WO2020105516A1 - Vehicular lamp - Google Patents

Vehicular lamp

Info

Publication number
WO2020105516A1
WO2020105516A1 PCT/JP2019/044424 JP2019044424W WO2020105516A1 WO 2020105516 A1 WO2020105516 A1 WO 2020105516A1 JP 2019044424 W JP2019044424 W JP 2019044424W WO 2020105516 A1 WO2020105516 A1 WO 2020105516A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
distribution pattern
lamp
light distribution
light emitting
Prior art date
Application number
PCT/JP2019/044424
Other languages
French (fr)
Japanese (ja)
Inventor
達川 正士
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2020105516A1 publication Critical patent/WO2020105516A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/64Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to a vehicle lamp including a spatial light modulator.
  • Patent Document 1 As a configuration of a vehicular lamp, for example, as described in “Patent Document 1”, by irradiating light from a light source toward the front of the lamp via a spatial light modulator and a projection lens, are known to be configured to form a light distribution pattern.
  • the spatial light modulator is provided with a light control area in which a plurality of light control elements are arranged, and by this, the spatial distribution of the light incident on the projection lens can be controlled.
  • the light irradiation range can be expanded by adjusting the position of the lamp in the front-rear direction when the spatial light modulator is arranged.
  • the accuracy of light control by the spatial light modulator is reduced, and the brightness of the light distribution pattern is also reduced.
  • the present disclosure has been made in view of the above circumstances, and in a vehicle lamp including a spatial light modulator, the accuracy of light control by the spatial light modulator and a light distribution pattern formed by the light control. It is an object of the present invention to provide a vehicular lamp capable of expanding the light irradiation range while maintaining the brightness of.
  • the present disclosure aims to achieve the above-mentioned object by adopting a configuration in which a predetermined light emitting element is additionally arranged.
  • the vehicle lamp according to the present disclosure, A light source, A spatial light modulator for controlling light from the light source, In a vehicular lamp including a projection lens that irradiates the light from the spatial light modulator toward the front of the lamp, The spatial light modulator, A plurality of light control elements constituting a light control region, At least one light emitting device is provided around the light control region.
  • the specific configuration of the “spatial light modulator” is not particularly limited as long as it has a light control region in which a plurality of light control elements are arranged.
  • a device using a light transmissive liquid crystal shutter, a reflective liquid crystal, or a digital micromirror (DMD) can be adopted.
  • the specific arrangement of the “at least one light emitting element” is not particularly limited as long as it is arranged around the light control area of the spatial light modulator.
  • various spatial light distribution patterns can be accurately formed by controlling the spatial distribution of the light incident on the projection lens by the spatial light modulator.
  • At least one light emitting element is arranged around the light control area of the spatial light modulator, the following operational effects can be obtained.
  • a second light distribution pattern formed as an inverted projection image of the light emitting element is generated with respect to the first light distribution pattern formed by the light control of the spatial light modulator. It can be additionally formed.
  • the lamp light distribution pattern formed by the irradiation light from the entire lamp is changed to It is possible to form a light distribution pattern having a large diffusion angle without being restricted by the size of the light control region of the spatial light modulator.
  • the vehicular lamp including the spatial light modulator while maintaining the accuracy of the light control by the spatial light modulator and the brightness of the first light distribution pattern formed by the light control,
  • the light irradiation range as the light distribution pattern of the lamp can be expanded.
  • the light emitting surface of the at least one light emitting element may face the projection lens.
  • the spatial light modulator may include a plurality of light emitting elements, and the plurality of light emitting elements may be arranged on both sides of the light control region in the left-right direction of the lamp.
  • the light distribution pattern of the lamp can be formed as a light distribution pattern in which the second light distribution pattern is arranged on both left and right sides of the first light distribution pattern, and the visibility of the vehicle front traveling path can be improved.
  • the at least one light emitting element may be arranged so as to be located in front of the lamp with respect to the light control region of the spatial light modulator.
  • the light control region of the spatial light modulator is the projection lens. It is preferable that the lens is arranged so as to be located in the vicinity of the rear focal point.
  • the focus compares the reverse projection image of the light emitting element by the projection lens. It can be formed as a largely blurred image.
  • the second light distribution pattern may partially overlap with the first light distribution pattern. It can be formed in an overlapping state. Accordingly, the light distribution pattern of the lamp can be formed as a continuous light distribution pattern with no discomfort.
  • the spatial light modulator includes the plurality of light emitting elements and the plurality of light emitting elements are arranged in upper and lower two stages in the vertical direction of the lamp, a second light distribution pattern is obtained. It can be formed as a light distribution pattern having a large vertical width.
  • the second light distribution pattern when forming the low beam pattern, can be formed as a part of the low beam pattern by additionally lighting only the light emitting elements located in the upper stage.
  • the second light distribution pattern when forming the high beam pattern, can be formed as a part of the high beam pattern by additionally lighting only the light emitting elements located in the lower stage or the upper and lower light emitting elements. ..
  • FIG. II-II line sectional view of FIG. III-III sectional view of FIG. Detailed drawing of the main part of FIG. It is a figure which shows the light distribution pattern formed by the irradiation light from the said vehicle lamp perspectively, and is a figure which shows the additional light distribution pattern in a high beam light distribution pattern. It is a figure which shows the light distribution pattern formed by the irradiation light from the vehicle lamp transparently, and is a figure which shows the additional light distribution pattern in an intermediate light distribution pattern. The figure which shows the vehicle lamp which shows the modification of the said one Embodiment.
  • FIG. 1 is a front view showing a vehicle lamp 10 according to an embodiment of the present disclosure.
  • 2 is a sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the direction indicated by X is “front” as the lamp (also “front” for the vehicle), and the direction indicated by Y is “left” orthogonal to the “front” (also “left direction for the vehicle”). However, when viewed from the front of the lamp, it is “rightward”), and the direction indicated by Z is “upward”. The same applies to the other figures.
  • a vehicle lamp 10 is a headlamp provided at a front end portion of a vehicle and is incorporated in a lamp chamber formed by a lamp body (not shown) and a translucent cover. It is configured as a projector-type lamp unit.
  • the vehicle lamp 10 includes a spatial light modulator sub-assembly 20, a light source side sub-assembly 60, and a lens-side sub-assembly 70.
  • the vehicle lamp 10 is supported by the lamp body via a mounting structure (not shown) in a bracket 40 that is a component of the spatial light modulator sub-assembly 20.
  • the light source side sub-assembly 60 includes a light source 62, a reflector 64 that reflects light emitted from the light source 62 toward the spatial light modulator sub-assembly 20, and a base member 66 that supports these.
  • the spatial light modulator sub-assembly 20 includes a spatial light modulator 22, a support substrate 30 arranged on the lamp rear side of the spatial light modulator 22, and a bracket 40 arranged on the lamp front side of the support substrate 30. , And a heat sink 50 arranged on the rear side of the lamp with respect to the spatial light modulator 22.
  • the lens side sub-assembly 70 includes a projection lens 72 having an optical axis Ax extending in the vehicle front-rear direction, and a lens holder 74 supporting the projection lens 72.
  • the vehicular lamp 10 irradiates the light from the light source 62 reflected by the reflector 64 toward the front of the lamp via the spatial light modulator 22 and the projection lens 72, thereby obtaining a required light distribution pattern. Is formed with high precision.
  • the positional relationship between the spatial light modulator 22 and the projection lens 72 is finely adjusted while the light source 62 is turned on to form the light distribution pattern, and the positional relationship accuracy is improved.
  • the light source 62 is a white light emitting diode, and is fixedly supported by the base member 66 with its light emitting surface 42a directed obliquely upward and forward.
  • the base member 66 is fixedly supported by the bracket 40 of the spatial light modulator sub-assembly 20.
  • the reflector 64 is arranged so as to cover the light source 62 from the front side of the lamp, and is fixedly supported by the base member 66 at its peripheral portion.
  • the reflector 64 reflects the light emitted from the light source 62 obliquely upward and rearward.
  • the reflecting surface 64a of the reflector 64 is formed so as to converge the light emitted from the light source 62 in the vicinity of the rear focal plane including the rear focal point F of the projection lens 72.
  • FIG. 4 is a detailed view of the main parts of FIG.
  • the spatial light modulator 22 is a reflection type spatial light modulator, and a plurality of (for example, several hundreds of thousands) micromirrors 22s (see FIG. 1) are matrixed as light control elements. It is composed of a digital micromirror device (DMD) having a light control region 22a arranged in a line.
  • DMD digital micromirror device
  • the spatial light modulator 22 selects the reflection direction of the light from the light source 62 that has reached the light control area 22a by controlling the angle of the reflection surface of each of the plurality of micromirrors 22s forming the light control area 22a. Switch. Specifically, a mode in which the light from the light source 62 is reflected toward the projection lens 72 and a mode in which the light is reflected in other directions (that is, directions that do not adversely affect the formation of the light distribution pattern) are selected. It has become so.
  • the front surface of the light control area 22a is arranged so as to extend along the vertical plane orthogonal to the optical axis Ax at the position of the rear focal point F of the projection lens 72, and the light control area 22a is arranged.
  • 22a has a laterally long rectangular outer shape centered on the optical axis Ax.
  • the peripheral edge portion 22b surrounding the light control area 22a is formed such that its front surface is stepped down toward the lamp rear side with respect to the front surface of the light control area 22a, and the socket 24 is formed on the rear surface thereof. It is supported by the support substrate 30 via.
  • the socket 24 is a horizontally long rectangular frame member that extends along the peripheral edge portion 22b of the spatial light modulator 22, and supports the conductive pattern (not shown) formed on the support substrate 30 in a state of being electrically connected thereto. It is fixed to the substrate 30.
  • the support substrate 30 is formed with an opening 30a having substantially the same shape as the inner peripheral edge of the socket 24.
  • a plurality of terminal pins 22c projecting from the rear surface of the spatial light modulator 22 toward the rear of the lamp are formed on the peripheral edge 22b.
  • the socket 24 is formed with a plurality of terminal pins 24a projecting rearward from the rear surface of the lamp at positions corresponding to the plurality of terminal pins 22c.
  • Each terminal pin 24a of the socket 24 has a base end portion (that is, a tip end portion embedded in the socket 24) formed in a substantially cylindrical shape.
  • the spatial light modulator 22 and the socket 24 are electrically connected by fitting the tip ends of the terminal pins 22c of the spatial light modulator 22 into the base ends of the terminal pins 24a.
  • Each terminal pin 24a of the socket 24 is soldered to the conductive pattern of the support substrate 30 at its tip (that is, rear end). Therefore, the socket 24 is arranged with its rear surface slightly floating from the front surface of the support substrate 30.
  • the spatial light modulator 22 is supported by the bracket 40 and the heat sink 50 from both sides in the lamp front-rear direction.
  • the bracket 40 is a member made of metal (for example, aluminum die cast), and extends along a vertical plane 40A extending along a vertical plane orthogonal to the optical axis Ax, and along a horizontal plane from the lower end edge of the vertical plane 40A toward the front of the lamp. And a horizontal plane portion 40B extending in the horizontal direction.
  • a horizontally long rectangular opening 40Aa is formed around the optical axis Ax.
  • the opening 40Aa is smaller than the outer peripheral edge shape of the spatial light modulator 22, but slightly larger than the light control region 22a.
  • the front surface of the vertical surface portion 40A is located on the front side of the lamp with respect to the front surface of the light control area 22a (that is, on the front side of the lamp with respect to the rear focal point F of the projection lens 72). Specifically, the front surface of the vertical surface portion 40A is located on the front side of the lamp about 3 to 5 mm with respect to the front surface of the light control region 22a.
  • Four light emitting elements 42 are mounted on the left and right sides of the opening 40Aa on the front surface of the vertical surface 40A.
  • Each light emitting element 42 is a white light emitting diode, and has a light emitting surface 42a having a rectangular (for example, 1 ⁇ 1 mm square) outer shape.
  • the four light emitting elements 42 are arranged in the horizontal direction at regular intervals (for example, about 1 mm).
  • the light emitting surface 42a is arranged toward the projection lens 72 in a state where the center position of the light emitting surface 42a is located slightly below the horizontal plane including the optical axis Ax.
  • the light emitting element 42 located on the optical axis Ax side is arranged at a position close to the opening 40Aa (for example, a position about 0.5 mm away from the side end surface of the opening 40Aa). ..
  • the horizontal plane portion 40B of the bracket 40 is formed so as to extend to the front side of the lamp with respect to the reflector 64.
  • a horizontal oblong opening 40Ba for inserting the reflector 64 is formed in the horizontal plane 40B.
  • the heat sink 50 is a member made of metal (for example, aluminum die casting), and is arranged so as to extend along a vertical plane orthogonal to the optical axis Ax.
  • the heat radiation fins 50b are formed in vertical stripes.
  • a prismatic protrusion 50a is formed in the center of the front surface of the heat sink 50 so as to project toward the front of the lamp.
  • the protrusion 50 a has a horizontally long rectangular cross-sectional shape centered on the optical axis Ax, and the size of the protrusion 50 a is smaller than the inner peripheral surface of the socket 24.
  • the protrusion 50a is inserted from the opening 30a of the support substrate 30 from the rear side of the lamp with respect to the central portion of the spatial light modulator 22 (that is, the portion where the light control region 22a is located) on the front end face thereof. It comes to abut.
  • the heat sink 50 is fixed to the vertical surface portion 40A of the bracket 40 by two pairs of left and right stepped bolts 52 with the front end surface of the protrusion 50a abutting on the central portion of the spatial light modulator 22. This fixing is performed in a state where the protrusion 50a elastically presses the spatial light modulator 22 toward the front of the lamp.
  • the specific configuration of pressing by the protrusion 50a is as follows.
  • Two pairs of left and right stepped bolts 52 are located at two upper and lower positions on both left and right sides of the spatial light modulator 22.
  • Each stepped bolt 52 has a head portion 52a, a large diameter portion 52b, and a small diameter portion 52c at the tip (see FIG. 1).
  • the large-diameter portion 52b arranged so as to pass through the bolt insertion holes (not shown) formed in the heat sink 50 and the support substrate 30 from the rear side of the lamp, the small-diameter portion 52c is screwed onto the vertical surface portion 40A of the bracket 40. It is worn.
  • screw holes 40Ab (see FIG. 1) for screwing the small diameter portions 52c of the stepped bolts 52 are formed at four locations corresponding to the four stepped bolts 52. ..
  • a spring 54 for elastically pressing the projection 50a of the heat sink 50 toward the front side of the lamp is attached to the large diameter portion 52b of each stepped bolt 52.
  • Each spring 54 is a compression coil spring arranged between the head 52 a of each stepped bolt 52 and the heat sink 50.
  • the heat sink 50 is elastically pressed toward the front side of the lamp at the two upper and lower positions on the left and right sides of the spatial light modulator 22, so that the spatial light modulator 22 is not subjected to an unreasonable load.
  • the central portion of the modulator 22 is elastically pressed toward the front side of the lamp.
  • the plurality of terminal pins 22c formed in the peripheral edge portion 22b of the spatial light modulator 22 are formed in the plurality of fitting holes formed in the socket 24 (that is, the terminal pins 24a have a substantially cylindrical shape). The state where it is properly fitted to the base end portion (that is, the state where the electrical connection between the spatial light modulator 22 and the socket 24 is surely made) is maintained.
  • a pair of left and right shafts 56 extending in the front-rear direction of the lamp are arranged around the spatial light modulator 22 while being fixed to the heat sink 50 at the rear end thereof.
  • each shaft 56 is formed integrally with the heat sink 50, and is formed so as to extend toward the front of the lamp in a columnar shape on both left and right sides of the protrusion 50 a of the heat sink 50.
  • a pair of left and right shaft insertion holes 30b for inserting the pair of left and right shafts 56 is formed in the support substrate 30.
  • Each shaft insertion hole 30b is formed as a cylindrical opening having a diameter somewhat larger than that of each shaft 56.
  • the vertical surface portion 40A of the bracket 40 is formed with a pair of left and right shaft positioning holes 40Ac for positioning the tip portions of the pair of left and right shafts 56 in a direction orthogonal to the longitudinal direction of the lamp.
  • Each shaft positioning hole 40Ac is slightly larger than each shaft 56.
  • Each shaft positioning hole 40Ac is formed by a sleeve 40Ad formed on the rear surface of the vertical surface portion 40A so as to extend toward the rear of the lamp longer than the plate thickness of the vertical surface portion 40A, and extends over a certain length with each shaft 56. Engage slidably. As a result, the present embodiment prevents the vertical surface portion 40A of the bracket 40 from being inclined with respect to the vertical surface orthogonal to the optical axis Ax.
  • the projection lens 72 is composed of first and second lenses 72A and 72B that are arranged on the optical axis Ax in the front-rear direction of the lamp at a required interval.
  • the first lens 72A located on the front side of the lamp is a biconvex lens
  • the second lens 72B located on the rear side of the lamp is a concave meniscus lens bulging toward the rear of the lamp.
  • the upper end of each of the first and second lenses 72A and 72B is slightly cut off along the horizontal plane, and the lower part of the first lens and the second lens 72B is cut off largely along the horizontal plane as compared with the upper end.
  • the first and second lenses 72A and 72B are supported by a common lens holder 74 at their outer peripheral edge portions.
  • the lens holder 74 is a member made of metal (for example, aluminum die casting), and is supported by the horizontal surface portion 40B of the bracket 40.
  • 5A and 5B are perspective views showing a light distribution pattern formed on a virtual vertical screen arranged at a position 25 m in front of the vehicle by the light emitted from the vehicle lamp 10 toward the front.
  • .. 5A is a diagram showing an additional light distribution pattern PA in the high beam light distribution pattern PH1
  • FIG. 5B is a diagram showing an additional light distribution pattern PAm in the intermediate light distribution pattern PM1.
  • the high-beam light distribution pattern PH1 shown in FIG. 5A is an additional light distribution pattern formed by the irradiation light from the vehicle lamp 10 with respect to the low-beam light distribution pattern PL1 formed by the irradiation light from another lamp unit (not shown). It is a light distribution pattern to which a light pattern PA is added.
  • the low-beam light distribution pattern PL1 is a left-beam low-beam light distribution pattern, and has cut-off lines CL1 and CL2 at the upper edge of the left and right steps.
  • the cut-off lines CL1 and CL2 extend horizontally in a staggered manner with a VV line passing in the vertical direction passing through HV which is a vanishing point in the front direction of the lamp.
  • the lower cut-off line CL1 is formed on the opposite lane side on the right side of the VV line, and the lower cut-off line CL1 rises up from the lower cut-off line CL1 on the lane side on the left side of the VV line.
  • the upper cut-off line CL2 has been formed.
  • the elbow point E which is the intersection of the lower cut-off line CL1 and the VV line, is located about 0.5-0.6 ° below HV.
  • the additional light distribution pattern PA is a combined light distribution pattern of the first light distribution pattern P1 and the pair of left and right second light distribution patterns P2L and P2R.
  • the first light distribution pattern P1 is a light distribution pattern formed by the light from the light source 62 that is sequentially reflected by the reflector 64 and the spatial light modulator 22 and transmitted through the projection lens 72. It is formed by reflected light from the entire area of the light control area 22a.
  • the first light distribution pattern P1 is a light distribution pattern having a horizontally long rectangular outer shape centered on HV. Since the first light distribution pattern P1 is formed as an inverted projection image of the light control area 22a, the size of the first light distribution pattern P1 is defined by the outer shape of the light control area 22a.
  • the pair of left and right second light distribution patterns P2L and P2R are emitted from four light emitting elements 42 arranged on the left and right sides of the opening 40Aa in the vertical surface portion 40A of the bracket 40 and directly incident on the projection lens 72. It is a light distribution pattern formed by.
  • Each of the second light distribution patterns P2L and P2R is formed as a horizontally long light distribution pattern obtained by combining the reverse projection images Pi of the four light emitting elements 42.
  • the second light distribution pattern P2L located on the left side is formed by the inverted projection images Pi of the four light emitting elements 42 located on the right side (the left side in the front view of the lamp), and the second light distribution pattern located on the right side.
  • P2R is formed by the inverted projection images Pi of the four light emitting elements 42 located on the left side.
  • each inverted projection image Pi shows HV in the horizontal direction. It is formed so as to straddle the HH line in a state of being displaced slightly upward with respect to the HH line passing through.
  • the four light emitting elements 42 are arranged at intervals in the left-right direction. Since the light emitting surface 42a of the light emitting element 42 is located on the front side of the lamp with respect to the rear focus F of the projection lens 72, the reverse projection image Pi of each light emitting element 42 has a substantially rectangular shape in which the focus is relatively large and blurred.
  • the four reverse projection images Pi which are formed as images and which form each of the second light distribution patterns P2L and P2R, are formed so as to partially overlap each other.
  • the light emitting element 42 located on the optical axis Ax side is arranged in a position close to the opening 40Aa, so that each of the second light distribution patterns P2L and P2R has the VV line side thereof.
  • the reverse projection image Pi located at the end of is formed so as to partially overlap the first light distribution pattern P1.
  • the intermediate light distribution pattern PM1 shown in FIG. 5B is a light distribution pattern formed such that the additional light distribution pattern PAm is partially missing from the additional light distribution pattern PA in the high beam light distribution pattern PH1.
  • the additional light distribution pattern PAm is a light distribution pattern in which a part of the first light distribution pattern P1 is missing from the additional light distribution pattern PA (specifically, a rectangular area including the oncoming vehicle 2). This is a light distribution pattern in which the light traveling to P1a is missing.
  • the additional light distribution pattern PAm is a light distribution pattern formed by performing light control in which a light from the light source 62 is not reflected toward the projection lens 72 in a partial area of the light control area 22a of the spatial light modulator 22. ..
  • the irradiation light from the vehicular lamp 10 is prevented from striking the oncoming vehicle 2, and as a result, the driver of the oncoming vehicle 2 travels as far forward as possible without causing glare. It is designed to illuminate a wide area.
  • the areas where the reflected light is missing in the light control area 22a are sequentially switched to illuminate the front traveling path as wide as possible within a range that does not give glare to the driver of the oncoming vehicle 2. It is designed to maintain the state of being.
  • the presence of the oncoming vehicle 2 is detected by an in-vehicle camera (not shown). Even if there is a preceding vehicle on the road ahead or a pedestrian exists on the shoulder of the road, it is detected and the spatial light modulator 22 is controlled to prevent glare. Is becoming
  • the oncoming vehicle 2 When the position of the oncoming vehicle 2 further approaches the own vehicle, the oncoming vehicle 2 is partially removed from the four reverse projection images Pi forming the second light distribution pattern P2R located on the right side. It is possible to further maintain the state of illuminating the front road as wide as possible within a range that does not give glare to the driver.
  • four light emitting elements 42 are arranged on the left and right sides of the light control area 22a of the spatial light modulator 22 with the light emitting surfaces 42a thereof facing the projection lens 72. The effect can be obtained.
  • the reverse projection image Pi of each light emitting element is combined with the first light distribution pattern P1 (or P1m) formed by the light control of the spatial light modulator 22.
  • the second light distribution patterns P2L and P2R formed as the above described light distribution pattern can be additionally formed.
  • the light is formed by the irradiation light from the entire lamp.
  • the additional light distribution pattern PA (or PAm) as the lamp light distribution pattern can be formed as a light distribution pattern having a large diffusion angle without being restricted by the size of the light control region 22a of the spatial light modulator 22. ..
  • the accuracy of the light control by the spatial light modulator 22 and the first light distribution pattern P1 (formed by the light control).
  • the light irradiation range as the additional light distribution pattern PA (or PAm) can be expanded while maintaining the brightness of P1m).
  • the second light emitting elements 42 are arranged on the left and right sides of the first light distribution pattern P1 (or P1m).
  • the additional light distribution pattern PA (or PAm) can be formed as the light distribution pattern in which the light distribution patterns P2L and P2R are arranged, and thus the visibility of the vehicle front traveling path can be improved.
  • the four light emitting elements 42 which are respectively arranged on the left and right sides of the light control area 22a of the spatial light modulator 22, are located on the front side of the lamp with respect to the light control area 22a of the spatial light modulator 22. Since they are arranged in such a manner, the following operational effects can be obtained.
  • the light modulator 22 is preferably arranged such that its light control region 22a is located on the focal plane including the rear focal point F of the projection lens 72.
  • the projection lens 72 is configured by arranging four light emitting elements 42 on the left and right sides so as to be positioned on the front side of the lamp with respect to the light control area 22a.
  • the reverse projection image Pi of each light emitting element 42 can be formed as an image that is relatively out of focus and blurred.
  • the second light distribution patterns P2L and P2R are set to the first light distribution pattern P2L.
  • the light distribution pattern P1 (or P1m) can be formed so as to partially overlap.
  • the additional light distribution pattern PA (or PAm) can be formed as a continuous light distribution pattern with no discomfort.
  • the four light emitting elements 42 are arranged on the left and right sides of the light control region 22a of the spatial light modulator 22, respectively. It is also possible to arrange five or more or three or less light emitting elements 42, respectively, and it is also possible to arrange these light emitting elements 42 only on the left side or the right side of the light control region 22a.
  • the light emitted from the light source 62 reflected by the reflector 64 is reflected by the spatial light modulator 22. It is also possible to employ a configuration in which the emitted light from the light source 62 whose deflection is controlled by a lens or the like is reflected by the spatial light modulator 22 or a configuration in which the emitted light from the light source 62 is directly reflected by the spatial light modulator 22.
  • FIG. 6 is a front view showing a vehicular lamp 110 according to this modification.
  • the basic configuration of this modification is the same as that of the above-described embodiment, but the configuration of the spatial light modulator subassembly 120 is partially different from that of the above-described embodiment.
  • the spatial light modulator sub-assembly 120 of the present modification is arranged in a state where the spatial light modulator 22 and the socket 24 are displaced upward with respect to the spatial light modulator 22 and the socket 24 of the above-described embodiment, and the bracket The opening 140Aa formed in the vertical surface 140A of 140 is also displaced upward with respect to the opening 40Aa of the above embodiment.
  • four light emitting elements 42 are mounted on the left and right sides of the opening 140Aa on the front surface of the vertical surface 140A in a state in which they are arranged in two vertical steps.
  • the eight light emitting elements 42 located at the lower stage on the left and right sides of the opening 140Aa are arranged such that the center position of the light emitting surface 42a is located below the horizontal plane including the optical axis Ax, and the downward displacement amount is It is slightly larger than that of the above embodiment.
  • the four light emitting elements 42 located on the upper side on the right side of the opening 140Aa are arranged such that the center position of the light emitting surface 42a is located above the horizontal plane including the optical axis Ax. ..
  • the four light emitting elements 42 located on the upper side on the left side of the opening 140Aa are also arranged such that the center position of the light emitting surface 42a is located above the horizontal plane including the optical axis Ax, and the amount of upward displacement thereof. Is slightly larger than the four light emitting elements 42 located on the right side.
  • FIG. 7A and 7B are perspective views showing a light distribution pattern formed on a virtual vertical screen arranged at a position 25 m in front of the vehicle by the light emitted from the vehicle lamp 110 toward the front. ..
  • FIG. 7A is a diagram showing a low beam light distribution pattern PL2
  • FIG. 7B is a diagram showing a high beam light distribution pattern PH2.
  • the low-beam light distribution pattern PL2 shown in FIG. 7A has cut-off lines CL1 and CL2 and elbow points E that extend horizontally in different horizontal steps.
  • the low-beam light distribution pattern PL2 is formed as a combined light distribution pattern of the first light distribution pattern P3L and the pair of left and right second light distribution patterns P4L and P4R.
  • the first light distribution pattern P3L is a light distribution pattern formed by the light from the light source 62 that is sequentially reflected by the reflector 64 and the spatial light modulator 22 and transmitted through the projection lens 72. It is formed by the reflected light from a partial area of the light control area 22a. Specifically, the first light distribution pattern P3L performs light control in which the light from the light source 62 is not reflected toward the projection lens 72 in the lower region of the light control region 22a, so that the upper edge is a cutoff line CL1. It is formed as a light distribution pattern along CL2.
  • the lower edge of the first light distribution pattern P3L is located below the lower edge of the first light distribution pattern P1 (see FIG. 5A) in the above embodiment. This is because the spatial light modulator 22 is displaced upward as compared with the case of the above embodiment. As a result, as the low-beam light distribution pattern PL2, a large number of irradiation regions below the cutoff lines CL1 and CL2 are secured.
  • FIG. 7A the outer shape of the first light distribution pattern P3 formed when the light from the entire area of the light control area 22a is reflected toward the projection lens 72 is shown by a two-dot chain line.
  • the pair of left and right second light distribution patterns P4L and P4R are formed by the direct light from the light emitting elements 42 arranged in four rows above and below the openings 40Aa in the vertical surface portion 40A of the bracket 40. It is a pattern.
  • the respective second light distribution patterns P4L and P4R are similar in shape and horizontal formation position to the second light distribution patterns P2L and P2R in the above embodiment. However, this is different from the case of the above embodiment in that the position of the upper end edge is substantially along the cutoff lines CL1 and CL2.
  • the vertical position adjustment of the upper edge of each second light distribution pattern P4L, P4R can be performed by the vertical position adjustment of each light emitting element 42 located in the upper stage.
  • the high-beam light distribution pattern PH2 shown in FIG. 7B is a combination of the first light distribution pattern P3, the pair of left and right second light distribution patterns P4L, P4R, and the pair of left and right second light distribution patterns P5L, P5R. It is a light distribution pattern.
  • the first light distribution pattern P3 is a light distribution pattern formed by reflected light from the entire area of the light control area 22a.
  • the pair of left and right second light distribution patterns P4L and P4R are the same as the case of the low beam light distribution pattern PL2.
  • the pair of left and right second light distribution patterns P5L and P5R are light distributions formed by direct light from four light emitting elements 42 arranged in the lower tiers on both the left and right sides of the opening 40Aa in the vertical surface portion 40A of the bracket 40. It is a pattern.
  • the respective second light distribution patterns P5L and P5R are formed at the same height position so as to straddle the HH line, but the positions thereof are the respective second light distribution patterns P2L and P2R in the above-described embodiment. It is displaced a little higher than.
  • Each of the second light distribution patterns P5L and P5R partially overlaps with each of the second light distribution patterns P4L and P4R and the first light distribution pattern P3.
  • the low beam pattern PL2 when the low beam pattern PL2 is formed, only the light emitting element 42 located in the upper stage is additionally turned on with respect to the first light distribution pattern P3L formed by the light control of the spatial light modulator 22.
  • the second light distribution patterns P4L and P4R are formed as part of the low beam pattern PL2.
  • the high beam pattern PH2 When the high beam pattern PH2 is formed, the light emitting element 42 located in the lower stage is additionally turned on with respect to the first light distribution pattern P3 formed by the light control of the spatial light modulator 22.
  • Two light distribution patterns P4L, P4R and P5L, P5R are formed as part of the high beam pattern PH2.
  • the low beam pattern PL2 (or the high beam pattern).
  • the light irradiation range as PH2) can be expanded.
  • the four light emitting elements 42 are arranged in the upper and lower two stages on the left and right sides of the light control region 22a of the spatial light modulator 22, respectively. It is also possible to arrange these light emitting elements 42 in three or more stages above and below, respectively.

Abstract

This vehicular lamp (10) comprises: a light source (62); a spatial light modulator (22) that controls light from the light source; and a projection lens (72) that irradiates light from the spatial light modulator to the front of a lamp. The spatial light modulator (22) comprises: a plurality of light control elements (22s) that configure a light control area (22a); and at least one light emitting element (42) placed in the periphery of the light control area (22a). A light emitting surface (42a) of at least one light emitting element (42) faces the projection lens (72).

Description

車両用灯具Vehicle lighting
 本開示は、空間光変調器を備えた車両用灯具に関するものである。 The present disclosure relates to a vehicle lamp including a spatial light modulator.
 従来より、車両用灯具の構成として、例えば「特許文献1」に記載されているように、光源からの光を空間光変調器および投影レンズを介して灯具前方へ向けて照射することにより、所要の配光パターンを形成するように構成されたものが知られている。 Conventionally, as a configuration of a vehicular lamp, for example, as described in “Patent Document 1”, by irradiating light from a light source toward the front of the lamp via a spatial light modulator and a projection lens, Are known to be configured to form a light distribution pattern.
 前記空間光変調器は、複数の光制御素子が配列されてなる光制御領域を備えており、これにより投影レンズに入射する光の空間的な分布を制御し得る構成となっている。 The spatial light modulator is provided with a light control area in which a plurality of light control elements are arranged, and by this, the spatial distribution of the light incident on the projection lens can be controlled.
日本国特開2015-22811号公報Japanese Unexamined Patent Publication No. 2015-22811
 前記「特許文献1」に記載された車両用灯具においては、その空間光変調器による光制御によって種々の配光パターンを精度良く形成することが可能である。しかし配光パターンの最大サイズが空間光変調器の光制御領域のサイズによって規定されてしまうので、大きな拡散角度を有する配光パターンを形成することは困難である。 In the vehicle lamp described in the above-mentioned "Patent Document 1," various light distribution patterns can be accurately formed by light control by the spatial light modulator. However, since the maximum size of the light distribution pattern is defined by the size of the light control region of the spatial light modulator, it is difficult to form a light distribution pattern having a large diffusion angle.
 このような車両用灯具において、空間光変調器が配置される際の灯具前後方向の位置を調整すれば光照射範囲を拡げることが可能となる。しかしこのようにした場合には、空間光変調器による光制御の精度が低下してしまい、また配光パターンの明るさも低下してしまう。 In such a vehicle lamp, the light irradiation range can be expanded by adjusting the position of the lamp in the front-rear direction when the spatial light modulator is arranged. However, in such a case, the accuracy of light control by the spatial light modulator is reduced, and the brightness of the light distribution pattern is also reduced.
 本開示は、このような事情に鑑みてなされたものであって、空間光変調器を備えた車両用灯具において、空間光変調器による光制御の精度およびその光制御によって形成される配光パターンの明るさを維持した上で、光照射範囲を拡げることができる車両用灯具を提供することを目的とするものである。 The present disclosure has been made in view of the above circumstances, and in a vehicle lamp including a spatial light modulator, the accuracy of light control by the spatial light modulator and a light distribution pattern formed by the light control. It is an object of the present invention to provide a vehicular lamp capable of expanding the light irradiation range while maintaining the brightness of.
 本開示は、所定の発光素子が追加配置された構成とすることにより、前記目的達成を図るようにしたものである。 The present disclosure aims to achieve the above-mentioned object by adopting a configuration in which a predetermined light emitting element is additionally arranged.
 すなわち、本開示に係る車両用灯具は、
 光源と、
 前記光源からの光を制御する空間光変調器と、
 前記空間光変調器からの光を灯具前方へ向けて照射する投影レンズと、を備える車両用灯具において、
 前記空間光変調器は、
  光制御領域を構成する複数の光制御素子と、
  前記光制御領域の周囲に配置される、少なくとも1つの発光素子を備える。
That is, the vehicle lamp according to the present disclosure,
A light source,
A spatial light modulator for controlling light from the light source,
In a vehicular lamp including a projection lens that irradiates the light from the spatial light modulator toward the front of the lamp,
The spatial light modulator,
A plurality of light control elements constituting a light control region,
At least one light emitting device is provided around the light control region.
 前記「空間光変調器」は、複数の光制御素子が配列されてなる光制御領域を備えていれば、その具体的な構成は特に限定されるものではない。例えば光透過式の液晶シャッタや反射型液晶あるいはデジタルマイクロミラー(DMD)を用いた機器が採用可能である。 The specific configuration of the “spatial light modulator” is not particularly limited as long as it has a light control region in which a plurality of light control elements are arranged. For example, a device using a light transmissive liquid crystal shutter, a reflective liquid crystal, or a digital micromirror (DMD) can be adopted.
 前記「少なくとも1つの発光素子」は、空間光変調器の光制御領域の周囲に配置されていれば、その具体的な配置は特に限定されるものではない。 The specific arrangement of the “at least one light emitting element” is not particularly limited as long as it is arranged around the light control area of the spatial light modulator.
 本開示に係る車両用灯具においては、空間光変調器によって投影レンズに入射する光の空間的な分布を制御することにより、種々の配光パターンを精度良く形成することができる。 In the vehicular lamp according to the present disclosure, various spatial light distribution patterns can be accurately formed by controlling the spatial distribution of the light incident on the projection lens by the spatial light modulator.
 更に空間光変調器の光制御領域の周囲には、少なくとも1つの発光素子が、配置されているので、次のような作用効果を得ることができる。 Furthermore, since at least one light emitting element is arranged around the light control area of the spatial light modulator, the following operational effects can be obtained.
 少なくとも1つの発光素子を追加点灯させることにより、空間光変調器の光制御によって形成される第1の配光パターンに対して、発光素子の反転投影像として形成される第2の配光パターンを付加的に形成することができる。 By additionally lighting at least one light emitting element, a second light distribution pattern formed as an inverted projection image of the light emitting element is generated with respect to the first light distribution pattern formed by the light control of the spatial light modulator. It can be additionally formed.
 したがって、空間光変調器による光制御の精度およびその光制御によって形成される第1の配光パターンの明るさを維持した上で、灯具全体からの照射光によって形成される灯具配光パターンを、空間光変調器の光制御領域のサイズによる制約を受けることなく、大きな拡散角度を有する配光パターンとして形成することができる。 Therefore, while maintaining the accuracy of the light control by the spatial light modulator and the brightness of the first light distribution pattern formed by the light control, the lamp light distribution pattern formed by the irradiation light from the entire lamp is changed to It is possible to form a light distribution pattern having a large diffusion angle without being restricted by the size of the light control region of the spatial light modulator.
 本開示によれば、空間光変調器を備えた車両用灯具において、空間光変調器による光制御の精度およびその光制御によって形成される第1の配光パターンの明るさを維持した上で、灯具配光パターンとしての光照射範囲を拡げることができる。 According to the present disclosure, in the vehicular lamp including the spatial light modulator, while maintaining the accuracy of the light control by the spatial light modulator and the brightness of the first light distribution pattern formed by the light control, The light irradiation range as the light distribution pattern of the lamp can be expanded.
 前記構成において、前記少なくとも一つの発光素子の発光面は前記投影レンズに向いていてもよい。
 前記空間光変調器は複数の発光素子を備え、前記複数の発光素子は、前記灯具の左右方向において前記光制御領域の両側にそれぞれ配置されていてもよい。第1の配光パターンの左右両側に第2の配光パターンが配置された配光パターンとして灯具配光パターンを形成することができ、車両前方走行路の視認性を高めることができる。
In the above configuration, the light emitting surface of the at least one light emitting element may face the projection lens.
The spatial light modulator may include a plurality of light emitting elements, and the plurality of light emitting elements may be arranged on both sides of the light control region in the left-right direction of the lamp. The light distribution pattern of the lamp can be formed as a light distribution pattern in which the second light distribution pattern is arranged on both left and right sides of the first light distribution pattern, and the visibility of the vehicle front traveling path can be improved.
 前記構成において、前記少なくとも1つの発光素子が、空間光変調器の光制御領域よりも灯具前方に位置するようにして配置されてもよい。 In the above configuration, the at least one light emitting element may be arranged so as to be located in front of the lamp with respect to the light control region of the spatial light modulator.
 すなわち、空間光変調器による光制御の精度を維持するとともにこの光制御によって形成される第1の配光パターンの明るさを維持するためには、空間光変調器としてその光制御領域が投影レンズの後側焦点近傍に位置するように配置されたものとすることが好ましい。 That is, in order to maintain the accuracy of light control by the spatial light modulator and maintain the brightness of the first light distribution pattern formed by this light control, the light control region of the spatial light modulator is the projection lens. It is preferable that the lens is arranged so as to be located in the vicinity of the rear focal point.
 このような空間光変調器に対して、その光制御領域よりも灯具前方に位置するようにして少なくとも1つの発光素子を配置することにより、投影レンズによる発光素子の反転投影像を、ピントが比較的大きくボケた像として形成することができる。 By arranging at least one light emitting element so that it is positioned in front of the light control area of such a spatial light modulator, the focus compares the reverse projection image of the light emitting element by the projection lens. It can be formed as a largely blurred image.
 少なくとも1つの発光素子が空間光変調器の光制御領域の周囲において該光制御領域と密着した状態で配置されていなくても、第2の配光パターンを第1の配光パターンと部分的に重複した状態で形成することができる。これにより、灯具配光パターンを連続的で違和感のない配光パターンとして形成することができる。 Even if at least one light emitting element is not arranged in a state of being in close contact with the light control area around the light control area of the spatial light modulator, the second light distribution pattern may partially overlap with the first light distribution pattern. It can be formed in an overlapping state. Accordingly, the light distribution pattern of the lamp can be formed as a continuous light distribution pattern with no discomfort.
 前記構成において、さらに、前記空間光変調器は前記複数の発光素子を備え、前記複数の発光素子が前記灯具の上下方向において上下2段で配置された構成とすれば、第2配光パターンを上下幅の大きい配光パターンとして形成することができる。 In the above configuration, further, if the spatial light modulator includes the plurality of light emitting elements and the plurality of light emitting elements are arranged in upper and lower two stages in the vertical direction of the lamp, a second light distribution pattern is obtained. It can be formed as a light distribution pattern having a large vertical width.
 このような構成により、灯具配光パターンとしてロービーム用パターンとハイビーム用パターンとを選択的に形成するようにした場合においても前記作用効果を得ることができる。 With such a configuration, the above-described effects can be obtained even when a low beam pattern and a high beam pattern are selectively formed as the light distribution pattern of the lamp.
 すなわち、ロービーム用パターンを形成する際には、上段に位置する発光素子のみを追加点灯させることによって、第2の配光パターンをロービーム用パターンの一部として形成することができる。ハイビーム用パターンを形成する際には、下段に位置する発光素子のみあるいは上段および下段の発光素子を追加点灯させることによって、第2の配光パターンをハイビーム用パターンの一部として形成することができる。 That is, when forming the low beam pattern, the second light distribution pattern can be formed as a part of the low beam pattern by additionally lighting only the light emitting elements located in the upper stage. When forming the high beam pattern, the second light distribution pattern can be formed as a part of the high beam pattern by additionally lighting only the light emitting elements located in the lower stage or the upper and lower light emitting elements. ..
本開示の一実施形態に係る車両用灯具を示す正面図Front view showing a vehicle lamp according to an embodiment of the present disclosure 図1のII-II線断面図II-II line sectional view of FIG. 図1のIII-III線断面図III-III sectional view of FIG. 図2の要部詳細図Detailed drawing of the main part of FIG. 前記車両用灯具からの照射光により形成される配光パターンを透視的に示す図であって、ハイビーム用配光パターンにおける付加配光パターンを示す図It is a figure which shows the light distribution pattern formed by the irradiation light from the said vehicle lamp perspectively, and is a figure which shows the additional light distribution pattern in a high beam light distribution pattern. 車両用灯具からの照射光により形成される配光パターンを透視的に示す図であって、中間的配光パターンにおける付加配光パターンを示す図It is a figure which shows the light distribution pattern formed by the irradiation light from the vehicle lamp transparently, and is a figure which shows the additional light distribution pattern in an intermediate light distribution pattern. 前記一実施形態の変形例を示す、車両用灯具を示す図The figure which shows the vehicle lamp which shows the modification of the said one Embodiment. 前記変形例に係る車両用灯具からの照射光により形成される配光パターンを透視的に示す図であって、ロービーム用配光パターンを示す図It is a figure which shows perspectively the light distribution pattern formed by the irradiation light from the vehicle lamp which concerns on the said modification, Comprising: The figure which shows a light distribution pattern for low beams. 変形例に係る車両用灯具からの照射光により形成される配光パターンを透視的に示す図であって、ハイビーム用配光パターンを示す図It is a figure which shows perspectively the light distribution pattern formed by the irradiation light from the vehicle lamp which concerns on a modification, Comprising: The figure which shows a light distribution pattern for high beams.
 以下、図面を用いて、本開示の実施の形態について説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 図1は、本開示の一実施形態に係る車両用灯具10を示す正面図である。また、図2は、図1のII-II線断面図であり、図3は、図1のIII-III線断面図である。 FIG. 1 is a front view showing a vehicle lamp 10 according to an embodiment of the present disclosure. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. 3 is a sectional view taken along line III-III in FIG.
 これらの図において、Xで示す方向が灯具としての「前方」(車両としても「前方」)であり、Yで示す方向が「前方」と直交する「左方向」(車両としても「左方向」であるが灯具正面視では「右方向」)であり、Zで示す方向が「上方向」である。これら以外の図においても同様である。 In these figures, the direction indicated by X is "front" as the lamp (also "front" for the vehicle), and the direction indicated by Y is "left" orthogonal to the "front" (also "left direction for the vehicle"). However, when viewed from the front of the lamp, it is “rightward”), and the direction indicated by Z is “upward”. The same applies to the other figures.
 これらの図に示すように、本実施形態に係る車両用灯具10は、車両の前端部に設けられるヘッドランプであって、図示しないランプボディと透光カバーとで形成される灯室内に組み込まれたプロジェクタ型の灯具ユニットとして構成されている。 As shown in these drawings, a vehicle lamp 10 according to the present embodiment is a headlamp provided at a front end portion of a vehicle and is incorporated in a lamp chamber formed by a lamp body (not shown) and a translucent cover. It is configured as a projector-type lamp unit.
 車両用灯具10は、空間光変調器サブアッシー20と、光源側サブアッシー60と、レンズ側サブアッシー70とを備える。車両用灯具10は、空間光変調器サブアッシー20の構成要素であるブラケット40において、図示しない取付構造を介して前記ランプボディに支持されるようになっている。 The vehicle lamp 10 includes a spatial light modulator sub-assembly 20, a light source side sub-assembly 60, and a lens-side sub-assembly 70. The vehicle lamp 10 is supported by the lamp body via a mounting structure (not shown) in a bracket 40 that is a component of the spatial light modulator sub-assembly 20.
 図2に示すように、光源側サブアッシー60は、光源62と、光源62からの出射光を空間光変調器サブアッシー20へ向けて反射させるリフレクタ64と、これらを支持するベース部材66とを備える。 As shown in FIG. 2, the light source side sub-assembly 60 includes a light source 62, a reflector 64 that reflects light emitted from the light source 62 toward the spatial light modulator sub-assembly 20, and a base member 66 that supports these. Prepare
 空間光変調器サブアッシー20は、空間光変調器22と、空間光変調器22よりも灯具後方側に配置された支持基板30と、支持基板30よりも灯具前方側に配置されたブラケット40と、空間光変調器22よりも灯具後方側に配置されたヒートシンク50とを備える。 The spatial light modulator sub-assembly 20 includes a spatial light modulator 22, a support substrate 30 arranged on the lamp rear side of the spatial light modulator 22, and a bracket 40 arranged on the lamp front side of the support substrate 30. , And a heat sink 50 arranged on the rear side of the lamp with respect to the spatial light modulator 22.
 レンズ側サブアッシー70は、車両前後方向に延びる光軸Axを有する投影レンズ72と、投影レンズ72を支持するレンズホルダ74とを備える。 The lens side sub-assembly 70 includes a projection lens 72 having an optical axis Ax extending in the vehicle front-rear direction, and a lens holder 74 supporting the projection lens 72.
 本実施形態に係る車両用灯具10は、リフレクタ64で反射した光源62からの光を、空間光変調器22および投影レンズ72を介して灯具前方へ向けて照射することにより、所要の配光パターンを精度良く形成する。 The vehicular lamp 10 according to the present exemplary embodiment irradiates the light from the light source 62 reflected by the reflector 64 toward the front of the lamp via the spatial light modulator 22 and the projection lens 72, thereby obtaining a required light distribution pattern. Is formed with high precision.
 車両用灯具10の組立工程においては、光源62を点灯させて配光パターンを形成した状態で、空間光変調器22と投影レンズ72との位置関係を微調整し、その位置関係精度を高める。 In the process of assembling the vehicle lamp 10, the positional relationship between the spatial light modulator 22 and the projection lens 72 is finely adjusted while the light source 62 is turned on to form the light distribution pattern, and the positional relationship accuracy is improved.
 次に、空間光変調器サブアッシー20、光源側サブアッシー60およびレンズ側サブアッシー70の各々の具体的な構成について説明する。 Next, a specific configuration of each of the spatial light modulator sub-assembly 20, the light source side sub-assembly 60, and the lens side sub-assembly 70 will be described.
 まず、空間光変調器サブアッシー20の構成について説明する前に、光源側サブアッシー60の構成について説明する。 First, before describing the configuration of the spatial light modulator sub-assembly 20, the configuration of the light source side sub-assembly 60 will be described.
 光源62は、白色発光ダイオードであって、その発光面42aを斜め上前方へ向けた状態でベース部材66に固定支持されている。ベース部材66は、空間光変調器サブアッシー20のブラケット40に固定支持されている。 The light source 62 is a white light emitting diode, and is fixedly supported by the base member 66 with its light emitting surface 42a directed obliquely upward and forward. The base member 66 is fixedly supported by the bracket 40 of the spatial light modulator sub-assembly 20.
 リフレクタ64は、光源62を灯具前方側から覆うようにして配置されており、その周縁部においてベース部材66に固定支持されている。リフレクタ64は、光源62からの出射光を斜め上後方へ向けて反射させる。リフレクタ64の反射面64aは、光源62からの出射光を、投影レンズ72の後側焦点Fを含む後側焦点面の近傍に収束させるように形成されている。 The reflector 64 is arranged so as to cover the light source 62 from the front side of the lamp, and is fixedly supported by the base member 66 at its peripheral portion. The reflector 64 reflects the light emitted from the light source 62 obliquely upward and rearward. The reflecting surface 64a of the reflector 64 is formed so as to converge the light emitted from the light source 62 in the vicinity of the rear focal plane including the rear focal point F of the projection lens 72.
 次に、空間光変調器サブアッシー20の構成について説明する。 Next, the configuration of the spatial light modulator sub-assembly 20 will be described.
 図4は、図2の要部詳細図である。 FIG. 4 is a detailed view of the main parts of FIG.
 同図にも示すように、空間光変調器22は、反射型の空間光変調器であって、複数の(例えば数十万個の)微小ミラー22s(図1参照)が光制御素子としてマトリクス状に配置されてなる光制御領域22aを備えたデジタルマイクロミラーディバイス(DMD)で構成されている。 As shown in the figure, the spatial light modulator 22 is a reflection type spatial light modulator, and a plurality of (for example, several hundreds of thousands) micromirrors 22s (see FIG. 1) are matrixed as light control elements. It is composed of a digital micromirror device (DMD) having a light control region 22a arranged in a line.
 空間光変調器22は、光制御領域22aを構成する複数の微小ミラー22sの各々の反射面の角度を制御することによって、該光制御領域22aに到達した光源62からの光の反射方向を選択的に切り換える。具体的には、光源62からの光を投影レンズ72へ向けて反射させるモードと、それ以外の方向(すなわち配光パターンの形成に悪影響を及ぼさない方向)へ向けて反射させるモードとが選択されるようになっている。 The spatial light modulator 22 selects the reflection direction of the light from the light source 62 that has reached the light control area 22a by controlling the angle of the reflection surface of each of the plurality of micromirrors 22s forming the light control area 22a. Switch. Specifically, a mode in which the light from the light source 62 is reflected toward the projection lens 72 and a mode in which the light is reflected in other directions (that is, directions that do not adversely affect the formation of the light distribution pattern) are selected. It has become so.
 空間光変調器22では、光制御領域22aの前面が投影レンズ72の後側焦点Fの位置において光軸Axと直交する鉛直面に沿って延びるようにした状態で配置されており、光制御領域22aは光軸Axを中心とする横長矩形状の外形形状を有している。 In the spatial light modulator 22, the front surface of the light control area 22a is arranged so as to extend along the vertical plane orthogonal to the optical axis Ax at the position of the rear focal point F of the projection lens 72, and the light control area 22a is arranged. 22a has a laterally long rectangular outer shape centered on the optical axis Ax.
 空間光変調器22において光制御領域22aを囲む周縁部22bは、その前面が光制御領域22aの前面に対して灯具後方側に段下がりになった状態で形成されており、その後面においてソケット24を介して支持基板30に支持されている。 In the spatial light modulator 22, the peripheral edge portion 22b surrounding the light control area 22a is formed such that its front surface is stepped down toward the lamp rear side with respect to the front surface of the light control area 22a, and the socket 24 is formed on the rear surface thereof. It is supported by the support substrate 30 via.
 ソケット24は、空間光変調器22の周縁部22bに沿った横長矩形状のフレーム部材であり、支持基板30に形成された導電パターン(図示せず)と電気的に接続された状態で該支持基板30に固定されている。支持基板30には、ソケット24の内周縁形状と略同一形状の開口部30aが形成されている。 The socket 24 is a horizontally long rectangular frame member that extends along the peripheral edge portion 22b of the spatial light modulator 22, and supports the conductive pattern (not shown) formed on the support substrate 30 in a state of being electrically connected thereto. It is fixed to the substrate 30. The support substrate 30 is formed with an opening 30a having substantially the same shape as the inner peripheral edge of the socket 24.
 空間光変調器22の周縁部22bには、その後面から灯具後方へ向けて突出する複数の端子ピン22cが形成されている。一方、ソケット24には、複数の端子ピン22cと対応する位置においてその後面から灯具後方へ向けて突出する複数の端子ピン24aが形成されている。 A plurality of terminal pins 22c projecting from the rear surface of the spatial light modulator 22 toward the rear of the lamp are formed on the peripheral edge 22b. On the other hand, the socket 24 is formed with a plurality of terminal pins 24a projecting rearward from the rear surface of the lamp at positions corresponding to the plurality of terminal pins 22c.
 ソケット24の各端子ピン24aは、その基端部(すなわち該ソケット24に埋設された先端部分)が略筒状に形成されている。各端子ピン24aの基端部に空間光変調器22の各端子ピン22cの先端部が嵌め込まれることによって、空間光変調器22とソケット24とが電気的に接続されるようになっている。 Each terminal pin 24a of the socket 24 has a base end portion (that is, a tip end portion embedded in the socket 24) formed in a substantially cylindrical shape. The spatial light modulator 22 and the socket 24 are electrically connected by fitting the tip ends of the terminal pins 22c of the spatial light modulator 22 into the base ends of the terminal pins 24a.
 ソケット24の各端子ピン24aは、その先端部(すなわち後端部)において支持基板30の導電パターンにハンダ付けされている。このため、ソケット24は、その後面が支持基板30の前面から僅かに浮いた状態で配置されている。 Each terminal pin 24a of the socket 24 is soldered to the conductive pattern of the support substrate 30 at its tip (that is, rear end). Therefore, the socket 24 is arranged with its rear surface slightly floating from the front surface of the support substrate 30.
 空間光変調器サブアッシー20では、空間光変調器22がブラケット40とヒートシンク50とによって灯具前後方向両側から支持される。 In the spatial light modulator sub-assembly 20, the spatial light modulator 22 is supported by the bracket 40 and the heat sink 50 from both sides in the lamp front-rear direction.
 ブラケット40は、金属製(例えばアルミダイカスト製)の部材であって、光軸Axと直交する鉛直面に沿って延びる鉛直面部40Aと、鉛直面部40Aの下端縁から灯具前方へ向けて水平面に沿って延びる水平面部40Bとを備える。 The bracket 40 is a member made of metal (for example, aluminum die cast), and extends along a vertical plane 40A extending along a vertical plane orthogonal to the optical axis Ax, and along a horizontal plane from the lower end edge of the vertical plane 40A toward the front of the lamp. And a horizontal plane portion 40B extending in the horizontal direction.
 図1に示すように、ブラケット40の鉛直面部40Aには、横長矩形状の開口部40Aaが光軸Axを中心として形成されている。開口部40Aaは、空間光変調器22の外周縁形状よりも小さいが、光制御領域22aよりは僅かに大きい。 As shown in FIG. 1, in the vertical surface portion 40A of the bracket 40, a horizontally long rectangular opening 40Aa is formed around the optical axis Ax. The opening 40Aa is smaller than the outer peripheral edge shape of the spatial light modulator 22, but slightly larger than the light control region 22a.
 鉛直面部40Aの前面は、光制御領域22aの前面よりも灯具前方側(すなわち投影レンズ72の後側焦点Fよりも灯具前方側)に位置している。具体的には、鉛直面部40Aの前面は、光制御領域22aの前面に対して3~5mm程度灯具前方側に位置している。鉛直面部40Aの前面における開口部40Aaの左右両側には、4つの発光素子42がそれぞれ搭載されている。 The front surface of the vertical surface portion 40A is located on the front side of the lamp with respect to the front surface of the light control area 22a (that is, on the front side of the lamp with respect to the rear focal point F of the projection lens 72). Specifically, the front surface of the vertical surface portion 40A is located on the front side of the lamp about 3 to 5 mm with respect to the front surface of the light control region 22a. Four light emitting elements 42 are mounted on the left and right sides of the opening 40Aa on the front surface of the vertical surface 40A.
 各発光素子42は、白色発光ダイオードであって、矩形状(例えば1×1mm程度の正方形)の外形形状を有する発光面42aを備えている。 Each light emitting element 42 is a white light emitting diode, and has a light emitting surface 42a having a rectangular (for example, 1 × 1 mm square) outer shape.
 4つの発光素子42は、水平方向に一定の間隔(例えば1mm程度の間隔)をおいて配置されている。各発光素子42では、その発光面42aの中心位置が光軸Axを含む水平面よりも僅かに下方に位置するようにした状態で投影レンズ72へ向けて配置されている。また、4つの発光素子42のうち光軸Ax側に位置する発光素子42は、開口部40Aaに近接した位置(例えば開口部40Aaの側端面から0.5mm程度離れた位置)に配置されている。 The four light emitting elements 42 are arranged in the horizontal direction at regular intervals (for example, about 1 mm). In each light emitting element 42, the light emitting surface 42a is arranged toward the projection lens 72 in a state where the center position of the light emitting surface 42a is located slightly below the horizontal plane including the optical axis Ax. Further, among the four light emitting elements 42, the light emitting element 42 located on the optical axis Ax side is arranged at a position close to the opening 40Aa (for example, a position about 0.5 mm away from the side end surface of the opening 40Aa). ..
 ブラケット40の水平面部40Bは、リフレクタ64よりも灯具前方側まで延びるように形成されている。水平面部40Bにはリフレクタ64を挿通させるための横長矩形状の開口部40Baが形成されている。 The horizontal plane portion 40B of the bracket 40 is formed so as to extend to the front side of the lamp with respect to the reflector 64. A horizontal oblong opening 40Ba for inserting the reflector 64 is formed in the horizontal plane 40B.
 図3に示すように、ヒートシンク50は、金属製(例えばアルミダイカスト製)の部材であって、光軸Axと直交する鉛直面に沿って延びるように配置されており、その後面には複数の放熱フィン50bが縦縞状に形成されている。 As shown in FIG. 3, the heat sink 50 is a member made of metal (for example, aluminum die casting), and is arranged so as to extend along a vertical plane orthogonal to the optical axis Ax. The heat radiation fins 50b are formed in vertical stripes.
 ヒートシンク50の前面の中央部には、灯具前方へ向けて突出する角柱状の突起部50aが形成されている。突起部50aは光軸Axを中心とする横長矩形状の断面形状を有しており、突起部50aの大きさはソケット24の内周面よりも小さい。そして、突起部50aは、支持基板30の開口部30aを挿通した状態で、その前端面において空間光変調器22の中央部(すなわち光制御領域22aが位置する部分)に対して灯具後方側から当接するようになっている。 A prismatic protrusion 50a is formed in the center of the front surface of the heat sink 50 so as to project toward the front of the lamp. The protrusion 50 a has a horizontally long rectangular cross-sectional shape centered on the optical axis Ax, and the size of the protrusion 50 a is smaller than the inner peripheral surface of the socket 24. The protrusion 50a is inserted from the opening 30a of the support substrate 30 from the rear side of the lamp with respect to the central portion of the spatial light modulator 22 (that is, the portion where the light control region 22a is located) on the front end face thereof. It comes to abut.
 ヒートシンク50は、その突起部50aの前端面が空間光変調器22の中央部に当接した状態で、左右2対の段付きボルト52によってブラケット40の鉛直面部40Aに固定されている。この固定は、突起部50aによって空間光変調器22を灯具前方へ向けて弾性的に押圧した状態で行われる。 The heat sink 50 is fixed to the vertical surface portion 40A of the bracket 40 by two pairs of left and right stepped bolts 52 with the front end surface of the protrusion 50a abutting on the central portion of the spatial light modulator 22. This fixing is performed in a state where the protrusion 50a elastically presses the spatial light modulator 22 toward the front of the lamp.
 突起部50aによる押圧の具体的な構成は以下のとおりである。 The specific configuration of pressing by the protrusion 50a is as follows.
 左右2対の段付きボルト52は、空間光変調器22の左右両側の上下2箇所に位置する。 ▽ Two pairs of left and right stepped bolts 52 are located at two upper and lower positions on both left and right sides of the spatial light modulator 22.
 各段付きボルト52は、頭部52aと、大径部52bと、先端に小径部52c(図1参照)を備える。大径部52bが灯具後方側からヒートシンク50および支持基板30に形成されたボルト挿通孔(図示せず)を挿通するように配置された状態で、小径部52cにおいてブラケット40の鉛直面部40Aに螺着されている。ブラケット40の鉛直面部40Aには、4本の段付きボルト52に対応した4箇所に各段付きボルト52の小径部52cを螺着するためのネジ孔40Ab(図1参照)が形成されている。 Each stepped bolt 52 has a head portion 52a, a large diameter portion 52b, and a small diameter portion 52c at the tip (see FIG. 1). With the large-diameter portion 52b arranged so as to pass through the bolt insertion holes (not shown) formed in the heat sink 50 and the support substrate 30 from the rear side of the lamp, the small-diameter portion 52c is screwed onto the vertical surface portion 40A of the bracket 40. It is worn. In the vertical surface portion 40A of the bracket 40, screw holes 40Ab (see FIG. 1) for screwing the small diameter portions 52c of the stepped bolts 52 are formed at four locations corresponding to the four stepped bolts 52. ..
 各段付きボルト52の大径部52bには、ヒートシンク50の突起部50aを灯具前方側へ向けて弾性的に押圧するためのバネ54が取り付けられている。各バネ54は、各段付きボルト52の頭部52aとヒートシンク50との間に配置された圧縮コイルバネである。 A spring 54 for elastically pressing the projection 50a of the heat sink 50 toward the front side of the lamp is attached to the large diameter portion 52b of each stepped bolt 52. Each spring 54 is a compression coil spring arranged between the head 52 a of each stepped bolt 52 and the heat sink 50.
 このように空間光変調器22の左右両側の上下2箇所においてヒートシンク50を灯具前方側へ向けて弾性的に押圧することにより、空間光変調器22に無理な荷重を作用させない状態で、空間光変調器22の中央部を灯具前方側へ向けて弾性的に押圧するようになっている。これにより本実施形態は、空間光変調器22の周縁部22bに形成された複数の端子ピン22cがソケット24に形成された複数の嵌合孔(すなわち端子ピン24aの略筒状に形成された基端部)に適正に嵌め込まれた状態(すなわち空間光変調器22とソケット24との電気的接続が確実に行われた状態)を維持する。 In this way, the heat sink 50 is elastically pressed toward the front side of the lamp at the two upper and lower positions on the left and right sides of the spatial light modulator 22, so that the spatial light modulator 22 is not subjected to an unreasonable load. The central portion of the modulator 22 is elastically pressed toward the front side of the lamp. As a result, in the present embodiment, the plurality of terminal pins 22c formed in the peripheral edge portion 22b of the spatial light modulator 22 are formed in the plurality of fitting holes formed in the socket 24 (that is, the terminal pins 24a have a substantially cylindrical shape). The state where it is properly fitted to the base end portion (that is, the state where the electrical connection between the spatial light modulator 22 and the socket 24 is surely made) is maintained.
 空間光変調器22の周囲には、灯具前後方向に延びる左右1対のシャフト56が、その後端部においてヒートシンク50に固定された状態で配置されている。具体的には、各シャフト56は、ヒートシンク50と一体で形成されており、ヒートシンク50の突起部50aの左右両側において灯具前方へ向けて円柱状に延びるように形成されている。 A pair of left and right shafts 56 extending in the front-rear direction of the lamp are arranged around the spatial light modulator 22 while being fixed to the heat sink 50 at the rear end thereof. Specifically, each shaft 56 is formed integrally with the heat sink 50, and is formed so as to extend toward the front of the lamp in a columnar shape on both left and right sides of the protrusion 50 a of the heat sink 50.
 図3に示すように、支持基板30には、左右1対のシャフト56を挿通させるための左右1対のシャフト挿通孔30bが形成されている。各シャフト挿通孔30bは、各シャフト56よりもある程度大きい径を有する円筒状の開口部として形成されている。 As shown in FIG. 3, a pair of left and right shaft insertion holes 30b for inserting the pair of left and right shafts 56 is formed in the support substrate 30. Each shaft insertion hole 30b is formed as a cylindrical opening having a diameter somewhat larger than that of each shaft 56.
 ブラケット40の鉛直面部40Aには、左右1対のシャフト56の先端部を挿入させた状態で灯具前後方向と直交する方向に関して位置決めするための左右1対のシャフト位置決め孔40Acが形成されている。各シャフト位置決め孔40Acは、各シャフト56よりも僅かに大きい。 The vertical surface portion 40A of the bracket 40 is formed with a pair of left and right shaft positioning holes 40Ac for positioning the tip portions of the pair of left and right shafts 56 in a direction orthogonal to the longitudinal direction of the lamp. Each shaft positioning hole 40Ac is slightly larger than each shaft 56.
 各シャフト位置決め孔40Acは、鉛直面部40Aの後面に形成されたスリーブ40Adによって鉛直面部40Aの板厚よりも長く灯具後方へ向けて延びるように形成されており、各シャフト56と一定の長さにわたって摺動可能に係合する。これにより本実施形態は、ブラケット40の鉛直面部40Aが光軸Axと直交する鉛直面に対して傾斜してしまうのを防止する。 Each shaft positioning hole 40Ac is formed by a sleeve 40Ad formed on the rear surface of the vertical surface portion 40A so as to extend toward the rear of the lamp longer than the plate thickness of the vertical surface portion 40A, and extends over a certain length with each shaft 56. Engage slidably. As a result, the present embodiment prevents the vertical surface portion 40A of the bracket 40 from being inclined with respect to the vertical surface orthogonal to the optical axis Ax.
 次に、レンズ側サブアッシー70の構成について説明する。 Next, the configuration of the lens side sub-assembly 70 will be described.
 図4に示すように、投影レンズ72は、光軸Ax上において灯具前後方向に所要間隔をおいて配置された第1および第2レンズ72A、72Bで構成されている。 As shown in FIG. 4, the projection lens 72 is composed of first and second lenses 72A and 72B that are arranged on the optical axis Ax in the front-rear direction of the lamp at a required interval.
 灯具前方側に位置する第1レンズ72Aは、両凸レンズであり、灯具後方側に位置する第2レンズ72Bは、灯具後方へ向けて膨らんだ凹メニスカスレンズである。これら第1および第2レンズ72A、72Bは、各レンズの上端部が水平面に沿って僅かに切除されているとともに、その下部部が水平面に沿って上端部と比較して大きく切除されている。 The first lens 72A located on the front side of the lamp is a biconvex lens, and the second lens 72B located on the rear side of the lamp is a concave meniscus lens bulging toward the rear of the lamp. The upper end of each of the first and second lenses 72A and 72B is slightly cut off along the horizontal plane, and the lower part of the first lens and the second lens 72B is cut off largely along the horizontal plane as compared with the upper end.
 これら第1および第2レンズ72A、72Bは、その外周縁部において共通のレンズホルダ74に支持されている。レンズホルダ74は、金属製(例えばアルミダイカスト製)の部材であって、ブラケット40の水平面部40Bに支持されている。 The first and second lenses 72A and 72B are supported by a common lens holder 74 at their outer peripheral edge portions. The lens holder 74 is a member made of metal (for example, aluminum die casting), and is supported by the horizontal surface portion 40B of the bracket 40.
 図5A及び図5Bは、車両用灯具10から前方へ向けて照射される光により、車両前方25mの位置に配置された仮想鉛直スクリーン上に形成される配光パターンを透視的に示す図である。図5Aは、ハイビーム用配光パターンPH1における付加配光パターンPAを示す図であり、図5Bは、中間的配光パターンPM1における付加配光パターンPAmを示す図である。 5A and 5B are perspective views showing a light distribution pattern formed on a virtual vertical screen arranged at a position 25 m in front of the vehicle by the light emitted from the vehicle lamp 10 toward the front. .. 5A is a diagram showing an additional light distribution pattern PA in the high beam light distribution pattern PH1, and FIG. 5B is a diagram showing an additional light distribution pattern PAm in the intermediate light distribution pattern PM1.
 図5Aに示すハイビーム用配光パターンPH1は、図示しない他の灯具ユニットからの照射光によって形成されるロービーム用配光パターンPL1に対して、車両用灯具10からの照射光によって形成される付加配光パターンPAが付加された配光パターンである。 The high-beam light distribution pattern PH1 shown in FIG. 5A is an additional light distribution pattern formed by the irradiation light from the vehicle lamp 10 with respect to the low-beam light distribution pattern PL1 formed by the irradiation light from another lamp unit (not shown). It is a light distribution pattern to which a light pattern PA is added.
 ロービーム用配光パターンPL1は、左配光のロービーム用配光パターンであって、その上端縁に左右段違いのカットオフラインCL1、CL2を有している。カットオフラインCL1、CL2は、灯具正面方向の消点であるH-Vを鉛直方向に通るV-V線を境にして左右段違いで水平方向に延びている。V-V線よりも右側の対向車線側部分に下段カットオフラインCL1が形成されるとともに、V-V線よりも左側の自車線側部分に、下段カットオフラインCL1から傾斜部を介して段上がりになった上段カットオフラインCL2が形成されている。 The low-beam light distribution pattern PL1 is a left-beam low-beam light distribution pattern, and has cut-off lines CL1 and CL2 at the upper edge of the left and right steps. The cut-off lines CL1 and CL2 extend horizontally in a staggered manner with a VV line passing in the vertical direction passing through HV which is a vanishing point in the front direction of the lamp. The lower cut-off line CL1 is formed on the opposite lane side on the right side of the VV line, and the lower cut-off line CL1 rises up from the lower cut-off line CL1 on the lane side on the left side of the VV line. The upper cut-off line CL2 has been formed.
 ロービーム用配光パターンPL1において、下段カットオフラインCL1とV-V線との交点であるエルボ点Eは、H-Vの0.5~0.6°程度下方に位置している。 In the low-beam light distribution pattern PL1, the elbow point E, which is the intersection of the lower cut-off line CL1 and the VV line, is located about 0.5-0.6 ° below HV.
 付加配光パターンPAは、第1の配光パターンP1と左右1対の第2の配光パターンP2L、P2Rとの合成配光パターンである。 The additional light distribution pattern PA is a combined light distribution pattern of the first light distribution pattern P1 and the pair of left and right second light distribution patterns P2L and P2R.
 第1の配光パターンP1は、リフレクタ64および空間光変調器22で順次反射して投影レンズ72を透過した光源62からの光によって形成される配光パターンであって、空間光変調器22の光制御領域22aの全領域からの反射光によって形成されている。 The first light distribution pattern P1 is a light distribution pattern formed by the light from the light source 62 that is sequentially reflected by the reflector 64 and the spatial light modulator 22 and transmitted through the projection lens 72. It is formed by reflected light from the entire area of the light control area 22a.
 第1の配光パターンP1は、H-Vを中心とする横長矩形状の外形形状を有する配光パターンである。第1の配光パターンP1は、光制御領域22aの反転投影像として形成されるので、第1の配光パターンP1のサイズは光制御領域22aの外形形状によって規定される。 The first light distribution pattern P1 is a light distribution pattern having a horizontally long rectangular outer shape centered on HV. Since the first light distribution pattern P1 is formed as an inverted projection image of the light control area 22a, the size of the first light distribution pattern P1 is defined by the outer shape of the light control area 22a.
 左右1対の第2の配光パターンP2L、P2Rは、ブラケット40の鉛直面部40Aにおける開口部40Aaの左右両側に4つずつ配置された発光素子42から出射して投影レンズ72に直接入射した光によって形成される配光パターンである。 The pair of left and right second light distribution patterns P2L and P2R are emitted from four light emitting elements 42 arranged on the left and right sides of the opening 40Aa in the vertical surface portion 40A of the bracket 40 and directly incident on the projection lens 72. It is a light distribution pattern formed by.
 各第2の配光パターンP2L、P2Rは、4つの発光素子42の各々の反転投影像Piを合成した横長の配光パターンとして形成されている。左側に位置する第2の配光パターンP2Lは、右側(灯具正面視では左側)に位置する4つの発光素子42の反転投影像Piによって形成されており、右側に位置する第2の配光パターンP2Rは、左側に位置する4つの発光素子42の反転投影像Piによって形成されている。 Each of the second light distribution patterns P2L and P2R is formed as a horizontally long light distribution pattern obtained by combining the reverse projection images Pi of the four light emitting elements 42. The second light distribution pattern P2L located on the left side is formed by the inverted projection images Pi of the four light emitting elements 42 located on the right side (the left side in the front view of the lamp), and the second light distribution pattern located on the right side. P2R is formed by the inverted projection images Pi of the four light emitting elements 42 located on the left side.
 各発光素子42は、その発光面42aの中心位置が光軸Axを含む水平面よりも僅かに下方に位置するようにして配置されているので、各反転投影像Piは、H-Vを水平方向に通るH-H線に対して僅かに上方に変位した状態でH-H線を跨ぐようにして形成されている。 Since each light emitting element 42 is arranged such that the center position of its light emitting surface 42a is located slightly below the horizontal plane including the optical axis Ax, each inverted projection image Pi shows HV in the horizontal direction. It is formed so as to straddle the HH line in a state of being displaced slightly upward with respect to the HH line passing through.
 4つの発光素子42は、左右方向に互いに間隔をおいて配置されている。発光素子42の発光面42aが投影レンズ72の後側焦点Fよりも灯具前方側に位置しているので、各発光素子42の反転投影像Piは、ピントが比較的大きくボケた略矩形状の像として形成されており、かつ、各第2の配光パターンP2L、P2Rを構成する4つの反転投影像Piは互いに部分的に重複した状態で形成されている。 The four light emitting elements 42 are arranged at intervals in the left-right direction. Since the light emitting surface 42a of the light emitting element 42 is located on the front side of the lamp with respect to the rear focus F of the projection lens 72, the reverse projection image Pi of each light emitting element 42 has a substantially rectangular shape in which the focus is relatively large and blurred. The four reverse projection images Pi, which are formed as images and which form each of the second light distribution patterns P2L and P2R, are formed so as to partially overlap each other.
 4つの発光素子42のうち光軸Ax側に位置する発光素子42は開口部40Aaに近接した位置に配置されているので、各第2の配光パターンP2L、P2Rは、そのV-V線側の端部に位置する反転投影像Piが第1の配光パターンP1と部分的に重複した状態で形成されている。 Of the four light emitting elements 42, the light emitting element 42 located on the optical axis Ax side is arranged in a position close to the opening 40Aa, so that each of the second light distribution patterns P2L and P2R has the VV line side thereof. The reverse projection image Pi located at the end of is formed so as to partially overlap the first light distribution pattern P1.
 図5Bに示す中間的配光パターンPM1は、その付加配光パターンPAmがハイビーム用配光パターンPH1における付加配光パターンPAに対して一部が欠けた状態で形成される配光パターンである。 The intermediate light distribution pattern PM1 shown in FIG. 5B is a light distribution pattern formed such that the additional light distribution pattern PAm is partially missing from the additional light distribution pattern PA in the high beam light distribution pattern PH1.
 具体的には、付加配光パターンPAmは、付加配光パターンPAに対して第1の配光パターンP1の一部が欠落した配光パターン(具体的には対向車2を含む矩形状の領域P1aへ向かう光が欠落した配光パターン)である。付加配光パターンPAmは、空間光変調器22の光制御領域22aの一部領域において光源62からの光を投影レンズ72へ向けて反射させない光制御を行うことによって形成される配光パターンである。 Specifically, the additional light distribution pattern PAm is a light distribution pattern in which a part of the first light distribution pattern P1 is missing from the additional light distribution pattern PA (specifically, a rectangular area including the oncoming vehicle 2). This is a light distribution pattern in which the light traveling to P1a is missing. The additional light distribution pattern PAm is a light distribution pattern formed by performing light control in which a light from the light source 62 is not reflected toward the projection lens 72 in a partial area of the light control area 22a of the spatial light modulator 22. ..
 このような付加配光パターンPAmを形成することにより、車両用灯具10からの照射光が対向車2に当たらないようにし、これにより対向車2のドライバにグレアを与えない範囲内でできるだけ前方走行路を幅広く照射するようになっている。 By forming such an additional light distribution pattern PAm, the irradiation light from the vehicular lamp 10 is prevented from striking the oncoming vehicle 2, and as a result, the driver of the oncoming vehicle 2 travels as far forward as possible without causing glare. It is designed to illuminate a wide area.
 対向車2の位置が変化するのに伴って、光制御領域22aにおいて反射光が欠落する領域を順次切り換えることにより、対向車2のドライバにグレアを与えない範囲内でできるだけ前方走行路を幅広く照射する状態を維持するようになっている。 As the position of the oncoming vehicle 2 changes, the areas where the reflected light is missing in the light control area 22a are sequentially switched to illuminate the front traveling path as wide as possible within a range that does not give glare to the driver of the oncoming vehicle 2. It is designed to maintain the state of being.
 対向車2の存在は、図示しない車載カメラ等によって検出する。前方走行路に前走車が存在したり、その路肩部分に歩行者が存在するような場合にも、これを検出して空間光変調器22の光制御を行うことによりグレアを与えないようになっている。 The presence of the oncoming vehicle 2 is detected by an in-vehicle camera (not shown). Even if there is a preceding vehicle on the road ahead or a pedestrian exists on the shoulder of the road, it is detected and the spatial light modulator 22 is controlled to prevent glare. Is becoming
 対向車2の位置がさらに自車に近づいてきたときには、右側に位置する第2の配光パターンP2Rを構成する4つの反転投影像Piのうちの一部を順次欠落させることにより、対向車2のドライバにグレアを与えない範囲内でできるだけ前方走行路を幅広く照射する状態をさらに維持することが可能である。 When the position of the oncoming vehicle 2 further approaches the own vehicle, the oncoming vehicle 2 is partially removed from the four reverse projection images Pi forming the second light distribution pattern P2R located on the right side. It is possible to further maintain the state of illuminating the front road as wide as possible within a range that does not give glare to the driver.
 次に本実施形態の作用について説明する。 Next, the operation of this embodiment will be described.
 本実施形態に係る車両用灯具10においては、空間光変調器22によって投影レンズ72に入射する光の空間的な分布を制御することにより、種々の配光パターンを精度良く形成することができる。 In the vehicular lamp 10 according to the present embodiment, by controlling the spatial distribution of the light incident on the projection lens 72 by the spatial light modulator 22, various light distribution patterns can be formed with high accuracy.
 その上で、空間光変調器22の光制御領域22aの左右両側には、4つの発光素子42が、その発光面42aを投影レンズ72へ向けた状態で配置されているので、次のような作用効果を得ることができる。 Further, four light emitting elements 42 are arranged on the left and right sides of the light control area 22a of the spatial light modulator 22 with the light emitting surfaces 42a thereof facing the projection lens 72. The effect can be obtained.
 これら4つの発光素子42を追加点灯させることにより、空間光変調器22の光制御によって形成される第1の配光パターンP1(またはP1m)に対して、各発光素子の反転投影像Piを合成した配光パターンとして形成される第2の配光パターンP2L、P2Rを付加的に形成することができる。 By additionally lighting these four light emitting elements 42, the reverse projection image Pi of each light emitting element is combined with the first light distribution pattern P1 (or P1m) formed by the light control of the spatial light modulator 22. The second light distribution patterns P2L and P2R formed as the above described light distribution pattern can be additionally formed.
 したがって、空間光変調器22による光制御の精度およびその光制御によって形成される第1の配光パターンP1(またはP1m)の明るさを維持した上で、灯具全体からの照射光によって形成される灯具配光パターンとしての付加配光パターンPA(またはPAm)を、空間光変調器22の光制御領域22aのサイズによる制約を受けることなく、大きな拡散角度を有する配光パターンとして形成することができる。 Therefore, while maintaining the accuracy of the light control by the spatial light modulator 22 and the brightness of the first light distribution pattern P1 (or P1m) formed by the light control, the light is formed by the irradiation light from the entire lamp. The additional light distribution pattern PA (or PAm) as the lamp light distribution pattern can be formed as a light distribution pattern having a large diffusion angle without being restricted by the size of the light control region 22a of the spatial light modulator 22. ..
 このように本実施形態によれば、空間光変調器22を備えた車両用灯具10において、空間光変調器22による光制御の精度およびその光制御によって形成される第1の配光パターンP1(またはP1m)の明るさを維持した上で、付加配光パターンPA(またはPAm)としての光照射範囲を拡げることができる。 As described above, according to the present embodiment, in the vehicle lamp 10 including the spatial light modulator 22, the accuracy of the light control by the spatial light modulator 22 and the first light distribution pattern P1 (formed by the light control). Alternatively, the light irradiation range as the additional light distribution pattern PA (or PAm) can be expanded while maintaining the brightness of P1m).
 本実施形態においては、4つの発光素子42が空間光変調器22の光制御領域22aの左右両側にそれぞれ配置されているので、第1の配光パターンP1(またはP1m)の左右両側に第2の配光パターンP2L、P2Rが配置された配光パターンとして付加配光パターンPA(またはPAm)を形成することができ、これにより車両前方走行路の視認性を高めることができる。 In the present embodiment, since the four light emitting elements 42 are respectively arranged on the left and right sides of the light control region 22a of the spatial light modulator 22, the second light emitting elements 42 are arranged on the left and right sides of the first light distribution pattern P1 (or P1m). The additional light distribution pattern PA (or PAm) can be formed as the light distribution pattern in which the light distribution patterns P2L and P2R are arranged, and thus the visibility of the vehicle front traveling path can be improved.
 本実施形態においては、空間光変調器22の光制御領域22aの左右両側にそれぞれ配置された4つの発光素子42が、空間光変調器22の光制御領域22aよりも灯具前方側に位置するようにして配置されているので、次のような作用効果を得ることができる。 In the present embodiment, the four light emitting elements 42, which are respectively arranged on the left and right sides of the light control area 22a of the spatial light modulator 22, are located on the front side of the lamp with respect to the light control area 22a of the spatial light modulator 22. Since they are arranged in such a manner, the following operational effects can be obtained.
 空間光変調器22による光制御の精度を維持するとともにこの光制御によって形成される第1の配光パターンP1(またはP1m)の明るさを維持するためには、本実施形態のように、空間光変調器22としてその光制御領域22aが投影レンズ72の後側焦点Fを含む焦点面上に位置するように配置されたものとすることが好ましい。 In order to maintain the accuracy of light control by the spatial light modulator 22 and to maintain the brightness of the first light distribution pattern P1 (or P1m) formed by this light control, as in the present embodiment, The light modulator 22 is preferably arranged such that its light control region 22a is located on the focal plane including the rear focal point F of the projection lens 72.
 このような空間光変調器22に対して、その光制御領域22aよりも灯具前方側に位置するようにして4つの発光素子42が左右両側にそれぞれ配置された構成とすることにより、投影レンズ72による各発光素子42の反転投影像Piを、ピントが比較的大きくボケた像として形成することができる。 With respect to such a spatial light modulator 22, the projection lens 72 is configured by arranging four light emitting elements 42 on the left and right sides so as to be positioned on the front side of the lamp with respect to the light control area 22a. The reverse projection image Pi of each light emitting element 42 can be formed as an image that is relatively out of focus and blurred.
 したがって、4つの発光素子が空間光変調器22の光制御領域22aの周囲において該光制御領域22aと密着した状態で配置されていなくても、第2の配光パターンP2L、P2Rを第1の配光パターンP1(またはP1m)と部分的に重複した状態で形成することができる。そしてこれにより、付加配光パターンPA(またはPAm)を連続的で違和感のない配光パターンとして形成することができる。 Therefore, even if the four light emitting elements are not arranged in the vicinity of the light control area 22a of the spatial light modulator 22 in a state of being in close contact with the light control area 22a, the second light distribution patterns P2L and P2R are set to the first light distribution pattern P2L. The light distribution pattern P1 (or P1m) can be formed so as to partially overlap. As a result, the additional light distribution pattern PA (or PAm) can be formed as a continuous light distribution pattern with no discomfort.
 前記実施形態においては、空間光変調器22の光制御領域22aの左右両側に4つの発光素子42がそれぞれ配置されているものとして説明した。5つ以上または3つ以下の発光素子42がそれぞれ配置されることも可能であり、また、これらの発光素子42が光制御領域22aの左側のみまたは右側のみに配置されることも可能である。 In the above embodiment, the four light emitting elements 42 are arranged on the left and right sides of the light control region 22a of the spatial light modulator 22, respectively. It is also possible to arrange five or more or three or less light emitting elements 42, respectively, and it is also possible to arrange these light emitting elements 42 only on the left side or the right side of the light control region 22a.
 前記実施形態においては、リフレクタ64で反射した光源62からの出射光を空間光変調器22で反射させる構成となっている。レンズ等によって偏向制御した光源62からの出射光を空間光変調器22で反射させる構成や光源62からの出射光を直接空間光変調器22で反射させる構成を採用することも可能である。 In the above-described embodiment, the light emitted from the light source 62 reflected by the reflector 64 is reflected by the spatial light modulator 22. It is also possible to employ a configuration in which the emitted light from the light source 62 whose deflection is controlled by a lens or the like is reflected by the spatial light modulator 22 or a configuration in which the emitted light from the light source 62 is directly reflected by the spatial light modulator 22.
 次に、前記実施形態の変形例について説明する。 Next, a modification of the above embodiment will be described.
 図6は、本変形例に係る車両用灯具110を示す正面図である。 FIG. 6 is a front view showing a vehicular lamp 110 according to this modification.
 同図に示すように、本変形例の基本的な構成は前記実施形態の場合と同様であるが、空間光変調器サブアッシー120の構成が前記実施形態の場合と一部異なっている。 As shown in the figure, the basic configuration of this modification is the same as that of the above-described embodiment, but the configuration of the spatial light modulator subassembly 120 is partially different from that of the above-described embodiment.
 本変形例の空間光変調器サブアッシー120は、空間光変調器22およびソケット24が前記実施形態の空間光変調器22およびソケット24に対して上方側に変位した状態で配置されており、ブラケット140の鉛直面部140Aに形成された開口部140Aaも前記実施形態の開口部40Aaに対して上方側に変位している。 The spatial light modulator sub-assembly 120 of the present modification is arranged in a state where the spatial light modulator 22 and the socket 24 are displaced upward with respect to the spatial light modulator 22 and the socket 24 of the above-described embodiment, and the bracket The opening 140Aa formed in the vertical surface 140A of 140 is also displaced upward with respect to the opening 40Aa of the above embodiment.
 また本変形例においては、鉛直面部140Aの前面における開口部140Aaの左右両側に、4つの発光素子42がそれぞれ上下2段で配置された状態で搭載されている。 Further, in this modification, four light emitting elements 42 are mounted on the left and right sides of the opening 140Aa on the front surface of the vertical surface 140A in a state in which they are arranged in two vertical steps.
 開口部140Aaの左右両側において下段に位置する8つの発光素子42は、その発光面42aの中心位置が光軸Axを含む水平面よりも下方に位置するように配置されており、その下方変位量は前記実施形態の場合よりもやや大きい。 The eight light emitting elements 42 located at the lower stage on the left and right sides of the opening 140Aa are arranged such that the center position of the light emitting surface 42a is located below the horizontal plane including the optical axis Ax, and the downward displacement amount is It is slightly larger than that of the above embodiment.
 開口部140Aaの右側(灯具正面視では左側)において上段に位置する4つの発光素子42は、その発光面42aの中心位置が光軸Axを含む水平面よりも上方に位置するように配置されている。また、開口部140Aaの左側において上段に位置する4つの発光素子42も、その発光面42aの中心位置が光軸Axを含む水平面よりも上方に位置するように配置されており、その上方変位量は右側に位置する4つの発光素子42よりもやや大きい。 The four light emitting elements 42 located on the upper side on the right side of the opening 140Aa (the left side when the lamp is viewed from the front) are arranged such that the center position of the light emitting surface 42a is located above the horizontal plane including the optical axis Ax. .. The four light emitting elements 42 located on the upper side on the left side of the opening 140Aa are also arranged such that the center position of the light emitting surface 42a is located above the horizontal plane including the optical axis Ax, and the amount of upward displacement thereof. Is slightly larger than the four light emitting elements 42 located on the right side.
 図7A及び図7Bは、車両用灯具110から前方へ向けて照射される光により、車両前方25mの位置に配置された仮想鉛直スクリーン上に形成される配光パターンを透視的に示す図である。図7Aは、ロービーム用配光パターンPL2を示す図であり、図7Bは、ハイビーム用配光パターンPH2を示す図である。 7A and 7B are perspective views showing a light distribution pattern formed on a virtual vertical screen arranged at a position 25 m in front of the vehicle by the light emitted from the vehicle lamp 110 toward the front. .. FIG. 7A is a diagram showing a low beam light distribution pattern PL2, and FIG. 7B is a diagram showing a high beam light distribution pattern PH2.
 図7Aに示すロービーム用配光パターンPL2は、図5Aに示すロービーム用配光パターンPL1と同様、左右段違いで水平方向に延びるカットオフラインCL1、CL2およびエルボ点Eを有している。 Like the low-beam light distribution pattern PL1 shown in FIG. 5A, the low-beam light distribution pattern PL2 shown in FIG. 7A has cut-off lines CL1 and CL2 and elbow points E that extend horizontally in different horizontal steps.
 ロービーム用配光パターンPL2は、第1の配光パターンP3Lと左右1対の第2の配光パターンP4L、P4Rとの合成配光パターンとして形成されている。 The low-beam light distribution pattern PL2 is formed as a combined light distribution pattern of the first light distribution pattern P3L and the pair of left and right second light distribution patterns P4L and P4R.
 第1の配光パターンP3Lは、リフレクタ64および空間光変調器22で順次反射して投影レンズ72を透過した光源62からの光によって形成される配光パターンであって、空間光変調器22の光制御領域22aの一部領域からの反射光によって形成されている。具体的には、第1の配光パターンP3Lは、光制御領域22aの下部領域において光源62からの光を投影レンズ72へ向けて反射させない光制御を行うことによって、上端縁がカットオフラインCL1、CL2に沿った配光パターンとして形成されている。 The first light distribution pattern P3L is a light distribution pattern formed by the light from the light source 62 that is sequentially reflected by the reflector 64 and the spatial light modulator 22 and transmitted through the projection lens 72. It is formed by the reflected light from a partial area of the light control area 22a. Specifically, the first light distribution pattern P3L performs light control in which the light from the light source 62 is not reflected toward the projection lens 72 in the lower region of the light control region 22a, so that the upper edge is a cutoff line CL1. It is formed as a light distribution pattern along CL2.
 第1の配光パターンP3Lの下端縁は、前記実施形態における第1の配光パターンP1(図5A参照)の下端縁よりも下方に位置している。これは、空間光変調器22が前記実施形態の場合よりも上方側に変位していることによるものである。そしてこれにより、ロービーム用配光パターンPL2として、カットオフラインCL1、CL2よりも下方側の照射領域を多く確保するようになっている。 The lower edge of the first light distribution pattern P3L is located below the lower edge of the first light distribution pattern P1 (see FIG. 5A) in the above embodiment. This is because the spatial light modulator 22 is displaced upward as compared with the case of the above embodiment. As a result, as the low-beam light distribution pattern PL2, a large number of irradiation regions below the cutoff lines CL1 and CL2 are secured.
 なお、図7Aにおいては、光制御領域22aの全領域からの光が投影レンズ72へ向けて反射した場合に形成される第1の配光パターンP3の外形形状を2点鎖線で示している。 Note that, in FIG. 7A, the outer shape of the first light distribution pattern P3 formed when the light from the entire area of the light control area 22a is reflected toward the projection lens 72 is shown by a two-dot chain line.
 左右1対の第2の配光パターンP4L、P4Rは、ブラケット40の鉛直面部40Aにおける開口部40Aaの左右両側の上段に4つずつ配置された発光素子42からの直射光によって形成される配光パターンである。 The pair of left and right second light distribution patterns P4L and P4R are formed by the direct light from the light emitting elements 42 arranged in four rows above and below the openings 40Aa in the vertical surface portion 40A of the bracket 40. It is a pattern.
 各第2の配光パターンP4L、P4Rは、その形状および水平方向の形成位置については前記実施形態における各第2の配光パターンP2L、P2Rと同様である。ただし、その上端縁の位置がカットオフラインCL1、CL2に略沿っている点で前記実施形態の場合と異なっている。各第2の配光パターンP4L、P4Rの上端縁の上下方向の位置調整は、上段に位置する各発光素子42の上下方向の位置調整によって行うことが可能である。 The respective second light distribution patterns P4L and P4R are similar in shape and horizontal formation position to the second light distribution patterns P2L and P2R in the above embodiment. However, this is different from the case of the above embodiment in that the position of the upper end edge is substantially along the cutoff lines CL1 and CL2. The vertical position adjustment of the upper edge of each second light distribution pattern P4L, P4R can be performed by the vertical position adjustment of each light emitting element 42 located in the upper stage.
 図7Bに示すハイビーム用配光パターンPH2は、第1の配光パターンP3と左右1対の第2の配光パターンP4L、P4Rと左右1対の第2の配光パターンP5L、P5Rとの合成配光パターンである。 The high-beam light distribution pattern PH2 shown in FIG. 7B is a combination of the first light distribution pattern P3, the pair of left and right second light distribution patterns P4L, P4R, and the pair of left and right second light distribution patterns P5L, P5R. It is a light distribution pattern.
 第1の配光パターンP3は、光制御領域22aの全領域からの反射光によって形成される配光パターンである。 The first light distribution pattern P3 is a light distribution pattern formed by reflected light from the entire area of the light control area 22a.
 左右1対の第2の配光パターンP4L、P4Rは、ロービーム用配光パターンPL2の場合と同様である。 The pair of left and right second light distribution patterns P4L and P4R are the same as the case of the low beam light distribution pattern PL2.
 左右1対の第2の配光パターンP5L、P5Rは、ブラケット40の鉛直面部40Aにおける開口部40Aaの左右両側の下段に4つずつ配置された発光素子42からの直射光によって形成される配光パターンである。各第2の配光パターンP5L、P5Rは、H-H線を跨ぐようにして互いに同じ高さ位置に形成されているが、その位置は前記実施形態における各第2の配光パターンP2L、P2Rよりも多少上方側に変位している。各第2の配光パターンP5L、P5Rは、各第2の配光パターンP4L、P4Rおよび第1の配光パターンP3と部分的に重複している。 The pair of left and right second light distribution patterns P5L and P5R are light distributions formed by direct light from four light emitting elements 42 arranged in the lower tiers on both the left and right sides of the opening 40Aa in the vertical surface portion 40A of the bracket 40. It is a pattern. The respective second light distribution patterns P5L and P5R are formed at the same height position so as to straddle the HH line, but the positions thereof are the respective second light distribution patterns P2L and P2R in the above-described embodiment. It is displaced a little higher than. Each of the second light distribution patterns P5L and P5R partially overlaps with each of the second light distribution patterns P4L and P4R and the first light distribution pattern P3.
 本変形例に係る車両用灯具110のように、灯具配光パターンとしてロービーム用パターンPL2とハイビーム用パターンPH2とを選択的に形成し得る構成を採用した場合においても、前記実施形態の場合と同様の作用効果を得ることができる。 Similar to the case of the above-described embodiment, even in the case of adopting a configuration in which the low beam pattern PL2 and the high beam pattern PH2 can be selectively formed as the lamp light distribution pattern, like the vehicle lamp 110 according to the present modification. The effect of can be obtained.
 すなわち、ロービーム用パターンPL2を形成する際には、空間光変調器22の光制御によって形成される第1の配光パターンP3Lに対して、上段に位置する発光素子42のみを追加点灯させることによって、第2の配光パターンP4L、P4Rをロービーム用パターンPL2の一部として形成する。ハイビーム用パターンPH2を形成する際には、空間光変調器22の光制御によって形成される第1の配光パターンP3に対して、下段に位置する発光素子42をさらに追加点灯させることによって、第2の配光パターンP4L、P4RおよびP5L、P5Rをハイビーム用パターンPH2の一部として形成する。 That is, when the low beam pattern PL2 is formed, only the light emitting element 42 located in the upper stage is additionally turned on with respect to the first light distribution pattern P3L formed by the light control of the spatial light modulator 22. , The second light distribution patterns P4L and P4R are formed as part of the low beam pattern PL2. When the high beam pattern PH2 is formed, the light emitting element 42 located in the lower stage is additionally turned on with respect to the first light distribution pattern P3 formed by the light control of the spatial light modulator 22. Two light distribution patterns P4L, P4R and P5L, P5R are formed as part of the high beam pattern PH2.
 これにより、空間光変調器22による光制御の精度およびその光制御によって形成される第1の配光パターンP3L(またはP3)の明るさを維持した上で、ロービーム用パターンPL2(またはハイビーム用パターンPH2)としての光照射範囲を拡げることができる。 As a result, while maintaining the accuracy of the light control by the spatial light modulator 22 and the brightness of the first light distribution pattern P3L (or P3) formed by the light control, the low beam pattern PL2 (or the high beam pattern). The light irradiation range as PH2) can be expanded.
 なお、ハイビーム用パターンPH2を形成する際、下段に位置する発光素子42を追加点灯させる一方で、上段に位置する発光素子42を消灯させる構成とすることも可能である。 When forming the high beam pattern PH2, it is possible to additionally light up the light emitting element 42 located in the lower stage and turn off the light emitting element 42 located in the upper stage.
 前記変形例においては、空間光変調器22の光制御領域22aの左右両側に4つの発光素子42がそれぞれ上下2段で配置されているものとして説明した。これらの発光素子42をそれぞれ上下3段以上で配置することも可能である。 In the above modification, the four light emitting elements 42 are arranged in the upper and lower two stages on the left and right sides of the light control region 22a of the spatial light modulator 22, respectively. It is also possible to arrange these light emitting elements 42 in three or more stages above and below, respectively.
 なお、前記実施形態およびその変形例にお示した数値は一例にすぎず、これらを適宜異なる値に設定してもよい。 Note that the numerical values shown in the above-described embodiment and its modified examples are merely examples, and these may be set to different values as appropriate.
 本開示は、前記実施形態およびその変形例に記載された構成に限定されるものではなく、これ以外の種々の変更を加えた構成が採用可能である。
 本出願は、2018年11月22日出願の日本出願第2018-219758号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure is not limited to the configurations described in the embodiments and the modifications thereof, and configurations with various modifications other than the above may be adopted.
This application claims priority based on Japanese application No. 2018-219758 filed on November 22, 2018, and incorporates all the contents described in the Japanese application.

Claims (5)

  1.  光源と、
     前記光源からの光を制御する空間光変調器と、
     前記空間光変調器からの光を灯具前方へ向けて照射する投影レンズと、を備える車両用灯具において、
     前記空間光変調器は、
      光制御領域を構成する複数の光制御素子と、
      前記光制御領域の周囲に配置される、少なくとも1つの発光素子とを備える、車両用灯具。
    A light source,
    A spatial light modulator for controlling light from the light source,
    In a vehicular lamp including a projection lens that irradiates the light from the spatial light modulator toward the front of the lamp,
    The spatial light modulator,
    A plurality of light control elements constituting a light control region,
    A vehicular lamp comprising: at least one light emitting element, which is arranged around the light control region.
  2.  前記少なくとも一つの発光素子の発光面は前記投影レンズに向いている、請求項1に記載の車両用灯具。 The vehicular lamp according to claim 1, wherein a light emitting surface of the at least one light emitting element faces the projection lens.
  3.  前記空間光変調器は複数の発光素子を備え、
     前記複数の発光素子は、前記灯具の左右方向において前記光制御領域の両側にそれぞれ配置されている、請求項1又は2に記載の車両用灯具。
    The spatial light modulator comprises a plurality of light emitting elements,
    The vehicular lamp according to claim 1 or 2, wherein the plurality of light emitting elements are arranged on both sides of the light control region in a left-right direction of the lamp.
  4.  前記少なくとも1つの発光素子は、前記光制御領域よりも灯具前方に位置している、請求項1~3のいずれか一項に記載の車両用灯具。 The vehicle lamp according to any one of claims 1 to 3, wherein the at least one light emitting element is located in front of the lamp with respect to the light control area.
  5.  前記空間光変調器は前記複数の発光素子を備え、
     前記複数の発光素子は、前記灯具の上下方向において2段で配置されている、請求項1~4のいずれか一項に記載の車両用灯具。
    The spatial light modulator comprises the plurality of light emitting elements,
    The vehicular lamp according to any one of claims 1 to 4, wherein the plurality of light emitting elements are arranged in two stages in a vertical direction of the lamp.
PCT/JP2019/044424 2018-11-22 2019-11-12 Vehicular lamp WO2020105516A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-219758 2018-11-22
JP2018219758A JP2020087686A (en) 2018-11-22 2018-11-22 Vehicular lighting

Publications (1)

Publication Number Publication Date
WO2020105516A1 true WO2020105516A1 (en) 2020-05-28

Family

ID=68999830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044424 WO2020105516A1 (en) 2018-11-22 2019-11-12 Vehicular lamp

Country Status (3)

Country Link
JP (1) JP2020087686A (en)
CN (2) CN111207362B (en)
WO (1) WO2020105516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254385B2 (en) * 2016-09-13 2022-02-22 Honda Motor Co., Ltd. Headlight device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232044A (en) * 2009-03-27 2010-10-14 Stanley Electric Co Ltd Lamp for vehicle
JP2017091876A (en) * 2015-11-12 2017-05-25 トヨタ自動車株式会社 Vehicle headlight
DE102016216616A1 (en) * 2016-09-02 2018-03-08 Osram Gmbh Lighting system and vehicle headlight with a lighting system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948194B2 (en) * 2012-09-13 2016-07-06 株式会社小糸製作所 Vehicle lamp control method and vehicle lamp
JP6430120B2 (en) * 2014-01-23 2018-11-28 株式会社小糸製作所 Motorcycle headlights
FR3056680B1 (en) * 2016-09-29 2018-11-09 Valeo Vision LIGHTING SYSTEM FOR MOTOR VEHICLE
JP6809946B2 (en) * 2017-03-17 2021-01-06 トヨタ自動車株式会社 Vehicle headlight device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232044A (en) * 2009-03-27 2010-10-14 Stanley Electric Co Ltd Lamp for vehicle
JP2017091876A (en) * 2015-11-12 2017-05-25 トヨタ自動車株式会社 Vehicle headlight
DE102016216616A1 (en) * 2016-09-02 2018-03-08 Osram Gmbh Lighting system and vehicle headlight with a lighting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254385B2 (en) * 2016-09-13 2022-02-22 Honda Motor Co., Ltd. Headlight device

Also Published As

Publication number Publication date
CN209893295U (en) 2020-01-03
CN111207362B (en) 2022-09-02
CN111207362A (en) 2020-05-29
JP2020087686A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6516495B2 (en) Vehicle lamp
JP6174337B2 (en) Vehicle lighting
KR100815039B1 (en) Lamp unit of vehicular headlamp
KR100934682B1 (en) Luminaire Units for Vehicle Headlights
JP5133862B2 (en) Lighting fixtures for vehicles
JP5666882B2 (en) High beam lamp unit
JP5714346B2 (en) Vehicle headlamp
JP2014013758A (en) Light module
JP2010040527A (en) Lighting apparatus for automobile
JP2007080605A (en) Lamp unit for head light for vehicle
JP4735424B2 (en) Vehicle lighting
KR20080087657A (en) Lamp unit for vehicular headlamp
JP2016039021A (en) Vehicular lighting fixture
JP2015115276A (en) Vehicular lighting fixture
JP2008177024A (en) Headlamp for vehicle
JP2013251145A (en) Vehicular headlight
JP6432902B2 (en) Lamp unit
JP2007234562A (en) Lamp unit for vehicular headlamp
WO2020105516A1 (en) Vehicular lamp
JP6940632B2 (en) Vehicle lighting
JP4743123B2 (en) Vehicle headlamp
JP7021999B2 (en) Vehicle lighting
JP4181979B2 (en) Vehicle headlamp
JP6823444B2 (en) Vehicle lighting
KR101236860B1 (en) Headlight for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887295

Country of ref document: EP

Kind code of ref document: A1