalky-lammonium hydroxides and/or bromides, and more preferably tetraalkylammonium hy-droxides.
58. The process of any of embodiments 1 to 57, wherein the crystallinity of the zeolitic materi-al obtained in (iv) is in the range of from 75 to 99.9%, preferably from 80 to 99%, more preferably from 85 to 98%, more preferably from 88 to 97%, more preferably from 90 to 95%, and more preferably from 92 to 94%.
59. The process of any of embodiments 1 to 58, wherein the zeolitic material obtained in (iii) has a CHA-type framework structure, wherein preferably the zeolitic material having a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21, |Li-Na| [Al-Si-O] -CHA, (Ni (deta) 2) -UT-6, SSZ-13, and SSZ-62, including mixtures of two or more thereof,
more preferably from the group consisting of ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, Phi, DAF-5, UiO-21, SSZ-13, and SSZ-62, including mixtures of two or more thereof,
more preferably from the group consisting of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, and SSZ-62, including mixtures of two or more thereof,
more preferably from the group consisting of Chabazite, SSZ-13, and SSZ-62, including mixtures of two or three thereof,
wherein more preferably the zeolitic material obtained in (iii) comprises chabazite and/or SSZ-13, preferably chabazite, and wherein more preferably the zeolitic material obtained in (iii) is chabazite and/or SSZ-13, preferably SSZ-13.
60. The process of any of embodiments 1 to 59, wherein the mixture prepared in (i) and ground in (ii) contains 5 wt. -%or less of fluoride calculated as the element based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, preferably 3 wt. -%or less, more preferably 2 wt. -%or less, more preferably 1 wt. -%or less, more preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably  0.001 wt. -%or less of fluoride calculated as the element and based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2.
61. The process of any of embodiments 1 to 60, wherein the process further comprises (iv) calcining the zeolitic material obtained in (iii) .
62. The process of embodiment 61, wherein the calcination is performed at a temperature in the range of from 300 to 900 ℃, preferably of from 400 to 700 ℃, more preferably of from 450 to 650 ℃, and more preferably of from 500 to 600 ℃.
63. The process of embodiment 61 or 62, wherein the calcination is performed for a duration in the range of from 0.5 to 12 h, preferably in the range of from 1 to 9 h, more preferably in the range of from 2 to 6 h.
64. The process of any of embodiments 61 to 63, wherein after (iii) and prior to (iv) the process further comprises
(a) isolating the zeolitic material obtained in (iii) , preferably by filtration,
(b) optionally washing the zeolitic material obtained in (a) , preferably with distilled water,
(c) optionally drying the zeolitic material obtained in (a) or (b) .
65. The process of any of embodiments 61 to 64, wherein the process further comprises
(v) subjecting the zeolitic material obtained in (a) , (b) , (c) , or (iv) to one or more ion ex-change procedures with H + and/or NH 4 +, preferably with NH 4 +.
66. The process of any of embodiments 61 to 65, wherein the process further comprises
(vi) subjecting the zeolitic material obtained in (a) , (b) , (c) , (iv) , or (v) to one or more ion exchange procedures with one or more cations and/or cationic elements selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof, more preferably from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and mixtures of two or more thereof, more prefera-bly from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cation and/or cationic elements comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cation and/or cationic elements consist of Cu and/or Fe, preferably of Cu.
67. The process of any of embodiments 1 to 66, wherein the mixture prepared in (i) and crys-tallized in (iii) further comprises seed crystals, wherein the amount of the seed crystals contained in the mixture prepared in (i) and heated in (iii) preferably ranges from 1 to 30 wt. -%based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, prefera-bly from 3 to 25 wt. -%, more preferably from 5 to 20 wt. -%, more preferably from 8 to 18 wt. -%, more preferably from 10 to 16 wt. -%, and more preferably from 12 to 14 wt. -%.
68. The process of embodiment 67, wherein the seed crystals contained in the mixture pre-pared in (i) and heated in (iii) comprise one or more zeolitic materials, wherein the one or more zeolitic materials preferably have a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, and TON, including mixed structures of two or more thereof, pre-ferably from the group consisting of AEI, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consist-ing of AEI, BEA, CHA, MFI, MOR, and MWW, including mixed structures of two or more thereof, wherein more preferably the one or more zeolitic materials have an AEI-and/or CHA-type framework structure, preferably a CHA-type framework structure.
69. The process of embodiment 68, wherein the one or more zeolitic materials having a CHA-type framework structure comprised in the seed crystals is selected from the group con-sisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21, |Li-Na| [Al-Si-O] -CHA, (Ni (deta) 2) -UT-6, SSZ-13, and SSZ-62, including mixtures of two or more thereof, preferably from the group consisting of ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, Phi, DAF-5, UiO-21, SSZ-13, and SSZ-62, including mixtures of two or more thereof,
more preferably from the group consisting of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, and SSZ-62, including mixtures of two or more thereof,
more preferably from the group consisting of Chabazite, SSZ-13, and SSZ-62, including mixtures of two or three thereof,
wherein more preferably the one or more zeolitic materials having a CHA-type framework structure comprised in the seed crystals is chabazite and/or SSZ-13, preferably SSZ-13.
70. The process of any of embodiments 67 to 69, wherein the seed crystals contained in the mixture prepared in (i) and heated in (iii) comprise one or more zeolitic materials having the framework structure of the zeolitic material comprising YO 2 and X 2O 3 in its framework structure obtained according to the process of any of embodiments 1 to 66, wherein pre-ferably the one or more zeolitic materials of the seed crystals is obtainable and/or ob-tained according to the process of any of embodiments 1 to 66.
71. A zeolitic material comprising YO 2 and X 2O 3 in its framework structure obtainable and/or obtained according to the process of any of embodiments 1 to 70.
72. The zeolitic material of embodiment 71, wherein the zeolitic material has a CHA-type framework structure, wherein preferably the zeolitic material is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21, |Li-Na| [Al-Si-O] -CHA, (Ni (deta) 2) -UT-6, SSZ-13, and SSZ-62, including mixtures of two or more the-reof,
more preferably from the group consisting of ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, Phi, DAF-5, UiO-21, SSZ-13, and SSZ-62, including mixtures of two or more thereof,
more preferably from the group consisting of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, and SSZ-62, including mixtures of two or more thereof,
more preferably from the group consisting of Chabazite, SSZ-13, and SSZ-62, including mixtures of two or three thereof,
wherein more preferably the zeolitic material comprises chabazite and/or SSZ-13, prefer-ably SSZ-13, and wherein more preferably the zeolitic material is chabazite and/or SSZ-13, preferably SSZ-13.
73. The zeolitic material of embodiment 71 or 72, wherein the mean particle size D50 by vo-lume of the zeolitic material as determined according to ISO 13320: 2009 is in the range of from 0.1 to 10 μm, and is preferably in the range of from 0.3 to 6.0 μm, more preferably in the range of from 1.5 to 4.5 μm, and more preferably in the range of from 2.5 to 3.6 μm.
74. Use of the zeolitic material according to any of embodiments 71 to 73 as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst or a precursor thereof, and/or as a catalyst support or a precursor thereof, preferably as a catalyst or a precursor thereof and/or as a catalyst support or a precursor thereof, more preferably as a catalyst or a pre-cursor thereof, more preferably as a catalyst for the selective catalytic reduction (SCR) of nitrogen oxides NO x; for the storage and/or adsorption of CO 2; for the oxidation of NH 3, in particular for the oxidation of NH 3 slip in diesel systems; for the decomposition of N 2O; as an additive in fluid catalytic cracking (FCC) processes; and/or as a catalyst in organic conversion reactions, preferably in the conversion of alcohols to olefins, and more prefer-ably in methanol to olefin (MTO) catalysis; more preferably for the selective catalytic re-duction (SCR) of nitrogen oxides NO x, and more preferably for the selective catalytic re-duction (SCR) of nitrogen oxides NO x in exhaust gas from a combustion engine, prefera-bly from a diesel engine or from a lean burn gasoline engine.
DESCRIPTION OF THE FIGURES
Figure 1 displays the  27Al MAS NMR of the mechanochemically activated reaction mixture of example 1, wherein the chemical shift in ppm is plotted along the abscissa and the relative intensity in arbitrary units is shown along the ordinate. Furthermore, the in-tegration values for the relative intensity integral within the range of 80 to 20 ppm and within the range of 15 to -20 ppm are respectively indicated along the ordinate.
Figure 2 displays the  27Al MAS NMR of the mechanochemically activated reaction mixture of example 8, wherein the chemical shift in ppm is plotted along the abscissa and the relative intensity in arbitrary units is shown along the ordinate. Furthermore, the in-tegration values for the relative intensity integral within the range of 80 to 20 ppm and within the range of 15 to -20 ppm are respectively indicated along the ordinate.
Figure 3: displays the results from catalytic testing in a standard selective catalytic reduction test for Examples 13, 14, 15, and 16, respectively. The temperature in ℃ is shown on the abscissa and the NOx conversion, X -NOx, in %is shown on the ordinate. The circles refer to samples tested in fresh state, the diamonds refer to samples tested after aging at 650 ℃, and the triangles refer to samples tested after aging at 820 ℃.
EXAMPLES
Reference Example 1: Determination of the energy intake during grinding
In the examples, the energy intake of a mixture which is subject to grinding is determined by measuring the torque of the given mill with and without the mixture subject to milling and calcu-lating the difference. The no-load value is then subtracted of the value as received during the trial. With this value the specific energy input in kJ/kg can be calculated. For other grinding de-vices, either the torque with and without material load is determined and the specific energy input is calculated, or the power input with and without material is determined. Here again the no-load value is subtracted from the load value and the specific energy input as actually intro-duced into the product is calculated.
Presently, the energy intake was determined via determination of the torque using a torque-determination apparatus IC3001-Ex (German: “Drehmoment-Messeinrichtung IC3001-Ex” ; Dr. Staiger, Mohilo & Co. GmbH, Schorndorf) and a torque-rotation speed determination apparatus IC3001-Ex-n (German: “Drehmoment-Drehzahl-Messeinrichtung IC3001-Ex-n” ; Dr. Staiger, Mo-hilo & Co. GmbH, Schorndorf) , whereby manual no. 1294 dated May 13, 1993 (German: “Prüfanleitung Nr. 1294” ) was used. The torque-determination apparatus was used according to the suggested installation under item 5.1 in manual no. 1234 (German: “Bedienungsanleitung Nr. 1234” ) , the mechanical installation (German: “3.1 Mechanischer Aufbau” ) was done accord-ing to the suggested installation under item 3.1 of said manual, and the electrical installation  (German: “3.2 Elektrischer Aufbau” ) according to the suggested installation under item 3.2 of said manual.
Reference Example 2:  27Al MAS solid-state NMR analysis
Prior to solid-state NMR experiments, samples were  27Al solid-state nuclear magnetic reson-ance (NMR) was performed using the following devices, procedures and parameters: Storage of samples at 62%relative humidity for at least 60 hours prior to packing, packing of samples into 4mm ZrO 2 rotors with Kel-F caps, Bruker Avance III spectrometer with 9.4 Tesla magnet, 10 kHz (ω/2π) magic angle spinning, one-pulse radiofrequency excitation corresponding to a 0.83μs 15°-pulse on AlCl 3-solution (1%in H 2O) , 10 ms acquisition of the free induction decay, no heteronuclear  1H radiofrequency decoupling, averaging of at least 5120 scans with a recycle delay of 0.5s, Fourier transform with 10 Hz exponential line broadening for noise suppression, manual phasing and baseline correction in Bruker Topspin 3.0. Spectra were referenced relative to Al (NO 33 in D 2O, 1.1 mol/kg at a frequency ratio of 0.26056859 on the absolute chemical shift scale, according to Pure Appl. Chem., Vol. 80, No. 1, pp. 59–84, 2008, using adamantane with a  13C methylene resonance at 37.77ppm as a secondary standard. For each spectrum, two integral ranges were defined, integral I 1 ranging from 80 ppm to 20 ppm, and Integral I 2 ranging from 15 to -20 ppm. A relative integral I r defined as I r = I 2 / (I 1 + I 2) was calculated. Said proce-dure was used in particular for Examples 1 and 7-11.
Alternatively, the  27Al solid-state nuclear magnetic resonance (NMR) can be performed as fol-lows.  27Al solid-state nuclear magnetic resonance (NMR) was performed using the following devices, procedures and parameters: Storage of samples at 62 %relative humidity for at least 60 hours prior to packing, packing of samples into 3.2 mm ZrO 2 rotors with Vespel or Kel-F caps, Bruker Avance Neo spectrometer with 14.1 Tesla magnet, 15 kHz (ω/2π) magic angle spinning, one-pulse radiofrequency excitation corresponding to a 0.83 to 0.92μs 15°-pulse on AlCl 3-solution (1 %in H 2O) , 7 to 15 ms acquisition of the free induction decay, no heteronuclear  1H radiofrequency decoupling, averaging of at least 5120 scans with a recycle delay of 0.5 s, Fourier transform with 0 to 20 Hz exponential line broadening for noise suppression, manual phasing and baseline correction in Bruker Topspin 3. Spectra were referenced relative to Al (NO 33 in D 2O, 1.1 mol/kg at a frequency ratio of 0.26056859 on the absolute chemical shift scale, according to Pure Appl. Chem., Vol. 80, No. 1, pp. 59–84, 2008, using adamantane with a  13C methylene resonance at 37.77ppm as a secondary standard. For each spectrum, two integral ranges were defined, integral I 1 ranging from 80 ppm to 20 ppm, and Integral I 2 ranging from 15 to -20 ppm. A relative integral I r defined as I r = I 2 / (I 1 + I 2) was calculated. Said proce-dure was used in particular for Examples 15 and 16.
Reference Example 3: X-ray diffraction analysis
Powder X-ray diffraction (PXRD) data was collected using a diffractometer (D8 Advance Series II, Bruker AXS GmbH) equipped with a LYNXEYE detector operated with a Copper anode X-ray  tube running at 40kV and 40mA. The geometry was Bragg-Brentano, and air scattering was reduced using an air scatter shield. The crystallinity was determined using DIFFRAC. EVA soft-ware (User Manual for DIFFRAC. EVA, Bruker AXS GmbH, Karlsruhe) .
Reference Example 4: Preparation of the CHA seeds
2,040 kg of water were placed in a stirring vessel and 3, 924 kg of a solution of 1-adamantyltrimethyl ammoniumhydroxide (20 weight-%aqueous solution) were added thereto under stirring. 415.6 kg of a solution of sodium hydroxide (20 weight-%aqueous solution) were then added, followed by 679 kg of aluminum triisopropylate (
Figure PCTCN2019120954-appb-000003
D 10, Ineos) , after which the resulting mixture was stirred for 5 min. 7800.5 kg of a solution of colloidal silica (40 weight-%aqueous solution; 
Figure PCTCN2019120954-appb-000004
AS 40, Sigma Aldrich) were then added and the resulting mixture stirred for 15 min before being transferred to an autoclave. 1,000 kg of distilled water used for washing out the stirring vessel were added to the mixture in the autoclave, and the final mixture was then heated under stirring for 19 h at 170 ℃. The solid product was then filtered off and the filter cake washed with distilled water. The resulting filter cake was then dispersed in distilled water in a spray dryer mix tank to obtain a slurry with a solids concentration of approximately 24 weight-%and then spray dried, wherein the inlet temperature was set to 477-482 ℃ and the outlet temperature was measured to be 127-129 ℃, thus affording a spray dried powder of a zeolite having the CHA framework structure. The resulting material had a particle size distribu-tion affording a Dv10 value of 1.4 micrometer, a Dv50 value of 5.0 micrometer, and a Dv90 val-ue of 16.2 micrometer. The material displayed a BET specific surface area of 558 m 2/g, a silica to alumina ratio of 34, a crystallinity of 105 %as determined by powder X-ray diffraction. The sodium content of the product was determined to be 0.75 weight-%calculated as Na 2O.
Example 1: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
27.73 g Silicagel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 28.58 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 12.31 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 3.37 g CHA seeds were gently mixed in a vessel with a spatula. The powder was then introduced into a stirred media mill (PML Drais from Bühler) with a grinding volume of 0.94 l. As grinding media zircon oxide beads with a diameter of 2.8 –3.3 mm were taken. The filling degree of the grinding media was 50 %. 22 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%N, N, N-trimethyl-1-adamantylammonium hydroxide (TMAdAOH) in deionized water) were introduced into the mill. Afterwards the mill was closed and operated in batch mode. The tip speed was set to 5 m/s. The mixture was ground for 1 minute (6 kJ/kg) .
The  27Al MAS NMR of the mechanochemically activated reaction mixture is displayed in figure 1 and shows a relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1)  of 88.7 and within the range of 15 to -20 ppm (I 2) of 11.3 such as to afford a ratio of the integra-tion values I 2 : (I 1 + I 2) of 11.3.
Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and calcined at 600 ℃. The crystallinity of the sample was 92 %and consisted of CHA with small traces of MTN (not quantifiable) .
Example 2: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
41.25 g Silicagel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 42.58 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 18.33 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 5.02 g CHA seeds, 32.81 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%TMAdAOH in deionized water) were gently mixed in a vessel with a spatula. The powder was then fed into a roller mill with a throuphput of 63 kg/h. The material was stressed with plain rolls with a lead velocity of 3 (roll 1: 2.8 m/s; roll 2: 8.4 m/s) , wherein the energy intake or the mixture was less than 1.8 kJ/kg. Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and calcined at 600 ℃. The crystallinity of the sample was 94 %and consisted of 98 %CHA and 2 %MOR.
Example 3: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
41.25 g Silicagel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 42.58 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 18.33 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 5.02 g CHA seeds, 32.81 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%TMAdAOH in deionized water) were introduced into a ball mill (1 l grinding chamber, filled with 40 %2 mm grinding beads of stainless steel) . The material was stressed for 5 minutes at 117 rpm. Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and cal-cined at 600 ℃. The crystallinity of the sample was 94 %and consisted of 98 %CHA, 1 %MTN and 1 %MOR.
Comparative Example 4: Solidothermal synthesis of a zeolitic material having framework type CHA
36.41 g silica gel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 37.58 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 16.18 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 0.89 g CHA seeds and  28.95 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%TMAdAOH in deionized water) were gently mixed and then introduced into a laborato-ry kneader with sigma blades. The filling degree was nearly 100 %. The material was stressed for 10 minutes at a rotation speed of 100 rpm. The specific energy input was 260 kJ/kg. After-wards the sample was crystallized for 18 hours at 240 ℃, washed, filtrated and calcined at 550 ℃. The crystallinity of the sample was 89 %. However, besides CHA a high quantity of side products such as MOR, FER, MTN, RUV-10 and Quartz were formed by mechanochemical syn-thesis.
Example 5: Solidothermal synthesis of a zeolitic material having framework type CHA via me-chanochemical activation
88.40 g silica gel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 91.24 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 39.29 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 10.77 g CHA seeds and 70.30 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%TMAdAOH in deionized water) were introduced into a laboratory high shear mixer equipped with a micro granulation tool. The filling degree was 52 %. The material was stressed for 5 minutes at a rotor tip speed of 21 m/swhile the mixing pan rotated at 170 rpm. Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and calcined at 550 ℃. The crystallinity of the sample was 85 %consisting of CHA and small traces of MTN (could not be quantified) .
Example 6: Solidothermal synthesis of a zeolitic material having framework type CHA via me-chanochemical activation
73.67 g silica gel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 76.04 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 32.74 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 8.97 g CHA seeds and 58.58 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%TMAdAOH in deionized water) were introduced into a laboratory high shear mixer equipped with a pin mixing tool. The filling degree was 43 %. The material was stressed for 10 minutes at a rotor tip speed of 21 m/swhile the mixing pan rotated at 170 rpm. Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and calcined at 550 ℃. The crystallinity of the sample was 82 %consisting of CHA and small traces of MTN (could not be quantified) .
Example 7: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation 27.73 g Silicagel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 28.58 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 12.31 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 3.37 g CHA seeds were gently mixed in a vessel with a spatula. The powder was then introduced into a stirred media mill (PML Drais from Bühler) with a grinding volume of 0.94 l. As grinding media zircon oxide beads with a diameter of 2.8 –3.3 mm were taken. The filling degree of the grinding media was 50 %. 22 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%N, N, N-trimethyl-1-adamantylammonium hydroxide (TMAdAOH) in deionized water) were introduced into the mill. Afterwards the mill was closed and operated in batch mode. The tip speed was set to 5 m/s. The mixture was ground for 2 minutes.
The  27Al MAS NMR of the mechanochemically activated reaction mixture displayed a relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1) of 88.8 and within the range of 15 to -20 ppm (I 2) of 11.2 such as to afford a ratio of the integration values I 2 : (I 1 + I 2) of 11.2.
Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and calcined at 600 ℃. The crystallinity of the sample was 90 %and consisted of CHA and some traces of MTN.
Example 8: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
55.46 g Silicagel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 57.16 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 24.62 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 6.74 g CHA seeds were gently mixed in a vessel with a spatula. The powder was then introduced into a stirred media mill (PML Drais from Bühler) with a grinding volume of 0.94 l. As grinding media zircon oxide beads with a diameter of 2.8 –3.3 mm were taken. The filling degree of the grinding media was 50 %. 44 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%N, N, N-trimethyl-1-adamantylammonium hydroxide (TMAdAOH) in deionized water) were introduced into the mill.
The  27Al MAS NMR of the mechanochemically activated reaction mixture is displayed in figure 2 and shows a relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1) of 91.2 and within the range of 15 to -20 ppm (I 2) of 8.8 such as to afford a ratio of the integra-tion values I 2 : (I 1 + I 2) of 8.8.
Afterwards the mill was closed and operated in batch mode. The tip speed was set to 5 m/s. The mixture was ground for 2 minutes. Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and calcined at 600 ℃. The crystallinity of the sample was 91 %and consisted of CHA and some traces of MTN.
Example 9: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
27.73 g Silicagel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 28.58 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 12.31 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 3.37 g CHA seeds were gently mixed in a vessel with a spatula. The powder was then introduced into a stirred media mill (PML Drais from Bühler) with a grinding volume of 0.94 l. As grinding media zircon oxide beads with a diameter of 2.8 –3.3 mm were taken. The filling degree of the grinding media was 50 %. 22 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%N, N, N-trimethyl-1-adamantylammonium hydroxide (TMAdAOH) in deionized water) were introduced into the mill.
The  27Al MAS NMR of the mechanochemically activated reaction mixture displayed a relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1) of 89.4 and within the range of 15 to -20 ppm (I 2) of 10.6 such as to afford a ratio of the integration values I 2 : (I 1 + I 2) of 10.6.
Afterwards the mill was closed and operated in batch mode. The tip speed was set to 8 m/s. The mixture was ground for 2 minutes. Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and calcined at 600 ℃. The crystallinity of the sample was 91 %and consisted of CHA and some traces of MTN.
Example 10: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
27.73 g Silicagel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 28.58 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 12.31 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 3.37 g CHA seeds were gently mixed in a vessel with a spatula. The powder was then introduced into a stirred media mill (PML Drais from Bühler) with a grinding volume of 0.94 l. As grinding media zircon oxide beads with a diameter of 2.8 –3.3 mm were taken. The filling degree of the grinding media was 50 %. 22 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%N, N, N-trimethyl-1-adamantylammonium hydroxide (TMAdAOH) in deionized water) were introduced into the mill. Afterwards the mill was closed and operated in batch mode. The tip speed was set to 10 m/s. The mixture was ground for 2 minutes.
The  27Al MAS NMR of the mechanochemically activated reaction mixture displayed a relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1) of 86.2 and within the  range of 15 to -20 ppm (I 2) of 13.8 such as to afford a ratio of the integration values I 2 : (I 1 + I 2) of 13.8.
Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and calcined at 600 ℃. The crystallinity of the sample was 93 %and consisted of CHA.
Example 11: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
88.4 g Silicagel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 91.24 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 39.29 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 10.77 g CHA seeds and 70,30 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%N, N, N-trimethyl-1-adamantylammonium hydroxide (TMAdAOH) in deionized water) were gently mixed in a vessel with a spatula. The mixed material around 300 g was then intro-duced into in a Koller and mixed for 5 min.
The  27Al MAS NMR of the mechanochemically activated reaction mixture displayed a relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1) of 85.7 and within the range of 15 to -20 ppm (I 2) of 14.3 such as to afford a ratio of the integration values I 2 : (I 1 + I 2) of 14.3.
70 g of the obtained sample was crystallized for 2 hours at 240 ℃, washed, filtrated and cal-cined at 600 ℃. The crystallinity of the sample was 95 %and consisted of CHA.
Example 12: Solidothermal synthesis of a zeolitic material having a CHA-type framework struc-ture via mechanochemical activation
442.0 g silica gel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 456.22 g Na 2SiO 3 ·9 H 2O (analytical grade, SiO 2 of 20 weight-%, Aladdin Chemistry Co., Ltd. ) , 196.45 g Al 2 (SO 43 hydrate (analytical grade, 98 %; ABCR GmbH Karlsruhe) , 53, 84 g CHA seeds and 351.49 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%in deionized water; TMAdAOH) were introduced into a laboratory high shear mixer equipped with a micro granulation tool. The filling degree was 52 %. The material was stressed for 5 minutes at a with the micro granulation tool at 3000 rpm while the mixing pan rotated at 92 rpm. Afterwards the sample was crystallized for 2 hours at 240 ℃, washed, filtrated and cal-cined at 550 ℃. The final product displayed a crystallinity of 85 %and consisted of 98.5 wt. -%CHA and 1.5 wt. -%ZSM-39.
Example 13: Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
a) Preparation of a CHA-type zeolite
221.0 g silica gel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 228.1 g Na 2SiO 3 ·9 H 2O (Sigma Aldrich) , 98.2 g Al 2 (SO 43 hydrate (Sigma Aldrich) , 26.9 g CHA seeds, 168.0 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (TMAdAOH; 50 weight-%TMAdAOH in deionized water; SACHEM) and 7.5 g DI water were introduced into a laboratory batch kneader equipped with sigma blades (LK II from Linden) . The material was stressed for 5 minutes with 23 rpm (faster blade) at a temperature in the range of 25-65 ℃.
The XRD of the mechanochemically activated reaction mixture showed a crystallinity of 35 %consisting of 28 %CHA and 72 %Thenardite.
Afterwards 1.3 kg of the sample was crystallized for 4 hours at 190 ℃, washed, filtrated and calcined at 550 ℃. The crystallinity of the resulting material was 91 %and consisted of 100 %CHA. According to elemental analysis, the resulting material had a carbon content of 0.21 g/100 g, a silicon content of 38 g/100 g, an aluminum content of 3.6 g/100 g, and a sodium con-tent of 2.1 g/100 g. Further, the resulting material had a BET specific surface area of 491 m 2/g.
b) Ion-exchange with ammonium cations
An aqueous solution of ammonium nitrate (10 weight-%of ammonium nitrate in water) is pre-pared in a 500 ml flask and heated to 80 ℃. A portion of the zeolitic material prepared accord-ing to a) was then added to the solution under heating, wherein the weight ratios of zeolite : ammonium nitrate : deionized water in the heated mixture were 1 : 1 : 10. The resulting mixture was then stirred for 2 h at 80 ℃. The suspension was then filtered off and washed with water. The filter cake was then dried at 120 ℃ over night and subsequently calcined at 450 ℃ for 6 h.
Said procedure was repeated once.
According to elemental analysis, the resulting material had a carbon content of 0.12 g/100 g, a silicon content of 39 g/100 g, an aluminum content of 3.4 g/100 g, and a sodium content of 0.24 g/100 g.
c) Ion-exchange with copper cations
A sample of the zeolitic material prepared according to a) was ion-exchanged with copper using incipient wetness impregnation. The impregnated materials was then sealed and stored in an oven for 20 h at a temperature of 50 ℃. Subsequently, the impregnated material was dried and then calcined for 5 h at 450 ℃. The copper loading of the obtained material was 3.95 weight-%.
d) Shaping
A sample of the impregnated material obtained from c) was mixed with pre-milled alumina (TM 100/150 slurry; pre-milled in a ball-mill at 500 rpm for 10 min) in a weight ratio of 70 %sample to 30 %alumina. The resulting mixture was dried under stirring and subsequently calcined for 1 h at a temperature of 550 ℃. Then, the obtained calcined material was crushed and sieved to obtain particles having a particle size in the range of from 250 to 500 μm.
Example 14: Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
a) Preparation of a CHA-type zeolite
406.5 g zeolite Y (DY-43 Zeolite from Shandong Qilu Huaxin) , 87.81 g NaOH powder (Sigma Aldrich) , 15.0 g CHA seeds and 240.8 g of an aqueous solution of N, N, N-1-trimethyl-adamantylammonium hydroxide (TMAdAOH; 50 weight-%TMAdAOH in deioinized water; SA-CHEM) were introduced into a batch kneader equipped with sigma blades (LK II from Linden) . The material was stressed for 5 minutes with 23 rpm (faster blade) at a temperature in the range of 25-65 ℃.
Afterwards 1 kg of the sample was crystallized for 4 hours at 190 ℃, washed, centrifuged and calcined at 550 ℃. The crystallinity of the resulting material was 92 %and consisted of higher than 99 weight-%CHA and less than 1 weight-%zeolite Y. According to elemental analysis, the resulting material had a carbon content of 0.14 g/100 g, a silicon content of 39 g/100 g, an alu-minum content of 2.9 g/100 g, and a sodium content of 1.3 g/100 g. Further, the resulting ma-terial had a BET specific surface area of 669.0 m 2/g.
b) Ion-exchange with ammonium cations
An aqueous solution of ammonium nitrate (10 weight-%of ammonium nitrate in water) is pre-pared in a 500 ml flask and heated to 80 ℃. A portion of the zeolitic material prepared accord-ing to a) was then added to the solution under heating, wherein the weight ratios of zeolite : ammonium nitrate : deionized water in the heated mixture were 1 : 1 : 10. The resulting mixture was then stirred for 2 h at 80 ℃. The suspension was then filtered off and washed with water. The filter cake was then dried at 120 ℃ over night and subsequently calcined at 450 ℃ for 6 h.
Said procedure was repeated once.
According to elemental analysis, the resulting material had a silicon content of 41 g/100 g, an aluminum content of 2.8 g/100 g, and a sodium content of 0.06 g/100 g.
c) Ion-exchange with copper cations
A sample of the zeolitic material prepared according to a) was ion-exchanged with copper using incipient wetness impregnation. The impregnated materials was then sealed and stored in an oven for 20 h at a temperature of 50 ℃. Subsequently, the impregnated material was dried and then calcined for 5 h at 450 ℃. The copper loading of the obtained material was 3.17 weight-%.
d) Shaping
A sample of the impregnated material obtained from c) was mixed with pre-milled alumina (TM 100/150 slurry; pre-milled in a ball-mill at 500 rpm for 10 min) in a weight ratio of 70 %sample to 30 %alumina. The resulting mixture was dried under stirring and subsequently calcined for 1 h at a temperature of 550 ℃. Then, the obtained calcined material was crushed and sieved to obtain particles having a particle size in the range of from 250 to 500 μm.
Example 15: Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
a) Preparation of a CHA-type zeolite
162.6 g zeolite Y (DY-43 Zeolite from Shandong Qilu Huaxin) , 35.1 g NaOH powder (Sigma Aldrich) , 6.0 g CHA seeds and 96.3 g of an aqueous solution of N, N, N-1-trimethyl-adamantylammonium hydroxide (TMAdAOH; 50 weight-%TMAdAOH in deioinized water; SA-CHEM) were introduced into a laboratory high shear mixer equipped with a micro granulation tool (Eirich EL1 mixer from Eirich) . The material was stressed for 5 minutes at a rotor tip speed of 21 m/swhile the mixing pan rotated countercurrent at 170 rpm, whereby the material had at a temperature in the range of 20-53 ℃.
The  27Al MAS NMR of the mechanochemically activated reaction mixture displayed a peak hav-ing a maximum at 61.6 ppm.
Afterwards 70 g of the sample was crystallized for 4 hours at 190 ℃, washed, centrifuged and calcined at 550 ℃. The crystallinity of the resulting material was 93 %and consisted of 100 weight-%CHA. According to elemental analysis, the resulting material had a carbon content of 0.06 g/100 g, a silicon content of 38 g/100 g, an aluminum content of 2.7 g/100 g, and a sodium content of 1.1 g/100 g. Further, the resulting material had a BET specific surface area of 699.1 m 2/g.
b) Ion-exchange with ammonium cations
An aqueous solution of ammonium nitrate (10 weight-%of ammonium nitrate in water) is pre-pared in a 500 ml flask and heated to 80 ℃. A portion of the zeolitic material prepared accord-ing to a) was then added to the solution under heating, wherein the weight ratios of zeolite:  ammonium nitrate: deionized water in the heated mixture were 1: 1: 10. The resulting mixture was then stirred for 2 h at 80 ℃. The suspension was then filtered off and washed with water. The filter cake was then dried at 120 ℃ over night and subsequently calcined at 450 ℃ for 6 h.
Said procedure was repeated once.
According to elemental analysis, the resulting material had a silicon content of 37 g/100 g, an aluminum content of 2.5 g/100 g, and a sodium content of less than 0.01 g/100 g.
c) Ion-exchange with copper cations
A sample of the zeolitic material prepared according to a) was ion-exchanged with copper using incipient wetness impregnation. The impregnated materials was then sealed and stored in an oven for 20 h at a temperature of 50 ℃. Subsequently, the impregnated material was dried and then calcined for 5 h at 450 ℃. The copper loading of the obtained material was 3.14 weight-%.
d) Shaping
A sample of the impregnated material obtained from c) was mixed with pre-milled alumina (TM 100/150 slurry; pre-milled in a ball-mill at 500 rpm for 10 min) in a weight ratio of 70 %sample to 30 %alumina. The resulting mixture was dried under stirring and subsequently calcined for 1 h at a temperature of 550 ℃. Then, the obtained calcined material was crushed and sieved to obtain particles having a particle size in the range of from 250 to 500 μm.
Example 16: Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
a) Preparation of a CHA-type zeolite
32.5 g zeolite Y (DY-43 Zeolite from Shandong Qilu Huaxin) , 7.0 g NaOH powder (Sigma Al-drich) , 1.2 g CHA seeds and 19.3 g of an aqueous solution of N, N, N-1-trimethyl-adamantylammonium hydroxide (TMAdAOH; 50 weight-%TMAdAOH in deioinized water; SA-CHEM) were introduced into a laboratory kneader with sigma blades (laboratory kneader from Brabender including a power unit Plastograph EC (German “Antriebseinheit Plastograph EC” ) and a mixing unit with measurement system 30/50 (German “Messkneter 30/50” ) ) . The filling degree was almost 100 %. The material was stressed for 1 minute at a rotation speed of 50 rpm at a temperature of the material of 30 ℃.
The  27Al MAS NMR of the mechanochemically activated reaction mixture displayed a peak hav-ing a maximum at 61.8 ppm.
Afterwards 50 g of the sample was crystallized for 4 hours at 190 ℃, washed, centrifuged and calcined at 550 ℃. The crystallinity of the resulting material was 91 %and consisted of 100 weight-%CHA. According to elemental analysis, the resulting material had a silicon content of 37 g/100 g, an aluminum content of 2.6 g/100 g, and a sodium content of 1.1 g/100 g. Further, the resulting material had a BET specific surface area of 677.0 m 2/g.
b) Ion-exchange with ammonium cations
An aqueous solution of ammonium nitrate (10 weight-%of ammonium nitrate in water) is pre-pared in a 500 ml flask and heated to 80 ℃. A portion of the zeolitic material prepared accord-ing to a) was then added to the solution under heating, wherein the weight ratios of zeolite : ammonium nitrate : deionized water in the heated mixture were 1 : 1 : 10. The resulting mixture was then stirred for 2 h at 80 ℃. The suspension was then filtered off and washed with water. The filter cake was then dried at 120 ℃ over night and subsequently calcined at 450 ℃ for 6 h.
Said procedure was repeated once.
According to elemental analysis, the resulting material had a silicon content of 37 g/100 g, an aluminum content of 2.5 g/100 g, and a sodium content of less than 0.01 g/100 g.
c) Ion-exchange with copper cations
A sample of the zeolitic material prepared according to a) was ion-exchanged with copper using incipient wetness impregnation. The impregnated materials was then sealed and stored in an oven for 20 h at a temperature of 50 ℃. Subsequently, the impregnated material was dried and then calcined for 5 h at 450 ℃. The copper loading of the obtained material was 3.14 weight-%.
d) Shaping
A sample of the impregnated material obtained from c) was mixed with pre-milled alumina (TM 100/150 slurry; pre-milled in a ball-mill at 500 rpm for 10 min) in a weight ratio of 70 %sample to 30 %alumina. The resulting mixture was dried under stirring and subsequently calcined for 1 h at a temperature of 550 ℃. Then, the obtained calcined material was crushed and sieved to obtain particles having a particle size in the range of from 250 to 500 μm.
Example 17: Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
a) Preparation of a CHA-type zeolite
162.6 g zeolite Y (DY-43 Zeolite from Shandong Qilu Huaxin) , 35.1 g NaOH powder (Sigma Aldrich) , 6.0 g CHA seeds and 96.3 g of an aqueous solution of N, N, N-1-trimethyl- adamantylammonium hydroxide (TMAdAOH; 50 weight-%TMAdAOH in deioinized water; SA-CHEM) were introduced into a single shaft batch kneader (DTB kneader from List) . The material was stressed for 3 minutes with 21 rpm.
Afterwards 70 g of the sample was crystallized for 4 hours at 190 ℃, washed, centrifuged and calcined at 550 ℃. The crystallinity of the resulting material was 94 %and consisted of 100 weight-%CHA.
Example 18: Solidothermal synthesis of a zeolitic material having a CHA-type framework structure via mechanochemical activation and subsequent ion-exchange
a) Preparation of a CHA-type zeolite
88.4 g silica gel (SiO 2 ·1.16 H 2O; Qingdao Haiyang Chemical Reagent Co, Ltd. ) , 91.2 g Na 2SiO 3 ·9 H 2O (Sigma Aldrich) , 39.3 g Al 2 (SO 43 hydrate (Sigma Aldrich) , 10.8 g CHA seeds, 67.2 g of an aqueous solution of N, N, N-1-trimethyladamantylammonium hydroxide (47.8 weight-%in deionized water; TMAdAOH; SACHEM) , and 3.0 g deionized water were introduced into a single shaft batch kneader (DTB kneader from List) . The material was stressed for 3 minutes with 21 rpm.
Afterwards 70 g of the sample was crystallized for 4 hours at 190 ℃, washed, centrifuged and calcined at 550 ℃. The crystallinity of the resulting material was 93 %and consisted of 100 weight-%CHA.
Thus, as demonstrated by the examples above, it has quite unexpectedly been found that the crystallization process in solidothermal synthesis may be considerably increased by applying a step of mechanochemical activation to the reaction mixture prior to the step of crystallization. In particular, it has surprisingly been found that a specific amount of controlled grinding and/or mixing of the reaction mixture prior to the hydrothermal crystallization leads to a substantial in-crease in the rate of crystallization, such that the space-time yield of the reaction may be consi-derably increased. This effect is even apparent even in view of prior art documents relating to solidothermal synthesis which teach a grinding step prior to the crystallization process. Thus, as may be taken from Example 5 and Figure 10 of WO 2018/059316 A1 which displays the results from crystallization of a zeolitic material having the CHA-type framework structure in solidother-mal synthesis at different temperatures, crystallization at 240 ℃ requires 5 h, whereas the ma-terials of the examples of the present application may be obtained after only 2 h at the same temperature. This result is all the more surprising considering the fact that WO 2018/059316 A1 teaches the manual grinding of the reaction mixture for 5 min prior to the crystallization thereof. In particular, as may be taken from a comparison of the results of the present examples with those of Example 5 of WO 2018/059316 A1, the highly surprising increase in efficiency which may be achieved according to the inventive process requires a specific and highly controlled  grinding and/or mixing step as defined in the present application and demonstrated in the present examples which may be clearly distinguished from uncontrolled grinding by hand in a mortar as taught e.g. in WO 2018/059316 A1 or WO 2018/046481 A1.
Example 19: Production of a shaped body with the CHA material of example 11
20.7 g of the zeolitic material obtained from example 11 and 20.7 g of ammonium nitrate were placed in a 0.5 L beaker and 208 g of distilled water were added thereto. The mixture was heated to 80℃ and held at that temperature for 2 h. The solid product was then filtered off, washed with 1 L of distilled water to a conductivity of the wash water of 10.7 μS, and then suc-tion dried. The zeolitic material was then dried in a drying oven at 120 ℃ for 3h and subse-quently calcined at 450 ℃ for 5 h. A second batch of zeolitic material obtained from example 11 was ion exhanged according to the foregoing procedure, and the ion exchanged products were combined.
34.1 g of the ion-exchanged material were placed in a kneader and admixed with 1.71 g of me-thyl cellulose (Walocel) . 9.45 g of colloidal silica (Ludox AS 40) was then added to the mixture and 25 ml of distilled water were then slowly added over a period of 20 min while kneading. The mixture was then extruded at 106 bars to strands having a diameter of 2 mm. The strands were dried at 120 ℃ for 7 h and then calcined at 500 ℃ for 5 h.
Comparative Example 20: Production of a shaped body with a CHA material from conventional synthesis
1.991 g of aqueous N, N, N-trimethylcyclohexylammonium hydroxide (CHTMAOH) solution (20 weight-%) and 0.655 g of aqueous tetramethylammonium hydroxide solution (TMAOH) (25 weight-%) were first mixed. Then, 0.295 g of aluminum isopropoxide was added slowly under stirring at room temperature for 30 min at 500 rpm. After dissolution of the aluminum isopropox-ide, 3.020 g of colloidal silica (Ludox AS-40) were added. The mixture was further stirred for 10 min at room temperature at 500 rpm before the addition of 0.046 g of CHA seed crystals ob-tained according to reference example 4. The mixture was charged to a 23-mL Teflon-lined au-toclave. The tightly closed autoclave was placed in an oven pre-heated at 175 ℃. Hydrothermal treatment was carried out at 175 ℃ with 20 rpm tumbling for 48 h. The sample was collected using centrifugation at 14,000 rpm and washed with water until the pH of the washing water was in the range of from 7–8. The solid product was dried in air at 80 ℃ and calcined in air at 600 ℃for 5 h. The product displayed a CHA-type framework structure and had a crystallinity of 100%.
100 g of the zeolitic material as obtained from larger scale synthesis according to the foregoing procedure were placed in a kneader and admixed with 5 g of methyl cellulose (Walocel) and 27.78 g of colloidal silica (Ludox AS 40) and the mixture kneaded for 10 min. 79 ml of distilled water were then added to the mixture which was then further kneaded for 60 min. The mixture  was then extruded at 64 bars to strands having a diameter of 2.5 mm. The strands were dried at 120 ℃ for 6 h and then calcined at 500 ℃ for 5 h.
Example 21: Catalyst Testing in Methanol to Olefin (MTO) Synthesis
Testing was conducted in a tubular reactor with heatable mantle. 10 g of a ground catalyst sample (fraction 1 –1.6 mm) and 2-3 mm steatite beads (as inert material) were placed into the reactor. The reactor bed consisted of:
reactor exit: 4cm steatite beads (ca. 5ml)
catalyst bed: 10g catalyst
reactor entrance: filled to 6cm before the end of the reactor
Methanol (ca. 30%in nitrogen) was guided through a saturator (60 ℃) with cooling spiral (40 ℃) to a pre-evaporator (200 ℃) and then through the reactor (400-500 ℃) at a WHSV of about 0.8 for 24 h, and the gas produced in the reactor was then continuously analyzed with a gas chro-matograph.
Using the aforementioned experimental set-up, a sample from example 12 was tested and compared to the performance observed with comparative example which was used as seeding material in the synthetic procedures of the examples. The results from catalytic testing are de-scribed in the table below:
Figure PCTCN2019120954-appb-000005
Thus, as may be taken from the results presented in the table, it has quite unexpectedly been found that when used as a catalyst in the methanol to olefin reaction, the zeolitic material ob-tained according to the inventive method leads to an improved selectivity towards propylene than when using a zeolitic material obtained without mechanochemical activation. In addition thereto, the selectivity towards etheylene is comparable, such that it has furthermore surprising-ly been found that the C2+C3 selectivity is noticeably higher than when using a zeolitic material obtained without mechanochemical activation.
Example 22: Catalyst Testing in Selective catalytic reduction with ammonia (NH 3-SCR)
Samples of the prepared zeolitic materials according to the present invention were tested with respect to their performance in a standard selective catalytic reduction test. Samples were tested in fresh state, after aging for 50 h at a temperature of 650 ℃ in a gas atmosphere com-prising 10 %steam and air, and after aging for 16 h at a temperature of 820 ℃ in a gas atmos-phere comprising 10 %steam and air.
The conditions for the NH 3-SCR test were as follows: the feed stream had a gas hourly space velocity of 80000 h -1, and comprised 500 ppm NO, 500 ppm ammonia, 5 %water, 10 %oxygen, and was balanced with nitrogen. A sample was adjusted to amount 120 mg per reactor, where-by a sample was diluted with corundum to approximately 1 ml.
The results for the NH 3-SCR of Examples 13-16 are shown in figure 3.
Thus, it can be gathered from figure 3 that the copper-exchanged material of Example 13 showed high activity in the fresh state and slightly inferior activity after aging. In particular, at a temperature of 200 ℃ the material of Example 13 showed an activity of 72 %for the fresh state, of 63 %for the material aged at 650 ℃ and of 44 %for the material aged at 820 ℃. Further, the material of Example 13 showed an activity of 97 %for the fresh state, of 98 %for the ma-terial aged at 650 ℃ and of 90 %for the material aged at 650 ℃.
Further, the zeolitic materials of Examples 14 to 16 showed a good activity, especially when used in the fresh state.
List of cited prior art
- WO 2005/039761 A2
- US 7,528,089 B2
- WO 2016/153950 A1
- Ren et al. in J. Am. Chem. Soc. 2012, 134, 15173-15176
- Jin et al. in Angew. Chern. Int. Ed. 2013, 52, 9172-9175
- Morris et al. in Angew. Chem. Int. Ed. 2013, 52, 2163-2165
- J. Am. Chem. Soc. 2014, 136, 4019-4025
- WO 2016/058541 A1
- WO 2018/059316 A1
- WO 2018/046481 A1
- CN 104709917 A
- CN 107285334 A
- CN 103979574 A
- CN 102627287 A
- CN 102992343 A

Claims (15)

  1. A process for the preparation of a zeolitic material comprising YO 2 and X 2O 3 in its frame-work structure, wherein Y stands for a tetravalent element and X stands for a trivalent element, wherein said process comprises:
    (i) preparing a mixture comprising one or more sources of YO 2, one or more sources of X 2O 3, and H 2O;
    (ii) grinding and/or mixing the mixture prepared in (i) , wherein the energy intake of the mix-ture during the grinding and/or mixing procedure is in the range of from 0.3 to 200 kJ/kg of the mixture;
    (iii) heating the mixture obtained in (ii) at a temperature in the range of from 80 to 300 ℃for crystallizing a zeolitic material comprising YO 2 and X 2O 3 in its framework structure from the mixture;
    wherein the mixture prepared in (i) contains from 5 to 200 wt. -%of H 2O based on 100 wt. -%of the one or more sources of YO 2, calculated as YO 2, contained in the mixture pre-pared in (i) and heated in (iii) .
  2. The process of claim 1, wherein the  27Al MAS NMR of the mixture obtained in (ii) compris-es:
    a first peak (P1) in the range of from 20 to 80 ppm; and
    one or more peaks (PX) in the range of from -20 to 15 ppm;
    wherein the relative  27Al solid-state NMR intensity integral within the range of 80 to 20 ppm (I 1) and within the range of 15 to -20 ppm (I 2) of the zeolitic material offer a ratio of the integration values I 2 : (I 1 + I 2) comprised in the range of from 0.5 to 50%.
  3. The process of claim 1 or 2, wherein the rate of energy transfer to the mixture in (ii) is in the range of from 10 to 1,500 kJ/ (kg*h) .
  4. The process of any of claims 1 to 3, wherein grinding and/or mixing in (ii) is carried out in a mill selected from the group consisting of a stirred media mill, a planetary ball mill, a ball mill, a roller mill, a kneader, a high shear mixer, and a mix muller.
  5. The process of any of embodiments 1 to 4, wherein in (iii) the mixture is heated under autogenous pressure.
  6. The process of any of claims 1 to 5, wherein Y is selected from the group consisting of Si, Sn, Ti, Zr, Ge, and mixtures of two or more thereof.
  7. The process of any of claims 1 to 6, wherein X is selected from the group consisting of Al, B, In, Ga, and combinations of two or more thereof.
  8. The process of any of claims 1 to 7, wherein the mixture prepared in (i) further contains one or more structure directing agents.
  9. The process of claim 8, wherein the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for ada-mantyl and/or benzyl.
  10. The process of claim 8, wherein the one or more structure directing agents comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloal-kyl.
  11. The process of any of claims 1 to 10, wherein the mixture prepared in (i) and crystallized in (iii) further comprises seed crystals.
  12. The process of claim 11, wherein the seed crystals contained in the mixture prepared in (i) and heated in (iii) comprise one or more zeolitic materials, wherein the one or more zeolit-ic materials preferably have a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, and TON, including mixed structures of two or more thereof.
  13. A zeolitic material comprising YO 2 and X 2O 3 in its framework structure obtainable and/or obtained according to the process of any of claims 1 to 12.
  14. The zeolitic material of claim 13, wherein the zeolitic material has a CHA-type framework structure.
  15. Use of the zeolitic material according to claim 13 or 14 as a molecular sieve, as an adsor-bent, for ion-exchange, as a catalyst or a precursor thereof, and/or as a catalyst support or a precursor thereof.
PCT/CN2019/120954 2018-11-27 2019-11-26 Mechanochemical activation in solvent-free zeolite synthesis WO2020108482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018117669 2018-11-27
CNPCT/CN2018/117669 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020108482A1 true WO2020108482A1 (en) 2020-06-04

Family

ID=70853845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120954 WO2020108482A1 (en) 2018-11-27 2019-11-26 Mechanochemical activation in solvent-free zeolite synthesis

Country Status (1)

Country Link
WO (1) WO2020108482A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627287A (en) * 2012-04-20 2012-08-08 浙江大学 Method for synthesizing molecular sieve under solvent-free condition through grinding solid phase raw materials
CN103269978A (en) * 2010-12-01 2013-08-28 南方化学Ip股份有限责任公司 Mechanochemical production of zeolites
CN104709917A (en) * 2015-02-11 2015-06-17 浙江大学 Method for synthesizing SSZ-13 molecular sieve through solid-phase grinding
WO2016096653A1 (en) * 2014-12-17 2016-06-23 Consejo Superior De Investigaciones Científicas (Csic) Synthesis of zeolite with the cha crystal structure, synthesis process and use thereof for catalytic applications
WO2018113566A1 (en) * 2016-12-21 2018-06-28 Basf Se Process for the production of a zeolitic material via solvent-free interzeolitic conversion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269978A (en) * 2010-12-01 2013-08-28 南方化学Ip股份有限责任公司 Mechanochemical production of zeolites
CN102627287A (en) * 2012-04-20 2012-08-08 浙江大学 Method for synthesizing molecular sieve under solvent-free condition through grinding solid phase raw materials
WO2016096653A1 (en) * 2014-12-17 2016-06-23 Consejo Superior De Investigaciones Científicas (Csic) Synthesis of zeolite with the cha crystal structure, synthesis process and use thereof for catalytic applications
KR20170095903A (en) * 2014-12-17 2017-08-23 우니베르시타뜨 뽈리떼끄니까 데 발렌시아 Synthesis of zeolite with the cha crystal structure, synthesis process and use thereof for catalytic applications
CN104709917A (en) * 2015-02-11 2015-06-17 浙江大学 Method for synthesizing SSZ-13 molecular sieve through solid-phase grinding
WO2018113566A1 (en) * 2016-12-21 2018-06-28 Basf Se Process for the production of a zeolitic material via solvent-free interzeolitic conversion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GERARDO MAJANO ET AL.: "Rediscovering zeolite mechanochemistry – A pathway beyond current synthesis and modification boundaries", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 194, 13 April 2014 (2014-04-13), pages 106 - 114, XP055573314, DOI: 20200218182241Y *
WANG SHUANG ET AL.: "Synthesis of Aluminophosphate Molecular Sieves by Ball Milling and Recrystallization", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 39, no. 9, 30 September 2018 (2018-09-30), pages 1859 - 1866, DOI: 20200218182018Y *

Similar Documents

Publication Publication Date Title
JP6328593B2 (en) Method for producing zeolite having CHA structure
EP3386632B1 (en) Cha type zeolitic materials and methods for their preparation using combinations of cycloal-kyl- and ethyltrimethylammonium compounds
RU2627399C2 (en) Zeolite materials of sleep type and methods of their production with the use of cycloalkylammonium compounds
EP3152162B1 (en) Cha type zeolitic materials and methods for their preparation using combinations of cyclohexyl- and tetramethylammonium compounds
EP2551240B1 (en) Cu containing zeolites having CHA structure
WO2018113566A1 (en) Process for the production of a zeolitic material via solvent-free interzeolitic conversion
EP3490934B1 (en) Process for the preparation of a zeolitic material having a fau-type framework structure
GB2595760A (en) Molecular sieve intergrowths of CHA and AFT having an "SFW-GEM tail", methods of preparation and use
KR20180136501A (en) Method for producing AFX-containing molecular chain SAPO-56
EP3625171B1 (en) A process for preparing a zeolitic material having framework type aei
WO2020109292A1 (en) Mechanochemical activation in zeolite synthesis
WO2020108482A1 (en) Mechanochemical activation in solvent-free zeolite synthesis
CN103118981A (en) Alkali-free synthesis of zeolitic materials of LEV-type structure
US11219885B2 (en) JMZ-1, a CHA-containing zeolite and methods of preparation
WO2020109290A1 (en) Solvent-free mechanochemical activation in zeolite synthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889849

Country of ref document: EP

Kind code of ref document: A1