WO2020108479A1 - Probes for selective thiol detection - Google Patents

Probes for selective thiol detection Download PDF

Info

Publication number
WO2020108479A1
WO2020108479A1 PCT/CN2019/120943 CN2019120943W WO2020108479A1 WO 2020108479 A1 WO2020108479 A1 WO 2020108479A1 CN 2019120943 W CN2019120943 W CN 2019120943W WO 2020108479 A1 WO2020108479 A1 WO 2020108479A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
thiol
tpe
pbp
bioprobe
Prior art date
Application number
PCT/CN2019/120943
Other languages
French (fr)
Inventor
Benzhong Tang
Yuan Gu
Original Assignee
The Hong Kong University Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Hong Kong University Of Science And Technology filed Critical The Hong Kong University Of Science And Technology
Publication of WO2020108479A1 publication Critical patent/WO2020108479A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/18Salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present subject matter relates generally to use of a series of fluorescent compounds having aggregation-induced emission (AIE) characteristics for detecting thiol, and particularly, for detection of mitochondrial thiol and thiol detection in biological fluids.
  • AIE aggregation-induced emission
  • Intracellular thiol such as cysteine (Cys) , homocysteine (Hcy) and glutathione (GSH) , plays a crucial role in biological systems.
  • the mitochondrial pool of thiol in particular, is crucial for protection against oxidative stress and plays a pivotal role in removing reactive oxygen species (ROS) and maintaining ROS at needed physiological levels.
  • ROS reactive oxygen species
  • a decrease in mitochondrial thiol levels reduces the antioxidant defense system and may be an indicator for one or more of several diseases, such as diabetes mellitus, renal failure, malignancy, cervical cancer, and neurodegenerative diseases. Therefore, monitoring thiol status in mitochondria can be of clinical significance.
  • Fluorescent probes with their intrinsic merits of simplicity, low background noise and high sensitivity, are powerful tools for visualizing analytes in their native environment and revealing information that cannot be obtained by cell homogenates.
  • Great research efforts have been devoted to the development of new thiol-specific fluorescent probes for monitoring thiol density and distribution in mitochondria in living cells. Many of these fluorescent probes typically rely upon the nucleophilicity of thiol. Generally, however, these probes suffer from aggregation-caused quenching (ACQ) , with their emission weakened or quenched in concentrated solution or in the aggregated state. As a result, researchers have to use dilute solutions with a compromised low sensitivity and photostability for biological applications.
  • ACQ aggregation-caused quenching
  • AIE aggregation-induced emission
  • AIE-based bioprobes Guided by the principle of RIM, many AIE-based bioprobes with advantages of superior brightness, high photostability, long-term in situ retention ability, and low cytotoxicity, were successfully developed for various practical applications.
  • thiol-specific AIE probes for in vitro turn-on detection have been reported, most of them are single-wavelength indicators, whose turn-on responses can vary depending on experimental conditions, such as incident laser power, probe concentrations, and/or optical path length. As such, many of these probes may be unsuitable for quantitative measurements. Furthermore, many of these probes have not been useful for detecting mitochondrial thiol.
  • the present subject matter contemplates a fluorescent bioprobe including a small molecule, fluorescent compound having aggregation-induced emission (AIE) characteristics.
  • the compound can exhibit twisted intramolecular charge transfer.
  • the compound is “TPE-PBP, ” having the following structural formula:
  • the bioprobe can be used for thiol detection.
  • the bioprobe can be used for thiol detection in mitochondria.
  • a method of detecting mitochondrial thiol in a target cell can include contacting the target cell with the fluorescent bioprobe and using fluorescence microscopy to measure a fluorescence of the target cell contacted with the fluorescent bioprobe.
  • the target cell contacted with the fluorescent bioprobe will emit a blue fluorescence when mitochondrial thiol is present in the target cell.
  • the fluorescence microscopy can include one-photon fluorescence microscopy or two-photon fluorescence microscopy.
  • the bioprobe can be used for in vitro, ex vivo, or in vivo mitochondrial thiol detection.
  • the bioprobe can be used for detecting thiol in a fluid, such as blood.
  • the bioprobe alone exhibits an emission wavelength peak at 631 nm.
  • a method of detecting thiol in a fluid can include contacting the fluid with the bioprobe.
  • the bioprobe selectively targets thiol in the fluid, resulting in a new emission peak at 500 nm when thiol is present, in addition to the emission peak of the bioprobe at 631 nm.
  • Fig. 1 depicts 1 H NMR spectrum of TPE-PBP in MeOD.
  • Fig. 2 depicts 13 C NMR spectrum of TPE-PBP in CDCl 3 .
  • Fig. 3 depicts HRMS spectrum of TPE-PBP.
  • Fig. 5 depicts absorption spectra of TPE-PBP in DMSO and DMSO/Water mixtures with different water fractions (Concentration: 10 ⁇ M) .
  • Fig. 8 depicts (A) the ESI-MS of fluorescence sensing mechanism of TPE-PBP before addition of GSH; (B) the ESI-MS of fluorescence sensing mechanism of TPE-PBP upon addition of GSH.
  • Fig. 9 depicts molecular orbital amplitude plots of HOMO and LUMO energy levels of TPE-PBP and TPE-Py calculated by using the B3LYP/6-31G basis set.
  • Fig. 10 depicts (A) relative PL intensity of TPE-PBP (10 ⁇ M) incubated with GSH (100 ⁇ M) in DMSO/PBS buffer with different DMSO fractions for 2 h; (B) time-dependent changes of relative PL intensity of TPE-PBP (10 ⁇ M) with GSH (1 mM) ; and (C) pH-dependent changes of relative PL intensity of TPE-PBP (10 ⁇ M) alone and TPE-PBP (10 ⁇ M) incubated with GSH (100 ⁇ M) for 2 h (excitation wavelength: 365 nm) .
  • Fig. 13 depicts relative PL intensity of TPE-PBP (10 ⁇ M) in the presence of various analytes (from left to right: GSH (100 ⁇ M) , K (I) , Ca (II) , Na (I) , Mg (II) , Fe (III) , Cu (II) , Zn (II) , Mn (II) (100 ⁇ M) ) in DMSO/PBS buffer (1: 1, v/v, 10 mM, pH 7.4) at 25 °C (data was recorded 120 min. after addition of analytes; excitation wavelength: 365 nm) .
  • Fig. 15 depicts viability of HeLa cells in the presence of different concentrations of TPE-PBP for 24 h (data expressed as mean value of six separate trials) .
  • Fig. 17 depicts (A) fluorescent image of HeLa cell lines stained with 10 ⁇ M of TPE-PBP for 60 min. with emission range around 500 nm; (B) fluorescent image of HeLa cell lines stained with 10 ⁇ M of TPE-PBP for 60 min. with emission range around 600 nm; (C) merged image of green channel (panel A) and red channel (panel B) ; (D) fluorescent image of HeLa cell lines pretreated with NMM (500 ⁇ M) for 20 min. followed by incubation with 10 ⁇ M of TPE-PBP for 60 min.
  • Fig. 20 depicts two-photon absorption (2PA) cross-section of TPE-PBP in DCM/Hexane mixture with 70%Hexane fraction.
  • Fig. 21 depicts (A) two-photon excitation (two-photon excitation wavelength of 860 nm) fluorescent images of HeLa cervical cancer cells after incubation with 10 ⁇ M TPE-PBP for 1 h (emission filter: 472 nm-532 nm) ; (B) two-photon excitation (two-photon excitation wavelength of 860 nm) fluorescent images of HeLa cervical cancer cells after incubation with 10 ⁇ M TPE-PBP for 1 h (emission filter: 580 nm-628 nm) ; (C) merged images of green channel and red channel; (D) two-photon excitation (two-photon excitation wavelength of 860 nm) fluorescent images of HeLa cervical cancer cells pretreated with GSH (100 ⁇ M) for 1 h followed by incubation with 10 ⁇ M of TPE-PBP for 1 hour (emission filter: 472 nm-532 nm) ; (E) two-photon excitation (two-photon ex
  • Fig. 22 depicts relative PL intensity of HeLa cells measured after treatment with GSH and TPE-PBP.
  • Fig. 25 depicts (A) two-photon excitation (wavelength of 860 nm) fluorescent images of skeletal muscle tissue after incubation with 20 ⁇ M TPE-PBP for 2 h (emission filter: 472-532 nm) ; (B) two-photon excitation (wavelength of 860 nm) fluorescent images of skeletal muscle tissue after incubation with 20 ⁇ M TPE-PBP for 2 h (emission filter: 580-628 nm) ; (C) merged images of green channel and red channel; (D) two-photon excitation (wavelength of 860 nm) fluorescent images of skeletal muscle tissue after pretreatment with GSH (200 ⁇ M) for 1 h followed by incubation with 20 ⁇ M of TPE-PBP for 2 h (emission filter: 472-532 nm) ; (E) two-photon excitation (wavelength of 860 nm) fluorescent images of skeletal muscle tissue after pretreatment with GSH (200 ⁇ M) for 1
  • Fig. 26 depicts relative PL intensity of skeletal muscle tissue measured after treatment with GSH and TPE-PBP.
  • Fig. 27 depicts (A) two-photon excitation fluorescent images of skeletal muscle tissue after incubation with 20 ⁇ M TPE-PBP for 2 h (emission filter: 472 nm-532 nm) using a two-photon excitation wavelength of 860 nm; (B) two-photon excitation fluorescent images of skeletal muscle tissue after incubation with 20 ⁇ M TPE-PBP for 2 h (emission filter: 580-628 nm) using a two-photon excitation wavelength of 860 nm; (C) merged images of green channel and red channel; (D) two-photon excitation fluorescent images of skeletal muscle tissue pretreated with GSH (200 ⁇ M) for 1 h followed by incubation with 20 ⁇ M of TPE-PBP for 2h (emission filter: 472 nm-532 nm) using a two-photon excitation wavelength of 860 nm; (E) two-photon excitation fluorescent images of skeletal muscle tissue pretreated with GSH
  • Fig. 28 depicts the relative PL intensity of skeletal muscle tissue measured after treatment with GSH and TPE-PBP.
  • ⁇ ex refers to excitation wavelength
  • aggregation caused quenching or “ACQ” as used herein refers to the phenomenon wherein the aggregation of ⁇ -conjugated fluorophores significantly decreases the fluorescence intensity of the fluorophores.
  • the aggregate formation is said to “quench” light emission of the fluorophores.
  • AIE aggregation induced emission
  • Emission intensity refers to the magnitude of fluorescence/phosphorescence normally obtained from a fluorescence spectrometer or fluorescence microscopy measurement
  • fluorophore or “fluorogen” as used herein refer to a molecule which exhibits fluorescence
  • luminogen or “luminophore” as used herein refer to a molecule which exhibits luminescence
  • AIEgen as used herein refers to a molecule exhibiting AIE characteristics.
  • halo or “halogen” refers to fluoro, chloro, bromo, and iodo.
  • alkyl refers to a straight-chain or branched saturated hydrocarbon group.
  • alkyl groups include methyl (Me) , ethyl (Et) , propyl (e.g., n-propyl and z'-propyl) , butyl (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) , pentyl groups (e.g., n-pentyl, z'-pentyl, -pentyl) , hexyl groups, and the like.
  • an alkyl group can have 1 to 40 carbon atoms (i.e., C1-40 alkyl group) , for example, 1-30 carbon atoms (i.e., C1-30 alkyl group) .
  • an alkyl group can have 1 to 6 carbon atoms and can be referred to as a “lower alkyl group” .
  • Examples of lower alkyl groups include methyl, ethyl, propyl (e.g., n-propyl and z'-propyl) , and butyl groups (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) .
  • alkyl groups can be substituted as described herein.
  • An alkyl group is generally not substituted with another alkyl group, an alkenyl group, or an alkynyl group.
  • alkenyl refers to a straight-chain or branched alkyl group having one or more carbon-carbon double bonds.
  • alkenyl groups include ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl groups, and the like.
  • the one or more carbon-carbon double bonds can be internal (such as in 2-butene) or terminal (such as in 1-butene) .
  • an alkenyl group can have 2 to 40 carbon atoms (i.e., C2-40 alkenyl group) , for example, 2 to 20 carbon atoms (i.e., C2-20 alkenyl group) .
  • alkenyl groups can be substituted as described herein.
  • An alkenyl group is generally not substituted with another alkenyl group, an alkyl group, or an alkynyl group.
  • heteroatom refers to an atom of any element other than carbon or hydrogen and includes, for example, nitrogen, oxygen, silicon, sulfur, phosphorus, and selenium.
  • aryl refers to an aromatic monocyclic hydrocarbon ring system or a polycyclic ring system in which two or more aromatic hydrocarbon rings are fused (i.e., having a bond in common with) together or at least one aromatic monocyclic hydrocarbon ring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings.
  • An aryl group can have 6 to 24 carbon atoms in its ring system (e.g., C6-24 aryl group) , which can include multiple fused rings.
  • a polycyclic aryl group can have 8 to 24 carbon atoms. Any suitable ring position of the aryl group can be covalently linked to the defined chemical structure.
  • aryl groups having only aromatic carbocyclic ring include phenyl, 1-naphthyl (bicyclic) , 2-naphthyl (bicyclic) , anthracenyl (tricyclic) , phenanthrenyl (tricyclic) , pentacenyl (pentacyclic) , and like groups.
  • polycyclic ring systems in which at least one aromatic carbocyclic ring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings include, among others, benzo derivatives of cyclopentane (i.e., an indanyl group, which is a 5, 6-bicyclic cycloalkyl/aromatic ring system) , cyclohexane (i.e., a tetrahydronaphthyl group, which is a 6, 6-bicyclic cycloalkyl/aromatic ring system) , imidazoline (i.e., a benzimidazolinyl group, which is a 5, 6-bicyclic cycloheteroalkyl/aromatic ring system) , and pyran (i.e., a chromenyl group, which is a 6, 6-bicyclic cycloheteroalkyl/aromatic ring system) .
  • aryl groups include benzodioxanyl, benzodioxolyl, chromanyl, indolinyl groups, and the like.
  • aryl groups can be substituted as described herein.
  • an aryl group can have one or more halogen substituents, and can be referred to as a “haloaryl” group.
  • Perhaloaryl groups i.e., aryl groups where all of the hydrogen atoms are replaced with halogen atoms (e.g., -C 6 F 5 ) , are included within the definition of “haloaryl” .
  • an aryl group is substituted with another aryl group and can be referred to as a biaryl group. Each of the aryl groups in the biaryl group can be substituted as disclosed herein.
  • heteroaryl refers to an aromatic monocyclic ring system containing at least one ring heteroatom selected from oxygen (O) , nitrogen (N) , sulfur (S) , silicon (Si) , and selenium (Se) or a polycyclic ring system where at least one of the rings present in the ring system is aromatic and contains at least one ring heteroatom.
  • Polycyclic heteroaryl groups include those having two or more heteroaryl rings fused together, as well as those having at least one monocyclic heteroaryl ring fused to one or more aromatic carbocyclic rings, non-aromatic carbocyclic rings, and/or non-aromatic cycloheteroalkyl rings.
  • a heteroaryl group as a whole, can have, for example, 5 to 24 ring atoms and contain 1-5 ring heteroatoms (i.e., 5-20 membered heteroaryl group) .
  • the heteroaryl group can be attached to the defined chemical structure at any heteroatom or carbon atom that results in a stable structure. Generally, heteroaryl rings do not contain O-O, S-S, or S-0 bonds. However, one or more N or S atoms in a heteroaryl group can be oxidized (e.g., pyridine N-oxide thiophene S-oxide, thiophene S, S-dioxide) .
  • heteroaryl groups include, for example, the 5-or 6-membered monocyclic and 5-6 bicyclic ring systems shown below: where T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH 2 , SiH (alkyl) , Si (alkyl) 2 , SiH (arylalkyl) , Si (arylalkyl) 2 , or Si (alkyl) (arylalkyl) .
  • T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH 2 , SiH (alkyl) , Si (alkyl) 2 , SiH (arylalkyl) , Si (arylalkyl) 2 , or Si (alkyl) (arylalkyl) .
  • heteroaryl rings examples include pyrrolyl, furyl, thienyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, isothiazolyl, thiazolyl, thiadiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, indolyl, isoindolyl, benzofuryl, benzothienyl, quinolyl, 2-methylquinolyl, isoquinolyl, quinoxalyl, quinazolyl, benzotriazolyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxadiazolyl, benzoxazolyl, cinnolinyl, lH-indazolyl, 2H-indazo
  • heteroaryl groups include 4, 5, 6, 7-tetrahydroindolyl, tetrahydroquinolinyl, benzothienopyridinyl, benzofuropyridinyl groups, and the like.
  • heteroaryl groups can be substituted as described herein.
  • a "donor” material refers to an organic material, for example, an organic nanoparticle material, having holes as the majority current or charge carriers.
  • an "acceptor" material refers to an organic material, for example, an organic nanoparticle material, having electrons as the majority current or charge carriers.
  • the present subject matter contemplates a fluorescent bioprobe including a small molecule, fluorescent compound having aggregation-induced emission (AIE) characteristics.
  • the compound can exhibit twisted intramolecular charge transfer (TICT) , which is characterized by a rotation around a single bond in the excited state and a decrease in photoluminescence intensity with solvent polarity increase. Following intramolecular twisting, the compound returns to the ground state.
  • TPE-PBP, having the following structural formula:
  • the bioprobe is also referred to herein as “AIEgen” or “AIE-active ratiometric probe. ”
  • the bioprobe can be used for thiol detection.
  • the bioprobe can be used for thiol detection in mitochondria.
  • the positively charged AIEgen can measure the levels of mitochondrial thiol in a ratiometric manner with good cellular biocompatibility, excellent photostability, high selectivity, and low background noise.
  • the bioprobe can be utilized to ratiometrically detect mitochondrial thiol in living cells isolated from tissue, in cells within skeletal muscle tissues, as well as in cells in living organisms. For example, the bioprobe was successfully used to ratiometrically detect mitochondrial thiol in two-day old fish larva using two-photon excitation.
  • a method of detecting mitochondrial thiol in a target cell can include contacting the target cell with the fluorescent bioprobe and using fluorescence microscopy to measure a fluorescence of the target cell contacted with the fluorescent bioprobe.
  • the target cell is contacted with the fluorescent bioprobe for at least about two hours before fluorescence is measured.
  • the bioprobe selectively targets mitochondrial thiol and a ratiometric fluorescence is emitted from the target cell when mitochondrial thiol is present in the target cell. In other words, a ratiometric change in fluorescent intensity can be correlated with a concentration of the mitochondrial thiol.
  • the bioprobe alone exhibits an emission wavelength peak at 631 nm.
  • a method of detecting thiol in a fluid can include contacting the fluid with the bioprobe.
  • the bioprobe selectively targets thiol in the fluid, resulting in a new emission peak at 500 nm when thiol is present, in addition to the emission peak of the bioprobe at 631 nm.
  • a blue fluorescence is emitted in the presence of thiol and a red fluorescence is emitted when no thiol is present.
  • the fluorescence microscopy can include one-photon fluorescence microscopy or two-photon fluorescence microscopy.
  • One-photon fluorescence microscopy uses a single photon to excite fluorescent dyes using mainly visible excitation wavelengths (390-700 nm) .
  • Two-photon fluorescence imaging technology has been widely used for bio-imaging applications due to its high penetration depth with near-infrared (NIR) excitation, high spatial resolution and signal-to-noise ratio, and low tendency for photobleaching.
  • Two-photon absorption (2PA) cross section ( ⁇ 2PA) is used to predict whether a luminogen is suitable for 2PM.
  • NIR near-infrared
  • ⁇ 2PA Two-photon absorption
  • TPE-PBP possesses a conjugated structure with strong electron donating and withdrawing groups
  • TPE- PBP exhibits strong ⁇ 2PA.
  • the bioprobe can be used for in vitro, ex vivo, or in vivo mitochondrial thiol detection.
  • the mitochondrial pool of thiol is crucial for protection against oxidative stress and plays a pivotal role in removing ROS to keep a delicate balance of ROS to satisfy physiological needs.
  • monitoring thiol status in mitochondria can provide valuable information on the mitochondrial function.
  • the probe shows high selectivity and sensitivity towards intracellular thiol species, such as glutathione (GSH) , cysteine (Cys) , and homocysteine (Hcy) .
  • GSH glutathione
  • Cys cysteine
  • Hcy homocysteine
  • the bioprobe can be used for detecting thiol in a fluid, such as blood.
  • the emission wavelength peak exhibited by the bioprobe alone can be at 631 nm.
  • a method of detecting thiol in a fluid can include contacting the fluid with the bioprobe.
  • the bioprobe selectively targets thiol in the fluid, resulting in a new emission peak at 500 nm when thiol is present, in addition to the emission peak of the bioprobe at 631 nm. Only a red fluorescence is emitted when no thiol is present in the fluid.
  • the bioprobe was successfully used to detect thiol in rabbit’s blood.
  • the concentration of GSH in the body exists in millimolar levels (1-3 mM) in most cells and in micromolar levels (2-20 ⁇ M) in blood plasma. Accordingly, TPE-PBP has the potential to be utilized in clinical disease diagnosis.
  • the present detection method can include a ratiometric method for detecting the fluorescent intensities of the bioprobe at two distinct wavelengths.
  • two-photon fluorescence imaging holds advantages of deep-tissue penetration, low interference from background auto-fluorescence, and minimal phototoxicity to living biosubstrates.
  • the present detection method can correct for environmental effects and facilitate analyte quantification.
  • TPE-PBP (E) -1- (4- (2, 4-dinitrophenoxy) benzyl) -4- (4- (1, 2, 2-triphenylvinyl) styryl) pyridin-1-ium bromide (TPE-PBP) was prepared as follows: compound 1 (1 mmol, 435.6 mg) and compound 2 (1 mmol, 352.0 mg) were dissolved in toluene, and then the mixture was refluxed at 110 °C for 12 h. The obtained red powdery solid was filtered, washed with toluene and dried in vacuo to afford pure TPE-PBP (200.7 mg, 25.5%) .
  • Photoluminescence spectra were recorded on a PerkinElmer LS 55 fluorescence spectrometer.
  • the absolute fluorescence quantum yields were measured on a Hamamatsu Absolute Quantum Yield Spectrometer C11347.
  • the average particle size and size distribution were determined by laser light scattering with a particle size analyzer (90 Plus, Brookhaven Instruments Co. USA) at a fixed angle of 90° at 24°C.
  • Two-photon excited fluorescence (TPEF) spectra were measured on a SpectroPro300i, and the pump laser beam came from a mode-locked Ti: sapphire laser system with a pulse duration of 160 fs and a repetition rate of 76 MH Z .
  • the chemical structure of the product was confirmed by standard spectroscopic techniques with high purity (Figs. 3-5) .
  • the photoluminescence (PL) property was investigated by adding water to the dimethylsulfoxide (DMSO) solution of TPE-PBP to provide a DMSO/water mixture.
  • DMSO dimethylsulfoxide
  • the emission maximum of TPE-PBP decreased. Further increasing the water fraction from 50%to 80%caused an abrupt increase in the emission intensity ( ⁇ 11-fold) along with a blue shift in the PL maximum from 638 nm to 586 nm.
  • the initial PL intensity decrease can be ascribed to the twisted intramolecular charge transfer (TICT) effect, which is characterized by a PL intensity decrease with solvent polarity increase.
  • the PL intensity enhancement can be attributed to AIE characteristics because the aggregates formed in high water fractions restrict the intramolecular motions of TPE-PBP.
  • GSH glutathione
  • TPE-Py tetraphenylethylene pyridinine
  • the emission spectra of the solution of TPE-PBP (10 ⁇ M) treated with 1 mM GSH in DMSO/PBS buffer increased gradually at 500 nm with a concomitant decrease at 631 nm.
  • the change of absorption and emission spectra of TPE-PBP before and after reaction with GSH could also be observed by the naked eye.
  • Identification of the resulting products were carried out through ESI-MS measurements (Figs. 8A-8B) , which suggested the resulting chemical structure of the fluorophore was identical to TPE-Py.
  • the para-dinitrophenoxy benzyl pyridinium moiety served as both an electron-accepting unit to red shift the emission spectra of TPE-PBP through the intramolecular charge transfer (ICT) process as well as a mitochondrial targeting group.
  • ICT intramolecular charge transfer
  • TPE-Py After reaction with biothiol, the para-dinitrophenoxy benzyl moiety was cleaved to generate the TPE-Py with a blue-shifted emission.
  • the emission blueshift was ascribed to the weaker ICT effect of TPE-Py than TPE-PBP.
  • Density functional theory (DFT) calculation confirms weaker charge separation of TPE-Py than TPE-PBP (Fig. 9) .
  • DFT Density functional theory
  • GSH titration was implemented by increasing the concentration of GSH from 0 ⁇ M to 300 ⁇ M to react with TPE-PBP (10 ⁇ M) in DMSO/PBS buffer (1: 1, v/v, 10mM, pH 7.4) for 120 min.
  • the fluorescence spectra were recorded (Figs. 11A-11B) and the ratio of fluorescence intensity at 500 nm and 631 nm (I 500 /I 631 ) was plotted against concentration (Fig. 11B) .
  • I 500 /I 631 was linearly proportional to the concentration of GSH, ranging from 0 ⁇ M to 125 ⁇ M, suggestive of a detection limit of 0.61 ⁇ M.
  • the detection limit was calculated based on the fluorescence titration. In the absence of GSH, the fluorescence emission spectrum of TPE-PBP was measured three times and the standard deviation of blank measurement was achieved. To gain the slope, the ratio of fluorescence intensity at 500 nm and 631 nm (I 500 /I 631 ) was plotted against the concentration of GSH. The detection limit was calculated with the following equation:
  • TPE-PBP non-biothiol analytes
  • glycine Gly
  • Phe phenylalanine
  • Met methionine
  • Pro proline
  • Arg arginine
  • His histidine
  • Aspartic acid Aspartic acid
  • K + K + , Ca 2+ , Na + , Mg 2+ , Fe 3+ , Cu 2+ , Zn 2+ , Mn 2+
  • TPE-PBP exhibits a strong response towards thiol, including GSH, Cys, and Hcy, but a slight response towards NaSH, and a negligible response towards other amino acids without thiol groups and metal ions. It is also worthy to note that TPE-PBP has a better response to GSH than Cys and Hcy. The longer chain length of GSH than Cys and Hcy possibly enables the intermolecular electrostatic interaction between the pyridinium of TPE-PBP and the carboxyl of GSH to promote the S N Ar attack according to the proposed reaction mechanism.
  • TPE-PBP detected thiol in rabbit blood samples in a ratiometric manner.
  • HeLa and COS-7 cells were purchased from ATCC. HeLa cells were cultured in MEM. COS-7 cells were cultured in Dulbecco's Modified Eagle's Medium with 1%penicillin-streptomycin and 10%FBS, at 37 °C in a humidified incubator with 5%CO 2 . The culture medium was replaced every second day. By treating with 0.25%trypsin-EDTA solution, the cells were collected after they reached confluence.
  • TPE-PBP The cytotoxicity of TPE-PBP was first evaluated using 3- (4, 5-dimethyl-2-thiazolyl) -2, 5-diphenyltetrazolium bromide (MTT) assay. As shown in Fig. 15, no significant variation in cell viability was observed even under a high dye concentration of 20 ⁇ M, suggesting that TPE-PBP has good cell biocompatibility.
  • HeLa and COS-7 cells were seeded in 96-well plates at a density of 5000 cells per well, respectively. After a 24 h cell culture, various concentrations of TPE-PBP were added into the 96-well plate.
  • the medium was removed and the freshly prepared MTT medium solution (0.5 mg mL -1 , 100 ⁇ L) was added into the 96-well plate. After incubation at 37 °C, 5%CO 2 for 6 h, the MTT medium solution was removed carefully. After that, 100 ⁇ L DMSO was added into each well and the plate was gently shaken at room temperature to dissolve all the formed precipitates. A microplate reader was utilized to measure the absorbance at 570 nm from which the cell viability could be determined. Cell viability was expressed by the ratio of absorbance of the cells incubated with TPE-PBP solution to that of the cells incubated with culture medium only.
  • TPE-PBP was then used to detect thiol in living cells.
  • HeLa cells were grown in a 35 mm Petri dish with a cover slip at 37 °C, 5%CO 2. The cells were incubated with TPE-PBP (10 ⁇ M) for 1 h and Mito-tracker deep red (300 nM) for 15 min at 37 °C, 5%CO 2 . Then, the medium was removed, and the cells were washed with PBS three times.
  • the cells were imaged using a confocal microscopy (Zeiss laser scanning confocal microscope LSM7 DUO) for one-photon fluorescence imaging and using a STED microscopy ( Leica STED TCS SP5 II Confocal Laser Scanning Microscope ) for two-photon fluorescence imaging.
  • a confocal microscopy Zeiss laser scanning confocal microscope LSM7 DUO
  • STED microscopy Leica STED TCS SP5 II Confocal Laser Scanning Microscope
  • the excitation wavelength was 458 nm for one-photon imaging, 860 nm for two-photon imaging, and the emission filter was 580-628 nm; for derived TPE-Py, the excitation wavelength was 405 nm for one-photon imaging, 860 nm for two-photon imaging, and the emission filter was 472-532 nm; for Mito-tracker deep red, the excitation wavelength was 643 nm and the emission filter was 663-755 nm.
  • TPE-PBP seemed to selectively target mitochondria of the cells (Figs. 16B) .
  • TPE-PBP generated TPE-Py, which also targeted mitochondria but the emission was blue shifted (Fig. 16A) .
  • Fig. 16C MitoTracker Deep Red
  • the ratiometric imaging of mitochondrial thiol was carried out with a dual-emission mode upon excitation at 405 nm.
  • the ratiometric images (Figs. 17A, 17B) were obtained by mediating the green channel image (band path: 490–510nm; Fig. 17A) with the related red channel image (band path: 590–610nm; Fig. 17B) by using the software of the microscope.
  • the fluorescence in the green channel originated from TPE-Py, which is produced by the reaction between TPE-PBP and mitochondrial thiol.
  • the fluorescence in the red channel originated from TPE-PBP itself.
  • NMM N-methylmaleimide
  • GSH GSH scavenger
  • Photostability is one of the key criteria for evaluating a fluorescent visualizer.
  • the HeLa cells stained with TPE-PBP and MitoTracker Deep Red were continuously scanned by laser light.
  • HeLa cells stained with TPE-PBP and TPE-Py were irradiated by 405 nm and 458 nm laser, respectively, for 11.83 min continuously using a confocal microscopy to evaluate TPE-PBP and TPE-Py’s photostability.
  • HeLa cells stained with Mito-tracker deep red were irradiated by 633 nm laser under the same conditions. Confocal images were captured at every 15 s and parallel compared to evaluate their photo-bleaching.
  • TPE-PBP and the derived TPE-Py showed a much higher photostability than MitoTracker Deep Red.
  • the two-photon absorption (2PA) of TPE-PBP was studied by using a two-photon-excited fluorescence (TPEF) technique with a femtosecond pulsed laser source, and the cross section ( ⁇ 2 PA) was measured using fluorescein as the standard.
  • TPEF two-photon-excited fluorescence
  • ⁇ 2 PA cross section
  • F TPEF integral intensity
  • the fluorescence quantum yield
  • TPE-PBP can be used as an excellent two-photon imaging probe for living cells, tissues, and even a living body.
  • TPE-PBP as a two-photon ratiometric probe for detecting mitochondrial thiol in vitro, ex vivo, and in vivo was then explored.
  • TPE-PBP was used in ratiometric detection of mitochondrial thiol in living tissues.
  • the emission filter was 580-628 nm; for TPE-Py, the emission filter was 472-532 nm.
  • Examination of mitochondrial morphology in both longitudinal and cross-sectional (transverse) planes were achieved by optical sectioning of confocal microscopy. As shown in Figs. 23A-23I, mitochondria were regularly arranged and formed reticulum in muscle from the longitudinal view (Fig. 23A) . The actual tubular morphology of intermyofibrillar (IMF) mitochondria was observed from the transverse view (Fig. 23B) . The results were in accordance with the mitochondrial structure in skeletal muscle obtained by scanning electron microscopy.
  • TPE-PBP was also used for detecting mitochondrial thiol of living tissues in a ratiometric manner upon two-photon excitation. As shown in Figs. 25A-25F, compared with the untreated group, incubating skeletal muscle tissues with GSH resulted in an increase of green channel emission and a decrease of red channel emission.
  • TPE-PBP in ratiometric detection of mitochondrial thiol in living tissues prompted further investigation into in vivo ratiometric detection of mitochondrial thiol.
  • a two-day old Japanese Medaka (Oryzias melastigma) fish larva was chosen as the experimental subject. Firstly, two-day fish larvae were either treated with or without 200 ⁇ M GSH for 2h. Secondly, fish larvae were incubated with TPE-PBP (20 ⁇ M) for 2h at room temperature. Then, the medium was removed, and the fish larvae were washed with PBS three times.
  • the fish larvae were imaged using a STED microscopy ( Leica STED TCS SP5 II Confocal Laser Scanning Microscope ) for two-photon fluorescence imaging.
  • the excitation wavelength was 860 nm.
  • the emission filter was 580-628 nm;
  • the emission filter was 472-532 nm.
  • Figs. 27A-C upon two-photon excitation at 860 nm, the fluorescent signal of TPE-PBP seemed to be mainly located in the eyes, liver, and intestine of the fish.
  • Fish larva fed with GSH exhibited an increase in green channel fluorescence accompanied with a decrease in red channel fluorescence (Figs. 27D-27F and 28) .
  • GSH can be efficiently absorbed across the intestinal epithelium through a specific uptake system, which increases the GSH levels in liver and muscle of the fish.
  • TPE-PBP was a promising candidate for two-photon ratiometric imaging of mitochondrial thiol both in vitro and in vivo, providing a useful tool for in vivo-based early diagnosis of metastatic cancer as well as in vivo-based screening of antineoplastic drug candidates, especially considering that the liver-dependent inter-tissue flow of GSH plays a vital role in cancer metastasis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present subject matter contemplates a fluorescent bioprobe including a small molecule, fluorescent compound having aggregation-induced emission (AIE) characteristics. The compound can exhibit twisted intramolecular charge transfer. The compound can be: (I)

Description

Probes for Selective Thiol Detection FIELD
The present subject matter relates generally to use of a series of fluorescent compounds having aggregation-induced emission (AIE) characteristics for detecting thiol, and particularly, for detection of mitochondrial thiol and thiol detection in biological fluids.
BACKGROUND
Early diagnosis of diseases and regular monitoring of intracellular biomolecules are of critical importance for reducing mortality and medical costs. Many bioprobes for diagnosing specific diseases with excellent sensitivity and selectivity have been developed. Intracellular thiol, such as cysteine (Cys) , homocysteine (Hcy) and glutathione (GSH) , plays a crucial role in biological systems. The mitochondrial pool of thiol, in particular, is crucial for protection against oxidative stress and plays a pivotal role in removing reactive oxygen species (ROS) and maintaining ROS at needed physiological levels. A decrease in mitochondrial thiol levels reduces the antioxidant defense system and may be an indicator for one or more of several diseases, such as diabetes mellitus, renal failure, malignancy, cervical cancer, and neurodegenerative diseases. Therefore, monitoring thiol status in mitochondria can be of clinical significance.
Traditional analytical methods for the detection of thiol in mitochondria includes HPLC, capillary electrophoresis, LC/MS, enzyme assay, and electrochemical methods. Although these methods provide high selectivity and sensitivity, they are commonly associated with high equipment costs, complexity, complicated sample processing, and long runtime, which actually limit their practical applications. Also, these methods generally require isolation and homogenization of mitochondria.
Fluorescent probes, with their intrinsic merits of simplicity, low background noise and high sensitivity, are powerful tools for visualizing analytes in their native environment and revealing information that cannot be obtained by cell homogenates. Great research efforts have been devoted to the development of new thiol-specific fluorescent probes for monitoring thiol density and distribution in mitochondria in living cells. Many of these fluorescent probes typically rely upon the nucleophilicity of thiol. Generally, however, these probes suffer from aggregation-caused quenching (ACQ) , with their emission weakened or quenched in concentrated solution or in the aggregated state. As a result, researchers have to use dilute solutions with a compromised low sensitivity and photostability for biological applications.
In 2001, Tang and coworkers found a class of propeller-shaped molecules, such as siloles and tetraphenylethene (TPE) , which are non-emissive in dilute solutions, but become much more emissive in the aggregate or solid states. This unusual phenomenon was termed “aggregation-induced emission (AIE) ” . The mechanism of AIE can be explained by the theory of restriction of intramolecular motions (RIM) , including restriction of intramolecular rotations (RIR) and restriction of intramolecular vibrations (RIV) .
Guided by the principle of RIM, many AIE-based bioprobes with advantages of superior brightness, high photostability, long-term in situ retention ability, and low cytotoxicity, were successfully developed for various practical applications. Although several thiol-specific AIE probes for in vitro turn-on detection have been reported, most of them are single-wavelength indicators, whose turn-on responses can vary depending on experimental conditions, such as incident laser power, probe concentrations, and/or optical path length. As such, many of these probes may be unsuitable for quantitative measurements. Furthermore, many of these probes have not been useful for detecting mitochondrial thiol.
Accordingly, a method of thiol detection which overcomes these challenges is highly desirable.
SUMMARY
The present subject matter contemplates a fluorescent bioprobe including a small molecule, fluorescent compound having aggregation-induced emission (AIE) characteristics. The compound can exhibit twisted intramolecular charge transfer. In an embodiment, the compound is “TPE-PBP, ” having the following structural formula:
Figure PCTCN2019120943-appb-000001
The bioprobe can be used for thiol detection. In an embodiment, the bioprobe can be used for thiol detection in mitochondria. A method of detecting mitochondrial thiol in a target cell can include contacting the target cell with the fluorescent bioprobe and using fluorescence microscopy to measure a fluorescence of the target cell contacted with the fluorescent bioprobe. In an embodiment, the target cell contacted with the fluorescent bioprobe will emit a blue fluorescence when mitochondrial thiol is present in the target cell. The fluorescence microscopy can include one-photon fluorescence microscopy or two-photon fluorescence microscopy. The bioprobe can be used for in vitro, ex vivo, or in vivo mitochondrial thiol detection.
In an embodiment, the bioprobe can be used for detecting thiol in a fluid, such as blood. The bioprobe alone exhibits an emission wavelength peak at 631 nm. A method of detecting thiol in a fluid can include contacting the fluid with the bioprobe. The bioprobe selectively targets thiol in the fluid, resulting in a new emission peak at 500 nm when thiol is present, in addition to the emission peak of the bioprobe at 631 nm.
BRIEF DESCRIPTION OF DRAWINGS
Various embodiments will now be described in detail with reference to the accompanying drawings.
Fig. 1 depicts  1H NMR spectrum of TPE-PBP in MeOD.
Fig. 2 depicts  13C NMR spectrum of TPE-PBP in CDCl 3.
Fig. 3 depicts HRMS spectrum of TPE-PBP.
Fig. 4 depicts (A) PL spectra of TPE-PBP in DMSO and DMSO/water mixtures with different water fractions; and (B) Plots of the I/I 0 value and maximum emission wavelength of TPE-PBP versus the water fraction in DMSO/water mixtures (I 0: PL intensity at f w = 0%; excitation wavelength: 405 nm) .
Fig. 5 depicts absorption spectra of TPE-PBP in DMSO and DMSO/Water mixtures with different water fractions (Concentration: 10 μM) .
Fig. 6 depicts (A) DLS results showing that TPE-PBP forms aggregates in water/DMSO mixtures: f water = 90% (Concentration: 10 μM) ; and (B) DLS results showing that TPE-PBP forms aggregates in water/DMSO mixtures: f water = 99.9% (Concentration: 10 μM) .
Fig. 7 depicts (A) absorption spectra of TPE-PBP (10 μM, solid curve) prior to and after addition of GSH (1 mM, dash curve) and incubated for 120 min in DMSO/PBS buffer (1: 1, v/v,  10 mM, pH 7.4) at 25℃ (Inset: photographs of TPE-PBP solutions prior to (right) and after (left) addition of GSH taken under visible light) ; (B) PL spectra of TPE-PBP (10 μM, solid curve) prior to and after addition of GSH (1 mM, dash curve) and incubated for 120 min in DMSO/PBS buffer (1: 1, v/v, 10 mM, pH 7.4) at 25℃ (Inset: photographs of TPE-PBP solutions prior to (right) and after (left) addition of GSH taken under UV-light (λ ex = 365 nm) Excitation wavelength: 365 nm) .
Fig. 8 depicts (A) the ESI-MS of fluorescence sensing mechanism of TPE-PBP before addition of GSH; (B) the ESI-MS of fluorescence sensing mechanism of TPE-PBP upon addition of GSH.
Fig. 9 depicts molecular orbital amplitude plots of HOMO and LUMO energy levels of TPE-PBP and TPE-Py calculated by using the B3LYP/6-31G basis set.
Fig. 10 depicts (A) relative PL intensity of TPE-PBP (10 μM) incubated with GSH (100 μM) in DMSO/PBS buffer with different DMSO fractions for 2 h; (B) time-dependent changes of relative PL intensity of TPE-PBP (10 μM) with GSH (1 mM) ; and (C) pH-dependent changes of relative PL intensity of TPE-PBP (10 μM) alone and TPE-PBP (10 μM) incubated with GSH (100 μM) for 2 h (excitation wavelength: 365 nm) .
Fig. 11 depicts (A) PL spectra of TPE-PBP (10 μM) in the presence of increasing concentration of GSH (final concentration: 0, 25, 50, 75, 100, 125, 150, 175, 200, 300 μM) DMSO/PBS buffer (1: 1, v/v, 10 mM, pH 7.4) at 25 ℃ for 120 min; (B) a linear calibration curve between the PL intensity of TPE-PBP and the concentration of GSH in the range of 0–125 μM after incubation for 120 min (excitation wavelength: 365nm. Error bars are ±relative standard deviations (RSD) , n = 3) .
Fig. 12 depicts the relative PL intensity of TPE-PBP (10 μM) in the presence of 1 mM of various analytes in DMSO/PBS buffer (1: 1, v/v, 10 mM, pH 7.4) at 25 ℃ (data was recorded 120 min. after addition of analytes; excitation wavelength: 365 nm; error bars are ± relative standard deviations (RSD) , n = 3) .
Fig. 13 depicts relative PL intensity of TPE-PBP (10 μM) in the presence of various analytes (from left to right: GSH (100 μM) , K (I) , Ca (II) , Na (I) , Mg (II) , Fe (III) , Cu (II) , Zn (II) , Mn (II) (100 μM) ) in DMSO/PBS buffer (1: 1, v/v, 10 mM, pH 7.4) at 25 ℃ (data was recorded 120 min. after addition of analytes; excitation wavelength: 365 nm) .
Fig. 14 depicts (A) PL spectra of TPE-PBP with (10 μM, left curve) and without (right  curve) addition of rabbit blood (0.1 μL) and incubated for 1 d in DMSO/PBS buffer (1: 1, v/v, 10 mM, pH 7.4) at 25 ℃ (Inset: photographs of TPE-PBP solutions with (left) and without (right) addition of rabbit blood taken under UV-light (λ ex = 365 nm) ; excitation wavelength: 365 nm) ; (B) schematic illustration of detecting thiol in the blood using TPE-PBP.
Fig. 15 depicts viability of HeLa cells in the presence of different concentrations of TPE-PBP for 24 h (data expressed as mean value of six separate trials) .
Fig. 16 depicts (A) fluorescent image of HeLa cells stained with TPE-Py generated from TPE-PBP after reaction with mitochondrial thiol; (B) fluorescent images of HeLa cells stained with TPE-PBP (10 μM) for 1 h; (C) fluorescent images of HeLa cells stained with mito-tracker deep red (300 nM) (C) for 15 min; and (D) merged image of panels (A) , (B) and (C) (λ ex : 643 nm (Mito-tracker deep red) , 405 nm (TPE-PBP) and 405 nm (TPE-Py) ; scale bar = 20 μm) .
Fig. 17 depicts (A) fluorescent image of HeLa cell lines stained with 10 μM of TPE-PBP for 60 min. with emission range around 500 nm; (B) fluorescent image of HeLa cell lines stained with 10 μM of TPE-PBP for 60 min. with emission range around 600 nm; (C) merged image of green channel (panel A) and red channel (panel B) ; (D) fluorescent image of HeLa cell lines pretreated with NMM (500 μM) for 20 min. followed by incubation with 10 μM of TPE-PBP for 60 min. with emission range around 500 nm; (E) fluorescent image of HeLa cell lines pretreated with NMM (500 μM) for 20 min followed by incubation with 10 μM of TPE-PBP for 60 min with emission range around 600 nm; and (F) merged image of green channel (panel D) and red channel (panel E) .
Fig. 18 depicts relative PL intensity of HeLa cells measured after treatment with NMM and TPE-PBP (scale bar = 20 μm; error bars are ± relative standard deviations (RSD) , n = 3) .
Fig. 19 depicts photostability of TPE-Py, TPE-PBP and MitoTracker Deep Red under continuous scanning at 405 nm (2.0%) , 458 nm (1.0%) and 633 nm (2.0%) , respectively (I 0 is the initial PL intensity, while I is that of the corresponding sample after a designated time; error bars are ± relative standard deviations (RSD) , n = 6) .
Fig. 20 depicts two-photon absorption (2PA) cross-section of TPE-PBP in DCM/Hexane mixture with 70%Hexane fraction.
Fig. 21 depicts (A) two-photon excitation (two-photon excitation wavelength of 860 nm) fluorescent images of HeLa cervical cancer cells after incubation with 10 μM TPE-PBP for 1 h (emission filter: 472 nm-532 nm) ; (B) two-photon excitation (two-photon excitation wavelength  of 860 nm) fluorescent images of HeLa cervical cancer cells after incubation with 10 μM TPE-PBP for 1 h (emission filter: 580 nm-628 nm) ; (C) merged images of green channel and red channel; (D) two-photon excitation (two-photon excitation wavelength of 860 nm) fluorescent images of HeLa cervical cancer cells pretreated with GSH (100 μM) for 1 h followed by incubation with 10 μM of TPE-PBP for 1 hour (emission filter: 472 nm-532 nm) ; (E) two-photon excitation (two-photon excitation wavelength of 860 nm) fluorescent images of HeLa cervical cancer cells pretreated with GSH (100 μM) for 1 h followed by incubation with 10 μM of TPE-PBP for 1 hour (emission filter: 580 nm-628 nm) ; and (F) merged images of green channel and red channel (scale bar = 25 μm; error bars are ± relative standard deviations (RSD) , n = 3) .
Fig. 22 depicts relative PL intensity of HeLa cells measured after treatment with GSH and TPE-PBP.
Figs. 23A-23I depict two-photon excitation fluorescent Z-stack images of skeletal muscle tissues taken of every 2 μm section from the top to bottom after incubation with 20 μM TPE-PBP for 2 hours using a multi-photon excitation wavelength of 860 nm (emission filter: 580-628 nm; scale bar = 25 μm) .
Fig. 24 depicts (A-E) two-photon excitation fluorescent images of mitochondria in skeletal muscle tissue at different depths after incubation with 20 μM TPE-PBP for 2 h (excitation wavelength: 860 nm for two-photon excitation; emission filter: 580-628 nm; scale bar = 25μm; (F-J) one-photon excitation fluorescent images of mitochondria in skeletal muscle tissue at different depths after incubation with 20 μM TPE-PBP for 2 h (excitation wavelength: 458 nm for one-photon excitation; emission filter: 580-628 nm; scale bar = 25μm) .
Fig. 25 depicts (A) two-photon excitation (wavelength of 860 nm) fluorescent images of skeletal muscle tissue after incubation with 20 μM TPE-PBP for 2 h (emission filter: 472-532 nm) ; (B) two-photon excitation (wavelength of 860 nm) fluorescent images of skeletal muscle tissue after incubation with 20 μM TPE-PBP for 2 h (emission filter: 580-628 nm) ; (C) merged images of green channel and red channel; (D) two-photon excitation (wavelength of 860 nm) fluorescent images of skeletal muscle tissue after pretreatment with GSH (200 μM) for 1 h followed by incubation with 20 μM of TPE-PBP for 2 h (emission filter: 472-532 nm) ; (E) two-photon excitation (wavelength of 860 nm) fluorescent images of skeletal muscle tissue after pretreatment with GSH (200 μM) for 1 h followed by incubation with 20 μM of TPE-PBP for 2 h (emission filter: 580-628 nm) ; and (F) merged images of green channel and red channel. Scale  bar = 25 μm; error bars are ± relative standard deviations (RSD) , n = 3.
Fig. 26 depicts relative PL intensity of skeletal muscle tissue measured after treatment with GSH and TPE-PBP.
Fig. 27 depicts (A) two-photon excitation fluorescent images of skeletal muscle tissue after incubation with 20 μM TPE-PBP for 2 h (emission filter: 472 nm-532 nm) using a two-photon excitation wavelength of 860 nm; (B) two-photon excitation fluorescent images of skeletal muscle tissue after incubation with 20 μM TPE-PBP for 2 h (emission filter: 580-628 nm) using a two-photon excitation wavelength of 860 nm; (C) merged images of green channel and red channel; (D) two-photon excitation fluorescent images of skeletal muscle tissue pretreated with GSH (200 μM) for 1 h followed by incubation with 20 μM of TPE-PBP for 2h (emission filter: 472 nm-532 nm) using a two-photon excitation wavelength of 860 nm; (E) two-photon excitation fluorescent images of skeletal muscle tissue pretreated with GSH (200 μM) for 1 h followed by incubation with 20 μM of TPE-PBP for 2h (emission filter: 580-628 nm) using a two-photon excitation wavelength of 860 nm; (F) merged images of green channel and red channel. Scale bar = 25 μm. Error bars are ± relative standard deviations (RSD) , n = 3.
Fig. 28 depicts the relative PL intensity of skeletal muscle tissue measured after treatment with GSH and TPE-PBP.
DETAILED DESCRIPTION
Definitions
The following definitions are provided for the purpose of understanding the present subject matter and for constructing the appended patent claims.
It is noted that, as used in this specification and the appended claims, the singular forms “a” , “an” , and “the” include plural references unless the context clearly dictates otherwise.
The term “λ ex” as used herein refers to excitation wavelength.
The phrase “aggregation caused quenching” or “ACQ” as used herein refers to the phenomenon wherein the aggregation of π-conjugated fluorophores significantly decreases the fluorescence intensity of the fluorophores. The aggregate formation is said to “quench” light emission of the fluorophores.
The phrase “aggregation induced emission” or “AIE” as used herein refers to the phenomenon manifested by compounds exhibiting significant enhancement of light-emission  upon aggregation in the amorphous or crystalline (solid) states whereas they exhibit weak or almost no emission in dilute solutions.
“Emission intensity” as used herein refers to the magnitude of fluorescence/phosphorescence normally obtained from a fluorescence spectrometer or fluorescence microscopy measurement; “fluorophore” or “fluorogen” as used herein refer to a molecule which exhibits fluorescence; “luminogen” or “luminophore” as used herein refer to a molecule which exhibits luminescence; and “AIEgen” as used herein refers to a molecule exhibiting AIE characteristics.
As used herein, “halo” or “halogen” refers to fluoro, chloro, bromo, and iodo.
As used herein, “alkyl” refers to a straight-chain or branched saturated hydrocarbon group. Examples of alkyl groups include methyl (Me) , ethyl (Et) , propyl (e.g., n-propyl and z'-propyl) , butyl (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) , pentyl groups (e.g., n-pentyl, z'-pentyl, -pentyl) , hexyl groups, and the like. In various embodiments, an alkyl group can have 1 to 40 carbon atoms (i.e., C1-40 alkyl group) , for example, 1-30 carbon atoms (i.e., C1-30 alkyl group) . In some embodiments, an alkyl group can have 1 to 6 carbon atoms and can be referred to as a “lower alkyl group” . Examples of lower alkyl groups include methyl, ethyl, propyl (e.g., n-propyl and z'-propyl) , and butyl groups (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) . In some embodiments, alkyl groups can be substituted as described herein. An alkyl group is generally not substituted with another alkyl group, an alkenyl group, or an alkynyl group.
As used herein, “alkenyl” refers to a straight-chain or branched alkyl group having one or more carbon-carbon double bonds. Examples of alkenyl groups include ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl groups, and the like. The one or more carbon-carbon double bonds can be internal (such as in 2-butene) or terminal (such as in 1-butene) . In various embodiments, an alkenyl group can have 2 to 40 carbon atoms (i.e., C2-40 alkenyl group) , for example, 2 to 20 carbon atoms (i.e., C2-20 alkenyl group) . In some embodiments, alkenyl groups can be substituted as described herein. An alkenyl group is generally not substituted with another alkenyl group, an alkyl group, or an alkynyl group.
As used herein, “heteroatom” refers to an atom of any element other than carbon or hydrogen and includes, for example, nitrogen, oxygen, silicon, sulfur, phosphorus, and selenium.
As used herein, “aryl” refers to an aromatic monocyclic hydrocarbon ring system or a polycyclic ring system in which two or more aromatic hydrocarbon rings are fused (i.e., having a  bond in common with) together or at least one aromatic monocyclic hydrocarbon ring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings. An aryl group can have 6 to 24 carbon atoms in its ring system (e.g., C6-24 aryl group) , which can include multiple fused rings. In some embodiments, a polycyclic aryl group can have 8 to 24 carbon atoms. Any suitable ring position of the aryl group can be covalently linked to the defined chemical structure. Examples of aryl groups having only aromatic carbocyclic ring (s) include phenyl, 1-naphthyl (bicyclic) , 2-naphthyl (bicyclic) , anthracenyl (tricyclic) , phenanthrenyl (tricyclic) , pentacenyl (pentacyclic) , and like groups. Examples of polycyclic ring systems in which at least one aromatic carbocyclic ring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings include, among others, benzo derivatives of cyclopentane (i.e., an indanyl group, which is a 5, 6-bicyclic cycloalkyl/aromatic ring system) , cyclohexane (i.e., a tetrahydronaphthyl group, which is a 6, 6-bicyclic cycloalkyl/aromatic ring system) , imidazoline (i.e., a benzimidazolinyl group, which is a 5, 6-bicyclic cycloheteroalkyl/aromatic ring system) , and pyran (i.e., a chromenyl group, which is a 6, 6-bicyclic cycloheteroalkyl/aromatic ring system) . Other examples of aryl groups include benzodioxanyl, benzodioxolyl, chromanyl, indolinyl groups, and the like. In some embodiments, aryl groups can be substituted as described herein. In some embodiments, an aryl group can have one or more halogen substituents, and can be referred to as a “haloaryl” group. Perhaloaryl groups, i.e., aryl groups where all of the hydrogen atoms are replaced with halogen atoms (e.g., -C 6F 5) , are included within the definition of “haloaryl” . In certain embodiments, an aryl group is substituted with another aryl group and can be referred to as a biaryl group. Each of the aryl groups in the biaryl group can be substituted as disclosed herein.
As used herein, “heteroaryl” refers to an aromatic monocyclic ring system containing at least one ring heteroatom selected from oxygen (O) , nitrogen (N) , sulfur (S) , silicon (Si) , and selenium (Se) or a polycyclic ring system where at least one of the rings present in the ring system is aromatic and contains at least one ring heteroatom. Polycyclic heteroaryl groups include those having two or more heteroaryl rings fused together, as well as those having at least one monocyclic heteroaryl ring fused to one or more aromatic carbocyclic rings, non-aromatic carbocyclic rings, and/or non-aromatic cycloheteroalkyl rings. A heteroaryl group, as a whole, can have, for example, 5 to 24 ring atoms and contain 1-5 ring heteroatoms (i.e., 5-20 membered heteroaryl group) . The heteroaryl group can be attached to the defined chemical structure at any heteroatom or carbon atom that results in a stable structure. Generally, heteroaryl rings do not  contain O-O, S-S, or S-0 bonds. However, one or more N or S atoms in a heteroaryl group can be oxidized (e.g., pyridine N-oxide thiophene S-oxide, thiophene S, S-dioxide) . Examples of heteroaryl groups include, for example, the 5-or 6-membered monocyclic and 5-6 bicyclic ring systems shown below: where T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH 2, SiH (alkyl) , Si (alkyl)  2, SiH (arylalkyl) , Si (arylalkyl)  2, or Si (alkyl) (arylalkyl) . Examples of such heteroaryl rings include pyrrolyl, furyl, thienyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, isothiazolyl, thiazolyl, thiadiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, indolyl, isoindolyl, benzofuryl, benzothienyl, quinolyl, 2-methylquinolyl, isoquinolyl, quinoxalyl, quinazolyl, benzotriazolyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxadiazolyl, benzoxazolyl, cinnolinyl, lH-indazolyl, 2H-indazolyl, indolizinyl, isobenzofuyl, naphthyridinyl, phthalazinyl, pteridinyl, purinyl, oxazolopyridinyl, thiazolopyridinyl, imidazopyridinyl, furopyridinyl, thienopyridinyl, pyridopyrimidinyl, pyridopyrazinyl, pyridopyridazinyl, thienothiazolyl, thienoxazolyl, thienoimidazolyl groups, and the like. Further examples of heteroaryl groups include 4, 5, 6, 7-tetrahydroindolyl, tetrahydroquinolinyl, benzothienopyridinyl, benzofuropyridinyl groups, and the like. In some embodiments, heteroaryl groups can be substituted as described herein.
As used herein, a "donor" material refers to an organic material, for example, an organic nanoparticle material, having holes as the majority current or charge carriers.
As used herein, an "acceptor" material refers to an organic material, for example, an organic nanoparticle material, having electrons as the majority current or charge carriers.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which the presently described subject matter pertains.
Where a range of values is provided, for example, concentration ranges, percentage ranges, or ratio ranges, it is understood that each intervening value, to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the described subject matter. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and such embodiments are also encompassed within the described subject matter, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of  those included limits are also included in the described subject matter.
Throughout the application, descriptions of various embodiments use “comprising” language. However, it will be understood by one of skill in the art, that in some specific instances, an embodiment can alternatively be described using the language “consisting essentially of” or “consisting of” .
For purposes of better understanding the present teachings and in no way limiting the scope of the teachings, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about” . Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
AIE-active Ratiometric Probe
The present subject matter contemplates a fluorescent bioprobe including a small molecule, fluorescent compound having aggregation-induced emission (AIE) characteristics. The compound can exhibit twisted intramolecular charge transfer (TICT) , which is characterized by a rotation around a single bond in the excited state and a decrease in photoluminescence intensity with solvent polarity increase. Following intramolecular twisting, the compound returns to the ground state. The compound can be positively charged. In an embodiment, the compound is “TPE-PBP, ” having the following structural formula:
Figure PCTCN2019120943-appb-000002
The bioprobe is also referred to herein as “AIEgen” or “AIE-active ratiometric probe. ”
Thiol Detection using the AIE-active Ratiometric Probe
The bioprobe can be used for thiol detection. In an embodiment, the bioprobe can be used for thiol detection in mitochondria. The positively charged AIEgen can measure the levels of mitochondrial thiol in a ratiometric manner with good cellular biocompatibility, excellent photostability, high selectivity, and low background noise. The bioprobe can be utilized to ratiometrically detect mitochondrial thiol in living cells isolated from tissue, in cells within skeletal muscle tissues, as well as in cells in living organisms. For example, the bioprobe was successfully used to ratiometrically detect mitochondrial thiol in two-day old fish larva using two-photon excitation.
In an embodiment, a method of detecting mitochondrial thiol in a target cell can include contacting the target cell with the fluorescent bioprobe and using fluorescence microscopy to measure a fluorescence of the target cell contacted with the fluorescent bioprobe. In an embodiment, the target cell is contacted with the fluorescent bioprobe for at least about two hours before fluorescence is measured. The bioprobe selectively targets mitochondrial thiol and a ratiometric fluorescence is emitted from the target cell when mitochondrial thiol is present in the target cell. In other words, a ratiometric change in fluorescent intensity can be correlated with a concentration of the mitochondrial thiol. The bioprobe alone exhibits an emission wavelength peak at 631 nm. A method of detecting thiol in a fluid can include contacting the fluid with the bioprobe. The bioprobe selectively targets thiol in the fluid, resulting in a new emission peak at 500 nm when thiol is present, in addition to the emission peak of the bioprobe at 631 nm. In an embodiment, a blue fluorescence is emitted in the presence of thiol and a red fluorescence is emitted when no thiol is present.
The fluorescence microscopy can include one-photon fluorescence microscopy or two-photon fluorescence microscopy. One-photon fluorescence microscopy uses a single photon to excite fluorescent dyes using mainly visible excitation wavelengths (390-700 nm) . Two-photon fluorescence imaging technology has been widely used for bio-imaging applications due to its high penetration depth with near-infrared (NIR) excitation, high spatial resolution and signal-to-noise ratio, and low tendency for photobleaching. Two-photon absorption (2PA) cross section (δ2PA) is used to predict whether a luminogen is suitable for 2PM. As TPE-PBP possesses a conjugated structure with strong electron donating and withdrawing groups, TPE- PBP exhibits strong δ2PA.
The bioprobe can be used for in vitro, ex vivo, or in vivo mitochondrial thiol detection. The mitochondrial pool of thiol is crucial for protection against oxidative stress and plays a pivotal role in removing ROS to keep a delicate balance of ROS to satisfy physiological needs. As such, monitoring thiol status in mitochondria can provide valuable information on the mitochondrial function. The probe shows high selectivity and sensitivity towards intracellular thiol species, such as glutathione (GSH) , cysteine (Cys) , and homocysteine (Hcy) . For example, the detection limit of TPE-PBP towards GSH is 0.61 μM.
In an embodiment, the bioprobe can be used for detecting thiol in a fluid, such as blood. The emission wavelength peak exhibited by the bioprobe alone can be at 631 nm. In an embodiment, a method of detecting thiol in a fluid can include contacting the fluid with the bioprobe. The bioprobe selectively targets thiol in the fluid, resulting in a new emission peak at 500 nm when thiol is present, in addition to the emission peak of the bioprobe at 631 nm. Only a red fluorescence is emitted when no thiol is present in the fluid. As described herein, the bioprobe was successfully used to detect thiol in rabbit’s blood. The concentration of GSH in the body exists in millimolar levels (1-3 mM) in most cells and in micromolar levels (2-20 μM) in blood plasma. Accordingly, TPE-PBP has the potential to be utilized in clinical disease diagnosis.
The present detection method can include a ratiometric method for detecting the fluorescent intensities of the bioprobe at two distinct wavelengths. In comparison with the traditional one-photon fluorescence imaging, two-photon fluorescence imaging holds advantages of deep-tissue penetration, low interference from background auto-fluorescence, and minimal phototoxicity to living biosubstrates. Thus, the present detection method can correct for environmental effects and facilitate analyte quantification.
The present teachings are illustrated by the following examples.
EXAMPLE 1
Synthesis
(E) -1- (4- (2, 4-dinitrophenoxy) benzyl) -4- (4- (1, 2, 2-triphenylvinyl) styryl) pyridin-1-ium bromide (TPE-PBP) was prepared as follows: compound 1 (1 mmol, 435.6 mg) and compound 2 (1 mmol, 352.0 mg) were dissolved in toluene, and then the mixture was refluxed at 110 ℃ for 12 h. The obtained red powdery solid was filtered, washed with toluene and dried in vacuo to  afford pure TPE-PBP (200.7 mg, 25.5%) .  1H NMR (400 MHz, MeOD, 25 ℃) , δ (ppm) : 9.02-8.97 (m, 2H) , 8.59-8.56 (m, 1H) , 8.29-8.28 (d, J = 4 Hz, 1H) , 8.01-7.97 (d, J = 16 Hz, 1H) , 7.78-7.76 (d, J = 8 Hz, 2H) , 7.64-7.62 (d, J = 8 Hz, 2H) , 7.50-7.12 (m, 23H) , 5.91-5.89 (d, J = 8 Hz, 2H) .  13C NMR (100 MHz, CDCl 3, 25 ℃) , δ (ppm) : 143.27, 143.17, 142.79, 142.49, 142.19, 140.02, 139.97, 132.35, 131.53, 131.44, 131.42, 131.36, 129.24, 129.15, 128.34, 128.09, 128.02, 127.83, 127.06, 126.94, 125.41, 123.96, 122.23, 121.57, 121.15, 119.85, 29.81; HRMS (MALDI-TOF, m/z) : [M]  + calculated for C 46H 34N 3O 5 +, 708.2493; found, 708.2513.
Chemicals for synthesis were purchased from Sigma-Aldrich or J&K and used as received without any further purification. 1- [4- (bromomethyl) phenoxy] -2, 4-dinitrobenzene (1) , TPE derivative (2) , were prepared according to the reported literature.  1H-and  13C-NMR spectra were carried out on a Bruker AV 400 spectrometer. High resolution mass spectra (HRMS) were recorded on a GCT premier CAB048 mass spectrometer operating in MALDI-TOF mode. Ultraviolet–visible (UV-vis) absorption spectra were taken on a PerkinElmer Lambda 25 UV-Vis absorption spectrophotometer. Photoluminescence spectra were recorded on a PerkinElmer LS 55 fluorescence spectrometer. The absolute fluorescence quantum yields were measured on a Hamamatsu Absolute Quantum Yield Spectrometer C11347. The average particle size and size distribution were determined by laser light scattering with a particle size analyzer (90 Plus, Brookhaven Instruments Co. USA) at a fixed angle of 90° at 24℃. Two-photon excited fluorescence (TPEF) spectra were measured on a SpectroPro300i, and the pump laser beam came from a mode-locked Ti: sapphire laser system with a pulse duration of 160 fs and a repetition rate of 76 MH Z.
An exemplary reaction scheme for synthesizing TPE-PBP is provided below:
Figure PCTCN2019120943-appb-000003
The chemical structure of the product was confirmed by standard spectroscopic techniques with high purity (Figs. 3-5) . The photoluminescence (PL) property was investigated by adding water to the dimethylsulfoxide (DMSO) solution of TPE-PBP to provide a DMSO/water mixture.
As shown in Figs. 4A-4B and Fig. 5, by increasing the water fraction of the DMSO/water mixture from 0 to 50%, the emission maximum of TPE-PBP decreased. Further increasing the water fraction from 50%to 80%caused an abrupt increase in the emission intensity (~11-fold) along with a blue shift in the PL maximum from 638 nm to 586 nm. The initial PL intensity decrease can be ascribed to the twisted intramolecular charge transfer (TICT) effect, which is characterized by a PL intensity decrease with solvent polarity increase. The PL intensity enhancement can be attributed to AIE characteristics because the aggregates formed in high water fractions restrict the intramolecular motions of TPE-PBP. The emission wavelengths shift with the water fractions is also consistent with the TICT effect. At high water fractions from 80%to 99.9%, the PL intensity slightly decreased while the wavelength red-shifted a little, suggesting possible formation of amorphous particles. Dynamic light scattering (DLS) results indicated that nanoparticles with smaller size were formed at high water fractions, as shown in Figs. 6A-6B.
EXAMPLE 2
Mechanism for Selective Reaction of TPE-PBP to Biothiol
A plausible mechanism for selective reaction of TPE-PBP to biothiol is provided below:
Figure PCTCN2019120943-appb-000004
It is believed, as shown above, that the dinitrophenyl ether is cleaved by biothiol through S NAr attack. The resulting para-hydroxybenzyl moiety self-immolates through an intramolecular 1, 4-elimination reaction to release the fluorophore.
To test the validity of the design principle, glutathione (GSH) was used as a model compound of biothiol to react with TPE-PBP. A stock solution of TPE-PBP (10 mM) was prepared in 100%DMSO and was subsequently diluted to prepare appropriate concentration solutions of TPE-PBP in DMSO/PBS buffer (1: 1, v/v, 10 mM, pH 7.4) . GSH stock solutions were freshly prepared prior to each experiment. For the calibration curve, solutions of TPE-PBP were incubated with different concentrations of GSH at 25 ℃ for 120 min, and spectral data were recorded. Excitation was at 365 nm and emission was detected at 500 nm and 631 nm.
The reaction between glutathione and TPE-PBP produced tetraphenylethylene pyridinine (TPE-Py) , as monitored by absorption and emission spectra, shown in Figs. 7A-7B. The emission spectra of the solution of TPE-PBP (10 μM) treated with 1 mM GSH in DMSO/PBS buffer increased gradually at 500 nm with a concomitant decrease at 631 nm. The change of absorption and emission spectra of TPE-PBP before and after reaction with GSH could also be observed by the naked eye. Identification of the resulting products were carried out through ESI-MS measurements (Figs. 8A-8B) , which suggested the resulting  chemical structure of the fluorophore was identical to TPE-Py. Thus, the expected recognition and self-immolative cleavage described above indeed occurred.
Different from the 2, 4-dinitrobenzenesulfonyl moiety which was widely used as a fluorescence quencher through the photo-induced electron transfer (PET) process, the para-dinitrophenoxy benzyl pyridinium moiety served as both an electron-accepting unit to red shift the emission spectra of TPE-PBP through the intramolecular charge transfer (ICT) process as well as a mitochondrial targeting group.
After reaction with biothiol, the para-dinitrophenoxy benzyl moiety was cleaved to generate the TPE-Py with a blue-shifted emission. The emission blueshift was ascribed to the weaker ICT effect of TPE-Py than TPE-PBP. Density functional theory (DFT) calculation confirms weaker charge separation of TPE-Py than TPE-PBP (Fig. 9) . The dual emission of TPE-PBP upon treatment with biothiol enables it to work as a ratiometric AIEgen for biothiol detection.
The effect of the buffer on the reaction between GSH and TPE-PBP was evaluated. As shown in Figs. 10A-10C, when the f DMSO in DMSO/PBS buffer was 50%and 60%, the ratio of PL intensity between TPE-Py and TPE-PBP (I 500/I 631) was the largest, indicating a better reaction efficiency. Thus, the mixture of DMSO/PBS with volume ratio of 1: 1 was chosen as the optimal reaction buffer.
Next, the reaction efficiency of GSH and TPE-PBP was tested. The results showed that the reaction speed decreased gradually after 120 min (Fig. 10B) . Noteworthy, the reaction between TPE-PBP and GSH was pH-dependent as shown in Fig. 10C. TPE-PBP itself was quite stable in the pH range of 3-9.5.
The mixture of GSH and TPE-PBP reacted efficiently when pH value increased over 6, possibly due to the higher concentration of thiolate species at a relatively alkaline environment. Finally, a pH of 7.4 was selected as the standard testing conditions for the sensing studies because it is close to physiological conditions.
GSH titration was implemented by increasing the concentration of GSH from 0 μM to 300 μM to react with TPE-PBP (10 μM) in DMSO/PBS buffer (1: 1, v/v, 10mM, pH 7.4) for 120 min. The fluorescence spectra were recorded (Figs. 11A-11B) and the ratio of fluorescence intensity at 500 nm and 631 nm (I 500/I 631) was plotted against concentration  (Fig. 11B) . As shown in Fig. 11B, I 500/I 631 was linearly proportional to the concentration of GSH, ranging from 0 μM to 125 μM, suggestive of a detection limit of 0.61 μM. The detection limit was calculated based on the fluorescence titration. In the absence of GSH, the fluorescence emission spectrum of TPE-PBP was measured three times and the standard deviation of blank measurement was achieved. To gain the slope, the ratio of fluorescence intensity at 500 nm and 631 nm (I 500/I 631) was plotted against the concentration of GSH. The detection limit was calculated with the following equation:
detection limit = 3σ/k, where σ is the standard deviation of blank measurement, k is the slope between the I 500/I 631 versus GSH concentration.
To evaluate the selectivity of TPE-PBP for non-biothiol analytes, the response of TPE-PBP to glycine (Gly) , phenylalanine (Phe) , methionine (Met) , proline (Pro) , arginine (Arg) , histidine (His) , Aspartic acid (Asp) as well as common biological metal ions (K +, Ca 2+, Na +, Mg 2+, Fe 3+, Cu 2+, Zn 2+, Mn 2+) were investigated. As shown in Figs. 12 and 13, TPE-PBP exhibits a strong response towards thiol, including GSH, Cys, and Hcy, but a slight response towards NaSH, and a negligible response towards other amino acids without thiol groups and metal ions. It is also worthy to note that TPE-PBP has a better response to GSH than Cys and Hcy. The longer chain length of GSH than Cys and Hcy possibly enables the intermolecular electrostatic interaction between the pyridinium of TPE-PBP and the carboxyl of GSH to promote the S NAr attack according to the proposed reaction mechanism.
Example 3
Determining Thiol Levels in a Biological Fluid
Fresh rabbit blood was collected and used as a sample for thiol detection. As shown in Figs. 14A-14B, TPE-PBP detected thiol in rabbit blood samples in a ratiometric manner. These results indicate that TPE-PBP can serve as a fluorescent ratiometric probe for selective thiol detection without interference from other biologically relevant analytes.
Example 4
Ratiometric Detection of Mitochondrial Thiol
Since TPE-PBP showed excellent selectivity and sensitivity towards thiol detection, the utilization of TPE-PBP in the detection of thiol in living cell imaging was explored. HeLa and COS-7 cells were purchased from ATCC. HeLa cells were cultured in MEM. COS-7 cells were  cultured in Dulbecco's Modified Eagle's Medium with 1%penicillin-streptomycin and 10%FBS, at 37 ℃ in a humidified incubator with 5%CO 2. The culture medium was replaced every second day. By treating with 0.25%trypsin-EDTA solution, the cells were collected after they reached confluence.
The cytotoxicity of TPE-PBP was first evaluated using 3- (4, 5-dimethyl-2-thiazolyl) -2, 5-diphenyltetrazolium bromide (MTT) assay. As shown in Fig. 15, no significant variation in cell viability was observed even under a high dye concentration of 20 μM, suggesting that TPE-PBP has good cell biocompatibility. HeLa and COS-7 cells were seeded in 96-well plates at a density of 5000 cells per well, respectively. After a 24 h cell culture, various concentrations of TPE-PBP were added into the 96-well plate. After another 24 h cell culture, the medium was removed and the freshly prepared MTT medium solution (0.5 mg mL -1, 100 μL) was added into the 96-well plate. After incubation at 37 ℃, 5%CO 2 for 6 h, the MTT medium solution was removed carefully. After that, 100 μL DMSO was added into each well and the plate was gently shaken at room temperature to dissolve all the formed precipitates. A microplate reader was utilized to measure the absorbance at 570 nm from which the cell viability could be determined. Cell viability was expressed by the ratio of absorbance of the cells incubated with TPE-PBP solution to that of the cells incubated with culture medium only.
TPE-PBP was then used to detect thiol in living cells. HeLa cells were grown in a 35 mm Petri dish with a cover slip at 37 ℃, 5%CO 2. The cells were incubated with TPE-PBP (10 μM) for 1 h and Mito-tracker deep red (300 nM) for 15 min at 37 ℃, 5%CO 2. Then, the medium was removed, and the cells were washed with PBS three times. After that, the cells were imaged using a confocal microscopy (Zeiss laser scanning confocal microscope LSM7 DUO) for one-photon fluorescence imaging and using a STED microscopy ( Leica STED TCS SP5 II Confocal Laser  Scanning Microscope) for two-photon fluorescence imaging. For TPE-PBP, the excitation wavelength was 458 nm for one-photon imaging, 860 nm for two-photon imaging, and the emission filter was 580-628 nm; for derived TPE-Py, the excitation wavelength was 405 nm for one-photon imaging, 860 nm for two-photon imaging, and the emission filter was 472-532 nm; for Mito-tracker deep red, the excitation wavelength was 643 nm and the emission filter was 663-755 nm.
TPE-PBP seemed to selectively target mitochondria of the cells (Figs. 16B) . After reacting with mitochondrial thiol, TPE-PBP generated TPE-Py, which also targeted mitochondria  but the emission was blue shifted (Fig. 16A) . To further verify the specificity of TPE-PBP and TPE-Py in staining mitochondria, a co-staining experiment was carried out with commercial mitochondrial probe, MitoTracker Deep Red (Fig. 16C) . The remarkable overlap (Pearson correlation coefficient of 0.93 for TPE-PBP and 0.88 for TPE-Py, respectively) demonstrated the superior selectivity of TPE-PBP and TPE-Py to mitochondria. The ratiometric imaging of mitochondrial thiol was carried out with a dual-emission mode upon excitation at 405 nm. The ratiometric images (Figs. 17A, 17B) were obtained by mediating the green channel image (band path: 490–510nm; Fig. 17A) with the related red channel image (band path: 590–610nm; Fig. 17B) by using the software of the microscope. The fluorescence in the green channel originated from TPE-Py, which is produced by the reaction between TPE-PBP and mitochondrial thiol. The fluorescence in the red channel originated from TPE-PBP itself. Incubation with N-methylmaleimide (NMM) , a GSH scavenger: 500 μM) , resulted in a decrease of green channel fluorescence accompanied by an increase of red channel fluorescence (Figure 19D, E) , and a decline of emission ratio (green/red) can be observed (Figure 19G) . This preliminary imaging study suggested that TPE-PBP can be used for ratiometric tracking of thiol level in mitochondria, which is of great importance to clarify the physiological roles of biothiol in a specific organelle.
Example 5
Anti-Photobleaching Properties
Photostability is one of the key criteria for evaluating a fluorescent visualizer. To evaluate the anti-photobleaching capability of TPE-PBP and the derived TPE-Py, the HeLa cells stained with TPE-PBP and MitoTracker Deep Red, respectively, were continuously scanned by laser light. HeLa cells stained with TPE-PBP and TPE-Py were irradiated by 405 nm and 458 nm laser, respectively, for 11.83 min continuously using a confocal microscopy to evaluate TPE-PBP and TPE-Py’s photostability. For comparison, HeLa cells stained with Mito-tracker deep red were irradiated by 633 nm laser under the same conditions. Confocal images were captured at every 15 s and parallel compared to evaluate their photo-bleaching.
As shown in Fig. 19, more than 60%of the signal of both TPE-PBP and TPE-Py were retained even after 12 min., while over 60%of the fluorescence of Mito-tracker deep red was lost under the same condition. Therefore, TPE-PBP and the derived TPE-Py showed a much higher photostability than MitoTracker Deep Red.
Example 6
Two-photon ratiometric detection of thiol in vitro, ex vivo, and in vivo
The two-photon absorption (2PA) of TPE-PBP was studied by using a two-photon-excited fluorescence (TPEF) technique with a femtosecond pulsed laser source, and the cross section (δ 2PA) was measured using fluorescein as the standard. Thus, the δ was calculated by means of the following equation:
Figure PCTCN2019120943-appb-000005
where F is TPEF integral intensity, Φ is the fluorescence quantum yield, and δ r is the two-photon absorption cross-section of fluorescein in sodium hydroxide aqueous solution (pH =13.0) .
The measured wavelength was varied from 800 to 900 nm at an interval of 20 nm and the δ2PA values were collected. The results showed that in DCM/hexane mixture (fDCM=30%) , the maximum δ2PA value (1790 GM) of TPE-PBP was obtained at 860 nm (Fig. 20) , which was much higher than those of most fluorescent proteins (usually < 100 GM, only 39 GM for EGFP) , BODIPY dyes (82–128 GM) and coumarin dyes (318-1570 GM) . Thus, it was concluded that TPE-PBP can be used as an excellent two-photon imaging probe for living cells, tissues, and even a living body.
In vitro
The capability of TPE-PBP as a two-photon ratiometric probe for detecting mitochondrial thiol in vitro, ex vivo, and in vivo was then explored. Upon TP excitation at 860 nm, green and red fluorescence that originates from TPE-Py and TPE-PBP, respectively, were collected from two channels (Figs. 21A-21C) . Treating the cells with GSH led to an increase of green channel fluorescence but a decrease of red channel fluorescence (Figs. 21D-21F, and 22) , since the extracellular GSH is degraded on the surface of cells to generate intracellular GSH. These results indicated that TPE-PBP can be used for two-photon ratiometric detection of thiol in mitochondria.
Ex vivo
Next, TPE-PBP was used in ratiometric detection of mitochondrial thiol in living tissues. First, fresh mice skeletal muscle tissues were either treated with or without 200 μM GSH for 2h. Second, tissues were incubated with TPE-PBP (20 μM) for 2 h at 37 ℃, 5%CO 2. Third, the medium was removed, and the tissues were washed with PBS three times. Then, the tissues were cut  to about 1 mm thickness slices. After that, the tissue slices were imaged using a STED microscopy ( Leica STED TCS SP5 II Confocal Laser Scanning Microscope) for two-photon fluorescence imaging. The excitation wavelength was 860 nm. For TPE-PBP, the emission filter was 580-628 nm; for TPE-Py, the emission filter was 472-532 nm. Examination of mitochondrial morphology in both longitudinal and cross-sectional (transverse) planes were achieved by optical sectioning of confocal microscopy. As shown in Figs. 23A-23I, mitochondria were regularly arranged and formed reticulum in muscle from the longitudinal view (Fig. 23A) . The actual tubular morphology of intermyofibrillar (IMF) mitochondria was observed from the transverse view (Fig. 23B) . The results were in accordance with the mitochondrial structure in skeletal muscle obtained by scanning electron microscopy. By optical sectioning of the tissue, a series of fluorescent images were captured every 2 μm along the z axis (Figs. 23A-23I) . The results showed that mitochondria can be visualized by TPE-PBP even at a depth of 17.5 μm due to the deep penetration of two-photon excitation (Figs. 24A-24E) . As a contrast, the emission of TPE-PBP under one-photon excitation (458 nm) was almost not detected at 17.5 μm (Figs. 24F-J) .
In vivo
TPE-PBP was also used for detecting mitochondrial thiol of living tissues in a ratiometric manner upon two-photon excitation. As shown in Figs. 25A-25F, compared with the untreated group, incubating skeletal muscle tissues with GSH resulted in an increase of green channel emission and a decrease of red channel emission.
The success of employing TPE-PBP in ratiometric detection of mitochondrial thiol in living tissues prompted further investigation into in vivo ratiometric detection of mitochondrial thiol. A two-day old Japanese Medaka (Oryzias melastigma) fish larva was chosen as the experimental subject. Firstly, two-day fish larvae were either treated with or without 200 μM GSH for 2h. Secondly, fish larvae were incubated with TPE-PBP (20 μM) for 2h at room temperature. Then, the medium was removed, and the fish larvae were washed with PBS three times. After that, the fish larvae were imaged using a STED microscopy ( Leica STED TCS SP5  II Confocal Laser Scanning Microscope) for two-photon fluorescence imaging. The excitation wavelength was 860 nm. For TPE-PBP, the emission filter was 580-628 nm; For TPE-Py, the emission filter was 472-532 nm.
As shown in Figs. 27A-C, upon two-photon excitation at 860 nm, the fluorescent signal of TPE-PBP seemed to be mainly located in the eyes, liver, and intestine of the fish. Fish larva  fed with GSH exhibited an increase in green channel fluorescence accompanied with a decrease in red channel fluorescence (Figs. 27D-27F and 28) . GSH can be efficiently absorbed across the intestinal epithelium through a specific uptake system, which increases the GSH levels in liver and muscle of the fish. The results clearly indicated that TPE-PBP was a promising candidate for two-photon ratiometric imaging of mitochondrial thiol both in vitro and in vivo, providing a useful tool for in vivo-based early diagnosis of metastatic cancer as well as in vivo-based screening of antineoplastic drug candidates, especially considering that the liver-dependent inter-tissue flow of GSH plays a vital role in cancer metastasis.
The present subject matter being thus described, it will be apparent that the same may be modified or varied in many ways. Such modifications and variations are not to be regarded as a departure from the spirit and scope of the present subject matter, and all such modifications and variations are intended to be included within the scope of the following claims.

Claims (19)

  1. A fluorescent bioprobe, comprising a compound that exhibits aggregation induced emission properties, wherein the compound is:
    Figure PCTCN2019120943-appb-100001
  2. The bioprobe according to claim 1, wherein the compound exhibits twisted intramolecular charge transfer.
  3. A method of detecting mitochondrial thiol in a target cell, comprising contacting the target cell with a fluorescent bioprobe, the fluorescent bioprobe exhibiting an emission peak wavelength at 631 nm and including the following compound:
    Figure PCTCN2019120943-appb-100002
    measuring fluorescence emitted from the target cell contacted with the fluorescent bioprobe;
    wherein the fluorescent bioprobe selectively targets mitochondrial thiol, resulting in a new emission peak at 500 nm when mitochondrial thiol is present in the target cell in addition to the emission peak of the bioprobe at 631 nm.
  4. The method of claim 3, comprising using fluorescence microscopy to measure the fluorescence emitted from the target cell contacted with the fluorescent bioprobe,
    wherein the fluorescence emitted from the target cell is a ratiometric fluorescence when mitochondrial thiol is present in the target cell.
  5. The method of claim 3, wherein the new emission peak is exhibited when a thiol concentration level is at least about 0.61 μM.
  6. The method of claim 3, wherein the target cell is a living cell and the fluorescence microscopy comprises in vitro fluorescence imaging of the cell.
  7. The method of claim 3, wherein the target cell is inside living tissue and the fluorescence microscopy comprises fluorescence imaging of the living tissue.
  8. The method of claim 3, wherein the target cell is inside a living body and the fluorescence microscopy comprises fluorescence imaging of the living body.
  9. The method of claim 3, wherein the fluorescence microscopy comprises one-photon excitation microscopy
  10. The method of claim 3, wherein the fluorescence microscopy comprises two-photon excitation microscopy with near-infrared excitation.
  11. The method of claim 3, wherein a blue fluorescence is emitted in the presence of the mitochondrial thiol and a red fluorescence is emitted in the absence of the mitochondrial thiol.
  12. A method of detecting thiol in a fluid, comprising contacting the fluid with a fluorescent bioprobe, the fluorescent bioprobe exhibiting an emission peak wavelength at 631  nm and including the following compound:
    Figure PCTCN2019120943-appb-100003
    measuring fluorescence emitted from the fluid contacted with the fluorescent bioprobe,
    wherein the bioprobe selectively targets thiol in the fluid, resulting in a new emission peak at 500 nm when thiol is present in addition to the emission peak of the bioprobe at 631 nm.
  13. The method of claim 12, wherein the fluid is blood.
  14. The method of claim 12, wherein the fluorescence emitted from the fluid in the presence of the thiol is ratiometric and correlated with a concentration of thiol present in the fluid.
  15. The method of claim 12, comprising using fluorescence microscopy to measure the fluorescence emitted from the fluid contacted with the fluorescent bioprobe.
  16. The method of claim 15, wherein the fluorescence microscopy comprises one-photon excitation microscopy.
  17. The method of claim 15, wherein the fluorescence microscopy comprises two-photon excitation microscopy with near-infrared excitation.
  18. The method of claim 12, wherein a blue fluorescence is emitted in the presence of the mitochondrial thiol and a red fluorescence is emitted in the absence of the mitochondrial thiol.
  19. The method of claim 12, wherein the new emission peak is exhibited when a thiol concentration level is at least about 0.61 μM.
PCT/CN2019/120943 2018-11-26 2019-11-26 Probes for selective thiol detection WO2020108479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862917172P 2018-11-26 2018-11-26
US62/917,172 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020108479A1 true WO2020108479A1 (en) 2020-06-04

Family

ID=70853650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120943 WO2020108479A1 (en) 2018-11-26 2019-11-26 Probes for selective thiol detection

Country Status (1)

Country Link
WO (1) WO2020108479A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025313A (en) * 2021-03-31 2021-06-25 河南理工大学 Application of morpholine-pyridine-part cyanine derivative as hydrogen sulfide fluorescent probe
CN114656420A (en) * 2022-03-05 2022-06-24 北京理工大学 Application of benzopyrene derivative fluorescent probe in detection of biological thiol
CN115043855A (en) * 2022-06-08 2022-09-13 安徽泽升科技有限公司 Fluorescent probe for detecting water content in heavy water and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165487A1 (en) * 2015-04-13 2016-10-20 The Hong Kong University Of Science And Technology Real-time monitoring mitophagy process by fluorescent photostable mitochondrial specific bioprobe with aie characteristics
CN108530423A (en) * 2018-03-20 2018-09-14 华南理工大学 A kind of water solubility aggregation-induced emission quinoxaline compounds and the preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165487A1 (en) * 2015-04-13 2016-10-20 The Hong Kong University Of Science And Technology Real-time monitoring mitophagy process by fluorescent photostable mitochondrial specific bioprobe with aie characteristics
CN108530423A (en) * 2018-03-20 2018-09-14 华南理工大学 A kind of water solubility aggregation-induced emission quinoxaline compounds and the preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN GU ET AL.: "Ratiometric Detection of Mitochondrial Thiol with a Two-Photon", ACS APPL. BIO MATER., vol. 2, no. 7, 31 May 2019 (2019-05-31), XP055711300, DOI: 20200219091848PX *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025313A (en) * 2021-03-31 2021-06-25 河南理工大学 Application of morpholine-pyridine-part cyanine derivative as hydrogen sulfide fluorescent probe
CN114656420A (en) * 2022-03-05 2022-06-24 北京理工大学 Application of benzopyrene derivative fluorescent probe in detection of biological thiol
CN115043855A (en) * 2022-06-08 2022-09-13 安徽泽升科技有限公司 Fluorescent probe for detecting water content in heavy water and application thereof

Similar Documents

Publication Publication Date Title
Feng et al. Dual-functional colorimetric fluorescent probe for sequential Cu2+ and S2− detection in bio-imaging
Liu et al. A novel N-nitrosation-based ratiometric fluorescent probe for highly selective imaging endogenous nitric oxide in living cells and zebrafish
Wang Development of fluorescent and luminescent probes for reactive oxygen species
Fan et al. A ratiometric lysosomal pH chemosensor based on fluorescence resonance energy transfer
Erdemir et al. Dual-channel fluorescent probe based on bisphenol A-rhodamine for Zn2+ and Hg2+ through different signaling mechanisms and its bioimaging studies
Huang et al. A turn-on fluorescent chemosensor for Cu2+ in aqueous media and its application to bioimaging
CN111263751A (en) Water-soluble compounds having aggregation-induced emission properties
Yu et al. A TICT based two-photon fluorescent probe for bisulfite anion and its application in living cells
Georgiev et al. Synthesis, sensor activity and logic behaviour of a novel bichromophoric system based on rhodamine 6G and 1, 8-naphthalimide
Li et al. A near-infrared fluorescent probe for Cu2+ in living cells based on coordination effect
Meng et al. A reversible fluorescence chemosensor for sequentially quantitative monitoring copper and sulfide in living cells
WO2020108479A1 (en) Probes for selective thiol detection
Deng et al. A new FRET probe for ratiometric fluorescence detecting mitochondria-localized drug activation and imaging endogenous hydroxyl radicals in zebrafish
WO2016165487A1 (en) Real-time monitoring mitophagy process by fluorescent photostable mitochondrial specific bioprobe with aie characteristics
Chao et al. A single fluorescent probe for multiple analyte sensing: efficient and selective detection of CN−, HSO 3− and extremely alkaline pH
Li et al. A new fluorescent chemosensor for Zn2+ with facile synthesis:“Turn-on” response in water at neutral pH and its application for live cell imaging
Li et al. One-step click engineering considerably ameliorates the practicality of an unqualified rhodamine probe
WO2018192521A1 (en) Probe for dual-mode bio-imaging
Sun et al. An efficient TP-FRET-based lysosome-targetable fluorescent probe for imaging peroxynitrite with two well-resolved emission channels in living cells, tissues and zebrafish
Wen et al. A novel ‘turn-on’fluorescence probe with aggregation-induced emission for the selective detection and bioimaging of Hg2+ in live cells
Li et al. A diaminomaleonitrile-appended BODIPY chemosensor for the selective detection of Cu2+ via oxidative cyclization and imaging in SiHa cells and zebrafish
Jiao et al. A red-emitting fluorescence turn-on probe for the discrimination of cysteine from biothiols and its bioimaging applications in living cells
Wu et al. Imaging of formaldehyde in live cells and plants utilizing small molecular probes with large stokes shifts
US20210109024A1 (en) Single AIEgen for Multiple Tasks: Imaging of Dual Organelles and Evaluation of Cell Viability
Han et al. A novel colorimetric and near-infrared fluorescence probe for detecting and imaging exogenous and endogenous hydrogen peroxide in living cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890972

Country of ref document: EP

Kind code of ref document: A1