WO2020105829A1 - Asynchronous indoor navigation system and method using gnss - Google Patents

Asynchronous indoor navigation system and method using gnss

Info

Publication number
WO2020105829A1
WO2020105829A1 PCT/KR2019/008000 KR2019008000W WO2020105829A1 WO 2020105829 A1 WO2020105829 A1 WO 2020105829A1 KR 2019008000 W KR2019008000 W KR 2019008000W WO 2020105829 A1 WO2020105829 A1 WO 2020105829A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnss
terminal
antenna
satellite
satellite signal
Prior art date
Application number
PCT/KR2019/008000
Other languages
French (fr)
Korean (ko)
Inventor
김동현
황태현
한영훈
박상현
이상헌
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2020105829A1 publication Critical patent/WO2020105829A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/50Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being pulse modulated and the time difference of their arrival being measured

Definitions

  • the present invention relates to an indoor navigation system and method using a Global Navigation Satellite System (GNSS), and more specifically, a signal allocated to a channel using a GNSS and separating and allocating satellite signals from the GNSS for each channel and using a splitter. It transmits to each antenna for radiating and the combiner for collecting again, and calculates the location of the device with a predetermined terminal or terminal in the room using the receiver and the antenna radiated signal implemented in connection with the combiner.
  • GNSS Global Navigation Satellite System
  • the present invention relates to an indoor navigation system and method using GNSS with increased precision.
  • a GNSS receiver In the system for measuring the current location, a GNSS receiver is widely used, and an effective GNSS-based indoor location recognition algorithm using low-cost hardware is adopted.
  • GNSS Global Positioning System
  • GPS Global Positioning System
  • a new architecture for an indoor location recognition system for estimating a user's location using a pseudo-range of a smartphone embedded GNSS module has been proposed.
  • the advantage of these systems is low cost and low requirements in terms of end user hardware level modifications.
  • all end users and most application developers do not have permission to read pseudoranges from the built-in GNSS module.
  • pseudo-range user location can be easily obtained from the GNSS module of any mobile device. Therefore, the above paper discloses a system that improves the positioning algorithm based on the location obtained from the embedded GNSS module rather than the pseudorange.
  • FIG. 1 is a view showing a system configuration for configuring a receiver in the above-mentioned paper and applying navigation indoors using GNSS.
  • the name of the pseudo position is used because it does not match the actual position.
  • a satellite signal is received from a plurality of satellites (10) to the GNSS antenna (12).
  • the distance from the user terminal 18 to the GNSS repeater 16 is calculated using the difference between the position of each satellite 10 and the pseudo position received from the GNSS antenna 12 by the software simulator 14. This algorithm was tested using a GNSS-based indoor positioning system implemented as a simulation in a GNSS software receiver.
  • the simulation results according to the above paper showed that the indoor positioning system can provide horizontal position with meter-level accuracy in both static and dynamic situations.
  • the method proposed in the above-mentioned paper has an advantage of improving the robustness of the indoor positioning system for asynchronous measurement.
  • indoors require higher position accuracy when measuring a position at the laboratory level.
  • higher positioning accuracy is required to apply to a location tracking or automatic parking system. Therefore, in the indoor positioning system, a high accuracy in centimeters is required with a higher accuracy than the metric units.
  • the cited invention includes a GNSS information receiving unit 11 that receives GNSS information corresponding to a location of the device from each of at least one Global Navigation Satellite System (GNSS); A Wi-Fi information receiving unit 12 that receives Wi-Fi information corresponding to the location of the device from each of at least one Wi-Fi AP (Access Point); A determination unit 13 for determining whether to use the Wi-Fi information based on the number of the at least one GNSS; And a location determination unit (14) for determining the location of the device using the received GNSS information and / or the received Wi-Fi information.
  • GNSS Global Navigation Satellite System
  • Wi-Fi information receiving unit 12 that receives Wi-Fi information corresponding to the location of the device from each of at least one Wi-Fi AP (Access Point)
  • a determination unit 13 for determining whether to use the Wi-Fi information based on the number of the at least one GNSS
  • a location determination unit (14) for determining the location of the device using the received GNSS information and / or the received Wi
  • the GNSS information receiving unit (reference antenna) 11 of the cited invention is located outdoors to receive actual satellite signals, which are raw data for navigation.
  • the location determining unit 14 discloses a configuration for determining the location of the device using the received GNSS information and / or the received Wi-Fi information.
  • the method of using WiFi can vary in accuracy depending on the number of APs in the vicinity, and is generally tracked by one to two APs (Access Points). Therefore, there is a problem in that the accuracy of the location measured in the room using WiFi is inferior because the location is relatively inaccurate.
  • the present invention is to solve the above-mentioned problems of the prior art, the object of the present invention is to use the GNSS and separate and allocate satellite signals from the GNSS for each channel, and using a splitter to allocate the channel indoors
  • the present invention is to provide an indoor navigation system using GNSS, which measures the position of a predetermined terminal or a device equipped with a terminal and increases the precision of the measured position to a high precision.
  • An external GNSS antenna that receives a plurality of satellite signals from a plurality of GNSS satellites
  • a satellite channel allocation device for separating a plurality of satellite signals received from the external GNSS antenna and assigning them to each channel
  • a splitter for distributing a signal for each channel received from the satellite channel assignment device to a GNSS radiation antenna and a combiner;
  • a combiner for combining a plurality of satellite signals distributed from the splitter and a first satellite signal that is distance information from an external GNSS antenna to a reference GNSS receiver;
  • a reference GNSS receiver receiving a plurality of first satellite signals combined from the combiner and having a fixed position
  • a respective GNSS radiation antenna which receives and radiates a second satellite signal distributed from the splitter and represents a distance from an external GNSS antenna to a GNSS terminal;
  • the GNSS terminal receives wirelessly the second satellite signal emitted from each GNSS antenna and receives the distance measurement value of the first satellite signal collected from the reference GNSS receiver and the distance measurement value of the second satellite signal collected from the GNSS terminal wirelessly. It is configured to include; a mobile GNSS terminal for calculating the position of the.
  • the external GNSS antenna and satellite channel assignment device may be replaced with a simulated GNSS signal generation device that generates a GNSS signal and separates a plurality of satellite signals received from the external GNSS antenna and allocates them for each channel.
  • the GNSS terminal includes: a receiver that receives a second satellite signal from the GNSS radiation antenna, which is a delay time from the external GNSS antenna to the GNSS terminal via the GNSS radiation antenna; And a first satellite signal from the combiner, a second satellite signal from the GNSS radiation antenna, delay time information from the first and second satellite signals and an external GNSS antenna to a GNSS terminal, and an external GNSS antenna. It can be configured to include; using the delay time information to the reference GNSS receiver to measure the distance from each GNSS radiation antenna to the GNSS terminal, and to measure the position of the GNSS terminal in the room using the same.
  • a receiver for receiving a second satellite signal from a GNSS radiation antenna which is a delay time from the external GNSS antenna to the GNSS terminal via a GNSS radiation antenna;
  • the first satellite signal from the combiner, the second satellite signal from the GNSS radiation antenna, the first satellite signal and the second satellite signal, delay time information from an external GNSS antenna to a GNSS terminal, and a reference from an external GNSS antenna It may be configured to include; using a delay time information to the GNSS receiver to measure the distance from each GNSS radiation antenna to the GNSS terminal, and using this to measure the position of the GNSS terminal in the room.
  • the plurality of GNSS radiation antennas may be configured to secure at least four delay distance information between the plurality of GNSS radiation antennas and the GNSS terminal by configuring at least four.
  • An indoor navigation method using GNSS to achieve the above object includes: an external GNSS antenna that receives a plurality of satellite signals received from a plurality of GNSS satellites; A splitter that distributes a plurality of satellite signals received from the external GNSS antenna; A combiner for combining a first satellite signal which is a plurality of satellite signals distributed from the splitter; A reference GNSS receiver receiving a plurality of first satellite signals combined from the combiner and having a fixed position; A respective GNSS radiation antenna which receives and radiates a second satellite signal which is a plurality of satellite signals distributed from the splitter; A GNSS terminal that receives a second satellite signal from the plurality of GNSS radiant antennas and wirelessly receives the first satellite signal from the reference GNSS receiver to calculate its own position; an asynchronous indoor navigation method using an asynchronous indoor navigation system including a In,
  • the operation unit receives a plurality of second satellite signals from a GNSS terminal and knows by measuring delay time information of a second satellite signal between the external GNSS antenna and each of the GNSS radiant antennas in advance. Receiving a satellite signal and measuring delay time information of a first satellite signal between the external GNSS antenna and the reference GNSS receiver in advance;
  • Each of the GNSS radiant antennas may be configured to secure at least four distance measurement information between the GNSS radiant antenna and the GNSS terminal by configuring at least four.
  • the indoor navigation system using the GNSS of the present invention uses the GNSS and calculates the distance by receiving the signal from the GNSS, measures the position of the terminal or the device incorporating the terminal using the splitter and the implemented receiver, and measures the measured position. There is an effect that can increase the precision of.
  • the indoor navigation system using the GNSS of the present invention can recognize the position of a receiver equipped with a GNSS antenna driven indoors by using an external GNSS antenna and a splitter, so that the position in the room can be measured with high precision for more accurate research. It is possible and can be applied indoors to a precise automatic navigation system.
  • FIG. 1 is a view showing a system configuration for configuring a receiver in the above-mentioned paper and applying navigation indoors using GNSS.
  • Figure 3 is a block diagram showing the configuration of an indoor navigation system using GNSS according to an embodiment of the present invention.
  • Figure 4 is a block diagram showing the configuration of the GNSS terminal of Figure 3 according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a process of indoor navigation using a GNSS by a GNSS terminal according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the configuration of an indoor navigation system using GNSS according to another embodiment of the present invention.
  • GNSS satellite 120 External GNSS antenna
  • GNSS radiation antenna 170 GNSS terminal
  • FIG. 3 is a block diagram showing the configuration of an indoor navigation system using GNSS according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing the configuration of a GNSS terminal of FIG. 3 according to an embodiment of the present invention .
  • the asynchronous indoor navigation system using the GNSS of the present invention includes a plurality of GNSS satellites 110, an external GNSS antenna 120, a splitter 130, a reference GNSS receiver 140, and a plurality of GNSSs. It comprises a radiation antenna 160 and the GNSS terminal 170.
  • a number of GNSS satellites 110 are artificial satellites capable of providing GNSS.
  • the external GNSS antenna 120 receives a plurality of satellite signals received from a plurality of GNSS satellites 110. Hundreds of GNSS satellites 110 are orbiting the Earth. The external GNSS antenna 120 may vary according to location and weather, but on average receives satellite signals from dozens of GNSS satellites 110. The external GNSS antenna 120 is theoretically also rounded, so it can be tracked using signals received from two GNSS satellites 110, but in this case, at least four satellite signals are received because the position accuracy is poor. Therefore, it is possible to track the location, and it is preferable to use 5 or more satellites. The external GNSS antenna 120 can track a stable position as it receives satellite signals from as many GNSS satellites 110 as possible.
  • the satellite channel assignment device 124 separates a plurality of satellite signals received from the external GNSS antenna 120 and allocates them to each channel.
  • the splitter 130 separates a plurality of satellite signals received from the satellite channel allocation device 124 and allocates them to each channel.
  • the splitter 130 receives the satellite signal received from the satellite channel assignment device 124 and transmits the satellite signal to the reference GNSS receiver 140 through the combiner 132.
  • the splitter 130 distributes the signal for each channel received from the satellite channel assignment device 124 to the GNSS radiation antenna 160.
  • the combiner 132 combines the first satellite signals, which are a plurality of satellite signals distributed from each splitter 130.
  • the first satellite signal is a plurality of satellite signals distributed from the splitter 130, and is a signal including distance information from the external GNSS antenna 120 to the reference GNSS receiver.
  • the reference GNSS receiver 140 receives a plurality of satellite signals combined by the combiner 132.
  • the reference GNSS receiver 140 is configured with a fixed position to recognize its exact position.
  • the reference GNSS receiver 140 transmits delay distance information of the first satellite signal to the operation unit 174.
  • the GNSS radiation antenna 160 receives a plurality of satellite signals distributed from each splitter 130 and transmits them to each GNSS terminal 170. That is, the GNSS radiation antenna 160 separates the digital satellite signals distributed by the splitter 130 into respective satellite signals and transmits them to each GNSS terminal 170. In particular, the GNSS radiation antenna 160 receives and radiates a second satellite signal indicating the distance from the external GNSS antenna 120 to the GNSS terminal.
  • the GNSS terminal 170 is an object whose location is tracked.
  • the GNSS terminal 170 may receive a second satellite signal, which is each satellite signal received from the GNSS radiation antenna 160, to track its location.
  • the GNSS terminal 170 uses the distance between each GNSS radiation antenna 160 and the GNSS terminal 170 to obtain its own location. That is, a plurality of GNSS radiant antennas in a manner of recognizing the distance between one GNSS radiant antenna 160 and the GNSS terminal 170 and recognizing the distance between the other GNSS radiant antenna 160 and the GNSS terminal 170 ( 160) and the distance between the GNSS terminal 170 is obtained and the location of the GNSS terminal 170 can be calculated using the distance.
  • FIG. 6 is a block diagram showing the configuration of an indoor navigation system using GNSS according to another embodiment of the present invention.
  • FIG. 6 unlike FIG. 3, it comprises a simulated GNSS signal generator 122 that generates a GNSS signal instead of the GNSS satellite 110 and the external GNSS antenna 120.
  • the simulated GNSS signal generator 122 generates a random GNSS satellite signal identical to the GNSS satellite signal. That is, instead of the GNSS satellite 110 and the external GNSS antenna 120, the GNSS signal generating device 122 is configured to perform the same function, and is a mutually interchangeable configuration. The function of allocating for each channel performed by the channel allocating device 124 may also be performed. Therefore, the simulated GNSS signal generating device 122 can be interchanged with the GNSS satellite 110, the external GNSS antenna 120, and even the satellite channel assignment device 124.
  • the satellite channel assignment device 124 separates a plurality of satellite signals received from the simulated GNSS signal generation device 122 and allocates them to each channel.
  • the splitter 130 separates a plurality of satellite signals received from the satellite channel allocation device 124 and allocates them to each channel.
  • the splitter 130 receives the satellite signal received from the satellite channel assignment device 124 and transmits the satellite signal to the reference GNSS receiver 140 through the combiner 132.
  • the splitter 130 distributes the signal for each channel received from the satellite channel assignment device 124 to the GNSS radiation antenna 160.
  • the combiner 132 combines the first satellite signals, which are a plurality of satellite signals distributed from each splitter 130.
  • the first satellite signal is a plurality of satellite signals distributed from the splitter 130, and is a signal including distance information from the external GNSS antenna 120 to the reference GNSS receiver.
  • the reference GNSS receiver 140 receives a plurality of satellite signals combined by the combiner 132.
  • the reference GNSS receiver 140 is configured with a fixed position to recognize its exact position.
  • the reference GNSS receiver 140 transmits delay distance information of the first satellite signal to the operation unit 174.
  • the GNSS radiation antenna 160 receives a plurality of satellite signals distributed from each splitter 130 and transmits them to each GNSS terminal 170. That is, the GNSS radiation antenna 160 separates the digital satellite signals distributed by the splitter 130 into respective satellite signals and transmits them to each GNSS terminal 170. In particular, the GNSS radiation antenna 160 receives and radiates a second satellite signal indicating the distance from the external GNSS antenna 120 to the GNSS terminal.
  • the GNSS terminal 170 is an object whose location is tracked.
  • the GNSS terminal 170 may receive a second satellite signal, which is each satellite signal received from the GNSS radiation antenna 160, to track its location.
  • the GNSS terminal 170 uses the distance between each GNSS radiation antenna 160 and the GNSS terminal 170 to obtain its own location. That is, a plurality of GNSS radiant antennas in a manner of recognizing the distance between one GNSS radiant antenna 160 and the GNSS terminal 170 and recognizing the distance between the other GNSS radiant antenna 160 and the GNSS terminal 170 ( 160) and the distance between the GNSS terminal 170 is repeatedly obtained and the position of the GNSS terminal 170 can be calculated using the distance.
  • the position of the GNSS terminal 170 will be described in more detail with reference to FIGS. 4 and 5 described later.
  • the GNSS terminal 170 is configured to include a receiver 172 and an operation unit 174.
  • the receiver 172 receives a second satellite signal from each of the GNSS radiant antennas 160, and receives a first satellite signal from the reference GNSS receiver 140.
  • the first satellite signal is delay distance information from the GNSS satellite 110 or the simulated GNSS signal generator 122 to the reference GNSS receiver 140.
  • the second satellite signal is delay distance information from the simulated GNSS satellite 110 or the simulated GNSS signal generator 122 to the GNSS terminal 170.
  • the receiver 172 receives delay time information (referred to as B for convenience) from the external GNSS antenna 120 or the simulated GNSS signal generator 122 to the reference GNSS receiver 140.
  • the receiver 172 receives delay time information (referred to as C for convenience) from the external GNSS antenna 120 to the GNSS radiant antenna 160.
  • the calculator 174 receives the second satellite signal and the first satellite signal from the receiver 172.
  • the calculation unit 174 receives delay time information (referred to as B for convenience) from the external GNSS antenna 120 or the simulated GNSS signal generator 122 to the reference GNSS receiver 140.
  • the calculating unit 174 receives delay time information (called C for convenience) from the external GNSS antenna 120 or the simulated GNSS signal generating device 122 to the GNSS radiating antenna 160. In addition, the calculation unit 174 infers a plurality of delay time information (called D for convenience) from each GNSS radiation antenna 160 to the GNSS terminal 170.
  • C delay time information
  • D delay time information
  • the calculating unit 174 uses the first differential signal and the second satellite signal to obtain the GNSS terminal 170 from each of the GNSS radiant antennas 160 using a conventionally researched dual difference method and a precision relative positioning technique such as RTK. ), And may be configured to accurately measure the position of the GNSS terminal 170 using the distance between each of the GNSS radiation antennas 160 and the GNSS terminal 170.
  • the calculation unit 174 receives a plurality of satellite signals from the reference GNSS receiver 140.
  • the calculating unit 174 transmits the received satellite signal to the GNSS terminal 170.
  • the above-described operation unit 174 has been described as a configuration included in the terminal 170, but may be configured to be individually installed in a certain part of the room.
  • the operation unit 174 and the GNSS terminal 170 may be configured by being connected by short-range wireless communication. That is, when the operation unit 174 is configured separately from the GNSS terminal 170, it is configured as a server.
  • the operation unit 174 and the reference GNSS receiver 140 may be connected through short-range wireless communication.
  • the GNSS terminal 170 and the operation unit 174 to communicate by a communication method such as WiFi or Bluetooth may communicate.
  • FIG. 5 is a flowchart illustrating a process of indoor navigation using a GNSS by a GNSS terminal according to an embodiment of the present invention.
  • step S202 the operation unit 174 of the GNSS terminal 170 measures and knows the delay time information of the second satellite signal between the external GNSS antenna and the respective GNSS radiation antenna in advance, and the reference A plurality of first satellite signals are received from a GNSS receiver, and delay time information of a first satellite signal between the external GNSS antenna and the reference GNSS receiver is known in advance.
  • step S204 the value obtained by subtracting the delay time information of the second satellite signal from the second satellite signal and the value obtained by subtracting the delay time information of the first satellite signal from the first satellite signal are subtracted from the respective GNSS radiation antennas. Each distance to the GNSS terminal is calculated.
  • the distance from each GNSS radiation antenna 160 to the GNSS terminal 170 is calculated by subtracting.
  • step S206 the position of the GNSS terminal 170 is measured using the distance between each GNSS radiation antenna 160 and the GNSS terminal 170.
  • the position of the GNSS terminal 170 can be measured. However, since it is converted into a precise length unit indoors, it is possible to measure a position with more precise accuracy.
  • Each of the GNSS radiation antennas 160 may be configured to secure at least four delay distance information between the GNSS radiation antennas 160 and the GNSS terminal 170 by configuring at least four. This is to measure the location of the GNSS terminal 170 using three GNSS radiation antennas 160 and to measure the location using GNSS to correct errors using one or more GNSS 160, preferably five. If the estimation is made using the above GNSS radiation antenna 160, a more accurate location can be measured.
  • the present invention it is possible to measure the position of a terminal or a device incorporating a terminal using a GNSS, receive a signal from the GNSS, calculate the distance, and use a splitter and an implemented receiver to increase the precision of the measured position,
  • the indoor navigation system using the GNSS of the present invention can be more accurately researched by recognizing the position of a receiver equipped with a GNSS antenna driven indoors by using an external GNSS antenna and a splitter, thereby accurately measuring the indoor position. Therefore, it can be used more effectively in the field of automatic navigation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The present invention relates to an indoor navigation system and method using a GNSS, the system comprising: an external GNSS antenna which receives multiple satellite signals from multiple GNSS satellites; a satellite channel allocation device which separates the multiple satellite signals received from the external GNSS antenna and allocates the separated signals according to channels; a splitter which splits the channel-specific signals received from the satellite channel allocation device, such that the signals are distributed to GNSS radiant antennas and a combiner; the combiner which combines first satellite signals, which are the multiple satellite signal distributed by the splitter and are distance information from the external GNSS antenna to a reference GNSS receiver; the reference GNSS receiver which receives the multiple first satellite signals combined by the combiner, and the location of which is fixed; the GNSS radiant antennas, each of which receives and then emits second satellite signals, which are the multiple satellite signals distributed by the splitter and represent distance from the external GNSS antenna to a GNSS terminal; and a mobile GNSS terminal which receives the second satellite signals emitted from the respective GNSS radiant antennas, wirelessly receives distance measurement values of the collected first satellite signals from the reference GNSS receiver and distance measurement values of the collected second satellite signals from the GNSS terminal, and calculates the location of the GNSS terminal, whereby it is possible to locate a terminal or device including the terminal and increase the accuracy of the location thereof.

Description

GNSS를 이용한 비동기식 실내 항법 시스템 및 방법Asynchronous indoor navigation system and method using GNSS
본 발명은 GNSS(Global Navigation Satellite System)를 이용한 실내 항법 시스템 및 방법에 관한 것으로서, 더욱 상세하게는, GNSS를 이용하고 GNSS로부터 들어온 위성신호를 채널별로 분리 및 할당하고 스플리터를 이용하여 채널할당된 신호를 방사하기 위한 각 안테나와 다시 모으기 위한 콤바이너로 전송하며 콤바이너와 연결되어 구현된 리시버와 안테나 방사된 신호를 이용하여 실내에서 소정의 단말기 또는 단말기를 구비한 장치에 대한 위치를 계산하고 위치의 정밀도를 높인 GNSS를 이용한 실내 항법 시스템 및 방법에 관한 것이다.The present invention relates to an indoor navigation system and method using a Global Navigation Satellite System (GNSS), and more specifically, a signal allocated to a channel using a GNSS and separating and allocating satellite signals from the GNSS for each channel and using a splitter. It transmits to each antenna for radiating and the combiner for collecting again, and calculates the location of the device with a predetermined terminal or terminal in the room using the receiver and the antenna radiated signal implemented in connection with the combiner. The present invention relates to an indoor navigation system and method using GNSS with increased precision.
현재 위치를 측정하는 시스템에 있어서, GNSS 수신기가 널리 사용되며 저가의 하드웨어를 사용하는 효과적인 GNSS 기반 실내 위치 인식 알고리즘이 채택되고 있다. In the system for measuring the current location, a GNSS receiver is widely used, and an effective GNSS-based indoor location recognition algorithm using low-cost hardware is adopted.
일반적으로 GNSS는 위성의 위치 정보를 통신 주파수에 실어서 지상으로 전달하는 장비다. 위성위치추적장치(GPS)가 대표 시스템이다. 지구 궤도를 따라 고속 이동하는 위성과 수신기의 거리를 계산, 수신기 위치를 알 수 있게 해 준다. 위성 이동에 따라 발생하는 도플러 주파수(발송ㅇ수신 주파수의 오차)와 코드의 변화 내용으로 계산한다. In general, GNSS is a device that transmits satellite location information on the communication frequency to the ground. The Global Positioning System (GPS) is a representative system. It calculates the distance between the satellite and the receiver moving at high speed along the Earth's orbit so that the receiver can be located. It is calculated based on the Doppler frequency (error of transmission and reception frequency) and code changes caused by satellite movement.
그러나 실내의 경우 GNSS의 활용이 거의 불가능했다. 위성으로부터 신호를 수신하기 때문에 신호세기가 매우 낮고 실내에서는 특히 유리창이나 벽, 구조물에 의해 신호가 단절된다. 보통 수신기로는 위치 측정에 몇 시간 이상 걸린다는 문제점이 있다. 따라서, 실내에서는 와이파이와 같은 실내 무선 신호 기기의 힘을 빌려야 했다.  However, it was almost impossible to use GNSS indoors. Since the signal is received from the satellite, the signal strength is very low, and the signal is disconnected indoors, especially by glass windows, walls, and structures. As a receiver, there is a problem that it takes more than several hours to measure the position. Therefore, indoors had to borrow the power of indoor wireless signal devices such as Wi-Fi.
*이와 같은 문제점을 해결하기 위하여 GPS Solutions, October(2017), 21;1721-1733, "Improved GNSS-based indoor positioning algorithm for mobile device"라는 제목으로 개재된 논문에 의하면 모바일 장치에서 GNSS(Global Navigation Satellite System) 수신기가 널리 사용되면 저가의 하드웨어를 사용하는 효과적인 GNSS 기반 실내 위치 인식 알고리즘이 채택된다. * To solve this problem, according to a paper published under the heading GPS Solutions, October (2017), 21; 1721-1733, "Improved GNSS-based indoor positioning algorithm for mobile device", GNSS (Global Navigation Satellite) System) When the receiver is widely used, an effective GNSS-based indoor location recognition algorithm using low-cost hardware is adopted.
스마트 폰 내장형 GNSS 모듈의 의사 거리를 이용하여 사용자 위치를 추정하기 위한 실내 위치 인식 시스템을 위한 새로운 아키텍처가 제안되었다. 이러한 시스템의 장점은 최종 사용자의 하드웨어 수준 수정 측면에서 낮은 비용과 낮은 요구 사항이다. 그러나 모든 최종 사용자와 대부분의 응용 프로그램 개발자는 내장된 GNSS 모듈에서 의사 거리를 읽을 수 있는 권한이 없다. 의사 거리 대신 사용자 위치는 모든 모바일 장치의 GNSS 모듈에서 쉽게 얻을 수 있다. 따라서 상기 논문에서는 의사 거리보다는 임베디드 GNSS 모듈에서 얻은 위치를 기반으로 포지셔닝 알고리즘을 향상시키는 시스템에 대하여 개시하고 있다. A new architecture for an indoor location recognition system for estimating a user's location using a pseudo-range of a smartphone embedded GNSS module has been proposed. The advantage of these systems is low cost and low requirements in terms of end user hardware level modifications. However, all end users and most application developers do not have permission to read pseudoranges from the built-in GNSS module. Instead of pseudo-range, user location can be easily obtained from the GNSS module of any mobile device. Therefore, the above paper discloses a system that improves the positioning algorithm based on the location obtained from the embedded GNSS module rather than the pseudorange.
도 1은 전술한 논문에서 리시버를 구성하고 GNSS를 이용하여 실내에서 항법을 적용하기 위한 시스템 구성을 나타낸 도면이다. 1 is a view showing a system configuration for configuring a receiver in the above-mentioned paper and applying navigation indoors using GNSS.
도 1을 참조하면 상기 논문에서의 위치는 실내 신호를 기준으로 하는 것이 아니기 때문에 실제 위치와 일치하지 않기 때문에 의사 위치라는 이름을 사용한다. 다수의 위성(10)들로부터 GNSS안테나(12)로 위성신호가 수신된다. 소프트웨어 시뮬레이터(14)에 의해 GNSS안테나(12)로부터 수신된 각각의 위성(10)들의 위치와 의사 위치 사이의 차이를 이용하여 사용자 단말기(18)로부터 GNSS리피터(16)까지의 거리가 계산된다. 이 알고리즘은 GNSS 소프트웨어 수신기에 시뮬레이션으로 구현된 GNSS 기반 실내 측위 시스템을 사용하여 테스트하였다. Referring to FIG. 1, since the position in the paper is not based on the indoor signal, the name of the pseudo position is used because it does not match the actual position. A satellite signal is received from a plurality of satellites (10) to the GNSS antenna (12). The distance from the user terminal 18 to the GNSS repeater 16 is calculated using the difference between the position of each satellite 10 and the pseudo position received from the GNSS antenna 12 by the software simulator 14. This algorithm was tested using a GNSS-based indoor positioning system implemented as a simulation in a GNSS software receiver.
상기 논문에 따른 시뮬레이션 결과는 실내 포지셔닝 시스템이 정적 및 동적 상황 모두에서 미터 수준의 정확도로 수평 위치를 제공 할 수 있음을 보여주었다. 또한, 전술한 논문에서 제안된 방법은 비동기 측정에 대한 실내 측위 시스템의 견고성을 향상시킬 수 있다는 장점이 있다. The simulation results according to the above paper showed that the indoor positioning system can provide horizontal position with meter-level accuracy in both static and dynamic situations. In addition, the method proposed in the above-mentioned paper has an advantage of improving the robustness of the indoor positioning system for asynchronous measurement.
하지만, 전술한 논문을 적용할 경우 실내측위 시스템에 있어서는 미터 수준의 정확도의 수평 위치를 얻을 수 있지만, 이는 실내측위 시스템에 있어서는 더 높은 정확도를 요구하는 응용분야에 있어 한계가 있다. However, if the above-mentioned paper is applied, it is possible to obtain a horizontal position of metric level accuracy in the indoor positioning system, but this has limitations in applications requiring higher accuracy in the indoor positioning system.
예컨대, 실내에서는 실험실 수준에서의 위치를 측정하는 경우 보다 높은 위치 정확도가 요구된다. 또는 실내 또는 지하 주차장에서 사용되는 경우, 위치추적 또는 자동 주차시스템에 적용하기 위해서는 보다 높은 위치 정확도가 요구된다. 따라서, 실내에서의 측위 시스템에서는 미터 단위보다 높은 정확도를 갖는 센티미터 단위의 높은 정확도가 필요하다. For example, indoors require higher position accuracy when measuring a position at the laboratory level. Or, when used in indoor or underground parking lots, higher positioning accuracy is required to apply to a location tracking or automatic parking system. Therefore, in the indoor positioning system, a high accuracy in centimeters is required with a higher accuracy than the metric units.
이와 같은 문제점을 해결하기 위하여 대한민국 공개특허 제10-2015-0023183(발명의 명칭 : 디바이스의 위치를 결정하는 장치 및 방법)(이하 인용발명이라 칭함)에서는 위치 결정 장치에 대하여 개시하고 있다. In order to solve this problem, the Republic of Korea Patent Publication No. 10-2015-0023183 (invention name: the device and method for determining the location of the device) (hereinafter referred to as "cited invention") discloses a positioning device.
도 2는 인용발명의 구성을 나타낸 도면이다. 2 is a view showing the configuration of the cited invention.
도 2를 참조하면, 인용발명은 적어도 하나 이상의 GNSS(Global Navigation Satellite System) 각각으로부터 상기 디바이스의 위치에 대응하는 GNSS 정보를 수신하는 GNSS 정보 수신부(11); 적어도 하나 이상의 Wi-Fi AP(Access Point) 각각으로부터 상기 디바이스의 위치에 대응하는 Wi-Fi 정보를 수신하는 Wi-Fi 정보 수신부(12); 상기 적어도 하나 이상의 GNSS의 개수에 기초하여 상기 Wi-Fi 정보의 이용 여부를 판단하는 판단부(13); 및 상기 수신된 GNSS 정보 및/또는 상기 수신된 Wi-Fi 정보를 이용하여 상기 디바이스의 위치를 결정하는 위치 결정부(14);를 포함하는 위치 결정 장치에 대하여 개시하고 있다. Referring to FIG. 2, the cited invention includes a GNSS information receiving unit 11 that receives GNSS information corresponding to a location of the device from each of at least one Global Navigation Satellite System (GNSS); A Wi-Fi information receiving unit 12 that receives Wi-Fi information corresponding to the location of the device from each of at least one Wi-Fi AP (Access Point); A determination unit 13 for determining whether to use the Wi-Fi information based on the number of the at least one GNSS; And a location determination unit (14) for determining the location of the device using the received GNSS information and / or the received Wi-Fi information.
인용발명의 GNSS 정보 수신부(기준안테나)(11)는 실외에 위치하여 항법을 위한 원시데이터인 실제 위성신호를 수신한다. 위치 결정부(14)는 수신된 GNSS 정보 및/또는 상기 수신된 Wi-Fi 정보를 이용하여 상기 디바이스의 위치를 결정하는 구성에 대하여 개시하고 있다. The GNSS information receiving unit (reference antenna) 11 of the cited invention is located outdoors to receive actual satellite signals, which are raw data for navigation. The location determining unit 14 discloses a configuration for determining the location of the device using the received GNSS information and / or the received Wi-Fi information.
따라서 인용발명은 실내에서 적용된다는 장점이 있는 반면에 WiFi를 이용하는 방법은 주변의 AP의 개수에 따라 정확도가 가변될 수 있으며 대체적으로는 1개 내지 2개의 AP(Access Point)에 의해 위치가 추적되기 때문에 비교적 정확하지 않은 위치를 추정하기 때문에 WiFi를 이용한 실내에서 측정되는 위치의 정확도가 떨어진다는 문제점이 있다. Therefore, while the cited invention has an advantage of being applied indoors, the method of using WiFi can vary in accuracy depending on the number of APs in the vicinity, and is generally tracked by one to two APs (Access Points). Therefore, there is a problem in that the accuracy of the location measured in the room using WiFi is inferior because the location is relatively inaccurate.
따라서 본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 GNSS를 이용하고 GNSS로부터 들어온 위성신호를 채널별로 분리 및 할당하고 스플리터를 이용하여 채널할당된 신호를 이용하여 실내에서 소정의 단말기 또는 단말기를 구비한 장치의 위치를 측정하고 측정된 위치의 정밀도를 초정밀도로 높인 GNSS를 이용한 실내 항법 시스템을 제공하기 위한 것이다. Therefore, the present invention is to solve the above-mentioned problems of the prior art, the object of the present invention is to use the GNSS and separate and allocate satellite signals from the GNSS for each channel, and using a splitter to allocate the channel indoors The present invention is to provide an indoor navigation system using GNSS, which measures the position of a predetermined terminal or a device equipped with a terminal and increases the precision of the measured position to a high precision.
상술한 목적을 달성하기 위한 GNSS를 이용한 실내 항법 시스템은, Indoor navigation system using GNSS to achieve the above object,
다수의 GNSS 위성으로부터 다수의 위성신호를 수신하는 외부GNSS안테나; An external GNSS antenna that receives a plurality of satellite signals from a plurality of GNSS satellites;
상기 외부GNSS안테나로부터 수신된 다수의 위성신호를 분리하여 채널별로 할당하는 위성채널할당장치; A satellite channel allocation device for separating a plurality of satellite signals received from the external GNSS antenna and assigning them to each channel;
상기 위성채널할당장치로부터 수신한 채널별 신호를 GNSS방사안테나와 콤바이너로 분배하는 스플리터; A splitter for distributing a signal for each channel received from the satellite channel assignment device to a GNSS radiation antenna and a combiner;
상기 스플리터로부터 분배된 다수의 위성신호이며, 외부GNSS안테나부터기준GNSS리시버까지의 거리 정보인 제1 위성신호를 결합하는 콤바이너;A combiner for combining a plurality of satellite signals distributed from the splitter and a first satellite signal that is distance information from an external GNSS antenna to a reference GNSS receiver;
상기 콤바이너로부터 결합된 다수의 제1 위성신호를 수신하고 위치가 고정되어 있는 기준GNSS리시버; A reference GNSS receiver receiving a plurality of first satellite signals combined from the combiner and having a fixed position;
상기 스플리터로부터 분배된 각각의 위성신호이며 외부GNSS안테나부터 GNSS단말기까지의 거리를 나타내는 제2 위성신호를 수신하여 방사하는 각각의 GNSS방사안테나;A respective GNSS radiation antenna which receives and radiates a second satellite signal distributed from the splitter and represents a distance from an external GNSS antenna to a GNSS terminal;
상기 각 GNSS방사안테나로부터 방사된 제2 위성신호를 수신하고 상기 기준GNSS리시버로부터 수집한 제1 위성신호의 거리측정치와 상기 GNSS단말기로부터 수집한 제2 위성신호의 거리측정치를 무선으로 수신하여 GNSS단말기의 위치를 연산하는 이동형 GNSS단말기;를 포함하여 구성된다. The GNSS terminal receives wirelessly the second satellite signal emitted from each GNSS antenna and receives the distance measurement value of the first satellite signal collected from the reference GNSS receiver and the distance measurement value of the second satellite signal collected from the GNSS terminal wirelessly. It is configured to include; a mobile GNSS terminal for calculating the position of the.
상기 외부GNSS안테나 및 위성채널할당장치는, GNSS신호를 발생시키고 외부GNSS안테나로부터 수신된 다수의 위성신호를 분리하여 채널별로 할당하는 모의 GNSS 신호발생장치로 대체될 수 있다. The external GNSS antenna and satellite channel assignment device may be replaced with a simulated GNSS signal generation device that generates a GNSS signal and separates a plurality of satellite signals received from the external GNSS antenna and allocates them for each channel.
상기 GNSS단말기는, 외부GNSS안테나로부터 GNSS방사안테나를 거쳐 상기 GNSS단말기까지의 지연시간인 제2 위성신호를 GNSS방사안테나로부터 수신하는 리시버; 및 상기 콤바이너로부터 제1 위성신호, 상기 GNSS방사안테나로부터 제2 위성신호를 수신하고 상기 제1 위성신호 및 제2 위성신호와 외부GNSS안테나로부터 GNSS단말기까지의 지연시간 정보 및 외부 GNSS안테나로부터 기준GNSS리시버까지의 지연시간 정보를 이용하여 각각의 GNSS방사안테나로부터 GNSS단말기까지의 거리를 측정하고 이를 이용하여 실내에서의 상기 GNSS단말기의 위치를 측정하는 연산부;를 포함하여 구성될 수 있다. The GNSS terminal includes: a receiver that receives a second satellite signal from the GNSS radiation antenna, which is a delay time from the external GNSS antenna to the GNSS terminal via the GNSS radiation antenna; And a first satellite signal from the combiner, a second satellite signal from the GNSS radiation antenna, delay time information from the first and second satellite signals and an external GNSS antenna to a GNSS terminal, and an external GNSS antenna. It can be configured to include; using the delay time information to the reference GNSS receiver to measure the distance from each GNSS radiation antenna to the GNSS terminal, and to measure the position of the GNSS terminal in the room using the same.
상기 GNSS단말기는, The GNSS terminal,
상기 외부GNSS안테나로부터 GNSS방사안테나를 거쳐 상기 GNSS단말기까지의 지연시간인 제2 위성신호를 GNSS방사안테나로부터 수신하는 리시버; 및 A receiver for receiving a second satellite signal from a GNSS radiation antenna, which is a delay time from the external GNSS antenna to the GNSS terminal via a GNSS radiation antenna; And
상기 콤바이너로부터 제1 위성신호, 상기 GNSS방사안테나로부터 제2 위성신호를 수신하고 상기 제1 위성신호 및 제2 위성신호와 외부GNSS안테나로부터 GNSS단말기까지의 지연시간 정보 및 외부 GNSS안테나로부터 기준GNSS리시버까지의 지연시간 정보를 이용하여 각각의 GNSS방사안테나로부터 GNSS단말기까지의 거리를 측정하고 이를 이용하여 실내에서의 상기 GNSS단말기의 위치를 측정하는 연산부;를 포함하여 구성될 수 있다. The first satellite signal from the combiner, the second satellite signal from the GNSS radiation antenna, the first satellite signal and the second satellite signal, delay time information from an external GNSS antenna to a GNSS terminal, and a reference from an external GNSS antenna It may be configured to include; using a delay time information to the GNSS receiver to measure the distance from each GNSS radiation antenna to the GNSS terminal, and using this to measure the position of the GNSS terminal in the room.
상기 다수의 GNSS방사안테나는, 적어도 4개 이상 구성하여 상기 다수의 GNSS방사안테나와 상기 GNSS단말기 간의 지연거리 정보를 4개 이상 확보하도록 구성할 수 있다. The plurality of GNSS radiation antennas may be configured to secure at least four delay distance information between the plurality of GNSS radiation antennas and the GNSS terminal by configuring at least four.
상술한 목적을 달성하기 위한 GNSS를 이용한 실내 항법 방법은, 다수의 GNSS위성으로부터 수신되는 다수의 위성신호를 수신하는 외부GNSS안테나; 상기 외부GNSS안테나로부터 수신된 다수의 위성신호를 분배하는 스플리터; 상기 스플리터로부터 분배된 다수의 위성신호인 제1 위성신호를 결합하는 콤바이너; 상기 콤바이너로부터 결합된 다수의 제1 위성신호를 수신하고 위치가 고정되어 있는 기준GNSS리시버; 상기 스플리터로부터 분배된 다수의 위성신호인 제2 위성신호를 수신하여 방사하는 각각의 GNSS방사안테나; 상기 다수의 GNSS방사안테나로부터 제2 위성신호를 수신하고 상기 기준GNSS리시버로부터 제1 위성신호를 무선으로 수신하여 자신의 위치를 연산하는 GNSS단말기;를 포함하는 비동기식 실내 항법 시스템을 이용한 비동기식 실내 항법 방법에 있어서, An indoor navigation method using GNSS to achieve the above object includes: an external GNSS antenna that receives a plurality of satellite signals received from a plurality of GNSS satellites; A splitter that distributes a plurality of satellite signals received from the external GNSS antenna; A combiner for combining a first satellite signal which is a plurality of satellite signals distributed from the splitter; A reference GNSS receiver receiving a plurality of first satellite signals combined from the combiner and having a fixed position; A respective GNSS radiation antenna which receives and radiates a second satellite signal which is a plurality of satellite signals distributed from the splitter; A GNSS terminal that receives a second satellite signal from the plurality of GNSS radiant antennas and wirelessly receives the first satellite signal from the reference GNSS receiver to calculate its own position; an asynchronous indoor navigation method using an asynchronous indoor navigation system including a In,
연산부는 GNSS단말기로부터 다수의 제2 위성신호를 수신하고 상기 외부GNSS안테나와 상기 각각의 GNSS방사안테나 사이의 제2 위성신호의 지연시간 정보를 미리 측정하여 알고 있고, 상기 기준GNSS리시버로부터 다수의 제1 위성신호를 수신하고 상기 외부 GNSS안테나와 상기 기준GNSS리시버사이의 제1 위성신호의 지연시간 정보를 미리 측정하여 알고 있는 단계;The operation unit receives a plurality of second satellite signals from a GNSS terminal and knows by measuring delay time information of a second satellite signal between the external GNSS antenna and each of the GNSS radiant antennas in advance. Receiving a satellite signal and measuring delay time information of a first satellite signal between the external GNSS antenna and the reference GNSS receiver in advance;
상기 제2 위성신호에서 상기 제2 위성신호의 지연시간 정보를 감산한 값과 상기 제1 위성신호에서 제1 위성신호의 지연시간 정보를 감산한 값을 감산하고 상기 각각의 GNSS방사안테나로부터 상기 GNSS단말기까지의 각각의 거리를 계산하는 단계; 및The value obtained by subtracting the delay time information of the second satellite signal from the second satellite signal and the value obtained by subtracting the delay time information of the first satellite signal from the first satellite signal and subtracting the GNSS from the respective GNSS radiation antenna. Calculating each distance to the terminal; And
상기 각각의 GNSS방사안테나와 GNSS단말기 간에 구해진 거리를 이용하여 GNSS단말기의 정밀위치를 측정하는 단계;를 포함하여 구성된다.And measuring the precise position of the GNSS terminal using the distance obtained between each of the GNSS radiation antenna and the GNSS terminal.
상기 각각의 GNSS방사안테나는 적어도 4개 이상 구성하여 상기 GNSS방사안테나와 상기 GNSS단말기 간의 거리측정치 정보를 4개 이상 확보하도록 구성될 수 있다. Each of the GNSS radiant antennas may be configured to secure at least four distance measurement information between the GNSS radiant antenna and the GNSS terminal by configuring at least four.
따라서 본 발명의 GNSS를 이용한 실내 항법 시스템은, GNSS를 이용하고 GNSS로부터 들어온 신호를 수신하여 거리를 계산하고 스플리터와 구현된 리시버를 이용하여 단말기 또는 단말기를 내장한 장치의 위치를 측정하고 측정된 위치의 정밀도를 높일 수 있는 효과가 있다. Therefore, the indoor navigation system using the GNSS of the present invention uses the GNSS and calculates the distance by receiving the signal from the GNSS, measures the position of the terminal or the device incorporating the terminal using the splitter and the implemented receiver, and measures the measured position. There is an effect that can increase the precision of.
또한, 본 발명의 GNSS를 이용한 실내 항법 시스템은, 외부GNSS 안테나 및 스플리터를 이용하여 실내에서 구동되는 GNSS 안테나를 구비한 리시버의 위치를 인지하여 초정밀하게 실내에서의 위치를 측정할 수 있으므로 보다 정확한 연구가 가능하며 실내에서 정밀한 자동항법 시스템 등에 적용할 수 있는 효과가 있다.In addition, the indoor navigation system using the GNSS of the present invention can recognize the position of a receiver equipped with a GNSS antenna driven indoors by using an external GNSS antenna and a splitter, so that the position in the room can be measured with high precision for more accurate research. It is possible and can be applied indoors to a precise automatic navigation system.
도 1은 전술한 논문에서 리시버를 구성하고 GNSS를 이용하여 실내에서 항법을 적용하기 위한 시스템 구성을 나타낸 도면. 1 is a view showing a system configuration for configuring a receiver in the above-mentioned paper and applying navigation indoors using GNSS.
도 2는 인용발명의 구성을 나타낸 도면이다. 2 is a view showing the configuration of the cited invention.
도 3은 본 발명의 일 실시예에 따른 GNSS를 이용한 실내 항법 시스템의 구성을 나타낸 블록 구성도. Figure 3 is a block diagram showing the configuration of an indoor navigation system using GNSS according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 도 3의 GNSS단말기의 구성을 나타낸 블록 구성도. Figure 4 is a block diagram showing the configuration of the GNSS terminal of Figure 3 according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 GNSS단말기가 GNSS를 이용하여 실내 항법하는 과정을 나타낸 순서도. 5 is a flowchart illustrating a process of indoor navigation using a GNSS by a GNSS terminal according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 GNSS를 이용한 실내 항법 시스템의 구성을 나타낸 블록 구성도. 6 is a block diagram showing the configuration of an indoor navigation system using GNSS according to another embodiment of the present invention.
< 도면의 주요 부분에 대한 부호의 설명 ><Explanation of reference numerals for main parts of the drawing>
110 : GNSS위성 120 : 외부GNSS안테나110: GNSS satellite 120: External GNSS antenna
122 : 모의 GNSS 신호발생장치 124 : 위성채널할당장치122: simulated GNSS signal generator 124: satellite channel assignment device
130 : 스플리터 132 : 콤바이너130: splitter 132: combiner
140 : 기준GNSS리시버 152 : 하드웨어 시뮬레이터140: standard GNSS receiver 152: hardware simulator
160 : GNSS방사안테나 170 : GNSS단말기160: GNSS radiation antenna 170: GNSS terminal
172 : 리시버 174 : 연산부172: receiver 174: operation unit
하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In the following description of the present invention, when it is determined that a detailed description of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
이하, 본 발명의 실시예를 나타내는 첨부 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings showing embodiments of the present invention.
도 3은 본 발명의 일 실시예에 따른 GNSS를 이용한 실내 항법 시스템의 구성을 나타낸 블록 구성도이고, 도 4는 본 발명의 일 실시예에 따른 도 3의 GNSS단말기의 구성을 나타낸 블록 구성도이다. 3 is a block diagram showing the configuration of an indoor navigation system using GNSS according to an embodiment of the present invention, and FIG. 4 is a block diagram showing the configuration of a GNSS terminal of FIG. 3 according to an embodiment of the present invention .
도 3 및 도 4를 참조하면, 본 발명의 GNSS를 이용한 비동기식 실내 항법 시스템은 다수의 GNSS위성(110), 외부GNSS안테나(120), 스플리터(130), 기준GNSS리시버(140), 다수의 GNSS방사안테나(160) 및 GNSS단말기(170)를 포함하여 구성된다. 3 and 4, the asynchronous indoor navigation system using the GNSS of the present invention includes a plurality of GNSS satellites 110, an external GNSS antenna 120, a splitter 130, a reference GNSS receiver 140, and a plurality of GNSSs. It comprises a radiation antenna 160 and the GNSS terminal 170.
먼저, 다수의 GNSS위성(110)은 GNSS를 제공할 수 있는 인공위성이다. First, a number of GNSS satellites 110 are artificial satellites capable of providing GNSS.
외부GNSS안테나(120)는 다수의 GNSS위성(110)으로부터 수신되는 다수의 위성신호를 수신한다. GNSS위성(110)은 수백개가 지구의 궤도를 따라 돌고 있다. 외부GNSS안테나(120)는 위치 및 날씨에 따라 다를 수 있지만, 평균적으로 수십 개의 GNSS위성(110)으로부터 위성신호를 수신하게 된다. 외부GNSS안테나(120)는 이론적으로는 지구도 둥글기 때문에 2개의 GNSS위성(110)으로부터 수신된 신호를 이용하여도 추적 가능하지만, 이 경우 위치의 정확도가 떨어지기 때문에 최소 4개 이상의 위성신호를 수신하여 위치를 추적 가능하며 바람직하게는 5개 이상의 위성을 이용하는 것이 좋다. 외부GNSS안테나(120)는 가능한 많은 GNSS위성(110)으로부터 위성신호를 수신할수록 안정적인 위치를 추적할 수 있다. The external GNSS antenna 120 receives a plurality of satellite signals received from a plurality of GNSS satellites 110. Hundreds of GNSS satellites 110 are orbiting the Earth. The external GNSS antenna 120 may vary according to location and weather, but on average receives satellite signals from dozens of GNSS satellites 110. The external GNSS antenna 120 is theoretically also rounded, so it can be tracked using signals received from two GNSS satellites 110, but in this case, at least four satellite signals are received because the position accuracy is poor. Therefore, it is possible to track the location, and it is preferable to use 5 or more satellites. The external GNSS antenna 120 can track a stable position as it receives satellite signals from as many GNSS satellites 110 as possible.
위성채널할당장치(124)는 외부GNSS안테나(120)로부터 수신된 다수의 위성신호를 분리하여 채널별로 할당한다. The satellite channel assignment device 124 separates a plurality of satellite signals received from the external GNSS antenna 120 and allocates them to each channel.
스플리터(130)는 위성채널할당장치(124)로부터 수신된 다수의 위성신호를 분리하여 채널별로 할당한다. 스플리터(130)는 위성채널할당장치(124)로부터 수신된 위성신호를 수신하여 콤바이너(132)를 통해 기준GNSS리시버(140)로 위성신호를 전송한다. 또한, 스플리터(130)는 상기 위성채널할당장치(124)로부터 수신한 채널별 신호를 GNSS방사안테나(160)로 분배한다. The splitter 130 separates a plurality of satellite signals received from the satellite channel allocation device 124 and allocates them to each channel. The splitter 130 receives the satellite signal received from the satellite channel assignment device 124 and transmits the satellite signal to the reference GNSS receiver 140 through the combiner 132. In addition, the splitter 130 distributes the signal for each channel received from the satellite channel assignment device 124 to the GNSS radiation antenna 160.
콤바이너(132)는 각 스플리터(130)로부터 분배된 다수의 위성신호인 제1 위성신호를 결합한다. 여기서 제1 위성신호는 스플리터(130)로부터 분배된 다수의 위성신호이며, 외부GNSS안테나(120)로부터 기준GNSS리시버까지의 거리 정보를 포함하는 신호이다. The combiner 132 combines the first satellite signals, which are a plurality of satellite signals distributed from each splitter 130. Here, the first satellite signal is a plurality of satellite signals distributed from the splitter 130, and is a signal including distance information from the external GNSS antenna 120 to the reference GNSS receiver.
기준GNSS리시버(140)는 콤바이너(132)에 의해 결합된 다수의 위성신호를 수신한다. 기준GNSS리시버(140)는 위치가 고정되어 구성되어 자신의 정확한 위치를 인지한다. 기준GNSS리시버(140)는 연산부(174)로 제1 위성신호의 지연거리 정보를 전달한다. The reference GNSS receiver 140 receives a plurality of satellite signals combined by the combiner 132. The reference GNSS receiver 140 is configured with a fixed position to recognize its exact position. The reference GNSS receiver 140 transmits delay distance information of the first satellite signal to the operation unit 174.
GNSS방사안테나(160)는 각 스플리터(130)로부터 분배된 다수의 위성신호를 수신하여 각각의 GNSS단말기(170)로 전송한다. 즉, GNSS방사안테나(160)는 스플리터(130)에 의해 분배된 디지털 위성신호를 각각의 위성신호로 분리하여 이를 각각의 GNSS단말기(170)로 전송한다. 특히, GNSS방사안테나(160)는 외부GNSS안테나(120)부터 GNSS단말기까지의 거리를 나타내는 제2 위성신호를 수신하여 방사한다. The GNSS radiation antenna 160 receives a plurality of satellite signals distributed from each splitter 130 and transmits them to each GNSS terminal 170. That is, the GNSS radiation antenna 160 separates the digital satellite signals distributed by the splitter 130 into respective satellite signals and transmits them to each GNSS terminal 170. In particular, the GNSS radiation antenna 160 receives and radiates a second satellite signal indicating the distance from the external GNSS antenna 120 to the GNSS terminal.
GNSS단말기(170)는 위치가 추적되는 대상이다. GNSS단말기(170)는 GNSS방사안테나(160)로부터 수신된 각각의 위성신호인 제2 위성신호를 수신하여 자신의 위치를 추적할 수 있다. The GNSS terminal 170 is an object whose location is tracked. The GNSS terminal 170 may receive a second satellite signal, which is each satellite signal received from the GNSS radiation antenna 160, to track its location.
GNSS단말기(170)는 각각의 GNSS방사안테나(160)들과 GNSS단말기(170) 간의 거리를 이용하여 GNSS단말기(170) 자신의 위치를 구한다. 즉, 하나의 GNSS방사안테나(160)와 GNSS단말기(170)의 거리를 인지하고 다시 다른 하나의 GNSS방사안테나(160)와 GNSS단말기(170)간의 거리를 인지하는 방식으로 다수의 GNSS방사안테나(160)와 GNSS단말기(170) 간의 거리를 구하고 이를 이용하여 GNSS단말기(170)의 위치를 계산할 수 있다. The GNSS terminal 170 uses the distance between each GNSS radiation antenna 160 and the GNSS terminal 170 to obtain its own location. That is, a plurality of GNSS radiant antennas in a manner of recognizing the distance between one GNSS radiant antenna 160 and the GNSS terminal 170 and recognizing the distance between the other GNSS radiant antenna 160 and the GNSS terminal 170 ( 160) and the distance between the GNSS terminal 170 is obtained and the location of the GNSS terminal 170 can be calculated using the distance.
GNSS단말기(170)의 위치를 구하는 것에 대해서는 후술하는 도 4 및 도 5를 참조하여 보다 상세하게 설명하기로 한다. 도 6은 본 발명의 다른 실시예에 따른 GNSS를 이용한 실내 항법 시스템의 구성을 나타낸 블록 구성도이다. The position of the GNSS terminal 170 will be described in more detail with reference to FIGS. 4 and 5 described later. 6 is a block diagram showing the configuration of an indoor navigation system using GNSS according to another embodiment of the present invention.
도 6을 참조하면 도 3과는 달리 GNSS위성(110)과 외부GNSS안테나(120) 대신에 GNSS신호를 발생시키는 모의 GNSS 신호발생장치(122)를 포함하여 구성된다. 모의 GNSS 신호발생장치(122)는 GNSS 위성 신호와 동일한 임의의 GNSS 위성신호를 발생시킨다. 즉, GNSS위성(110)과 외부GNSS안테나(120) 대신에 GNSS 신호발생장치(122)가 구성된 것으로 동일한 기능을 수행하는 것으로 상호 대체 가능한 구성이며, GNSS 신호발생장치(122)의 기능에 따라 위성채널할당장치(124)에서 수행하는 채널 별로 할당하는 기능도 수행할 수 있다. 따라서 모의 GNSS 신호발생장치(122)는 GNSS위성(110), 외부GNSS안테나(120) 및 위성채널할당장치(124)까지도 상호 대체 가능하다.Referring to FIG. 6, unlike FIG. 3, it comprises a simulated GNSS signal generator 122 that generates a GNSS signal instead of the GNSS satellite 110 and the external GNSS antenna 120. The simulated GNSS signal generator 122 generates a random GNSS satellite signal identical to the GNSS satellite signal. That is, instead of the GNSS satellite 110 and the external GNSS antenna 120, the GNSS signal generating device 122 is configured to perform the same function, and is a mutually interchangeable configuration. The function of allocating for each channel performed by the channel allocating device 124 may also be performed. Therefore, the simulated GNSS signal generating device 122 can be interchanged with the GNSS satellite 110, the external GNSS antenna 120, and even the satellite channel assignment device 124.
위성채널할당장치(124)는 모의 GNSS 신호발생장치(122)로부터 수신된 다수의 위성신호를 분리하여 채널별로 할당한다. The satellite channel assignment device 124 separates a plurality of satellite signals received from the simulated GNSS signal generation device 122 and allocates them to each channel.
스플리터(130)는 위성채널할당장치(124)로부터 수신된 다수의 위성신호를 분리하여 채널별로 할당한다. 스플리터(130)는 위성채널할당장치(124)로부터 수신된 위성신호를 수신하여 콤바이너(132)를 통해 기준GNSS리시버(140)로 위성신호를 전송한다. 또한, 스플리터(130)는 상기 위성채널할당장치(124)로부터 수신한 채널별 신호를 GNSS방사안테나(160)로 분배한다. The splitter 130 separates a plurality of satellite signals received from the satellite channel allocation device 124 and allocates them to each channel. The splitter 130 receives the satellite signal received from the satellite channel assignment device 124 and transmits the satellite signal to the reference GNSS receiver 140 through the combiner 132. In addition, the splitter 130 distributes the signal for each channel received from the satellite channel assignment device 124 to the GNSS radiation antenna 160.
콤바이너(132)는 각 스플리터(130)로부터 분배된 다수의 위성신호인 제1 위성신호를 결합한다. 여기서 제1 위성신호는 스플리터(130)로부터 분배된 다수의 위성신호이며, 외부GNSS안테나(120)로부터 기준GNSS리시버까지의 거리 정보를 포함하는 신호이다. The combiner 132 combines the first satellite signals, which are a plurality of satellite signals distributed from each splitter 130. Here, the first satellite signal is a plurality of satellite signals distributed from the splitter 130, and is a signal including distance information from the external GNSS antenna 120 to the reference GNSS receiver.
기준GNSS리시버(140)는 콤바이너(132)에 의해 결합된 다수의 위성신호를 수신한다. 기준GNSS리시버(140)는 위치가 고정되어 구성되어 자신의 정확한 위치를 인지한다. 기준GNSS리시버(140)는 연산부(174)로 제1 위성신호의 지연거리 정보를 전달한다. The reference GNSS receiver 140 receives a plurality of satellite signals combined by the combiner 132. The reference GNSS receiver 140 is configured with a fixed position to recognize its exact position. The reference GNSS receiver 140 transmits delay distance information of the first satellite signal to the operation unit 174.
GNSS방사안테나(160)는 각 스플리터(130)로부터 분배된 다수의 위성신호를 수신하여 각각의 GNSS단말기(170)로 전송한다. 즉, GNSS방사안테나(160)는 스플리터(130)에 의해 분배된 디지털 위성신호를 각각의 위성신호로 분리하여 이를 각각의 GNSS단말기(170)로 전송한다. 특히, GNSS방사안테나(160)는 외부GNSS안테나(120)부터 GNSS단말기까지의 거리를 나타내는 제2 위성신호를 수신하여 방사한다. The GNSS radiation antenna 160 receives a plurality of satellite signals distributed from each splitter 130 and transmits them to each GNSS terminal 170. That is, the GNSS radiation antenna 160 separates the digital satellite signals distributed by the splitter 130 into respective satellite signals and transmits them to each GNSS terminal 170. In particular, the GNSS radiation antenna 160 receives and radiates a second satellite signal indicating the distance from the external GNSS antenna 120 to the GNSS terminal.
GNSS단말기(170)는 위치가 추적되는 대상이다. GNSS단말기(170)는 GNSS방사안테나(160)로부터 수신된 각각의 위성신호인 제2 위성신호를 수신하여 자신의 위치를 추적할 수 있다. The GNSS terminal 170 is an object whose location is tracked. The GNSS terminal 170 may receive a second satellite signal, which is each satellite signal received from the GNSS radiation antenna 160, to track its location.
GNSS단말기(170)는 각각의 GNSS방사안테나(160)들과 GNSS단말기(170) 간의 거리를 이용하여 GNSS단말기(170) 자신의 위치를 구한다. 즉, 하나의 GNSS방사안테나(160)와 GNSS단말기(170)의 거리를 인지하고 다시 다른 하나의 GNSS방사안테나(160)와 GNSS단말기(170)간의 거리를 인지하는 방식으로 다수의 GNSS방사안테나(160)와 GNSS단말기(170) 간의 거리를 반복하여 구하고 이를 이용하여 GNSS단말기(170)의 위치를 계산할 수 있다. The GNSS terminal 170 uses the distance between each GNSS radiation antenna 160 and the GNSS terminal 170 to obtain its own location. That is, a plurality of GNSS radiant antennas in a manner of recognizing the distance between one GNSS radiant antenna 160 and the GNSS terminal 170 and recognizing the distance between the other GNSS radiant antenna 160 and the GNSS terminal 170 ( 160) and the distance between the GNSS terminal 170 is repeatedly obtained and the position of the GNSS terminal 170 can be calculated using the distance.
GNSS단말기(170)의 위치를 구하는 것에 대해서는 후술하는 도 4 및 도 5를 참조하여 보다 상세하게 설명하기로 한다. The position of the GNSS terminal 170 will be described in more detail with reference to FIGS. 4 and 5 described later.
*도 4를 참조하면, GNSS단말기(170)는 리시버(172) 및 연산부(174)를 포함하여 구성된다. * Referring to FIG. 4, the GNSS terminal 170 is configured to include a receiver 172 and an operation unit 174.
먼저 리시버(172)는 각각의 GNSS방사안테나(160)로부터 각각 제2 위성신호를 수신하고 기준GNSS리시버(140)로부터 제1 위성신호를 수신한다. 제1 위성신호는 GNSS위성(110) 또는 모의 GNSS 신호발생장치(122)로부터 기준GNSS리시버(140)까지의 지연거리 정보이다. 또한, 제2 위성신호는 모의 GNSS위성(110) 또는 모의 GNSS 신호발생장치(122)로부터 GNSS단말기(170)까지의 지연거리 정보이다.First, the receiver 172 receives a second satellite signal from each of the GNSS radiant antennas 160, and receives a first satellite signal from the reference GNSS receiver 140. The first satellite signal is delay distance information from the GNSS satellite 110 or the simulated GNSS signal generator 122 to the reference GNSS receiver 140. In addition, the second satellite signal is delay distance information from the simulated GNSS satellite 110 or the simulated GNSS signal generator 122 to the GNSS terminal 170.
또한, 리시버(172)는 외부GNSS안테나(120) 또는 모의 GNSS 신호발생장치(122)로부터 기준GNSS리시버(140)까지의 지연시간 정보(편의상 B로 칭함)를 수신한다. 리시버(172)는 외부GNSS안테나(120)로부터 GNSS방사안테나(160)까지의 지연시간 정보(편의상 C로 칭함)를 수신한다. 연산부(174)는 리시버(172)로부터 제2 위성신호와 제1 위성신호를 수신한다. 연산부(174)는 외부GNSS안테나(120) 또는 모의 GNSS 신호발생장치(122)로부터 기준GNSS리시버(140)까지의 지연시간 정보(편의상 B로 칭함)를 수신한다. 연산부(174)는 외부GNSS안테나(120) 또는 모의 GNSS 신호발생장치(122)로부터 GNSS방사안테나(160)까지의 지연시간 정보(편의상 C로 칭함)를 수신한다. 또한, 연산부(174)는 각각의 GNSS방사안테나(160)로부터 GNSS단말기(170)까지의 다수의 지연시간 정보(편의상 D로 칭함)을 추론한다. In addition, the receiver 172 receives delay time information (referred to as B for convenience) from the external GNSS antenna 120 or the simulated GNSS signal generator 122 to the reference GNSS receiver 140. The receiver 172 receives delay time information (referred to as C for convenience) from the external GNSS antenna 120 to the GNSS radiant antenna 160. The calculator 174 receives the second satellite signal and the first satellite signal from the receiver 172. The calculation unit 174 receives delay time information (referred to as B for convenience) from the external GNSS antenna 120 or the simulated GNSS signal generator 122 to the reference GNSS receiver 140. The calculating unit 174 receives delay time information (called C for convenience) from the external GNSS antenna 120 or the simulated GNSS signal generating device 122 to the GNSS radiating antenna 160. In addition, the calculation unit 174 infers a plurality of delay time information (called D for convenience) from each GNSS radiation antenna 160 to the GNSS terminal 170.
연산부(174)는 제1 위성신호와 제2 위성신호를 이용하여 종래에 연구된 이중차분기법과 RTK와 같은 정밀상대측위기법을 이용하여 상기 각각의 GNSS방사안테나(160)로부터 상기 GNSS단말기(170)까지의 거리를 각각 측정하고, 상기 각각의 GNSS방사안테나(160)와 GNSS단말기(170) 간의 거리를 이용하여 GNSS단말기(170)의 위치를 정밀하게 측정하도록 구성될 수 있다. The calculating unit 174 uses the first differential signal and the second satellite signal to obtain the GNSS terminal 170 from each of the GNSS radiant antennas 160 using a conventionally researched dual difference method and a precision relative positioning technique such as RTK. ), And may be configured to accurately measure the position of the GNSS terminal 170 using the distance between each of the GNSS radiation antennas 160 and the GNSS terminal 170.
연산부(174)는 기준GNSS리시버(140)로부터 다수의 위성신호를 수신한다. 연산부(174)는 수신된 위성신호를 GNSS단말기(170)로 전송한다. The calculation unit 174 receives a plurality of satellite signals from the reference GNSS receiver 140. The calculating unit 174 transmits the received satellite signal to the GNSS terminal 170.
한편, 전술한 연산부(174)는 단말기(170)에 포함된 구성으로 설명하였지만, 실내의 일정한 부분에 개별적으로 설치된 상태로 구성될 수도 있다. 연산부(174)가 외부에 구성된 경우 연산부(174)와 GNSS단말기(170)가 근거리 무선 통신으로 연결되어 구성될 수 있다. 즉 연산부(174)가 GNSS단말기(170)와 별도로 구성되는 경우에는 서버 형태로 구성된다. 연산부(174)와 기준GNSS리시버(140)는 근거리 무선 통신으로 연결될 수 있다. 예컨대, WiFi나 블루투스 등의 통신 방식으로 통신할 GNSS단말기(170)와 연산부(174)가 통신할 수 있다. On the other hand, the above-described operation unit 174 has been described as a configuration included in the terminal 170, but may be configured to be individually installed in a certain part of the room. When the operation unit 174 is configured externally, the operation unit 174 and the GNSS terminal 170 may be configured by being connected by short-range wireless communication. That is, when the operation unit 174 is configured separately from the GNSS terminal 170, it is configured as a server. The operation unit 174 and the reference GNSS receiver 140 may be connected through short-range wireless communication. For example, the GNSS terminal 170 and the operation unit 174 to communicate by a communication method such as WiFi or Bluetooth may communicate.
도 5는 본 발명의 일 실시예에 따른 GNSS단말기가 GNSS를 이용하여 실내 항법하는 과정을 나타낸 순서도이다. 5 is a flowchart illustrating a process of indoor navigation using a GNSS by a GNSS terminal according to an embodiment of the present invention.
도 5를 참조하면, S202단계에서 GNSS단말기(170)의 연산부(174)는 상기 외부GNSS안테나와 상기 각각의 GNSS방사안테나 사이의 제2 위성신호의 지연시간 정보를 미리 측정하여 알고 있고, 상기 기준GNSS리시버로부터 다수의 제1 위성신호를 수신하고 상기 외부 GNSS안테나와 상기 기준GNSS리시버사이의 제1 위성신호의 지연시간 정보를 미리 측정하여 알고 있다. Referring to FIG. 5, in step S202, the operation unit 174 of the GNSS terminal 170 measures and knows the delay time information of the second satellite signal between the external GNSS antenna and the respective GNSS radiation antenna in advance, and the reference A plurality of first satellite signals are received from a GNSS receiver, and delay time information of a first satellite signal between the external GNSS antenna and the reference GNSS receiver is known in advance.
S204단계에서 제2 위성신호에서 상기 제2 위성신호의 지연시간 정보를 감산한 값과 상기 제1 위성신호에서 제1 위성신호의 지연시간 정보를 감산한 값을 감산하고 상기 각각의 GNSS방사안테나로부터 상기 GNSS단말기까지의 각각의 거리를 계산한다. In step S204, the value obtained by subtracting the delay time information of the second satellite signal from the second satellite signal and the value obtained by subtracting the delay time information of the first satellite signal from the first satellite signal are subtracted from the respective GNSS radiation antennas. Each distance to the GNSS terminal is calculated.
제1 위성신호를 감산하고 그 결과값으로부터 상기 스플리터(130)로부터 기준GNSS리시버(140)까지의 케이블길이를 가산하고 다시 그 결과값으로부터 스플리터(130)로부터 GNSS방사안테나(160)까지의 길이를 감산하여 각각의 GNSS방사안테나(160)로부터 상기 GNSS단말기(170)까지의 거리를 계산한다. Subtract the first satellite signal and add the cable length from the splitter 130 to the reference GNSS receiver 140 from the resultant value, and again from the resultant value, the length from the splitter 130 to the GNSS radiant antenna 160. The distance from each GNSS radiation antenna 160 to the GNSS terminal 170 is calculated by subtracting.
S206단계에서 각각의 GNSS방사안테나(160)와 GNSS단말기(170) 간의 거리를 이용하여 GNSS단말기(170)의 위치를 측정한다. GNSS방사안테나(160)와 GNSS단말기(170) 간의 거리를 인지하게 되면, GNSS단말기(170)의 위치를 측정할 수 있다. 그러나, 실내에서의 정밀한 길이 단위로 변환되어 있는 상태이기 때문에 보다 정밀한 정확도를 갖는 위치를 측정할 수 있다. In step S206, the position of the GNSS terminal 170 is measured using the distance between each GNSS radiation antenna 160 and the GNSS terminal 170. When the distance between the GNSS radiation antenna 160 and the GNSS terminal 170 is recognized, the position of the GNSS terminal 170 can be measured. However, since it is converted into a precise length unit indoors, it is possible to measure a position with more precise accuracy.
상기 각각의 GNSS방사안테나(160)는 적어도 4개 이상 구성하여 상기 GNSS방사안테나(160)와 상기 GNSS단말기(170) 간의 지연거리 정보를 4개 이상 확보하도록 구성할 수 있다. 이는 3개의 GNSS방사안테나(160)를 이용하여 GNSS단말기(170)의 위치를 측정하고 하나 이상의 GNSS(160)를 이용하여 오차를 보정하는 GNSS를 이용하여 위치를 측정하는 것이며, 바람직하게는 5개 이상의 GNSS방사안테나(160)를 이용하여 추정하게 되면 더 정확한 위치를 측정할 수 있다. Each of the GNSS radiation antennas 160 may be configured to secure at least four delay distance information between the GNSS radiation antennas 160 and the GNSS terminal 170 by configuring at least four. This is to measure the location of the GNSS terminal 170 using three GNSS radiation antennas 160 and to measure the location using GNSS to correct errors using one or more GNSS 160, preferably five. If the estimation is made using the above GNSS radiation antenna 160, a more accurate location can be measured.
상기에서 설명한 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술적 분야의 통상의 지식을 가진 자라면 본 발명의 기술적 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the technical spirit of the present invention described above has been specifically described in a preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not for limitation. In addition, those skilled in the art of the present invention will understand that various embodiments are possible within the scope of the technical spirit of the present invention. Therefore, the true technical protection scope of the present invention should be defined by the technical spirit of the appended claims.
본 발명에 따르면, GNSS를 이용하고 GNSS로부터 들어온 신호를 수신하여 거리를 계산하고 스플리터와 구현된 리시버를 이용하여 단말기 또는 단말기를 내장한 장치의 위치를 측정하고 측정된 위치의 정밀도를 높일 수 있으며, 본 발명의 GNSS를 이용한 실내 항법 시스템은, 외부GNSS 안테나 및 스플리터를 이용하여 실내에서 구동되는 GNSS 안테나를 구비한 리시버의 위치를 인지하여 초정밀하게 실내에서의 위치를 측정할 수 있으므로 보다 정확한 연구가 가능하여 자동항법 시스템 분야에 보다 효과적으로 이용될 수 있다.According to the present invention, it is possible to measure the position of a terminal or a device incorporating a terminal using a GNSS, receive a signal from the GNSS, calculate the distance, and use a splitter and an implemented receiver to increase the precision of the measured position, The indoor navigation system using the GNSS of the present invention can be more accurately researched by recognizing the position of a receiver equipped with a GNSS antenna driven indoors by using an external GNSS antenna and a splitter, thereby accurately measuring the indoor position. Therefore, it can be used more effectively in the field of automatic navigation system.

Claims (7)

  1. 다수의 GNSS 위성으로부터 다수의 위성신호를 수신하는 외부GNSS안테나; An external GNSS antenna that receives a plurality of satellite signals from a plurality of GNSS satellites;
    상기 외부GNSS안테나로부터 수신된 다수의 위성신호를 분리하여 채널별로 할당하는 위성채널할당장치; A satellite channel allocation device for separating a plurality of satellite signals received from the external GNSS antenna and assigning them to each channel;
    상기 위성채널할당장치로부터 수신한 채널별 신호를 GNSS방사안테나와 콤바이너로 분배하는 스플리터; A splitter for distributing a signal for each channel received from the satellite channel assignment device to a GNSS radiation antenna and a combiner;
    상기 스플리터로부터 분배된 다수의 위성신호이며, 외부GNSS안테나부터 기준GNSS리시버까지의 거리 정보인 제1 위성신호를 결합하는 콤바이너;A combiner for combining a plurality of satellite signals distributed from the splitter and a first satellite signal that is distance information from an external GNSS antenna to a reference GNSS receiver;
    상기 콤바이너로부터 결합된 다수의 제1 위성신호를 수신하고 위치가 고정되어 있는 기준GNSS리시버; A reference GNSS receiver receiving a plurality of first satellite signals combined from the combiner and having a fixed position;
    상기 스플리터로부터 분배된 다수의 위성신호이며 외부GNSS안테나부터 GNSS단말기까지의 거리를 나타내는 제2 위성신호를 수신하여 방사하는 각각의 GNSS방사안테나;A plurality of satellite signals distributed from the splitter, each of the GNSS radiating antennas receiving and radiating a second satellite signal representing a distance from an external GNSS antenna to a GNSS terminal;
    상기 각 GNSS방사안테나로부터 방사된 제2 위성신호를 수신하고 상기 기준GNSS리시버로부터 수집한 제1 위성신호의 거리측정치와 상기 GNSS단말기로부터 수집한 제2 위성신호의 거리측정치를 무선으로 수신하여 GNSS단말기의 위치를 연산하는 이동형 GNSS단말기;를 포함하는 GNSS를 이용한 비동기식 실내 항법 시스템.The GNSS terminal receives wirelessly the second satellite signal emitted from each GNSS radiation antenna and wirelessly receives the distance measurement value of the first satellite signal collected from the reference GNSS receiver and the distance measurement value of the second satellite signal collected from the GNSS terminal. A mobile GNSS terminal that calculates the position of the asynchronous indoor navigation system using GNSS.
  2. 제1항에 있어서, 상기 외부GNSS안테나 및 위성채널할당장치는, According to claim 1, The external GNSS antenna and satellite channel allocation device,
    GNSS신호를 발생시키고 외부GNSS안테나로부터 수신된 다수의 위성신호를 분리하여 채널별로 할당하는 모의 GNSS 신호발생장치로 대체되는 것인 GNSS를 이용한 비동기식 실내 항법 시스템.Asynchronous indoor navigation system using GNSS, which is replaced by a simulated GNSS signal generator that generates GNSS signals and separates multiple satellite signals received from external GNSS antennas and allocates them for each channel.
  3. 제1항에 있어서, 상기 GNSS단말기는, According to claim 1, The GNSS terminal,
    상기 외부GNSS안테나로부터 GNSS방사안테나를 거쳐 상기 GNSS단말기까지의 지연시간인 제2 위성신호를 GNSS방사안테나로부터 수신하는 리시버; 및 A receiver for receiving a second satellite signal from a GNSS radiation antenna, which is a delay time from the external GNSS antenna to the GNSS terminal via a GNSS radiation antenna; And
    상기 콤바이너로부터 제1 위성신호, 상기 GNSS방사안테나로부터 제2 위성신호를 수신하고 상기 제1 위성신호 및 제2 위성신호와 외부GNSS안테나로부터 GNSS단말기까지의 지연시간 정보 및 외부GNSS안테나로부터 기준GNSS리시버까지의 지연시간 정보를 이용하여 각각의 GNSS방사안테나로부터 GNSS단말기까지의 거리를 측정하고 이를 이용하여 실내에서의 상기 GNSS단말기의 위치를 측정하는 연산부;를 포함하는 것인 GNSS를 이용한 비동기식 실내 항법 시스템.The first satellite signal from the combiner, the second satellite signal from the GNSS radiation antenna, the first satellite signal and the second satellite signal, delay time information from an external GNSS antenna to a GNSS terminal, and a reference from an external GNSS antenna Using a delay time information to the GNSS receiver to measure the distance from each GNSS radiation antenna to the GNSS terminal, and using it to measure the position of the GNSS terminal in the room; asynchronous indoor using GNSS that includes Navigation system.
  4. 제1항 또는 제2항에 있어서, 상기 GNSS단말기는, According to claim 1 or claim 2, wherein the GNSS terminal,
    상기 모의 GNSS 신호발생장치부터 GNSS방사안테나를 거쳐 상기 GNSS단말기까지의 지연시간인 제2 위성신호를 GNSS방사안테나로부터 수신하는 리시버; 및 A receiver that receives a second satellite signal from the GNSS radiation antenna, which is a delay time from the simulated GNSS signal generation device to the GNSS terminal through the GNSS radiation antenna; And
    상기 콤바이너로부터 제1 위성신호, 상기 GNSS방사안테나로부터 제2 위성신호를 수신하고 상기 제1 위성신호 및 제2 위성신호와 외부GNSS안테나로부터 GNSS단말기까지의 지연시간 정보 및 외부GNSS안테나로부터 기준GNSS리시버까지의 지연시간 정보를 이용하여 각각의 GNSS방사안테나로부터 GNSS단말기까지의 거리를 측정하고 이를 이용하여 실내에서의 상기 GNSS단말기의 위치를 측정하는 연산부;를 포함하는 것인 GNSS를 이용한 비동기식 실내 항법 시스템.The first satellite signal from the combiner, the second satellite signal from the GNSS radiation antenna, the first satellite signal and the second satellite signal, delay time information from an external GNSS antenna to a GNSS terminal, and a reference from an external GNSS antenna Using a delay time information to the GNSS receiver to measure the distance from each GNSS radiation antenna to the GNSS terminal, and using it to measure the position of the GNSS terminal in the room; asynchronous indoor using GNSS that includes Navigation system.
  5. 제1항에 있어서, 상기 다수의 GNSS방사안테나는, The method of claim 1, wherein the plurality of GNSS radiation antenna,
    적어도 4개 이상 구성하여 상기 다수의 GNSS방사안테나와 상기 GNSS단말기 간의 지연거리 정보를 4개 이상 확보하도록 구성하는 것인 GNSS를 이용한 비동기식 실내 항법 시스템.The asynchronous indoor navigation system using GNSS is configured to secure at least four delay distance information between the plurality of GNSS radiant antennas and the GNSS terminal by configuring at least four or more.
  6. 다수의 위성신호를 수신하는 외부GNSS안테나; 상기 외부GNSS안테나로부터 수신된 다수의 위성신호를 분배하는 스플리터; 상기 스플리터로부터 분배된 다수의 위성신호인 제1 위성신호를 결합하는 콤바이너; 상기 콤바이너로부터 결합된 다수의 제1 위성신호를 수신하고 위치가 고정되어 있는 기준GNSS리시버; 상기 스플리터로부터 분배된 다수의 위성신호인 제2 위성신호를 수신하여 방사하는 각각의 GNSS방사안테나; 상기 다수의 GNSS방사안테나로부터 제2 위성신호를 수신하고 상기 기준GNSS리시버로부터 제1 위성신호를 무선으로 수신하여 자신의 위치를 연산하는 GNSS단말기;를 포함하는 비동기식 실내 항법 시스템을 이용한 비동기식 실내 항법 방법에 있어서, An external GNSS antenna receiving a plurality of satellite signals; A splitter that distributes a plurality of satellite signals received from the external GNSS antenna; A combiner for combining a first satellite signal which is a plurality of satellite signals distributed from the splitter; A reference GNSS receiver receiving a plurality of first satellite signals combined from the combiner and having a fixed position; A respective GNSS radiation antenna that receives and radiates a second satellite signal which is a plurality of satellite signals distributed from the splitter; A GNSS terminal that receives a second satellite signal from the plurality of GNSS radiant antennas and wirelessly receives the first satellite signal from the reference GNSS receiver to calculate its own position; an asynchronous indoor navigation method using an asynchronous indoor navigation system including a In,
    연산부는 GNSS단말기로부터 다수의 제2 위성신호를 수신하고 상기 외부GNSS안테나와 상기 각각의 GNSS방사안테나 사이의 제2 위성신호의 지연시간 정보를 미리 측정하여 알고 있고, 상기 기준GNSS리시버로부터 다수의 제1 위성신호를 수신하고 상기 외부 GNSS안테나와 상기 기준GNSS리시버사이의 제1 위성신호의 지연시간 정보를 미리 측정하여 알고 있는 단계;The operation unit receives a plurality of second satellite signals from a GNSS terminal and knows by measuring delay time information of a second satellite signal between the external GNSS antenna and each of the GNSS radiant antennas in advance. Receiving a satellite signal and measuring delay time information of a first satellite signal between the external GNSS antenna and the reference GNSS receiver in advance;
    상기 제2 위성신호에서 상기 제2 위성신호의 지연시간 정보를 감산한 값과 상기 제1 위성신호에서 제1 위성신호의 지연시간 정보를 감산한 값을 감산하고 상기 각각의 GNSS방사안테나로부터 상기 GNSS단말기까지의 각각의 거리를 계산하는 단계; 및The value obtained by subtracting the delay time information of the second satellite signal from the second satellite signal and the value obtained by subtracting the delay time information of the first satellite signal from the first satellite signal and subtracting the GNSS from the respective GNSS radiation antenna. Calculating each distance to the terminal; And
    상기 각각의 GNSS방사안테나와 GNSS단말기 간에 구해진 거리를 이용하여 GNSS단말기의 정밀위치를 측정하는 단계;를 포함하는 것인 GNSS를 이용한 비동기식 실내 항법 방법.The step of measuring the precise position of the GNSS terminal using the distance obtained between each of the GNSS radiation antenna and the GNSS terminal; Asynchronous indoor navigation method using GNSS comprising a.
  7. 제6항에 있어서, 상기 각각의 GNSS방사안테나는 적어도 4개 이상 구성하여 상기 GNSS방사안테나와 상기 GNSS단말기 간의 거리측정치 정보를 4개 이상 확보하도록 구성되는 것인 GNSS를 이용한 비동기식 실내 항법 방법.The method of claim 6, wherein each of the GNSS radiation antennas is configured to secure at least four distance measurement information between the GNSS radiation antenna and the GNSS terminal by configuring at least four or more GNSS radiation antennas.
PCT/KR2019/008000 2018-11-20 2019-07-02 Asynchronous indoor navigation system and method using gnss WO2020105829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180143633A KR101975437B1 (en) 2018-11-20 2018-11-20 Asynchronous indoor navigation system and method using gnss
KR10-2018-0143633 2018-11-20

Publications (1)

Publication Number Publication Date
WO2020105829A1 true WO2020105829A1 (en) 2020-05-28

Family

ID=67775072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008000 WO2020105829A1 (en) 2018-11-20 2019-07-02 Asynchronous indoor navigation system and method using gnss

Country Status (2)

Country Link
KR (1) KR101975437B1 (en)
WO (1) WO2020105829A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123318B (en) * 2019-12-31 2022-04-19 泰斗微电子科技有限公司 Satellite positioning device, satellite signal receiver and terminal equipment
CN113640835A (en) * 2020-05-10 2021-11-12 张勇虎 Indoor virtual satellite navigation positioning method, system and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501949B1 (en) * 2001-11-06 2005-07-18 재단법인서울대학교산학협력재단 Pseudolite-Based Precise Positioning System with Synchronised Pseudolites
JP2005321353A (en) * 2004-05-11 2005-11-17 Seiko Epson Corp Positioning system, outdoor unit, positioning method, control method for outdoor unit, control program for outdoor unit, and computer readable recording medium stored with control program for outdoor unit
KR20080099074A (en) * 2007-05-08 2008-11-12 한국해양연구원 Apparatus of computing the pseudorange measurement noise of reference station receiver for gnss augmentation systems and method thereof
KR20130126054A (en) * 2012-05-10 2013-11-20 한국과학기술연구원 Apparatus and method for generating gps signal for indoor/outdoor seamless positioning and indoor/outdoor seamless positioning system
CN107462904A (en) * 2017-07-28 2017-12-12 东南大学 The high-precision GNSS terminal dynamic detection and localization car and detection method of GNSS and INS fusions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150023183A (en) 2013-08-23 2015-03-05 주식회사 케이티 Apparatus for determining location of device and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501949B1 (en) * 2001-11-06 2005-07-18 재단법인서울대학교산학협력재단 Pseudolite-Based Precise Positioning System with Synchronised Pseudolites
JP2005321353A (en) * 2004-05-11 2005-11-17 Seiko Epson Corp Positioning system, outdoor unit, positioning method, control method for outdoor unit, control program for outdoor unit, and computer readable recording medium stored with control program for outdoor unit
KR20080099074A (en) * 2007-05-08 2008-11-12 한국해양연구원 Apparatus of computing the pseudorange measurement noise of reference station receiver for gnss augmentation systems and method thereof
KR20130126054A (en) * 2012-05-10 2013-11-20 한국과학기술연구원 Apparatus and method for generating gps signal for indoor/outdoor seamless positioning and indoor/outdoor seamless positioning system
CN107462904A (en) * 2017-07-28 2017-12-12 东南大学 The high-precision GNSS terminal dynamic detection and localization car and detection method of GNSS and INS fusions

Also Published As

Publication number Publication date
KR101975437B1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
KR100581290B1 (en) Base station and mobile terminal for location detecting, its method for location detecting
CN1332217C (en) Positioning system
WO2012060501A1 (en) System and method for estimating indoor location using satellite signal generation device
WO2014065539A1 (en) Device for estimating location and method for estimating location by using uplink access point
US7800531B2 (en) High precision positioning system
CA2795529A1 (en) Network location and synchronization of peer sensor stations in a wireless geolocation network
CN102455426A (en) Method and system for computing universal hybrid navigation information for a gnss enabled device
EP3348099B1 (en) Fingerprint positioning for mobile terminals
WO2020105829A1 (en) Asynchronous indoor navigation system and method using gnss
WO2013048029A1 (en) Method for measuring position of user terminal
WO2021112331A1 (en) Time-differenced carrier phase measurement value-based navigation system, and position measurement method
US20110143778A1 (en) System and method for estimating position of lost mobile terminal, and mobile terminal
WO2022097946A1 (en) Method for estimating multipath error of pseudo-range measurement value, and positioning method using same
KR101975438B1 (en) Synchronous interior navigation system and method using gnss
KR20010113370A (en) Mobile communicating device for integrated measurement by gps and ins
KR20130126054A (en) Apparatus and method for generating gps signal for indoor/outdoor seamless positioning and indoor/outdoor seamless positioning system
US11832210B2 (en) Systems and methods for location determination of base station facilities and mobile user equipment (UE) devices in a wireless communication network
KR101058098B1 (en) A terminal and a system for measuring its own location according to the location information of another terminal and the reliability of the location information and a method for measuring the location
JPH10213643A (en) Gps satellite plotting device
KR102656500B1 (en) Apparatus and Method for Machine Learning-based Positioning Database Creation and Positioning of Uncollected Points using Matching Feature with Wireless Communication Infrastructure
WO2020213766A1 (en) Spatial coordinate positioning system
KR20190130398A (en) Method and system for providing gps correction data
CN114623827A (en) Indoor terminal positioning method, system and device and electronic equipment
WO2016126280A1 (en) Positioning with wlan time of flight
JP2001099909A (en) System for providing position measuring information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19886136

Country of ref document: EP

Kind code of ref document: A1