WO2020105812A1 - Prediction system and method on basis of parameter improvement through learning - Google Patents

Prediction system and method on basis of parameter improvement through learning

Info

Publication number
WO2020105812A1
WO2020105812A1 PCT/KR2019/003775 KR2019003775W WO2020105812A1 WO 2020105812 A1 WO2020105812 A1 WO 2020105812A1 KR 2019003775 W KR2019003775 W KR 2019003775W WO 2020105812 A1 WO2020105812 A1 WO 2020105812A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
prediction
learning
sensor
kalman filter
Prior art date
Application number
PCT/KR2019/003775
Other languages
French (fr)
Korean (ko)
Inventor
김도현
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Publication of WO2020105812A1 publication Critical patent/WO2020105812A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a prediction system, and more specifically, in order to improve the performance of a prediction system through learning, improves prediction parameters by learning prediction algorithm-based prediction parameters using previous and current data, and uses the data Predicting, relates to a prediction system and method based on parameter improvement through learning.
  • an optimization technique based on prediction of indoor environment parameters has various prediction algorithms to predict indoor environment parameters from a sensor, and a Kalman filter is typically used.
  • data read from the sensor usually has noise that not only affects accuracy, but also causes data spikes.
  • the Kalman filter can intelligently guess the actual state of the system using the previous state (that is, it is not necessary to keep all historical data). This speculation is performed by the Kalman's gain (often referred to as 'K'), which defines whether to give more preference to sensor readings or system self-prediction to accurately estimate the actual state of the system.
  • the sensor value of the indoor environment is received and the sensor value of the indoor environment is learned to control the driver (actuator) of the indoor environment according to the learned sensor value, and the Kalman filter is used in the indoor environment control system. Learning skills are not developed.
  • the present invention was devised to solve the above-mentioned problems, and provides improved data prediction performance results by inputting previous and current data into a learning algorithm to derive improved prediction parameters and inputting them into the prediction algorithm. .
  • the configuration according to the first aspect of the present invention for achieving the above object relates to a prediction system based on parameter improvement through learning, a prediction algorithm module that receives prediction parameters and generates future data, and previous data and current It is characterized by realizing an improved prediction algorithm, including a learning module that receives data and learns to improve prediction parameters to input the prediction algorithm module.
  • the prediction algorithm module includes a Kalman filter that receives and processes sensor detection values and sensor error values of a specific environment to output a specific environment prediction value, and the learning module includes at least one sensor detection value of the specific environment and the specific It is characterized by receiving an environmental prediction value, learning from the difference value, forming a learned sensor error value, and inputting it into the Kalman filter.
  • the learning module preferably includes a neural network and a sensor error calculation unit that calculates the sensor error value using a learned sensor error value output from the neural network and a preset error factor.
  • a sensing value of a temperature sensor, a sensing value of a humidity sensor, and a predicted temperature value output from the Kalman filter are input to the input layer of the neural network, and the Kalman filter calculates a predicted temperature using a state variation matrix and a control matrix.
  • Prediction temperature calculation unit Prediction temperature calculation unit, sensor value reading unit in a specific environment, sensor error value reading unit learned in the learning module, covariance value calculation and updating unit for calculating and updating covariance values, and outputting the learned sensor error value and the covariance
  • a Kalman gain calculation unit that receives and calculates a value to output a Kalman gain, a sensor value of the sensor value reading unit, a predicted temperature from the predicted temperature calculation unit, and an actual temperature for estimating a temperature based on the Kalman gain to output a predicted temperature It is preferable to include an estimation unit.
  • the equation for calculating the predicted temperature by the predicted temperature calculator And the expression for calculating the covariance and updating unit P t And the equation for calculating the updated covariance (P predicted ) is Is, the equation for calculating the Kalman gain Is, the equation for estimating the actual temperature by the actual temperature estimator, It is preferred.
  • A is the state transition matrix
  • a T is the transpose of the state transition matrix
  • B is the control matrix
  • T t -1 is the previously calculated temperature
  • u t is the control vector
  • T t the current sensor Temperature
  • I as the identification metric, used to facilitate matrix multiplication
  • H the observation metric
  • z t the sensor input (readout)
  • K Kalman gain.
  • the configuration according to the second aspect of the present invention for achieving the above object is in a prediction method based on parameter improvement through learning, a first step in which a prediction algorithm module receives prediction parameters and generates future data, learning And a second step in which the module receives and learns previous data and current data to improve prediction parameters and inputs them to the prediction algorithm module.
  • the prediction algorithm module includes a Kalman filter that receives and processes sensor detection values and sensor error values of a specific environment to output a specific environment prediction value
  • the learning module includes at least one specific It is preferable to receive the sensor detection value of the environment and the specific environment prediction value, and learn by the difference value to form a learned sensor error value and input it to the Kalman filter.
  • the Kalman filter receiving the learned sensor error value
  • the temperature is accurately predicted, and accordingly, the indoor environment can be more efficiently controlled using the predicted temperature predicted by the Kalman filter of the prediction system.
  • FIG. 1 is a conceptual diagram of a prediction system based on parameter improvement through learning according to the present invention
  • FIG. 2 is a configuration diagram of a prediction system based on parameter improvement through learning with a learning-based Kalman filter according to the present invention
  • FIG. 3 is a detailed block diagram of the Kalman filter and the learning module of FIG. 2,
  • FIG. 8 is a prediction result interface screen of a learning-based Kalman filter having different sensor error values according to the present invention.
  • the prediction system based on parameter improvement through learning is a learning module, an indoor environment that receives control signals of various sensors, controllers, and controllers including temperature and humidity of an indoor environment that provides a sensing signal to the learning module. It includes various actuators.
  • Various system learning algorithms such as an artificial neural network (ANN) can be used for the learning module.
  • ANN artificial neural network
  • the learning-based environment control system of the present invention includes a Kalman filter that receives and processes sensor detection values and sensor error values of a specific environment to output a specific environment prediction value, and sensor detection values of at least one specific environment and the A learning module that receives a specific environment prediction value, learns from the difference value to form a learned sensor error value, and inputs it into the Kalman filter, and a predetermined actuator in the indoor environment based on the specific environment prediction value output from the Kalman filter. And a controlling controller.
  • Sensors can include various sensors to collect data about other environmental parameters, such as temperature, humidity, and the like, from the environment.
  • the learning-based environment control system includes a learning module based on a neural network to estimate the amount of error in the current sensor reading and update the sensor error 'R' of the Kalman filter accordingly.
  • the learning module learns the sensor error 'R' input to the Kalman filter. This sensor error 'R' means the difference between the actual temperature and the sensed (measured) temperature.
  • a Kalman filter algorithm module In the present invention, two main modules are included: a Kalman filter algorithm module and a learning algorithm module. Data is collected from sensors in the environment and input to the learning algorithm module and the Kalman filter algorithm module.
  • the prediction parameter is most affected by the gain (K).
  • K gain of the Kalman filter
  • the present invention is to derive an improved prediction parameter by inputting previous and current data into a learning algorithm, and inputting it into a prediction algorithm, so that the prediction algorithm provides improved data prediction performance results.
  • the advanced Kalman filter algorithm is derived by inputting previous data and current data into the learning algorithm to derive improved prediction parameters (eg, Kalman filter parameters), and using the improved prediction parameters of the representative Kalman filter, which is a representative prediction algorithm. It is to provide a prediction system based on parameter improvement through learning to realize.
  • FIG. 1 is a conceptual diagram of a prediction system based on parameter improvement through learning according to the present invention
  • FIG. 2 is a configuration diagram of a prediction system based on parameter improvement through learning using a Kalman filter according to the present invention
  • FIG. 2 is a detailed block diagram of the Kalman filter and learning module.
  • the prediction system 1 based on parameter improvement through learning receives prediction values of various sensors 30 of the environment 5 and outputs prediction values (Kalman filter algorithm) 10 ), Learning algorithm 20 that receives the previous data and the current data (environmental sensor error value) and outputs the learned prediction parameters (Kalman filter parameters).
  • the controller 4 receives the predicted values output from the prediction algorithm (Kalman filter algorithm) 10 and controls the driver 52 of the environment 5 including various sensors 30.
  • the prediction algorithm Kalman filter algorithm
  • the current sensing value of the temperature sensor is input to the Kalman filter algorithm 10, and a predicted value (future value) is output. Then, the current detection value and the predicted value of the temperature sensor 31 and the detected value of the humidity sensor are input to the learning algorithm (neural network) 20.
  • the Kalman filter includes a sensor value reading unit 12 in a specific environment, a sensor error reading unit 11 reading a sensor error value learned from the learning module 20, and calculating and updating a covariance value.
  • a Kalman gain calculation unit (15) that receives the calculated sensor error values and covariance values and calculates them to output Kalman gain, and a predicted temperature calculation unit that calculates the predicted temperature using the state variation matrix and the control matrix ( 17), an actual temperature estimation unit 18, a sensor error (R) calculation unit 204.
  • a neural network is used as a learning module to predict an error rate. Based on the predicted error rate, equation (1) is used to set the R value (error prediction value), which is the input value of the Kalman filter algorithm.
  • C is an error factor and an error value before Err pre .
  • State transition metrics and control metrics are well-known techniques mainly used in Kalman filter technology, so detailed descriptions thereof will be omitted.
  • the actual temperature estimating unit 18 receives the sensor value read by the sensor value reading unit 12, the predicted temperature from the predicted temperature calculating unit 17, and the Kalman gain from the Kalman gain calculation unit 15, and receives the temperature. Estimate and output the estimated temperature T t .
  • the estimated temperature is T t at the time 't'.
  • the estimated temperature T t can be used to predict the temperature of t + 1 hour next time.
  • the T t +1 stepwise calculation using the Kalman filter algorithm is as follows. First, the predicted temperature is calculated from the previously estimated values as follows.
  • A is the state transition matrix
  • a T is the transpose of the state transition matrix
  • B is the control matrix
  • T t-1 is the previously calculated temperature
  • u t is the control vector.
  • the predicted covariance factor can be updated by the following equation.
  • P t means process covariance for time t
  • P predicted means updated covariance using the previous covariance and the estimated error being processed.
  • P t- 1 is the previously calculated covariance
  • Q is the error estimated in the process.
  • Kalman gain 'K' is obtained by the following equation.
  • H H T is the transpose of H
  • R is the estimated error in the measurement
  • Covariance is a variance that shows the distribution of two or more variances in relation to each other.
  • I is the identification matrix, which is used to facilitate matrix multiplication.
  • K ⁇ H is used as the observation matrix.
  • K ⁇ H is the product of Kalman gain and observation metrics.
  • the Kalman filter 10 obtains sensor readings from the temperature sensor and removes noise to predict the actual temperature.
  • the Kalman gain 'K' value can be adjusted using the process covariance matrix P and the prediction error of the sensor reading 'R' as indicated in the equation.
  • the learning module 20 performs finding the prediction error in the sensor reading 'R'.
  • the neural network 200 in the learning module 20 includes an input layer 201, a hidden layer 202, and an output layer 203.
  • the input layer 201 of the neural network 200 sensing values of the temperature sensor, sensing values of the humidity sensor, and estimated temperature T t of the Kalman filter are input.
  • the estimated temperature T t which is the output of the actual temperature estimation unit 18, is fed back and enters the input value of the neural network 200.
  • the input values of the neural network 200 are three values of the sensed (measured) temperature and humidity and the estimated temperature T t .
  • an error value err is output.
  • the R calculation unit of the learning module 20 calculates by dividing the error value err by the error factor C and outputs the learned sensor error.
  • the learned sensor error is read and input by the sensor error reading unit 11 of the Kalman filter.
  • results are collected using various sensor error R values.
  • the optimal value of the sensor error R is not fixed and depends on the available data set. Since it is very difficult to manually select the optimum value for the sensor error R in the Kalman filter, an experiment is performed according to the change in the sensor error R value. Then, it is observed that the prediction accuracy of the Kalman filter changes as the sensor error R changes.
  • the trained module is used to appropriately adjust the variable R to improve the performance of the Kalman filter algorithm.
  • ANN artificial neural network
  • Figure 5 shows prediction results of a Kalman filter algorithm including a learning module as a variable value of the error factor C. That is, Figure 5 shows a graph of the temperature prediction result of the Kalman filter to which the learning module is applied.
  • Table 1 shows a summary of Kalman filter prediction results with or without learning modules for different values of sensor error R and error factor C.
  • RMSE prediction accuracy
  • MSE mean square error
  • the Root Mean Square Error (RMSE) is obtained by taking the square root of MSE as shown in Equation 9 below.
  • n is the total number of items in the test data set
  • Ti is the actual temperature (° C) for the i-th instance of the data set
  • (Ti) ⁇ is the corresponding expected temperature.
  • Table 2 shows a statistical summary of Kalman filter performance results with or without learning modules.
  • the degree of improvement in prediction accuracy by learning in the prediction model is 6.79% and 15.04%, respectively, based on the RMSE metric.
  • FIG. 6 is a sensor error learning result interface screen in a learning-based Kalman filter according to the present invention. That is, as a screen showing the result of the Kalman filter input with the learned sensor error value, the learning result of the neural network in FIG.
  • the original error graph 66 and the prediction error graph 67 according to the learning result are displayed on the right side of the interface screen of FIG. 6.
  • FIG. 7 is an application interface screen for evaluation of a learning-based Kalman filter algorithm using the learning module according to the present invention.
  • an actual temperature graph 75 On the right side of the interface screen of FIG. 7, an actual temperature graph 75, a sensing data graph 76, a Kalman filter prediction result graph 77, and a Kalman filter prediction module 78 having a learning module are displayed.
  • the interface screen of FIG. 7 shows original temperature data, temperature sensor readings, Kalman filter result data, and learned Kalman filter result data. Sensor readings are expressed as Root Mean Square Error (RMSE).
  • RMSE Root Mean Square Error
  • the RMSE of the sensor reading is 4.74
  • the RMSE of the predicted temperature by the learned Kalman filter is 1.92. That is, the RMSE with the Kalman filter is much better than the RMSE of the sensor reading (error 52.32% reduction).
  • the RMSE of the predicted temperature of the Kalman filter (learned Kalman filter) having a learning module is superior to the RMSE of the predicted temperature using only the Kalman filter.
  • the learning module improves the prediction accuracy of the Kalman filter algorithm.
  • the Kalman filter including the learning module shows better performance than the existing Kalman filter algorithm in terms of the root mean square error metric.
  • the Kalman filter receives the learned sensor error value
  • the effect is as follows.
  • the prediction in the Kalman filter 10 is most affected by the gain K.
  • This sensor error value means the difference between the actual temperature and the sensed (measured) temperature. It is an important parameter when calculating the gain (K) of the Kalman filter. If this sensor error value is obtained accurately, prediction is also made accurately.
  • the Kalman filter can accurately predict the sensor value (for example, temperature). Accordingly, the controller of the prediction system can control the indoor environment more efficiently using the sensor value predicted by the Kalman filter.
  • the Kalman filter receiving the learned sensor error value is configured to detect the temperature. By accurately predicting, it can be used to more efficiently control the indoor environment using the predicted temperature of the prediction system.

Abstract

The present invention relates to a prediction system on the basis of parameter improvement through learning, the system comprising: a prediction algorithm module for receiving prediction parameters and generating future data; and a learning module for receiving and learning previous data and current data so as to improve the prediction parameters and inputting the prediction parameters to the prediction algorithm module, thereby realizing an improved prediction algorithm. The prediction algorithm module comprises a Kalman filter for receiving and processing a sensor detection value and a sensor error value of a specific environment, and outputting a specific environment prediction value, and the learning module receives a sensor detection value of at least one specific environment and the specific environment prediction value, forms a learned sensor error value learned by a difference value therebetween, and inputs the learned sensor error value to the Kalman filter. By such a configuration, the Kalman filter can predict temperature more accurately by means of the learned sensor error value, and accordingly, an indoor environment can be more efficiently controlled by using the predicted temperature predicted by the Kalman filter.

Description

학습을 통한 파라미터 개선 기반의 예측 시스템 및 방법Prediction system and method based on parameter improvement through learning
본 발명은 예측 시스템에 관한 것으로서, 보다 상세하게는 학습을 통한 예측 시스템 성능을 향상시키기 위해, 이전과 현재 데이터를 이용하여 학습 알고리즘 기반의 예측 파라미터를 학습하여 예측 파라미터를 개선하고, 이를 이용하여 데이터를 예측하는, 학습을 통한 파라미터 개선 기반의 예측 시스템 및 방법에 관한 것이다.The present invention relates to a prediction system, and more specifically, in order to improve the performance of a prediction system through learning, improves prediction parameters by learning prediction algorithm-based prediction parameters using previous and current data, and uses the data Predicting, relates to a prediction system and method based on parameter improvement through learning.
종래에는, 실내 환경 파라미터의 예측에 기반한 최적화 기법은 센서로부터 실내 환경 파라미터를 예측하기 위해 다양한 예측 알고리즘이 있으며, 대표적으로 칼만 필터를 사용하였다.Conventionally, an optimization technique based on prediction of indoor environment parameters has various prediction algorithms to predict indoor environment parameters from a sensor, and a Kalman filter is typically used.
이들 예측 알고리즘은 핵심 파라미터를 포함하고 있으며, 일반적으로 다양한 애플리케이션에서 사용되어 노이즈가 심한 조건에서 시스템 상태를 정확하게 추정한다. These prediction algorithms contain key parameters and are commonly used in a variety of applications to accurately estimate system conditions under noisy conditions.
한편, 대개 센서에서 읽은 데이터는 정확성에 영향을 줄 뿐만 아니라 데이터 스파이크를 발생시키는 노이즈를 가진다. 예를 들어 칼만 필터는 이전 상태(즉, 모든 기록 데이터를 보관할 필요는 없음)를 사용하여 시스템 실제 상태를 지능적으로 추측할 수 있다. 이 추측은, 칼만의 이득(흔히 'K'로 표시)에 의해 수행되며, 이 이득은 시스템의 실제 상태를 정확하게 추정하기 위해 센서 판독 또는 시스템 자체 예측에 더 많은 선호도를 부여할지를 정의한다.On the other hand, data read from the sensor usually has noise that not only affects accuracy, but also causes data spikes. For example, the Kalman filter can intelligently guess the actual state of the system using the previous state (that is, it is not necessary to keep all historical data). This speculation is performed by the Kalman's gain (often referred to as 'K'), which defines whether to give more preference to sensor readings or system self-prediction to accurately estimate the actual state of the system.
그런데, 실내 환경 제어 시스템에서는, 실내 환경의 센서값을 입력받아 실내 환경의 센서값을 학습하여 학습된 센서값에 따라 실내 환경의 구동기(액추에이터)를 제어하였을 뿐이며, 실내 환경 제어 시스템에서 칼만 필터를 학습하는 기술은 개발되어 있지 않다.By the way, in the indoor environment control system, the sensor value of the indoor environment is received and the sensor value of the indoor environment is learned to control the driver (actuator) of the indoor environment according to the learned sensor value, and the Kalman filter is used in the indoor environment control system. Learning skills are not developed.
따라서, 본 발명은 상기한 문제점을 해결하기 위해 창안된 것으로, 이전과 현재 데이터를 학습 알고리즘에 입력하여 개선된 예측 파라미터를 도출하고, 이를 예측 알고리즘에 입력함으로써, 향상된 데이터 예측 성능 결과를 제공하는 것이다. 이전 데이터와 현재 데이터를 학습 알고리즘에 입력하여 개선된 예측 파라미터를 도출하고, 예를 들어 대표적인 예측 알고리즘인 칼만 필터가 개선된 파라미터를 이용하게 함으로써 향상된 칼만 필터 알고리즘을 실현하는 학습을 통한 파라미터 개선 기반의 예측 시스템 및 방법을 제공하는 것이다. Therefore, the present invention was devised to solve the above-mentioned problems, and provides improved data prediction performance results by inputting previous and current data into a learning algorithm to derive improved prediction parameters and inputting them into the prediction algorithm. . Based on the parameter improvement through learning to realize the improved Kalman filter algorithm by deriving the improved prediction parameters by inputting the previous data and the current data into the learning algorithm, and using, for example, the improved Kalman filter, a representative prediction algorithm. It is to provide a prediction system and method.
상기의 목적을 달성하기 위한 본 발명의 제1양태에 따른 구성은, 학습을 통한 파라미터 개선 기반의 예측 시스템에 관한 것으로서, 예측 파라미터를 입력받아 미래 데이터를 생성하는 예측 알고리즘 모듈과, 이전 데이터와 현재 데이터를 입력받아 학습하여 예측 파라미터를 개선하여 상기 예측 알고리즘 모듈에 입력하는 학습 모듈을 포함하여, 향상된 예측 알고리즘을 실현하는 것을 특징으로 한다. The configuration according to the first aspect of the present invention for achieving the above object relates to a prediction system based on parameter improvement through learning, a prediction algorithm module that receives prediction parameters and generates future data, and previous data and current It is characterized by realizing an improved prediction algorithm, including a learning module that receives data and learns to improve prediction parameters to input the prediction algorithm module.
상기 예측 알고리즘 모듈은, 특정 환경의 센서 감지값과 센서 에러값을 입력받아 처리하여 특정 환경 예측값을 출력하는 칼만 필터를 포함하고, 상기 학습 모듈은, 적어도 하나의 특정 환경의 센서 감지값과 상기 특정 환경 예측값을 입력받아 그 차이값에 의해 학습하여 학습된 센서 에러값을 형성하여 상기 칼만 필터에 입력하는 것을 특징으로 한다.The prediction algorithm module includes a Kalman filter that receives and processes sensor detection values and sensor error values of a specific environment to output a specific environment prediction value, and the learning module includes at least one sensor detection value of the specific environment and the specific It is characterized by receiving an environmental prediction value, learning from the difference value, forming a learned sensor error value, and inputting it into the Kalman filter.
여기서, 상기 학습 모듈은 신경망과, 상기 신경망에서 출력되는 학습된 센서 에러값과 미리 설정되는 에러 인자를 이용하여 상기 센서 에러값을 계산하는 센서 에러 계산부를 포함하는 것이 바람직하다.Here, the learning module preferably includes a neural network and a sensor error calculation unit that calculates the sensor error value using a learned sensor error value output from the neural network and a preset error factor.
상기 신경망의 입력층에는 온도센서의 감지값, 습도센서의 감지값, 상기 칼만 필터에서 출력되는 예측 온도값이 입력되고, 상기 칼만 필터는, 상태변이 메트릭스와 제어 메트릭스를 이용하여 예측 온도를 계산하는 예측 온도 계산부, 특정 환경의 센서값 독출부, 상기 학습 모듈에서 학습된 센서 에러값 독출부, 공분산 값을 계산하고 갱신하여 출력하는 공분산 값 계산 및 갱신부, 상기 학습된 센서 에러값과 상기 공분산 값을 입력받아 계산하여 칼만이득을 출력하는 칼만이득 계산부, 상기 센서값 독출부의 센서값과 상기 예측온도 계산부로부터의 예측 온도 및 상기 칼만이득에 의해 온도를 추정하여 예측 온도를 출력하는 실제 온도 추정부를 포함하는 것이 바람직하다.A sensing value of a temperature sensor, a sensing value of a humidity sensor, and a predicted temperature value output from the Kalman filter are input to the input layer of the neural network, and the Kalman filter calculates a predicted temperature using a state variation matrix and a control matrix. Prediction temperature calculation unit, sensor value reading unit in a specific environment, sensor error value reading unit learned in the learning module, covariance value calculation and updating unit for calculating and updating covariance values, and outputting the learned sensor error value and the covariance A Kalman gain calculation unit that receives and calculates a value to output a Kalman gain, a sensor value of the sensor value reading unit, a predicted temperature from the predicted temperature calculation unit, and an actual temperature for estimating a temperature based on the Kalman gain to output a predicted temperature It is preferable to include an estimation unit.
여기서, 상기 예측 온도 계산부가 예측 온도를 계산하는 식은
Figure PCTKR2019003775-appb-I000001
이고, 상기 공분산 계산 및 갱신부가 상기 공분산값(Pt)을 계산하는 식은
Figure PCTKR2019003775-appb-I000002
이고, 상기 갱신된 공분산값(Ppredicted)을 계산하는 식은
Figure PCTKR2019003775-appb-I000003
이며, 상기 칼만이득 계산부가 칼만이득을 계산하는 식은
Figure PCTKR2019003775-appb-I000004
이고, 상기 실제 온도 추정부가 실제온도를 추정하는 식은,
Figure PCTKR2019003775-appb-I000005
인 것이 바람직하다.
Here, the equation for calculating the predicted temperature by the predicted temperature calculator
Figure PCTKR2019003775-appb-I000001
And the expression for calculating the covariance and updating unit P t
Figure PCTKR2019003775-appb-I000002
And the equation for calculating the updated covariance (P predicted ) is
Figure PCTKR2019003775-appb-I000003
Is, the equation for calculating the Kalman gain
Figure PCTKR2019003775-appb-I000004
Is, the equation for estimating the actual temperature by the actual temperature estimator,
Figure PCTKR2019003775-appb-I000005
It is preferred.
여기서, A: 상태 전환 매트릭스이고, AT : 상태 전환 매트릭스의 전치이고, B : 제어 매트릭스 이고, Tt -1 : 이전에 계산된 온도이고, ut : 제어 벡터이고, Tt : 현재의 센서 온도이고, I : 식별 메트릭스로서, 매트릭스 곱을 용이하게 하는데 사용되고, H : 관측 메트릭스이고, zt : 센서 입력값(판독값)이고, K : 칼만 게인 이다.Where A: is the state transition matrix, A T is the transpose of the state transition matrix, B is the control matrix, T t -1 is the previously calculated temperature, u t is the control vector, T t : the current sensor Temperature, I: as the identification metric, used to facilitate matrix multiplication, H: the observation metric, z t : the sensor input (readout), and K: Kalman gain.
상기의 목적을 달성하기 위한 본 발명의 제2양태에 따른 구성은, 학습을 통한 파라미터 개선 기반의 예측 방법에 있어서, 예측 알고리즘 모듈이 예측 파라미터를 입력받아 미래 데이터를 생성하는 제1단계와, 학습 모듈이 이전 데이터와 현재 데이터를 입력받아 학습하여 예측 파라미터를 개선하여 상기 예측 알고리즘 모듈에 입력하는 제2단계를 포함하는 것을 특징으로 한다.The configuration according to the second aspect of the present invention for achieving the above object is in a prediction method based on parameter improvement through learning, a first step in which a prediction algorithm module receives prediction parameters and generates future data, learning And a second step in which the module receives and learns previous data and current data to improve prediction parameters and inputs them to the prediction algorithm module.
여기서, 상기 예측 알고리즘 모듈은, 특정 환경의 센서 감지값과 센서 에러값을 입력받아 처리하여 특정 환경 예측값을 출력하는 칼만 필터를 포함하고, 상기 제2단계는, 상기 학습 모듈이, 적어도 하나의 특정 환경의 센서 감지값과 상기 특정 환경 예측값을 입력받아 그 차이값에 의해 학습하여 학습된 센서 에러값을 형성하여 상기 칼만 필터에 입력하는 단계를 포함하는 것을 특징으로 하는 것이 바람직하다. Here, the prediction algorithm module includes a Kalman filter that receives and processes sensor detection values and sensor error values of a specific environment to output a specific environment prediction value, and in the second step, the learning module includes at least one specific It is preferable to receive the sensor detection value of the environment and the specific environment prediction value, and learn by the difference value to form a learned sensor error value and input it to the Kalman filter.
상기의 구성으로 이루어진 학습을 통한 파라미터 개선 기반의 예측 시스템 및 방법에 따르면, 학습 모듈로 센서 에러값을 학습하여 예측 알고리즘 모듈의 일예인 칼만 필터에 입력하면 학습된 센서 에러값을 입력받은 칼만 필터가 온도를 정확히 예측하게 되고, 그에 따라, 예측 시스템의 칼만 필터가 예측한 예측 온도를 이용하여 실내 환경을 보다 효율적으로 제어할 수 있게 된다.According to the prediction system and method based on parameter improvement through learning composed of the above configuration, when the sensor error value is learned by the learning module and input to the Kalman filter, which is an example of the prediction algorithm module, the Kalman filter receiving the learned sensor error value The temperature is accurately predicted, and accordingly, the indoor environment can be more efficiently controlled using the predicted temperature predicted by the Kalman filter of the prediction system.
도 1은 본 발명에 따른 학습을 통한 파라미터 개선 기반의 예측 시스템의 개념도, 1 is a conceptual diagram of a prediction system based on parameter improvement through learning according to the present invention;
도 2는 본 발명에 따라, 학습 기반 칼만 필터를 갖는 학습을 통한 파라미터 개선 기반의 예측 시스템의 구성도이고, 2 is a configuration diagram of a prediction system based on parameter improvement through learning with a learning-based Kalman filter according to the present invention,
도 3은 도 2의 칼만 필터와 학습 모듈의 상세 블록도,3 is a detailed block diagram of the Kalman filter and the learning module of FIG. 2,
도 4는 다양한 센서 에러값에 따른 종래의 칼만 필터의 온도 예측 결과 그래프,4 is a graph of a result of predicting temperature of a conventional Kalman filter according to various sensor error values;
도 5는 다양한 에러 인자값에 따라 학습된 칼만 필터의 온도 예측 결과 그래프,5 is a graph of temperature prediction results of a Kalman filter learned according to various error factor values,
도 6은 본 발명에 따른 학습 기반 칼만 필터에서 센서 에러 학습 결과 인터페이스 화면,6 is a sensor error learning result interface screen in a learning-based Kalman filter according to the present invention,
도 7은 본 발명에 따른 학습 기반 칼만 필터의 예측 결과 인터페이스 화면,7 is a learning-based Kalman filter prediction result interface screen according to the present invention,
도 8은 본 발명에 따른 상이한 센서 에러값을 갖는 학습 기반 칼만 필터의 예측 결과 인터페이스 화면이다.8 is a prediction result interface screen of a learning-based Kalman filter having different sensor error values according to the present invention.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 통해 설명될 것이다. 그러나 본 발명은 여기에서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 본 실시예들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여 제공되는 것이다.Advantages and features of the present invention, and a method of achieving the same will be described through embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. However, the present embodiments are provided to explain in detail that the technical spirit of the present invention can be easily carried out to a person having ordinary knowledge in the technical field to which the present invention pertains.
도면들에 있어서, 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니며 명확성을 기하기 위하여 과장된 것이다. 또한, 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소를 나타낸다. 본 명세서에서 "및/또는"이란 표현은 전후에 나열된 구성요소들 중 적어도 하나를 포함하는 의미로 사용된다. 또한, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 또한, 명세서에서 사용되는 "포함한다" 또는 "포함하는"으로 언급된 구성요소, 단계, 동작 및 소자는 하나 이상의 다른 구성요소, 단계, 동작, 소자 및 장치의 존재 또는 추가를 의미한다.In the drawings, the embodiments of the present invention are not limited to the specific form shown and are exaggerated for clarity. In addition, parts indicated by the same reference numerals throughout the specification represent the same components. In this specification, the expression "and / or" is used to mean including at least one of the components listed before and after. In addition, the singular form also includes the plural form unless otherwise specified in the phrase. Also, components, steps, operations and elements referred to as “comprising” or “comprising” as used herein mean the presence or addition of one or more other components, steps, operations, elements and devices.
이하에서, 본 발명의 바람직한 실시 예가 첨부된 도면들을 참조하여 본 발명을 구체적으로 설명한다. 본 발명을 설명함에 있어서 관련된 공지기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, preferred embodiments of the present invention. In the description of the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
본 발명에 따른 학습을 통한 파라미터 개선 기반의 예측 시스템은, 학습 모듈, 학습 모듈에 센싱 신호를 제공하는 실내 환경의 온도, 습도를 포함하는 다양한 센서, 제어기, 제어기의 제어신호를 수신하는 실내 환경의 다양한 액추에이터를 포함한다. 학습 모듈에는 ANN(인공 신경망)과 같은 다양한 시스템 학습 알고리즘을 사용할 수 있다. 보다 구체적으로, 본 발명의 학습 기반 환경 제어 시스템은, 특정 환경의 센서 감지값과 센서 에러값을 입력받아 처리하여 특정 환경 예측값을 출력하는 칼만 필터와, 적어도 하나의 특정 환경의 센서 감지값과 상기 특정 환경 예측값을 입력받아 그 차이값에 의해 학습하여 학습된 센서 에러값을 형성하여 상기 칼만 필터에 입력하는 학습 모듈과, 상기 칼만 필터에서 출력되는 특정 환경 예측값에 기초하여 실내환경의 소정의 액추에이터를 제어하는 제어기를 포함한다. The prediction system based on parameter improvement through learning according to the present invention is a learning module, an indoor environment that receives control signals of various sensors, controllers, and controllers including temperature and humidity of an indoor environment that provides a sensing signal to the learning module. It includes various actuators. Various system learning algorithms such as an artificial neural network (ANN) can be used for the learning module. More specifically, the learning-based environment control system of the present invention includes a Kalman filter that receives and processes sensor detection values and sensor error values of a specific environment to output a specific environment prediction value, and sensor detection values of at least one specific environment and the A learning module that receives a specific environment prediction value, learns from the difference value to form a learned sensor error value, and inputs it into the Kalman filter, and a predetermined actuator in the indoor environment based on the specific environment prediction value output from the Kalman filter. And a controlling controller.
센서는 환경으로부터 온도, 습도 등과 같은 다른 환경 매개변수에 대한 데이터를 수집하기 위해 다양한 센서를 포함할 수 있다.Sensors can include various sensors to collect data about other environmental parameters, such as temperature, humidity, and the like, from the environment.
본 발명에서는 다양한 센서 중에서 습도 변화로 인한 온도 센서 수치(판독값)의 가변적 오류를 가정한다. 본 발명에 따른 학습 기반 환경 제어 시스템은, 현재 센서 판독값의 오류량을 추정하고 이에 따라 칼만 필터의 센서 에러 'R'을 업데이트하기 위해 신경망을 기반으로 한 학습 모듈을 포함한다. 학습 모듈은, 칼만 필터로 입력되는 센서 에러 'R'를 학습한다. 이 센서 에러 'R'의 의미는 실제 온도와 센싱(측정)된 온도와의 차이값을 의미한다. In the present invention, it is assumed that a variable error of a temperature sensor value (read value) due to a change in humidity among various sensors. The learning-based environment control system according to the present invention includes a learning module based on a neural network to estimate the amount of error in the current sensor reading and update the sensor error 'R' of the Kalman filter accordingly. The learning module learns the sensor error 'R' input to the Kalman filter. This sensor error 'R' means the difference between the actual temperature and the sensed (measured) temperature.
본 발명에서는, 칼만 필터 알고리즘 모듈과 학습 알고리즘 모듈이라는 두 가지 주요 모듈을 포함한다. 데이터가 환경에서 센서로부터 수집되고 학습 알고리즘 모듈 및 칼만 필터 알고리즘 모듈에 입력된다.In the present invention, two main modules are included: a Kalman filter algorithm module and a learning algorithm module. Data is collected from sensors in the environment and input to the learning algorithm module and the Kalman filter algorithm module.
칼만 필터에서 예측 파라미터는 이득(K)에 의해 가장 영향을 받는다. 칼만 필터의 이득(K)을 구할 때 중요한 파라메터가 되므로 정확히 구하면, 예측도 정확하게 이루어진다.In the Kalman filter, the prediction parameter is most affected by the gain (K). When obtaining the gain (K) of the Kalman filter, it is an important parameter, so if you obtain it correctly, the prediction is made accurately.
본 발명은, 이전과 현재 데이터를 학습 알고리즘에 입력하여 개선된 예측 파라미터를 도출하고, 이를 예측 알고리즘에 입력함으로써, 예측 알고리즘이 향상된 데이터 예측 성능 결과를 제공하게 하는 것이다. 보다 구체적으로, 이전 데이터와 현재 데이터를 학습 알고리즘에 입력하여 개선된 예측 파라미터(예를 들어, 칼만 필터 파라미터)를 도출하고, 대표적인 예측 알고리즘인 칼만 필터가 개선된 예측 파라미터를 이용함으로써 향상된 칼만 필터 알고리즘을 실현하는 학습을 통한 파라미터 개선 기반의 예측 시스템을 제공하는 것이다. The present invention is to derive an improved prediction parameter by inputting previous and current data into a learning algorithm, and inputting it into a prediction algorithm, so that the prediction algorithm provides improved data prediction performance results. More specifically, the advanced Kalman filter algorithm is derived by inputting previous data and current data into the learning algorithm to derive improved prediction parameters (eg, Kalman filter parameters), and using the improved prediction parameters of the representative Kalman filter, which is a representative prediction algorithm. It is to provide a prediction system based on parameter improvement through learning to realize.
도 1은 본 발명에 따른 학습을 통한 파라미터 개선 기반의 예측 시스템의 개념도이고, 도 2는 본 발명에 따라, 칼만 필터를 이용한 학습을 통한 파라미터 개선 기반의 예측 시스템의 구성도이고, 도 3은 도 2의 칼만 필터와 학습 모듈의 상세 블록도이다.1 is a conceptual diagram of a prediction system based on parameter improvement through learning according to the present invention, and FIG. 2 is a configuration diagram of a prediction system based on parameter improvement through learning using a Kalman filter according to the present invention, and FIG. 2 is a detailed block diagram of the Kalman filter and learning module.
도 1에 보인 바와 같이, 학습을 통한 파라미터 개선 기반의 예측 시스템(1)은, 환경(5)의 각종 센서(30)의 감지값을 입력받아 예측값을 출력하는 예측 알고리즘(칼만필터 알고리즘)(10), 이전 데이터와 현재 데이터(환경 센서 에러값)를 입력받아 학습된 예측 파라미터(칼만 필터 파라미터)를 출력하는 학습 알고리즘(20)을 포함한다.As illustrated in FIG. 1, the prediction system 1 based on parameter improvement through learning receives prediction values of various sensors 30 of the environment 5 and outputs prediction values (Kalman filter algorithm) 10 ), Learning algorithm 20 that receives the previous data and the current data (environmental sensor error value) and outputs the learned prediction parameters (Kalman filter parameters).
제어기(4)는 예측 알로리즘(칼만필터 알고리즘)(10)에서 출력되는 예측값을 입력받아 각종 센서(30)를 포함하는 환경(5)의 구동기(52)를 제어한다.The controller 4 receives the predicted values output from the prediction algorithm (Kalman filter algorithm) 10 and controls the driver 52 of the environment 5 including various sensors 30.
도 2에 보인 바와 같이, 온도센서의 현재 감지값이 칼만 필터 알고리즘(10)에 입력되어 예측값(미래값)이 출력된다. 그리고, 학습 알고리즘(신경망)(20)에는 온도센서(31)의 현재 감지값과 예측값 및 습도 센서의 감지값이 입력된다.2, the current sensing value of the temperature sensor is input to the Kalman filter algorithm 10, and a predicted value (future value) is output. Then, the current detection value and the predicted value of the temperature sensor 31 and the detected value of the humidity sensor are input to the learning algorithm (neural network) 20.
도 3에 보인 바와 같이, 칼만 필터는, 특정 환경의 센서값 독출부(12), 학습 모듈(20)에서 학습된 센서 에러값을 독출하는 센서 에러 독출부(11), 공분산 값 계산 및 갱신부(13), 학습된 센서 에러값과 공분산 값을 입력받아 계산하여 칼만이득을 출력하는 칼만이득 계산부(15), 상태변이 메트릭스와 제어 메트릭스를 이용하여 예측 온도를 계산하는 예측 온도 계산부(17), 실제 온도 추정부(18), 센서에러(R) 계산부(204)를 포함한다. As shown in FIG. 3, the Kalman filter includes a sensor value reading unit 12 in a specific environment, a sensor error reading unit 11 reading a sensor error value learned from the learning module 20, and calculating and updating a covariance value. (13) A Kalman gain calculation unit (15) that receives the calculated sensor error values and covariance values and calculates them to output Kalman gain, and a predicted temperature calculation unit that calculates the predicted temperature using the state variation matrix and the control matrix ( 17), an actual temperature estimation unit 18, a sensor error (R) calculation unit 204.
본 발명에 따라, 오류율을 예측하기 위해 학습모듈로서, 신경망을 사용한다. 예측된 오류율을 기준으로 식(1)을 사용하여 칼만 필터 알고리즘의 입력값인 R 값(에러 예측값)을 설정한다. According to the present invention, a neural network is used as a learning module to predict an error rate. Based on the predicted error rate, equation (1) is used to set the R value (error prediction value), which is the input value of the Kalman filter algorithm.
R=Errpre/ C --- 식 1 R = Err pre / C --- Equation 1
여기서, C는 에러 인자이고, Errpre 이전 에러값이다.Here, C is an error factor and an error value before Err pre .
상태변이 메트릭스와 제어 메트릭스는 칼만 필터 기술에서 주로 사용되는 공지된 기술이므로 상세한 설명은 생략한다.State transition metrics and control metrics are well-known techniques mainly used in Kalman filter technology, so detailed descriptions thereof will be omitted.
실제 온도 추정부(18)는 센서값 독출부(12)가 독출한 센서값과, 예측온도 계산부(17)로부터의 예측 온도와, 칼만이득 계산부(15)로부터의 칼만이득을 입력받아 온도를 추정하여 추정 온도 Tt를 출력한다.The actual temperature estimating unit 18 receives the sensor value read by the sensor value reading unit 12, the predicted temperature from the predicted temperature calculating unit 17, and the Kalman gain from the Kalman gain calculation unit 15, and receives the temperature. Estimate and output the estimated temperature T t .
한편, 시간 't'에 추정 온도를 Tt로 가정해 본다. 추정 온도 Tt를 사용하여 다음 번에 t+1시간의 온도를 예측할 수 있다. 칼만 필터 알고리즘을 사용한 Tt +1 단계별 계산은 다음과 같다. 먼저, 다음과 같이 이전에 추정된 값에서 예측 온도를 계산한다.Meanwhile, it is assumed that the estimated temperature is T t at the time 't'. The estimated temperature T t can be used to predict the temperature of t + 1 hour next time. The T t +1 stepwise calculation using the Kalman filter algorithm is as follows. First, the predicted temperature is calculated from the previously estimated values as follows.
Figure PCTKR2019003775-appb-I000006
--- 식 2
Figure PCTKR2019003775-appb-I000006
--- Equation 2
여기서, A는 상태 전환 매트릭스이고, AT는 상태 전환 매트릭스의 전치이다. B는 제어 매트릭스이고, Tt-1는 이전에 계산된 온도이고 ut는 제어 벡터이다. Here, A is the state transition matrix, and A T is the transpose of the state transition matrix. B is the control matrix, T t-1 is the previously calculated temperature and u t is the control vector.
다음으로, 예측 공분산 인자를 다음과 식에 의해 업데이트할 수 있다.Next, the predicted covariance factor can be updated by the following equation.
Figure PCTKR2019003775-appb-I000007
---식 3
Figure PCTKR2019003775-appb-I000007
--- Equation 3
Pt는 시간 t동안 처리(process) 공분산을 의미하고, Ppredicted는 이전 공분산과 처리중인 추정 에러를 사용한 갱신된 공분산을 의미한다.P t means process covariance for time t, and P predicted means updated covariance using the previous covariance and the estimated error being processed.
여기서, Pt- 1는 이전에 계산된 공분산이며, Q는 처리(process)에서 추정된 에러이다. Here, P t- 1 is the previously calculated covariance, and Q is the error estimated in the process.
Ppredicted를 이용하여 칼만 게인(Kalman gain) 'K'를 다음 식에 의해 구한다. Using P predicted , Kalman gain 'K' is obtained by the following equation.
Figure PCTKR2019003775-appb-I000008
---식 4
Figure PCTKR2019003775-appb-I000008
--- Equation 4
여기서, H(HT는 H의 전치)는 관측 행렬이고, R은 측정에서 추정된 에러이다.Here, H (H T is the transpose of H) is the observation matrix, and R is the estimated error in the measurement.
현재의 센서 예상 온도는 Tt 이고, 센서 입력값(판독값)이 zt라고 가정한다. 그러면, 칼만 필터의 현재 시간 간격의 추정 온도(Tt)는, It is assumed that the current sensor predicted temperature is T t and the sensor input value (reading value) is z t . Then, the estimated temperature (T t) of the current time interval of the Kalman filter is
Figure PCTKR2019003775-appb-I000009
--- 식 5
Figure PCTKR2019003775-appb-I000009
--- Equation 5
가 된다. Becomes.
마지막으로, 다음과 같이 다음 반복에 대한 공분산 계수 Pt를 업데이트한다. 공분산(covariance)은 둘 이상의 변량(變量)이 서로 관계를 가지며 분포하는 모양을 전체적으로 나타내는 분산이다. Finally, the covariance coefficient P t for the next iteration is updated as follows. Covariance is a variance that shows the distribution of two or more variances in relation to each other.
Figure PCTKR2019003775-appb-I000010
--- 식 6
Figure PCTKR2019003775-appb-I000010
--- Equation 6
I는 식별 메트릭스이고, 이것은 매트릭스 곱을 용이하게 하는데 사용된다.I is the identification matrix, which is used to facilitate matrix multiplication.
H는 관측 메트릭스로서 사용된다. K·H는 칼만 게인과 관측 메트릭스의 곱이다.H is used as the observation matrix. K · H is the product of Kalman gain and observation metrics.
칼만 필터(10)는 온도 센서로부터 센서 판독값을 얻고 노이즈를 제거해서 실제 온도를 예측한다. The Kalman filter 10 obtains sensor readings from the temperature sensor and removes noise to predict the actual temperature.
칼만 게인 'K' 값은 방정식에 표시된 것처럼 프로세스 공분산 행렬 P와 센서 판독 'R'의 예측 오류를 사용하여 조정할 수 있다. The Kalman gain 'K' value can be adjusted using the process covariance matrix P and the prediction error of the sensor reading 'R' as indicated in the equation.
학습 모듈(20)이 센서 판독치 'R'에서 예측 오류를 찾는 것을 수행한다.The learning module 20 performs finding the prediction error in the sensor reading 'R'.
도 3에 보인 바와 같이 학습 모듈(20)내의 신경망(200)은 입력 레이어(201)와 은닉 레이어(202) 및 출력 레이어(203)를 포함한다. 신경망(200)의 입력 레이어(201)에는 온도 센서의 감지값과 습도 센서의 감지값 및 칼만 필터의 추정 온도 Tt가 입력된다. As shown in FIG. 3, the neural network 200 in the learning module 20 includes an input layer 201, a hidden layer 202, and an output layer 203. In the input layer 201 of the neural network 200, sensing values of the temperature sensor, sensing values of the humidity sensor, and estimated temperature T t of the Kalman filter are input.
즉, 실제 온도 추정부(18)의 출력인 추정 온도 Tt는 피드백되어 신경망(200)의 입력값으로 들어간다. 이에 따라, 신경망(200)의 입력값은 센싱(측정)된 온도와 습도와 추정 온도 Tt의 값 3개가 된다.That is, the estimated temperature T t, which is the output of the actual temperature estimation unit 18, is fed back and enters the input value of the neural network 200. Accordingly, the input values of the neural network 200 are three values of the sensed (measured) temperature and humidity and the estimated temperature T t .
신경망(200)의 출력 레이어에서는 에러값(err)이 출력된다. In the output layer of the neural network 200, an error value err is output.
학습 모듈(20)의 R계산부는 에러인자(C)로 에러값(err)을 나누어 계산하여, 학습된 센서 에러를 출력한다. 학습된 센서 에러는 칼만 필터의 센서 에러 독출부(11)에 의해 독출되어 입력된다.The R calculation unit of the learning module 20 calculates by dividing the error value err by the error factor C and outputs the learned sensor error. The learned sensor error is read and input by the sensor error reading unit 11 of the Kalman filter.
종래의 칼만 필터 알고리즘 예측 결과와, 본 발명에 따른 학습 기반 칼만 필터 알고리즘 결과에 대한 학습 효과를 비교하여, 학습 기반 칼만 필터의 성능을 평가한 결과를 도 4 내지 도 8을 참조하여 설명한다. The results of evaluating the performance of the learning-based Kalman filter by comparing the conventional Kalman filter algorithm prediction results with the learning effects on the learning-based Kalman filter algorithm results according to the present invention will be described with reference to FIGS. 4 to 8.
성능 평가를 위해 기존의 칼만 필터 알고리즘 예측 결과와 제안된 예측 모델 학습결과를 비교하여, 칼만필터 알고리즘 결과의 예측 가능성 결과 향상을 관찰했다. For performance evaluation, we compared the prediction results of the existing Kalman filter algorithm with the proposed prediction model learning results, and observed the improvement of the predictability results of Kalman filter algorithm results.
종래의 기존 칼만 필터의 경우, 다양한 센서 에러 R값을 사용하여 결과가 수집된다. 센서 에러 R의 최적값은 고정되지 않고 이용가능한 데이터 세트에 따라 달라진다. 칼만 필터에서 센서 에러 R에 대한 최적값을 수동으로 선택하기 매우 어려우므로 센서 에러 R 값의 변화에 따라 실험이 수행된다. 그러면, 센서 에러 R이 변화됨에 따라 칼만 필터의 예측 정확도가 변하는 것이 관찰된다. In the case of the conventional Kalman filter, results are collected using various sensor error R values. The optimal value of the sensor error R is not fixed and depends on the available data set. Since it is very difficult to manually select the optimum value for the sensor error R in the Kalman filter, an experiment is performed according to the change in the sensor error R value. Then, it is observed that the prediction accuracy of the Kalman filter changes as the sensor error R changes.
도 4는 다양한 센서 에러값에 따른 종래의 칼만 필터의 온도 예측 결과 그래프를 나타낸다. 다양한 센서 에러값 R=5, R=10, R=15, R=20에 따라 종래의 칼만 필터는 온도 예측값이 달라진다. 4 shows a graph of a result of predicting temperature of a conventional Kalman filter according to various sensor error values. According to various sensor error values R = 5, R = 10, R = 15, and R = 20, the conventional Kalman filter has a different temperature prediction value.
한편, 본 발명에 따르면, 인공 신경망(ANN)으로 구성된 학습 모듈에서 훈련 후, 훈련된 모듈을 사용하여 변수 R을 적절히 조정하여 칼만 필터 알고리즘의 성능을 개선한다. On the other hand, according to the present invention, after training in a learning module composed of an artificial neural network (ANN), the trained module is used to appropriately adjust the variable R to improve the performance of the Kalman filter algorithm.
예측 오류 R을 얻기 위해, 식 R=err/C에서 주어진 비례 상수로서 에러 인자 C의 적절한 값을 선택한다. 따라서, 에러 인자 C의 다양한 값으로 실험을 수행한다. To obtain the prediction error R, we select the appropriate value of the error factor C as the proportionality constant given in the formula R = err / C. Therefore, the experiment is performed with various values of the error factor C.
도 5는 에러 인자 C의 가변값으로 학습 모듈을 포함하는 칼만 필터 알고리즘의 예측 결과를 보여준다. 즉, 도 5는 학습 모듈을 적용한 칼만 필터의 온도 예측 결과 그래프를 보인다. 5 shows prediction results of a Kalman filter algorithm including a learning module as a variable value of the error factor C. That is, Figure 5 shows a graph of the temperature prediction result of the Kalman filter to which the learning module is applied.
아래 표 1은 센서 에러 R과 에러 인자 C의 다른 값에 대해 학습 모듈을 포함하거나 학습하지 않은 칼만 필터 예측 결과의 요약을 나타낸다. Table 1 below shows a summary of Kalman filter prediction results with or without learning modules for different values of sensor error R and error factor C.
[표 1][Table 1]
Figure PCTKR2019003775-appb-I000011
Figure PCTKR2019003775-appb-I000011
종래 칼만 필터에서, 센서 에러 R 값을 변경하면 표 1에 나타난 예측 정확도(RMSE)가 변경되는 것을 알 수 있다. 예측 정확도는 그 값이 작을수록 칼만 필터의 성능이 높은 것이다.In the conventional Kalman filter, it can be seen that when the sensor error R value is changed, the prediction accuracy (RMSE) shown in Table 1 is changed. The smaller the value of the prediction accuracy, the higher the performance of the Kalman filter.
이하에서, 예측 정확도(RMSE)에 대해 상세히 설명하면 다음과 같다.Hereinafter, the prediction accuracy (RMSE) will be described in detail as follows.
MSE(Mean Square Error)는 다음 식 8과 같이, 실제 값과 예측 값 사이의 절대적 차이의 합을 데이터 항목 수로 나누어 계산한 MAD(Mean Absolute Deviation)식(식 7)에서, 실제 값과 예측 값 사이의 절대적 차이의 합에 제곱을 추가한 것이다.The mean square error (MSE) is calculated by dividing the sum of the absolute difference between the actual value and the predicted value by the number of data items, as shown in Equation 8 below, between the actual value and the predicted value in the Mean Absolute Deviation (MAD) equation (Expression 7). Is the sum of the squares of the sum of the absolute differences.
Figure PCTKR2019003775-appb-I000012
---식 7
Figure PCTKR2019003775-appb-I000012
--- Equation 7
Figure PCTKR2019003775-appb-I000013
---식 8
Figure PCTKR2019003775-appb-I000013
--- Equation 8
RMSE(Root Mean Square Error)는 아래 식 9와 같이, MSE에 제곱근을 취하여 구한다.The Root Mean Square Error (RMSE) is obtained by taking the square root of MSE as shown in Equation 9 below.
Figure PCTKR2019003775-appb-I000014
---식 9
Figure PCTKR2019003775-appb-I000014
--- Equation 9
여기서, n은 시험 데이터 집합의 총 항목 수이고, Ti는 데이터 집합의 i번째 인스턴스에 대한 실제 온도(℃)이며, (Ti)^는 해당 예상 온도이다. 이러한 통계수치는 예측 정확도를 정량화할 수 있는 단일 숫자를 제공한다. 예측 결과가 실제 온도에 더 가깝다면, 이러한 통계수치에 해당하는 값도 작을 것이다. Here, n is the total number of items in the test data set, Ti is the actual temperature (° C) for the i-th instance of the data set, and (Ti) ^ is the corresponding expected temperature. These statistics provide a single number to quantify prediction accuracy. If the predicted result is closer to the actual temperature, the value corresponding to this statistical value will be small.
표 2는 학습 모듈을 포함하거나 포함하지 않는 칼만 필터 수행 결과의 통계 요약을 나타낸다. Table 2 shows a statistical summary of Kalman filter performance results with or without learning modules.
[표 2][Table 2]
Figure PCTKR2019003775-appb-I000015
Figure PCTKR2019003775-appb-I000015
결과는 학습 모듈 없이 칼만 필터에 대해 수행된 실험의 경우 사용되는 센서 에러 R의 다양한 값에 대해 요약된다. The results are summarized for various values of the sensor error R used in the case of experiments performed on a Kalman filter without a learning module.
마찬가지로, ANN 학습 모듈에 대한 칼만 필터 예측 결과의 통계 요약에는 에러 인자 C 등 다양한 선택값이 제시되어 있다. Similarly, in the statistical summary of Kalman filter prediction results for the ANN learning module, various selection values such as error factor C are presented.
다양한 에러 인자 C 값을 갖는 예측 모델 학습으로 칼만 필터 알고리즘의 성능을 평가하기 위한 실험을 수행한다. 비교 분석을 위해 센서 에러 R 값이 다양한 칼만 필터(학습 모듈 없음)의 결과를 수집했다. 결과는 세 가지 통계 측정(즉, 평균 절대 편차(MAD:Mean Absolute Deviation), 평균 제곱 오차(MSE:Mean Squared Error), 제곱근 평균 제곱 오차(RMSE:Root Mean Squared Error)와 비교분석된다. Experiments for evaluating the performance of the Kalman filter algorithm are performed by learning a predictive model with various error factor C values. For comparative analysis, the results of Kalman filters (without learning modules) with various sensor error R values were collected. The results are compared with three statistical measures (ie, Mean Absolute Deviation (MAD), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).
표 2를 비교 분석하면, 에러 인자 C = 0.01의 결과를 예측하기 위해 제안된 학습을 가진 칼만 필터가 모든 통계 측정에 대한 다른 모든 설정을 능가한다는 것을 보여준다. Comparative analysis of Table 2 shows that the Kalman filter with the proposed learning to predict the results of the error factor C = 0.01 surpasses all other settings for all statistical measurements.
표 2를 참조하면, 학습 모듈이 없는 칼만 필터에 대한 최적의 결과는 센서 에러 R = 15로, RMSE의 측면에서 2.06의 예측 정확도를 가지고 있다. 마찬가지로, 학습 모듈을 사용한 칼만 필터에 대한 최적의 결과는 에러 인자 C = 0.01로 나타났다. Referring to Table 2, the optimal result for the Kalman filter without a learning module is a sensor error R = 15, which has a prediction accuracy of 2.06 in terms of RMSE. Similarly, the optimal result for the Kalman filter using the learning module was found to be error factor C = 0.01.
학습 모듈이 없는 칼만 필터의 최적 및 최악의 경우 결과와 비교할 때, 예측 모델에서의 학습에 의한 예측 정확성의 향상 정도는 RMSE 측정 기준으로 각각 6.79%와 15.04%이다. Compared with the best and worst case results of the Kalman filter without a learning module, the degree of improvement in prediction accuracy by learning in the prediction model is 6.79% and 15.04%, respectively, based on the RMSE metric.
도 6은 본 발명에 따른 학습 기반 칼만 필터에서 센서 에러 학습 결과 인터페이스 화면이다. 즉, 학습된 센서 에러값이 입력된 칼만 필터 결과를 나타낸 화면으로서, 도 3의 신경망의 학습 결과를 나타낸다. 6 is a sensor error learning result interface screen in a learning-based Kalman filter according to the present invention. That is, as a screen showing the result of the Kalman filter input with the learned sensor error value, the learning result of the neural network in FIG.
도 6의 인터페이스 화면에서 좌측에는, 칼만 필터의 센서 에러값 R이 입력되는 입력칸(61)과, 칼만 필터 학습을 위한 에러 인자(Error Factor)의 입력칸(62), 칼만 필터 예측 수행 버튼(63), 학습 모듈의 학습 시작 버튼(64)과 학습 정지 버튼 등이 마련된다. On the left side of the interface screen of FIG. 6, the input field 61 into which the sensor error value R of the Kalman filter is input, the input field 62 of the error factor for learning the Kalman filter, and the Kalman filter prediction execution button 63 , A learning start button 64 and a learning stop button of the learning module are provided.
도 6 화면의 좌측에서, 칼만 필터의 센서 에러(R)이 5로 설정되고, 에러 인자(Error Factor) C 값은 0.01로 설정되었다. 6, the sensor error R of the Kalman filter was set to 5, and the error factor C value was set to 0.01.
도 6의 인터페이스 화면의 우측에는 원래의 에러 그래프(66)와 학습 결과에 따른 예측 에러 그래프(67)가 표시된다. The original error graph 66 and the prediction error graph 67 according to the learning result are displayed on the right side of the interface screen of FIG. 6.
도 6의 실제 온도 그래프(66)와 학습 결과에 따른 예측 에러 그래프(67)을 비교하면, 신경망(200)에 의한 예측된 오류와 실제 오류가 잘 정렬되어 있다는 것을 알 수 있다. 이는 학습 모듈(20)이 주어진 데이터 세트에 대해 완벽하게 훈련되었음을 보여준다. 학습 모듈(20)으로 훈련한 후, 이 훈련된 학습 모듈을 사용하여 칼만 필터 알고리즘(10)의 성능이 개선된다. When comparing the actual temperature graph 66 of FIG. 6 with the prediction error graph 67 according to the learning result, it can be seen that the predicted error and the actual error by the neural network 200 are well aligned. This shows that the learning module 20 has been fully trained on a given data set. After training with the learning module 20, the performance of the Kalman filter algorithm 10 is improved using this trained learning module.
도 6의 설명과 표 1에서 알 수 있는 바와 같이, 최상의 결과는 에러 인자 C=0.01인 학습 모듈을 포함한 칼만 필터에서 확인할 수 있다.As can be seen from the description of FIG. 6 and Table 1, the best results can be confirmed in the Kalman filter including the learning module with error factor C = 0.01.
도 7은 본 발명에 따른 학습 모듈을 사용하여, 학습 기반 칼만 필터 알고리즘의 평가를 위한 애플리케이션 인터페이스 화면이다. 7 is an application interface screen for evaluation of a learning-based Kalman filter algorithm using the learning module according to the present invention.
도 7의 인터페이스 화면의 좌측에는, 칼만 필터의 센서 에러값 R이 입력되는 입력칸(71)과, 칼만 필터 학습을 위한 에러 인자(Error Factor) C의 입력칸(72), 칼만 필터 예측 수행 버튼(73), 학습 모듈의 학습 시작 버튼(74)과 학습 정지 버튼 등이 마련된다. On the left side of the interface screen of FIG. 7, an input field 71 into which a sensor error value R of a Kalman filter is input, an input field 72 of an error factor C for learning a Kalman filter, and a Kalman filter prediction execution button 73 ), A learning start button 74 and a learning stop button of the learning module are provided.
도 7의 인터페이스 화면에서 우측에는 실제 온도 그래프(75), 센싱 데이터 그래프(76), 칼만 필터 의 예측 결과 그래프(77), 학습 모듈을 갖는 칼만 필터의 예측 결과 그래프(78)가 표시된다. On the right side of the interface screen of FIG. 7, an actual temperature graph 75, a sensing data graph 76, a Kalman filter prediction result graph 77, and a Kalman filter prediction module 78 having a learning module are displayed.
즉, 도 7의 인터페이스 화면에는 원래 온도 데이터와 온도 센서 판독값, 칼만 필터 결과 데이터, 학습된 칼만 필터 결과 데이터를 보인다. 센서 판독값은 루트 평균 제곱 오류(Root Mean Square Error: RMSE)로 나타냈다.That is, the interface screen of FIG. 7 shows original temperature data, temperature sensor readings, Kalman filter result data, and learned Kalman filter result data. Sensor readings are expressed as Root Mean Square Error (RMSE).
서로 다른 센서 에러 R 값을 사용하여 수행되며 그에 상응하는 결과가 수집된다. 센서 에러 R = 5인 칼만 필터를 사용하는 예측 온도의 RMSE(예측 정확도)는 2.25이고, 센서 판독값의 RMSE 4.74이고, 학습된 칼만 필터에 의한 예측 온도의 RMSE는 1.92이다. 즉, 칼만 필터를 사용한 경우 RMSE는 센서 판독값의 RMSE에 비해 훨씬 우수하다(오류 52.32% 감소). 또한, 칼만 필터만을 사용하는 예측 온도의 RMSE에 비해 학습 모듈을 갖는 칼만 필터(학습된 칼만 필터)의 예측 온도의 RMSE가 우수하다.It is performed using different sensor error R values and corresponding results are collected. The prediction temperature (RMSE) of the predicted temperature using the Kalman filter with sensor error R = 5 is 2.25, the RMSE of the sensor reading is 4.74, and the RMSE of the predicted temperature by the learned Kalman filter is 1.92. That is, the RMSE with the Kalman filter is much better than the RMSE of the sensor reading (error 52.32% reduction). In addition, the RMSE of the predicted temperature of the Kalman filter (learned Kalman filter) having a learning module is superior to the RMSE of the predicted temperature using only the Kalman filter.
학습 모듈은, 칼만 필터 알고리즘의 예측 정확도를 향상시키는 것을 알 수 있다.It can be seen that the learning module improves the prediction accuracy of the Kalman filter algorithm.
도 8은 학습 모듈(20)을 사용하는 칼만 필터 알고리즘의 예측 결과를 나타낸다. 도 8의 인터페이스 화면에서, 칼만 필터의 센서 에러 R이 20으로 설정되고, 좌측의 에러 인자 C는 0.01로 설정되었다. 8 shows prediction results of the Kalman filter algorithm using the learning module 20. In the interface screen of FIG. 8, the sensor error R of the Kalman filter is set to 20, and the error factor C on the left is set to 0.01.
학습 모듈(20)에서 에러 인자 C=0.01이 포함된 칼만 필터(10)의 결과이다. 에러 인자 C=0.01을 사용하는 경우 RMSE(Root Mean Square Error)는 1.82이다.It is the result of the Kalman filter 10 in which the error factor C = 0.01 is included in the learning module 20. When the error factor C = 0.01 is used, RMSE (Root Mean Square Error) is 1.82.
상술한 실시예에서 알 수 있듯이, 학습 모듈을 포함한 칼만 필터가 루트 평균 제곱 오류 메트릭스 측면에서 기존의 칼만 필터 알고리즘보다 더 나은 성능을 보인다. As can be seen from the above-described embodiment, the Kalman filter including the learning module shows better performance than the existing Kalman filter algorithm in terms of the root mean square error metric.
즉, 칼만 필터가 학습된 센서 에러값을 입력받는 경우 효과는, 다음과 같다. 칼만 필터(10)에서 예측은 이득(K)에 의해 가장 영향을 받는다. 이 센서 에러값의미는 실제 온도와 센싱(측정)된 온도와의 차이값을 의미한다. 칼만 필터의 이득(K)을 구할 때 중요한 파라미터가 된다. 이 센서 에러값을 정확히 구하면, 예측도 정확하게 이루어진다.That is, when the Kalman filter receives the learned sensor error value, the effect is as follows. The prediction in the Kalman filter 10 is most affected by the gain K. This sensor error value means the difference between the actual temperature and the sensed (measured) temperature. It is an important parameter when calculating the gain (K) of the Kalman filter. If this sensor error value is obtained accurately, prediction is also made accurately.
이러한 구성에 의하여, 칼만 필터가 센서값(예를 들어 온도)을 정확히 예측할 수 있게 된다. 그에 따라, 예측 시스템의 제어기가 칼만 필터에 의해 예측된 센서값을 이용하여 실내 환경을 보다 효율적으로 제어할 수 있게 된다.With this configuration, the Kalman filter can accurately predict the sensor value (for example, temperature). Accordingly, the controller of the prediction system can control the indoor environment more efficiently using the sensor value predicted by the Kalman filter.
본 발명은, 학습을 통한 파라미터 개선 기반의 예측 시스템 및 방법에서, 학습 모듈로 센서 에러값을 학습하여 예측 알고리즘 모듈의 일예인 칼만 필터에 입력하면 학습된 센서 에러값을 입력받은 칼만 필터가 온도를 정확히 예측함으로써 예측 시스템의 예측 온도를 이용하여 실내 환경을 보다 효율적으로 제어하는 용도로 사용될 수 있다.In the present invention, in a prediction system and method based on parameter improvement through learning, when a sensor error value is learned by a learning module and input to a Kalman filter that is an example of a prediction algorithm module, the Kalman filter receiving the learned sensor error value is configured to detect the temperature. By accurately predicting, it can be used to more efficiently control the indoor environment using the predicted temperature of the prediction system.

Claims (7)

  1. 학습을 통한 파라미터 개선 기반의 예측 시스템에 있어서,In the prediction system based on parameter improvement through learning,
    예측 파라미터를 입력받아 미래 데이터를 생성하는 예측 알고리즘 모듈과,A prediction algorithm module that receives prediction parameters and generates future data,
    이전 데이터와 현재 데이터를 입력받아 학습하여 예측 파라미터를 개선하여 상기 예측 알고리즘 모듈에 입력하는 학습 모듈을 포함하여, 향상된 예측 알고리즘을 실현하는 학습을 통한 파라미터 개선 기반의 예측 시스템.A prediction system based on parameter improvement through learning to realize an improved prediction algorithm, including a learning module that receives and learns previous data and current data to improve prediction parameters and inputs them into the prediction algorithm module.
  2. 제1항에 있어서,According to claim 1,
    상기 예측 알고리즘 모듈은, 특정 환경의 센서 감지값과 센서 에러값을 입력받아 처리하여 특정 환경 예측값을 출력하는 칼만 필터를 포함하고, The prediction algorithm module includes a Kalman filter that receives sensor processing values and sensor error values of a specific environment and processes them to output a specific environment prediction value,
    상기 학습 모듈은, 적어도 하나의 특정 환경의 센서 감지값과 상기 특정 환경 예측값을 입력받아 그 차이값에 의해 학습하여 학습된 센서 에러값을 형성하여 상기 칼만 필터에 입력하는 것을 특징으로 하는, 학습을 통한 파라미터 개선 기반의 예측 시스템.The learning module receives at least one sensor detection value of the specific environment and the predicted value of the specific environment, learns by the difference value, forms a learned sensor error value, and inputs it to the Kalman filter. Prediction system based on parameter improvement through.
  3. 제2항에 있어서,According to claim 2,
    상기 학습 모듈은 신경망과, 상기 신경망에서 출력되는 학습된 센서 에러값과 미리 설정되는 에러 인자를 이용하여 상기 센서 에러값을 계산하는 센서 에러 계산부를 포함하는 것인, 학습을 통한 파라미터 개선 기반의 예측 시스템.The learning module includes a neural network and a sensor error calculation unit that calculates the sensor error value using a learned sensor error value output from the neural network and a preset error factor, and prediction based on parameter improvement through learning. system.
  4. 제3항에 있어서,According to claim 3,
    상기 신경망의 입력층에는 온도센서의 감지값, 습도센서의 감지값, 상기 칼만 필터에서 출력되는 추정 온도값이 입력되고,A sensing value of a temperature sensor, a sensing value of a humidity sensor, and an estimated temperature value output from the Kalman filter are input to the input layer of the neural network,
    상기 칼만 필터는, The Kalman filter,
    상태변이 메트릭스와 제어 메트릭스를 이용하여 예측 온도를 계산하는 예측 온도 계산부와, 특정 환경의 센서값 독출부와, 상기 학습 모듈에서 학습된 센서 에러값 독출부와, 공분산 값을 계산하고 갱신된 공분산 값을 계산하는 공분산 값 계산 및 갱신부와, 상기 학습된 센서 에러값과 상기 공분산 값을 입력받아 계산하여 칼만이득을 출력하는 칼만이득 계산부, 상기 센서값 독출부의 센서값과 상기 예측온도 계산부로부터의 예측 온도 및 상기 칼만이득에 의해 온도를 추정하여 추정 온도를 출력하는 실제 온도 추정부를 포함하는, 학습을 통한 파라미터 개선 기반의 예측 시스템.Prediction temperature calculation unit that calculates the predicted temperature using the state transition metrics and control metrics, the sensor value reading unit of a specific environment, the sensor error value reading unit learned in the learning module, calculates the covariance value and updates the updated covariance Covariance value calculation and update unit for calculating a value, Kalman gain calculation unit for receiving and calculating the learned sensor error value and the covariance value to output a Kalman gain, sensor value for the sensor value reading unit and the predicted temperature calculation unit A prediction system based on parameter improvement through learning, including an actual temperature estimator for estimating a temperature from the Kalman gain and predicting temperature from and outputting the estimated temperature.
  5. 제4항에 있어서,According to claim 4,
    상기 예측 온도 계산부가 예측 온도를 계산하는 식은, The equation for calculating the predicted temperature by the predicted temperature calculator,
    Figure PCTKR2019003775-appb-I000016
    이고,
    Figure PCTKR2019003775-appb-I000016
    ego,
    상기 공분산 계산 및 갱신부가 상기 공분산값(Pt)을 계산하는 식은,
    Figure PCTKR2019003775-appb-I000017
    이고, 상기 갱신된 공분산값(Ppredicted)을 계산하는 식은,
    Figure PCTKR2019003775-appb-I000018
    이며,
    The equation for calculating the covariance and updating unit P t is
    Figure PCTKR2019003775-appb-I000017
    And the equation for calculating the updated covariance (P predicted ) is
    Figure PCTKR2019003775-appb-I000018
    And
    상기 칼만이득 계산부가 칼만이득을 계산하는 식은,The equation for calculating the Kalman's gain is calculated by the Kalman's gain calculation unit,
    Figure PCTKR2019003775-appb-I000019
    이고,
    Figure PCTKR2019003775-appb-I000019
    ego,
    상기 실제 온도 추정부가 실제온도를 추정하는 식은, The equation for estimating the actual temperature by the actual temperature estimator,
    Figure PCTKR2019003775-appb-I000020
    이고,
    Figure PCTKR2019003775-appb-I000020
    ego,
    여기서, here,
    A: 상태 전환 매트릭스A: State transition matrix
    AT : 상태 전환 매트릭스의 전치A T : Transpose of state transition matrix
    B : 제어 매트릭스 B: Control matrix
    Tt -1 : 이전에 계산된 온도T t -1 : previously calculated temperature
    ut : 제어 벡터u t : control vector
    Tt : 현재의 센서 온도 T t : Current sensor temperature
    I : 식별 메트릭스로서, 매트릭스 곱을 용이하게 하는데 사용됨I: Identification matrix, used to facilitate matrix multiplication
    H : 관측 메트릭스H: Observation metrics
    zt : 센서 입력값(판독값)z t : Sensor input value (read value)
    K : 칼만 게인 K: Kalman Gain
    Q : 추정 오류Q: estimation error
  6. 학습을 통한 파라미터 개선 기반의 예측 방법에 있어서,In the prediction method based on parameter improvement through learning,
    예측 알고리즘 모듈이 예측 파라미터를 입력받아 미래 데이터를 생성하는 제1단계와,A first step of the prediction algorithm module receiving prediction parameters and generating future data;
    학습 모듈이 이전 데이터와 현재 데이터를 입력받아 학습하여 예측 파라미터를 개선하여 상기 예측 알고리즘 모듈에 입력하는 제2단계를 포함하여, 향상된 예측 알고리즘을 실현하는 학습을 통한 파라미터 개선 기반의 예측 방법.A second method of improving a prediction parameter by learning a learning module by receiving previous data and current data and inputting the predictive algorithm module to the prediction algorithm module.
  7. 제6항에 있어서,The method of claim 6,
    상기 예측 알고리즘 모듈은, 특정 환경의 센서 감지값과 센서 에러값을 입력받아 처리하여 특정 환경 예측값을 출력하는 칼만 필터를 포함하고, The prediction algorithm module includes a Kalman filter that receives sensor processing values and sensor error values of a specific environment and processes them to output a specific environment prediction value,
    상기 제2단계는, 상기 학습 모듈이, 적어도 하나의 특정 환경의 센서 감지값과 상기 특정 환경 예측값을 입력받아 그 차이값에 의해 학습하여 학습된 센서 에러값을 형성하여 상기 칼만 필터에 입력하는 단계를 포함하는, 학습을 통한 파라미터 개선 기반의 예측 방법.In the second step, the learning module receives at least one sensor detection value of the specific environment and the specific environment prediction value, learns by the difference value, forms a learned sensor error value, and inputs it to the Kalman filter. A prediction method based on parameter improvement through learning.
PCT/KR2019/003775 2018-11-22 2019-04-01 Prediction system and method on basis of parameter improvement through learning WO2020105812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180144957A KR102225370B1 (en) 2018-11-22 2018-11-22 Prediction system based on parameter improvement through learning and method thereof
KR10-2018-0144957 2018-11-22

Publications (1)

Publication Number Publication Date
WO2020105812A1 true WO2020105812A1 (en) 2020-05-28

Family

ID=70773859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003775 WO2020105812A1 (en) 2018-11-22 2019-04-01 Prediction system and method on basis of parameter improvement through learning

Country Status (2)

Country Link
KR (1) KR102225370B1 (en)
WO (1) WO2020105812A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112036630A (en) * 2020-08-25 2020-12-04 长安大学 Highway pavement rainfall distribution estimation method, storage medium and computing device
CN112590806A (en) * 2020-11-30 2021-04-02 上海欧菲智能车联科技有限公司 Vehicle information processing method, device, equipment and medium based on Kalman filtering
CN113075527A (en) * 2021-02-23 2021-07-06 普赛微科技(杭州)有限公司 Integrated circuit chip testing method, system and medium based on Shmoo test
CN113361562A (en) * 2021-04-20 2021-09-07 武汉理工大学 Multi-sensor fusion method and device for power battery reaction control module
CN117192063A (en) * 2023-11-06 2023-12-08 山东大学 Water quality prediction method and system based on coupled Kalman filtering data assimilation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102354892B1 (en) * 2021-04-05 2022-01-24 주식회사 데카엔지니어링 Integrated heater management system and method for freeze protection and condensation prevention

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793616B1 (en) * 2005-06-13 2008-01-10 주식회사 엘지화학 Apparatus and method for testing state of charge in battery
KR20150009375A (en) * 2013-07-16 2015-01-26 한국전자통신연구원 Method and system for predicting power consumption
US20170315523A1 (en) * 2016-04-28 2017-11-02 Atigeo Corp. Using forecasting to control target systems
KR20180094360A (en) * 2017-02-15 2018-08-23 주식회사 엠앤디 Method for determination of sensor calibration
KR20180096075A (en) * 2017-02-20 2018-08-29 재단법인대구경북과학기술원 Apparatus for detecting fault of sensor using EMB system and method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793616B1 (en) * 2005-06-13 2008-01-10 주식회사 엘지화학 Apparatus and method for testing state of charge in battery
KR20150009375A (en) * 2013-07-16 2015-01-26 한국전자통신연구원 Method and system for predicting power consumption
US20170315523A1 (en) * 2016-04-28 2017-11-02 Atigeo Corp. Using forecasting to control target systems
KR20180094360A (en) * 2017-02-15 2018-08-23 주식회사 엠앤디 Method for determination of sensor calibration
KR20180096075A (en) * 2017-02-20 2018-08-29 재단법인대구경북과학기술원 Apparatus for detecting fault of sensor using EMB system and method using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112036630A (en) * 2020-08-25 2020-12-04 长安大学 Highway pavement rainfall distribution estimation method, storage medium and computing device
CN112036630B (en) * 2020-08-25 2023-08-04 长安大学 Highway pavement rainfall distribution estimation method, storage medium and computing equipment
CN112590806A (en) * 2020-11-30 2021-04-02 上海欧菲智能车联科技有限公司 Vehicle information processing method, device, equipment and medium based on Kalman filtering
CN113075527A (en) * 2021-02-23 2021-07-06 普赛微科技(杭州)有限公司 Integrated circuit chip testing method, system and medium based on Shmoo test
CN113361562A (en) * 2021-04-20 2021-09-07 武汉理工大学 Multi-sensor fusion method and device for power battery reaction control module
CN113361562B (en) * 2021-04-20 2024-03-15 武汉理工大学 Multi-sensor fusion method and device for power battery reaction control module
CN117192063A (en) * 2023-11-06 2023-12-08 山东大学 Water quality prediction method and system based on coupled Kalman filtering data assimilation
CN117192063B (en) * 2023-11-06 2024-03-15 山东大学 Water quality prediction method and system based on coupled Kalman filtering data assimilation

Also Published As

Publication number Publication date
KR20200063338A (en) 2020-06-05
KR102225370B1 (en) 2021-03-08

Similar Documents

Publication Publication Date Title
WO2020105812A1 (en) Prediction system and method on basis of parameter improvement through learning
US5864773A (en) Virtual sensor based monitoring and fault detection/classification system and method for semiconductor processing equipment
WO2018101722A2 (en) Machine learning-based semiconductor manufacturing yield prediction system and method
Li et al. State estimation for stochastic discrete-time systems with multiplicative noises and unknown inputs over fading channels
WO2017007089A1 (en) Method and device for relocating mobile robot in indoor environment
WO2020230977A1 (en) Metacognition-based high-speed environmental search method and device
Souza et al. Online mixture of univariate linear regression models for adaptive soft sensors
Nicosia et al. A tracking controller for flexible joint robots using only link position feedback
WO2019182166A1 (en) Electrical load determination apparatus and method using modified mfcc
WO2022103185A1 (en) Battery capacity measuring device and method, and battery control system comprising battery capacity measuring device
CN114548368B (en) Modeling method and prediction method of lithium battery temperature field prediction model based on multilayer nuclear overrun learning machine
Bedoui et al. New results on discrete-time delay systems identification
WO2020059939A1 (en) Artificial intelligence device
WO2020076083A1 (en) Power plant early warning device and method employing multiple prediction model
CN112713881B (en) Synchronous clock maintaining system and method based on edge calculation
CN110501115B (en) Method and device for calibrating pressure curve of stylus
CN114646680A (en) Automatic test system for gas sensor
WO2019240330A1 (en) Image-based strength prediction system and method therefor
WO2018225892A1 (en) Apparatus for analysing causal relationships between lifelog data, and method therefor
JP2002236904A (en) Data processor and processing method, recording medium and program
Li et al. Event-triggered multiagent consensus under relative output sensing
WO2019124602A1 (en) Object tracking method and devices for performing same
WO2018043936A1 (en) Method and system for sensing fine changes in processing/equipment measurement data
WO2017018726A1 (en) Sensor signal detecting system and smart plug having same
Liu et al. Event-triggered communication-based control for strict-feedback nonlinear systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886377

Country of ref document: EP

Kind code of ref document: A1