WO2020105807A1 - Structure and method for reducing power consumed by electrically driven hydraulic/pneumatic compression device - Google Patents

Structure and method for reducing power consumed by electrically driven hydraulic/pneumatic compression device

Info

Publication number
WO2020105807A1
WO2020105807A1 PCT/KR2019/002375 KR2019002375W WO2020105807A1 WO 2020105807 A1 WO2020105807 A1 WO 2020105807A1 KR 2019002375 W KR2019002375 W KR 2019002375W WO 2020105807 A1 WO2020105807 A1 WO 2020105807A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
compression
line
solenoid valve
pneumatic
Prior art date
Application number
PCT/KR2019/002375
Other languages
French (fr)
Korean (ko)
Inventor
김귀영
김광주
전백렬
Original Assignee
(주)홍인문
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)홍인문 filed Critical (주)홍인문
Publication of WO2020105807A1 publication Critical patent/WO2020105807A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an electric / pneumatic compression device used in an air conditioning refrigeration field or a heat pump system, and more particularly, to a structure and method for reducing power consumption of an electric / pneumatic compression device.
  • All hydraulic and pneumatic compression devices that use the rotational power of existing electric motors are structures in which the motor and the compressor are connected by a belt or directly connected to the rotating shaft of the motor.
  • the motor and the compressor are connected by a belt or directly connected to the rotating shaft of the motor.
  • the compressor In the case of a refrigerant compressor used in a refrigerator, air conditioner, or heat pump, the compressor The shaft and the rotating shaft of the motor are integrally connected.
  • the residual pressure remaining in the compression line is It acts as a load on the initial rotation of the motor, making it difficult to start the motor.
  • the combined torque acts as the initial starting load for the electric motor when the starting load, which is the load applied when the stopped motor rotates again, and the instantaneous starting torque to overcome the residual pressure remaining in the compression line are combined.
  • the remaining residual pressure of the compression line is the main cause of energy (power) loss until the motor acquires maneuvering power.
  • power energy
  • a safety device such as a thermal protector that detects a temperature rise and cuts off the power supply when overheating is detected, or an overload protector that detects power overload. You often have them.
  • a thermal protector that detects a temperature rise and cuts off the power supply when overheating is detected
  • an overload protector that detects power overload. You often have them.
  • these two safety devices are activated and lead to a fire before the power supply is cut off.
  • a compression device operated by an AC motor may use a method to overcome an initial load by raising the instantaneous rotational force by using the power accumulated in the condenser at startup, but the use of such a method is not useful in an environment using DC power. not.
  • Figure 1 shows a conventional air conditioning refrigeration cycle, which is a compressor (10) for compressing a gas refrigerant, and a cooling fan (5) to cool the compressed gas refrigerant with external air to liquid refrigerant. It consists of a condenser (2) to make, an expansion valve (4) to make the liquid refrigerant by depressurizing the condensed liquid refrigerant, and an evaporator (1) to heat the decompressed refrigerant to take the surrounding temperature and change it into a gas refrigerant The evaporated refrigerant forms an air conditioning refrigeration system circulated back to the compressor 10.
  • FIG. 2 is a conventional hydraulic / pneumatic compression device including a compressor 10 provided in a normal air conditioning refrigeration cycle as shown in FIG. 1 and a high pressure side compression line 21 and a low pressure side suction line 22. It shows the composition of.
  • An object of the present invention is to provide a structure and method for reducing power consumption of an electro-pneumatic / pneumatic compressor configured so that residual pressure remaining in the motor does not interfere with starting of the motor.
  • the object of the present invention is to reduce the size, weight, and manufacturing cost of the device by compensating for the structural problems of the existing compressor, while increasing the efficiency, thereby reducing the power output of the electric motor, so that there is no problem in starting and also prevents wasting energy. It provides a structure and method for reducing power consumption of a pneumatic compression device.
  • the present invention for achieving the above object is a structure for reducing power consumption of an electric / pneumatic compression device including a refrigerant compressor, a bridge having a solenoid valve that can be opened and closed by applying a current between a compressor compression line and a suction line.
  • the bridge pipe is installed close to the compressor
  • the solenoid valve is a three-way valve that opens and closes the connection between the compression line of the compressor and the bridge pipe, to distribute and release the residual pressure in the compressor and the compression line
  • An opening time of the solenoid valve for connecting the compression line and the suction line is selected in a range of 0.1 to 1.0 seconds, and a structure for reducing power consumption of an electric / pneumatic compression device that is preferably opened for 0.2 seconds is provided.
  • a timer for interrupting the operation time of the solenoid valve may be further provided, and such a timer is connected to the power supply and the solenoid valve for a predetermined time when power is applied from the power source, for example, 0.2 seconds. Let the solenoid valve open the bridge piping.
  • the solenoid valve is connected to the compressor by connecting the suction line and the compression line of the compressor by opening the compression line and the bridge pipe from the above-described electric power / pneumatic compression device power saving structure.
  • the opening time of the solenoid valve is It provides a method for reducing the power consumption of an electro-pneumatic or pneumatic compression device in which the lowest current value is realized among the inrush current values instantaneously displayed in the ammeter while operating.
  • the present invention further installs a device for regulating the load on the pneumatic compression device, in which the electric motor and the compressor are directly connected to each other, and remains in the compression line until the stopped electric motor overcomes inertia when it restarts and acquires normal rotational force. Eliminates factors such as overheating of the motor, resulting in fire, and wasted power consumption due to excessive design of the motor, and deterioration of compression capacity by preventing the residual pressure from interfering with the starting of the motor, thereby increasing compressor efficiency and unnecessary This is to prevent energy waste. It is a technology that can be applied to all types of electric and pneumatic compressors, including refrigerant compressors. It is also based on the existing power connection structure that is directly connected to the compressor and the electric motor.
  • a bridge pipe connecting the compression line and a solenoid valve controlling opening and closing of the bridge pipe are provided to act as a clutch that facilitates power connection when the stopped motor restarts, thereby remaining inside the compressor and on the compression line. It can overcome the residual pressure and reduce the power lost to the starting torque that was consumed until the normal rotational force is obtained. Also, the motor size can be downsized because many starting torques are not required.
  • the present invention is provided with a timer for controlling the opening and closing time of the solenoid valve, the residual pressure in the compressor and the compression line from the direct connection structure of the electric motor and the compressor applied to the existing heat pump or compressor is limited until the motor acquires normal rotational force.
  • a timer for controlling the opening and closing time of the solenoid valve, the residual pressure in the compressor and the compression line from the direct connection structure of the electric motor and the compressor applied to the existing heat pump or compressor is limited until the motor acquires normal rotational force.
  • the present invention can prevent the loss of power and prevent a fire accident when the motor is initially started in all hydraulic and pneumatic compression devices using the rotational force of the electric motor.
  • the present invention by reducing the size, weight, and manufacturing cost of the device while increasing the efficiency, even when the output of the electric motor is lowered, there is no problem in start-up and energy waste can be prevented.
  • FIG. 1 is a view showing a general configuration of the air conditioning refrigeration cycle
  • Figure 2 is a view showing the configuration of a conventional hydraulic pneumatic compression device
  • Figure 3 is a view showing the installation structure of the electro-pneumatic compression device according to the present invention.
  • FIG. 4 is a view showing the principle of power applied in the hydraulic / pneumatic compression device of FIG. 3;
  • FIG. 3 is a view showing the installation structure of the hydraulic / pneumatic compression device according to the present invention
  • FIG. 4 is a diagram showing the principle of applying power in the configuration of the hydraulic / pneumatic compression device of FIG. 3.
  • the present invention is a technology applicable to all types of electric / pneumatic compression devices including refrigerant compressors, and is based on a conventional power connection structure in which a compressor and an electric motor are directly connected.
  • the present invention is a method for dispersing the residual pressure so that the residual pressure (R) existing on the compression line 21 does not act as a load on the motor at the initial start-up of the electric motor (not shown), the compressor 10
  • a solenoid valve 40 that can be opened and closed by applying a current.
  • the bridge pipe 30 is a connection between the compression line 21 and the suction line 22 of the compressor 10, and it is advantageous to install the compressor 10 as close as possible.
  • the solenoid valve 40 has a three-way valve type to open and close the connection between the compression line 21 and the bridge pipe 30 of the compressor 10, and the installation position of the solenoid valve 40 is as much as possible to the compressor 10 It is preferable that the compression line 21 and the bridge pipe 30 meet at a close position.
  • the solenoid valve 40 that controls the connection between the compression line 21 and the bridge pipe 30 has a refrigerant along the direction in which the compression force is used when the compressor 10 is operating normally, that is, along the compression line 21. While opening the valve only in the direction of flow, when the compressor 10 is stopped and restarted, both the compression line 21 and the bridge pipe 30 are opened to open the compression line 21 and the suction line 22. By allowing this to be directly connected, the residual pressure (R) in the compressor (10) and the compression line (21) is distributed and released through the bridge pipe (30) to the suction line (22) side, from which the compressor (10) and the compression line (21) When the residual pressure in the compressor 10 is restarted, the motor (not shown) does not act as a load to restart.
  • the operating time of the solenoid valve 40 for the connection of the compression line 21 and the suction line 22 is preferably 0.2 seconds, but in this embodiment, various operating time selections can be made as needed within the range of 0.1 to 1.0 seconds. It is possible.
  • a timer 2 may be provided as a part that performs a time interruption (see FIG. 4), and the timer is a power source 1 and a solenoid valve 40 for a set time when power is applied from the power source 1.
  • the solenoid valve 40 To connect the solenoid valve 40 to open the bridge pipe 30.
  • the residual pressure (R) in the compressor (10) and the compression line (21) is distributed and released to the bridge pipe (30) and the suction line (22), from which the residual pressure in the compressor (10) and the compression line (21) ( R) no longer acts as a load on the restart of the electric motor when the compressor 10 is restarted.
  • the solenoid valve 40 connects the compression line 21 on the high pressure side and the suction line 22 on the low pressure side for a set time, so that the motor whose load has been released can acquire normal rotational force in a state where the hole is separated, and a timer After the set time of (2), for example, 0.2 seconds, the power supplied to the solenoid valve 40 is cut off, and the connection between the suction line on the low pressure side and the compression line on the high pressure side is blocked, so that the compression action of the compressor works normally. do.

Abstract

The present invention relates to a structure for reducing power consumed by an electrically-driven hydraulic/pneumatic compression device comprising a refrigerant compressor. More specifically, the present invention provides a structure for reducing power consumed by an electrically-driven hydraulic/pneumatic compression device, wherein a bridge pipe is installed between a compression line and a suction line of the compressor, the bridge pipe having a solenoid valve that can be opened/closed by current application; the bridge pipe connects the suction line and the compression line of the compressor; the solenoid valve is installed at a point at which the compression line and the bridge pipe meet so as to connect the compression line and the bridge pipe or to disconnect same; the bridge pipe is installed near the compressor; the solenoid valve is a three-way valve for connecting the compression line of the compressor and the bridge pipe or disconnecting same; and the time to open the solenoid valve, in order to connect the compression line and the suction line such that the residual pressure remaining in the compressor and the compression line is distributed and released, is selected in the range of 0.1-1.0 seconds.

Description

전동 유·공압 압축장치의 소비전력 절감 구조 및 방법Structure and method for reducing power consumption of electric / pneumatic compression devices
본 발명은 공기조화 냉동분야나 히트펌프시스템 등에서 사용되는 전동 유·공압 압축장치에 관한 것으로, 보다 상세하게는 전동 유·공압 압축장치의 소비전력 절감 구조 및 방법에 관한 것이다. The present invention relates to an electric / pneumatic compression device used in an air conditioning refrigeration field or a heat pump system, and more particularly, to a structure and method for reducing power consumption of an electric / pneumatic compression device.
현존하는 전동 모터의 회전력을 이용하는 모든 유·공압 압축장치들은 모터와 압축기가 벨트로 연결되거나 모터의 회전축과 직결된 구조로서, 예를 들어 냉장고나 에어컨 또는 히트펌프 등에 사용되는 냉매 압축기의 경우 압축기의 축과 모터의 회전축이 일체로 연결된 구조를 이루고 있다. All hydraulic and pneumatic compression devices that use the rotational power of existing electric motors are structures in which the motor and the compressor are connected by a belt or directly connected to the rotating shaft of the motor. For example, in the case of a refrigerant compressor used in a refrigerator, air conditioner, or heat pump, the compressor The shaft and the rotating shaft of the motor are integrally connected.
이러한 기존 동력연결 방식은 압축기가 냉매 압축을 멈추었다가 재압축을 진행하는 과정에서 정지된 모터가 관성을 이겨내고 정상 회전력을 획득할 때까지 많은 기동 에너지가 소모되는데, 특히 압축 라인에 남아있는 잔압이 모터의 초기 회전에 부하로 작용하면서 모터의 기동을 어렵게 한다. 즉, 정지된 모터가 다시 회전할 때 걸리는 부하인 기동 부하와 압축 라인에 남아있는 잔류 압력을 이기기 위한 순간적인 기동 토크가 합쳐지는 순간 이 합쳐진 토크가 전동모터에 초기 기동부하로 작용하는 것이다. In the conventional power connection method, in the process of the compressor stopping the refrigerant compression and then recompressing, a large amount of starting energy is consumed until the stopped motor overcomes the inertia and obtains a normal rotational force. In particular, the residual pressure remaining in the compression line is It acts as a load on the initial rotation of the motor, making it difficult to start the motor. In other words, the combined torque acts as the initial starting load for the electric motor when the starting load, which is the load applied when the stopped motor rotates again, and the instantaneous starting torque to overcome the residual pressure remaining in the compression line are combined.
이와 같이 압축 라인의 남은 잔압은 모터가 기동력을 획득하기까지 에너지(전력) 손실의 주원인이 되고 있는데, 만일 이 상황에서 전동 모터가 정상 회전력을 획득하지 못할 경우에는 모터가 치명적 손상을 입거나 과열로 인한 화재로 이어지게 된다. The remaining residual pressure of the compression line is the main cause of energy (power) loss until the motor acquires maneuvering power. In this situation, if the electric motor fails to obtain normal rotational force, the motor may be fatally damaged or overheated. This will lead to fire.
따라서, 기존 모터에서는 이러한 불상사를 막기 위한 대책으로 온도상승을 감지하여 과열이 감지되면 전력공급을 차단하는 과열차단장치(Thermal protector)나 전력 과부하를 감지하는 과부하 방지장치(Overload Protector)와 같은 안전장치들을 흔히 구비하게 된다. 그러나, 실제로 모터의 회전력을 이용하는 유·공압 압축장치에서는 이들 두 안전장치가 작동하여 전력 공급을 차단하기 전에 이미 화재로 이어지는 경우가 다반사로 일어나는 것이 현실이다. Therefore, in the conventional motor, as a measure to prevent such an accident, a safety device such as a thermal protector that detects a temperature rise and cuts off the power supply when overheating is detected, or an overload protector that detects power overload. You often have them. However, in reality, in the hydraulic / pneumatic compression device using the rotational force of the motor, it is a reality that these two safety devices are activated and lead to a fire before the power supply is cut off.
특히, AC 전력으로 작동되는 냉매압축기의 경우, 이러한 문제를 해결하기 위한 대책으로 전동 모터의 출력을 4배 또는, 심지어 8배까지 높게 책정하는 설계를 도입하고 있는데, 이러한 과도한 출력 설계는 모터의 과열 또는 과부하 방지 효과는 있으나 많은 전력 손실을 초래하므로 에너지가 낭비되는 문제가 있다. Particularly, in the case of a refrigerant compressor operated by AC power, a design to set the output of the electric motor as high as 4 times or even 8 times as a countermeasure to solve this problem is introduced. Alternatively, there is an overload prevention effect, but there is a problem in that energy is wasted because it causes a lot of power loss.
또한, AC 모터로 작동되는 압축장치는 기동시 콘덴서에 축적된 전력을 이용하여 순간 회전력을 상승시킴으로써 초기 부하를 이겨내려는 방법이 동원되기도 하지만, DC 전력을 사용하는 환경에서는 이런 방법의 사용이 여의치가 않다. In addition, a compression device operated by an AC motor may use a method to overcome an initial load by raising the instantaneous rotational force by using the power accumulated in the condenser at startup, but the use of such a method is not useful in an environment using DC power. not.
한편, 도 1은 통상적인 공조 냉동 사이클을 도시한 것으로서, 이러한 사이클은 기체냉매를 압축하는 압축기(10)와, 냉각팬(5)과 함께 상기 압축된 기체냉매를 외부공기로 냉각시켜 액체냉매로 만드는 응축기(2)와, 상기 응축된 액체냉매를 감압시켜 액체냉매로 만드는 팽창밸브(4)와, 상기 감압된 냉매를 열교환시켜 주위의 온도를 빼앗아 기체냉매로 상변화시키는 증발기(1)로 구성되고, 상기 증발된 냉매는 다시 압축기(10)로 순환되는 공조 냉동 시스템을 이룬다. 도 2는 도 1과 같은 통상의 공조 냉동 사이클에 구비된 압축기(10)와 이 압축기의 고압측인 압축라인(21) 및 저압측인 흡입라인(22)을 포함하는 종래의 유·공압 압축장치의 구성을 나타낸 것이다. On the other hand, Figure 1 shows a conventional air conditioning refrigeration cycle, which is a compressor (10) for compressing a gas refrigerant, and a cooling fan (5) to cool the compressed gas refrigerant with external air to liquid refrigerant. It consists of a condenser (2) to make, an expansion valve (4) to make the liquid refrigerant by depressurizing the condensed liquid refrigerant, and an evaporator (1) to heat the decompressed refrigerant to take the surrounding temperature and change it into a gas refrigerant The evaporated refrigerant forms an air conditioning refrigeration system circulated back to the compressor 10. FIG. 2 is a conventional hydraulic / pneumatic compression device including a compressor 10 provided in a normal air conditioning refrigeration cycle as shown in FIG. 1 and a high pressure side compression line 21 and a low pressure side suction line 22. It shows the composition of.
이에 본 발명은 상술한 원인들에 의해 발생되는 소비전력 낭비와 전동 모터의 손상 및 과열에 의한 화재사고를 막기 위해 개발된 것으로, 정지된 전동 모터가 재 기동하여 정상 회전력을 획득할 때가지 압축 라인에 남아있는 잔압이 모터의 기동에 방해가 되지 않도록 구성한 전동 유·공압 압축장치의 소비전력 절감 구조 및 방법을 제공하는데 그 목적이 있다. Accordingly, the present invention was developed to prevent a waste of power consumption caused by the above-mentioned causes and a fire accident due to damage and overheating of the electric motor, and the compression line until the stopped electric motor restarts to obtain normal rotational force. An object of the present invention is to provide a structure and method for reducing power consumption of an electro-pneumatic / pneumatic compressor configured so that residual pressure remaining in the motor does not interfere with starting of the motor.
또한, 본 발명의 목적은 기존 압축기의 구조적 문제를 보완하여 장치의 크기와 무게, 제조원가를 줄이는 한편 효율은 증대시킴으로써 전동모터의 출력을 낮추어도 기동에 문제가 없고 에너지 낭비도 방지할 수 있는 전동 유·공압 압축장치의 소비전력 절감 구조 및 방법을 제공하는 것이다. In addition, the object of the present invention is to reduce the size, weight, and manufacturing cost of the device by compensating for the structural problems of the existing compressor, while increasing the efficiency, thereby reducing the power output of the electric motor, so that there is no problem in starting and also prevents wasting energy. It provides a structure and method for reducing power consumption of a pneumatic compression device.
위와 같은 목적을 달성하기 위한 본 발명은 냉매 압축기를 포함하는 전동 유·공압 압축장치의 소비전력 절감 구조로서, 압축기의 압축라인과 흡입라인 사이에 전류 인가에 의해 개폐가 가능한 솔레노이드 밸브를 구비한 브릿지 배관을 설치하고, 상기 브릿지 배관은 상기 압축기의 흡입라인과 압축라인을 연결하며, 상기 솔레노이드 밸브는 상기 압축라인과 상기 브릿지 배관 사이의 연결을 개폐하도록 상기 압축라인과 브릿지 배관이 만나는 지점에 설치하되, 상기 브릿지 배관은 상기 압축기에 근접하여 설치되고, 상기 솔레노이드 밸브는 상기 압축기의 압축라인과 상기 브릿지 배관 사이의 연결을 개폐하는 삼방밸브이며, 상기 압축기와 압축라인 내 잔류압력을 분산 및 해제시키도록 상기 압축라인과 상기 흡입라인을 연결하기 위한 상기 솔레노이드 밸브의 개방시간은 0.1∼1.0초 범위에서 선택되고, 바람직하게는 0.2초 개방하는 전동 유·공압 압축장치의 소비전력 절감 구조가 제공된다. The present invention for achieving the above object is a structure for reducing power consumption of an electric / pneumatic compression device including a refrigerant compressor, a bridge having a solenoid valve that can be opened and closed by applying a current between a compressor compression line and a suction line. Install the pipe, the bridge pipe connects the suction line and the compression line of the compressor, and the solenoid valve is installed at a point where the compression line and the bridge pipe meet and open to open and close the connection between the compression line and the bridge pipe. , The bridge pipe is installed close to the compressor, the solenoid valve is a three-way valve that opens and closes the connection between the compression line of the compressor and the bridge pipe, to distribute and release the residual pressure in the compressor and the compression line An opening time of the solenoid valve for connecting the compression line and the suction line is selected in a range of 0.1 to 1.0 seconds, and a structure for reducing power consumption of an electric / pneumatic compression device that is preferably opened for 0.2 seconds is provided.
본 발명에 따르면, 솔레노이드 밸브의 작동시간을 단속하기 위한 타이머를 더 구비할 수 있으며, 이러한 타이머는 전원으로부터 전력이 인가될 때 설정된 시간동안, 예를 들면 0.2초 동안 상기 전원과 솔레노이드 밸브를 연결하여 솔레노이드 밸브가 브릿지 배관을 개방시키도록 한다. According to the present invention, a timer for interrupting the operation time of the solenoid valve may be further provided, and such a timer is connected to the power supply and the solenoid valve for a predetermined time when power is applied from the power source, for example, 0.2 seconds. Let the solenoid valve open the bridge piping.
또한, 본 발명은 상술한 전동 유·공압 압축장치의 소비전력 절감 구조로부터 상기 솔레노이드 밸브가 상기 압축라인과 상기 브릿지 배관을 개방하여 상기 압축기의 흡입라인과 압축라인을 연결시킴으로써, 상기 압축기와 직결된 전동모터의 초기 기동시 상기 압축기와 상기 압축라인 내 잔류압력을 분산 및 해제시켜 상기 압축기의 재 작동시 상기 전동모터의 재 기동에 부하로 작용하지 않도록 한 것으로, 상기 솔레노이드 밸브의 개방시간은 압축기가 작동하면서 전류계에 순간적으로 나타나는 돌입 전류값 중 최저 전류값이 구현되는 순간으로 하는 전동 유·공압 압축장치의 소비전력 절감 방법을 제공한다. In addition, according to the present invention, the solenoid valve is connected to the compressor by connecting the suction line and the compression line of the compressor by opening the compression line and the bridge pipe from the above-described electric power / pneumatic compression device power saving structure. When the electric motor is initially started, the residual pressure in the compressor and the compression line is distributed and released so that the electric motor does not act as a load when the compressor is restarted. The opening time of the solenoid valve is It provides a method for reducing the power consumption of an electro-pneumatic or pneumatic compression device in which the lowest current value is realized among the inrush current values instantaneously displayed in the ammeter while operating.
이와 같이 본 발명은 전동모터와 압축기가 일체로 직결된 유공압 압축장치에 부하를 단속하는 장치를 추가로 설치하여 정지된 전동 모터가 재 기동시 관성을 이겨내고 정상 회전력을 획득할 때가지 압축 라인에 남아있는 잔압이 모터의 기동에 방해가 되지 않도록 함으로써 모터의 과열과 그로 인한 화재발생과, 모터의 과도한 출력 설계로 인한 소비전력 낭비, 및 압축능력 저하 등의 요인을 제거하여 압축기의 효율을 증대시키고 불필요한 에너지 낭비를 막을 수 있도록 한 것으로, 냉매압축기를 포함한 모든 형태의 전동 유·공압 압축장치에 적용할 수 있는 기술이며, 또한 압축기와 전동모터가 직결된 기존 동력연결구조를 기초로 압축기의 흡입라인과 압축라인을 연결하는 브릿지 배관 및 상기 브릿지 배관을 개폐를 제어하는 솔레노이드 밸브를 구비하여 정지된 모터가 재 기동할 때 동력 연결을 원활하게 하는 클러치 역할을 수행하도록 함으로써 압축기 내부와 압축라인 상에 남아있는 잔압을 이겨내고 정상 회전력을 얻을 때까지 소모되던 기동토크로 손실되는 전력을 절감할 수 있으며, 또한 많은 기동토크가 필요치 않아 모터의 크기를 소형화할 수 있다. As described above, the present invention further installs a device for regulating the load on the pneumatic compression device, in which the electric motor and the compressor are directly connected to each other, and remains in the compression line until the stopped electric motor overcomes inertia when it restarts and acquires normal rotational force. Eliminates factors such as overheating of the motor, resulting in fire, and wasted power consumption due to excessive design of the motor, and deterioration of compression capacity by preventing the residual pressure from interfering with the starting of the motor, thereby increasing compressor efficiency and unnecessary This is to prevent energy waste. It is a technology that can be applied to all types of electric and pneumatic compressors, including refrigerant compressors. It is also based on the existing power connection structure that is directly connected to the compressor and the electric motor. A bridge pipe connecting the compression line and a solenoid valve controlling opening and closing of the bridge pipe are provided to act as a clutch that facilitates power connection when the stopped motor restarts, thereby remaining inside the compressor and on the compression line. It can overcome the residual pressure and reduce the power lost to the starting torque that was consumed until the normal rotational force is obtained. Also, the motor size can be downsized because many starting torques are not required.
또한, 본 발명은 솔레노이드 밸브의 개폐시간을 제어하는 타이머를 구비하여, 기존 히트펌프나 압축기에 적용된 전동모터와 압축기의 직결 구조로부터 압축기와 압축라인 내 잔압을 모터가 정상적인 회전력을 취득할 때까지 한정된 시간동안 분산시켜 해제함과 동시에 모터가 정상 회전력을 획득했을 때 다시 압축을 개시하도록 함으로써 초기 돌입전류를 낮추어 전력 손실을 막고 모터의 소손 및 과열로 인한 화재 발생을 막을 수 있다. In addition, the present invention is provided with a timer for controlling the opening and closing time of the solenoid valve, the residual pressure in the compressor and the compression line from the direct connection structure of the electric motor and the compressor applied to the existing heat pump or compressor is limited until the motor acquires normal rotational force. By dispersing and releasing for a period of time, when the motor acquires normal rotational force, it starts to compress again, thereby lowering the initial inrush current to prevent power loss and to prevent a fire due to motor burnout and overheating.
상술된 특징들로부터 본 발명은 전동 모터의 회전력을 이용하는 모든 유·공압 압축장치에서 모터의 초기 기동시 낭비되는 전력 손실을 막고 화재사고도 예방할 수 있게 된다. 또한, 본 발명에 따르면, 장치의 크기와 무게, 제조원가는 줄이는 한편 효율은 증대시킴으로써 전동모터의 출력을 낮추어도 기동에 전혀 문제가 없고 에너지 낭비도 방지할 수 있다. From the above-mentioned features, the present invention can prevent the loss of power and prevent a fire accident when the motor is initially started in all hydraulic and pneumatic compression devices using the rotational force of the electric motor. In addition, according to the present invention, by reducing the size, weight, and manufacturing cost of the device while increasing the efficiency, even when the output of the electric motor is lowered, there is no problem in start-up and energy waste can be prevented.
도 1은 공조 냉동 사이클의 일반적인 구성을 도시한 도면, 1 is a view showing a general configuration of the air conditioning refrigeration cycle,
도 2는 종래의 유·공압 압축장치의 구성을 도시한 도면, Figure 2 is a view showing the configuration of a conventional hydraulic pneumatic compression device,
도 3은 본 발명에 따른 전동 유·공압 압축장치의 설치 구조를 나타낸 도면,Figure 3 is a view showing the installation structure of the electro-pneumatic compression device according to the present invention,
도 4는 도 3의 유·공압 압축장치 구성에서의 전원인가 원리를 나타낸 도면.4 is a view showing the principle of power applied in the hydraulic / pneumatic compression device of FIG. 3;
이하 첨부된 도면과 실시예들을 통해 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and examples.
아래의 설명에서는 발명을 설명함에 있어서 필연적인 부분들을 제외하고 그 도시와 설명을 생략하였으며, 명세서 전체를 걸쳐 동일 유사한 요소에 대하여는 동일한 부호를 부여하고 그에 대한 상세한 설명은 반복하지 않고 생략하기로 한다. In the following description, the illustration and description are omitted except for the necessary parts in describing the invention, and the same reference numerals are assigned to the same similar elements throughout the specification, and detailed description thereof will be omitted without being repeated.
도 3은 본 발명에 따른 유·공압 압축장치의 설치 구조를 나타낸 도면이고, 도 4는 도 3의 유·공압 압축장치 구성에서의 전원인가 원리를 나타낸 도면이다. 3 is a view showing the installation structure of the hydraulic / pneumatic compression device according to the present invention, and FIG. 4 is a diagram showing the principle of applying power in the configuration of the hydraulic / pneumatic compression device of FIG. 3.
본 발명은 냉매압축기를 포함한 모든 형태의 전동 유·공압 압축장치에 적용할 수 있는 기술로서, 압축기와 전동모터가 직결된 기존의 동력연결 구조를 기초로 한다. 도 3에 따르면, 본 발명은 전동모터(미도시)의 초기 기동시 압축라인(21)에 상존하는 잔압(R)이 모터에 부하로 작용하지 않도록 잔압을 분산시키기 위한 방법으로, 압축기(10)의 압축라인(21)과 흡입라인(22) 사이에 전류 인가에 의해 개폐가 가능한 솔레노이드 밸브(40)를 구비한 브릿지 배관(30)을 설치한다. 브릿지 배관(30)은 압축기(10)의 압축라인(21)과 흡입라인(22)을 연결한 것으로, 압축기(10)에 최대한 근접하도록 설치하는 것이 유리하다. 솔레노이드 밸브(40)는 압축기(10)의 압축라인(21)과 브릿지 배관(30)의 연결을 개폐하기 삼방밸브 형태를 갖는 것으로, 이러한 솔레노이드 밸브(40)의 설치 위치는 압축기(10)에 최대한 근접한 위치에서 상기 압축라인(21)과 브릿지 배관(30)이 만나는 지점에 배치되는 것이 바람직하다. The present invention is a technology applicable to all types of electric / pneumatic compression devices including refrigerant compressors, and is based on a conventional power connection structure in which a compressor and an electric motor are directly connected. According to Figure 3, the present invention is a method for dispersing the residual pressure so that the residual pressure (R) existing on the compression line 21 does not act as a load on the motor at the initial start-up of the electric motor (not shown), the compressor 10 Between the compression line 21 and the suction line 22 of the bridge pipe 30 is provided with a solenoid valve 40 that can be opened and closed by applying a current. The bridge pipe 30 is a connection between the compression line 21 and the suction line 22 of the compressor 10, and it is advantageous to install the compressor 10 as close as possible. The solenoid valve 40 has a three-way valve type to open and close the connection between the compression line 21 and the bridge pipe 30 of the compressor 10, and the installation position of the solenoid valve 40 is as much as possible to the compressor 10 It is preferable that the compression line 21 and the bridge pipe 30 meet at a close position.
이와 같이 압축라인(21)과 브릿지 배관(30) 사이의 연결을 제어하는 솔레노이드 밸브(40)는 압축기(10)가 정상적인 작동 중일 때는 압축력을 사용하는 방향, 즉 압축라인(21)을 따라 냉매가 유동하는 방향으로만 밸브를 개방시키는 반면, 압축기(10)가 정지하였다가 재 작동할 때는 압축라인(21)과 브릿지 배관(30)을 모두 개방하여 상기 압축라인(21)과 흡입라인(22)이 직접적으로 연결되도록 함으로써 압축기(10)와 압축라인(21) 내 잔류압력(R)을 브릿지 배관(30)을 통해 흡입라인(22) 측으로 분산시켜 해제되도록 하고, 그로부터 압축기(10)와 압축라인(21) 내 잔압이 압축기(10)의 재 작동시 모터(미도시)의 재 기동에 부하로 작용하지 않도록 한다. As described above, the solenoid valve 40 that controls the connection between the compression line 21 and the bridge pipe 30 has a refrigerant along the direction in which the compression force is used when the compressor 10 is operating normally, that is, along the compression line 21. While opening the valve only in the direction of flow, when the compressor 10 is stopped and restarted, both the compression line 21 and the bridge pipe 30 are opened to open the compression line 21 and the suction line 22. By allowing this to be directly connected, the residual pressure (R) in the compressor (10) and the compression line (21) is distributed and released through the bridge pipe (30) to the suction line (22) side, from which the compressor (10) and the compression line (21) When the residual pressure in the compressor 10 is restarted, the motor (not shown) does not act as a load to restart.
이 경우 압축라인(21)과 흡입라인(22)의 연결을 위한 솔레노이드 밸브(40)의 작동시간은 0.2초가 바람직하나, 본 실시예에서는 0.1∼1.0초의 범위 내에서 필요에 따라 다양한 작동시간 선택이 가능하다. In this case, the operating time of the solenoid valve 40 for the connection of the compression line 21 and the suction line 22 is preferably 0.2 seconds, but in this embodiment, various operating time selections can be made as needed within the range of 0.1 to 1.0 seconds. It is possible.
이는 솔레노이드 밸브(40)의 개방 시간 동안 압축기(10)의 압축 작용은 해제된 상태로서 개방시간이 너무 길면 압축기의 정지시간이 길어지고 너무 짧으면 잔압이 그대로 남아 압축기 재 작동시 부하로 작용하므로 압축기의 용량이나 배관의 직경, 또는 모터의 성능과 같은 압축기의 제원에 따라 달라질 수 있다. 따라서, 솔레노이드 밸브(40)의 개방시간은 0.2초에 국한되지 않고 압축기(10)의 제원에 따라 최대 1초 이내에서 이루어지도록 구성하는 것이 효율적이다. 그러나, 최적의 개방 시간은 압축기를 작동하면서 전류계에 순간적으로 나타나는 돌입 전류값 중 최저 전류값을 구현하는 순간으로 하는 것이 가장 유리하다. This is a state in which the compression action of the compressor 10 is released during the opening time of the solenoid valve 40. If the opening time is too long, the stop time of the compressor becomes longer, and if it is too short, the residual pressure remains and acts as a load when the compressor is restarted. It may vary depending on the specifications of the compressor, such as capacity, pipe diameter, or motor performance. Therefore, the opening time of the solenoid valve 40 is not limited to 0.2 seconds, and it is efficient to configure the compressor 10 to be performed within a maximum of 1 second according to specifications. However, it is most advantageous to set the optimal opening time as the moment when the lowest current value is realized among the inrush current values instantaneously displayed in the ammeter while the compressor is operating.
이런 작용 중 시간 단속을 수행하는 부품으로 타이머(2)가 구비될 수 있으며(도 4 참조), 타이머는 전원(1)으로부터 전력이 인가될 때 설정된 시간동안 전원(1)과 솔레노이드 밸브(40)를 연결하여 솔레노이드 밸브(40)가 브릿지 배관(30)을 개방시키도록 한다. 이때, 압축기(10)와 압축라인(21) 내 잔류압력(R)은 브릿지 배관(30)과 흡입라인(22)으로 분산되어 해제되고, 그로부터 압축기(10)와 압축라인(21) 내 잔압(R)이 더 이상 압축기(10)의 재 작동시 전동모터의 재 기동에 부하로 작용하지 않게 된다. During this operation, a timer 2 may be provided as a part that performs a time interruption (see FIG. 4), and the timer is a power source 1 and a solenoid valve 40 for a set time when power is applied from the power source 1. To connect the solenoid valve 40 to open the bridge pipe 30. At this time, the residual pressure (R) in the compressor (10) and the compression line (21) is distributed and released to the bridge pipe (30) and the suction line (22), from which the residual pressure in the compressor (10) and the compression line (21) ( R) no longer acts as a load on the restart of the electric motor when the compressor 10 is restarted.
이와 같이 솔레노이드 밸브(40)가 고압측인 압축라인(21)과 저압측인 흡입라인(22)을 설정시간 동안 연결하여 부하가 해제된 모터는 홀가분한 상태에서 정상적인 회전력을 취득할 수 있게 되고, 타이머(2)의 설정 시간, 예를들어 0.2초 후에는 솔레노이드 밸브(40)로 공급되던 전력이 차단되면서 저압측인 흡입라인과 고압측인 압축라인 간에 연결이 차단되어 압축기의 압축 작용이 정상적으로 작동하게 된다. Thus, the solenoid valve 40 connects the compression line 21 on the high pressure side and the suction line 22 on the low pressure side for a set time, so that the motor whose load has been released can acquire normal rotational force in a state where the hole is separated, and a timer After the set time of (2), for example, 0.2 seconds, the power supplied to the solenoid valve 40 is cut off, and the connection between the suction line on the low pressure side and the compression line on the high pressure side is blocked, so that the compression action of the compressor works normally. do.
이상 본 발명의 다양한 실시예들에 대하여 설명하였으나, 지금까지 설명한 내용들은 본 발명의 바람직한 실시예들 중 그 일부를 예시한 정도에 불과하며, 아래에 첨부된 청구범위에 나타날 수 있는 것을 제외하고는 상술한 내용에 의해 제한되지 않는다. 따라서, 본 발명은 이와 동일한 기술분야에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 범위 내에서 발명의 기술적 사상과 요지를 벗어나지 않으면서 균등물의 많은 변화, 수정 및 대체가 이루어질 수 있음을 이해하여야 할 것이다. Various embodiments of the present invention have been described above, but the contents described so far are merely illustrative of some of the preferred embodiments of the present invention, except that they may appear in the appended claims. It is not limited by the above. Accordingly, the present invention understands that those skilled in the same technical field can make many changes, modifications and substitutions of equivalents without departing from the technical spirit and gist of the invention within the scope set forth in the claims below. Will have to.

Claims (7)

  1. 냉매 압축기를 포함하는 전동 유·공압 압축장치의 소비전력 절감 구조로서, 압축기의 압축라인과 흡입라인 사이에 전류 인가에 의해 개폐가 가능한 솔레노이드 밸브를 구비한 브릿지 배관을 설치하고, 상기 브릿지 배관은 상기 압축기의 흡입라인과 압축라인을 연결하며, 상기 솔레노이드 밸브는 상기 압축라인과 상기 브릿지 배관 사이의 연결을 개폐하도록 상기 압축라인과 브릿지 배관이 만나는 지점에 설치되는 것을 특징으로 하는 전동 유·공압 압축장치의 소비전력 절감 구조.A structure for reducing power consumption of an electric / pneumatic compression device including a refrigerant compressor, a bridge pipe having a solenoid valve that can be opened and closed by applying current between a compression line and a suction line of the compressor, and the bridge pipe is An electric hydraulic / pneumatic compression device that connects the suction line and the compression line of the compressor, and the solenoid valve is installed at a point where the compression line and the bridge pipe meet to open and close the connection between the compression line and the bridge pipe. Structure to reduce power consumption.
  2. 제 1항에 있어서,According to claim 1,
    상기 브릿지 배관은 상기 압축기에 근접하여 설치되는 것을 특징으로 하는 전동 유·공압 압축장치의 소비전력 절감 구조.The bridge piping is a power-saving structure of the electro-pneumatic compression device, characterized in that installed in close proximity to the compressor.
  3. 제 1항에 있어서,According to claim 1,
    상기 솔레노이드 밸브는 상기 압축기의 압축라인과 상기 브릿지 배관 사이의 연결을 개폐하는 삼방밸브인 것을 특징으로 하는 전동 유·공압 압축장치의 소비전력 절감 구조.The solenoid valve is a three-way valve that opens and closes the connection between the compression line of the compressor and the bridge pipe.
  4. 제 1항에 있어서,According to claim 1,
    상기 압축기와 상기 압축라인 내 잔류압력을 분산 및 해제시키기 위해 상기 압축라인과 상기 흡입라인을 연결하는 상기 솔레노이드 밸브의 개방시간은 0.1∼1.0초 범위에서 선택되는 것을 특징으로 하는 전동 유·공압 압축장치의 소비전력 절감 구조.An electro-pneumatic / pneumatic compression device characterized in that the opening time of the solenoid valve connecting the compression line and the suction line is selected from 0.1 to 1.0 seconds in order to disperse and release the residual pressure in the compressor and the compression line. Structure to reduce power consumption.
  5. 제 4항에 있어서,The method of claim 4,
    상기 솔레노이드 밸브의 작동시간을 단속하기 위한 타이머를 더 구비하고, 상기 타이머는 전원으로부터 전력이 인가될 때 설정된 시간동안 상기 전원과 솔레노이드 밸브를 연결하여 상기 솔레노이드 밸브가 상기 압축라인과 상기 브릿지 배관을 개방시키도록 하는 것을 특징으로 하는 전동 유·공압 압축장치의 소비전력 절감 구조.The timer further includes a timer for controlling the operation time of the solenoid valve, and the timer connects the power supply and the solenoid valve for a set time when power is applied from the power supply, so that the solenoid valve opens the compression line and the bridge pipe. Power consumption reduction structure of the electro-pneumatic compression device, characterized in that to make.
  6. 제1항 내지 제5항 중 어느 한 항에 따른 전동 유·공압 압축장치의 소비전력 절감 구조로부터 상기 솔레노이드 밸브가 상기 압축라인과 상기 브릿지 배관을 개방하여 상기 압축기의 흡입라인과 압축라인을 연결시킴으로써, 상기 압축기와 직결된 전동모터의 초기 기동시 상기 압축기와 상기 압축라인 내 잔류압력을 분산 및 해제시켜 상기 압축기의 재 작동시 상기 전동모터의 재 기동에 부하로 작용하지 않도록 한 것을 특징으로 하는 전동 유·공압 압축장치의 소비전력 절감 방법. The solenoid valve opens the compression line and the bridge pipe and connects the suction line and the compression line of the compressor from the structure for reducing the power consumption of the electric / pneumatic compression device according to any one of claims 1 to 5. When the electric motor directly connected to the compressor is started, the residual pressure in the compressor and the compression line is distributed and released, so that when the compressor is restarted, it does not act as a load to restart the electric motor. How to reduce power consumption of hydraulic and pneumatic compression devices.
  7. 제 6항에 있어서, The method of claim 6,
    상기 솔레노이드 밸브의 개방시간은 압축기가 작동하면서 전류계에 순간적으로 나타나는 돌입 전류값 중 최저 전류값이 구현되는 순간으로 하는 것을 특징으로 하는 전동 유·공압 압축장치의 소비전력 절감 방법. The opening time of the solenoid valve is a method of reducing the power consumption of the electro-pneumatic and pneumatic compression device, characterized in that the moment when the lowest current value of the inrush current value instantaneously appears in the ammeter while the compressor is operating.
PCT/KR2019/002375 2018-11-22 2019-02-27 Structure and method for reducing power consumed by electrically driven hydraulic/pneumatic compression device WO2020105807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180145387 2018-11-22
KR10-2018-0145387 2018-11-22

Publications (1)

Publication Number Publication Date
WO2020105807A1 true WO2020105807A1 (en) 2020-05-28

Family

ID=70774555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002375 WO2020105807A1 (en) 2018-11-22 2019-02-27 Structure and method for reducing power consumed by electrically driven hydraulic/pneumatic compression device

Country Status (1)

Country Link
WO (1) WO2020105807A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930006405A (en) * 1991-09-23 1993-04-21 스티븐 이.리바이스 Air Conditioning System with Bypass Structure to Prevent Reverse Rotation in Compressor
KR20030048885A (en) * 2001-12-13 2003-06-25 엘지전자 주식회사 The structure for preventing the reverse - rotation of centrifugal compressor
KR20050071937A (en) * 2004-01-05 2005-07-08 엘지전자 주식회사 The method for control to pressure equilibrium of air-conditioner
JP2007205681A (en) * 2006-02-03 2007-08-16 Toshiba Corp Refrigerator
KR20130021474A (en) * 2008-10-08 2013-03-05 토호쿠 덴료쿠 가부시키가이샤 Gas turbine and operating method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930006405A (en) * 1991-09-23 1993-04-21 스티븐 이.리바이스 Air Conditioning System with Bypass Structure to Prevent Reverse Rotation in Compressor
KR20030048885A (en) * 2001-12-13 2003-06-25 엘지전자 주식회사 The structure for preventing the reverse - rotation of centrifugal compressor
KR20050071937A (en) * 2004-01-05 2005-07-08 엘지전자 주식회사 The method for control to pressure equilibrium of air-conditioner
JP2007205681A (en) * 2006-02-03 2007-08-16 Toshiba Corp Refrigerator
KR20130021474A (en) * 2008-10-08 2013-03-05 토호쿠 덴료쿠 가부시키가이샤 Gas turbine and operating method therefor

Similar Documents

Publication Publication Date Title
KR101397964B1 (en) Control and protection system for a variable capacity compressor
EP2051024B1 (en) Refrigerating apparatus
CN101191686B (en) Air conditioner for implementing high and low pressure side pressure balancing
JP5289086B2 (en) Refrigeration cycle equipment
US9644870B2 (en) Engine driven heat pump
WO2015050297A1 (en) Cooling system
US20150184913A1 (en) Engine driven heat pump
WO2020105807A1 (en) Structure and method for reducing power consumed by electrically driven hydraulic/pneumatic compression device
JP3920440B2 (en) Compressor control system for air conditioner
JP3868265B2 (en) Air conditioner
US6171064B1 (en) Reverse rotation detection for scroll compressor utilizing suction temperature
JP2007327697A (en) Refrigerating device
KR100946799B1 (en) A cooling device and the control method
US20070137233A1 (en) Air conditioner
WO2017208429A1 (en) Air compressor operation method
AU2015282159B2 (en) Heat pump type chiller
JP2002162126A (en) Air conditioner
EP3211351A1 (en) High pressure compressor and refrigerating machine having the same
JPS61246537A (en) Air conditioner
CN111256386A (en) Compressor and refrigerating system
JP2003034132A (en) Air conditioning system for electric car
JP2008136329A (en) Refrigeration system
JP2005300056A (en) Refrigeration cycle system
RU55048U1 (en) ELECTRIC DRIVE OF VOLUME EXTRACTION MACHINES
JPS6129657A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887059

Country of ref document: EP

Kind code of ref document: A1