WO2020107088A1 - Microfluidic process for obtaining stealth cationic liposomes - Google Patents

Microfluidic process for obtaining stealth cationic liposomes Download PDF

Info

Publication number
WO2020107088A1
WO2020107088A1 PCT/BR2019/050506 BR2019050506W WO2020107088A1 WO 2020107088 A1 WO2020107088 A1 WO 2020107088A1 BR 2019050506 W BR2019050506 W BR 2019050506W WO 2020107088 A1 WO2020107088 A1 WO 2020107088A1
Authority
WO
WIPO (PCT)
Prior art keywords
liposomes
peg
stealth
lcs
ethanol
Prior art date
Application number
PCT/BR2019/050506
Other languages
French (fr)
Portuguese (pt)
Inventor
Lucimara Gaziola De La Torre
Ismail ES
Leonardo JOSE MONTEBUGNOLI
Allan RADAIC
Marcelo BISPO DE JESUS
Original Assignee
Universidade Estadual De Campinas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas filed Critical Universidade Estadual De Campinas
Publication of WO2020107088A1 publication Critical patent/WO2020107088A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances

Definitions

  • This certificate of addition falls within the field of medical sciences, more specifically with regard to medicinal preparations characterized by special physical forms, and describes a process of obtaining Stealth liposomes in a microfluidic system using a water-miscible organic solvent with high yield based on chaotic advection without the formation of micelles.
  • a high ethanol content 50%) when compared to BR 10 2017 025862 9 and dispensing with the use of salt (ionic strength)
  • this certificate of addition avoids possible denaturation of sensitive molecules that may be associated with liposomes (eg proteins), thus not limiting its applications.
  • water-soluble organic solvents such as ethanol
  • ethanol water-soluble organic solvents
  • Gene therapy is a therapeutic strategy that it acts from the introduction of genetic material in the target cells, aiming at correction or inactivation of the genes responsible for a pathology.
  • genetic material in the target cells, aiming at correction or inactivation of the genes responsible for a pathology.
  • cationic liposomes stand out, whose structures are approximately spherical and formed from the self-aggregation of amphiphilic lipids in lamellae. Because the lamellae mimic cell membranes, liposomes have several biological characteristics, which include interactions with biomembranes and several cells, facilitating the internalization and delivery of drugs and nucleic acids. Due to their cationic character, these liposomes can interact electrostatically with genetic material (negatively charged), forming lipoplexes that have the ability to enter cells, as a result of the electrostatic interaction of lipoplexes with the anionic cell membrane.
  • the liposomes in question have good compatibility and ease of chemical modification of their surface, which allows the production of liposomes covalently linked to polyethylene glycol (PEG) molecules.
  • PEG polyethylene glycol
  • microfluidics emerges as an advantageous technique for the production of high added value liposomes, working with systems that process small amounts of fluids (IO -9 to IO -18 liters), using channels with dimensions up to hundreds of micrometers.
  • IO -9 to IO -18 liters working with systems that process small amounts of fluids (IO -9 to IO -18 liters), using channels with dimensions up to hundreds of micrometers.
  • gene delivery systems gene delivery
  • liposomes in these microfluidic processes occurs by the self-aggregation of the lipid molecules through the contact of two soluble fluids with each other, one aqueous and the other organic (which may be alcoholic) and miscible in water (containing the lipids). As diffusion between species occurs, lipids become less and less soluble in the aqueous medium and begin to self-aggregate, forming fragments of lipid bilayers.
  • the document WO 2017/106799 Al describes a process for obtaining Lipidoids (aggregates that have, in addition to lipids, synthetic molecules for structuring in membrane) for the delivery of mRNA, which makes use of microfluidic mixers to perform advection chaotic.
  • Lipidoids aggregates that have, in addition to lipids, synthetic molecules for structuring in membrane
  • Lipid Nanoparticles can comprise phospholipids, such as DOPE, and modified lipids, such as DSPE-PEG.
  • phospholipids such as DOPE
  • modified lipids such as DSPE-PEG.
  • These lipid nanoparticles are obtained by microfluidization, such as chaotic advection, in which the solvent used is recovered by dialysis.
  • the formation of these nanoparticles occurs through the simultaneous mixing of the lipids and the components to be encapsulated, in the mRNA case, for the formation of the nanoparticle. In this situation, the formation of liposomes or Stealth liposomes is not guaranteed.
  • the present certificate of addition provides for obtaining Stealth liposomes (whose structure differs from lipid nanoparticles), in which the solvent is recovered after chaotic advection by vacuum distillation.
  • the article "Microfluidic manufacturing of phospholipid nanoparticles: stability, encapsulation efficacy and drug release” also refers to the preparation of liposomes that comprise phospholipids using microfluidic methods, such as, for example, using a low profile micro mixer chaotic.
  • the analysis of the physical-chemical, morphological and structural characteristics of these liposomes does not mention whether they are unilamellar.
  • the process has a dialysis step to remove the non-encapsulated drug, without mentioning how the product obtained is purified.
  • the present certificate of addition of invention refers to an improved process of production of cationic S tealth liposomes without the presence of inverse hexagonal (HII), in which said process uses the phospholipid " egg phosphatidylcholine (EPC) "and the lipid DSPE-PEG (2000) associated with the DOTAP / DOPE formulation, in addition to a device with a different configuration.
  • HII inverse hexagonal
  • Another crucial parameter in LC synthesis of the Stealth type is to incorporate the maximum amount of PEG into the phospholipid bilayer before PEG is converted into micelles, thus avoiding the micellar phase and promoting the lamellar phase to produce LC with adequate lipid-PEG insertion.
  • Several factors influence the phase transition (from the lamellar to the micellar phase) of phospholipid-PEG conjugates.
  • the main reason behind this phase transition has been shown to be the polymorphic property of phospholipids, which is the property of amphiphilic molecules that form aggregates of lipids under different conditions, such as water content, organic solution, temperature and pH (Hristova et al 1995).
  • Figure 1 shows a geometric design of fishbone-like structures from a microfluidic device based on chaotic advection.
  • FIG. 2 shows flow configurations in tested microfluidic devices.
  • D-MD diffusion-based microfluidic device
  • B microfluidic device based on chaotic advection with 3 entrances
  • C Microfluidic device based on chaotic advection with 2 inputs.
  • the microfluidic devices shown in B and C were used for the formation of CL with variable FRR (flow rate) (between 1 and 10), while the D-MD in (A) was evaluated using only FRR 10.
  • the TFR total flow ratio
  • Figure 3 shows the particle agglomeration possibly caused by the presence of DSPE-PEG (2000) along the central channel during LC production of the Stealth type in D-MD (A); The size distribution by intensity and volume of LCs of the Stealth type characterized by DLS (Dynamic Light Scattering) (B); Physico-chemical properties of LCs of the Stealth type produced in the same microfluidic device (C).
  • the central flows (10.92 pL / min) and lateral flows (54.6 pL / min each entry) are phospholipids and PEG dispersed in ethanol and aqueous solution, respectively.
  • the lines in each size distribution represent the profile of three independent replicates.
  • Figure 4 shows the production of LC in microfluidic device based on chaotic advection.
  • the first image was taken during the device's first herringbone-like units, while the second and third images are taken in the middle of the device.
  • the first and second images were taken at 4X magnitude and the third image is taken at 10X.
  • the arrows show the direction of the flow.
  • the images were transformed from 2D objects into 3D with a computer program to facilitate visualization.
  • Figure 5 shows the size distribution based on intensity and volume of conventional and Stealth LCs produced in CA-MD with 3 entries in FRR 1 and TFR 500 pL / min.
  • the lines in each size distribution represent the profile of three independent replicates.
  • Figure 6 shows the scattering intensity of X-rays at low angles of conventional and Stealth-type cationic liposomes produced by CA-MD with 2 and 3 inputs with a total flow rate of 500 pL / min.
  • Figure 7 shows morphological images of conventional and Stealth-type LCs obtained from electron cryo-microscopy (Cryo-TEM).
  • Figure 8 demonstrates the efficiency of transfection of conventional and Stealth type LCs into PC3 cells.
  • the efficiency of transfection of lipoplexes containing eGFP pDNA was measured by the percentage of cells (left panel) and the fluorescence intensity of GFP (right panel).
  • (a) represents the statistical difference (p ⁇ 0.05) between the sample mean and the control mean (CTRL) corrected by Dunnett's test;
  • CTRL control mean
  • c) represents the statistical difference (p ⁇ 0.05) between the sample mean and cationic liposomes containing PEG (CL-PEG) corrected by Dunnett's test.
  • the present invention relates to a process of obtaining Stealth liposomes in a high performance microfluidic system based on chaotic advection.
  • Stealth liposomes are formed from egg phosphatidylcholine (EPC), 1,2-dioleyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) phospholipids, in addition to 1,2-distearyl-sn-glycero-3-phosphoethanolamine associated with polyethylene glycol (DSPE-PEG) in a molar ratio of 50: 25: 24: 1.
  • EPC egg phosphatidylcholine
  • DOTAP 1,2-dioleyl-3-trimethylammonium propane
  • DOPE 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine
  • DSPE-PEG polyethylene glycol
  • the microfluidic device used was manufactured using the soft polydimethylsiloxane (PD S) lithography technique, in which two streams corresponding to the aqueous phase and the stream containing phospholipids were used together with DSPE-PEG (2000) dispersed in ethanol. Due to the presence of repetitive microchannels in the microfluidic device, an efficient mixing occurs to promote the formation of liposomes.
  • PD S soft polydimethylsiloxane
  • the water-soluble organic solvents such as ethanol
  • the water-soluble organic solvents are recovered by using a vacuum centrifuge concentrator to remove or decrease its content, without changing significantly the physical and chemical properties of liposomal structures.
  • this Certificate of Addition refers to a microfluidic process of obtaining cationic liposomes and S tealth that comprises microfluidic device based on chaotic advection and the steps of:
  • DOPE 1.2-dioleoyl-sn-glycero-3-phosphatidylethanolamine
  • DOTAP 1.2-dioleyl-3-trimethylammonium propane
  • DSPE-PEG 1,2-distearyl-sn-glycero-3-phosphoethanolamine with polyethylene glycol
  • EPC DOPE: DOTAP: DSPE-PEG respectively, dispersed in 100% anhydrous ethanol in a microfluidic device, from a total flow rate ranging from 120 pL min -1 to 1500 pL min -1 , the resulting dispersion at the outlet of said microfluidic device comprising ethanol content in the range of 33.5 to 51%, preferably 50%;
  • the said microfluidic device comprises 2 (two) or 3 (three) entrances and consists of two bases of poly dimethyl siloxane (PDMS) sealed with O2 plasma, where one base contains microchannels and the other base contains pools, constructed by the soft lithography technique using SU-8 photoresist, preferably in silicon wafer, in which the referred pools have fixed height along said microchannels that cause advection chaotic.
  • PDMS poly dimethyl siloxane
  • the operating parameter FRR flow rate ratio which consists of the sum of the lateral current flows, aqueous, by the flow of the central current, organic
  • the operating parameter FRR should preferably have a value of 1 when the lipid dispersion is inserted into the central stream and aqueous phase on the sides, said aqueous phase comprising water or conventional buffer (such as PBS IX).
  • the arrangement can be changed as long as the preferred 1: 1 ratio of aqueous phase and lipid dispersion is maintained.
  • the lateral flows can vary from 30 to 500 m ⁇ / min and the central flow from 60 to 1000 m ⁇ / min, and the total production flow can operate from 100 to 2000 pL / min.
  • this Certificate of Addition refers to the cationic Stealth liposomes obtained as described above and comprise from 50: 20: 25: 5% to 50: 24: 25: 1% EPC: DOPE: DOTAP : DSPE-PEG, preferably 50: 24: 25: 1%; and final lipid concentration of 25 to 10 mM, preferably 12.5 mM, in which said concentration of the final lipid dispersion can be modulated, as the operation removal of ethanol via vacuum concentrator or distillation does not alter the physico-chemical properties of liposomes to a critical concentration.
  • Said liposomes have an average diameter ranging from 250 to 120 nm, preferably 180 nm; polydispersity index (PDI) ranging from 0.13 to 0.3, preferably 0.25; and zeta potential ranging from +45 to +55 mV, preferably +50 mV when produced in ultra pure water.
  • PDI polydispersity index
  • zeta potential ranging from +45 to +55 mV, preferably +50 mV when produced in ultra pure water.
  • this Certificate of Addition refers to the use of cationic S tealth liposomes, as defined above, because they are applied in the agricultural, food, cosmetic, medical areas; in systems of sustained release of biopharmaceuticals, protein vectors, anti-cancer agents; and preferably in gene therapy and vaccination.
  • the Stealth liposomes obtained have applications in several areas, especially the medical area, in systems of sustained release of biopharmaceuticals, including proteins, anticancer agents and mainly applications in gene therapy and vaccination.
  • the present application is a certificate of addition to the patent application BR 10 2017 025862 9 and this application refers to a process for obtaining Stealth type liposomes in a high-performance microfluidic system based on chaotic advection.
  • the process also includes a step of recovering the organic solvent used by using a vacuum centrifuge concentrator to remove or decrease it, and also differs from the patent application BR 10 2017 025862 9 regarding the configuration of the microfluidic device used.
  • Another difference in relation to the patent application BR 10 2017 025862 9 is that the use of high ionic strength is not necessary, such as the use of PBS buffer in high concentration (5X).
  • Stealth liposomes are formed from a process with a higher ethanol content (50%), while in patent application BR 10 2017 025862 9 10% is used.
  • This process comprises the step of inserting 25 mM egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and 1,2-dioleyl-3-trimethylammonium propane (DOTAP), as well as 1,2-distearyl-sn-glycero-3-phosphoethanolamine with polyethylene glycol (DSPE-PEG) in a proportion of 50: 24: 25: 1% EPC: DOPE: DOTAP: DSPE-PEG, respectively, dispersed in 100% anhydrous ethanol in a microfluidic device, from a total flow that varies from 120 pL min -1 to 1500 pL min -1 .
  • EPC egg phosphatidylcholine
  • DOPE 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine
  • DOTAP 1,2-dioleyl-3-trimethylammonium propane
  • This alcoholic stream is mixed with an aqueous stream (which does not require salt in its composition), in a proportion of 50% of each stream.
  • the mixing takes place in a microfluidic device based on chaotic advection that allows operation at high productivity, unlike the patent application BR 10 2017 025862 9.
  • a vacuum centrifuge concentrator is used for a processing interval of 1 to 2 hours, without this step causing a significant change in terms of size , polydispersity, zeta potential and liposome morphology, in addition to maintaining biological activity.
  • This microfluidic device is constructed of poly dimethyl siloxane (PDMS) using the soft lithography technique, according to the methodology already described by Duffy and McDonald (1998).
  • liposomes are obtained Stealth with excellent physical-chemical characteristics in reproducible processes, including controlled size and low polydispersity and unilamellar index.
  • the developed technology makes it possible to apply Stealth liposomes in several areas, especially the medical field, in biopharmaceutical sustained release systems, including protein vectors, anticancer agents and mainly applications in gene therapy and vaccination.
  • 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine DOPE
  • 1,2-dioleo-3-trimethylamine-propane DOTAP
  • egg phosphatidylcholine EPC
  • DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
  • DOAP 1,2-dioleo-3-trimethylamine-propane
  • EPC egg phosphatidylcholine
  • 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [amino (polyethylene glycol) -2000] DSPE-PEG (2000) was used to form Stealth-type liposomes and purchased from Avanti Polar Lipids, Inc. (Alabama, USA).
  • Ethanol was obtained from Labsynth (S ⁇ o Paulo, Brazil) and used after the dehydration process with molecular sieve to disperse phospholipids.
  • the Sylgard® 184 Silicone Elastomer Kit used to manufacture microfluidic devices, was purchased from Dow Corning (Auburn, MI, United States). Deionized water was obtained from Samtec Biotechnology (S ⁇ o Paulo, Brazil).
  • the pDNA was amplified in Escherichia coli bacteria and purified using PureLink TM HiPure Plasmid pDNA Purification Kit-Maxiprep K2100-07 (Invitrogen, Carlsbad, CA, United States). The quality and quantity of pDNA was measured spectrophotometrically with an ND-1000 NanoDrop UV-vis spectrophotometer (PeqLab, Er Weg, Germany).
  • Chaotic advection-based microfluidic device (CA-MD), with 2 and 3 inputs, were microfabricated according to the method previously described by McDonald et al. (2000) using the Sylgard® 184 Silicone Elastomer Kit as a precursor material for polydimethylsiloxane (PDMS).
  • the geometrical design of the main channel and herringbone-like units ( Figure 1) of the microdevice were designed separately in AutoCAD software. After photolithography, the mask layouts were exposed to photo-plotting with a resolution of 8000 dpi, and the UV exposures were made in an aligned MJB-3 UV300 contact mask (Karl-Suss, Garching, Germany).
  • the channel units in ⁇ ' and fishbone being two layers of PDMS, were irreversibly sealed using the O2 plasma surface activation technique (Plasma Technology PLAB SE80, plasma cleaner, Wrington, England).
  • O2 plasma surface activation technique Pullasma Technology PLAB SE80, plasma cleaner, Wrington, England.
  • the surface of the layer containing the main channel was kept in KOH solution for 10 seconds to increase the sealing efficiency of the PDMS layers and then washed with ethanol to remove the unbound KOH solution.
  • Both 2-port and 3-port CA-MD have 40 herringbone-like subunits.
  • D-MD diffusion-based microfluidic device
  • the PDMS channels and the glass were irreversibly sealed by oxidizing the surfaces using an oxygen plasma cleaner (Plasma Technology PLAB SE80 plasma cleaner, Wrington, England). All D-MD channels had a rectangular cross section with a depth of 100 pm and a width of 140 pm.
  • the tested configurations of the CA-MD with 3 inlets were as follows: (1) phospholipid solution through the central inlet, aqueous solutions from the two side inlets with the relationship between the sum of the lateral flows by the central flow (Flow rate ratio) - FRR of 10; (2) phospholipid solution through the central inlet, aqueous solutions in the two side inlets with FRR of 1; (3) lipid solution at a side entrance, aqueous solutions at the central entrance and another at the lateral entrance ( Figure 2C and 2D).
  • the total flow rate (TFRs, total flow rates) varied between 100 and 1500 pL / min for each flow configuration using the CA-MD with 2 and 3 inputs.
  • the FRR flow rate ratio is defined as the ratio between the sum of the lateral flows and the central flow
  • TFR Total Flow Rate
  • pL total flow volume
  • the average hydrodynamic size weighted by the intensity and the polydispersity index (Pdl) of the LCs were measured using dynamic light scattering (Zetasizer NanoZS, Malvern, UK).
  • the backscatter measurement configuration was used, where the detection was performed at a scattering angle of 173 °.
  • the He / Ne laser wavelength and the power of the energy source for the analysis of the lipid particles were 633 nm and 4.0 mW, respectively. All samples were diluted before measurement.
  • the zeta potential was determined using the Laser Doppler Anemometry technique. The measurement was performed in triplicate in water at 25 ° C (Zetasizer NanoZS, Malvern, United Kingdom).
  • the typical range of Q values was between 0.20 nm -1 and 5.0 nm -1 .
  • PC-3 Caucasian prostate adenocarcinoma cells
  • RPMI medium supplemented by 10% fetal bovine serum and 1% penicillin and streptomycin
  • the cells were divided using trypsin / PBS every 2 or 3 days.
  • the transfection assay was performed on PC3 cells using the plasmid pEGFP-N1 (BD Biosciences Clontech, Paio Alto, USA) (4.7 kbp).
  • the plasmid was amplified in Escherichia coli and purified using the PureLink TM HiPure Plasmid pDNA Purification-Maxiprep K2100-07 Kit (Invitrogen, Carlsbad, CA, United States) following the manufacturer's instructions. The quality and quantity of pDNA were spectrophotometrically measured with an ND-1000 NanoDrop UV-vis spectrophotometer (PeqLab, Er Weg, Germany). For transfection experiments, 105 cells / well were added to a 12-well plate and allowed to adhere overnight. The next day, the cells were washed once with PBS and incubated with LC or LC Stealth type lipoplexes for 4 hours. After 4h, the medium was replaced with complete RPMI medium, and the cells were kept in the incubator for 24h. Then, the cells were washed with PBS, trypsinized and analyzed on the FACScalibur cytometer (BD, USA).
  • a critical issue associated with the production of LC of the Stealth type is the uncontrollable formation of micelles (Hu et al., 2012), since the PEG polymer has been used to form micelle particles for drug delivery applications ( Danafar et al. 2017).
  • the formation of the micelle (10 -3 - 10 -6 s) occurs faster than the formation of the phospholipid bilayer (10 _1 - 10 -3 s ) (Evans and Wennerstr ⁇ m, 1999).
  • the diffusion processes employed in microfluidic systems for the production of LCs of the Stealth type are not considered efficient due to the possible formation of micelles and the consequent accumulation of aggregates along the channel, resulting in unfavorable physical-chemical properties.
  • a crucial parameter for synthesis of Stealth type LC is to incorporate the maximum amount of PEG into the phospholipid bilayer (lamellar phase) before PEG is converted in micelles (micellar phase).
  • the main reason behind this phase transition has been shown to be the polymorphic property of phospholipids, which is the property of amphiphilic molecules that form aggregates of lipids under different conditions, such as water content, temperature and pH (Hristova et al. 1995 ).
  • the average diameter, Pdl and zeta potential of conventional LCs were 200 ⁇ 14 nm, 0.120 ⁇ 0.008 and 61.3 ⁇ 2.7 mV, respectively.
  • the CLs produced by CA-MD were approximately 50 nm larger in size and 6 mV higher in zeta potential, while Pdl showed no significant difference.
  • the average diameter and zeta potential of conventional LCs in FRR 1 increased significantly (from ⁇ 110 nm to ⁇ 200 nm and ⁇ 44 mV to 61 mV, respectively ). The most promising improvement was seen in Pdl.
  • the zeta potential of Stealth-type LCs was relatively less than the zeta potential of conventional LCs produced in the same FRR and TFR. This behavior suggests the adequate formation of liposomes, and in the case of LC of the Stealth type, the DSPE-PEG conjugate (2000) was properly inserted into the structure of the liposome bilayer without any formation of micelles. Another interesting change was observed in the average diameter. Stealth-type LCs were approximately 30 nm smaller than the conventional ones, which can be caused by the insertion of PEG. Then, the TFRs were varied between 120.12 and 1250 pL / min; however, there was no significant change in the physicochemical properties of conventional and Stealth type LCs.
  • the formation of nanoparticles is the result of the nanoprecipitation process, which occurs in contact between the two solvent streams and the aqueous phase.
  • the formation is mainly caused by the change in polarity due to the mixture caused by the geochannel of the microchannel, which includes the micropiscinas of the CA-MD.
  • the surface area of the interface between the solvent and the aqueous phases increases significantly as the fluids are bent over each other, resulting in a chaotic mixture.
  • the polarity can be easily increased along the microchannel, due to the intrinsic process of mixing ethanol and water, favoring the formation of liposomes.
  • the final lipid concentration of the LCs produced in the CA-MD (3 entries) in FRR 10 and FRR 1 was 2.27 and 12.5 mM, respectively.
  • the increase in the concentration of phospholipids in the microfluidic system is another critical factor that can influence the adequate formation of liposomes in FRR 1.
  • D-MD diffusion-based microfluidic production
  • this increase can impair the diffusion effectiveness, as it can interfere in the formation of several bilayer fragments and, consequently, form larger and polydispersed lipid vesicles.
  • this increase did not negatively affect the formation of liposomes.
  • the low FRR increases W f at the entrance of the main channel (before chaotic advection begins), minimizing the contact between ethanol and the aqueous phase. Then, the chaotic advection mixture starts and the high percentage of ethanol can probably control the formation of the fragment of the bilayers, due to changes in polarity, favoring the formation of liposomes with adequate characteristics. However, the concentration of ethanol must be maintained up to a certain value, since the excessive amount of solvent can be incorporated into the bilayers of the vesicles and thus simply break them.
  • the device microfluidic based on chaotic advection was adapted to the same process conditions to generate the CA-MD with 2 inputs.
  • the solvent: water ratio was kept identical to that obtained previously in 1: 1.
  • different TFRs ranging from 100 to 1250 pL / min were tested.
  • the particle size analysis by DLS showed results similar to those obtained with 3-input CA-MD, with the same FRR 1.
  • the experiment was carried out using the CA-MD (3 entries) with FRR 10, and the results were similar to the LCs and LCs of the Stealth type with 1% DSPE-PEG).
  • the results of the size distribution (DLS) showed different peaks below 10 nm, possibly belonging to micelle-like structures.
  • the FR-10 was reduced from 10 to 1 on the CA-MD (3 entries)
  • the size results again, were significantly improved.
  • the mean size, Pdl and zeta potential of the SStealth type LCs (5% PEG) were 145.1 ⁇ 1.5 nm, 0.11 ⁇ 0.01 and 61.0 ⁇ 1.8 mV, respectively.
  • Statistical analysis showed no significant difference between LCs of the Stealth type produced in the same system with 1% PEG.
  • LCs of the Stealth type had an average size of 144 ⁇ 3 nm, Pdl of 0.12 ⁇ 0.01 and zeta potential of 51.4 + 4.4 mV. Comparing with the CA-MD (3 inputs) in FRR 1, the size and the Pdl have not changed; however, a significant decrease in zeta potential was observed after the insertion of 5% PEG.
  • the surface charge densities of conventional and Stealth LCs were 61.3 ⁇ 2.7 mV and 62 ⁇ 1 mM, respectively. With the inclusion of 5% of DSPE-PEG conjugates (2000), the surface charge density decreased to 51.4 ⁇ 4.4 mV. This result shows that the increase in the amount of DSPE-PEG (2000) used to produce LCs of the Stealth type resulted in the incorporation of these molecules on the outer surface.
  • DOTAP is the only phospholipid that provides cationic properties to LCs. Therefore, the 5% reduction in the concentration of DOTAP replaced by the DSPE-PEG conjugates (2000) should also decrease the surface charge density of the LCs, and with the proper insertion of PEG on the surface, the zeta potential total must have decreased further. However, the potential unexpectedly increased.
  • the final percentage of ethanol present in the LC formulation was 50% in CA-MD (3 entries, FRR 1) and CA-MD (2 entries), which is considered a significant limitation for future biological applications.
  • the removal of ethanol from the final lipid solution is conducted by the dialysis process.
  • dialysis is a lengthy process (depending on the final volume of the solution, it can be up to days) and the work required to perform it successfully.
  • Ethanol-type solvents are normally removed from the final solution via dialysis.
  • dialysis is not a viable process, as it requires a high volume of dialysis solution, as well as qualified researchers.
  • Table 1 Comparison of the physical and chemical properties of liposomes before and after ethanol removal via vacuum centrifuge concentrator. Conventional LCs and Stealth LCs (1% DSPE-PEG (2000)) were obtained on CA-MD, FRR 1 with 2 inputs.
  • Ethanol removal time and rate are essential factors that affect the evaporation rate of ethanol. As mentioned earlier, evaporation of ethanol occurs more quickly than that of water. Previous research (Balbino et al. 2013) has shown that a certain amount of ethanol residue (about 8%) in the final LC solution, and after our biological studies, there was no decrease in the transfection efficiency tested with the final formulation with a content of ethanol. Furthermore, the LC formulation did not show significant cytotoxicity to cells. As we continue to use the vacuum centrifuge concentrator, the LC solution begins to lose a significant amount of water and becomes more concentrated, which alters the properties of the liposomes.
  • SAXS X-ray scattering analysis at low angles
  • SAXS is used to study the structure of a variety of biological materials. It provides information about the shape, size and organization of colloids, liquid crystals, polymers and many other structures. Since liposomes are spherical vesicles that consist of phospholipid bilayers with amphiphilic properties, their arrangement in the presence of aqueous solution is important to form liposomes with a well-defined structure. This arrangement can vary significantly depending on the method of manufacture, as well as the type of phospholipids used in the formulation. The characterization of SAXS allows access, through modeling, to the electronic density through the membrane, providing information about the bilayer profile and lamellarity, among other structural parameters. The final structure of the liposome / DNA complexes will affect cell internalization and, consequently, the efficiency of transfection.
  • FIG. 6A shows SAXS curves for LCs with and without PEGylated lipids produced in CA-MD microdevices with 2 and 3 inputs (2 different flow configurations) ". From fitted curves (not shown) using a model described in another study [Balbino et al. 2012 and Balbino et al.
  • Liposomal lamellarity (uni- or multi-) is of great importance in the efficiency of delivery of genetic material. In most applications, the unilamellar structure of LCs is highly recommended and has proved to be more efficient for delivering genetic material. Techniques such as DLS and SAXS can provide crucial information about this property of LCs through mathematical modeling. However, morphological analysis can provide additional information about the uni- or multilamellar characteristic of the produced liposomes. For this reason, the electron microscopy technique (Cryo-TEM) was used to characterize LCs and Stealth LCs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present certificate of addition describes a process for obtaining stealth liposomes in a microfluidic system, with high yield, based on chaotic advection without the formation of micelles, to which end the liposomes are generated in said step using 50% of a water-soluble organic solvent (such as ethanol). At the end of this process, the organic solvent remaining in the final formulation of the liposomes obtained is recovered using a vacuum centrifugal concentrator or distillation concentrator to remove same or reduce the amount thereof, without significantly altering the physical-chemical properties of the liposome structures.

Description

PROCESSO MICROFLUÍDICO DE OBTENÇÃO DE LIPOSSOMAS STEALTH MICROFLUID PROCESS OF OBTAINING STEALTH LIPOSOMES
CATIÔNICOS CATHONICS
Campo da. invenção: Field of. invention:
[1] O presente pedido é um certificado de adição do pedido de patente BR 10 2017 025862 9, depositado em 30 de novembro de 2017 e intitulado "Processo microfluidico de obtenção de lipossomas stealth catiônicos, lipossomas stealth catiônicos obtidos e seu uso". [1] The present application is a certificate of addition to the patent application BR 10 2017 025862 9, filed on November 30, 2017 and entitled "Microfluidic process for obtaining cationic stealth liposomes, obtained cationic stealth liposomes and their use".
[2] Este certificado de adição se insere no campo das ciências médicas, mais especificamente no que se refere às preparações medicinais caracterizadas por formas físicas especiais, e descreve um processo de obtenção de lipossomas Stealth em sistema microfluidico utilizando solvente orgânico miscível em água com alto rendimento baseado em advecção caótica sem que ocorra a formação de micelas . Por utilizar um elevado teor de etanol (50%) quando comparado a BR 10 2017 025862 9 e dispensar o uso de sal (força iônica) , o presente certificado de adição evita possíveis desnaturações de moléculas sensíveis que podem vir a ser associadas aos lipossomas (por ex. ; proteínas), não limitando, portanto, suas aplicações. [2] This certificate of addition falls within the field of medical sciences, more specifically with regard to medicinal preparations characterized by special physical forms, and describes a process of obtaining Stealth liposomes in a microfluidic system using a water-miscible organic solvent with high yield based on chaotic advection without the formation of micelles. By using a high ethanol content (50%) when compared to BR 10 2017 025862 9 and dispensing with the use of salt (ionic strength), this certificate of addition avoids possible denaturation of sensitive molecules that may be associated with liposomes ( eg proteins), thus not limiting its applications.
[3] Ao final deste processo, os solventes orgânicos solúveis em água (como o etanol) , que estão em concentração equivalente a da fase aquosa e são remanescentes na formulação final dos lipossomas obtidos, é recuperado pelo uso de um concentrador de centrífuga a vácuo para remoção ou diminuição do mesmo, sem alterar significativamente as propriedades físico químicas das estruturas lipossomais.
Figure imgf000003_0001
[3] At the end of this process, water-soluble organic solvents (such as ethanol), which are in a concentration equivalent to that of the aqueous phase and remain in the final formulation of the obtained liposomes, are recovered by using a vacuum centrifuge concentrator. to remove or decrease it, without significantly altering the physical and chemical properties of liposomal structures.
Figure imgf000003_0001
[4] A terapia gênica é uma estratégia terapêutica que atua a partir da introdução de material genético nas células- alvo, visando correção ou inativação dos genes responsáveis por uma patologia. Entretanto, devido ao tamanho, caráter aniônico e instabilidade química do material genético frente aos fluidos celulares, sua interiorização no núcleo celular (transfecção) é dificultada. [4] Gene therapy is a therapeutic strategy that it acts from the introduction of genetic material in the target cells, aiming at correction or inactivation of the genes responsible for a pathology. However, due to the size, anionic character and chemical instability of the genetic material in the face of cellular fluids, its interiorization in the cell nucleus (transfection) is difficult.
[5] A fim de aumentar a taxa de transfecção in vitro e in vivo, diversos sistemas de entrega controlada de ácidos nucleicos têm sido estudados. Dentre estes, destacam-se os lipossomas catiônicos, cujas estruturas são aproximadamente esféricas e formadas a partir da auto-agregação de lipídeos anfifílicos em lamelas. Pelo fato de as lamelas mimetizarem membranas celulares, os lipossomas possuem várias características biológicas, que incluem interações com biomembranas e com diversas células, facilitando a internalização e entrega de fármacos e ácidos nucleicos. Devido ao seu caráter catiônico, esses lipossomas podem interagir eletrostaticamente com material genético (carregado negativamente) , formando lipoplexos que apresentam aptidão para adentrar as células, em consequência da interação eletrostática dos lipoplexos com a membrana celular aniônica. [5] In order to increase the rate of transfection in vitro and in vivo, several controlled delivery systems for nucleic acids have been studied. Among these, cationic liposomes stand out, whose structures are approximately spherical and formed from the self-aggregation of amphiphilic lipids in lamellae. Because the lamellae mimic cell membranes, liposomes have several biological characteristics, which include interactions with biomembranes and several cells, facilitating the internalization and delivery of drugs and nucleic acids. Due to their cationic character, these liposomes can interact electrostatically with genetic material (negatively charged), forming lipoplexes that have the ability to enter cells, as a result of the electrostatic interaction of lipoplexes with the anionic cell membrane.
[6] Além do caráter catiônico, os lipossomas em questão apresentam boa compatibilidade e facilidade de modificação química de sua superfície, o que permite a produção de lipossomas ligados covalentemente a moléculas de polietilenoglicol (PEG) . [6] In addition to the cationic character, the liposomes in question have good compatibility and ease of chemical modification of their surface, which allows the production of liposomes covalently linked to polyethylene glycol (PEG) molecules.
[7] Essa nova geração de lipossomas é conhecida como S tealth e responsabilizam-se por aumentar significativamente o tempo de circulação desses nanocarreadores nos fluidos corporais, devido à formação de uma barreira protetora promovida por cadeias de PEG em sua superfície. Em vista disso, a otimização de processos para a produção desses nanocarreadores estabilizados com PEG se faz necessário. [7] This new generation of liposomes is known as S tealth and is responsible for significantly increasing the circulation time of these nanocarriers in fluids due to the formation of a protective barrier promoted by PEG chains on its surface. In view of this, the optimization of processes for the production of these nanocarriers stabilized with PEG is necessary.
[8] Nesse contexto, a microfluídica emerge como uma técnica vantajosa para a produção de lipossomas de alto valor agregado, trabalhando com sistemas que processam pequenas quantidades de fluidos (IO-9 a IO-18 litros) , usando canais com dimensões de até centenas de micrômetros. Recentes avanços nesta ciência criaram novas perspectivas para a área de sistemas de entrega gênica ( gene delivery) . [8] In this context, microfluidics emerges as an advantageous technique for the production of high added value liposomes, working with systems that process small amounts of fluids (IO -9 to IO -18 liters), using channels with dimensions up to hundreds of micrometers. Recent advances in this science have created new perspectives for the area of gene delivery systems (gene delivery).
[9] A formação de lipossomas nesses processos microfluídicos ocorre pela auto-agregação das moléculas de lipídeo através do contato de dois fluidos solúveis entre si, um aquoso e outro orgânico (podendo ser alcoólico) e miscível em água (contendo os lipídeos) . Conforme a difusão entre as espécies ocorre, os lipídeos se tornam cada vez menos solúveis no meio aquoso e começam a se autoagregar, formando fragmentos de bicamadas lipídicas. [9] The formation of liposomes in these microfluidic processes occurs by the self-aggregation of the lipid molecules through the contact of two soluble fluids with each other, one aqueous and the other organic (which may be alcoholic) and miscible in water (containing the lipids). As diffusion between species occurs, lipids become less and less soluble in the aqueous medium and begin to self-aggregate, forming fragments of lipid bilayers.
[10] À medida que esses fragmentos de bicamadas lipídicas crescem, eles se unem a fim de diminuir a área superficial das extremidades hidrofóbicas, por fim agregando-se em vesículas esféricas com uma bicamada que separa um meio aquoso do meio externo. [10] As these lipid bilayer fragments grow, they come together in order to decrease the surface area of the hydrophobic ends, ultimately aggregating into spherical vesicles with a bilayer that separates an aqueous medium from the external medium.
[11] Todavia, são conhecidos no estado da técnica diversos problemas técnicos envolvidos em processos de obtenção de lipossomas Stealth utilizando dispositivos microfluídicos, tal como a formação indesejável de filmes lipídicos e micelas sobre a superfície do referido dispositivo, acarretando limitações no controle dos parâmetros finais de processamento. [11] However, several technical problems are known in the state of the art involved in processes of obtaining Stealth liposomes using microfluidic devices, such as the undesirable formation of lipid films and micelles on the surface of said device, causing limitations in the control of final processing parameters.
[12] O documento WO 2017/106799 Al descreve um processo de obtenção de Lipidoids (agregados que possuem além de lipídeos, moléculas sintéticas para estruturação em membrana) para a entrega de mRNA, o qual faz uso de misturadores microfluídicos para a realização da advecção caótica. Dentre os fosfolipídeos passíveis de uso nesta invenção, são citados o EPC, o DOTAP e o DOPE, bem como o polímero PEG associado ao lipídeo DSPE. [12] The document WO 2017/106799 Al describes a process for obtaining Lipidoids (aggregates that have, in addition to lipids, synthetic molecules for structuring in membrane) for the delivery of mRNA, which makes use of microfluidic mixers to perform advection chaotic. Among the phospholipids that can be used in this invention, mention is made of EPC, DOTAP and DOPE, as well as the PEG polymer associated with the lipid DSPE.
[13] No entanto, o processo proposto neste documento não forma lipossomas e nem lipossomas Stealth, e tão pouco menciona a recuperação do solvente. Diferentemente, de acordo com o presente certificado de adição, o solvente orgânico é totalmente removido por destilação, permitindo que os lipossomas unilamelares obtidos sejam misturados com quaisquer outras soluções para usos diversos, especialmente para fins farmacêuticos. Além disso, este processo propõe a utilização de moléculas sintéticas com estrutura diferente dos lipídeos normalmente utilizados para a construção de lipossomas . [13] However, the process proposed in this document does not form liposomes or Stealth liposomes, nor does it mention solvent recovery. In contrast, according to this certificate of addition, the organic solvent is completely removed by distillation, allowing the unilamellar liposomes obtained to be mixed with any other solutions for various uses, especially for pharmaceutical purposes. In addition, this process proposes the use of synthetic molecules with a different structure from the lipids normally used for the construction of liposomes.
[14] No documento US 2018/0028664 Al, são descritas composições lipídicas para a liberação de substâncias ativas in vivo. Esse documento visa a formação de Nanopartículas lipídicas (Lipid Nanoparticles ) , as quais podem compreender fosfolipídeos, tais como o DOPE, e lipídeos modificados, tais como o DSPE-PEG. Estas nanopartículas lipídicas são obtidas por microfluidização, tal como por advecção caótica, em que o solvente utilizado é recuperado por diálise. Nesse caso, a formação dessas nanopartículas se dá pela mistura simultâncea dos lipídeos e os componentes a serem encapsulados, no caso mRNA, para a formação da nanopartícula . Não se garante nessa situação, a formação de lipossomas ou lipossomas Stealth. [14] In US 2018/0028664 Al, lipid compositions for the release of active substances in vivo are described. This document aims at the formation of Lipid Nanoparticles (Lipid Nanoparticles), which can comprise phospholipids, such as DOPE, and modified lipids, such as DSPE-PEG. These lipid nanoparticles are obtained by microfluidization, such as chaotic advection, in which the solvent used is recovered by dialysis. In this case, the formation of these nanoparticles occurs through the simultaneous mixing of the lipids and the components to be encapsulated, in the mRNA case, for the formation of the nanoparticle. In this situation, the formation of liposomes or Stealth liposomes is not guaranteed.
[15] Diferentemente, o presente certificado de adição prevê a obtenção de lipossomas Stealth (cuja estrutura difere das nanoparticulas lipidicas) , em que o solvente é recuperado após a advecção caótica por destilação a vácuo. [15] In contrast, the present certificate of addition provides for obtaining Stealth liposomes (whose structure differs from lipid nanoparticles), in which the solvent is recovered after chaotic advection by vacuum distillation.
[16] Em US 2010/0022680 Al, faz-se referência a métodos para a produção de nanoparticulas, tais como lipossomas, para a liberação de fármacos. Dentre os referidos métodos, destaca-se o uso de dispositivos microfluidicos , sendo a remoção dos solventes realizada por evaporação usando vácuo. [16] In US 2010/0022680 Al, reference is made to methods for the production of nanoparticles, such as liposomes, for the release of drugs. Among these methods, the use of microfluidic devices stands out, with the removal of solvents carried out by evaporation using vacuum.
[17] Neste documento, não há referências ou evidências cientificas de que a destilação ou concentração a vácuo mantém as propriedades dos lipossomas, tal como previsto no presente certificado de adição. [17] In this document, there are no references or scientific evidence that vacuum distillation or concentration maintains the properties of liposomes, as provided for in this certificate of addition.
[18] Por sua vez, o artigo "Microfluidic manufacturing of phospholipid nanoparticles : stability, encapsulation efficacy and drug release" também faz referência a preparação de lipossomas que compreendem fosfolipideos usando métodos microfluidicos, tal como, por exemplo, utilizando micro misturador em baixo perfil caótico. [18] In turn, the article "Microfluidic manufacturing of phospholipid nanoparticles: stability, encapsulation efficacy and drug release" also refers to the preparation of liposomes that comprise phospholipids using microfluidic methods, such as, for example, using a low profile micro mixer chaotic.
[19] Diferentemente do presente certificado de adição, a análise das caracteristica fisico-quimica, morfológica e estrutural destes lipossomas não menciona se os mesmos são unilamelares . Ainda, o processo apresenta uma etapa de diálise para remoção do fármaco não encapsulado, não sendo mencionado como o produto obtido é purificado. [19] Unlike the present certificate of addition, the analysis of the physical-chemical, morphological and structural characteristics of these liposomes does not mention whether they are unilamellar. In addition, the process has a dialysis step to remove the non-encapsulated drug, without mentioning how the product obtained is purified.
[20] Por fim, o artigo intitulado "High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization", publicado por Kastner et al. (2015), refere-se à investigação da produção de LC convencional, utilizando fosfolipideos 1, 2-dioleoil-sn-glicero-3- fosfatidiletanolamina (DOPE) e 1 , 2-dioleil-3- trimetilamônio propano (DOTAP) em dispositivo microfluidico chamado "Staggered Herringbone Micromixer" com 2 entradas (neste caso, um dispositivo microfluidico baseado em advecção caótica) que foi fornecido pela empresa "Precision NanoSystem Inc." No referido artigo os autores analisaram o efeito da razão de taxa de fluxo de etanol e água introduzidos dentro do microcanal, em que foram avaliadas as seguintes razões de taxa de fluxo a) 1 etanol :1 água; b) 1 etanol: 3 água; c) 1 etanol: 5 água. Porém, os autores do artigo caracterizaram os LCs somente por meio da técnica de Espalhamento Dinâmico de Luz (Dynamic Light. Scattering, DLS) , sendo que as distribuições de tamanho não foram demonstradas neste estudo. Adicionalmente, os autores afirmaram que produziram LC utilizando a composição DOPE- DOTAP; o que contraria o conhecimento da literatura {An Inverted Hexagonal Phase of Cationic Liposome-DNA Complexes Related to DNA Release and Delivery, Koltover, 1998), o qual esclarece que a formulação contendo DOTAP/DOPE na proporção 1:1 não fornece somente a formação exclusiva de bicamadas lipidicas, mas sim a coexistência das fases lamelar (La) (formando lipossomas) e hexagonal inversa (HII) (outra estrutura diferente de lipossomas) . Com isso, estruturas instáveis e diferentes são formadas. Em termos de aplicação na área farmacêutica, esta variação leva a interação diferenciada nas células causando grande variação. A inclusão de EPC (50% molar) permite a formação exclusiva de bicamadas lipidicas caracterizando a formação de liposomas, conforme já comprovado por Balbino et al. (2012). Assim, embora Kastner et al. (2015), que usa DOPE/DOTAP, citar que forma lipossomas, não há evidências estruturais que suportam a formação exclusiva de lipossomas. [20] Finally, the article entitled "High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization ", published by Kastner et al. (2015), refers to the investigation of conventional LC production, using phospholipids 1, 2-dioleoil-sn-glycero-3 phosphatidylethanolamine (DOPE) and 1 , 2-dioleyl-3-trimethylammonium propane (DOTAP) in a microfluidic device called "Staggered Herringbone Micromixer" with 2 inputs (in this case, a microfluidic device based on chaotic advection) which was supplied by the company "Precision NanoSystem Inc." In the referred article the authors analyzed the effect of the flow rate ratio of ethanol and water introduced into the microchannel, in which the following flow rate ratios were evaluated a) 1 ethanol: 1 water; b) 1 ethanol: 3 water; c) 1 ethanol: 5 water, however, the authors of the article characterized LCs only using the Dynamic Light Scattering technique (Dynamic Light. Scattering, DLS), and the size distributions were not demonstrated in this study. res stated that they produced LC using the DOPE-DOTAP composition; which contradicts the knowledge of the literature {An Inverted Hexagonal Phase of Cationic Liposome-DNA Complexes Related to DNA Release and Delivery, Koltover, 1998), which clarifies that the formulation containing DOTAP / DOPE in the proportion 1: 1 does not provide only the formation exclusive of lipid bilayers, but the coexistence of the lamellar (La) (forming liposomes) and inverse hexagonal (HII) phases (another structure other than liposomes). With this, unstable and different structures are formed. In terms of application in the pharmaceutical area, this variation leads to differentiated interaction in the cells causing great variation. THE inclusion of EPC (50 mol%) allows the exclusive formation of lipid bilayers characterizing the formation of liposomes, as already proven by Balbino et al. (2012). Thus, although Kastner et al. (2015), who uses DOPE / DOTAP, cite what forms liposomes, there is no structural evidence to support the exclusive formation of liposomes.
[21] Diferentemente do artigo de 2015, o presente certificado de adição de invenção refere-se a um processo aperfeiçoado de produção de lipossomas S tealth catiônico sem a presença de hexagonal inversa (HII) , em que o dito processo se utiliza do fosfolipideo "fosfatidilcolina de ovo (EPC) " e do lipídeo DSPE-PEG (2000) associados à formulação DOTAP/DOPE, além de um dispositivo com configuração distinta . [21] Unlike the 2015 article, the present certificate of addition of invention refers to an improved process of production of cationic S tealth liposomes without the presence of inverse hexagonal (HII), in which said process uses the phospholipid " egg phosphatidylcholine (EPC) "and the lipid DSPE-PEG (2000) associated with the DOTAP / DOPE formulation, in addition to a device with a different configuration.
[22] Portanto, nenhum documento do estado da técnica descreve um processo microfluídico de obtenção de lipossomas S tealth, envolvendo alta quantidade de etanol e sua posterior remoção via destilação tal como ora proposto no presente certificado de adição. [22] Therefore, no state-of-the-art document describes a microfluidic process for obtaining S tealth liposomes, involving a high amount of ethanol and its subsequent removal via distillation as now proposed in this certificate of addition.
[23] É importante ressaltar que não existe na literatura investigação de LC do tipo Stealth em sistema microfluídico baseado em advecção caótica. As publicações e patentes geralmente focam a formação de "lipid nanoparticles" que é a síntese conjunta de estruturas com ácidos nucleicos, destinada para terapia gênica. Nestes estudos, até incluem os lipídeos com PEG, mas não há como comparar com a formação de lipossomas. Somado a isto, tem- se um gargalo tecnológico associado à produção de LC do tipo Stealth, cujo problema técnico a ser superado é a formação simultânea de micelas e lamelas, uma vez que o DSPE-PEG pode ser usado para produzir sistema micelar (Wu et al. 2013) . Em solução aquosa, durante o processo de difusão entre o DSPE- PEG e outros fosfolipidios (EPC/DOTAP/DOPE) , os tempos de formação de micelas (IO-3 a IO-6 segundos) e de formação de bicamada fosfolipidica (10-1 a 10-3 segundos) são diferentes (Evans and Wennerstrõm, 1999) . Como o tempo para a formação de micelas é menor, é favorecida a geração de micelas. Os processos de difusão empregados em sistemas microfluidicos para produção de LC do tipo Stealth não são muito eficientes devido à formação de nanoparticulas semelhantes às micelas e possível acúmulo dessas partículas ao longo dos canais, resultando em propriedades físico-químicas desfavoráveis. Outro parâmetro crucial em síntese de LC do tipo Stealth é incorporar a quantidade máxima de PEG na bicamada fosfolipídica antes que o PEG seja convertido em micelas, assim evitando a fase micelar e promovendo a fase lamelar para produzir LC com inserção adequada do lipídeo-PEG. Diversos fatores influenciam a transição de fase (da fase lamelar para a fase micelar) dos conjugados fosfolipídeos- PEG. Foi demonstrado que a principal razão por trás dessa transição de fase é a propriedade polimórfica dos fosfolipídios, que é a propriedade de moléculas anfifílicas que formam agregados de lipídios sob diferentes condições, tais como teor de água, solução orgânica temperatura e pH (Hristova et al. 1995). Entre outros, teor de água e teor de etanol (como solução orgânica) introduzidos no sistema tem uma influência significativa na formação de LC do tipo Stealth. Por este motivo, a investigação da relação entre os fluxos (Flow Rate Ratio - FRR, que é a razão entre a soma das vazões laterais pela vazão central) é muito importante e foi considerado para a solução proposta no presente certificado de adição de invenção. [23] It is important to note that there is no investigation in the literature of LC of the Stealth type in microfluidic system based on chaotic advection. Publications and patents generally focus on the formation of "lipid nanoparticles", which is the joint synthesis of structures with nucleic acids, intended for gene therapy. In these studies, they even include lipids with PEG, but there is no comparison with the formation of liposomes. In addition, there is a technological bottleneck associated with the production of LC of the Stealth type, whose technical problem to be overcome is the simultaneous formation of micelles and lamellae, since the DSPE-PEG can be used to produce micellar system (Wu et al. 2013). In aqueous solution, during the diffusion process between DSPE-PEG and other phospholipids (EPC / DOTAP / DOPE), the times of micelle formation (IO -3 to IO -6 seconds) and phospholipid bilayer formation (10 - 1 to 10 -3 seconds) are different (Evans and Wennerstrõm, 1999). As the time for the formation of micelles is shorter, the generation of micelles is favored. The diffusion processes used in microfluidic systems for the production of LC of the Stealth type are not very efficient due to the formation of nanoparticles similar to the micelles and possible accumulation of these particles along the channels, resulting in unfavorable physicochemical properties. Another crucial parameter in LC synthesis of the Stealth type is to incorporate the maximum amount of PEG into the phospholipid bilayer before PEG is converted into micelles, thus avoiding the micellar phase and promoting the lamellar phase to produce LC with adequate lipid-PEG insertion. Several factors influence the phase transition (from the lamellar to the micellar phase) of phospholipid-PEG conjugates. The main reason behind this phase transition has been shown to be the polymorphic property of phospholipids, which is the property of amphiphilic molecules that form aggregates of lipids under different conditions, such as water content, organic solution, temperature and pH (Hristova et al 1995). Among others, water content and ethanol content (as an organic solution) introduced into the system has a significant influence on the formation of LC of the Stealth type. For this reason, investigating the relationship between flows (Flow Rate Ratio - FRR, which is the ratio of the sum of lateral flows to the central flow) is very important and was considered for the solution proposed in the present invention addition certificate.
Breve descrição das figuras Brief description of the figures
[24] A Figura 1 apresenta um projeto geométrico de estruturas semelhantes a espinha de peixe de dispositivo microfluidico baseado em advecção caótica. [24] Figure 1 shows a geometric design of fishbone-like structures from a microfluidic device based on chaotic advection.
[25] A Figura 2 apresenta configurações de escoamento em dispositivos microfluidicos testados. (A) dispositivo microfluidico à base de difusão (D-MD) ; (B) dispositivo microfluidico baseado em advecção caótica com 3 entradas; (C) Dispositivo microfluidico baseado em advecção caótica com 2 entradas. Os dispositivos microfluidicos mostrados em B e C foram usados para a formação de CL com FRR (relação de vazões) variável (entre 1 e 10), enquanto o D-MD em (A) foi avaliado usando somente FRR 10. A TFR (total flow ratio) foi ajustada para 120,12 pL / min em D-MD, enquanto variou entre 100-1500 pL / min em outros dispositivos. [25] Figure 2 shows flow configurations in tested microfluidic devices. (A) diffusion-based microfluidic device (D-MD); (B) microfluidic device based on chaotic advection with 3 entrances; (C) Microfluidic device based on chaotic advection with 2 inputs. The microfluidic devices shown in B and C were used for the formation of CL with variable FRR (flow rate) (between 1 and 10), while the D-MD in (A) was evaluated using only FRR 10. The TFR (total flow ratio) was adjusted to 120.12 pL / min in D-MD, while it varied between 100-1500 pL / min in other devices.
[26] A Figura 3 mostra a aglomeração de partículas possivelmente causada pela presença de DSPE-PEG (2000) ao longo do canal central durante a produção LC do tipo Stealth em D-MD (A) ; A distribuição de tamanho por intensidade e por volume de LCs do tipo Stealth caracterizados por DLS (Dynamic Light Scattering) (B) ; Propriedades físico-químicas de LCs do tipo Stealth produzidos no mesmo dispositivo microfluidico (C) . Os fluxos centrais (10,92 pL / min) e laterais (54,6 pL / min cada entrada) são fosfolipídeos e PEG dispersos em etanol e solução aquosa, respectivamente . As linhas em cada distribuição de tamanho representam o perfil de três replicatas independentes. [26] Figure 3 shows the particle agglomeration possibly caused by the presence of DSPE-PEG (2000) along the central channel during LC production of the Stealth type in D-MD (A); The size distribution by intensity and volume of LCs of the Stealth type characterized by DLS (Dynamic Light Scattering) (B); Physico-chemical properties of LCs of the Stealth type produced in the same microfluidic device (C). The central flows (10.92 pL / min) and lateral flows (54.6 pL / min each entry) are phospholipids and PEG dispersed in ethanol and aqueous solution, respectively. The lines in each size distribution represent the profile of three independent replicates.
[27] A Figura 4 apresenta a produção de LC em dispositivo microfluidico baseado em advecção caótica. A primeira imagem foi obtida durante as primeiras unidades semelhantes a espinha de peixe do dispositivo, enquanto a segunda e terceira imagens são tiradas no meio do dispositivo. A primeira e segunda imagens foram tiradas em magnitudede 4X e a terceira imagem é tirada em 10X. As setas mostram a direção do fluxo. As imagens foram transformadas de objetos 2D em 3D com programa de computador para facilitar a visualização. [27] Figure 4 shows the production of LC in microfluidic device based on chaotic advection. The first image was taken during the device's first herringbone-like units, while the second and third images are taken in the middle of the device. The first and second images were taken at 4X magnitude and the third image is taken at 10X. The arrows show the direction of the flow. The images were transformed from 2D objects into 3D with a computer program to facilitate visualization.
[28] A Figura 5 mostra a distribuição de tamanho baseado em intensidade e volume de LCs convencionais e do tipo Stealth produzidos no CA-MD com 3 entradas em FRR 1 e TFR 500 pL / min. As linhas em cada distribuição de tamanho representam o perfil de três replicatas independentes. [28] Figure 5 shows the size distribution based on intensity and volume of conventional and Stealth LCs produced in CA-MD with 3 entries in FRR 1 and TFR 500 pL / min. The lines in each size distribution represent the profile of three independent replicates.
[29] A Figura 6 mostra a intensidade de espalhamento de raios X a baixos ângulos de lipossomas catiônicos convencionais e do tipo Stealth produzidos por CA-MD com 2 e 3 entradas com vazão total de 500 pL/min. A: Medida realizada antes da remoção do etanol; B: Após a remoção do etanol . [29] Figure 6 shows the scattering intensity of X-rays at low angles of conventional and Stealth-type cationic liposomes produced by CA-MD with 2 and 3 inputs with a total flow rate of 500 pL / min. A: Measure taken before ethanol removal; B: After removing ethanol.
[30] A Figura 7 mostra imagens morfológicas de LCs convencionais e do tipo Stealth obtidas de crio-microscopia eletrónica (Cryo-TEM) . [30] Figure 7 shows morphological images of conventional and Stealth-type LCs obtained from electron cryo-microscopy (Cryo-TEM).
[31] A Figura 8 demonstra a eficiência da transfecção de LCs convencionais e do tipo Stealth em células PC3. A eficiência da transfecção de lipoplexos contendo eGFP pDNA foi medida pela percentagem de células (painel da esquerda) e a intensidade de fluorescência de GFP (painel da direita) . Os gráficos apresentam média e desvio padrão das amostras; n=9. (a) representa a diferença estatística (p < 0,05) entre a média da amostra e o a média de controle (CTRL) corrigida pelo teste de Dunnett; (c) representa a diferença estatística (p < 0,05) entre a média da amostra e lipossomas catiônicos que contém PEG (CL-PEG) corrigida pelo teste de Dunnett. [31] Figure 8 demonstrates the efficiency of transfection of conventional and Stealth type LCs into PC3 cells. The efficiency of transfection of lipoplexes containing eGFP pDNA was measured by the percentage of cells (left panel) and the fluorescence intensity of GFP (right panel). The graphs show the mean and standard deviation of the samples; n = 9. (a) represents the statistical difference (p <0.05) between the sample mean and the control mean (CTRL) corrected by Dunnett's test; (c) represents the statistical difference (p <0.05) between the sample mean and cationic liposomes containing PEG (CL-PEG) corrected by Dunnett's test.
Breve descrição da invenção: Brief description of the invention:
[32] A presente invenção refere-se a um processo de obtenção de lipossomas Stealth em sistema microfluídico com alto rendimento baseado em advecção caótica. [32] The present invention relates to a process of obtaining Stealth liposomes in a high performance microfluidic system based on chaotic advection.
[33] Os lipossomas Stealth são formados a partir dos fosfolipídeos fosfatidilcolina de ovo (EPC) , 1, 2-dioleil-3- trimetilamônio propano (DOTAP) e 1, 2-dioleoil-sn-glicero-3- fosfatidiletanolamina (DOPE), além do 1, 2-diestearil-sn- glicero-3-fosfoetanolamina associado ao polietilenoglicol (DSPE-PEG) em uma proporção molar de 50:25:24:1. [33] Stealth liposomes are formed from egg phosphatidylcholine (EPC), 1,2-dioleyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) phospholipids, in addition to 1,2-distearyl-sn-glycero-3-phosphoethanolamine associated with polyethylene glycol (DSPE-PEG) in a molar ratio of 50: 25: 24: 1.
[34] O dispositivo microfluídico usado foi fabricado pela técnica de litografia macia em polidimetilsiloxano (PD S) , em que empregaram-se duas correntes correspondentes à fase aquosa e a corrente contendo fosfolipídeos junto com DSPE-PEG (2000 ) dispersos em etanol. Devido à presença de microcanais repetitivos no dispositivo microfluídico, ocorre uma mistura eficiente para promover a formação dos lipossomas . [34] The microfluidic device used was manufactured using the soft polydimethylsiloxane (PD S) lithography technique, in which two streams corresponding to the aqueous phase and the stream containing phospholipids were used together with DSPE-PEG (2000) dispersed in ethanol. Due to the presence of repetitive microchannels in the microfluidic device, an efficient mixing occurs to promote the formation of liposomes.
[35] Ao final deste processo, os solventes orgânicos solúveis em água (como o etanol) , remanescente na formulação final dos lipossomas obtidos, é recuperado pelo uso de um concentrador de centrífuga a vácuo para remoção ou diminuição do teor do mesmo, sem alterar significativamente as propriedades físico químicas das estruturas lipossomais. [35] At the end of this process, the water-soluble organic solvents (such as ethanol), remaining in the final formulation of the obtained liposomes, are recovered by using a vacuum centrifuge concentrator to remove or decrease its content, without changing significantly the physical and chemical properties of liposomal structures.
[36] Assim, em um primeiro aspecto, o presente Certificado de Adição refere-se a um processo microfluídico de obtenção de lipossomas catiônicos e S tealth que compreende dispositivo microfluidico baseado em advecção caótica e as etapas de: [36] Thus, in a first aspect, this Certificate of Addition refers to a microfluidic process of obtaining cationic liposomes and S tealth that comprises microfluidic device based on chaotic advection and the steps of:
(i) inserção de 5 a 25 mM de fosfatidilcolina de ovo, (i) insertion of 5 to 25 mM of egg phosphatidylcholine,
1.2-dioleoil-sn-glicero-3-fosfatidiletanolamina (DOPE) ,1.2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE),
1.2-dioleil-3- trimetilamônio propano (DOTAP) e 1,2- diestearil-sn-glicero-3-fosfoetanolamina com polietilenoglicol (DSPE-PEG) na proporção que varia de 50:20:25:5% a 50:24:25:1% de EPC : DOPE : DOTAP : DSPE-PEG respectivamente, dispersos em 100 % de etanol anidro em um dispositivo microfluidico, a partir de uma vazão total de escoamento que varia de 120 pL min-1 a 1500 pL min-1, sendo que a dispersão resultante na saida do referido dispositivo microfluido compreende teor de etanol na faixa de 33,5 a 51%, preferencialmente 50%; 1.2-dioleyl-3-trimethylammonium propane (DOTAP) and 1,2-distearyl-sn-glycero-3-phosphoethanolamine with polyethylene glycol (DSPE-PEG) in the proportion ranging from 50: 20: 25: 5% to 50:24: 25: 1% EPC: DOPE: DOTAP: DSPE-PEG respectively, dispersed in 100% anhydrous ethanol in a microfluidic device, from a total flow rate ranging from 120 pL min -1 to 1500 pL min -1 , the resulting dispersion at the outlet of said microfluidic device comprising ethanol content in the range of 33.5 to 51%, preferably 50%;
(ii) meios para recuperação do solvente orgânico excedente e ajuste da concentração lipidica, em que os referidos meios compreendem destilação convencional ou destilação em larga escala, sendo que quando é realizada por esta última a remoção do solvente ocorre em um intervalo de processamento de 1 a 2 horas em concentrador de centrífuga a vácuo. (ii) means for recovering the excess organic solvent and adjusting the lipid concentration, in which the said means comprise conventional distillation or large-scale distillation, and when it is carried out by the latter the removal of the solvent occurs in a processing interval of 1 2 hours in a vacuum centrifuge concentrator.
[37] O referido dispositivo microfluidico compreende 2 (duas) ou 3 (três) entradas e é composto por duas bases de poli dimetil siloxano (PDMS) seladas com plasma de O2, em que uma base contém microcanais e a outra base contém piscinas, construídos pela técnica de litografia macia empregando fotorresiste SU-8, preferencialmente em bolacha de silício, em que as referidas piscinas possuem altura fixa ao longo dos referidos microcanais que causam advecção caótica . [37] The said microfluidic device comprises 2 (two) or 3 (three) entrances and consists of two bases of poly dimethyl siloxane (PDMS) sealed with O2 plasma, where one base contains microchannels and the other base contains pools, constructed by the soft lithography technique using SU-8 photoresist, preferably in silicon wafer, in which the referred pools have fixed height along said microchannels that cause advection chaotic.
[38] Na concretização do presente Certificado de Adição em que o dispositivo microfluídico compreende 2 (duas) entradas, a vazão total de cada entrada deve ser igual, resultando em vazões individuais de 60 a 1000 mΐ/min. [38] In the realization of this Certificate of Addition in which the microfluidic device comprises 2 (two) inlets, the total flow of each inlet must be equal, resulting in individual flows of 60 to 1000 mΐ / min.
[39] Na concretrização do presente Certificado de Adição em que o dispositivo microfluídico compreende 3 (três) entradas, o parâmetro de operação FRR ( flow rate ratio que consiste na razão da soma das vazões correntes laterais, aquosas, pela vazão da corrente central, orgânica) deve, preferencialmente, ter o valor de 1 quando a dispersão lipídica e inserida na corrente central e fase aquosa nas laterais, sendo que a referida fase aquosa compreende água ou tampão convencional (tal como PBS IX) . O arranjo pode ser alterado desde que se mantenha a preferencial proporção de 1:1 de fase aquosa e dispersão lipídica. As vazões laterais podem variar de 30 a 500 mΐ/min e a vazão central de 60 a 1000 mΐ/min, sendo que a vazão total de produção pode operar de 100 a 2000 pL/min. [39] In the concretization of this Certificate of Addition in which the microfluidic device comprises 3 (three) entries, the operating parameter FRR (flow rate ratio which consists of the sum of the lateral current flows, aqueous, by the flow of the central current, organic) should preferably have a value of 1 when the lipid dispersion is inserted into the central stream and aqueous phase on the sides, said aqueous phase comprising water or conventional buffer (such as PBS IX). The arrangement can be changed as long as the preferred 1: 1 ratio of aqueous phase and lipid dispersion is maintained. The lateral flows can vary from 30 to 500 mΐ / min and the central flow from 60 to 1000 mΐ / min, and the total production flow can operate from 100 to 2000 pL / min.
[40] O processo conforme ora proposto permite a formação exclusiva da fase lamelar (La) (formando lipossomas) e impede a formação da fase hexagonal inversa (HII) (outra estrutura diferente de lipossomas) . [40] The process as proposed here allows the exclusive formation of the lamellar phase (La) (forming liposomes) and prevents the formation of the inverse hexagonal phase (HII) (another structure other than liposomes).
[41] Em um segundo aspecto, o presente Certificado de Adição refere-se aos lipossomas Stealth catiônicos obtidos conforme descrição acima e compreenderem de 50:20:25:5% a 50:24:25:1% de EPC : DOPE : DOTAP : DSPE-PEG, preferencialmente 50:24:25:1%; e concentração lipídica final de 25 a 10 mM, preferencialmente 12,5 mM, em que a referida concentração da dispersão lipídica final pode ser modulada, pois a operação de remoção de etanol via concentador à vácuo ou destilação não altera as propriedades fisico-quimicas dos lipossomas até uma concentração critica.. [41] In a second aspect, this Certificate of Addition refers to the cationic Stealth liposomes obtained as described above and comprise from 50: 20: 25: 5% to 50: 24: 25: 1% EPC: DOPE: DOTAP : DSPE-PEG, preferably 50: 24: 25: 1%; and final lipid concentration of 25 to 10 mM, preferably 12.5 mM, in which said concentration of the final lipid dispersion can be modulated, as the operation removal of ethanol via vacuum concentrator or distillation does not alter the physico-chemical properties of liposomes to a critical concentration.
[42] Os referidos lipossomas apresentam diâmetro médio que varia de 250 a 120 nm, preferencialmente 180 nm; índice de polidispersidade (PDI) que varia de 0,13 a 0,3, preferencialmente 0,25; e potencial zeta que varia de +45 a +55 mV, preferencialmente +50 mV quando produzido em água ultra pura. [42] Said liposomes have an average diameter ranging from 250 to 120 nm, preferably 180 nm; polydispersity index (PDI) ranging from 0.13 to 0.3, preferably 0.25; and zeta potential ranging from +45 to +55 mV, preferably +50 mV when produced in ultra pure water.
[43] Em um terceiro aspecto, o presente Certificado de Adição refere-se ao uso dos lipossomas S tealth catiônico, conforme definidos acima, pelo fato de serem aplicados nas áreas agrícola, alimentícia, cosmética, médica; em sistemas de liberação sustentada de biofármacos, vetores de proteínas, de agentes anticancerígenos ; e preferencialmente em terapia e vacinação gênicas . [43] In a third aspect, this Certificate of Addition refers to the use of cationic S tealth liposomes, as defined above, because they are applied in the agricultural, food, cosmetic, medical areas; in systems of sustained release of biopharmaceuticals, protein vectors, anti-cancer agents; and preferably in gene therapy and vaccination.
[44] Dessa forma, os lipossomas Stealth obtidos possuem aplicação em diversas áreas, em especial a área médica, em sistemas de liberação sustentada de biofármacos, incluindo proteínas, de agentes anticancerígenos e principalmente aplicações em terapia e vacinação gênicas. [44] Thus, the Stealth liposomes obtained have applications in several areas, especially the medical area, in systems of sustained release of biopharmaceuticals, including proteins, anticancer agents and mainly applications in gene therapy and vaccination.
Descrição detalhada da invenção: Detailed description of the invention:
[45] O presente pedido é um certificado de adição do pedido de patente BR 10 2017 025862 9 e este pedido refere- se a um processo de obtenção de lipossomas tipo Stealth em sistema microfluídico com alto rendimento baseado em advecção caótica. O processo ainda inclui uma etapa de recuperação do solvente orgânico utilizado pelo uso de um concentrador de centrífuga a vácuo para remoção ou diminuição do mesmo, e também difere-se do pedido de patente BR 10 2017 025862 9 quanto à configuração do dispositivo microfluidico utilizado. Outra diferença em relação ao pedido de patente BR 10 2017 025862 9 é que não é necessária a utilização de alta força iônica, como por exemplo, a utilização do tampão PBS em alta concentração (5X) . Neste certificado de adição, os lipossomas Stealth são formados a partir de processo com maior teor de etanol (50%), enquanto no pedido de patente BR 10 2017 025862 9 utiliza-se 10%. [45] The present application is a certificate of addition to the patent application BR 10 2017 025862 9 and this application refers to a process for obtaining Stealth type liposomes in a high-performance microfluidic system based on chaotic advection. The process also includes a step of recovering the organic solvent used by using a vacuum centrifuge concentrator to remove or decrease it, and also differs from the patent application BR 10 2017 025862 9 regarding the configuration of the microfluidic device used. Another difference in relation to the patent application BR 10 2017 025862 9 is that the use of high ionic strength is not necessary, such as the use of PBS buffer in high concentration (5X). In this addition certificate, Stealth liposomes are formed from a process with a higher ethanol content (50%), while in patent application BR 10 2017 025862 9 10% is used.
[46] O referido processo compreende a etapa de inserção de 25 mM de fosfatidilcolina de ovo (EPC) , 1, 2-dioleoil-sn- glicero-3-fosfatidiletanolamina (DOPE) e 1, 2-dioleil-3- trimetilamônio propano (DOTAP) , bem como 1, 2-diestearil-sn- glicero-3-fosfoetanolamina com polietilenoglicol (DSPE-PEG) em uma proporção de 50:24:25:1% de EPC : DOPE : DOTAP : DSPE-PEG, respectivamente, dispersos em 100% de etanol anidro em um dispositivo microfluidico, a partir de uma vazão total que varia de 120 pL min-1 a 1500 pL min-1. Essa corrente alcoólica é misturada a uma corrente aquosa (que não necessita de sal em sua composição), em uma proporção de 50% de cada corrente. A mistura ocorre em dispositivo microfluidico baseado em advecção caótica que permite a operação em alta produtividade, diferentemente do pedido de patente de invenção BR 10 2017 025862 9. [46] This process comprises the step of inserting 25 mM egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and 1,2-dioleyl-3-trimethylammonium propane ( DOTAP), as well as 1,2-distearyl-sn-glycero-3-phosphoethanolamine with polyethylene glycol (DSPE-PEG) in a proportion of 50: 24: 25: 1% EPC: DOPE: DOTAP: DSPE-PEG, respectively, dispersed in 100% anhydrous ethanol in a microfluidic device, from a total flow that varies from 120 pL min -1 to 1500 pL min -1 . This alcoholic stream is mixed with an aqueous stream (which does not require salt in its composition), in a proportion of 50% of each stream. The mixing takes place in a microfluidic device based on chaotic advection that allows operation at high productivity, unlike the patent application BR 10 2017 025862 9.
[47] Ao final do processo, para remoção do excesso e recuperação do solvente orgânico utilizado, emprega-se um concentrador de centrífuga à vácuo por um intervalo de processamento de 1 a 2 horas, sem que essa etapa cause alteração significativa em termos de tamanho, polidispersidade, potencial zeta e morfologia dos lipossomas, além da manutenção da atividade biológica. [48] O referido dispositivo microfluidico é construído em poli dimetil siloxano (PDMS) utilizando a técnica de litografia macia, conforme metodologia já descrita por Duffy e McDonald (1998). [47] At the end of the process, to remove excess and recover the organic solvent used, a vacuum centrifuge concentrator is used for a processing interval of 1 to 2 hours, without this step causing a significant change in terms of size , polydispersity, zeta potential and liposome morphology, in addition to maintaining biological activity. [48] This microfluidic device is constructed of poly dimethyl siloxane (PDMS) using the soft lithography technique, according to the methodology already described by Duffy and McDonald (1998).
[49] Portanto, através do processo aqui descrito, empregando dispositivos todo em PDMS e que permite a mistura de correntes laterais compostas por soluções aquosas (com ou sem sal) , seguido de etapa de remoção do solvente orgânico por destilação, obtêm-se lipossomas Stealth com excelentes características físico-químicas em processos reprodutíveis, incluindo tamanho controlado e baixo índice de polidispersidade e unilamelares . [49] Therefore, through the process described here, using devices all in PDMS and allowing the mixing of side currents composed of aqueous solutions (with or without salt), followed by the step of removing the organic solvent by distillation, liposomes are obtained Stealth with excellent physical-chemical characteristics in reproducible processes, including controlled size and low polydispersity and unilamellar index.
[50] A tecnologia desenvolvida possibilita a aplicação dos lipossomas Stealth em várias áreas, em especial a área médica, em sistemas de liberação sustentada de biofármacos, incluindo vetores de proteínas, de agentes anticancerígenos e principalmente aplicações em terapia e vacinação gênicas. [50] The developed technology makes it possible to apply Stealth liposomes in several areas, especially the medical field, in biopharmaceutical sustained release systems, including protein vectors, anticancer agents and mainly applications in gene therapy and vaccination.
[51] Mais detalhes sobre os materiais e métodos compreendidos na concretização do presente certificado de adição de invenção, incluindo a fabricação do dispositivo microfluidico, a formação do lipossoma catiônico no referido dispositivo, bem como a remoção do etanol da solução lipossomal, seguem abaixo. [51] More details on the materials and methods comprised in carrying out the present certificate of addition of invention, including the manufacture of the microfluidic device, the formation of the cationic liposome in said device, as well as the removal of ethanol from the liposomal solution, follow below.
Materiais Materials
[52] 1, 2-dioleoil-sn-glicero-3-fosfoetanolamina (DOPE) , 1, 2-dioleo-3-trimetilamina-propano (DOTAP) e fosfatidilcolina de ovo (EPC) foram adquiridos da Lipoid (Ludwigshafen, Alemanha) e utilizados como fosfolipídeos para formar lipossomas catiônicos (LC) sem purificão adicional . 1 , 2-diestearoil-sn-glicero-3-fosfoetanolamina-N- [amino (polietilenoglicol ) -2000] (DSPE-PEG (2000) ) foi utilizado para formar lipossomas do tipo Stealth e adquirido da Avanti Polar Lipids, Inc. (Alabama, EUA) . O etanol foi obtido da Labsynth (São Paulo, Brasil) e utilizado após o processo de desidratação com peneira molecular para dispersar os fosfolipidios . O Kit de Elastômero de Silicone Sylgard® 184, usado para fabricação de dispositivos microfluidicos, foi adquirido da Dow Corning (Auburn, MI, Estados Unidos) . A água deionizada foi obtida da Samtec Biotechnology (São Paulo, Brasil) . O pDNA foi amplificado em bactérias Escherichia coli e purificado usando PureLink™ HiPure Plasmid pDNA Purification Kit-Maxiprep K2100-07 (Invitrogen, Carlsbad, CA, Estados Unidos) . Mediu-se espectrofotometricamente a qualidade e quantidade de pDNA com um espectrofotômetro ND-1000 NanoDrop UV-vis (PeqLab, Erlangen, Alemanha) . [52] 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleo-3-trimethylamine-propane (DOTAP) and egg phosphatidylcholine (EPC) were purchased from Lipoid (Ludwigshafen, Germany) and used as phospholipids to form cationic liposomes (LC) without further purification. 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [amino (polyethylene glycol) -2000] (DSPE-PEG (2000)) was used to form Stealth-type liposomes and purchased from Avanti Polar Lipids, Inc. (Alabama, USA). Ethanol was obtained from Labsynth (São Paulo, Brazil) and used after the dehydration process with molecular sieve to disperse phospholipids. The Sylgard® 184 Silicone Elastomer Kit, used to manufacture microfluidic devices, was purchased from Dow Corning (Auburn, MI, United States). Deionized water was obtained from Samtec Biotechnology (São Paulo, Brazil). The pDNA was amplified in Escherichia coli bacteria and purified using PureLink ™ HiPure Plasmid pDNA Purification Kit-Maxiprep K2100-07 (Invitrogen, Carlsbad, CA, United States). The quality and quantity of pDNA was measured spectrophotometrically with an ND-1000 NanoDrop UV-vis spectrophotometer (PeqLab, Erlangen, Germany).
Fabricação de dispositivos microfluidicos Manufacture of microfluidic devices
[53] Dispositivos microfluidicos baseados em advecção caótica (CA-MD, chaotic advection-based microfluidic device, com 2 e 3 entradas) foram microfabricados de acordo com o método descrito anteriormente por McDonald et al. (2000) usando o Kit de Elastômero de Silicone Sylgard® 184 como material precursor do polidimetilsiloxano (PDMS) . 0 desenho geométrico do canal principal e unidades semelhantes a espinha de peixe (Figura 1) do microdispositivo foram projetados separadamente no software AutoCAD. Após a fotolitografia, os layouts de máscara foram expostos a foto- plotagem com resolução de 8000 dpi, e as exposições em UV foram feitas em uma máscara de contato MJB-3 UV300 alinhada (Karl-Suss, Garching, Alemanha) . As unidades do canal em Ύ' e espinha de peixe, sendo duas camadas de PDMS, foram irreversivelmente seladas através da técnica de selagem por ativação da superfície por plasma de O2 (Plasma Technology PLAB SE80, plasma cleaner, Wrington, Inglaterra) . Antes de selar duas camadas de PDMS, a superfície da camada contendo o canal principal foi mantida em solução de KOH durante 10 segundos para aumentar a eficiência de selagem das camadas de PDMS e depois lavada com etanol para remover a solução do KOH não ligado. Para fortalecer as propriedades mecânicas do microdispositivo, ele foi coberto com uma camada adicional de PDMS. Ambos CA-MD com 2 e 3 entradas possuem 40 sub- unidades semelhantes a espinha de peixe. Método similar foi utilizado para a microfabricação do dispositivo microfluídico baseado em difusão (D-MD, diffusion-based microfluidic device) . Os canais PDMS e o vidro foram irreversivelmente selados oxidando as superfícies usando um limpador de plasma com oxigénio (limpador de plasma Plasma Technology PLAB SE80, Wrington, Inglaterra) . Todos os canais da D-MD possuíam seção transversal retangular com profundidade de 100 pm e largura de 140 pm. [53] Chaotic advection-based microfluidic device (CA-MD), with 2 and 3 inputs, were microfabricated according to the method previously described by McDonald et al. (2000) using the Sylgard® 184 Silicone Elastomer Kit as a precursor material for polydimethylsiloxane (PDMS). The geometrical design of the main channel and herringbone-like units (Figure 1) of the microdevice were designed separately in AutoCAD software. After photolithography, the mask layouts were exposed to photo-plotting with a resolution of 8000 dpi, and the UV exposures were made in an aligned MJB-3 UV300 contact mask (Karl-Suss, Garching, Germany). The channel units in Ύ ' and fishbone, being two layers of PDMS, were irreversibly sealed using the O2 plasma surface activation technique (Plasma Technology PLAB SE80, plasma cleaner, Wrington, England). Before sealing two layers of PDMS, the surface of the layer containing the main channel was kept in KOH solution for 10 seconds to increase the sealing efficiency of the PDMS layers and then washed with ethanol to remove the unbound KOH solution. To strengthen the mechanical properties of the microdevice, it was covered with an additional layer of PDMS. Both 2-port and 3-port CA-MD have 40 herringbone-like subunits. A similar method was used for the microfabrication of the diffusion-based microfluidic device (D-MD, diffusion-based microfluidic device). The PDMS channels and the glass were irreversibly sealed by oxidizing the surfaces using an oxygen plasma cleaner (Plasma Technology PLAB SE80 plasma cleaner, Wrington, England). All D-MD channels had a rectangular cross section with a depth of 100 pm and a width of 140 pm.
Síntese de liposscmas catiônicos em sistema microfluídicos Synthesis of cationic liposomes in microfluidic systems
[54] A produção de LCs convencionais e do tipo stealth foi realizada usando D-MD (como controle) e CA-MD com 2 e 3 entradas. EPC, DOTAP e DOPE com razão molar de 50:25:25 % foram dispersos em etanol anidro com concentração lipídica de 25 mM. Para a produção de LC do tipo Stealth, a razão molar de EPC, DOTAP, DOPE e DSPE-PEG (2000) foi 50-25-24-1 %. Antes da produção, a solução lipídica foi sonicada durante 15 min a 35° C (Ultrasonic Cleaner 8890, Cole-Parmer) . A solução lipídica e a água deionizada foram carregadas em seringas de vidro com volumes variáveis (Hamilton, NV, Estados Unidos) . Bombas de seringa (PHD Ultra, Harvard Apparatus, Holliston, MA, Estados Unidos) foram usadas para manter taxas de infusão constantes de cada solução nos dispositivos D-MD e CA-MD. A produção de LC em D-MD foi testada apenas em FRR 10 (Figura 2A) . Para o dispositivo CA- MD com 2 entradas, as soluções lipidica e aquosa foram introduzidas através de duas entradas com a mesma vazão (Figura 2B) . Para o dispositivo CA-MD com 3 entradas, diferentes configurações de fluxo foram testadas e o efeito de cada configuração na formação de LC foi avaliado. As configurações testadas do CA-MD com 3 entradas foram as seguintes: (1) solução fosfolipidica através da entrada central, soluções aquosas a partir das duas entradas laterais com o a relação entre a soma das vazões laterais pela vazão central ( Flow rate ratio) - FRR de 10; (2) solução de fosfolipidos através da entrada central, soluções aquosas nas duas entradas laterais com FRR de 1; (3) solução lipidica em uma entrada lateral, soluções aquosas na entrada central e outra na entrada lateral (Figura 2C e 2D) . A vazão total de escoamento (TFRs, total flow rates) variou entre 100 e 1500 pL / min para cada configuração de fluxo usando o CA- MD com 2 e 3 entradas. Em nosso estudo, a razão da taxa de fluxo FRR ( flow rate ratio) é definida como a razão entre a soma dos fluxos laterais e o fluxo central, enquanto a TFR ( Total Flow Rate) é o volume total de fluxo (pL) introduzido nos canais de entrada do dispositivo microfluidico por minuto e que consequentemente gera a vazão de produção dos lipossomas. Durante cada produção, a amostra foi coletada durante três momentos diferentes. [54] The production of conventional and stealth LCs was carried out using D-MD (as a control) and CA-MD with 2 and 3 inputs. EPC, DOTAP and DOPE with a 50:25:25% molar ratio were dispersed in anhydrous ethanol with a lipid concentration of 25 mM. For the production of LC of the Stealth type, the molar ratio of EPC, DOTAP, DOPE and DSPE-PEG (2000) was 50-25-24-1%. Before production, the lipid solution was sonicated for 15 min at 35 ° C (Ultrasonic Cleaner 8890, Cole-Parmer). THE lipid solution and deionized water were loaded into glass syringes with varying volumes (Hamilton, NV, United States). Syringe pumps (PHD Ultra, Harvard Apparatus, Holliston, MA, United States) were used to maintain constant infusion rates for each solution on the D-MD and CA-MD devices. The production of LC in D-MD was tested only in FRR 10 (Figure 2A). For the CA-MD device with 2 ports, the lipid and aqueous solutions were introduced through two ports with the same flow rate (Figure 2B). For the CA-MD device with 3 inputs, different flow configurations were tested and the effect of each configuration on the formation of LC was evaluated. The tested configurations of the CA-MD with 3 inlets were as follows: (1) phospholipid solution through the central inlet, aqueous solutions from the two side inlets with the relationship between the sum of the lateral flows by the central flow (Flow rate ratio) - FRR of 10; (2) phospholipid solution through the central inlet, aqueous solutions in the two side inlets with FRR of 1; (3) lipid solution at a side entrance, aqueous solutions at the central entrance and another at the lateral entrance (Figure 2C and 2D). The total flow rate (TFRs, total flow rates) varied between 100 and 1500 pL / min for each flow configuration using the CA-MD with 2 and 3 inputs. In our study, the FRR flow rate ratio is defined as the ratio between the sum of the lateral flows and the central flow, while the TFR (Total Flow Rate) is the total flow volume (pL) introduced in the input channels of the microfluidic device per minute and that consequently generates the production flow of the liposomes. During each production, the sample was collected during three different moments.
Remoção de etanol da solução de lipossama Ethanol removal from liposome solution
[55] A concentração total de etanol na solução final de lipossoma foi de 50% para CA-MD com 2 entradas e CA-MD com 3 entradas, isso gera um FRR 1. No entanto, quando FRR 10 foi utilizado, o teor de etanol foi de 10% para D-MD e CA- MD com 3 entradas. Para remoção do etanol da solução final, utilizou-se o concentrador centrífugo a vácuo (Savant DNA 110 SpeedVac Concentrator, Marshall Scientific, New Hampshire, Estados Unidos) usando a taxa de secagem média. O mesmo procedimento também foi utilizado para a concentração de lipossomas para análises posteriores em técnicas de Crio- Microscopia Eletrónica de Transmissão (Cryo-TEM) e espalhamento de raios X a baixos ângulos (SAXS) , que requerem formulação lipídica altamente concentrada. [55] The total concentration of ethanol in the final liposome solution was 50% for CA-MD with 2 entries and CA-MD with 3 entries, this generates an FRR 1. However, when FRR 10 was used, the content of ethanol was 10% for D-MD and CA-MD with 3 entries. To remove ethanol from the final solution, the vacuum centrifugal concentrator (Savant DNA 110 SpeedVac Concentrator, Marshall Scientific, New Hampshire, United States) was used using the average drying rate. The same procedure was also used for the concentration of liposomes for further analysis in techniques of Transmission Cryo-Microscopy (Cryo-TEM) and scattering of X-rays at low angles (SAXS), which require highly concentrated lipid formulation.
Análise Físico-química Chemical physical analysis
[56] O tamanho hidrodinâmico médio ponderado pela intensidade e o índice de polidispersidade (Pdl) dos LCs foram medidos utilizando espalhamento dinâmico de luz (Zetasizer NanoZS, Malvern, Reino Unido) . Foi utilizada a configuração de medição por retroespalhamento, onde a detecção foi realizada em um ângulo de espalhamento de 173°. O comprimento de onda do laser He / Ne e a potência da fonte de energia para análise das partículas lipídicas foram de 633 nm e 4,0 mW, respectivamente . Todas as amostras foram diluídas antes da medição. O potencial zeta foi determinado usando através da técnica de Anemometria a Laser Doppler. A medição foi realizada em triplicata em água a 25 °C (Zetasizer NanoZS, Malvern, Reino Unido) . [56] The average hydrodynamic size weighted by the intensity and the polydispersity index (Pdl) of the LCs were measured using dynamic light scattering (Zetasizer NanoZS, Malvern, UK). The backscatter measurement configuration was used, where the detection was performed at a scattering angle of 173 °. The He / Ne laser wavelength and the power of the energy source for the analysis of the lipid particles were 633 nm and 4.0 mW, respectively. All samples were diluted before measurement. The zeta potential was determined using the Laser Doppler Anemometry technique. The measurement was performed in triplicate in water at 25 ° C (Zetasizer NanoZS, Malvern, United Kingdom).
Caracterização estrutural usando SAXS síncrotron [57] As informações estruturais dos LCs produzidos, como a fração de vesículas multilamelares em relação às vesículas unilamelares pequenas (SUVs, small unilamellar liposomes) e o tamanho da bicamada foram obtidas por meio da análise de espalhamento de raios X a baixos ângulos (SAXS, Small Angle X-ray Scattering) . Os experimentos foram realizados na linha de luz SAXS1 do Laboratório Nacional de Luz Síncrotron (LNLS) utilizando um feixe com energia de 8.3 keV (l = 0.149 nm-1) e uma distância amostra-detector de 880 mm. A intensidade do feixe espalhado é exibida em função do módulo do vetor de transferência de momento Q = 4n sen (Q) / l, onde 2Q é o ângulo de espalhamento e l é o comprimento de onda da radiação. O intervalo típico de valores de Q foi entre 0,20 nm-1 e 5.0 nm-1. Structural characterization using synchrotron SAXS [57] The structural information of the produced LCs, such as the fraction of multilamellar vesicles in relation to small unilamellar vesicles (SUVs, small unilamellar liposomes) and the size of the bilayer were obtained by means of X-ray scattering analysis at low angles (SAXS , Small Angle X-ray Scattering). The experiments were carried out on the SAXS1 beamline of the National Synchrotron Light Laboratory (LNLS) using a beam with an energy of 8.3 keV (l = 0.149 nm -1 ) and a sample-detector distance of 880 mm. The intensity of the scattered beam is displayed as a function of the momentum vector transfer module Q = 4n sen (Q) / l, where 2Q is the scattering angle and l is the radiation wavelength. The typical range of Q values was between 0.20 nm -1 and 5.0 nm -1 .
[58] As análises foram realizadas utilizando os modelos descritos em trabalhos anteriores (Balbino et al. 2012, Balbino et al. 2013). Assumimos que o sistema era composto de duas fases: uma fração de vesículas de bicamada única e uma fração de vesículas em multicamadas . Portanto, a intensidade de espalhamento I (Q) pode ser escrita da seguinte forma : [58] The analyzes were performed using the models described in previous works (Balbino et al. 2012, Balbino et al. 2013). We assumed that the system consisted of two phases: a fraction of single bilayer vesicles and a fraction of multilayer vesicles. Therefore, the scattering intensity I (Q) can be written as follows:
I (Q) =P (Q) Seff(Q) I (Q) = P (Q) Seff (Q)
onde P(Q) é o fator de forma da bicamada e Seff (Q) = fsb + fm SMCT (Q) é o fator de estrutura efetivo, onde fSb é a fração de bicamadas simples, fm=(l-fsb) representa a fração de vesículas em multicamadas e SMCT (q) é o fator de estrutura de Caillé Modificado. where P (Q) is the bilayer form factor and S eff (Q) = fs b + fm SMCT (Q) is the effective structure factor, where f Sb is the simple bilayer fraction, f m = (l- fs b ) represents the fraction of vesicles in multilayers and SMCT (q) is the Modified Caillé structure factor.
Análise morfológica. Morphological analysis.
[59] A morfologia dos lipoplexos (LCs e pDNA) produzidos em bulk e os LCs produzidos por microfluídica foram analisadas usando Crio-Microscopia Eletrónica de Transmissão (Cryo-TEM) . Um sistema automatizado de vitrificação (Vitrobot Mark IV, FEI, Holanda) foi usado para a preparação das grades. As grades foram expostas ao tratamento de descarga por incandescência (sistema de descarga easiGlow, Pelco) com corrente de 15 mA durante 25 s para aumentar a hidrofilicidade . As amostras foram preparadas em temperatura (22 °C) e umidade (100%) controladas para evitar a evaporação das amostras. Colocou- se 3 pL de amostra numa grade de cobre revestido de carbono de 300 mesh (Ted Pella) com um tempo de deposição de 3 s . Posteriormente, as amostras foram avaliadas com Jeol JEM- 2100 operando a 200 kV com uma faixa de desfocagem de -2 a -4 pm. As imagens foram obtidas usando uma câmera CMOS F-416 (TVIPS, Alemanha) . A aquisição de dados foi realizada no Laboratório de Microscopia Eletrónica do Laboratório Nacional de Nanotecnologia (LNNano, CNPEM, Brasil) . [59] The morphology of lipoplexes (LCs and pDNA) produced in bulk and the LCs produced by microfluidics were analyzed using Transmission Cryo-Microscopy (Cryo-TEM). An automated glazing system (Vitrobot Mark IV, FEI, Netherlands) was used for the preparation of the gratings. The grids were exposed to the incandescent discharge treatment (easiGlow discharge system, Pelco) with a current of 15 mA for 25 s to increase hydrophilicity. The samples were prepared at controlled temperature (22 ° C) and humidity (100%) to prevent sample evaporation. 3 µl of sample was placed on a 300 mesh carbon-coated copper grid (Ted Pella) with a deposition time of 3 s. Subsequently, the samples were evaluated with Jeol JEM-2100 operating at 200 kV with a defocus range of -2 to -4 pm. The images were obtained using a CMOS F-416 camera (TVIPS, Germany). Data acquisition was performed at the Electron Microscopy Laboratory of the National Nanotechnology Laboratory (LNNano, CNPEM, Brazil).
Estudos de transfecção com células PC-3 Transfection studies with PC-3 cells
[60] As células de adenocarcinoma da próstata caucasianas (PC-3) foram mantidas em meio RPMI (suplementado por 10% de soro fetal bovino e 1% de penicilina e estreptomicina) sob atmosfera húmida a 37 ° C e 5% de CO2. As células foram divididas usando tripsina / PBS a cada 2 ou 3 dias. O ensaio de transfecção foi realizado em células PC3 utilizando o plasmideo pEGFP-Nl (BD Biosciences Clontech, Paio Alto, EUA) (4,7 kpb) . O plasmideo foi amplificado em Escherichia coli e purificado utilizando o Kit de PureLink™ HiPure Plasmid pDNA Purification-Maxiprep K2100-07 (Invitrogen, Carlsbad, CA, Estados Unidos) seguindo as instruções do fabricante. A qualidade e quantidade de pDNA foram espectrofotometricamente medidas com um espectrofotômetro ND-1000 NanoDrop UV-vis (PeqLab, Erlangen, Alemanha) . Para experiências de transfecção, 105 células/poço foram adicionadas numa placa de 12 poços e deixadas aderir durante a noite. No dia seguinte, as células foram lavadas uma vez com PBS e incubadas com lipoplexos LC ou LC do tipo Stealth durante 4 horas. Após 4h, o meio foi substituído por meio RPMI completo, e as células foram mantidas na incubadora por 24h. Em seguida, as células foram lavadas com PBS, tripsinizadas e analisadas no citômetro FACScalibur (BD, EUA) . [60] Caucasian prostate adenocarcinoma cells (PC-3) were maintained in RPMI medium (supplemented by 10% fetal bovine serum and 1% penicillin and streptomycin) under a humid atmosphere at 37 ° C and 5% CO2. The cells were divided using trypsin / PBS every 2 or 3 days. The transfection assay was performed on PC3 cells using the plasmid pEGFP-N1 (BD Biosciences Clontech, Paio Alto, USA) (4.7 kbp). The plasmid was amplified in Escherichia coli and purified using the PureLink ™ HiPure Plasmid pDNA Purification-Maxiprep K2100-07 Kit (Invitrogen, Carlsbad, CA, United States) following the manufacturer's instructions. The quality and quantity of pDNA were spectrophotometrically measured with an ND-1000 NanoDrop UV-vis spectrophotometer (PeqLab, Erlangen, Germany). For transfection experiments, 105 cells / well were added to a 12-well plate and allowed to adhere overnight. The next day, the cells were washed once with PBS and incubated with LC or LC Stealth type lipoplexes for 4 hours. After 4h, the medium was replaced with complete RPMI medium, and the cells were kept in the incubator for 24h. Then, the cells were washed with PBS, trypsinized and analyzed on the FACScalibur cytometer (BD, USA).
Análise estatística Statistical analysis
[61] Todos os dados obtidos foram expressos como a média de triplicatas com desvio padrão (DP) . O teste de Tukey foi usado para fazer comparações múltiplas de valores obtidos para diferentes taxas de fluxo. [61] All data obtained were expressed as the mean of triplicates with standard deviation (SD). The Tukey test was used to make multiple comparisons of values obtained for different flow rates.
Resultados e discussão Results and discussion
Síntese de LCs convencionais e do tipo Stealth em dispositivo microfluídico baseado em difusão Synthesis of conventional and Stealth type LCs in a diffusion-based microfluidic device
[62] A produção de LC em dispositivo microfluídico baseado em difusão (D-MD) usando fosfolipídios DOPE / DOTAP / EPC foi anteriormente demonstrada por Balbino et al. 2013. Neste procedimento, a vazão total de fluxo (TFR) e a velocidade do escoamento foram 120,12 pL/min e 143 mm/s, respectivamente, com razão da taxa de fluxo (FRR) de 10 (leva a uma concentração final de 10% de etanol) . A concentração inicial de lipídios na dispersão etanólica foi ajustada para 25 M, enquanto a concentração lipídica na solução de lipossoma produzida foi de 2,27 mM. Foram obtidos LCs com diâmetro médio de 146,8 + 4,9 nm, Pdl 0,12 ± 0,04 e potencial zeta 55,5 ± 2,1 mV, confirmando a alta reprodutibilidade deste procedimento. Parâmetros fisico-quimicos de LCs produzidos por D-MD foram submetidos a 7 meses de armazenamento a 8°C. Além disso, trabalhos anteriores demonstraram que os LCs convencionais produzidos neste sistema eram unilamelares e capazes de transfectar células de carcinoma epitelial humano (HeLa) e linhagem celular de câncer de próstata humana (PC-3) usando DNA plasmidial (pDNA) (Balbino et al. 2012, Balbino et al 2013, Balbino et al., 2016, Balbino et al., 2017) e RNA de interferência (siRNA) (E§ et al . 2018 ) . [62] The production of LC in a diffusion-based microfluidic device (D-MD) using phospholipids DOPE / DOTAP / EPC was previously demonstrated by Balbino et al. 2013. In this procedure, the total flow rate (TFR) and the flow velocity were 120.12 pL / min and 143 mm / s, respectively, with a flow rate (FRR) ratio of 10 (leading to a final concentration 10% ethanol). The initial concentration of lipids in the ethanolic dispersion was adjusted to 25 M, while the lipid concentration in the produced liposome solution was 2.27 mM. LCs with mean diameter of 146.8 + 4.9 nm, Pdl 0.12 ± 0.04 and potential were obtained zeta 55.5 ± 2.1 mV, confirming the high reproducibility of this procedure. Physico-chemical parameters of LCs produced by D-MD were subjected to 7 months of storage at 8 ° C. In addition, previous work has shown that conventional LCs produced in this system were unilamellar and capable of transfecting human epithelial carcinoma cells (HeLa) and human prostate cancer cell line (PC-3) using plasmid DNA (pDNA) (Balbino et al 2012, Balbino et al 2013, Balbino et al., 2016, Balbino et al., 2017) and interference RNA (siRNA) (E§ et al. 2018).
[63] A importância da produção de lipossomas catiônicos modificados com polímero PEG foi anteriormente investigado (Kolate et al. 2014). Na primeira investigação, foi testado o D-MD para produção de LCs do tipo Stealth. Utilizando a mesma configuração de processo de produção LC convencional desenvolvida por Balbino et al. 2013, adicionando o DSPE-PEG (2000) (1% da quantidade molar lipídica total) na mesma dispersão lipídica / etanol na corrente central (Figura 2A) . No entanto, ao longo do microcanal central, observou-se intensa aglomeração de partículas (Figura 3A) , que foi um fator significativo para alterar a concentração final e a composição lipídica dos LCs produzidos. Esse comportamento não foi observado na produção LC convencional (sem PEG) e uma possível hipótese é que a difusão das moléculas durante a mistura entre o etanol a a água, facilita agregados ou aglomerados de partículas irregulares (Figura 3A) , na presença de DSPE-PEG (2000). Apesar da formação de agregados ao longo do canal, foi possível produzir nanoagregados (Figura 3B e 3C) . No entanto, quando caracterizados via técnica de Dispersão Dinâmica de Luz (DLS) (Figura 3B) , a distribuição de tamanho por intensidade revelou a presença de populações com tamanhos diferentes (aprox. 30 nm, 125 nm e a terceira com tamanho maior) . Como a distribuição de tamanhos pela intensidade é sensível à presença de populações diferentes (a luz difusa é proporcional ao diâmetro gerado pela sexta potência) (Egelhaaf et al. 1996), foi observado a relevância de diferentes populações no tamanho pelo volume. Nesta distribuição, a população mais relevante é a de 30 nm, caracterizando a formação de micelas possivelmente causadas por moléculas de PEG (Figura 3B) (Johnson e Prud'homme, 2003) . [63] The importance of producing cationic liposomes modified with PEG polymer has been previously investigated (Kolate et al. 2014). In the first investigation, the D-MD was tested for the production of LCs of the Stealth type. Using the same conventional LC production process configuration developed by Balbino et al. 2013, adding DSPE-PEG (2000) (1% of the total lipid molar quantity) in the same lipid / ethanol dispersion in the central stream (Figure 2A). However, along the central microchannel, intense particle agglomeration was observed (Figure 3A), which was a significant factor in altering the final concentration and lipid composition of the produced LCs. This behavior was not observed in conventional LC production (without PEG) and a possible hypothesis is that the diffusion of molecules during the mixture between ethanol and water, facilitates aggregates or clusters of irregular particles (Figure 3A), in the presence of DSPE-PEG (2000). Despite the formation of aggregates along the channel, it was possible to produce nanoaggregates (Figure 3B and 3C). However, when characterized via Dynamic Light Dispersion (DLS) technique (Figure 3B), the size distribution by intensity revealed the presence of populations with different sizes (approx. 30 nm, 125 nm and the third with larger size). As the size distribution by intensity is sensitive to the presence of different populations (the diffused light is proportional to the diameter generated by the sixth power) (Egelhaaf et al. 1996), the relevance of different populations in size by volume was observed. In this distribution, the most relevant population is 30 nm, characterizing the formation of micelles possibly caused by PEG molecules (Figure 3B) (Johnson and Prud'homme, 2003).
[64] Uma questão crítica associada à produção de LC do tipo Stealth é a formação incontrolável de micelas (Hu et al., 2012), uma vez que o polímero PEG tem sido usado para formar partículas de micela para aplicações de liberação de fármacos (Danafar et al. 2017). Em solução aquosa, durante o processo de difusão, entre o DSPE-PEG e outros fosfolipídios, a formação da micela (10-3 - 10-6 s) ocorre mais rapidamente que a formação da bicamada fosfolipídica (10_1 - 10-3 s) (Evans e Wennerstrõm, 1999) . Nessas circunstâncias, os processos de difusão empregados em sistemas microfluídicos para produção de LCs do tipo Stealth não são considerados eficientes devido à possível formação de micelas e consequente acúmulo de agregados ao longo do canal, resultando em propriedades físico-químicas desfavoráveis . [64] A critical issue associated with the production of LC of the Stealth type is the uncontrollable formation of micelles (Hu et al., 2012), since the PEG polymer has been used to form micelle particles for drug delivery applications ( Danafar et al. 2017). In aqueous solution, during the diffusion process, between the DSPE-PEG and other phospholipids, the formation of the micelle (10 -3 - 10 -6 s) occurs faster than the formation of the phospholipid bilayer (10 _1 - 10 -3 s ) (Evans and Wennerstrõm, 1999). In these circumstances, the diffusion processes employed in microfluidic systems for the production of LCs of the Stealth type are not considered efficient due to the possible formation of micelles and the consequent accumulation of aggregates along the channel, resulting in unfavorable physical-chemical properties.
[65] Um parâmetro crucial para síntese de LC do tipo Stealth é incorporar a quantidade máxima de PEG na bicamada fosfolipídica (fase lamelar) antes que o PEG seja convertido em micelas (fase micelar) . Diversos fatores desempenham um papel na transição de fase (da fase lamelar para a fase micelar) dos conjugados fosfolipideos-PEG. Foi demonstrado que a principal razão por trás dessa transição de fase é a propriedade polimórfica dos fosfolipidios , que é a propriedade de moléculas anfifilicas que formam agregados de lipídios sob diferentes condições, tais como teor de água, temperatura e pH (Hristova et al. 1995). Outro fator crítico que pode provocar a formação de micelas é o comprimento da cadeia dos conjugados PEG / fosfolipídeo, que está associado ao peso molecular (PM) do PEG (Bedu-Addo et al., 1995). Foi anteriormente demonstrado que o aumento da concentração de PEG a ser incorporada na superfície da bicamada pode resultar em uma fase micelar, que é mais favorável que a fase de bicamada em termos de energia (Hristova e Needham, 1995) . Nesta investigação, utilizou-se PEG (PM = 2000) , mas o sistema microfluídico baseado em difusão (D-MD) foi incapaz de produzir lipossomas livres de micelas. Como uma possível solução para produzir LC do tipo Stealth em D-MD sem formação de micelas, PEG com menos massa molecular poderia ser empregado. No entanto, investigou-se uma solução microfluídica alterando as estratégias de mistura para eliminar a formação de micelas e também alterar o FRR. Por isso, investigou-se o uso do dispositivo microfluídico baseado em advecção caótica (CA-MD) para síntese de LC convencional e do tipo stealth. [65] A crucial parameter for synthesis of Stealth type LC is to incorporate the maximum amount of PEG into the phospholipid bilayer (lamellar phase) before PEG is converted in micelles (micellar phase). Several factors play a role in the phase transition (from the lamellar to the micellar phase) of phospholipid-PEG conjugates. The main reason behind this phase transition has been shown to be the polymorphic property of phospholipids, which is the property of amphiphilic molecules that form aggregates of lipids under different conditions, such as water content, temperature and pH (Hristova et al. 1995 ). Another critical factor that can cause the formation of micelles is the chain length of the PEG / phospholipid conjugates, which is associated with the molecular weight (PM) of the PEG (Bedu-Addo et al., 1995). It has previously been shown that increasing the concentration of PEG to be incorporated into the surface of the bilayer can result in a micellar phase, which is more favorable than the bilayer phase in terms of energy (Hristova and Needham, 1995). In this investigation, PEG (PM = 2000) was used, but the diffusion-based microfluidic system (D-MD) was unable to produce micelle-free liposomes. As a possible solution to produce Stealth-type LC on D-MD without micelle formation, PEG with less molecular weight could be employed. However, a microfluidic solution was investigated by altering the mixing strategies to eliminate the formation of micelles and also alter the FRR. Therefore, we investigated the use of the chaotic advection-based microfluidic device (CA-MD) for conventional and stealth type LC synthesis.
Síntese de LCs convencionais e do tipo stealth em dispositivo microfluídico baseado em advecção caótica Synthesis of conventional and stealth type LCs in a microfluidic device based on chaotic advection
[66] Como a formação concomitante de micelas durante a produção de LCs do tipo Stealth é uma desvantagem para aplicações biológicas e a síntese de LCs em plataformas microfluídicas baseadas em difusão requer um tempo de processamento prolongado (apenas 5-10 mL de produção de LC em uma hora) , investigou-se o efeito da advecção caótica na síntese de LC (Figura 4). Neste contexto, um dispositivo microfluídico baseado em advecção caótica (CA-MD) foi produzido, baseado em um dispositivo relatado "Staggered Herringbone Micromixer" (Belliveau et al. 2012), com 2 e 3 entradas para investigar a síntese de LCs convencionais e do tipo Stealth. [66] As the concomitant formation of micelles during the production of LCs of the Stealth type is a disadvantage for biological applications and the synthesis of LCs on diffusion-based microfluidic platforms requires an extended processing time (only 5-10 mL of LC production in one hour), the effect of chaotic advection on LC synthesis was investigated (Figure 4) . In this context, a microfluidic device based on chaotic advection (CA-MD) was produced, based on a reported device "Staggered Herringbone Micromixer" (Belliveau et al. 2012), with 2 and 3 entries to investigate the synthesis of conventional and like Stealth.
[67] Diferente da mistura dominada por difusão, estudos recentes mostraram que o processo de mistura em escoamentos não turbulentos pode ser significativamente melhorado pela alteração do comportamento de partículas complexas usando a advecção caótica, que é um estado de arte inventada a partir da dinâmica não linear de fluxo (Aref, 1984; Aref, 2002; Vijayendran et al . 2003). Neste estudo, a ideia inicial era comparar apenas o efeito da mistura (difusão ou advecção caótica) , mantendo o FRR e a concentração lipídica final (2,27 mM) , bem como a quantidade de solvente orgânico (<10%) nas condições já estabelecidas para o dispositivo baseado em difusão (D-MD) . Portanto, foi utilizado o mesmo FRR (10), que foi usado para o D-MD, para operar o CA-MD com 3 entradas, variando a TFR de 100 a 1500 pL / min. [67] Unlike diffusion-dominated mixing, recent studies have shown that the mixing process in non-turbulent flows can be significantly improved by changing the behavior of complex particles using chaotic advection, which is a state of the art invented from non-turbulent dynamics. linear flow (Aref, 1984; Aref, 2002; Vijayendran et al. 2003). In this study, the initial idea was to compare only the effect of the mixture (diffusion or chaotic advection), maintaining the FRR and the final lipid concentration (2.27 mM), as well as the amount of organic solvent (<10%) under conditions already established for the diffusion-based device (D-MD). Therefore, the same FRR (10), which was used for the D-MD, was used to operate the CA-MD with 3 inputs, varying the TFR from 100 to 1500 pL / min.
[68] No FRR 10, o D-MD foi adequado para a síntese de LC convencional. Curiosamente, na mesma FRR, embora não houvesse evidência de agregação no CA-MD (3 entradas) , as propriedades físico-químicas dos LCs convencionais pioraram e a técnica de DLS detectou um pico intenso (perto da região de 10 nm) possivelmente indicando agregação desorganizada, devido à perturbação nos padrões de difusão. Neste caso, o LC convencional produzido no CA-MD (TFR = 120,12 pL / min; FRR = 10) apresentou o tamanho próxima a ~ 110 nm, enquanto o Pdl foi maior que 0,5 e o potencial zeta foi significativamente menor (~ 44 mV) do que os LCs produzidos em D-MD. Para a produção de LC do tipo Stealth no CA-MD (3 entradas) , nenhuma agregação ao longo do canal foi observada; entretanto, de acordo com a caracterização do DLS, as propriedades fisico-quimicas foram semelhantes às LCs convencionais. Tanto no convencional quanto no do tipo Stealth, as propriedades fisico-quimicas apresentaram um grande desvio padrão e a presença de agregados apresentando tamanhos próximos a 10 nm. Os resultados de DLS indicam a formação de estruturas desorganizadas que não estão relacionadas à formação convencional esperada de LC, comprometendo aplicações biológicas e indicando baixa reprodutibilidade do processo. [68] In FRR 10, D-MD was suitable for conventional LC synthesis. Interestingly, in the same FRR, although there was no evidence of aggregation in the CA-MD (3 entries), the physical-chemical properties of conventional LCs worsened and the DLS technique detected an intense peak (close to the 10 nm region) possibly indicating aggregation disorganized, due to disturbance in diffusion patterns. In this case, the conventional LC produced in the CA-MD (TFR = 120.12 pL / min; FRR = 10) had a size close to ~ 110 nm, while the Pdl was greater than 0.5 and the zeta potential was significantly lower (~ 44 mV) than LCs produced in D-MD. For the production of LC-type Stealth in the CA-MD (3 inputs), no aggregation along the channel was observed; however, according to the DLS characterization, the physicochemical properties were similar to conventional LCs. Both in the conventional and in the Stealth type, the physico-chemical properties showed a large standard deviation and the presence of aggregates presenting sizes close to 10 nm. The results of DLS indicate the formation of disorganized structures that are not related to the conventional expected formation of LC, compromising biological applications and indicating low reproducibility of the process.
[69] Como discutido anteriormente, para o dispoditivo D-MD, a difusão é predominante e fortemente depende da velocidade de escoamento, que é a razão pela qual houve a necessidade de usar baixo TFRs, para aumentar o tempo de residência nos microcanais e permitir a formação de gradiente de concentração adequado ao longo do microcanal. Para o CA- MD, uma vez que a mistura ocorre por advecção caótica, levantou-se a hipótese de que esse dispositivo microfluidico poderia funcionar com mais eficiência a taxas de fluxo mais altas (TFR) . Portanto, diferentes TFRs foram testados (até 1500 pL / min) para descobrir se esses resultados poderiam ser atribuídos à velocidade de escoamento. Infelizmente, os resultados de DLS não mudaram significativamente para cada TFR testado. Também foram produzidos CLs Stealth (dados não mostrados) usando as mesmas condições, mas os resultados foram semelhantes aos obtidos com CLs convencionais. [69] As previously discussed, for the D-MD device, diffusion is predominant and strongly depends on the flow speed, which is the reason why there was a need to use low TFRs, to increase the residence time in the microchannels and allow the formation of an adequate concentration gradient along the microchannel. For CA-MD, since the mixing occurs by chaotic advection, the hypothesis was raised that this microfluidic device could work more efficiently at higher flow rates (TFR). Therefore, different TFRs were tested (up to 1500 pL / min) to find out if these results could be attributed to the flow rate. Unfortunately, DLS results have not changed significantly for each TFR tested. Stealth CLs (data not shown) were also produced using the same conditions, but the results were similar to those obtained with conventional CLs.
[70] Para investigar os efeitos de mistura do CA-MD (3 entradas) nas propriedades fisico-quimicas dos LCs convencionais e do tipo Stealth, foram realizadas alterações no FRR do sistema. O FRR foi reduzido de 10 para 1 (isso significa que o teor de etanol no final do dispositivo microfluidico aumentou) , mantendo a configuração de fluxo (Figura S2-A) , obtendo resultados promissores em relação ao diâmetro, Pdl e potencial zeta. Inicialmente, testou-se o mesmo TFR empregado no D-MD (120,12 pL / min) para confirmar se o FRR teve um efeito significativo sobre essas propriedades. Os resultados de DLS para LC convencional e do tipo Stealth foram significativamente melhorados. Neste TFR, o diâmetro médio, Pdl e o potencial zeta dos LCs convencionais foram de 200 ± 14 nm, 0,120 ± 0,008 e 61,3 ± 2,7 mV, respectivamente . Comparando com LCs convencionais produzidos em D-MD (FRR 10), os CLs produzidos por CA-MD foram aproximadamente 50 nm maior em tamanho e 6 mV maior em potencial zeta, enquanto Pdl não mostrou diferença significativa. Comparando com as propriedades dos LCs convencionais produzidos por CA-MD obtidos em FRR 10, o diâmetro médio e o potencial zeta dos LCs convencionais em FRR 1 aumentaram significativamente (de ~ 110 nm para ~ 200 nm e ~ 44 mV para 61 mV, respectivamente) . A melhora mais promissora foi observada no Pdl. Pode ser possível produzir lipossomas com Pdl tão pequenos quanto 0,03 em certos TFR, o que torna esses CLs injetáveis no corpo humano (Harashima et al. 1994; Woodle, 1995). [71] No caso de LCs do tipo Stealth, o diâmetro médio, o Pdl e o potencial zeta foram de 168 ± 1 nm, 0,08 ± 0,03 e 57,0 ± 1,8 mV, respectivamente . As distribuições de tamanho por intensidade e volume de LCs convencionais e do tipo Stealth (Figura 5) indicaram a presença de uma população tipica de lipossomas e na ausência de outros picos menores (que poderiam indicar a formação de micelas) . Além disso, o potencial zeta dos LCs do tipo Stealth foi relativamente menor que o potencial zeta dos LCs convencionais produzidos nas mesmas FRR e TFR. Este comportamento sugere a formação adequada de lipossomas, e no caso de LC do tipo Stealth, o conjugado de DSPE-PEG (2000) foi apropriadamente inserido na estrutura da bicamada de lipossomas sem qualquer formação de micelas. Outra mudança interessante foi observada no diâmetro médio. LCs do tipo Stealth foram aproximadamente 30 nm menores que os convencionais, que podem ser causados pela inserção de PEG. Em seguida, variou-se os TFRs entre 120,12 e 1250 pL / min; no entanto, não se observou nenhuma mudança significativa nas propriedades fisico-quimicas de LCs convencionais e do tipo Stealth. [70] To investigate the mixing effects of CA-MD (3 entries) on the physicochemical properties of conventional and Stealth LCs, changes were made to the system's FRR. The FRR was reduced from 10 to 1 (this means that the ethanol content at the end of the microfluidic device increased), maintaining the flow configuration (Figure S2-A), obtaining promising results in relation to the diameter, Pdl and zeta potential. Initially, the same TFR used on the D-MD (120.12 pL / min) was tested to confirm that the FRR had a significant effect on these properties. DLS results for conventional and Stealth LC have been significantly improved. In this TFR, the average diameter, Pdl and zeta potential of conventional LCs were 200 ± 14 nm, 0.120 ± 0.008 and 61.3 ± 2.7 mV, respectively. Comparing with conventional LCs produced in D-MD (FRR 10), the CLs produced by CA-MD were approximately 50 nm larger in size and 6 mV higher in zeta potential, while Pdl showed no significant difference. Compared with the properties of conventional LCs produced by CA-MD obtained in FRR 10, the average diameter and zeta potential of conventional LCs in FRR 1 increased significantly (from ~ 110 nm to ~ 200 nm and ~ 44 mV to 61 mV, respectively ). The most promising improvement was seen in Pdl. It may be possible to produce liposomes with Pdl as small as 0.03 in certain TFR, which makes these CLs injectable into the human body (Harashima et al. 1994; Woodle, 1995). [71] In the case of LCs of the Stealth type, the average diameter, the Pdl and the zeta potential were 168 ± 1 nm, 0.08 ± 0.03 and 57.0 ± 1.8 mV, respectively. The size distributions by intensity and volume of conventional and Stealth type LCs (Figure 5) indicated the presence of a typical population of liposomes and in the absence of other smaller peaks (which could indicate the formation of micelles). In addition, the zeta potential of Stealth-type LCs was relatively less than the zeta potential of conventional LCs produced in the same FRR and TFR. This behavior suggests the adequate formation of liposomes, and in the case of LC of the Stealth type, the DSPE-PEG conjugate (2000) was properly inserted into the structure of the liposome bilayer without any formation of micelles. Another interesting change was observed in the average diameter. Stealth-type LCs were approximately 30 nm smaller than the conventional ones, which can be caused by the insertion of PEG. Then, the TFRs were varied between 120.12 and 1250 pL / min; however, there was no significant change in the physicochemical properties of conventional and Stealth type LCs.
[72] Além da melhora significativa nas propriedades fisico-quimicas das LCs convencionais e do tipo Stealth produzidos na FRR 1, a concentração lipidica final de LCs também aumentou. A concentração final de lipídeos de LC era 2.27 mM em LCs produzidos em D-MD e CA-MD com 3 entradas operando em FRR 10; no entanto, no FRR 1, a concentração aumentou para 12,5 mM. Além disso, o CA-MD pode operar a TFR de 1500 pL / min sem qualquer alteração nas propriedades físico-químicas para ambas as estruturas lipídicas LCs e Stealth-LCs. Desta forma, a operação com em FRR 1 aumentar a produtividade mássica (g.mL-1.min-1) cerca de 70 vezes (5,5 vezes devido ao aumento da concentração "12,5 / 2,21" e 12,5 vezes devido ao aumento do TFR, 1500/120) em comparação ao D-MD. No entanto, embora essa diminuição no FRR de 10 para 1 tenha resultado em uma maior concentração lipidica final, essa situação também causou um aumento significativo na quantidade total de solvente orgânico (etanol) na solução final (de 9,09 para 50%), é uma preocupação para aplicações biológicas. Deve-se ressaltar que para análise de DLS, todas os lipossomas produzidos foram diluído em águas, atingindo valores equivalentes aos utilizados para medir CLs D-MD. Este procedimento foi aplicado, pois sabes-se que o aumento na concentração de etanol pode alterar o diâmetro médio dos lipossomas . [72] In addition to the significant improvement in the physicochemical properties of conventional and Stealth-type LCs produced in FRR 1, the final lipid concentration of LCs also increased. The final concentration of LC lipids was 2.27 mM in LCs produced in D-MD and CA-MD with 3 inputs operating in FRR 10; however, in FRR 1, the concentration increased to 12.5 mM. In addition, CA-MD can operate the TFR of 1500 pL / min without any change in physicochemical properties for both lipid structures LCs and Stealth-LCs. In this way, the operation with FRR 1 increases mass productivity (g.mL -1 .min -1 ) about 70 times (5.5 times due to increased concentration "12.5 / 2.21" and 12.5 times due to increased TFR, 1500 / 120) compared to D-MD. However, although this decrease in FRR from 10 to 1 resulted in a higher final lipid concentration, this situation also caused a significant increase in the total amount of organic solvent (ethanol) in the final solution (from 9.09 to 50%), it is a concern for biological applications. It should be noted that for the analysis of DLS, all liposomes produced were diluted in water, reaching values equivalent to those used to measure CLs D-MD. This procedure was applied, since it is known that the increase in the concentration of ethanol can change the average diameter of the liposomes.
[73] Na investigação envolvendo o D-MD, levantou-se a hipótese de que a FRR poderia influenciar significativamente a formação de LC, uma vez que o FRR 10 resultou em propriedades físico-químicas desfavoráveis e precipitação ao longo do canal. Desta forma, conduziu-se um conjunto de experimentos, utilizando o D-MD no qual o o FRR foi diminuído para 1 para confirmar se o FRR poderia melhorar as características dos LCs. Após a análise de DLS, observou-se que partículas semelhantes a micelas (menores que 50 nm) não aparecem nos gráficos de distribuição de tamanho (dados não mostrados) . No entanto, o diâmetro médio, Pdl, e o potencial zeta dos LCs do tipo Stealth ficaram em torno de 230 nm, 0,21 e 54 mV, respectivamente . Além disso, a intensidade e a distribuição de tamanho por volume confirmaram a presença de picos acima de 5000 nm, o que poderia indicar uma formação inadequada das partículas. Consequentemente, concluímos que o CA-MD na FRR 1 foi mais eficaz na síntese do LC do tipo Stealth em comparação com o D-MD na FRR 1, portanto. Desta forma, as investigações foram continuadas utilizando-se o dispositivo CA-MD. [73] In the investigation involving D-MD, the hypothesis was raised that FRR could significantly influence the formation of LC, since FRR 10 resulted in unfavorable physical-chemical properties and precipitation along the channel. In this way, a set of experiments was conducted, using the D-MD in which the FRR was decreased to 1 to confirm whether the FRR could improve the characteristics of the LCs. After DLS analysis, it was observed that micelle-like particles (less than 50 nm) do not appear in the size distribution graphs (data not shown). However, the mean diameter, Pdl, and the zeta potential of Stealth-type LCs were around 230 nm, 0.21 and 54 mV, respectively. In addition, the intensity and size distribution by volume confirmed the presence of peaks above 5000 nm, which could indicate an inadequate particle formation. Consequently, we conclude that CA-MD in FRR 1 was therefore more effective in synthesis of Stealth type LC compared to D-MD in FRR 1, therefore. Thus, investigations were continued using the CA-MD device.
[74] Em geral, a formação de nanopartículas é resultado de o processo de nanoprecipitação, que ocorre no contato entre as duas correntes de solvente e fase aquosa. No caso dos lipossomas, a formação é principalmente causada pela alteração da polaridade devido à mistura causada pela geometria do microcanal, que inclui as micropiscinas do CA- MD. Além disso, a área superficial da interface entre o solvente e as fases aquosas aumenta significativamente à medida que os fluidos são dobrados uns sobre os outros, resultando numa mistura caótica. A polaridade pode ser facilmente aumentada ao longo do microcanal, deviso ao processo intrínseco de mistura de etanol e água, favorecendo a formação dos lipossomas. Assim, a alteração do TFR bem como do FRR, que está diretamente associada à proporção entre fase aquoso e solvente, podem exercer grande influência na síntese dos lipossomas. A alteração do FRR muda a proporção etanol/água e por consequência leva a alteração da polaridade da mistura final, influenciando na autoagregação dos lipídeos em bicamadas A taxa de aumento de polaridade e o seu efeito na formação de lipossomas foram previamente demonstrados (Bally et al., 2012, Zhigaltsev et al., 2012). Além disso, observa-se que LCs convencionais e do tipo Stealth apresentaram tamanho médio mior em FRR 1 (~ 170 nm) em comparação com FRR 10 (~ 120 nm) . No FRR 10, a concentração final de etanol foi de cerca de 9,09%, resultando, portanto, numa redução da formação de lipossomas maiores devido à minimização da fusão de partículas e troca lipídica através do fenômeno de amadurecimento de Ostwald. Este fenômeno foi mostrado anteriormente para a produção de LC convencional usando o CA-MD (Kastner et al. 2014). Outra explicação para o aumento no tamanho usando CA-MD na FRR 1 é a presença de maior teor de etanol, pois sabe-se que o etanol, como solvente, interage fortemente com bicamadas fosfolipídicas na interface lipídio-água (composta principalmente de cabeça polar) e não no interior hidrocarbônico . Como consequência da incorporação de moléculas de etanol em bicamadas de vesículas, os lipossomas podem expandir-se (Barry e Gawrisch, 1994). [74] In general, the formation of nanoparticles is the result of the nanoprecipitation process, which occurs in contact between the two solvent streams and the aqueous phase. In the case of liposomes, the formation is mainly caused by the change in polarity due to the mixture caused by the geochannel of the microchannel, which includes the micropiscinas of the CA-MD. In addition, the surface area of the interface between the solvent and the aqueous phases increases significantly as the fluids are bent over each other, resulting in a chaotic mixture. The polarity can be easily increased along the microchannel, due to the intrinsic process of mixing ethanol and water, favoring the formation of liposomes. Thus, the alteration of the TFR as well as the FRR, which is directly associated with the ratio between aqueous phase and solvent, can have a great influence on the synthesis of liposomes. Changing the FRR changes the ethanol / water ratio and consequently leads to a change in the polarity of the final mixture, influencing the self-aggregation of lipids in bilayers. The rate of increase in polarity and its effect on the formation of liposomes were previously demonstrated (Bally et al ., 2012, Zhigaltsev et al., 2012). In addition, it is observed that conventional and Stealth-type LCs showed a larger mean size in FRR 1 (~ 170 nm) compared to FRR 10 (~ 120 nm). In FRR 10, the final concentration of ethanol was about 9.09%, resulting, therefore, in a reduction in the formation of larger liposomes due to the minimization of particle fusion and lipid exchange through the Ostwald ripening phenomenon. This phenomenon has been shown previously for the production of conventional LC using CA-MD (Kastner et al. 2014). Another explanation for the increase in size using CA-MD in FRR 1 is the presence of a higher ethanol content, as it is known that ethanol, as a solvent, interacts strongly with phospholipid bilayers at the lipid-water interface (composed mainly of polar head ) and not in the hydrocarbon interior. As a consequence of the incorporation of ethanol molecules in vesicle bilayers, liposomes can expand (Barry and Gawrisch, 1994).
[75] Outra possível razão para a alteração significativa nas propriedades físico-químicas de ambos lipossomas em diferentes FRRs é a distância (Wf) entre 2 fases aquosas laterais e a fase central do solvente. Para FRR 10, Wf é extremamente pequeno e isso indica um contato intenso entre duas correntes até que as partículas entrem nas primeiras subunidades do canal central semelhantes a espinha de peixe, que foram colocadas a uma distância de 4 mm da seção de cruzamento das entradas central e duas laterais. No entanto, para FRR 1, Wf é consideravelmente maior, uma vez que a proporção de etanol é maior, e há menos contato entre dois fluxos antes de entrar em unidades semelhantes a espinha de peixe. Até o início da mistura de advecção caótica, a difusão ao longo da distância de 4 mm pode ser considerada predominante. Jahn et al. 2010 investigou o efeito do FRR em dispositivos microfluídicos baseados em difusão e à medida que aumentavam FRR, a interface de contato entre o solvente e a fase aquosa se tornou mais próxima e resultou em uma mistura mais rápida e consequentemente lipossomas menores. Os achados sobre o efeito da FRR estão em acordo com estudos anteriores (Kastner et al 2015; Zook e Vreeland, 2010; Jahn et al. 2010), no entanto, a advecção caótica como mistura predominante é empregada neste estudo. [75] Another possible reason for the significant change in the physicochemical properties of both liposomes in different FRRs is the distance (W f ) between 2 lateral aqueous phases and the central solvent phase. For FRR 10, W f is extremely small and this indicates an intense contact between two currents until the particles enter the first subunits of the central channel similar to herringbone, which were placed at a distance of 4 mm from the crossing section of the entrances central and two sides. However, for FRR 1, W f is considerably higher, since the proportion of ethanol is higher, and there is less contact between two flows before entering fishbone-like units. Until the beginning of the chaotic advection mixture, the diffusion along the distance of 4 mm can be considered predominant. Jahn et al. 2010 investigated the effect of FRR on diffusion-based microfluidic devices and as they increased FRR, the contact interface between the solvent and the aqueous phase became became closer and resulted in faster mixing and consequently smaller liposomes. The findings on the FRR effect are in agreement with previous studies (Kastner et al 2015; Zook and Vreeland, 2010; Jahn et al. 2010), however, chaotic advection as the predominant mixture is used in this study.
[76] Como foi mostrado anteriormente, a concentração final de lipídios dos LCs produzidos no CA-MD (3 entradas) em FRR 10 e FRR 1 foi de 2,27 e 12,5 mM, respectivamente . O aumento na concentração de fosfolipídios no sistema microfluídico é outro fator crítico que pode influenciar a formação adequada de lipossomas em FRR 1. Para a produção microfluídica baseada em difusão (D-MD) , esse aumento pode prejudicar a eficácia da difusão, pois pode interferir na formação de vários fragmentos de bicamadas e, consequentemente, formam vesículas lipídicas maiores e polidispersas . No entanto, na produção microfluídica baseada em advecção caótica, esse aumento não afetou negativamente a formação de lipossomas. O FRR baixo aumenta Wf na entrada do canal principal (antes de começar advecção caótica) , minimizando o contato entre o etanol e a fase aquosa. Em seguida, inicia-se a mistura caótica de advecção e a alta porcentagem de etanol pode provavelmente controlar a formação do fragmento das bicamadas, devido a mudanças na polaridade, favorecendo a formação de lipossomas com características adequadas. Mas, a concentração de etanol deve ser mantida até um determinado valor, uma vez que a quantidade excessiva de solvente pode-se incorporar nas bicamadas das vesículas e assim simplesmente rompe-las. [76] As previously shown, the final lipid concentration of the LCs produced in the CA-MD (3 entries) in FRR 10 and FRR 1 was 2.27 and 12.5 mM, respectively. The increase in the concentration of phospholipids in the microfluidic system is another critical factor that can influence the adequate formation of liposomes in FRR 1. For diffusion-based microfluidic production (D-MD), this increase can impair the diffusion effectiveness, as it can interfere in the formation of several bilayer fragments and, consequently, form larger and polydispersed lipid vesicles. However, in microfluidic production based on chaotic advection, this increase did not negatively affect the formation of liposomes. The low FRR increases W f at the entrance of the main channel (before chaotic advection begins), minimizing the contact between ethanol and the aqueous phase. Then, the chaotic advection mixture starts and the high percentage of ethanol can probably control the formation of the fragment of the bilayers, due to changes in polarity, favoring the formation of liposomes with adequate characteristics. However, the concentration of ethanol must be maintained up to a certain value, since the excessive amount of solvent can be incorporated into the bilayers of the vesicles and thus simply break them.
[77] Assim, a fim de melhorar o sistema, o dispositivo microfluídico baseado em advecção caóticac (CA-MS) foi adaptado as mesmas condições de processo para gerar o CA-MD com 2 entradas. A proporção solvente: água foi mantida idêntica ao obtido anteriormente em 1:1. Assim, diferentes TFRs variando de 100 a 1250 pL / min foram testados. A análise do tamanho de partículas por DLS mostrou resultados semelhantes aos obtidos com CA-MD de 3 entradas, com ao mesmoFRR 1. Para todos os TFRs testados, LCs convencionais apresentaram diâmetro médio, Pdl e, potencial zeta de 163 + 13 nm, 0,13 + 0,03 e 62 + 1 mM, respectivamente, enquanto os LCs do tipo Stealth apresentaram diâmetro médio, Pdl e, potencial zeta de 153 + 5 nm, 0,11 + 0,01 e 60 + 2 mV, respectivamente. Após a análise do teste t, como esperado, não houve diferença estatística entre LCs convencionais e do tipo Stealth, produzidos via CA-MD (3 entradas) ou CA-MD (2 entradas) . Embora o potencial zeta fosse ligeiramente menor em LC do tipo Stealth, a diferença não foi suportada estatisticamente. Além disso, não se observou nenhum pico que pudesse caracterizar estruturas correspondentes a micelas (ordem de 10 - 30 nm) , sugerindo a formação adequada de lipossomas. O diâmetro das partículas por tanto intensidade como por volume foram semelhantes aos LCs obtidos com o CA-MD com 3 entradas na FRR 1. A produção de LCs convencionais no CA-MD foi previamente demonstrada por Kastner et al. 2015; no entanto, os lipossomas produzidos foram caracterizados apenas pela técnica de DLS, não apresentando dados associados à distribuição de tamanho por intensidade, volume ou número. Os LCs convencionais apresentaram tamanho médio, Pdl e potencial zeta de aprox. 180 nm, 0,2 e 60 mV, respectivamente, usando a proporção de solvente/fase aquosa de 1. Diferente de nosso estudo, eles usaram a formulação fosfolipidica DOTAP / DOPE. De acordo com o estudo anterior (Koltover, 1998), a formulação DOTAP / DOPE não permite a formação adequada de bicamadas lipidicas, pois pode resultar na coexistência de ambas as fases lamelar (La) e hexagonal invertida (Hn) , o que pode causar instabilidade dos lipossomas. Esta presença de La e Hn é relevante para aplicações farmacêuticas, uma vez que essa variação leva a uma interação diferenciada nas células, consequentemente, criando uma variação considerável. No mesmo estudo de Koltover, 1998, a inclusão de EPC (50 mol%) resultou na formação exclusiva de bicamadas lipidicas caracterizando a formação de lipossomas. Portanto, embora o estudo de Kastner et al., 2015 declare que são formados lipossomas, não há evidência cientifica que suporte sua afirmação. O presente certificado de adição relata que é possível produzir LCs sem a presença da fase hexagonal inversa (Hn) . Além disso, esses resultados foram comparados ao processo convencional baseado em difusão (D-MD) . Além disso, a solução tecnológica ora proposta mostra a capacidade de produzir LC do tipo Stealth. [77] Thus, in order to improve the system, the device microfluidic based on chaotic advection (CA-MS) was adapted to the same process conditions to generate the CA-MD with 2 inputs. The solvent: water ratio was kept identical to that obtained previously in 1: 1. Thus, different TFRs ranging from 100 to 1250 pL / min were tested. The particle size analysis by DLS showed results similar to those obtained with 3-input CA-MD, with the same FRR 1. For all TFRs tested, conventional LCs showed average diameter, Pdl and, zeta potential of 163 + 13 nm, 0 , 13 + 0.03 and 62 + 1 mM, respectively, while LCs of the Stealth type presented mean diameter, Pdl and, zeta potential of 153 + 5 nm, 0.11 + 0.01 and 60 + 2 mV, respectively. After t-test analysis, as expected, there was no statistical difference between conventional and Stealth type LCs, produced via CA-MD (3 entries) or CA-MD (2 entries). Although the zeta potential was slightly lower in LC of the Stealth type, the difference was not supported statistically. In addition, no peak was observed that could characterize structures corresponding to micelles (order of 10 - 30 nm), suggesting the adequate formation of liposomes. The particle diameter by both intensity and volume were similar to the LCs obtained with the CA-MD with 3 entries in the FRR 1. The production of conventional LCs in the CA-MD was previously demonstrated by Kastner et al. 2015; however, the liposomes produced were characterized only by the DLS technique, with no data associated with size distribution by intensity, volume or number. The conventional LCs presented average size, Pdl and zeta potential of approx. 180 nm, 0.2 and 60 mV, respectively, using the proportion of solvent / aqueous phase of 1. Unlike our study, they used the phospholipid formulation DOTAP / DOPE. According to the previous study (Koltover, 1998), the DOTAP / DOPE formulation does not allow the proper formation of lipid bilayers, as it can result in the coexistence of both the lamellar (L a ) and inverted hexagonal (Hn) phases, which can cause liposome instability. This presence of L a and Hn is relevant for pharmaceutical applications, since this variation leads to a different interaction in the cells, consequently, creating a considerable variation. In the same study by Koltover, 1998, the inclusion of EPC (50 mol%) resulted in the exclusive formation of lipid bilayers characterizing the formation of liposomes. Therefore, although the study by Kastner et al., 2015 states that liposomes are formed, there is no scientific evidence to support their claim. This certificate of addition reports that it is possible to produce LCs without the presence of the reverse hexagonal phase (Hn). In addition, these results were compared to the conventional diffusion-based process (D-MD). In addition, the technological solution now proposed shows the ability to produce LC of the Stealth type.
[78] Diferente da produção de LC convencional, 1% dos conjugados de DSPE-PEG (2000) foi introduzido no sistema juntamente com outros fosfolipídios . De acordo com os resultados de potencial zeta, a inclusão do lipídeo DSPE- PEGgerou uma diminuição de ~ 5 mV, comparado aos LCs convencionais, o que pode indicar a presença de PEG na superfície externa do LC. [78] Unlike conventional LC production, 1% of the DSPE-PEG conjugates (2000) was introduced into the system along with other phospholipids. According to the results of zeta potential, the inclusion of the lipid DSPE-PEG generated a decrease of ~ 5 mV, compared to conventional LCs, which may indicate the presence of PEG on the external surface of the LC.
[79] Na maioria dos casos, a inserção de DSPE-PEG (2000) pode diminuir significativamente a carga de superfície dos lipossomas devido à ação Sstealth (Frõhlich, 2012). No entanto, esta diminuição também depende da quantidade de PEG incorporada na superfície dos LCs, bem como a formulação de fosfolipídeo e o processo utilizado para incorporação de PEG em lipossomas. Até agora, as concretizações do presente Certificado de Adição foram conduzidos com l%molar de DSPE- PEG. Para melhor compreender o efeito do polímero de PEG incorporado nos LCs, os experimentos foram repetidos com o lipídeo DSPE-PEG à concentração de 5%. Primeiramente, realizou-se o experimento utilizando o CA-MD (3 entradas) com FRR 10, e os resultados foram semelhantes semelhantes aos LCs e LCs do tipo Stealth com 1% de DSPE-PEG) . Os resultados da distribiução de tamanhos (DLS) mostraram diferentes picos abaixo de 10 nm, possivelmente pertencentes a estruturas semelhantes a micelas. À medida que se diminuiFRR de 10 para 1 no CA-MD (3 entradas) , os resultados de tamanho, mais uma vez, foram significativamente melhorados. O tamanho médio, Pdl e potencial zeta dos LCs do tipo SStealth (5% PEG) foram 145,1 ± 1,5 nm, 0,11 ± 0,01 e 61,0 ± 1,8 mV, respectivamente . A análise estatística não mostrou diferença significativa entre os LCs do tipo Stealth produzidos no mesmo sistema com 1% de PEG. No entanto, quando foi testado o CA-MD (2 entradas) , LCs do tipo Stealth apresentaram tamanho médio de 144 ± 3 nm, Pdl de 0,12 ± 0,01 e potencial zeta de 51,4 + 4,4 mV. Comparando com o CA-MD (3 entradas) em FRR 1, o tamanho e o Pdl não mudaram; no entanto, observou-se uma diminuição significativa no potencial zeta após a inserção de 5% de PEG. As densidades de carga superficial dos LCs convencional e do tipo Stealth foram 61,3 ± 2,7 mV e 62 ± 1 mM, respectivamente. Com a inclusão de 5% de conjugados de DSPE-PEG (2000) , a densidade de carga superficial diminuiu para 51,4 ± 4,4 mV. Este resultado mostra que o aumento da quantidade de DSPE-PEG (2000) utilizada para produzir LCs do tipo Stealth resultou na incorporação destas moléculas na superfície externa. [79] In most cases, the insertion of DSPE-PEG (2000) can significantly decrease the surface load of liposomes due to the Sstealth action (Frõhlich, 2012). However, this decrease also depends on the amount of PEG incorporated into the surface of the LCs, as well as the phospholipid formulation and the process used for incorporating PEG into liposomes. So far, the achievements of this Certificate of Addition have been conducted with 1 mol% of DSPE-PEG. To better understand the effect of the PEG polymer incorporated in the LCs, the experiments were repeated with the lipid DSPE-PEG at a concentration of 5%. First, the experiment was carried out using the CA-MD (3 entries) with FRR 10, and the results were similar to the LCs and LCs of the Stealth type with 1% DSPE-PEG). The results of the size distribution (DLS) showed different peaks below 10 nm, possibly belonging to micelle-like structures. As the FR-10 was reduced from 10 to 1 on the CA-MD (3 entries), the size results, again, were significantly improved. The mean size, Pdl and zeta potential of the SStealth type LCs (5% PEG) were 145.1 ± 1.5 nm, 0.11 ± 0.01 and 61.0 ± 1.8 mV, respectively. Statistical analysis showed no significant difference between LCs of the Stealth type produced in the same system with 1% PEG. However, when the CA-MD (2 inputs) was tested, LCs of the Stealth type had an average size of 144 ± 3 nm, Pdl of 0.12 ± 0.01 and zeta potential of 51.4 + 4.4 mV. Comparing with the CA-MD (3 inputs) in FRR 1, the size and the Pdl have not changed; however, a significant decrease in zeta potential was observed after the insertion of 5% PEG. The surface charge densities of conventional and Stealth LCs were 61.3 ± 2.7 mV and 62 ± 1 mM, respectively. With the inclusion of 5% of DSPE-PEG conjugates (2000), the surface charge density decreased to 51.4 ± 4.4 mV. This result shows that the increase in the amount of DSPE-PEG (2000) used to produce LCs of the Stealth type resulted in the incorporation of these molecules on the outer surface.
[80] Wolfram et al. (2014) incorporaram PEG (1%) em sua formulação lipossomal aniônica (PC, colesterol, DPPEmPEG (2000) com razão molar de 6: 3: 1) e obtiveram uma diminuição de ~ 5 mV no valor de potencial zeta. Resultados semelhantes foram mostrados por Yang et al. (2007). Eles produziram lipossomas convencionais utilizando S100PC / CH (razão molar 90:10) e o lipossoma PEGuilado composto por S100PC / CH / MPEG (2000) -DSPE (proporção molar 90: 10: 5). Os lipossomas convencionais tinham cerca de zero carga superficial, enquanto a inserção de PEG (5%) reduziu o potencial por 20 mV. Além disso, observaram que a solução líquida em que os lipossomas estão suspensos também afeta a carga superficial dos lipossomas. O potencial zeta dos lipossomas PEGuilados variou em ± 2-4 mV dependendo da presença da solução de Tween 80. Curiosamente, os resultados foram contrários no estudo realizado por Kim et al. (2010). LCs convencionais compostos de DOTAP / DOPE / Chol / PEG na proporção de 75: 20: 5: 0 tinham potencial zeta de 15,4 + 7,5 mV, enquanto a inserção de DSPE-PEG (2000) (70: 20: 5: 5) aumentou o potencial zeta para 25,3 ± 5,7 mV. Nesta formulação, o DOTAP é o único fosfolipídio que fornece propriedades catiônicas aos LCs. Portanto, a redução de 5% na concentração de DOTAP substituída pelos conjugados de DSPE-PEG (2000) também deve diminuir a densidade de carga de superfície dos LCs, e com a inserção adequada de PEG na superfície, o potencial zeta total deve ter diminuído ainda mais. Contudo, o potencial inesperadamente aumentou.
Figure imgf000041_0001
[80] Wolfram et al. (2014) incorporated PEG (1%) in their anionic liposomal formulation (PC, cholesterol, DPPEmPEG (2000) with a 6: 3: 1 molar ratio) and obtained a decrease of ~ 5 mV in the zeta potential value. Similar results were shown by Yang et al. (2007). They produced conventional liposomes using S100PC / CH (90:10 molar ratio) and the PEGylated liposome composed of S100PC / CH / MPEG (2000) -DSPE (90: 10: 5 molar ratio). Conventional liposomes had about zero surface charge, while PEG insertion (5%) reduced the potential by 20 mV. In addition, they observed that the liquid solution in which the liposomes are suspended also affects the surface charge of the liposomes. The zeta potential of PEGylated liposomes varied by ± 2-4 mV depending on the presence of the Tween 80 solution. Interestingly, the results were contrary in the study by Kim et al. (2010). Conventional LCs composed of DOTAP / DOPE / Chol / PEG in the proportion of 75: 20: 5: 0 had zeta potential of 15.4 + 7.5 mV, while the insertion of DSPE-PEG (2000) (70: 20: 5 : 5) increased the zeta potential to 25.3 ± 5.7 mV. In this formulation, DOTAP is the only phospholipid that provides cationic properties to LCs. Therefore, the 5% reduction in the concentration of DOTAP replaced by the DSPE-PEG conjugates (2000) should also decrease the surface charge density of the LCs, and with the proper insertion of PEG on the surface, the zeta potential total must have decreased further. However, the potential unexpectedly increased.
Figure imgf000041_0001
[81] Como apresentado anteriormente, a porcentagem final de etanol presente na formulação de LC foi de 50% em CA-MD (3 entradas, FRR 1) e CA-MD (2 entradas) , o que é considerado uma limitação significativa para futuras aplicações biológicas. Na maioria das vezes, a remoção de etanol da solução lipídica final é conduzida pelo processo de diálise. No entanto, a diálise é um processo demorado (dependendo do volume final da solução, pode ser de até dias) e o trabalho necessário para realizar com sucesso. Os solventes do tipo etanol são normalmente removidos da solução final via diálise. No entanto, para produções industriais, a diálise não é um processo viável, uma vez que requer um alto volume de solução de diálise, bem como pesquisadores qualificados. Portanto, também no presente Certificado de Adição é proposto uma nova solução tecnológica para a remoção eficiente do etanol da solução lipossomal. Para tanto, foi utilizado um concentrador de centrífuga a vácuo a baixa pressão e temperatura ambiente como um processo alternativo de destilação. Resumidamente, o concentrador de centrífuga a vácuo usa uma combinação de força centrífuga, vácuo e calor para acelerar a taxa de evaporação de múltiplas amostras pequenas. No entanto, este processo pode alterar significativamente a estrutura ou morfologia e até mesmo atividades biológicas de amostras sensíveis, como pDNA e siRNA. Portanto, todas as análises físico-químicas, estruturais e morfológicas devem ser avaliadas para controlar se houve alguma alteração nessas propriedades. Por essa razão, produziu-seas dispersões lipossomis e avaliou- se o efeito do processamento no concentrador de centrífuga a vácuo para remover o etanol. Assim, considerando as taxas de evaporação do etanol e da água residual após a remoção do etanol, a porcentagem de etanol remanescente na dispersão lipossomal foi insignificante e aceitável para estudos posteriores de transfecção. Porém, não se observou alterações significativas nas propriedades físico-químicas (Tabela 1) . [81] As previously presented, the final percentage of ethanol present in the LC formulation was 50% in CA-MD (3 entries, FRR 1) and CA-MD (2 entries), which is considered a significant limitation for future biological applications. Most of the time, the removal of ethanol from the final lipid solution is conducted by the dialysis process. However, dialysis is a lengthy process (depending on the final volume of the solution, it can be up to days) and the work required to perform it successfully. Ethanol-type solvents are normally removed from the final solution via dialysis. However, for industrial productions, dialysis is not a viable process, as it requires a high volume of dialysis solution, as well as qualified researchers. Therefore, also in this Certificate of Addition, a new technological solution is proposed for the efficient removal of ethanol from the liposomal solution. For that, a vacuum centrifuge concentrator at low pressure and room temperature was used as an alternative distillation process. Briefly, the vacuum centrifuge concentrator uses a combination of centrifugal force, vacuum and heat to accelerate the evaporation rate of multiple small samples. However, this process can significantly change the structure or morphology and even biological activities of sensitive samples, such as pDNA and siRNA. Therefore, all physical-chemical, structural and morphological analyzes must be evaluated to control whether there have been any changes in these properties. Per for this reason, liposomal dispersions were produced and the effect of processing in the vacuum centrifuge concentrator to remove ethanol was evaluated. Thus, considering the evaporation rates of ethanol and residual water after ethanol removal, the percentage of ethanol remaining in the liposomal dispersion was insignificant and acceptable for further transfection studies. However, there were no significant changes in physical and chemical properties (Table 1).
Tabela 1: Comparação da propriedades físico-químicas dos lipossomas antes e após a remoção de etanol via concentrador de centrífuga a vácuo. LCs convencionais e LCs do tipo Stealth (1% DSPE-PEG (2000 ) ) foram obtidos em CA-MD, FRR 1 com 2 entradas. Table 1: Comparison of the physical and chemical properties of liposomes before and after ethanol removal via vacuum centrifuge concentrator. Conventional LCs and Stealth LCs (1% DSPE-PEG (2000)) were obtained on CA-MD, FRR 1 with 2 inputs.
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000042_0001
Figure imgf000043_0001
[82] Pode-se observar na Tabela 1 que o tamanho médio dos LCs convencionais e do tipo Stealth foi quase similar logo após a produção nas entradas CA-MD com 2 entradas. A diferença no tamanho médio após o processo de remoção de etanol não foi estatisticamente significativa. As mudanças mais significativas foram observadas em Pdl e potencial zeta. Pdl aumentou de 0,1 para 0,24 para LCs do tipo Stealth. Embora este aumento possa ser estatisticamente significativo no caso de LC do tipo Stealth, ainda é aceitável para estudos de transfecção. O potencial zeta dos LCs convencionais produzidos neste micromisturador é de cerca de 60 mV. A inserção de DSPE-PEG (2000) envolve modificação de superfície, portanto, diminui o potencial zeta de sistemas coloidais. Mas observamos uma diminuição adicional na carga de superfície dos LCs após o emprego de concentrador de centrífuga a vácuo. Essa situação poderia ser vantajosa, já que um potencial muito alto pode causar um efeito tóxico nas células animais (Frõhlich, 2012). [82] It can be seen in Table 1 that the average size of conventional and Stealth LCs was almost similar shortly after production on the CA-MD inputs with 2 inputs. The difference in the average size after the ethanol removal process was not statistically significant. The most significant changes were observed in Pdl and zeta potential. Pdl increased from 0.1 to 0.24 for Stealth type LCs. Although this increase may be statistically significant in the case of LC of the Stealth type, it is still acceptable for transfection studies. The zeta potential of conventional LCs produced in this micro mixer is about 60 mV. The insertion of DSPE-PEG (2000) involves surface modification, therefore, decreases the zeta potential of colloidal systems. But we observed an additional decrease in the surface load of the LCs after using a vacuum centrifuge concentrator. This situation could be advantageous, since a very high potential can cause a toxic effect on animal cells (Frõhlich, 2012).
[83] Tempo e taxa de remoção do etanol são fatores essenciais que afetam a velocidade de evaporação do etanol. Como mencionado anteriormente, a evaporação do etanol ocorre mais rapidamente que a da água. Pesquisas anteriores (Balbino et al. 2013) demonstraram que certa quantidade de resíduo de etanol (cerca de 8%) na solução final de LC, e após nossos estudos biológicos, não houve diminuição na eficiência de transfecção testada com a formulação final com teor de etanol. Além disso, a formulação de LC não apresentou citotoxicidade significativa para as células. À medida que continuamos a empregar o concentrador de centrífuga a vácuo, a solução de LC começa a perder uma quantidade significativa de água e torna-se mais concentrada, o que altera as propriedades dos lipossomas. Portanto, é essencial interromper o processo de concentrador de centrífuga a vácuo no tempo para minimizar o efeito do processo de remoção de etanol nos LCs. Por esta razão, uma solução de etanol (100%) com 1 mL de volume em um tubo de Eppendorf contendo metade do volume total das amostras de LC (2 mL = 1 mL de água + 1 mL de etanol) para ser passado através do processo de remoção de etanol foi colocado em concentrador de centrífuga a vácuo e, quando 1 mL de solução de etanol foi completamente evaporado, o concentrador de centrífuga a vácuo foi parado e as amostras foram retiradas para análise posterior. Essa otimização simples foi considerada suficiente para obter LCs com alterações mínimas em suas propriedades. [83] Ethanol removal time and rate are essential factors that affect the evaporation rate of ethanol. As mentioned earlier, evaporation of ethanol occurs more quickly than that of water. Previous research (Balbino et al. 2013) has shown that a certain amount of ethanol residue (about 8%) in the final LC solution, and after our biological studies, there was no decrease in the transfection efficiency tested with the final formulation with a content of ethanol. Furthermore, the LC formulation did not show significant cytotoxicity to cells. As we continue to use the vacuum centrifuge concentrator, the LC solution begins to lose a significant amount of water and becomes more concentrated, which alters the properties of the liposomes. Therefore, it is essential to interrupt the vacuum centrifuge concentrator process in time to minimize the effect of the ethanol removal process on LCs. For this reason, an ethanol solution (100%) with 1 ml volume in an Eppendorf tube containing half the total volume of the LC samples (2 ml = 1 ml of water + 1 ml of ethanol) to be passed through the The ethanol removal process was placed in a vacuum centrifuge concentrator and, when 1 ml of ethanol solution was completely evaporated, the vacuum centrifuge concentrator was stopped and the samples were removed for further analysis. This simple optimization was considered sufficient to obtain LCs with minimal changes in their properties.
Análise de espalhamento de raios X a baixos ângulos (SAXS) X-ray scattering analysis at low angles (SAXS)
[84] O SAXS é usado para estudar a estrutura de uma variedade de materiais biológicos. Ele fornece informações sobre a forma, tamanho e organização de coloides, cristais líquidos, polímeros e muitas outras estruturas. Uma vez que os lipossomas são vesículas esféricas que consistem em bicamadas fosfolipídicas com propriedades anfifílicas, o seu arranjo na presença de solução aquosa é importante para formar lipossomas com estrutura bem definida. Este arranjo pode variar significativamente dependendo do método de fabricação, bem como do tipo de fosfolipídios usados na formulação. A caracterização do SAXS permite o acesso, por meio de modelagem, à densidade eletrónica através da membrana, fornecendo informações sobre o perfil da bicamada e a lamelaridade, entre outros parâmetros estruturais. A estrutura final dos complexos lipossoma / DNA afetará a internalização celular e, consequentemente, a eficiência da transfecção . [84] SAXS is used to study the structure of a variety of biological materials. It provides information about the shape, size and organization of colloids, liquid crystals, polymers and many other structures. Since liposomes are spherical vesicles that consist of phospholipid bilayers with amphiphilic properties, their arrangement in the presence of aqueous solution is important to form liposomes with a well-defined structure. This arrangement can vary significantly depending on the method of manufacture, as well as the type of phospholipids used in the formulation. The characterization of SAXS allows access, through modeling, to the electronic density through the membrane, providing information about the bilayer profile and lamellarity, among other structural parameters. The final structure of the liposome / DNA complexes will affect cell internalization and, consequently, the efficiency of transfection.
[85] Inicialmente, foi analisado o efeito do misturador microfluidico baseado em advecção caótico na estrutura de lipossomas catiônicos com / sem DSPE-PEG (2000) . Não foi encontrado na literatura estudos para explorar a análise estrutural de lipossomas produzidos neste microdispositivo operado com advecção caótica. A Figura 6A mostra curvas de SAXS para LCs com e sem lipidos PEGuilados produzidos em microdispositivos CA-MD com 2 e 3 entradas (2 configurações de fluxo diferentes)". A partir de curvas ajustadas (não mostradas) usando um modelo descrito em outro estudo [Balbino et al. 2012 e Balbino et al. 2013], é possível inferir que esses sistemas são unilamelares (> 99%) , e há uma pequena diferença entre seu perfil eletrónico de densidade. TAvaliou-se ambém o efeito do concentrador de centrífuga a vácuo, utilizado para remover parcialmente ou completamente o etanol da formulação final dos lipossomas. A Figura 6B mostra curvas SAXS para os mesmos sistemas após a remoção de etanol. Nas curvas, é possível observar uma diferença razoável nos perfis das curvas quando comparadas às obtidas antes da remoção do etanol. Essas diferenças estão relacionadas à saida do etanol da bicamada, que altera a densidade eletrónica da bicamada (fator de forma de bicamada) , como pode ser inferido a partir de ajustes de curva (não mostrados) . De acordo com a modelagem, também foi possível constatar que a lamelaridade não sofreu alterações significativas (os sistemas mantiveram a multilamelidade abaixo de 1%), mostrando que os sistemas são estáveis quanto a essa propriedade mesmo após o uso do concentrador de centrífuga a vácuo. [85] Initially, the effect of the microfluidic mixer based on chaotic advection on the structure of cationic liposomes with / without DSPE-PEG (2000) was analyzed. No studies were found in the literature to explore the structural analysis of liposomes produced in this microdevice operated with chaotic advection. Figure 6A shows SAXS curves for LCs with and without PEGylated lipids produced in CA-MD microdevices with 2 and 3 inputs (2 different flow configurations) ". From fitted curves (not shown) using a model described in another study [Balbino et al. 2012 and Balbino et al. 2013], it is possible to infer that these systems are unilamellar (> 99%), and there is a small difference between their electronic density profile. The effect of the centrifuge concentrator was also evaluated vacuum, used to partially or completely remove ethanol from the final liposome formulation Figure 6B shows SAXS curves for the same systems after ethanol removal In the curves, it is possible to observe a reasonable difference in the curve profiles when compared to those obtained before ethanol removal. These differences are related to the ethanol leaving the bilayer, which changes the electronic density of the bilayer (bilayer form factor), as can be inferred from adjustments in curve (not shown). According to the modeling, it was also possible to verify that the lamellarity did not undergo significant changes (the systems maintained the multilamelity below 1%), showing that the systems are stable regarding this property even after the use of the vacuum centrifuge concentrator.
Caracterização morfológica de lipossomas catiônicos Morphological characterization of cationic liposomes
[86] A lamelaridade lipossómica (uni- ou multi-) tem uma grande importância na eficiência de entrega de material genético. Na maioria das aplicações, a estrutura unilamelar de LCs é altamente recomendada e mostrou-se mais eficiente para entregar material genético. Técnicas como DLS e SAXS podem fornecer informações cruciais sobre essa propriedade de LCs por meio de modelagem matemática. No entanto, a análise morfológica pode fornecer uma informação adicional sobre a característica uni ou multilamelar dos lipossomas produzidos. Por esse motivo, a técnica de crio- microscopia eletrónica (Cryo-TEM) foi utilizada para caracterizar os LCs e Stealth LCs. [86] Liposomal lamellarity (uni- or multi-) is of great importance in the efficiency of delivery of genetic material. In most applications, the unilamellar structure of LCs is highly recommended and has proved to be more efficient for delivering genetic material. Techniques such as DLS and SAXS can provide crucial information about this property of LCs through mathematical modeling. However, morphological analysis can provide additional information about the uni- or multilamellar characteristic of the produced liposomes. For this reason, the electron microscopy technique (Cryo-TEM) was used to characterize LCs and Stealth LCs.
[87] De acordo com as imagens apresentadas na Figura 7, todas as amostras de LCs produzidos no CA-MD (2 entradas) mostraram-se unilamelares e suportaram os resultados obtidos de DLS e SAXS. Observou-se também que os LCs convencionais e do tipo Stealth mostraram Pdl e diâmetros baixos entre 150-200 nm, em concordância com os resultados obtidos por DLS. Devido ao pequeno tamanho do PEG e à sua menor influência nas propriedades físico-químicas dos lipossomas, não foi possível identificar qualquer diferença morfológica entre LCs convencionais e do tipo Stealth. Além disso, a inserção de DSPE-PEG nos lipossomas LC resulta em redução da taxa de captação por macrófagos e tempo prolongado de circulação na corrente sanguínea. Consequentemente, requer mais tempo para um LC PEGuilado transfectar células, uma vez que o PEG retardará o processo de transfecção, diminuindo a interação da superfície entre células e LCs . [87] According to the images presented in Figure 7, all samples of LCs produced in the CA-MD (2 entries) proved to be unilamellar and supported the results obtained from DLS and SAXS. It was also observed that conventional and Stealth type LCs showed Pdl and low diameters between 150-200 nm, in agreement with the results obtained by DLS. Due to the small size of the PEG and its lesser influence on the physical and chemical properties of the liposomes, it was not possible to identify any morphological difference between conventional and Stealth type LCs. In addition, the insertion of DSPE-PEG into LC liposomes results in reduced rate of uptake by macrophages and prolonged time of circulation in the bloodstream. Consequently, it requires more time for a PEGylated LC to transfect cells, since PEG will delay the transfection process, decreasing the surface interaction between cells and LCs.
Avaliação in vitro da eficiência da transfecção de lipoplexos In vitro evaluation of the efficiency of lipoplex transfection
[88] A atividade biológica (eficiência de transfecção) de formulações de LCs convencionais e do tipo Stealth foi investigada em células PC-3. Antes dos estudos de transfecção, o etanol residual foi removido para evitar efeitos tóxicos de LCs convencionais e do tipo Stealth usando o concentrador de centrífuga a vácuo. LCs convencionais mostraram um nível de transfecção de aproximadamente 20%, enquanto os LCs do tipo Stealth apresentaram eficiência de transfecção significativamente menor (~ 5%) . O mesmo padrão foi observado para a intensidade de fluorescência da GFP (Figura 8). A diminuição no nível de transfecção usando LC do tipo Stealth pode ser explicada com o efeito stealth do DSPE-PEG (2000) na superfície dos lipossomas, impedindo a interação com as células PC3. [88] The biological activity (transfection efficiency) of conventional and Stealth type LC formulations has been investigated in PC-3 cells. Prior to transfection studies, residual ethanol was removed to avoid toxic effects from conventional and Stealth-type LCs using the vacuum centrifuge concentrator. Conventional LCs showed a transfection level of approximately 20%, while Stealth-type LCs showed significantly lower transfection efficiency (~ 5%). The same pattern was observed for the fluorescence intensity of the GFP (Figure 8). The decrease in the level of transfection using LC of the Stealth type can be explained with the stealth effect of DSPE-PEG (2000) on the surface of the liposomes, preventing interaction with PC3 cells.
Conclusão Conclusion
[89] A produtividade dos processos é uma questão importante na produção industrial. Esta questão torna-se mais crítica nas indústrias farmacêuticas, devido à complexidade do sistema de produção, bem como materiais caros que trazem graves preocupações económicas. Com as concretizações do presente Certificado de Adição foi possível demonstrar que a produção microfluídica de alto rendimento de lipossomas catiônicos, com proporção de etanol de 50%, seguido de operação de remoção de etanol em concentrador a vácuo na formação permite a formação de lipossomas catiônicos e também do tipo Stealth (com até 5% de lipideo-PEG) . Neste último caso, o processo apresentado evita a formação concomitante de micelas, indesejáveis para aplicações biológicas. De acordo com as análises de Cryo- TE e SAXS, os LCs convencionais e do tipo Stealth apresentaram estrutura unilamelar e eficiência de transfecção significativa em linhas celulares de próstata humana (PC-3) . Com um único dispositivo microfluidico (~ 4 cm x 7 cm) , seria possível produzir cerca de 100 ml de LC em uma hora. Considerando 12 horas de produção contínua, com número suficiente de dispositivos microfluídicos que ocuparão 1 m2 de área, é possível produzir 400 L de LC, o que é altamente aceitável para produção em escala industrial. Devido à simplicidade do processo de remoção de etanol, a mesma quantidade de LC pode ser processada usando concentrador de centrífuga a vácuo adaptado para escala industrial sem alterar quaisquer propriedades estruturais, morfológicas e biológicas de LCs. O processo que proposto é promissor para a produção de LC em escala industrial é possível fornecer vetores não virais seguros, eficientes e livres de solvente para entrega de genes. [89] Process productivity is an important issue in industrial production. This issue becomes more critical in the pharmaceutical industries, due to the complexity of the production system, as well as expensive materials that bring serious economic concerns. With the implementation of this Certificate of Addition it was possible to demonstrate that the high-yield microfluidic production of cationic liposomes, with a proportion of ethanol 50%, followed by ethanol removal operation in a vacuum concentrator in the formation allows the formation of cationic liposomes and also of the Stealth type (with up to 5% lipid-PEG). In the latter case, the presented process avoids the concomitant formation of micelles, which are undesirable for biological applications. According to the analyzes by Cryo- TE and SAXS, conventional and Stealth type LCs showed unilamellar structure and significant transfection efficiency in human prostate cell lines (PC-3). With a single microfluidic device (~ 4 cm x 7 cm), it would be possible to produce about 100 ml of LC in one hour. Considering 12 hours of continuous production, with a sufficient number of microfluidic devices that will occupy 1 m 2 of area, it is possible to produce 400 L of LC, which is highly acceptable for industrial scale production. Due to the simplicity of the ethanol removal process, the same amount of LC can be processed using vacuum centrifuge concentrator adapted for industrial scale without changing any structural, morphological and biological properties of LCs. The proposed process is promising for the production of LC on an industrial scale, it is possible to provide safe, efficient and solvent-free non-viral vectors for gene delivery.
[90] Os versados na arte valorizarão os conhecimentos aqui apresentados e poderão reproduzir a invenção nas modalidades apresentadas e em outras variantes, abrangidas no escopo das reivindicações anexas. [90] Those skilled in the art will value the knowledge presented here and will be able to reproduce the invention in the modalities presented and in other variants, covered by the scope of the attached claims.

Claims

REIVINDICAÇÕES
1. Processo microfluídico de obtenção de lipossomas catiônicos e S tealth caracterizado pelo fato de compreender dispositivo microfluídico baseado em advecção caótica e as etapas de: 1. Microfluidic process for obtaining cationic liposomes and S tealth characterized by the fact that it comprises a microfluidic device based on chaotic advection and the steps of:
(i) inserção de 5 a 25 mM de fosfatidilcolina de ovo, (i) insertion of 5 to 25 mM of egg phosphatidylcholine,
1.2-dioleoil-sn-glicero-3-fosfatidiletanolamina (DOPE) ,1.2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE),
1.2-dioleil-3- trimetilamônio propano (DOTAP) e 1,2- diestearil-sn-glicero-3-fosfoetanolamina com polietilenoglicol (DSPE-PEG) na proporção que varia de 50:20:25:5% a 50:24:25:1% de EPC : DOPE : DOTAP : DSPE-PEG respectivamente, dispersos em 100 % de etanol anidro em um dispositivo microfluídico, a partir de uma vazão total de escoamento que varia de 120 pL min-1 a 1500 pL min-1, sendo que a dispersão resultante na saída do referido dispositivo microfluído compreende teor de etanol na faixa de 33,5 a 51%, preferencialmente 50%; 1.2-dioleyl-3-trimethylammonium propane (DOTAP) and 1,2-distearyl-sn-glycero-3-phosphoethanolamine with polyethylene glycol (DSPE-PEG) in the proportion ranging from 50: 20: 25: 5% to 50:24: 25: 1% EPC: DOPE: DOTAP: DSPE-PEG respectively, dispersed in 100% anhydrous ethanol in a microfluidic device, from a total flow rate ranging from 120 pL min -1 to 1500 pL min -1 , the resulting dispersion at the outlet of said microfluidic device having an ethanol content in the range of 33.5 to 51%, preferably 50%;
(ii) meios para recuperação do solvente orgânico excedente e ajuste da concentração lipídica, em que os referidos meios compreendem destilação convencional ou destilação em larga escala, sendo que quando é realizada por esta última a remoção do solvente ocorre em um intervalo de processamento de 1 a 2 horas em concentrador de centrífuga a vácuo. (ii) means for recovering the excess organic solvent and adjusting the lipid concentration, in which the said means comprise conventional distillation or large-scale distillation, and when it is performed by the latter the removal of the solvent occurs in a processing interval of 1 2 hours in a vacuum centrifuge concentrator.
2. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de o referido dispositivo microfluídico compreender 2 (duas) ou 3 (três) entradas e ser composto por duas bases de poli dimetil siloxano (PDMS) seladas com plasma de O2, em que uma base contém microcanais e a outra base contém piscinas, construídos pela técnica de litografia macia empregando ffotorresiste SU-8, preferencialmente em bolacha de silício, em que as referidas piscinas possuem altura fixa ao longo dos referidos microcanais que causam advecção caótica. 2. Process, according to claim 1, characterized in that the said microfluidic device comprises 2 (two) or 3 (three) entries and is composed of two bases of poly dimethyl siloxane (PDMS) sealed with O2 plasma, in that one base contains microchannels and the other base contains pools, built by the technique of soft lithography employing photophoresis SU-8, preferably in silicon wafer, in which the above-mentioned pools have a fixed height along said microchannels that cause chaotic advection.
3. Processo, de acordo com as reivindicações 1 e 2, caracterizado pelo fato de que quando o dispositivo microfluídico compreende 2 (duas) entradas, a vazão total de cada entrada deve ser igual, resultando em vazões individuais de 60 a 1000 mΐ/min. 3. Process, according to claims 1 and 2, characterized by the fact that when the microfluidic device comprises 2 (two) inlets, the total flow of each inlet must be equal, resulting in individual flows from 60 to 1000 mΐ / min .
4. Processo, de acordo com as reivindicações 1 e 2, caracterizado pelo fato de que quando o dispositivo microfluídico compreende 3 (três) entradas, o parâmetro de operação FRR ( flow rate ratio) deve, preferencialmente, ter o valor de 1 quando a dispersão lipídica e inserida na corrente central e fase aquosa nas laterais, sendo que a referida fase aquosa compreende água ou tampão convencional (tal como PBS IX) . 4. Process, according to claims 1 and 2, characterized by the fact that when the microfluidic device comprises 3 (three) inputs, the FRR (flow rate ratio) operating parameter should preferably have a value of 1 when the lipid dispersion and inserted in the central stream and aqueous phase on the sides, said aqueous phase comprising water or conventional buffer (such as PBS IX).
5. Processo, de acordo com a reivindicação 4, caracterizado pelo fato de que o arranjo pode ser alterado desde que se mantenha a preferencial proporção de 1:1 de fase aquosa e dispersão lipídica. 5. Process, according to claim 4, characterized by the fact that the arrangement can be changed as long as the preferred 1: 1 ratio of aqueous phase and lipid dispersion is maintained.
6. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que as vazões laterais podem variar de 30 a 500 mΐ/min e a vazão central de 60 a 1000 mΐ/min, sendo que a vazão total de produção pode operar de 100 a 2000 pL/min. 6. Process, according to claim 5, characterized by the fact that the lateral flows can vary from 30 to 500 mΐ / min and the central flow from 60 to 1000 mΐ / min, with the total production flow being able to operate 100 to 2000 pL / min.
7. Processo, de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de permitir a formação exclusiva da fase lamelar (La) (formando lipossomas) e impedir a formação da fase hexagonal inversa (HII) (outra estrutura diferente de lipossomas) . Process according to any one of claims 1 to 6, characterized in that it allows the exclusive formation of the lamellar phase (La) (forming liposomes) and prevents the formation of the reverse hexagonal phase (HII) (another structure other than liposomes).
8. Lipossomas Stealth catiônico caracterizados pelo fato de serem produzidos conforme definido em qualquer uma das reivindicações 1 a 7, e compreenderem de 50:20:25:5% a 50:24:25:1% de EPC : DOPE : DOTAP : DSPE-PEG, preferencialmente 50:24:25:1%; e concentração lipidica final de 25 a 10 mM, preferencialmente 12,5 mM, em que a referida concentração da dispersão lipidica final pode ser modulada. 8. Cationic Stealth liposomes characterized by the fact that they are produced as defined in any of claims 1 to 7, and comprise from 50: 20: 25: 5% to 50: 24: 25: 1% EPC: DOPE: DOTAP: DSPE -PEG, preferably 50: 24: 25: 1%; and final lipid concentration of 25 to 10 mM, preferably 12.5 mM, wherein said concentration of the final lipid dispersion can be modulated.
9. Lipossomas, de acordo com a reivindicação 8, caracterizados pelo fato de apresentarem diâmetro médio que varia de 250 a 120 nm, preferencialmente 180 nm; índice de polidispersidade (PDI) que varia de 0,13 a 0,3, preferencialmente 0,25; e potencial zeta que varia de +45 a +55 mV, preferencialmente +50 mV quando produzido em água ultra pura. 9. Liposomes, according to claim 8, characterized by the fact that they have an average diameter ranging from 250 to 120 nm, preferably 180 nm; polydispersity index (PDI) ranging from 0.13 to 0.3, preferably 0.25; and zeta potential ranging from +45 to +55 mV, preferably +50 mV when produced in ultra pure water.
10. Uso dos lipossomas Stealth catiônico conforme definidos nas reinvindicações 8 ou 9, caracterizados pelo fato de serem aplicados nas áreas agrícola, alimentícia, cosmética, médica; em sistemas de liberação sustentada de biofármacos, vetores de proteínas, de agentes anticancerígenos ; e preferencialmente em terapia e vacinação gênicas . 10. Use of cationic Stealth liposomes as defined in claims 8 or 9, characterized by the fact that they are applied in the agricultural, food, cosmetic, medical areas; in systems of sustained release of biopharmaceuticals, protein vectors, anti-cancer agents; and preferably in gene therapy and vaccination.
PCT/BR2019/050506 2018-11-27 2019-11-27 Microfluidic process for obtaining stealth cationic liposomes WO2020107088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR132018074482-7A BR132018074482E2 (en) 2018-11-27 2018-11-27 MICROFLUID PROCESS OF OBTAINING CATHONIC STEALTH LIPOSOMES
BRBR1320180744827 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020107088A1 true WO2020107088A1 (en) 2020-06-04

Family

ID=70854981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050506 WO2020107088A1 (en) 2018-11-27 2019-11-27 Microfluidic process for obtaining stealth cationic liposomes

Country Status (2)

Country Link
BR (1) BR132018074482E2 (en)
WO (1) WO2020107088A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110104371A (en) * 2010-03-16 2011-09-22 우석대학교 산학협력단 Liposomal compositions and liposome with alcoholic aqueous inner phase to solubilize and enhance the membrane permeability of water-insoluble agents, and preparing method for the same
WO2015160271A1 (en) * 2014-04-18 2015-10-22 Wrocławskie Centrum Badań Eit+ Sp. Z O.O. Lipid composition used for construction of liposomal genetic drug carrier targeted with antibodies, and use thereof
BR102017025862A2 (en) * 2017-11-30 2019-06-25 Universidade Estadual De Campinas - Unicamp MICROFLUIDAL PROCESS OF OBTAINING STEALTH CATIONIC LIPOSOMES, CATALYTIC STEALTH LIPOSOMES OBTAINED AND ITS USE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110104371A (en) * 2010-03-16 2011-09-22 우석대학교 산학협력단 Liposomal compositions and liposome with alcoholic aqueous inner phase to solubilize and enhance the membrane permeability of water-insoluble agents, and preparing method for the same
WO2015160271A1 (en) * 2014-04-18 2015-10-22 Wrocławskie Centrum Badań Eit+ Sp. Z O.O. Lipid composition used for construction of liposomal genetic drug carrier targeted with antibodies, and use thereof
BR102017025862A2 (en) * 2017-11-30 2019-06-25 Universidade Estadual De Campinas - Unicamp MICROFLUIDAL PROCESS OF OBTAINING STEALTH CATIONIC LIPOSOMES, CATALYTIC STEALTH LIPOSOMES OBTAINED AND ITS USE

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BALBINO, T.A. ET AL.: "Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 152, 2017, pages 406 - 413, XP029953782, DOI: 10.1016/j.colsurfb.2017.01.030 *
ES , I. ET AL.: "Evaluation of siRNA and cationic liposomes complexes as a model for in vitro siRNA delivery to cancer cells", COLLOIDS AND SURFACES A, vol. 555, 28 June 2018 (2018-06-28), pages 280 - 289, XP085458651, DOI: 10.1016/j.colsurfa.2018.06.073 *
ES , I. ET AL.: "Microfluidic platforms based on chaotic mixing and diffusion for complexation of cationic liposome and pDNA", VII WORKSHOP EM MICROFLUIDICA, 31 July 2017 (2017-07-31), Sao Paulo-SP, pages 1 - 2, XP055711904 *
ES , I. ET AL.: "Sistemas Microfluidicos para a incorporação de small interfering ma (sirna) em lipossomas catiônicos e para transfecção in vitro de células de mamiferos", XXI CONGRESSO BRASILEIRO DE ENGENHARIA QUIMICA, 25 September 2016 (2016-09-25), Fortaleza-CE, pages 1 - 8, XP055711899 *
MONTEBUGNOLI, L.J. ET AL.: "Production and phisical-chemical analysis of cationics liposomes and STEALTH® types, obtained from microfluidic tecnology for gene therapy application", XXVI CONGRESSO DE INICIAÇÃO CIENTIFICA UNICAMP, CAMPINAS-SP , 2018 . REV TRAB. INICIAÇ. CIENT. UNICAMP, 17 October 2018 (2018-10-17), Campinas , SP, XP055711896 *
PERLI, G. ET AL.: "Microfluidics applied towards development of stealth liposomes functionalized with cyclic RGDfK peptide for targeted gene delivery", XXV CONGRESSO DE INICIAÇÃO CIENTIFICA DA UNICAMP, CAMPINAS-SP, 18 October 2017 (2017-10-18), pages 1, XP055711885 *
PERLI, G. ET AL.: "Rotas microflufdicas para a produção de lipossomas do tipo stealth", XII CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA EM INICIAÇÃO CIENTIFICA ,UFSCAR - SAO CARLOS - SP, 16 July 2017 (2017-07-16), XP055711889 *
PERLI, G. ET AL.: "SINGLE-AND MULTI-STEP SYNTHESIS OF STEALTH LIPOSOMES THROUGH HYDRODYNAMIC FLOW FOCUSING MICROFLUIDIC TECHNIQUE", VII WORKSHOP EM MICROFLUIDICA, July 2017 (2017-07-01), São Paulo, SP, Brasil, pages 1 - 2, XP055711893 *
PESSOAACSN ET AL.: "Tailoring the synthesis of monodisperse PEG-stabilized liposomes via microfluidic devices", XXII CONGRESSO BRASILEIRO DE ENGENHARIA QUIMICA, 23 September 2018 (2018-09-23), Sao Paulo - SP, 2018, XP055711891 *
RAN, R. ET AL.: "Microfluidic synthesis of multifunctional liposomes for tumour targeting", COLLOIDS AND SURFACES B:BIOINTERFACES, vol. 148, 2016, pages 402 - 410, XP029790340, DOI: 10.1016/j.colsurfb.2016.09.016 *
SA CORREIA, M.G. ET AL.: "Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 516, 2017, pages 91 - 99, XP029855295, DOI: 10.1016/j.ijpharm.2016.11.025 *
SEDIGHI, M. ET AL.: "Rapid Optimization of Liposome Characteristics Using a Combined Microfluidics and Design-of- Experiment Approach", DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 10 October 2018 (2018-10-10), pages 1 - 22, XP036669477 *

Also Published As

Publication number Publication date
BR132018074482E2 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
Xu et al. Lipid nanoparticles for drug delivery
Eygeris et al. Deconvoluting lipid nanoparticle structure for messenger RNA delivery
Kulkarni et al. On the role of helper lipids in lipid nanoparticle formulations of siRNA
Kim et al. Microfluidics synthesis of gene silencing cubosomes
Kim et al. Cuboplexes: Topologically active siRNA delivery
Obeid et al. Lipid-based nanoparticles for cancer treatment
Moghassemi et al. Nano-niosomes as nanoscale drug delivery systems: an illustrated review
Lombardo et al. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane
Eş et al. High-throughput conventional and stealth cationic liposome synthesis using a chaotic advection-based microfluidic device combined with a centrifugal vacuum concentrator
JP7261504B2 (en) Channel structure and method for forming lipid particles or micelles using the same
Balbino et al. Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes
Campani et al. Lipid-based core-shell nanoparticles: Evolution and potentialities in drug delivery
Balbino et al. Correlation of the physicochemical and structural properties of pDNA/cationic liposome complexes with their in vitro transfection
Penoy et al. A supercritical fluid technology for liposome production and comparison with the film hydration method
Mendonça et al. Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids
JP2022084962A (en) Liposome-like nanocapsules and production methods thereof
Perli et al. Ionic strength for tailoring the synthesis of monomodal stealth cationic liposomes in microfluidic devices
Mozafari et al. Importance of divalent cations in nanolipoplex gene delivery
Eş et al. The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery
WO2020107088A1 (en) Microfluidic process for obtaining stealth cationic liposomes
Wu et al. Electrospray production of nanoparticles for drug/nucleic acid delivery
Sousa et al. In Vitro CRISPR/Cas9 transfection and gene-editing mediated by multivalent cationic liposome–DNA complexes. Pharmaceutics. 2022; 14: 1087
US20240165044A1 (en) Lipid nanoparticle preparation method and preparation apparatus therefor
BR102017025862A2 (en) MICROFLUIDAL PROCESS OF OBTAINING STEALTH CATIONIC LIPOSOMES, CATALYTIC STEALTH LIPOSOMES OBTAINED AND ITS USE
Tae et al. Elucidating Structural Configuration of Lipid Assemblies for mRNA Delivery Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890731

Country of ref document: EP

Kind code of ref document: A1