WO2020105413A1 - Learning system and learning method - Google Patents
Learning system and learning methodInfo
- Publication number
- WO2020105413A1 WO2020105413A1 PCT/JP2019/043226 JP2019043226W WO2020105413A1 WO 2020105413 A1 WO2020105413 A1 WO 2020105413A1 JP 2019043226 W JP2019043226 W JP 2019043226W WO 2020105413 A1 WO2020105413 A1 WO 2020105413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- output
- answer
- unit
- electroencephalogram
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B5/00—Electrically-operated educational appliances
- G09B5/02—Electrically-operated educational appliances with visual presentation of the material to be studied, e.g. using film strip
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B7/00—Electrically-operated teaching apparatus or devices working with questions and answers
- G09B7/02—Electrically-operated teaching apparatus or devices working with questions and answers of the type wherein the student is expected to construct an answer to the question which is presented or wherein the machine gives an answer to the question presented by a student
- G09B7/04—Electrically-operated teaching apparatus or devices working with questions and answers of the type wherein the student is expected to construct an answer to the question which is presented or wherein the machine gives an answer to the question presented by a student characterised by modifying the teaching programme in response to a wrong answer, e.g. repeating the question, supplying a further explanation
Definitions
- the present invention relates to a learning system and a learning method.
- Patent Document 1 an understanding level is calculated using a determination result of an answer to a question, and a maximum execution time for executing a specific application is calculated based on the understanding level, thereby motivating continuous learning.
- a learning support device is disclosed.
- the learning support device disclosed in Patent Document 1 uses only the determination result of the answer to the question in order to calculate the understanding level. Therefore, the state of detailed proficiency level of the problem is unknown. As a result, it is difficult for the learning support device disclosed in Patent Document 1 to effectively increase the proficiency level for problems and learning.
- the present invention provides a learning system and a learning method that effectively improve the learner's proficiency level.
- a learning system includes an output unit that outputs a first problem to a user, an acquisition unit that acquires an answer of the user to the first problem, and an electroencephalogram measurement that measures an electroencephalogram of the user. And a control unit, wherein the control unit includes (a) a first electroencephalogram of the user based on a first electroencephalogram that is included in the electroencephalogram and starts from a time point when the first problem is output. Of the answer, (b) determining whether the answer is correct or incorrect, and (c) determining the content to be output to the output unit based on the presence or absence of the first inspiration and the accuracy. The contents are output to the output unit.
- a learning method includes a first output step of outputting a first question to a user, an obtaining step of obtaining an answer of the user to the first question, and measuring an electroencephalogram of the user.
- An electroencephalogram measurement step and a control step are included, and the control step includes: (a) a user's electroencephalogram based on a first electroencephalogram, which is included in the electroencephalogram and starts from a time point when the first problem is output.
- a program according to an aspect of the present invention is a computer program for executing a learning method, including (f1) outputting a first problem to a user via an output device, and (f2) responding to the first problem.
- the answer of the user is acquired, (f3) the electroencephalogram of the user is measured, and (f4) based on the first electroencephalogram, which is included in the electroencephalogram and has the time point at which the first problem is output as a starting point,
- the presence or absence of the first inspiration of the user is determined, (f5) the correctness of the answer is determined, and (f6) the content output by the output device is determined based on the presence or absence of the first inspiration and the correctness.
- the computer is made to determine and output to the output device.
- a learning system and a learning method that effectively improve the learner's proficiency level are realized.
- FIG. 1 is a diagram showing an external configuration of the learning system according to the first embodiment.
- FIG. 2 is a diagram showing a hardware configuration of the learning system according to the first embodiment.
- FIG. 3 is a diagram showing functional blocks of the learning system according to the first embodiment.
- FIG. 4 is a diagram showing the timing of acquisition and display of the first electroencephalogram performed by the learning system.
- FIG. 5 is a flowchart showing the processing of the first signal determination unit.
- FIG. 6 is a flowchart showing the processing of the answer determination unit.
- FIG. 7 is a diagram showing a state determined by the state determination unit.
- FIG. 8 is a diagram illustrating processing of the presentation unit corresponding to each state.
- FIG. 9 is a diagram showing a screen displayed by the output unit.
- FIG. 1 is a diagram showing an external configuration of the learning system according to the first embodiment.
- FIG. 2 is a diagram showing a hardware configuration of the learning system according to the first embodiment.
- FIG. 3 is a diagram
- FIG. 10 is a flowchart showing the processing of the learning system according to the first embodiment.
- FIG. 11 is a flowchart of the learning method according to the first embodiment.
- FIG. 12 is a diagram showing functional blocks of the learning system according to the second embodiment.
- FIG. 13 is a diagram showing the timing of acquisition and display of the second electroencephalogram performed by the learning system.
- FIG. 14 is a flowchart showing the processing of the second signal determination unit.
- FIG. 15 is a diagram showing functional blocks of the learning system according to the third embodiment.
- FIG. 16 is a flowchart showing the processing of the authentication unit according to the third embodiment.
- FIG. 17 is a diagram showing a state determined by the state determination unit in the third embodiment.
- FIG. 18 is a diagram showing processing of the presentation unit corresponding to each state in the third embodiment.
- FIG. 19 is a flowchart showing a method for improving the accuracy of determination of the presence or absence of inspiration in the third embodiment.
- FIG. 20 is a diagram showing another
- each diagram is a schematic diagram, and is not necessarily an exact illustration. Further, in each drawing, the same reference numerals are given to substantially the same configurations, and overlapping description may be omitted or simplified.
- FIG. 1 is a diagram showing an external configuration of a learning system 1000 according to the first embodiment.
- the learning system 1000 includes a terminal device 101 and an electroencephalograph 102.
- the terminal device 101 outputs the problem and presents the problem to the user 100.
- the electroencephalograph 102 measures the electroencephalogram of the user 100.
- a user 100 who is a learner operates the terminal device 101 while wearing the electroencephalograph 102. Specifically, the user 100 inputs the answer to the question by operating the terminal device 101. Thereby, the terminal device 101 acquires the answer.
- the terminal device 101 acquires the electroencephalogram of the user 100 for the problem from the electroencephalograph 102.
- the terminal device 101 determines the content to be output next by the terminal device 101 (for example, a problem that is more difficult than the problem presented earlier), based on the correctness of the answer and the electroencephalogram.
- the terminal device 101 may be a tablet terminal, a smartphone, a personal computer, a smart speaker, or the like.
- the electroencephalograph 102 may be any device that can be worn by the user 100 and can measure brain waves, and is, for example, an earhook type device that can be worn on the ear of the user 100. Further, it may be headgear or a headcap installed on the head of the user 100.
- the state of proficiency level for a problem can be determined based on the answer to the problem of the user 100 and the electroencephalogram for the process of solving the problem. Next, by tackling the content according to the state of the proficiency level (for example, a problem that is more difficult than the problem presented earlier), the proficiency level of the user 100 can be effectively improved.
- FIG. 2 is a diagram showing a hardware configuration of the learning system 1000 according to the first embodiment.
- the terminal device 101 includes a display device 103, a CPU (Central Processing Unit) 104, a ROM (Read Only Memory) 105, a RAM (Random Access Memory) 107, and a communication unit 108, which are connected to each other via a bus 109. ..
- a display device 103 a CPU (Central Processing Unit) 104, a ROM (Read Only Memory) 105, a RAM (Random Access Memory) 107, and a communication unit 108, which are connected to each other via a bus 109. ..
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the electroencephalograph 102 wirelessly communicates with the communication unit 108.
- the communication method may be wired.
- the display device 103 is hardware, which will be described in detail later, but corresponds to the output unit 210 shown in FIG. 3, and is composed of, for example, a liquid crystal display or an organic EL (Electro Luminescence) display.
- the CPU 104 is hardware corresponding to the control unit 200 described later. Further, the CPU 104 may execute respective processes of the electroencephalogram measurement unit 201 and the acquisition unit 206 described later.
- the ROM 105 holds, for example, the program 106 read and executed by the CPU 104. The CPU 104 executes the processing of the control unit 200 by executing the program 106.
- a database in which a plurality of questions associated with correct answers and a database in which a plurality of questions associated with difficulty levels are stored may be recorded in a part of the ROM 105.
- the RAM 107 temporarily stores the data generated by the processing of the CPU 104.
- the terminal device 101 may be provided with a memory for recording the above database and connected to the bus 109.
- the communication unit 108 wirelessly transmits and receives signals to and from the electroencephalograph 102.
- FIG. 3 is a diagram showing functional blocks of the learning system 1000 according to the first embodiment shown in FIG.
- the learning system 1000 shown in FIG. 3 includes an electroencephalogram measurement unit 201, a first signal determination unit 204, an acquisition unit 206, an answer determination unit 207, a state determination unit 208, a presentation unit 209, and an output unit 210.
- the first signal determination unit 204, the answer determination unit 207, the state determination unit 208, and the presentation unit 209 are components included in the control unit 200.
- the control unit 200 includes, for example, at least one processor. Further, each component other than the electroencephalogram measurement unit 201 included in the learning system 1000 is included in the terminal device 101.
- the electroencephalogram measurement unit 201 includes, for example, an electroencephalograph 102 and a part of the functions of the terminal device 101. Note that a part of this function may be included in the control unit 200 of the terminal device 101. Further, all the functions of the electroencephalogram measurement unit 201 may be included in the control unit 200 of the terminal device 101.
- the output unit 210 outputs the first problem to the user 100.
- the output unit 210 is, for example, a liquid crystal display, an organic EL display, or the like, and displays an image of the content according to the signal of the presentation unit 209 included in the control unit 200. That is, outputting the first question to the user 100 means displaying the first question on the display.
- the output unit 210 may display at least one of a question next to the first question and a response.
- the next question or response is the question or response selected by the presentation unit 209.
- this response may be a message to the user 100, and may be, for example, content prompting a break. That is, the output unit 210 displays the question or the response (message) selected by the presentation unit 209 as an image.
- the output unit 210 may be a speaker and may output a voice having contents according to the signal from the presentation unit 209.
- the acquisition unit 206 acquires the answer of the user 100 to the first problem.
- the acquisition unit 206 is realized by part of the functions of the processor and hardware.
- This hardware is, for example, a means such as a keyboard, a mouse, a remote controller, or a microphone for receiving the operation of the user 100, that is, a means for inputting the answer of the user 100 to the learning system 1000.
- the acquisition unit 206 may be realized by a touch panel that can be input from the screen and / or a partial function of the processor. Further, the acquisition unit 206 may acquire the answer of the user 100 to the next question of the first question, that is, the question other than the first question.
- the acquisition unit 206 notifies the answer determination unit 207 of the answer and the timing at which the answer is acquired.
- the answer determination unit 207 determines whether the answer to the question of the user 100 is correct or incorrect. Specifically, the answer determination unit 207 determines the correctness of the answer to the first question of the user 100 obtained from the acquisition unit 206. In order to make the determination, a database in which a plurality of questions recorded in the ROM 105 and associated with the correct answer are stored may be used. Further, the timing at which the answer is acquired from the acquisition unit 206 is also obtained. Further, the status determination unit 208 is notified of the correctness of the determined answer and the timing at which the answer is acquired.
- the electroencephalogram measurement unit 201 measures the electroencephalogram of the user 100.
- the electroencephalogram measurement unit 201 is realized by the electroencephalograph 102 and a part of the functions of the processor. Alternatively, the electroencephalogram measurement unit 201 may be realized by a part of the functions of the processor. In this case, the electroencephalogram of the user 100 is measured by receiving the output signal from the electroencephalograph 102.
- the electroencephalograph 102 is attached to the user 100 and is prepared so that the electroencephalogram of the user 100 can be acquired.
- the electroencephalograph 102 is an earhook (ear-hook) device, and has a first electrode arranged so as to contact the head and a reference electrode arranged so as to contact the earlobe.
- the first electrode is included in the support portion 102a that is sandwiched between the auricle and the temporal region and is in contact with the head portion
- the reference electrode is the base portion 102b that is in contact with the surface of the earlobe. May be included in.
- the ground electrode (the electrode that gives the potential of the body ground) may be included in the base portion 102b that is in contact with the back surface of the earlobe.
- the electroencephalogram of the user 100 which is measured and output by the electroencephalograph 102, may indicate a time-series change in “voltage value between the first electrode and the reference electrode” with reference to the reference electrode.
- the plurality of voltage values indicated by the electroencephalogram and the plurality of times when the plurality of voltage values are measured correspond to each other one to one.
- it may be a device worn on the head, in which case it may include a first electrode worn on the scalp of the user 100 or the forehead of the user 100, and a reference electrode worn on the earlobe of the user 100.
- the electroencephalogram measurement unit 201 transmits the electroencephalogram acquired by the electroencephalograph 102 to the first signal determination unit 204.
- the procedure for transmitting the electroencephalogram from the electroencephalogram measurement unit 201 to the first signal determination unit 204 is as follows. First, the electroencephalogram measurement unit 201 inputs an electric signal indicating the electroencephalogram of the user 100 to the amplifier. The amplifier differentially amplifies the electric signal and outputs it to a low pass filter (low pass filter). Next, the low-pass filter removes unnecessary high frequency components and outputs them to the AD converter. The AD converter converts the analog signal output from the amplifier into a digital signal and outputs the digital signal. Finally, the digital signal converted by the AD converter is wirelessly transmitted to the first signal determination unit 204 as an electric signal. The amplifier, the low-pass filter, and the AD converter may be included in the electroencephalogram measurement unit 201.
- the first signal determination unit 204 determines the presence / absence of the first inspiration of the user 100 based on the first electroencephalogram included in the electroencephalogram and starting from the time when the problem is output.
- the first electroencephalogram is extracted from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201.
- the time when the problem is output is the time when the presentation unit 209 notifies the problem.
- the digital signal obtained by the electroencephalogram measurement unit 201 will be described as the electroencephalogram of the user 100.
- the first signal determination unit 204 extracts, from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201, a first electroencephalogram starting from the time when the problem is output. Then, the first signal determination unit 204 determines the presence or absence of the first inspiration of the user 100 based on the first brain wave. More specifically, the first signal determination unit 204 extracts the first electroencephalogram from the electroencephalogram in the time range of 200 msec or more and 2000 msec or less, starting from the time when the problem is output. When there is the first inspiration, specifically, it indicates a psychological state in which a reflexive inspiration occurs immediately after the problem is output. Furthermore, the first signal determination unit 204 notifies the state determination unit 208 of the presence or absence of the determined first inspiration.
- theta waves included in the brain waves are used as the first method of determining the presence of inspiration.
- the theta wave will be described here.
- a theta wave is a rhythm wave that represents inspiration during mental activity, and its frequency band is 4 to 7 Hz.
- the psychological state or physiological state represented by the theta wave is an inspirational state or a slumbering state.
- the first signal determination unit 204 determines the presence or absence of the first inspiration within the predetermined time range after the problem is displayed, from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201.
- the predetermined time range is a range from 200 msec to 2000 msec with the timing at which the output unit 210 displays a problem as a starting point (that is, 0 msec), and the first electroencephalogram is extracted from the electroencephalogram in this time range.
- the first signal determination unit 204 extracts a theta wave band component of the first brain wave from the first brain wave, and based on the extracted theta wave band component, the first inspiration of the user 100. Determine the presence or absence.
- the procedure for extracting the theta wave component of the first electroencephalogram from the first electroencephalogram is as follows.
- the digital signal converted by the AD converter included in the electroencephalogram measurement unit 201 is received by the communication unit 108 shown in FIG. Further, the communication unit 108 outputs the digital signal to the bandpass filter.
- the bandpass filter limits the signal band from 2 Hz to 10 Hz. Through such signal processing, the theta wave band component of the first electroencephalogram is extracted from the first electroencephalogram.
- the first signal determination unit 204 determines the presence or absence of the first inspiration in the theta wave band component by using an index such as Vpp (Volt peak-to-peak).
- Vpp is a value calculated from the difference between the maximum voltage and the minimum voltage in voltage.
- the first signal determination unit 204 determines that the first inspiration is present when Vpp in the first brain wave of the user 100 is equal to or greater than a predetermined threshold value.
- the predetermined threshold value is, for example, 10 ⁇ V, but is not limited to this.
- Vpp is less than this predetermined threshold value, it is determined that there is no first inspiration.
- the first signal determination unit 204 extracts the first electroencephalogram starting from the time when the problem is output, but the time range is not limited to the above.
- the extraction start time may be 50 msec or more and 1000 msec or less, preferably 100 msec or more and 800 msec or less, more preferably 150 msec or more and 300 msec or less, starting from the time when the problem is output.
- the time to end the extraction may be 1000 msec or more and 4000 msec or less, preferably 1400 msec or more and 3000 msec or less, more preferably 1500 msec or more and 2500 msec or less, starting from the time when the problem is output. ..
- the predetermined threshold is not limited to the above.
- the predetermined threshold may be 1 ⁇ V or more and 50 ⁇ V or less, preferably 3 ⁇ V or more and 30 ⁇ V or less, and more preferably 6 ⁇ V or more and 20 ⁇ V or less. Further, the predetermined threshold does not have to be always constant. It is assumed that the predetermined threshold value varies depending on the individual user 100, and that the same user 100 varies depending on the daily psychological state. Therefore, the first signal determination unit 204 may determine an individual threshold value corresponding to each user 100.
- the electroencephalogram measurement unit 201 measures the electroencephalogram in the above-described time range as the first electroencephalogram, and the first signal determination unit 204 acquires the electroencephalogram from the electroencephalogram measurement unit 201 without extracting the first electroencephalogram. Good.
- the state determination unit 208 determines the state of the proficiency level of the user 100 with respect to the question based on the determination result of the first signal determination unit 204 and the determination result of the answer determination unit 207. Specifically, the state determination unit 208 determines four states described below based on the presence / absence of the first inspiration and the correctness of the answer. That is, the state where the first inspiration is present and the answer is correct is state 1, the state where the first inspiration is present and the answer is incorrect is state 2, and the state where the first inspiration is not present and the answer is correct is State 3 is set, and a state in which there is no first inspiration and the answer is incorrect is determined as state 4. Further, the presenting unit 209 is notified of the determined state. Further, a more detailed state may be determined by using the timing when the answer notified by the answer determination unit 207 is acquired.
- the presentation unit 209 determines the content to be output to the output unit 210 according to the determination result of the state determination unit 208, and causes the output unit 210 to output the content.
- the presentation unit 209 refers to a database that stores a plurality of questions associated with the degree of difficulty, selects a question to be presented to the user 100 from the database, and causes the output unit 210 to output the question.
- the presentation unit 209 may cause the output unit 210 to output the correctness of the response and the answer as well as the question.
- the presentation unit 209 may cause the output unit 210 to sequentially output problems other than the first problem and the next problem. Details of the contents displayed by the output unit 210 corresponding to each state will be described with reference to FIG. Further, the presentation unit 209 notifies the first signal determination unit 204 of the timing when the output unit 210 displays the question, that is, the timing when the question is output.
- FIG. 4 is a diagram showing the timing of acquisition and display of the first electroencephalogram performed by the learning system 1000 shown in FIG.
- the first signal determination unit 204 extracts, from the electroencephalogram measured by the electroencephalogram measurement unit 201, the first electroencephalogram at the time when the problem is output, that is, the time t1 when the problem is displayed as the starting point.
- the time when the problem is output is the time when the presentation unit 209 notifies the problem.
- the first electroencephalogram starting from time t1 is an electroencephalogram in the time range between the time point 200 msec after time t1 and the time point 2000 msec after time t1 (that is, t2).
- the first signal determination unit 204 determines the presence or absence of the first inspiration of the user 100 based on this first brain wave. Specifically, the theta wave band component of the first electroencephalogram is extracted from the first electroencephalogram, and the presence or absence of the first inspiration of the user 100 is determined based on the extracted theta wave band component.
- the acquisition unit 206 acquires the answer at the time when the answer to the question output at the time t1 is acquired, that is, at the time t3 when the answer is input, and the timing at which the answer is acquired.
- the answer input time t3 is later than the time t2 at which the acquisition of the first electroencephalogram is completed, that is, t3> t2> t1.
- the answer input time t3 may be earlier than the time t2 at which the acquisition of the first electroencephalogram is completed. That is, t2> t3> t1 may be satisfied.
- the answer determination unit 207 determines whether the answer is correct at time t4.
- the time relationship between the time t4 for determining whether the answer is correct and the time t3 for inputting the answer may be t4> t3 as shown in FIG. 3, but the time relationship is not limited to this.
- the presentation unit 209 causes the output unit 210 to output the correctness of the answer and the response at time t5.
- the time relationship between the time t5 at which the correctness of the answer and the response are output and the time t4 at which the correctness of the answer is determined may be t5> t4.
- the presenting unit 209 may cause the output unit 210 to output the next question at the same time, at this time t5, in accordance with not only the correctness of the answer and the response but also the state determined by the state determining unit 208. Further, the presentation unit 209 may output the next question to the output unit 210 after the output unit 210 outputs the correctness of the answer and the response, not at the same time.
- the time t3 when the answer is input and the time t4 when the correctness of the answer is determined are not particularly set, but are, for example, 100 msec to 10000 msec, preferably 1000 msec to 8000 msec, and more preferably 1500 msec to 5000 msec. is there.
- the time t4 for determining the correctness and the time t5 for outputting the correctness of the answer and the response are not particularly defined, but are, for example, 100 msec to 10000 msec, preferably 1000 msec to 8000 msec, and more preferably, It is 1500 msec to 5000 msec.
- FIG. 5 is a flowchart showing the process of the first signal determination unit 204 shown in FIG.
- the first signal determination unit 204 receives a signal regarding the electroencephalogram of the user 100 from the electroencephalogram measurement unit 201 (step S100).
- the signal contains brain waves, but may also contain noise.
- noise sources include device noise from outside the human body, commercial AC noise, myoelectric noise from the human body, ocular noise from the human body, problem presentation, or movements unrelated to answer input. Various noises such as noise and background brain waves can be considered. Further, the number of noise sources is not limited to one, and two or more noise sources may be considered.
- the first signal determination unit 204 performs noise removal processing to extract a waveform including a specific frequency band from the received signal (step S101). For example, the first signal determination unit 204 extracts an electroencephalogram including a specific frequency band by performing band limitation processing on the signal, for example, 2 Hz to 10 Hz in a bandpass filter. This removes noise.
- the first signal determination unit 204 receives, from the presentation unit 209, information indicating the timing of presenting the question to the user 100 (step S102).
- the first signal determination unit 204 cuts out an electroencephalogram signal in a predetermined time range from the signal relating to the electroencephalogram of the user 100 from which noise has been removed in step S101, starting from the timing indicated by the information received in step S102 (step S103). ..
- the first signal determination unit 204 may cut out an electroencephalogram signal from 200 msec to 2000 msec, starting from the timing of problem display.
- the cut-out brain wave signal is the first brain wave.
- the first signal determination unit 204 calculates the Vpp value for the theta wave component in the predetermined time range cut out in step S103 (step S104).
- the first signal determination unit 204 determines whether Vpp calculated in step S104 is greater than or equal to a threshold value.
- the threshold value may be set using a predetermined value (step S105).
- step S105 determines that there is a first inspiration (step S106).
- step S105 determines that there is no first inspiration (step S107).
- FIG. 6 is a flowchart showing the processing of the answer determination unit 207 shown in FIG.
- the answer determination unit 207 receives the answer to the first question of the user 100 from the acquisition unit 206 (step S200).
- the answer determination unit 207 refers to a database in which a plurality of questions associated with the correct answer recorded in the ROM 105 are stored in order to determine whether the received answer is correct or incorrect (step S201).
- the answer determination unit 207 refers to the database in which a plurality of questions stored in the ROM 105 and associated with the correct answer are stored, and determines whether or not the received answer matches the correct answer (step S202). ..
- the answer determination unit 207 determines that the answer to the first question is a correct answer when the determination result in step S202 is YES (step S203).
- step S204 determines that the answer to the first question is an incorrect answer.
- FIG. 7 is a diagram showing states determined by the state determination unit 208 based on the results of FIGS. 5 and 6.
- the state determination unit 208 determines whether or not the first inspiration is determined by the first signal determination unit 204 (whether the inspiration is present / absent) and the correctness (correctness / incorrectness) of the answer determined by the answer determination unit 207. Determine the state of proficiency of.
- the state determination unit 208 determines the state of proficiency as described below.
- the state determination unit 208 determines the state of the user 100 as state 1 when the first inspiration is “present” and the answer is “correct”.
- This state 1 is a state in which the displayed question has a reflexive inspiration and is the correct answer, and the displayed question is sufficiently understood. That is, the user 100 is in a familiar state.
- the state determination unit 208 determines the state of the user 100 as state 2 when the first inspiration is “present” and the answer is “wrong answer”.
- the state 2 is a state in which the displayed question has a reflexive inspiration and is an incorrect answer, and the displayed question has a mistake in the calculation process or entry. That is, the user 100 is in a careless miss state.
- the state determination unit 208 determines the state of the user 100 to be state 3 when the first inspiration is “none” and the answer is “correct”. In this state 3, there is no reflexive inspiration to the displayed question, and the answer is correct, and the proficiency level is insufficient because the calculation process up to the answer is not fixed for the displayed question. It shows the state. That is, the user 100 is in a state of being unfamiliar and requiring practice.
- the state determination unit 208 determines the state of the user 100 to be state 4 when the first inspiration is “none” and the answer is “wrong answer”.
- This state 4 is a state in which there is no reflective inspiration for the displayed question, and it is an incorrect answer, and the displayed question cannot be solved. That is, the user 100 is in an unskilled state and needs a break.
- the state determination unit 208 determines the state of the user 100 based on the presence / absence of the first inspiration (whether the inspiration is present / absent) and the correctness of the answer (correctness / incorrectness), but other methods. May be used to determine.
- the state of the user 100 may be determined by using the timing when the answer acquired by the acquisition unit 206 is acquired. Specifically, when questions are presented one after another, if the timing at which the answer to each question is acquired gradually becomes earlier, it indicates a state where the proficiency level is gradually increasing. On the other hand, when questions are presented one after another, if the timing of obtaining the answer to each question is constant or gradually delayed, the proficiency level remains constant.
- the state of the user 100 is determined only by the presence / absence of the first inspiration (whether the inspiration is present / absent) and the correctness (correctness / incorrectness) of the answer, and when the answer is acquired.
- the state of the user 100 may be determined without using a certain timing.
- FIG. 8 is a diagram showing processing of the presentation unit 209 corresponding to each state shown in FIG. 7.
- the presentation unit 209 selects the content to be displayed on the output unit 210 according to the determination result by the state determination unit 208.
- the presentation unit 209 continuously selects a response that prompts the user to solve the problem as the content to be displayed on the output unit 210. Then, the presentation unit 209 continuously causes the output unit 210 to output a display prompting the user to solve the problem.
- the reason why such a display is made is that when the user 100 is in state 1, it is considered that the user 100 is in a state of high proficiency.
- the presentation unit 209 may continuously select a response such as “good condition” as a response prompting the user to solve the problem.
- the presenting unit 209 determines the second problem that is more difficult than the first problem as the content to be displayed on the output unit 210. Then, the presentation unit 209 causes the output unit 210 to output the second problem that is more difficult than the first problem.
- the presenting unit 209 selects a response prompting the user to calmly solve the problem as the content to be displayed on the output unit 210. Then, the presentation unit 209 causes the output unit 210 to output a display prompting the user to calmly solve the problem.
- the reason why such a display is performed is that when the user 100 is in state 2, it is considered that the user 100 is in a careless miss.
- the presentation unit 209 may select a response that prompts a specific action, such as “calmly calculate,” as a response that calmly solves the problem.
- the presentation unit 209 determines the third problem having the same difficulty level as the first problem as the content to be displayed on the output unit 210. Then, the presentation unit 209 causes the output unit 210 to output the third problem having the same difficulty level as the first problem.
- the presentation unit 209 selects the response prompting the user to practice the problem solving faster than this time as the content to be displayed on the output unit 210. To do. Then, the presentation unit 209 causes the output unit 210 to output a display that prompts the user to solve the problem quickly.
- the reason why such a display is made is that when the user 100 is in the state 3, it is considered that the user 100 is in an unfamiliar state and requires practice.
- the presentation unit 209 determines a response that prompts the user 100 to focus on the next problem and promptly solve the problem, for example, a response that prompts a specific action such as “Let's solve the next problem”. You may.
- the presentation unit 209 sets the content displayed on the output unit 210 to the third problem of the same difficulty level as the first problem, or the first problem. Determine a fourth problem, which is simpler than the problem. Then, the presentation unit 209 causes the output unit 210 to output the third problem having the same difficulty level as the first problem or the fourth problem that is simpler than the first problem.
- the presenting unit 209 selects a response prompting a break as the content to be displayed on the output unit 210. Then, the presentation unit 209 causes the output unit 210 to output a display prompting a break.
- the reason why such a display is performed is that when the user 100 is in state 4, it is considered that the user 100 is in an unfamiliar state and needs a break.
- the presentation unit 209 may determine a response that prompts a specific action, such as “let's solve the next problem after the break”, as the response that prompts the break.
- specific contents of the response prompting the break include, for example, contents and voice that allow the user 100 to relax.
- the presentation unit 209 does not cause the output unit 210 to display a further problem when the determination result of the state determination unit 208 is state 4.
- the presentation unit 209 causes the output unit 210 to output both the question and the response, but either one may be output to the output unit 210.
- FIG. 9 is a diagram showing a screen 300 displayed by the output unit 210 according to the display content determined in FIG.
- the output unit 210 displays a screen 300 including a question display field 301, a response display field 302, an answer input field 303, and a correctness display field 304.
- the question selected by the presenting unit 209 is displayed in the question display field 301.
- the answer input field 303 the answer entered by the user 100 is displayed.
- a plurality of options may be displayed in the answer input field 303. In this case, any one of the plurality of options is selected as the answer of the user 100 and displayed in the answer input field 303 in a mode different from the remaining options.
- the correct / incorrect display column 304 displays whether or not the user 100's answer to the displayed question was correct.
- the response display field 302 displays the response determined by the presentation unit 209. For example, when the state determining unit 208 determines that the user 100 is in the state 1, the response display field 302 displays a response of “good condition”. Further, the output unit 210 may display the next question according to the determination result by the state determination unit 208.
- FIG. 10 is a flowchart showing the processing of the learning system 1000 according to the first embodiment.
- the output unit 210 displays the question selected by the presentation unit 209 (step S300). At this time, the first problem is displayed in the problem display field 301 of the screen 300 shown in FIG.
- the first signal determination unit 204 extracts, from the electroencephalogram measured by the electroencephalogram measurement unit 201, a first electroencephalogram within a time range defined starting from the time t1 of the question display shown in FIG. 4 (step S301).
- the electroencephalogram measurement unit 201 constantly measures the electroencephalogram of the user 100 and records the electroencephalogram in time series.
- the first signal determination unit 204 extracts the first electroencephalogram from the recorded electroencephalogram.
- the first signal determination unit 204 determines, based on the first electroencephalogram extracted in step S301, whether or not the user 100 has the first inspiration for the question presentation in step S300 (step S302). This determination is performed according to the method of determining the presence or absence of the first inspiration by the above-described first signal determination unit 204. Further, the first signal determination unit 204 notifies the state determination unit 208 of this determination result.
- the user 100 inputs the answer to the question displayed in the question display field 301 on the screen 300 into the answer input field 303 on the screen 300.
- the input of this answer may be a selection from a plurality of options.
- the acquisition unit 206 acquires the answer and notifies the answer determination unit 207 (step S303).
- the answer determination unit 207 determines whether the answer is correct or incorrect (step S304). This determination is performed as shown in FIG. 6 described above. The answer determination unit 207 also notifies the state determination unit 208 of this determination result.
- the state determination unit 208 determines the state of the user 100 based on the presence or absence of the first inspiration and the correctness of the answer (step S305). This determination is performed as shown in FIG. Further, the state determining unit 208 notifies the presenting unit 209 of the determined state.
- the presentation unit 209 determines the content to be output by the output unit 210 based on the determination result of the state of the user 100 (step S306).
- the content to be output is performed as shown in FIG. 8 described above.
- the following question may be displayed in the question display field 301.
- steps S301 and S302 may be processed after steps S303 and 304. That is, the procedure of step S300, step S303, step S304, step S301, step S302, and step S305 may be used. That is, the process related to the first signal determination unit 204 (steps S301 and S302) may be performed after the process related to the acquisition unit 206 (step S303) and the process related to the answer determination unit 207 (step S304).
- FIG. 11 is a flowchart of the learning method according to the first embodiment.
- each component included in the learning system 1000 executes each process, but a computer device that executes a computer program may execute the learning method of the embodiment.
- the learning method in the embodiment is a learning method using a learning system 1000 having a computer program and an output device. Then, in this learning method, the processes of steps S400 to S406 are executed.
- the computer device outputs the first problem to the user 100 via the output device (step S400).
- the output device is a device corresponding to the output unit 210, and may be a display or a speaker.
- the computer device acquires the first electroencephalogram of the user 100 (step S401).
- the computer device determines the first inspiration of the user 100 based on the first brain wave starting from the time point when the first problem is output (step S402).
- the computer device acquires the answer to the first question of the user 100 (step S403).
- the computer device determines the correctness of the answer to the first question of the user 100 (step S404).
- the computer device determines the state of the user 100 based on the presence or absence of the first inspiration and the correctness of the answer to the first question (step S405).
- the computer device determines the contents to be output to the output device based on the determination result of the state of the user 100 (step S406).
- the learning system 1000 measures the output unit 210 that outputs the first question to the user 100, the acquisition unit 206 that acquires the answer of the user 100 to the first problem, and the electroencephalogram of the user 100.
- the brain wave measuring unit 201 and the control unit 200 are provided.
- the control unit 200 determines the presence / absence of the first inspiration of the user 100 based on the first brain wave included in (a) the brain wave and starting from the time point when the first problem is output. Further, the control unit 200 determines (b) whether the answer is correct or not, and (c) determines the content to be output to the output unit 210 based on the presence or absence of the first inspiration and the correctness, and outputs the content to the output unit 210. Output.
- the learning system 1000 as described above determines the state of proficiency for the problem based on the answer to the problem of the user 100 and the electroencephalogram of the process of solving the problem, and then determines the content according to the state of the proficiency level. You can work on 100. That is, the user 100 can effectively improve the proficiency level.
- control unit 200 further causes the output unit 210 to output at least one of the next problem and the response, and the content is at least one of the problem and the response.
- Such a learning system 1000 enables the user 100 to tackle at least one of a problem and a response according to the state of proficiency level.
- the user 100 can effectively improve the proficiency level.
- the response is content that prompts the user 100 to take a break.
- Such a learning system 1000 can prompt the user 100 to take a break in accordance with the state of proficiency.
- the user 100 can take a break effectively.
- control unit 200 extracts (a1) a theta wave band component of the first brain wave from the first brain wave, and (a2) based on the extracted theta wave band component. , The presence / absence of the first inspiration of the user 100 is determined.
- the learning system 1000 as described above can determine a more detailed proficiency level by determining the presence or absence of the first inspiration of the user 100 based on the theta wave band component, and the content according to the state of the proficiency level. Can be made to work on the user 100. That is, the user 100 can effectively improve the proficiency level.
- control unit 200 extracts the first electroencephalogram from the electroencephalogram in the time range of 200 msec or more and 2000 msec or less, starting from the time point when the first problem is output.
- Such a learning system 1000 extracts the first electroencephalogram from the electroencephalogram in the time range of 200 msec or more and 2000 msec or less, starting from the time point when the first problem is output. Therefore, the learning system 1000 can determine a more detailed proficiency level and allow the user 100 to work on the content according to the proficiency level. The user 100 can effectively improve the proficiency level.
- control unit 200 causes the (e1) output unit 210 to output the second problem that is more difficult than the first problem.
- Such a learning system 1000 allows the user 100 to tackle the second problem that is more difficult than the first problem according to the state of proficiency.
- the user 100 can effectively improve the proficiency level.
- the controller 200 causes the output unit 210 to output the third question having the same difficulty level as the first question (e2). ..
- Such a learning system 1000 allows the user 100 to work on the third problem having the same difficulty level as the first problem according to the state of proficiency level.
- the user 100 can effectively improve the proficiency level.
- control unit 200 causes the output unit 210 to (e3) output the third problem of the same difficulty level as the first problem, or the Output one of the fourth problems, which is simpler than the first problem.
- Such a learning system 1000 tackles the user 100 with either the third problem having the same difficulty level as the first problem or the fourth problem simpler than the first problem according to the state of proficiency. Can be made. The user 100 can effectively improve the proficiency level.
- control unit 200 causes the output unit 210 to (e4) output a fourth problem that is simpler than the first problem, or Output the content that encourages a break.
- the learning system 1000 as described above can cause the user 100 to work on the fourth problem, which is easier than the first problem according to the state of proficiency, or prompt the user to take a break.
- the user 100 can effectively improve the proficiency level.
- control unit 200 refers to a database in which a plurality of questions associated with correct answers are stored and determines whether or not the answer is a correct answer. Further, in (e1), the control unit 200 refers to the database in which a plurality of questions associated with the degree of difficulty are stored, and causes the output unit 210 to output the second question.
- Such a learning system 1000 refers to a database in which a plurality of questions associated with correct answers are stored to determine whether or not an answer is a correct answer, and a question associated with difficulty is Performing reference to multiple stored databases. As a result, the learning system 1000 can determine a more detailed proficiency level and allow the user 100 to tackle the second problem that is more difficult than the first problem according to the proficiency level. The user 100 can effectively improve the proficiency level.
- control unit 200 refers to a database in which a plurality of questions associated with correct answers are stored and determines whether or not the answer is a correct answer. Further, in (e2), the control unit 200 refers to the database that stores a plurality of questions associated with the difficulty levels, and causes the output unit 210 to output the third question.
- Such a learning system 1000 refers to a database in which a plurality of questions associated with correct answers are stored to determine whether or not an answer is a correct answer, and a question associated with difficulty is Performing reference to multiple stored databases. Accordingly, the learning system 1000 can determine a more detailed proficiency level and allow the user 100 to work on the third problem having the same difficulty level as the first problem according to the proficiency level. The user 100 can effectively improve the proficiency level.
- control unit 200 refers to a database in which a plurality of questions associated with correct answers are stored and determines whether or not the answer is a correct answer. Further, in (e3), the control unit 200 refers to the database in which a plurality of problems associated with the difficulty levels are stored, and outputs either the third problem or the fourth problem to the output unit 210. Is output.
- Such a learning system 1000 refers to a database in which a plurality of questions associated with correct answers are stored to determine whether or not an answer is a correct answer, and a question associated with difficulty is Performing reference to multiple stored databases. Accordingly, the learning system 1000 can determine a more detailed proficiency level, and the third problem having the same difficulty level as the first problem or the fourth problem that is simpler than the first problem according to the state of the proficiency level. The user 100 can be made to tackle any of the above problems. The user 100 can effectively improve the proficiency level.
- control unit 200 refers to a database in which a plurality of questions associated with correct answers are stored and determines whether or not the answer is a correct answer. Further, in (e4), the control unit 200 causes the output unit 210 to output the fourth question by referring to the database in which a plurality of questions associated with the difficulty levels are stored.
- Such a learning system 1000 refers to a database in which a plurality of questions associated with correct answers are stored to determine whether or not an answer is a correct answer, and a question associated with difficulty is Performing reference to multiple stored databases. Accordingly, the learning system 1000 can determine a more detailed proficiency level, and can cause the user 100 to work on the fourth problem, which is easier than the first problem according to the proficiency level, or prompt the user to take a break. it can. The user 100 can effectively improve the proficiency level.
- control unit 200 has a processor and a memory, and the memory stores a program for executing (a), (b), and (c), and the processor has the memory. Execute a stored program.
- the learning system 1000 as described above determines the state of proficiency for the problem based on the answer to the problem of the user 100 and the electroencephalogram of the process of solving the problem, and then determines the content according to the state of the proficiency level. You can work on 100. That is, the user 100 can effectively improve the proficiency level.
- the learning method executed by the computer such as the learning system 1000 includes a first output step of outputting the first question to the user 100 and an acquisition step of acquiring the answer of the user 100 to the first question. ..
- the learning method executed by the computer such as the learning system 1000 includes an electroencephalogram measurement step of measuring the electroencephalogram of the user 100 and a control step.
- the control step includes (a) a first determination step of determining the presence / absence of a first inspiration of the user 100 based on a first electroencephalogram that is included in the electroencephalogram and starts from a time point when the first problem is output. , (B) a second determination step for determining the correctness of the answer.
- the control step has (c) a second output step of determining the content to be output in the first output step based on the presence / absence of the first inspiration and correctness, and outputting the content.
- the state of proficiency level for the problem is determined based on the answer to the problem of the user 100 and the electroencephalogram for the process of solving the problem, and then the content according to the state of the proficiency level is set by the user 100. Can be worked on. That is, the user 100 can effectively improve the proficiency level.
- the computer program that executes the learning system 1000 or the like is a computer program for executing the learning method.
- the computer program outputs the first question to the user 100 via the (f1) output device, (f2) obtains the answer of the user 100 to the first question, and (f3) measures the electroencephalogram of the user 100. Further, the computer program determines whether or not there is a first inspiration of the user 100 based on the first brain wave included in the (f4) brain wave and starting from the time point when the first problem is output, and (f5) ) Determine the correctness of the answer. Further, the computer program determines (f6) the content to be output by the output device based on the presence or absence of the first inspiration and the correctness, and causes the output device to output the content.
- the state of proficiency level for the problem is determined based on the answer to the problem of the user 100 and the electroencephalogram for the process of solving the problem, and then the content according to the state of the proficiency level is set by the user 100. Can be worked on. That is, the user 100 can effectively improve the proficiency level.
- the second embodiment differs from the first embodiment in that the determination result of the second signal determination unit 205 is used to determine a more detailed state of the proficiency level of the user 100.
- the first embodiment when there is no first inspiration, it is difficult to determine the state of the proficiency level of the user 100 in detail after the elapse of the first brain wave time range.
- the second embodiment if there is no first inspiration in the first electroencephalogram, the presence or absence of the second inspiration is determined in the second electroencephalogram, and thus the user's proficiency level is more detailed.
- the state of can be determined. Accordingly, in the present embodiment, the content according to the proficiency level of the user 100 can be output in more detail to the output unit 210, so that the proficiency level of the user 100 can be improved more effectively. ..
- FIG. 12 is a diagram showing functional blocks of the learning system 1000A in the second embodiment.
- the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
- the learning system 1000A includes a second signal determination unit 205 in addition to the first embodiment. Therefore, in the second embodiment, the first signal determination unit 204, the second signal determination unit 205, the answer determination unit 207, the state determination unit 208, and the presentation unit 209 are components included in the control unit 200.
- This control unit 200 is configured by, for example, at least one processor, as in the first embodiment.
- the second signal determination unit 205 determines the presence or absence of the second inspiration of the user 100 based on the second electroencephalogram, which is included in the electroencephalogram and starts from the time when the problem is output.
- the second electroencephalogram is extracted from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201.
- the time when the problem is output is the time when the presentation unit 209 notifies the problem.
- the second signal determination unit 205 extracts, from the electroencephalogram, the second electroencephalogram starting from the time when the problem is output. Then, the first signal determination unit 204 determines the presence or absence of the second inspiration of the user 100 based on the second electroencephalogram. More specifically, the second signal determination unit 205 extracts the second electroencephalogram from the electroencephalogram after 2000 msec has elapsed, starting from the time when the problem was output. When there is the second inspiration, specifically, there is no reflexive inspiration immediately after the problem is output, but it indicates a psychological state in which there is an inspiration after the image of the problem content is made. Further, the second signal determination unit 205 notifies the state determination unit 208 of the presence / absence of the determined second inspiration and the timing at which the second inspiration occurs.
- theta waves included in the brain waves are used as the method for determining the presence or absence of the second inspiration, as in the method for determining the presence or absence of the first inspiration.
- the second signal determination unit 205 determines the presence or absence of the second inspiration in the predetermined time range after the problem is displayed from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201.
- the predetermined time range is a range about 2000 msec after the timing when the output unit 210 displays the problem, and the second electroencephalogram is extracted from the electroencephalogram in this time range.
- the second signal determination unit 205 extracts a theta wave band component of the second brain wave from the second brain wave, and based on the extracted theta wave band component, the second inspiration of the user 100. Determine the presence or absence.
- the second signal determination unit 205 determines the presence or absence of the second inspiration in the theta wave band component by using an index such as Vpp. For example, the second signal determination unit 205 determines that the second inspiration is present when Vpp in the second electroencephalogram of the user 100 is equal to or greater than the predetermined threshold.
- the predetermined threshold value is, for example, 10 ⁇ V, but is not limited to this. On the other hand, when Vpp is less than this predetermined threshold value, it is determined that there is no second inspiration.
- the second signal determination unit 205 extracts the second electroencephalogram starting from the time when the problem is output, but the time range is not limited to the above.
- the extraction start time may be 1000 msec or more and 4000 msec or less, preferably 1400 msec or more and 3000 msec or less, and more preferably 1500 msec or more and 2500 msec or less, starting from the time when the problem is output.
- the time to end the extraction may be 4000 msec or more and 10000 msec or less, preferably 5000 msec or more and 7000 msec or less, more preferably 5500 msec or more and 6500 msec or less, starting from the time when the problem is output. ..
- the time when the second signal determination unit 205 starts the extraction of the second brain wave needs to be after the time when the first signal determination unit 204 ends the first brain wave extraction.
- the predetermined threshold is not limited to the above.
- the predetermined threshold may be 1 ⁇ V or more and 50 ⁇ V or less, preferably 3 ⁇ V or more and 30 ⁇ V or less, and more preferably 6 ⁇ V or more and 20 ⁇ V or less. Further, the predetermined threshold does not have to be always constant. It is assumed that the predetermined threshold value varies depending on the individual user 100, and that the same user 100 varies depending on the daily psychological state. Therefore, the first signal determination unit 204 may determine an individual threshold value corresponding to each user 100.
- FIG. 13 is a diagram showing the timing of acquisition and display of the second electroencephalogram performed by the learning system 1000A shown in FIG.
- the second signal determination unit 205 extracts, from the electroencephalogram measured by the electroencephalogram measurement unit 201, a second electroencephalogram having a time point when the problem is output, that is, a time point t1 when the problem is displayed as a starting point.
- the time when the problem is output is the time when the presentation unit 209 notifies the problem.
- the second electroencephalogram starting from the time t1 is an electroencephalogram in a time range between a time point 2000 msec after the time t1 (that is, t2) and a time point 4000 msec after the time t2 (that is, t3).
- the second signal determination unit 205 determines the presence or absence of the second inspiration of the user 100 based on the second electroencephalogram. Specifically, the theta wave band component of the second electroencephalogram is extracted from the second electroencephalogram, and the presence or absence of the second inspiration of the user 100 is determined based on the extracted theta wave band component.
- the acquisition unit 206 acquires the answer at the time when the answer to the question output at time t1 is acquired, that is, at the time t7 when the answer is input, and the timing at which the answer is acquired.
- the answer input time t7 is later than the time t6 when the acquisition of the second electroencephalogram is completed, that is, t7> t6> t1.
- the time t7 for answer input may be earlier than the time t6 when the acquisition of the second electroencephalogram is completed. That is, t6> t7> t1 may be satisfied.
- the answer determination unit 207 determines whether the answer is correct at time t8.
- the time relationship between the time t8 for determining whether the answer is correct and the time t7 for inputting the answer may be t8> t6 as shown in FIG. 13, but is not limited to this.
- the presentation unit 209 causes the output unit 210 to output the correctness of the answer and the response at time t9. Note that the time relationship between the time t9 at which the correctness of the answer and the response are output and the time t8 at which the correctness of the answer is determined may be t9> t8. Further, the presenting unit 209 may cause the output unit 210 to simultaneously output the next question in accordance with not only the correctness of the answer and the response but also the state determined by the state determining unit 208 at this time t9. Further, the presentation unit 209 may output the next question to the output unit 210 after the output unit 210 outputs the correctness of the answer and the response, not at the same time.
- the time t7 at which the answer is input and the time t8 at which the correctness of the answer is determined are not particularly set, but are, for example, 100 msec to 10000 msec, preferably 1000 msec to 8000 msec, and more preferably 1500 msec to 5000 msec. is there.
- the time t8 for determining the correctness and the time t9 for outputting the correctness of the answer and the response are not particularly limited, but are, for example, 100 msec to 10000 msec, preferably 1000 msec to 8000 msec, and more preferably, It is 1500 msec to 5000 msec.
- FIG. 14 is a flowchart showing the processing of the second signal determination unit 205.
- the second signal determination unit 205 receives a signal regarding the electroencephalogram of the user 100 from the electroencephalogram measurement unit 201 (step S500).
- the signal contains brain waves, but may also contain noise.
- noise sources include device noise from outside the human body, commercial AC noise, myoelectric noise from the human body, ocular noise from the human body, problem presentation, or movements unrelated to answer input. Various noises such as noise and background brain waves can be considered. Further, the number of noise sources is not limited to one, and two or more noise sources may be considered.
- the second signal determination unit 205 performs noise removal processing on the received signal to extract a waveform including a specific frequency band (step S501). For example, the second signal determination unit 205 extracts an electroencephalogram including a specific frequency band by performing band limitation processing on the signal in a bandpass filter, for example, 2 Hz to 10 Hz. This removes noise.
- a bandpass filter for example, 2 Hz to 10 Hz.
- the second signal determination unit 205 receives information indicating the timing of presenting the question to the user 100 from the presentation unit 209 (step S502).
- the second signal determination unit 205 cuts out an electroencephalogram signal within a predetermined time range from the signal relating to the electroencephalogram of the user 100 from which noise has been removed in step S501, starting from the timing indicated by the information received in step S102 (step S503). ..
- the second signal determination unit 205 may cut out an electroencephalogram signal after 2000 msec, starting from the timing of displaying a question. This cut-out electroencephalogram signal is the second electroencephalogram.
- the second signal determination unit 205 calculates the Vpp value for the theta wave component in the predetermined time range cut out in step S503 (step S504).
- the second signal determination unit 205 determines whether Vpp calculated in step S504 is equal to or greater than a threshold value (step S505).
- the threshold value may be set using a predetermined value.
- step S505 determines that there is a second inspiration (step S506).
- step S505 determines that there is no second inspiration (step S507).
- a method for determining the state of the proficiency level of the user 100 by using the presence or absence of the second inspiration and the timing when the second inspiration occurs will be described.
- a case where there is no first inspiration is shown. That is, when there is no first inspiration, among the states determined by the state determination unit 208 shown in FIG. 7, the first inspiration is “none” and the answer is “correct answer”, and the third This is the case of the state 4 in which the inspiration of 1 is “none” and the answer is “wrong answer”.
- the first signal determination unit 204 and the second signal determination unit 205 are configured to operate independently of each other.
- whether or not the second signal determination unit 205 determines whether or not there is the second inspiration may be limited to the case where there is no first inspiration. That is, only when the first signal determination unit 204 determines that there is no first inspiration, the second signal determination unit 205 extracts the second brain wave starting from the time point when the problem is output, from the brain wave. You may. In that case, the first signal determination unit 204 notifies the second signal determination unit 205 that there is no first inspiration, and then the second signal determination unit 205 acquires the second brain wave. Then, the presence or absence of the second inspiration is determined.
- the control unit 200 performs the following operations. Following (a), the control unit 200 extracts the second electroencephalogram from the electroencephalogram in the time range after lapse of 2000 msec or more, starting from the time point when the (a3) first problem is output, and The presence or absence of the second inspiration of the user 100 is determined based on the electroencephalogram. Furthermore, the control unit 200 determines (b) whether the answer is correct or not, and in (c), based on (c1) the presence or absence of the first inspiration, the presence or absence of the second inspiration, and the correctness, the output unit 210. Determines the content to be output to and outputs the content to the output unit 210.
- the learning system 1000A determines a more detailed proficiency level of the problem based on the answer to the problem of the user 100 and the electroencephalogram of the process of solving the problem, and then determines the proficiency level according to the proficiency level. It is possible for the user 100 to work on the contents. That is, the user 100 can improve the proficiency level more effectively.
- the pulse wave measuring unit 202, the movement measuring unit 203, the authentication unit 211a, and the storage unit 211b are used to determine a more detailed state of the user 100.
- the state determination unit 208 determines the state of the user 100 (that is, the state of proficiency) based on the presence or absence of inspiration and the correctness of the answer.
- the state of the proficiency level of the user 100 is further determined because the state of the proficiency level of the user 100 is determined based on the pulse wave and the movement of the user 100. Further, the user 100 can be easily identified by authenticating the user 100.
- the degree of proficiency is determined based on the presence or absence of the first inspiration, the presence or absence of the second inspiration, the correctness of the answer, and the pulse wave or the movement. As a result, it becomes possible to set the optimal question content according to the user 100, and to judge the presence or absence of inspiration with higher accuracy.
- FIG. 15 is a diagram showing functional blocks of the learning system 1000B in the third embodiment.
- the same components as those in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
- the learning system 1000B includes a pulse wave measuring unit 202, a motion measuring unit 203, an authentication unit 211a, and a storage unit 211b in addition to the second embodiment. Therefore, in the third embodiment, the control unit 200 includes the first signal determination unit 204, the second signal determination unit 205, the answer determination unit 207, the state determination unit 208, the presentation unit 209, the authentication unit 211a, and the storage unit 211b. Is a constituent element.
- the control unit 200 is composed of, for example, at least one processor, as in the first and second embodiments.
- the pulse wave measuring unit 202 measures the pulse wave of the user 100.
- the pulse wave measuring unit 202 is realized by the electroencephalograph 102 and a partial function of the processor. As described above, the electroencephalograph 102 is attached to the user 100 and is prepared so that the pulse wave of the user 100 can be acquired.
- the pulse wave measuring unit 202 is included in the electroencephalograph 102, and more specifically, is installed in the base unit 102b shown in FIG.
- the pulse wave measurement unit 202 also includes a light source and a photodetector. The method for measuring the pulse wave is as follows.
- a light source for example, an infrared light emitting diode
- a photodetector for example, a photodiode
- receives the light transmitted through the earlobe and outputs an electric signal corresponding to the intensity of the received light.
- the intensity of the light absorbed in the earlobe changes according to the blood flow rate (the number of hemoglobin) in the blood vessel that changes with time according to the heartbeat of the user 100, and thus the intensity of the transmitted light. Change is used to measure the pulse wave of the user 100, for example. That is, the pulse wave measuring unit 202 in this example functions as a transmission type pulse wave meter. Further, the pulse wave measuring unit 202 outputs an electric signal regarding the pulse wave to the authentication unit 211a.
- the movement measuring unit 203 measures the movement of the user 100.
- the movement measuring unit 203 is realized by the electroencephalograph 102 and a part of the functions of the processor. As described above, the electroencephalograph 102 is attached to the user 100 and is prepared so that the movement of the user 100 can be acquired.
- the motion measuring unit 203 is included in the electroencephalograph 102, and more specifically, is installed in the base unit 102b shown in FIG.
- the motion measuring unit 203 is configured by a three-dimensional acceleration sensor, and / or a three-dimensional gyro sensor (angular velocity sensor), etc., and detects a motion to accelerate the acceleration and / or the angular velocity and / or The motion signal indicating the angular acceleration is output to the state determination unit 208.
- a three-dimensional acceleration sensor and / or a three-dimensional gyro sensor (angular velocity sensor), etc.
- the authentication unit 211a identifies the user 100 who is currently using the learning system 1000B. Specifically, the authentication unit 211a identifies the user 100 according to the electrical signal regarding the pulse wave obtained from the pulse wave measurement unit 202. Although a detailed method for specifying will be described later, the authentication unit 211a uses and uses the database regarding the user 100 specified in the storage unit 211b and the pulse wave obtained from the pulse wave measurement unit 202. It is specified as the inside user 100.
- the storage unit 211b records a database regarding the identification of the user 100.
- the storage unit 211b is configured by the RAM 107.
- the storage unit 211b provides the authentication unit 211a with a database regarding the identification of the user 100.
- the information regarding the identification of the user 100 may be a database in which the name of the user 100 and / or the ID of the user 100 and the pulse wave of the user 100 are associated with each other.
- FIG. 16 is a flowchart showing the processing of the authentication unit 211a according to the third embodiment. The method by which the authentication unit 211a authenticates and determines the user 100 currently in use is shown below.
- the authentication unit 211a acquires the pulse wave acquired by the pulse wave measurement unit 202 (step S600).
- the authentication unit 211a refers to the database regarding the identification of the user 100 recorded in the storage unit 211b (step S601).
- the authentication unit 211a collates the electroencephalogram obtained in step S600 with the database relating to the identification of the user 100 referred to in step S601 (step S602).
- the database regarding the identification of the user 100 is a database in which the name of the user 100 and the pulse wave of the user 100 are associated with each other, and the user 100 that matches the pulse wave obtained from the pulse wave measurement unit 202 is checked.
- the user 100 that matches the pulse wave obtained from the pulse wave measuring unit 202 is determined as the user 100 currently in use (step S603).
- FIG. 17 is a diagram showing states determined by the state determination unit 208 according to the third embodiment.
- the state determination unit 208 determines whether the first inspiration is determined by the first signal determination unit 204 (whether or not the inspiration is present), the correctness (correctness / incorrectness) of the answer determined by the answer determination unit 207, and the motion measurement.
- the unit 203 determines the state of the user 100. State 1, state 2, state 3, and state 4 are determined in the same manner as in the first embodiment, and therefore are newly added depending on the presence / absence of the second inspiration determined by the motion measuring unit 203 and the second signal determining unit 205. The added state 5 will be described in detail.
- the state determination unit 208 determines the state of the user 100 to be state 3 when the first inspiration is “none” and the answer is “correct”. Furthermore, the state determination unit 208 determines the state of the user 100 as the state 5 when the second inspiration is “present” and the acceleration output by the motion measurement unit 203 is less than the threshold value. More specifically, the threshold regarding the acceleration output by the motion measuring unit 203 is, for example, 3G, but is not limited to this. For example, it may be between 0G and 6G. In addition, the acceleration output by the motion measuring unit 203 is less than the threshold value means that the sway of the head of the user 100 having a low proficiency level has subsided, the posture is correct, and the proficiency level gradually improves. Indicates that
- this state 5 there is no reflexive inspiration for the displayed problem, but there is inspiration after the image of the content of the problem is present, the answer is correct, and the shaking of the head is suppressed. It shows a state where the proficiency level is insufficient for the given problem. That is, the user 100 is in a state of being unfamiliar and requiring practice.
- the second inspiration is “present”, and the acceleration output from the motion measuring unit 203 is less than the threshold value, which indicates that the proficiency level is gradually increasing. There is.
- the state determining unit 208 may determine the state of the user 100 using the pulse wave of the user 100 obtained by the pulse wave measuring unit 202. For example, the state determination unit 208 may determine the state of the user 100 by using the pulse wave of the user 100 from the time when the first problem is output to 2000 msec.
- the problem displayed by the output unit 210 is a problem that the user 100 feels difficult, the user 100 is upset and the pulse obtained from the pulse wave becomes faster. That is, the state determination unit 208 determines that the proficiency level of the user 100 is low.
- the problem displayed by the output unit 210 is a problem that the user 100 feels easy, the user 100 relaxes and becomes a pulse wave in normal times. That is, the state determination unit 208 determines that the proficiency level of the user 100 is high.
- FIG. 18 is a diagram showing processing of the presentation unit 209 corresponding to each state in the third embodiment.
- the presentation unit 209 selects the content to be displayed on the output unit 210 according to the determination result by the state determination unit 208. Further, as shown in FIG. 17, since the display of the state 1, the state 2, the state 3, and the state 4 is the same as that of the first embodiment, the details of the state 5 newly added by the motion measuring unit 203 will be described. State.
- the presenting unit 209 provides a response prompting to solve the problem next time as the content to be displayed on the output unit 210 next time. select. Then, the presentation unit 209 causes the output unit 210 to output a display that prompts the user to solve the problem quickly.
- the reason why such a display is performed is that when the user 100 is in the state 5, it is considered that the user 100 is in an unskilled state and needs to practice.
- the presentation unit 209 may select, as the response to promptly solve the problem, a response to prompt a specific action such as “Let's solve the next problem”.
- the presentation unit 209 sets the content displayed on the output unit 210 to the third problem having the same difficulty level as the first problem, or the first problem. Select the fourth problem, which is simpler than the problem. Then, the presentation unit 209 causes the output unit 210 to output the third problem having the same difficulty level as the first problem or the fourth problem that is simpler than the first problem.
- the presentation unit 209 may select the content to be displayed on the output unit 210 according to the state determined by the state determination unit 208 based on the pulse wave of the user 100. For example, when the problem displayed by the output unit 210 is a problem that the user 100 feels difficult, the user 100 is upset and the pulse obtained from the pulse wave becomes faster. In this case, the state determination unit 208 determines that the proficiency level is low, and the presentation unit 209 further selects the third problem having the same difficulty level as the first problem as the content to be displayed on the output unit 210. .. On the other hand, when the problem displayed by the output unit 210 is a problem that the user 100 feels easy, the user 100 relaxes and becomes a pulse wave in normal times. In this case, the state determination unit 208 determines that the skill level is high, and the presentation unit 209 further selects the second problem having a higher difficulty level than the first problem as the content to be displayed on the output unit 210. ..
- the first signal determination unit 204 in the first embodiment, and the first signal determination unit 204 and the second signal determination unit 205 in the second embodiment are based on the first electroencephalogram or the second electroencephalogram. , Determine the presence of inspiration. Furthermore, the first signal determination unit 204 and the second signal determination unit 205 have the inspiration if the Vpp of the first electroencephalogram or theta wave included in the second electroencephalogram is equal to or greater than the threshold, and is less than the threshold. If there is, there is no inspiration. However, it is assumed that this threshold value varies depending on the individual user 100, and that the same user 100 varies depending on the daily psychological state. Therefore, the threshold value corresponding to each user 100 may be determined before the question is asked. By doing so, the accuracy of determination of the presence or absence of inspiration improves. Specifically, the following method is used.
- FIG. 19 is a flowchart showing a method of improving the accuracy of the determination of the presence or absence of inspiration in the third embodiment.
- the user 100 is authenticated using the pulse wave measurement unit 202, the authentication unit 211a, and the storage unit 211b as shown in FIG. 16 (step S700).
- the presentation unit 209 causes the output unit 210 to output a problem for determining a threshold different from the first problem (step S701).
- the question for determining the threshold value is displayed in the question display field 301 of the screen 300 shown in FIG.
- the problem for deciding the threshold is a problem that the learner with a very low proficiency can answer correctly.
- the first signal determination unit 204 extracts the first electroencephalogram for the problem for determining the threshold from the electroencephalogram measured by the electroencephalogram measurement unit 201 (step S702).
- the first signal determination unit 204 extracts the theta waveform of the user 100 for the question presentation in step S701 based on the first electroencephalogram extracted in step S702 and notifies the state determination unit 208 (step S703). ).
- the user 100 inputs the answer to the question displayed in the question display field 301 on the screen 300 into the answer input field 303 on the screen 300.
- the acquisition unit 206 acquires the answer by the input of the answer by the user 100 and notifies the answer determination unit 207 (step S704).
- the answer determination unit 207 refers to the database, and with respect to the received answer, refers to the database in which a plurality of questions stored in the ROM 105 and associated with the correct answer are stored, and determines whether the answer matches the correct answer. (Step S705).
- the first signal determination unit 204 determines a threshold value for determining the presence or absence of the first inspiration based on the theta waveform extracted in step 703 (step S706).
- step S705 If the determination in step S705 is NO, nothing is executed and the process returns to step S701 again (step S707).
- the waveform of the theta wave obtained at that time is a waveform indicating that the user 100 in use has an inspiration.
- the method for improving the accuracy of the determination of the presence of further inspiration using other methods will be described.
- it is effective to apply a method for determining the presence or absence of inspiration using machine learning or the like.
- a concrete method there is a method of asking a question to many learners and extracting the theta waves of the learners by using the above method.
- the theta wave obtained at this time is a theta wave in the case of inspiration.
- the learning system 1000B includes the pulse wave measuring unit 202 that measures the pulse wave of the user 100 and the motion measuring unit 203 that measures the motion of the user 100, in addition to the learning system 1000A.
- the control unit 200 determines the content based on the presence / absence of the first inspiration, the presence / absence of the second inspiration, the pulse wave, and / or the operation.
- the learning system 1000B determines a more detailed state of proficiency with respect to the problem based on the answer to the problem of the user 100, the electroencephalogram for the process of solving the problem, the pulse wave, and the motion, and then The user 100 can be made to work on the content according to the state of proficiency level. That is, the user 100 can improve the proficiency level more effectively.
- control unit 200 authenticates the user 100 based on the pulse wave.
- Such a learning system 1000B can easily identify individual users 100.
- the history of questions and answers about the user 100 can be easily managed.
- the learning system 1000, the learning system 1000A, and the learning system 1000B according to the first, second, and third embodiments include the terminal device 101 and the electroencephalograph 102.
- the configuration is not limited to this.
- FIG. 20 is a diagram showing another example of the external configuration of the learning system in the embodiment.
- the learning system 1000C includes an electroencephalograph 102, a terminal device 101, and a server 112.
- the terminal device 101 and the server 112 function as the terminal device 101 of the first, second, and third embodiments by communicating via the wireless device 110 and the Internet 111.
- the terminal device 101 may include at least one of the plurality of components included in the terminal device 101, and the server 112 may include the remaining components.
- the terminal device 101 may include the acquisition unit 206 and the output unit 210, and the server 112 may include the control unit 200. Even with such a learning system 1000C, the same learning method as that of the learning system according to the first, second, and third embodiments can be performed.
- the processing of the learning method is not closed in the terminal device 101, and the terminal device 101 and the server 112 communicate with each other via the wireless device 110 and the Internet 111 while the learning method is performed. Performs various included processes.
- all or part of the units, devices, members, or parts, or all of the functional blocks in the block diagrams shown in FIGS. 2, 3, 12, and 15, or Some may be performed by: These may be executed by one or a plurality of electronic circuits including, for example, a semiconductor device, a semiconductor integrated circuit (IC (Integrated Circuit)), or a large-scale integrated circuit (LSI (Large Scale Integration)). ..
- the IC or LSI may be integrated in one chip (system LSI), or may be configured by combining a plurality of chips into one system (chip set).
- the functional blocks other than the screen display processing may be integrated in one chip.
- IC integrated circuit
- LSI LSI
- VLSI Very Large Scale Integration
- ULSI Ultra Large Scale Integration
- eFuse electronic fuse
- FPGA Field Programmable Gate Array
- a reconfigurable device that can be reconfigured can also be used for the same purpose.
- the software is recorded in a non-transitory recording medium such as one or more ROMs, optical disks, hard disk drives, etc.
- the software is a microcontroller (MCU (micro controller)) or a microprocessor (MPU (MPU).
- MCU micro controller
- MPU microprocessor
- the functions specified by the software are executed by the processing device and peripheral devices.
- the system or apparatus may include one or a plurality of non-transitory recording media in which software is recorded, a processing device, and required hardware devices such as a digital interface.
- control unit 200 in each of the above-described embodiments has a processor and a memory
- the memory has a flowchart shown in FIG. 5, FIG. 10, FIG. 11, FIG. 14, FIG. 16, or FIG.
- a program for executing each step of may be stored.
- the processor executes the program stored in that memory.
- control unit 201 brain wave measuring unit 202 pulse wave measuring unit 203 motion measuring unit 206 acquisition unit 210 output unit 300 screen 1000, 1000A, 1000B, 1000C learning system
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Psychiatry (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Psychology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrically Operated Instructional Devices (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
This learning system (1000) comprises: an output unit (210) which outputs a first question to a user (100); an acquisition unit (206) which acquires an answer of the user (100) to the first question; a brainwave measurement unit (201) which measures brainwaves of the user (100); and a control unit (200). The control unit (200) (a) determines the presence or absence of a first inspiration of the user (100) on the basis of a first brainwave, included in the brainwaves, starting from a time when the first question is output, (b) determines the correctness of the answer, and (c) on the basis of the presence or absence of the first inspiration and the correctness, determines contents to be output to the output unit (210), and outputs the contents to the output unit (210).
Description
本発明は、学習システム、及び、学習方法に関する。
The present invention relates to a learning system and a learning method.
近年、学習者に学習させることを目的とした学習支援装置が盛んに用いられている。特許文献1には、問題に対する解答の判定結果を用いて理解度を算出し、理解度に基づいて特定のアプリケーションを実行する最大実行時間を算出することで、継続して学習する動機付けを行う学習支援装置が開示されている。
In recent years, learning support devices have been widely used for the purpose of making learners learn. In Patent Document 1, an understanding level is calculated using a determination result of an answer to a question, and a maximum execution time for executing a specific application is calculated based on the understanding level, thereby motivating continuous learning. A learning support device is disclosed.
しかしながら、特許文献1に開示される学習支援装置は、理解度を算出するために、問題に対する解答の判定結果のみを用いている。そのため、問題に対する詳細な習熟度の状態がわからない。その結果、特許文献1に開示される学習支援装置は、問題や学習に対する習熟度を効果的に高めることが難しい。
However, the learning support device disclosed in Patent Document 1 uses only the determination result of the answer to the question in order to calculate the understanding level. Therefore, the state of detailed proficiency level of the problem is unknown. As a result, it is difficult for the learning support device disclosed in Patent Document 1 to effectively increase the proficiency level for problems and learning.
本発明は、学習者の習熟度を効果的に向上させる学習システム及び学習方法を提供する。
The present invention provides a learning system and a learning method that effectively improve the learner's proficiency level.
本発明の一態様に係る学習システムは、ユーザに第1の問題を出力する出力部と、前記第1の問題に対する前記ユーザの解答を取得する取得部と、前記ユーザの脳波を計測する脳波計測部と、制御部とを備え、前記制御部は、(a)前記脳波に含まれる、前記第1の問題が出力された時点を起点とする第1の脳波に基づいて、前記ユーザの第1のひらめきの有無を判定し、(b)前記解答の正誤を判定し、(c)前記第1のひらめきの有無と、前記正誤とに基づいて、前記出力部に出力させる内容を決定し、前記出力部に前記内容を出力させる。
A learning system according to one aspect of the present invention includes an output unit that outputs a first problem to a user, an acquisition unit that acquires an answer of the user to the first problem, and an electroencephalogram measurement that measures an electroencephalogram of the user. And a control unit, wherein the control unit includes (a) a first electroencephalogram of the user based on a first electroencephalogram that is included in the electroencephalogram and starts from a time point when the first problem is output. Of the answer, (b) determining whether the answer is correct or incorrect, and (c) determining the content to be output to the output unit based on the presence or absence of the first inspiration and the accuracy. The contents are output to the output unit.
本発明の一態様に係る学習方法は、ユーザに第1の問題を出力する第1出力ステップと、前記第1の問題に対する前記ユーザの解答を取得する取得ステップと、前記ユーザの脳波を計測する脳波計測ステップと、制御ステップとを含み、前記制御ステップは、(a)前記脳波に含まれる、前記第1の問題が出力された時点を起点とする第1の脳波に基づいて、前記ユーザの第1のひらめきの有無を判定する第1判定ステップと、(b)前記解答の正誤を判定する第2判定ステップと、(c)前記第1のひらめきの有無と、前記正誤とに基づいて、前記第1出力ステップにて出力させる内容を決定し、前記内容を出力させる第2出力ステップとを有する。
A learning method according to an aspect of the present invention includes a first output step of outputting a first question to a user, an obtaining step of obtaining an answer of the user to the first question, and measuring an electroencephalogram of the user. An electroencephalogram measurement step and a control step are included, and the control step includes: (a) a user's electroencephalogram based on a first electroencephalogram, which is included in the electroencephalogram and starts from a time point when the first problem is output. Based on a first determination step for determining the presence or absence of a first inspiration, (b) a second determination step for determining the correctness of the answer, (c) the presence or absence of the first inspiration, and the correctness, A second output step of determining the content to be output in the first output step and outputting the content.
本発明の一態様に係るプログラムは、学習方法を実行するためのコンピュータプログラムであって、(f1)出力装置を介してユーザに第1の問題を出力し、(f2)前記第1の問題に対する前記ユーザの解答を取得し、(f3)前記ユーザの脳波を計測し、(f4)前記脳波に含まれる、前記第1の問題が出力された時点を起点とする第1の脳波に基づいて、前記ユーザの第1のひらめきの有無を判定し、(f5)前記解答の正誤を判定し、(f6)前記第1のひらめきの有無と前記正誤とに基づいて、前記出力装置が出力する内容を決定し、前記出力装置に出力させることをコンピュータに実行させる。
A program according to an aspect of the present invention is a computer program for executing a learning method, including (f1) outputting a first problem to a user via an output device, and (f2) responding to the first problem. The answer of the user is acquired, (f3) the electroencephalogram of the user is measured, and (f4) based on the first electroencephalogram, which is included in the electroencephalogram and has the time point at which the first problem is output as a starting point, The presence or absence of the first inspiration of the user is determined, (f5) the correctness of the answer is determined, and (f6) the content output by the output device is determined based on the presence or absence of the first inspiration and the correctness. The computer is made to determine and output to the output device.
本発明によれば、学習者の習熟度を効果的に向上させる学習システム及び学習方法が実現される。
According to the present invention, a learning system and a learning method that effectively improve the learner's proficiency level are realized.
以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的、又は、具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
Hereinafter, embodiments will be specifically described with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present invention. Further, among the constituent elements in the following embodiments, constituent elements not described in the independent claims are described as arbitrary constituent elements.
なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略、又は、簡略化される場合がある。
Note that each diagram is a schematic diagram, and is not necessarily an exact illustration. Further, in each drawing, the same reference numerals are given to substantially the same configurations, and overlapping description may be omitted or simplified.
(実施の形態1)
[概要]
まず、実施の形態に係る学習システム1000の概要について説明する。 (Embodiment 1)
[Overview]
First, an outline of thelearning system 1000 according to the embodiment will be described.
[概要]
まず、実施の形態に係る学習システム1000の概要について説明する。 (Embodiment 1)
[Overview]
First, an outline of the
図1は、実施の形態1における学習システム1000の外観構成を示す図である。
1 is a diagram showing an external configuration of a learning system 1000 according to the first embodiment.
学習システム1000は、端末装置101と、脳波計102とを備える。端末装置101は、問題を出力し、ユーザ100に問題を提示する。脳波計102は、ユーザ100の脳波を測定する。
The learning system 1000 includes a terminal device 101 and an electroencephalograph 102. The terminal device 101 outputs the problem and presents the problem to the user 100. The electroencephalograph 102 measures the electroencephalogram of the user 100.
学習者であるユーザ100は、脳波計102を装着した状態で端末装置101を操作する。具体的には、ユーザ100は、端末装置101を操作することによって、その問題に対する解答を入力する。これにより、端末装置101はその解答を取得する。
A user 100 who is a learner operates the terminal device 101 while wearing the electroencephalograph 102. Specifically, the user 100 inputs the answer to the question by operating the terminal device 101. Thereby, the terminal device 101 acquires the answer.
さらに、端末装置101は、脳波計102から、その問題に対するユーザ100の脳波を取得する。端末装置101は、解答の正誤と、脳波とに基づいて、次に端末装置101が出力する内容(例えば、先に出題された問題より難しい問題)を決定する。なお、端末装置101は、タブレット端末でもよく、スマートフォンでもよく、パーソナルコンピュータやスマートスピーカなどであってもよい。また、脳波計102は、ユーザ100に装着され、脳波を測定できる装置であればよく、例えば、ユーザ100の耳に掛けるイヤーフック型デバイスである。また、ユーザ100の頭に設置するヘッドギアやヘッドキャップでもよい。
Furthermore, the terminal device 101 acquires the electroencephalogram of the user 100 for the problem from the electroencephalograph 102. The terminal device 101 determines the content to be output next by the terminal device 101 (for example, a problem that is more difficult than the problem presented earlier), based on the correctness of the answer and the electroencephalogram. The terminal device 101 may be a tablet terminal, a smartphone, a personal computer, a smart speaker, or the like. The electroencephalograph 102 may be any device that can be worn by the user 100 and can measure brain waves, and is, for example, an earhook type device that can be worn on the ear of the user 100. Further, it may be headgear or a headcap installed on the head of the user 100.
学習システム1000によれば、ユーザ100の問題に対する解答と、問題を解く過程に対する脳波とに基づいて、問題に対する習熟度の状態を決定することができる。次に、習熟度の状態に応じた内容(例えば、先に出題された問題より難しい問題)に取り組むことで、ユーザ100の習熟度を効果的に向上させることができる。
According to the learning system 1000, the state of proficiency level for a problem can be determined based on the answer to the problem of the user 100 and the electroencephalogram for the process of solving the problem. Next, by tackling the content according to the state of the proficiency level (for example, a problem that is more difficult than the problem presented earlier), the proficiency level of the user 100 can be effectively improved.
[ハードウェア構成]
図2は、実施の形態1における学習システム1000のハードウェア構成を示す図である。 [Hardware configuration]
FIG. 2 is a diagram showing a hardware configuration of thelearning system 1000 according to the first embodiment.
図2は、実施の形態1における学習システム1000のハードウェア構成を示す図である。 [Hardware configuration]
FIG. 2 is a diagram showing a hardware configuration of the
端末装置101は、それぞれバス109を介して相互に接続される表示装置103、CPU(Central Processing Unit)104、ROM(Read Only Memory)105、及びRAM(Random Access Memory)107、通信部108を備える。
The terminal device 101 includes a display device 103, a CPU (Central Processing Unit) 104, a ROM (Read Only Memory) 105, a RAM (Random Access Memory) 107, and a communication unit 108, which are connected to each other via a bus 109. ..
脳波計102は、無線で通信部108と通信を行う。また、通信方法は有線でもよい。表示装置103は、ハードウェアであって、詳細は後述するが、図3で示す出力部210に相当し、例えば、液晶ディスプレイ、又は、有機EL(Electro Luminescence)ディスプレイなどからなる。CPU104は、後述する制御部200に相当するハードウェアである。また、CPU104は、後述する脳波計測部201及び取得部206のそれぞれの処理を実行してもよい。ROM105は、例えば、CPU104によって読み出されて実行されるプログラム106を保持している。CPU104は、このプログラム106を実行することによって制御部200の処理を実行する。また、正答と対応付けられた問題が複数記憶されているデータベース、及び、難度と対応付けられた問題が複数記憶されているデータベースをROM105の一部の箇所に記録してもよい。RAM107は、CPU104の処理によって生成されるデータを一時的に記憶する。端末装置101に上記のデータベースを記録するメモリを設けてバス109に接続してもよい。通信部108は、脳波計102と無線で信号の送受信を行う。
The electroencephalograph 102 wirelessly communicates with the communication unit 108. The communication method may be wired. The display device 103 is hardware, which will be described in detail later, but corresponds to the output unit 210 shown in FIG. 3, and is composed of, for example, a liquid crystal display or an organic EL (Electro Luminescence) display. The CPU 104 is hardware corresponding to the control unit 200 described later. Further, the CPU 104 may execute respective processes of the electroencephalogram measurement unit 201 and the acquisition unit 206 described later. The ROM 105 holds, for example, the program 106 read and executed by the CPU 104. The CPU 104 executes the processing of the control unit 200 by executing the program 106. Further, a database in which a plurality of questions associated with correct answers and a database in which a plurality of questions associated with difficulty levels are stored may be recorded in a part of the ROM 105. The RAM 107 temporarily stores the data generated by the processing of the CPU 104. The terminal device 101 may be provided with a memory for recording the above database and connected to the bus 109. The communication unit 108 wirelessly transmits and receives signals to and from the electroencephalograph 102.
[システム構成]
図3は、図1に示した実施の形態1における学習システム1000の機能ブロックを示す図である。 [System configuration]
FIG. 3 is a diagram showing functional blocks of thelearning system 1000 according to the first embodiment shown in FIG.
図3は、図1に示した実施の形態1における学習システム1000の機能ブロックを示す図である。 [System configuration]
FIG. 3 is a diagram showing functional blocks of the
図3に示す学習システム1000は、脳波計測部201、第1信号判定部204、取得部206、解答判定部207、状態決定部208、提示部209、及び、出力部210を備えている。ここで、第1信号判定部204、解答判定部207、状態決定部208、提示部209は、制御部200に含まれる構成要素である。この制御部200は、例えば少なくとも1つのプロセッサにより構成されている。また、学習システム1000に含まれる脳波計測部201以外の各構成要素は、端末装置101に備えられる。
The learning system 1000 shown in FIG. 3 includes an electroencephalogram measurement unit 201, a first signal determination unit 204, an acquisition unit 206, an answer determination unit 207, a state determination unit 208, a presentation unit 209, and an output unit 210. Here, the first signal determination unit 204, the answer determination unit 207, the state determination unit 208, and the presentation unit 209 are components included in the control unit 200. The control unit 200 includes, for example, at least one processor. Further, each component other than the electroencephalogram measurement unit 201 included in the learning system 1000 is included in the terminal device 101.
また、脳波計測部201は、例えば、脳波計102と、端末装置101の機能の一部とからなる。なお、この機能の一部は、端末装置101の制御部200に含まれていてもよい。また、脳波計測部201の機能の全てが、端末装置101の制御部200に含まれていてもよい。
The electroencephalogram measurement unit 201 includes, for example, an electroencephalograph 102 and a part of the functions of the terminal device 101. Note that a part of this function may be included in the control unit 200 of the terminal device 101. Further, all the functions of the electroencephalogram measurement unit 201 may be included in the control unit 200 of the terminal device 101.
出力部210は、ユーザ100に第1の問題を出力する。具体的には、出力部210は、例えば、液晶ディスプレイ、又は、有機ELディスプレイなどであって、制御部200に含まれる提示部209の信号に応じた内容の画像を表示する。すなわち、ユーザ100に第1の問題を出力する、とはディスプレイに第1の問題を表示することである。また、出力部210は、第1の問題の次の問題、及び、応答の少なくとも一方を表示してもよい。この次の問題、又は、応答は、提示部209によって選択された問題、又は、応答である。当然ながら、第1の問題、次の問題以外の問題を、順次表示してもよい。さらに、この応答は、ユーザ100に対するメッセージであってもよく、例えば、休憩を促す内容であってもよい。つまり、出力部210は、提示部209によって選択された問題、又は、応答(メッセージ)を画像として表示する。
The output unit 210 outputs the first problem to the user 100. Specifically, the output unit 210 is, for example, a liquid crystal display, an organic EL display, or the like, and displays an image of the content according to the signal of the presentation unit 209 included in the control unit 200. That is, outputting the first question to the user 100 means displaying the first question on the display. In addition, the output unit 210 may display at least one of a question next to the first question and a response. The next question or response is the question or response selected by the presentation unit 209. As a matter of course, problems other than the first problem and the next problem may be sequentially displayed. Furthermore, this response may be a message to the user 100, and may be, for example, content prompting a break. That is, the output unit 210 displays the question or the response (message) selected by the presentation unit 209 as an image.
なお、出力部210は、スピーカであってもよく、提示部209からの信号に応じた内容の音声を出力してもよい。
Note that the output unit 210 may be a speaker and may output a voice having contents according to the signal from the presentation unit 209.
取得部206は、第1の問題に対するユーザ100の解答を取得する。具体的には、取得部206は、プロセッサの一部の機能と、ハードウェアとによって実現される。このハードウェアは、例えば、キーボード、マウス、リモコン、又は、マイクなどの、ユーザ100の操作を受け付ける手段、すなわち、学習システム1000に対するユーザ100の解答を入力する手段である。なお、取得部206は、画面から入力できるタッチパネル、及び/又は、プロセッサの一部の機能によって実現されてもよい。また、取得部206は、第1の問題の次の問題、すなわち第1の問題以外の問題に対するユーザ100の解答を取得してもよい。取得部206は、解答と、解答を取得した時点であるタイミングとを解答判定部207に通知する。
The acquisition unit 206 acquires the answer of the user 100 to the first problem. Specifically, the acquisition unit 206 is realized by part of the functions of the processor and hardware. This hardware is, for example, a means such as a keyboard, a mouse, a remote controller, or a microphone for receiving the operation of the user 100, that is, a means for inputting the answer of the user 100 to the learning system 1000. The acquisition unit 206 may be realized by a touch panel that can be input from the screen and / or a partial function of the processor. Further, the acquisition unit 206 may acquire the answer of the user 100 to the next question of the first question, that is, the question other than the first question. The acquisition unit 206 notifies the answer determination unit 207 of the answer and the timing at which the answer is acquired.
解答判定部207は、ユーザ100の問題に対する解答の正誤を判定する。具体的には、解答判定部207は、取得部206より得られたユーザ100の第1の問題に対する解答の正誤を判定する。判定するために、ROM105に記録された正答と対応付けられた問題が複数記憶されているデータベースを利用してもよい。また、取得部206より解答を取得した時点であるタイミングも得る。さらに、判定した解答の正誤と、解答を取得した時点であるタイミングとを状態決定部208へ通知する。
The answer determination unit 207 determines whether the answer to the question of the user 100 is correct or incorrect. Specifically, the answer determination unit 207 determines the correctness of the answer to the first question of the user 100 obtained from the acquisition unit 206. In order to make the determination, a database in which a plurality of questions recorded in the ROM 105 and associated with the correct answer are stored may be used. Further, the timing at which the answer is acquired from the acquisition unit 206 is also obtained. Further, the status determination unit 208 is notified of the correctness of the determined answer and the timing at which the answer is acquired.
脳波計測部201は、ユーザ100の脳波を計測する。脳波計測部201は、脳波計102と、プロセッサの一部の機能とによって実現される。あるいは、脳波計測部201は、プロセッサの一部の機能によって実現されてもよく、この場合には、脳波計102からの出力信号を受信することによってユーザ100の脳波を計測する。なお、脳波計102は、上述のように、ユーザ100に装着されて、ユーザ100の脳波が取得できるように準備されている。脳波計102は、イヤーフック型(耳掛け型)のデバイスであり、頭部に接するように配置された第1の電極と、耳朶に接するように配置されたリファレンス電極とを持つ。一例として、図1に示すように、第1の電極は、耳介と側頭部に挟まれ、頭部に接する支持部102aに含まれ、リファレンス電極は、耳朶の表面に接する基台部102bに含まれてもよい。アース電極(ボディアースの電位を与える電極)は、耳朶の裏面に接する基台部102bに含められていてよい。脳波計102が計測して出力するユーザ100の脳波は、リファレンス電極を基準とした「第1電極とリファレンス電極の間の電圧値」の時系列変化を示してもよい。すなわち、脳波で示される複数の電圧値と複数の電圧値が計測された複数の時間は1対1に対応する。さらに、頭部に装着するデバイスでもよく、その場合は、ユーザ100の頭皮、又は、ユーザ100の額に装着する第1電極と、ユーザ100の耳朶に装着するリファレンス電極を含んでもよい。
The electroencephalogram measurement unit 201 measures the electroencephalogram of the user 100. The electroencephalogram measurement unit 201 is realized by the electroencephalograph 102 and a part of the functions of the processor. Alternatively, the electroencephalogram measurement unit 201 may be realized by a part of the functions of the processor. In this case, the electroencephalogram of the user 100 is measured by receiving the output signal from the electroencephalograph 102. As described above, the electroencephalograph 102 is attached to the user 100 and is prepared so that the electroencephalogram of the user 100 can be acquired. The electroencephalograph 102 is an earhook (ear-hook) device, and has a first electrode arranged so as to contact the head and a reference electrode arranged so as to contact the earlobe. As an example, as shown in FIG. 1, the first electrode is included in the support portion 102a that is sandwiched between the auricle and the temporal region and is in contact with the head portion, and the reference electrode is the base portion 102b that is in contact with the surface of the earlobe. May be included in. The ground electrode (the electrode that gives the potential of the body ground) may be included in the base portion 102b that is in contact with the back surface of the earlobe. The electroencephalogram of the user 100, which is measured and output by the electroencephalograph 102, may indicate a time-series change in “voltage value between the first electrode and the reference electrode” with reference to the reference electrode. That is, the plurality of voltage values indicated by the electroencephalogram and the plurality of times when the plurality of voltage values are measured correspond to each other one to one. Further, it may be a device worn on the head, in which case it may include a first electrode worn on the scalp of the user 100 or the forehead of the user 100, and a reference electrode worn on the earlobe of the user 100.
脳波計測部201は、脳波計102が取得した脳波を、第1信号判定部204へ送信する。なお、脳波計測部201から、脳波を第1信号判定部204へ送信する手順は以下の通りである。まず、脳波計測部201は、ユーザ100の脳波を示す電気信号を増幅器に入力する。増幅器は、電気信号を差動増幅し、ローパスフィルタ(低域通過フィルタ)へ出力する。次に、ローパスフィルタは、不要な高周波成分を除去し、AD変換器へ出力する。AD変換器は、増幅器から出力されたアナログの信号をデジタルの信号に変換して出力する。最後に、AD変換器によって変換されたデジタル信号は、電気信号を第1信号判定部204へ無線で送信される。なお、増幅器と、ローパスフィルタと、AD変換器とは、脳波計測部201に含まれていてもよい。
The electroencephalogram measurement unit 201 transmits the electroencephalogram acquired by the electroencephalograph 102 to the first signal determination unit 204. The procedure for transmitting the electroencephalogram from the electroencephalogram measurement unit 201 to the first signal determination unit 204 is as follows. First, the electroencephalogram measurement unit 201 inputs an electric signal indicating the electroencephalogram of the user 100 to the amplifier. The amplifier differentially amplifies the electric signal and outputs it to a low pass filter (low pass filter). Next, the low-pass filter removes unnecessary high frequency components and outputs them to the AD converter. The AD converter converts the analog signal output from the amplifier into a digital signal and outputs the digital signal. Finally, the digital signal converted by the AD converter is wirelessly transmitted to the first signal determination unit 204 as an electric signal. The amplifier, the low-pass filter, and the AD converter may be included in the electroencephalogram measurement unit 201.
第1信号判定部204は、脳波に含まれる、問題が出力された時点を起点とする第1の脳波に基づいて、ユーザ100の第1のひらめきの有無を判定する。この第1の脳波は、脳波計測部201によって計測されたユーザ100の脳波から抽出したものである。問題が出力された時点、とは、提示部209から通知された時点である。以下では、脳波計測部201によって得られたデジタル信号をユーザ100の脳波として記述する。
The first signal determination unit 204 determines the presence / absence of the first inspiration of the user 100 based on the first electroencephalogram included in the electroencephalogram and starting from the time when the problem is output. The first electroencephalogram is extracted from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201. The time when the problem is output is the time when the presentation unit 209 notifies the problem. Hereinafter, the digital signal obtained by the electroencephalogram measurement unit 201 will be described as the electroencephalogram of the user 100.
具体的には、第1信号判定部204は、脳波計測部201によって計測されたユーザ100の脳波から、問題が出力された時点を起点とする第1の脳波を抽出する。そして、第1信号判定部204は、その第1の脳波に基づいて、ユーザ100の第1のひらめきの有無を判定する。より具体的には、第1信号判定部204は、問題が出力された時点を起点として、200msec以上2000msec以下の時間範囲における脳波から、第1の脳波を抽出する。第1のひらめきが有るときとは、具体的には、問題が出力された直後の反射的なひらめきが生じる心理状態を示している。さらに、第1信号判定部204は、判定した第1のひらめきの有無を状態決定部208へ通知する。
Specifically, the first signal determination unit 204 extracts, from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201, a first electroencephalogram starting from the time when the problem is output. Then, the first signal determination unit 204 determines the presence or absence of the first inspiration of the user 100 based on the first brain wave. More specifically, the first signal determination unit 204 extracts the first electroencephalogram from the electroencephalogram in the time range of 200 msec or more and 2000 msec or less, starting from the time when the problem is output. When there is the first inspiration, specifically, it indicates a psychological state in which a reflexive inspiration occurs immediately after the problem is output. Furthermore, the first signal determination unit 204 notifies the state determination unit 208 of the presence or absence of the determined first inspiration.
また、第1のひらめきの有無の判定方法として脳波に含まれるシータ波を利用する。ここでシータ波について述べる。脳波において、シータ波は、精神活動中のひらめきを表す律動波であり、その周波数帯域は4~7Hzである。シータ波が表す心理状態、又は、生理状態は、ひらめき状態、又は、まどろみ状態であることが知られている。実施の形態においては、このシータ波の有無が、ひらめきの有無と相関があることを利用している。
Also, theta waves included in the brain waves are used as the first method of determining the presence of inspiration. The theta wave will be described here. In the electroencephalogram, a theta wave is a rhythm wave that represents inspiration during mental activity, and its frequency band is 4 to 7 Hz. It is known that the psychological state or physiological state represented by the theta wave is an inspirational state or a slumbering state. In the embodiment, it is utilized that the presence or absence of the theta wave correlates with the presence or absence of inspiration.
ここで、第1信号判定部204による第1のひらめきの有無を判定する方法について、詳細を述べる。
Here, the method of determining the presence or absence of the first inspiration by the first signal determination unit 204 will be described in detail.
上述のように、第1信号判定部204は、脳波計測部201によって計測されたユーザ100の脳波から、問題表示後の所定の時間範囲において、第1のひらめきの有無を判定する。例えば、所定の時間範囲は、出力部210が問題を表示したタイミングを起点(すなわち、0msec)として、200msecから2000msecまでの範囲であり、この時間範囲における脳波から、第1の脳波を抽出する。さらに、第1信号判定部204は、この第1の脳波から、第1の脳波のシータ波帯域の成分を抽出し、抽出したシータ波帯域の成分に基づいて、ユーザ100の第1のひらめきの有無を判定する。なお、この第1の脳波から、第1の脳波のシータ波帯域の成分を抽出する手順は、以下の通りである。脳波計測部201に含まれるAD変換器によって変換されたデジタル信号は、図2で示した通信部108で受信される。さらに、通信部108は、そのデジタル信号をバンドパスフィルタへ出力する。バンドパスフィルタは、2Hzから10Hzまでの信号帯域に制限する。このような信号処理を経て、第1の脳波から第1の脳波のシータ波帯域の成分を抽出する。
As described above, the first signal determination unit 204 determines the presence or absence of the first inspiration within the predetermined time range after the problem is displayed, from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201. For example, the predetermined time range is a range from 200 msec to 2000 msec with the timing at which the output unit 210 displays a problem as a starting point (that is, 0 msec), and the first electroencephalogram is extracted from the electroencephalogram in this time range. Further, the first signal determination unit 204 extracts a theta wave band component of the first brain wave from the first brain wave, and based on the extracted theta wave band component, the first inspiration of the user 100. Determine the presence or absence. The procedure for extracting the theta wave component of the first electroencephalogram from the first electroencephalogram is as follows. The digital signal converted by the AD converter included in the electroencephalogram measurement unit 201 is received by the communication unit 108 shown in FIG. Further, the communication unit 108 outputs the digital signal to the bandpass filter. The bandpass filter limits the signal band from 2 Hz to 10 Hz. Through such signal processing, the theta wave band component of the first electroencephalogram is extracted from the first electroencephalogram.
第1信号判定部204は、シータ波帯域の成分において、Vpp(Volt peak-to-peak)などの指標を用いることにより、第1のひらめきの有無を判定する。ここで、Vppとは、電圧において、最大電圧と最小電圧の差から算出される値である。例えば、第1信号判定部204は、ユーザ100の第1の脳波において、Vppが、所定の閾値以上を有する場合に、第1のひらめきが有ると判定する。所定の閾値とは、例えば、10μVが挙げられるが、これに限られるものではない。一方で、Vppが、この所定の閾値未満の場合は、第1のひらめきが無い、と判定する。
The first signal determination unit 204 determines the presence or absence of the first inspiration in the theta wave band component by using an index such as Vpp (Volt peak-to-peak). Here, Vpp is a value calculated from the difference between the maximum voltage and the minimum voltage in voltage. For example, the first signal determination unit 204 determines that the first inspiration is present when Vpp in the first brain wave of the user 100 is equal to or greater than a predetermined threshold value. The predetermined threshold value is, for example, 10 μV, but is not limited to this. On the other hand, when Vpp is less than this predetermined threshold value, it is determined that there is no first inspiration.
なお、第1信号判定部204は、問題が出力された時点を起点として、第1の脳波を抽出するが、その時間範囲は上記に限られない。例えば、抽出を開始する時点は、問題が出力された時点を起点として、50msec以上1000msec以下であればよく、好ましくは、100msec以上800msec以下、さらに好ましくは、150msec以上300msec以下であればよい。また、例えば、抽出を終了する時点は、問題が出力された時点を起点として、1000msec以上4000msec以下であればよく、好ましくは、1400msec以上3000msec以下、さらに好ましくは、1500msec以上2500msec以下であればよい。
The first signal determination unit 204 extracts the first electroencephalogram starting from the time when the problem is output, but the time range is not limited to the above. For example, the extraction start time may be 50 msec or more and 1000 msec or less, preferably 100 msec or more and 800 msec or less, more preferably 150 msec or more and 300 msec or less, starting from the time when the problem is output. Further, for example, the time to end the extraction may be 1000 msec or more and 4000 msec or less, preferably 1400 msec or more and 3000 msec or less, more preferably 1500 msec or more and 2500 msec or less, starting from the time when the problem is output. ..
また、所定の閾値は上記に限られない。所定の閾値は、1μV以上50μV以下であればよく、好ましくは、3μV以上30μV以下、さらに好ましくは6μV以上20μV以下であればよい。また、所定の閾値は、常に一定である必要はない。この所定の閾値は、個々のユーザ100によって異なることや、同一のユーザ100でも日々の心理状態によって異なることが想定される。そのため、第1信号判定部204は、個々のユーザ100に対応する個別の閾値を決定してもよい。
Also, the predetermined threshold is not limited to the above. The predetermined threshold may be 1 μV or more and 50 μV or less, preferably 3 μV or more and 30 μV or less, and more preferably 6 μV or more and 20 μV or less. Further, the predetermined threshold does not have to be always constant. It is assumed that the predetermined threshold value varies depending on the individual user 100, and that the same user 100 varies depending on the daily psychological state. Therefore, the first signal determination unit 204 may determine an individual threshold value corresponding to each user 100.
なお、脳波計測部201は、上述の時間範囲における脳波を第1の脳波として計測し、第1信号判定部204は、その第1の脳波を抽出することなく脳波計測部201から取得してもよい。
In addition, the electroencephalogram measurement unit 201 measures the electroencephalogram in the above-described time range as the first electroencephalogram, and the first signal determination unit 204 acquires the electroencephalogram from the electroencephalogram measurement unit 201 without extracting the first electroencephalogram. Good.
状態決定部208は、第1信号判定部204の判定結果と、解答判定部207の判定結果に基づいて、ユーザ100の問題に対する習熟度の状態を決定する。具体的には、状態決定部208は、第1のひらめきの有無と、解答の正誤とに基づいて、次に説明する4つの状態を決定する。すなわち、第1のひらめきが有かつ解答が正答の状態を状態1とし、第1のひらめきが有かつ解答が誤答の状態を状態2とし、第1のひらめきが無かつ解答が正答の状態を状態3とし、第1のひらめきが無かつ解答が誤答の状態を状態4と決定する。さらに、決定した状態を提示部209へ通知する。また、解答判定部207より通知された解答を取得した時点であるタイミングを用いて、さらに詳細な状態を決定してもよい。
The state determination unit 208 determines the state of the proficiency level of the user 100 with respect to the question based on the determination result of the first signal determination unit 204 and the determination result of the answer determination unit 207. Specifically, the state determination unit 208 determines four states described below based on the presence / absence of the first inspiration and the correctness of the answer. That is, the state where the first inspiration is present and the answer is correct is state 1, the state where the first inspiration is present and the answer is incorrect is state 2, and the state where the first inspiration is not present and the answer is correct is State 3 is set, and a state in which there is no first inspiration and the answer is incorrect is determined as state 4. Further, the presenting unit 209 is notified of the determined state. Further, a more detailed state may be determined by using the timing when the answer notified by the answer determination unit 207 is acquired.
提示部209は、状態決定部208の決定結果に従い、出力部210に出力させる内容を決定し、出力部210に内容を出力させる。例えば、提示部209は、難度と対応付けられた問題が複数記憶されているデータベースを参照して、そのデータベースの中からユーザ100に提示する問題を選定し、出力部210に出力させる。また、提示部209は、問題と同時に応答と解答の正誤についても、出力部210に出力させてもよい。当然ながら、提示部209は、第1の問題、次の問題以外の問題を、順次、出力部210に出力させてもよい。なお、各状態に対応して出力部210が表示する内容の詳細については、図8にて説明する。さらに、提示部209は、その問題を出力部210が表示した時点、つまり問題が出力された時点であるタイミングを、第1信号判定部204に通知する。
The presentation unit 209 determines the content to be output to the output unit 210 according to the determination result of the state determination unit 208, and causes the output unit 210 to output the content. For example, the presentation unit 209 refers to a database that stores a plurality of questions associated with the degree of difficulty, selects a question to be presented to the user 100 from the database, and causes the output unit 210 to output the question. Further, the presentation unit 209 may cause the output unit 210 to output the correctness of the response and the answer as well as the question. Of course, the presentation unit 209 may cause the output unit 210 to sequentially output problems other than the first problem and the next problem. Details of the contents displayed by the output unit 210 corresponding to each state will be described with reference to FIG. Further, the presentation unit 209 notifies the first signal determination unit 204 of the timing when the output unit 210 displays the question, that is, the timing when the question is output.
[動作例]
図4は、図3で示した学習システム1000が行う第1の脳波の取得と表示のタイミングを示した図である。 [Operation example]
FIG. 4 is a diagram showing the timing of acquisition and display of the first electroencephalogram performed by thelearning system 1000 shown in FIG.
図4は、図3で示した学習システム1000が行う第1の脳波の取得と表示のタイミングを示した図である。 [Operation example]
FIG. 4 is a diagram showing the timing of acquisition and display of the first electroencephalogram performed by the
第1信号判定部204は、問題が出力された時点、つまり問題表示の時刻t1を起点とする第1の脳波を、脳波計測部201によって計測された脳波から抽出する。また、問題が出力された時点は、提示部209から通知された時点である。この時刻t1を起点とする第1の脳波は、時刻t1から200msec経過した時点と、時刻t1から2000msec経過した時点(すなわちt2)との間の時間範囲における脳波である。さらに、第1信号判定部204は、この第1の脳波に基づいて、ユーザ100の第1のひらめきの有無を判定する。具体的には、第1の脳波から、第1の脳波のシータ波帯域の成分を抽出し、抽出したシータ波帯域の成分に基づいて、ユーザ100の第1のひらめきの有無を判定する。
The first signal determination unit 204 extracts, from the electroencephalogram measured by the electroencephalogram measurement unit 201, the first electroencephalogram at the time when the problem is output, that is, the time t1 when the problem is displayed as the starting point. The time when the problem is output is the time when the presentation unit 209 notifies the problem. The first electroencephalogram starting from time t1 is an electroencephalogram in the time range between the time point 200 msec after time t1 and the time point 2000 msec after time t1 (that is, t2). Furthermore, the first signal determination unit 204 determines the presence or absence of the first inspiration of the user 100 based on this first brain wave. Specifically, the theta wave band component of the first electroencephalogram is extracted from the first electroencephalogram, and the presence or absence of the first inspiration of the user 100 is determined based on the extracted theta wave band component.
取得部206は、時刻t1で出力された問題に対する解答が取得された時点、つまり解答入力の時刻t3において、解答と、解答を取得した時点であるタイミングとを取得する。なお、図4に示したように実施の形態1においては、第1の脳波の取得が完了する時刻t2と比べて、解答入力の時刻t3が遅い状態、すなわち、t3>t2>t1としているが、第1の脳波の取得が完了する時刻t2と比べて、解答入力の時刻t3が早くてもよい。すなわち、t2>t3>t1となってもよい。また、第1の脳波の取得が完了する時刻t2と、解答入力の時刻t3が同時、すなわち、t2=t3となってもよい。
The acquisition unit 206 acquires the answer at the time when the answer to the question output at the time t1 is acquired, that is, at the time t3 when the answer is input, and the timing at which the answer is acquired. In the first embodiment, as shown in FIG. 4, the answer input time t3 is later than the time t2 at which the acquisition of the first electroencephalogram is completed, that is, t3> t2> t1. , The answer input time t3 may be earlier than the time t2 at which the acquisition of the first electroencephalogram is completed. That is, t2> t3> t1 may be satisfied. Further, the time t2 when the acquisition of the first electroencephalogram is completed and the time t3 when the answer is input may be the same, that is, t2 = t3.
解答判定部207は、時刻t4において、解答の正誤を判定する。なお解答の正誤を判定する時刻t4と、解答入力の時刻t3との時間関係は、図3に示したようにt4>t3であってもよいが、これに限られるものではない。
The answer determination unit 207 determines whether the answer is correct at time t4. The time relationship between the time t4 for determining whether the answer is correct and the time t3 for inputting the answer may be t4> t3 as shown in FIG. 3, but the time relationship is not limited to this.
提示部209は、時刻t5において、解答の正誤と応答とを出力部210に出力させる。なお、解答の正誤と応答とを出力させる時刻t5と、解答の正誤を判定する時刻t4との時間関係は、t5>t4であればよい。また、提示部209は、この時刻t5において、解答の正誤と応答だけでなく、状態決定部208が決定した状態に応じて、同時に、次の問題を出力部210に出力させてもよい。さらに、提示部209は、同時ではなく、解答の正誤と応答を出力部210に出力させた後に、次の問題を出力部210に出力させてもよい。
The presentation unit 209 causes the output unit 210 to output the correctness of the answer and the response at time t5. The time relationship between the time t5 at which the correctness of the answer and the response are output and the time t4 at which the correctness of the answer is determined may be t5> t4. In addition, the presenting unit 209 may cause the output unit 210 to output the next question at the same time, at this time t5, in accordance with not only the correctness of the answer and the response but also the state determined by the state determining unit 208. Further, the presentation unit 209 may output the next question to the output unit 210 after the output unit 210 outputs the correctness of the answer and the response, not at the same time.
また、解答入力の時刻t3と解答の正誤を判定する時刻t4との間は、特に定められるものではないが、例えば100msecから10000msecであり、好ましくは1000msecから8000msec、より好ましくは、1500msecから5000msecである。また、正誤を判定する時刻t4と解答の正誤と応答とを出力させる時刻t5との間は、特に定められるものではないが、例えば100msecから10000msecであり、好ましくは1000msecから8000msec、より好ましくは、1500msecから5000msecである。
The time t3 when the answer is input and the time t4 when the correctness of the answer is determined are not particularly set, but are, for example, 100 msec to 10000 msec, preferably 1000 msec to 8000 msec, and more preferably 1500 msec to 5000 msec. is there. In addition, the time t4 for determining the correctness and the time t5 for outputting the correctness of the answer and the response are not particularly defined, but are, for example, 100 msec to 10000 msec, preferably 1000 msec to 8000 msec, and more preferably, It is 1500 msec to 5000 msec.
図5は、図3で示した第1信号判定部204の処理を示すフローチャートである。
FIG. 5 is a flowchart showing the process of the first signal determination unit 204 shown in FIG.
第1信号判定部204は、脳波計測部201からユーザ100の脳波に関する信号を受け取る(ステップS100)。この信号には、脳波が含まれているが、ノイズも含まれていることがある。なお、ノイズ源には、人体外からの機器ノイズ、商用交流ノイズ、人体内からの筋電ノイズ、人体内からの眼電ノイズ、問題の提示、又は、解答の入力とは関連のない動きに起因するノイズ、及び、背景脳波等様々なものが考えられる。また、ノイズ源は1つに限られるものではなく、2つ以上の場合も考えられる。
The first signal determination unit 204 receives a signal regarding the electroencephalogram of the user 100 from the electroencephalogram measurement unit 201 (step S100). The signal contains brain waves, but may also contain noise. Note that noise sources include device noise from outside the human body, commercial AC noise, myoelectric noise from the human body, ocular noise from the human body, problem presentation, or movements unrelated to answer input. Various noises such as noise and background brain waves can be considered. Further, the number of noise sources is not limited to one, and two or more noise sources may be considered.
第1信号判定部204は、受け取った信号に対して特定の周波数帯域が含まれる波形を抽出するためにノイズ除去処理を行う(ステップS101)。例えば、第1信号判定部204は、信号に対してバンドパスフィルタにおいて、例えば2Hzから10Hzの帯域制限処理を行うことによって、特定の周波数帯域が含まれる脳波を抽出する。これにより、ノイズが除去される。
The first signal determination unit 204 performs noise removal processing to extract a waveform including a specific frequency band from the received signal (step S101). For example, the first signal determination unit 204 extracts an electroencephalogram including a specific frequency band by performing band limitation processing on the signal, for example, 2 Hz to 10 Hz in a bandpass filter. This removes noise.
次に、第1信号判定部204は、提示部209から、問題をユーザ100に提示したタイミングを示す情報を受け取る(ステップS102)。
Next, the first signal determination unit 204 receives, from the presentation unit 209, information indicating the timing of presenting the question to the user 100 (step S102).
第1信号判定部204は、ステップS101でノイズを除去したユーザ100の脳波に関する信号から、ステップS102で受け取った情報によって示されるタイミングを起点として、所定の時間範囲の脳波信号を切り出す(ステップS103)。例えば、第1信号判定部204は、問題表示のタイミングを起点として、200msecから2000msecまでの脳波信号を切り出しても良い。この切り出された脳波信号が、第1の脳波である。
The first signal determination unit 204 cuts out an electroencephalogram signal in a predetermined time range from the signal relating to the electroencephalogram of the user 100 from which noise has been removed in step S101, starting from the timing indicated by the information received in step S102 (step S103). .. For example, the first signal determination unit 204 may cut out an electroencephalogram signal from 200 msec to 2000 msec, starting from the timing of problem display. The cut-out brain wave signal is the first brain wave.
第1信号判定部204は、ステップS103で切り出された所定の時間範囲のシータ波成分に対してVpp値を算出する(ステップS104)。
The first signal determination unit 204 calculates the Vpp value for the theta wave component in the predetermined time range cut out in step S103 (step S104).
第1信号判定部204は、ステップS104で算出されたVppが閾値以上かどうかを判定する。この閾値の設定は、予め定められた値を用いて行ってもよい(ステップS105)。
The first signal determination unit 204 determines whether Vpp calculated in step S104 is greater than or equal to a threshold value. The threshold value may be set using a predetermined value (step S105).
第1信号判定部204は、ステップS105の判定結果がYESの場合、第1のひらめきが有ると判定する(ステップS106)。
If the determination result of step S105 is YES, the first signal determination unit 204 determines that there is a first inspiration (step S106).
また、第1信号判定部204は、ステップS105の判定結果がNOの場合、第1のひらめきが無いと判定する(ステップS107)。
Further, if the determination result in step S105 is NO, the first signal determination unit 204 determines that there is no first inspiration (step S107).
図6は、図3で示した解答判定部207の処理を示すフローチャートである。
FIG. 6 is a flowchart showing the processing of the answer determination unit 207 shown in FIG.
解答判定部207は、取得部206からユーザ100の第1の問題に対する解答を受け取る(ステップS200)。
The answer determination unit 207 receives the answer to the first question of the user 100 from the acquisition unit 206 (step S200).
解答判定部207は、受け取った解答に対して、解答の正誤を判定するために、ROM105に記録された正答と対応付けられた問題が複数記憶されているデータベースを参照する(ステップS201)。
The answer determination unit 207 refers to a database in which a plurality of questions associated with the correct answer recorded in the ROM 105 are stored in order to determine whether the received answer is correct or incorrect (step S201).
次に、解答判定部207は、受け取った解答に対し、ROM105に記録された正答と対応付けられた問題が複数記憶されているデータベースを参照し、正答と一致するかを判定する(ステップS202)。
Next, the answer determination unit 207 refers to the database in which a plurality of questions stored in the ROM 105 and associated with the correct answer are stored, and determines whether or not the received answer matches the correct answer (step S202). ..
解答判定部207は、ステップS202の判定結果がYESの場合、第1の問題に対する解答が正答であると判定する(ステップS203)。
The answer determination unit 207 determines that the answer to the first question is a correct answer when the determination result in step S202 is YES (step S203).
また、解答判定部207は、ステップS202の判定結果がNOの場合、第1の問題に対する解答が誤答であると判定する(ステップS204)。
Further, if the determination result in step S202 is NO, the answer determination unit 207 determines that the answer to the first question is an incorrect answer (step S204).
図7は、図5と図6の結果に基づいて状態決定部208によって決定される状態を示す図である。状態決定部208は、第1信号判定部204によって判定された第1のひらめきの有無(ひらめき有/無)と、解答判定部207によって判定された解答の正誤(正/誤)によって、ユーザ100の習熟度の状態を決定する。
FIG. 7 is a diagram showing states determined by the state determination unit 208 based on the results of FIGS. 5 and 6. The state determination unit 208 determines whether or not the first inspiration is determined by the first signal determination unit 204 (whether the inspiration is present / absent) and the correctness (correctness / incorrectness) of the answer determined by the answer determination unit 207. Determine the state of proficiency of.
具体的には、状態決定部208は、下記のように習熟度の状態を決定する。
Specifically, the state determination unit 208 determines the state of proficiency as described below.
状態決定部208は、第1のひらめきが「有」で、かつ解答が「正答」の場合に、ユーザ100の状態を状態1と決定する。この状態1は、表示された問題に対して反射的にひらめきが有り、かつ、正答であり、表示された問題を十分に理解している状態を示している。すなわち、ユーザ100は、習熟した状態である。
The state determination unit 208 determines the state of the user 100 as state 1 when the first inspiration is “present” and the answer is “correct”. This state 1 is a state in which the displayed question has a reflexive inspiration and is the correct answer, and the displayed question is sufficiently understood. That is, the user 100 is in a familiar state.
状態決定部208は、第1のひらめきが「有」で、かつ解答が「誤答」の場合に、ユーザ100の状態を状態2と決定する。この状態2は、表示された問題に対して反射的にひらめきが有り、かつ、誤答であり、表示された問題に対し、計算の過程、又は、記入を間違えている状態を示している。すなわち、ユーザ100は、ケアレスミスの状態である。
The state determination unit 208 determines the state of the user 100 as state 2 when the first inspiration is “present” and the answer is “wrong answer”. The state 2 is a state in which the displayed question has a reflexive inspiration and is an incorrect answer, and the displayed question has a mistake in the calculation process or entry. That is, the user 100 is in a careless miss state.
状態決定部208は、第1のひらめきが「無」で、かつ解答が「正答」の場合に、ユーザ100の状態を状態3と決定する。この状態3は、表示された問題に対して反射的にひらめきが無く、かつ、正答であり、表示された問題に対し、解答までの計算の過程が定着していないなど、習熟度が不足している状態を示している。すなわち、ユーザ100は、未習熟かつ要練習の状態である。
The state determination unit 208 determines the state of the user 100 to be state 3 when the first inspiration is “none” and the answer is “correct”. In this state 3, there is no reflexive inspiration to the displayed question, and the answer is correct, and the proficiency level is insufficient because the calculation process up to the answer is not fixed for the displayed question. It shows the state. That is, the user 100 is in a state of being unfamiliar and requiring practice.
状態決定部208は、第1のひらめきが「無」で、かつ解答が「誤答」の場合に、ユーザ100の状態を状態4と決定する。この状態4は、表示された問題に対して反射的にひらめきが無く、かつ、誤答であり、表示された問題を解くことができない状態を示している。すなわち、ユーザ100は、未習熟かつ要休憩の状態である。
The state determination unit 208 determines the state of the user 100 to be state 4 when the first inspiration is “none” and the answer is “wrong answer”. This state 4 is a state in which there is no reflective inspiration for the displayed question, and it is an incorrect answer, and the displayed question cannot be solved. That is, the user 100 is in an unskilled state and needs a break.
なお、状態決定部208は、上記のように、第1のひらめきの有無(ひらめき有/無)と、解答の正誤(正/誤)によって、ユーザ100の状態を決定するが、これ以外の方法を用いて決定してもよい。例えば、取得部206が取得した解答を取得した時点であるタイミングを用いて、ユーザ100の状態を決定してもよい。具体的には、次々と問題が出題されるときに、それぞれの問題に対する解答を取得したタイミングが徐々に早くなる場合は、徐々に習熟度が高まっている状態を示している。一方で、次々と問題が出題されるときに、それぞれの問題に対する解答を取得したタイミングが一定の場合や、徐々に遅くなる場合は、習熟度が一定のままの状態を示している。
As described above, the state determination unit 208 determines the state of the user 100 based on the presence / absence of the first inspiration (whether the inspiration is present / absent) and the correctness of the answer (correctness / incorrectness), but other methods. May be used to determine. For example, the state of the user 100 may be determined by using the timing when the answer acquired by the acquisition unit 206 is acquired. Specifically, when questions are presented one after another, if the timing at which the answer to each question is acquired gradually becomes earlier, it indicates a state where the proficiency level is gradually increasing. On the other hand, when questions are presented one after another, if the timing of obtaining the answer to each question is constant or gradually delayed, the proficiency level remains constant.
一方で、図7に示したように、第1のひらめきの有無(ひらめき有/無)と、解答の正誤(正/誤)によってのみ、ユーザ100の状態を決定し、解答を取得した時点であるタイミングを用いずに、ユーザ100の状態を決定してもよい。
On the other hand, as shown in FIG. 7, the state of the user 100 is determined only by the presence / absence of the first inspiration (whether the inspiration is present / absent) and the correctness (correctness / incorrectness) of the answer, and when the answer is acquired. The state of the user 100 may be determined without using a certain timing.
図8は、図7で示した各状態に対応する提示部209の処理を示す図である。提示部209は、状態決定部208による決定結果に応じて出力部210に表示させる内容を選択する。
FIG. 8 is a diagram showing processing of the presentation unit 209 corresponding to each state shown in FIG. 7. The presentation unit 209 selects the content to be displayed on the output unit 210 according to the determination result by the state determination unit 208.
具体的には、提示部209は、状態決定部208による決定結果が状態1であった場合には、出力部210に表示させる内容として、継続して、問題を解くよう促す応答を選択する。そして、提示部209は、継続して、問題を解くよう促す表示を出力部210に出力させる。このような表示を行うのは、ユーザ100が状態1の場合、ユーザ100は、習熟度が高い状態であると考えられるためである。提示部209は、継続して、問題を解くよう促す応答として、例えば「良い調子です」といった応答を選択してもよい。
Specifically, when the determination result by the state determination unit 208 is the state 1, the presentation unit 209 continuously selects a response that prompts the user to solve the problem as the content to be displayed on the output unit 210. Then, the presentation unit 209 continuously causes the output unit 210 to output a display prompting the user to solve the problem. The reason why such a display is made is that when the user 100 is in state 1, it is considered that the user 100 is in a state of high proficiency. The presentation unit 209 may continuously select a response such as “good condition” as a response prompting the user to solve the problem.
さらに、提示部209は、状態決定部208による決定結果が状態1であった場合には、出力部210に表示させる内容として、第1の問題よりも難しい第2の問題を決定する。そして提示部209は、第1の問題よりも難しい第2の問題を出力部210に出力させる。
Further, when the determination result by the state determining unit 208 is the state 1, the presenting unit 209 determines the second problem that is more difficult than the first problem as the content to be displayed on the output unit 210. Then, the presentation unit 209 causes the output unit 210 to output the second problem that is more difficult than the first problem.
また、提示部209は、状態決定部208による決定結果が状態2であった場合には、出力部210に表示させる内容として、落ち着いて問題を解くことを促す応答を選択する。そして、提示部209は、落ち着いて問題を解くことを促す表示を出力部210に出力させる。このような表示を行うのは、ユーザ100が状態2の場合、ユーザ100は、ケアレスミスをしている状態と考えられるためである。提示部209は、落ち着いて問題を解くことを促す応答として、例えば「落ち着いて計算して下さい」といった具体的な行動を促す応答を選択してもよい。
Further, when the determination result by the state determining unit 208 is the state 2, the presenting unit 209 selects a response prompting the user to calmly solve the problem as the content to be displayed on the output unit 210. Then, the presentation unit 209 causes the output unit 210 to output a display prompting the user to calmly solve the problem. The reason why such a display is performed is that when the user 100 is in state 2, it is considered that the user 100 is in a careless miss. The presentation unit 209 may select a response that prompts a specific action, such as “calmly calculate,” as a response that calmly solves the problem.
さらに、提示部209は、状態決定部208による決定結果が状態2であった場合には、出力部210に表示させる内容として、第1の問題と同じ難度の第3の問題を決定する。そして提示部209は、第1の問題と同じ難度の第3の問題を出力部210に出力させる。
Furthermore, when the determination result by the state determination unit 208 is state 2, the presentation unit 209 determines the third problem having the same difficulty level as the first problem as the content to be displayed on the output unit 210. Then, the presentation unit 209 causes the output unit 210 to output the third problem having the same difficulty level as the first problem.
また、提示部209は、状態決定部208による決定結果が状態3であった場合には、出力部210に表示させる内容として、次回は今回より速く問題を解く練習をすることを促す応答を選択する。そして、提示部209は、速く問題を解くことを促す表示を出力部210に出力させる。このような表示を行うのは、ユーザ100が状態3の場合、ユーザ100は、未習熟かつ要練習の状態であると考えられるためである。提示部209は、ユーザ100に次の問題へ意識を向けさせて、速く問題を解くことを促す応答として、例えば「次の問題は解いてみましょう」といった具体的な行動を促す応答を決定してもよい。
Further, when the determination result of the state determination unit 208 is the state 3, the presentation unit 209 selects the response prompting the user to practice the problem solving faster than this time as the content to be displayed on the output unit 210. To do. Then, the presentation unit 209 causes the output unit 210 to output a display that prompts the user to solve the problem quickly. The reason why such a display is made is that when the user 100 is in the state 3, it is considered that the user 100 is in an unfamiliar state and requires practice. The presentation unit 209 determines a response that prompts the user 100 to focus on the next problem and promptly solve the problem, for example, a response that prompts a specific action such as “Let's solve the next problem”. You may.
さらに、提示部209は、状態決定部208による決定結果が状態3であった場合には、出力部210に表示させる内容として、第1の問題と同じ難度の第3の問題、又は、第1の問題よりも簡単な第4の問題を決定する。そして提示部209は、第1の問題と同じ難度の第3の問題、又は、第1の問題よりも簡単な第4の問題を出力部210に出力させる。
Furthermore, when the determination result by the state determination unit 208 is the state 3, the presentation unit 209 sets the content displayed on the output unit 210 to the third problem of the same difficulty level as the first problem, or the first problem. Determine a fourth problem, which is simpler than the problem. Then, the presentation unit 209 causes the output unit 210 to output the third problem having the same difficulty level as the first problem or the fourth problem that is simpler than the first problem.
また、提示部209は、状態決定部208による決定結果が状態4であった場合には、出力部210に表示させる内容として、休憩を促す応答を選択する。そして、提示部209は、休憩を促す表示を出力部210に出力させる。このような表示を行うのは、ユーザ100が状態4の場合、ユーザ100は、未習熟かつ要休憩の状態であると考えられるためである。提示部209は、休憩を促す応答として、例えば「休憩後に、次の問題を解いてみましょう」といった具体的な行動を促す応答を決定してもよい。また、休憩を促す応答の具体的な内容として、例えば、ユーザ100がリラックスできるような内容や音声が挙げられる。
Further, when the determination result by the state determining unit 208 is the state 4, the presenting unit 209 selects a response prompting a break as the content to be displayed on the output unit 210. Then, the presentation unit 209 causes the output unit 210 to output a display prompting a break. The reason why such a display is performed is that when the user 100 is in state 4, it is considered that the user 100 is in an unfamiliar state and needs a break. The presentation unit 209 may determine a response that prompts a specific action, such as “let's solve the next problem after the break”, as the response that prompts the break. In addition, specific contents of the response prompting the break include, for example, contents and voice that allow the user 100 to relax.
さらに、提示部209は、状態決定部208による決定結果が状態4であった場合には、更なる問題を出力部210に表示させない。
Furthermore, the presentation unit 209 does not cause the output unit 210 to display a further problem when the determination result of the state determination unit 208 is state 4.
また、上記では、いずれの状態においても、提示部209は、問題と応答の両方を、出力部210に出力させたが、どちらか一方を出力部210に出力させても構わない。
Further, in the above, in any of the states, the presentation unit 209 causes the output unit 210 to output both the question and the response, but either one may be output to the output unit 210.
図9は、図8で決定した表示内容に従って、出力部210によって表示される画面300を示す図である。
FIG. 9 is a diagram showing a screen 300 displayed by the output unit 210 according to the display content determined in FIG.
出力部210は、問題表示欄301と、応答表示欄302と、解答入力欄303と、正誤表示欄304とを含む画面300を表示する。問題表示欄301には、提示部209によって選択された問題が表示される。解答入力欄303には、ユーザ100が入力した解答が表示される。また、解答入力欄303には、複数の選択肢が表示されていてもよい。この場合には、解答入力欄303には、複数の選択肢のうちの何れか1つが、ユーザ100の解答として選択され、残りの選択肢と異なる態様で表示される。正誤表示欄304には、表示された問題に対するユーザ100の解答が正答であったか否かが表示される。応答表示欄302には、提示部209によって決定された応答が表示される。例えば、状態決定部208によってユーザ100が状態1であると決定されると、応答表示欄302には、「良い調子です」という応答が表示される。また、状態決定部208による決定結果に応じて、出力部210は次の問題を表示してもよい。
The output unit 210 displays a screen 300 including a question display field 301, a response display field 302, an answer input field 303, and a correctness display field 304. The question selected by the presenting unit 209 is displayed in the question display field 301. In the answer input field 303, the answer entered by the user 100 is displayed. In addition, a plurality of options may be displayed in the answer input field 303. In this case, any one of the plurality of options is selected as the answer of the user 100 and displayed in the answer input field 303 in a mode different from the remaining options. The correct / incorrect display column 304 displays whether or not the user 100's answer to the displayed question was correct. The response display field 302 displays the response determined by the presentation unit 209. For example, when the state determining unit 208 determines that the user 100 is in the state 1, the response display field 302 displays a response of “good condition”. Further, the output unit 210 may display the next question according to the determination result by the state determination unit 208.
図10は、実施の形態1における学習システム1000の処理を示すフローチャートである。
FIG. 10 is a flowchart showing the processing of the learning system 1000 according to the first embodiment.
出力部210は、提示部209が選択した問題を表示する(ステップS300)。この時、第1の問題は、図9に示す画面300の問題表示欄301に表示される。
The output unit 210 displays the question selected by the presentation unit 209 (step S300). At this time, the first problem is displayed in the problem display field 301 of the screen 300 shown in FIG.
第1信号判定部204は、脳波計測部201によって計測される脳波から、図4に示す問題表示の時刻t1を起点として定められた時間範囲における第1の脳波を抽出する(ステップS301)。この場合、例えば、脳波計測部201は、ユーザ100の脳波を常に計測し、時系列的に記録している。第1信号判定部204は、この記録された脳波から第1の脳波を抽出する。
The first signal determination unit 204 extracts, from the electroencephalogram measured by the electroencephalogram measurement unit 201, a first electroencephalogram within a time range defined starting from the time t1 of the question display shown in FIG. 4 (step S301). In this case, for example, the electroencephalogram measurement unit 201 constantly measures the electroencephalogram of the user 100 and records the electroencephalogram in time series. The first signal determination unit 204 extracts the first electroencephalogram from the recorded electroencephalogram.
次に、第1信号判定部204は、ステップS301において抽出した第1の脳波に基づき、ステップS300の問題提示に対してユーザ100の第1ひらめきが有無を判定する(ステップS302)。この判定は、上述の第1信号判定部204による第1のひらめきの有無を判定する方法にしたがって行われる。また、第1信号判定部204は、この判定結果を、状態決定部208へ通知する。
Next, the first signal determination unit 204 determines, based on the first electroencephalogram extracted in step S301, whether or not the user 100 has the first inspiration for the question presentation in step S300 (step S302). This determination is performed according to the method of determining the presence or absence of the first inspiration by the above-described first signal determination unit 204. Further, the first signal determination unit 204 notifies the state determination unit 208 of this determination result.
次に、ユーザ100は、画面300における問題表示欄301に表示された問題に対する解答を、その画面300の解答入力欄303に入力する。この解答の入力は、複数の選択肢からの選択であってもよい。このようなユーザ100による解答の入力によって、取得部206は、その解答を取得し、解答判定部207へ通知する(ステップS303)。
Next, the user 100 inputs the answer to the question displayed in the question display field 301 on the screen 300 into the answer input field 303 on the screen 300. The input of this answer may be a selection from a plurality of options. By such an input of the answer by the user 100, the acquisition unit 206 acquires the answer and notifies the answer determination unit 207 (step S303).
次に、解答判定部207は、解答の正誤を判定する(ステップS304)。この判定は、上述の図6に示す通りに、行われる。また、解答判定部207は、この判定結果を状態決定部208へ通知する。
Next, the answer determination unit 207 determines whether the answer is correct or incorrect (step S304). This determination is performed as shown in FIG. 6 described above. The answer determination unit 207 also notifies the state determination unit 208 of this determination result.
次に、状態決定部208は、第1のひらめきの有無と、解答の正誤に基づき、ユーザ100の状態を決定する(ステップS305)。この判定は、上述の図7に示す通りに行われる。また、状態決定部208は、この決定された状態を、提示部209へ通知する。
Next, the state determination unit 208 determines the state of the user 100 based on the presence or absence of the first inspiration and the correctness of the answer (step S305). This determination is performed as shown in FIG. Further, the state determining unit 208 notifies the presenting unit 209 of the determined state.
次に、提示部209は、ユーザ100の状態の決定結果に基づいて、出力部210に出力させる内容を決定する(ステップS306)。出力させる内容は、上述の図8に示す通りに行われ、図4に示す解答の正誤と応答とを出力させる時刻t5に、図9に示す画面300における正誤表示欄304と、応答表示欄302とに表示される。またさらに、次の問題が、問題表示欄301に表示されてもよい。
Next, the presentation unit 209 determines the content to be output by the output unit 210 based on the determination result of the state of the user 100 (step S306). The content to be output is performed as shown in FIG. 8 described above. At time t5 at which the correctness of the answer and the response shown in FIG. 4 are output, the correctness display field 304 and the response display field 302 in the screen 300 shown in FIG. Displayed in and. Furthermore, the following question may be displayed in the question display field 301.
また、学習システム1000の処理は上記に限られるものではなく、手順が入れ替わってもよい。例えば、ステップS301とステップS302は、ステップS303とステップ304の後に、処理されてもよい。つまり、ステップS300、ステップS303、ステップS304、ステップS301、ステップS302、ステップS305の手順でもよい。すなわち、第1信号判定部204に関する処理(ステップS301とステップS302)が、取得部206に関する処理(ステップS303)と解答判定部207に関する処理(ステップS304)の後に行われてもよい。
Moreover, the processing of the learning system 1000 is not limited to the above, and the procedure may be changed. For example, steps S301 and S302 may be processed after steps S303 and 304. That is, the procedure of step S300, step S303, step S304, step S301, step S302, and step S305 may be used. That is, the process related to the first signal determination unit 204 (steps S301 and S302) may be performed after the process related to the acquisition unit 206 (step S303) and the process related to the answer determination unit 207 (step S304).
図11は、実施の形態1に係る学習方法のフローチャートである。
FIG. 11 is a flowchart of the learning method according to the first embodiment.
図10に示すフローチャートでは、学習システム1000に含まれる各構成要素がそれぞれの処理を実行するが、コンピュータプログラムを実行するコンピュータ装置が実施の形態の学習方法を実行してもよい。
In the flowchart shown in FIG. 10, each component included in the learning system 1000 executes each process, but a computer device that executes a computer program may execute the learning method of the embodiment.
実施の形態における学習方法は、コンピュータプログラムと出力装置とを有する学習システム1000を用いた学習方法である。そして、この学習方法では、ステップS400~S406の処理を実行する。
The learning method in the embodiment is a learning method using a learning system 1000 having a computer program and an output device. Then, in this learning method, the processes of steps S400 to S406 are executed.
コンピュータ装置は、出力装置を介してユーザ100に第1の問題を出力する(ステップS400)。この出力装置は、出力部210に相当する装置であって、ディスプレイでもよく、スピーカであってもよい。
The computer device outputs the first problem to the user 100 via the output device (step S400). The output device is a device corresponding to the output unit 210, and may be a display or a speaker.
コンピュータ装置は、ユーザ100の第1の脳波を取得する(ステップS401)。
The computer device acquires the first electroencephalogram of the user 100 (step S401).
コンピュータ装置は、第1の問題が出力された時点を起点とする第1の脳波に基づいて、ユーザ100の第1のひらめきを判定する(ステップS402)。
The computer device determines the first inspiration of the user 100 based on the first brain wave starting from the time point when the first problem is output (step S402).
コンピュータ装置は、ユーザ100の第1の問題に対する解答を取得する(ステップS403)。
The computer device acquires the answer to the first question of the user 100 (step S403).
コンピュータ装置は、ユーザ100の第1の問題に対する解答の正誤を判定する(ステップS404)。
The computer device determines the correctness of the answer to the first question of the user 100 (step S404).
コンピュータ装置は、第1のひらめきの有無と、第1の問題に対する解答の正誤に基づき、ユーザ100の状態を決定する(ステップS405)。
The computer device determines the state of the user 100 based on the presence or absence of the first inspiration and the correctness of the answer to the first question (step S405).
コンピュータ装置は、ユーザ100の状態の決定結果に基づいて、出力装置に出力させる内容を決定する(ステップS406)。
The computer device determines the contents to be output to the output device based on the determination result of the state of the user 100 (step S406).
[効果]
以上説明したように、学習システム1000は、ユーザ100に第1の問題を出力する出力部210と、第1の問題に対するユーザ100の解答を取得する取得部206と、ユーザ100の脳波を計測する脳波計測部201と、制御部200とを備える。制御部200は、(a)脳波に含まれる、第1の問題が出力された時点を起点とする第1の脳波に基づいて、ユーザ100の第1のひらめきの有無を判定する。さらに制御部200は、(b)解答の正誤を判定し、(c)第1のひらめきの有無と、正誤とに基づいて、出力部210に出力させる内容を決定し、出力部210に内容を出力させる。 [effect]
As described above, thelearning system 1000 measures the output unit 210 that outputs the first question to the user 100, the acquisition unit 206 that acquires the answer of the user 100 to the first problem, and the electroencephalogram of the user 100. The brain wave measuring unit 201 and the control unit 200 are provided. The control unit 200 determines the presence / absence of the first inspiration of the user 100 based on the first brain wave included in (a) the brain wave and starting from the time point when the first problem is output. Further, the control unit 200 determines (b) whether the answer is correct or not, and (c) determines the content to be output to the output unit 210 based on the presence or absence of the first inspiration and the correctness, and outputs the content to the output unit 210. Output.
以上説明したように、学習システム1000は、ユーザ100に第1の問題を出力する出力部210と、第1の問題に対するユーザ100の解答を取得する取得部206と、ユーザ100の脳波を計測する脳波計測部201と、制御部200とを備える。制御部200は、(a)脳波に含まれる、第1の問題が出力された時点を起点とする第1の脳波に基づいて、ユーザ100の第1のひらめきの有無を判定する。さらに制御部200は、(b)解答の正誤を判定し、(c)第1のひらめきの有無と、正誤とに基づいて、出力部210に出力させる内容を決定し、出力部210に内容を出力させる。 [effect]
As described above, the
このような学習システム1000は、ユーザ100の問題に対する解答と、問題を解く過程に対する脳波とに基づいて、問題に対する習熟度の状態を決定し、次に、習熟度の状態に応じた内容をユーザ100に取り組ませることができる。つまり、ユーザ100は、習熟度を効果的に向上させることができる。
The learning system 1000 as described above determines the state of proficiency for the problem based on the answer to the problem of the user 100 and the electroencephalogram of the process of solving the problem, and then determines the content according to the state of the proficiency level. You can work on 100. That is, the user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、さらに、出力部210に、第1の問題の次の問題、及び、応答の少なくとも一方を出力させ、内容は、問題、及び、応答の少なくとも一方である。
Further, for example, the control unit 200 further causes the output unit 210 to output at least one of the next problem and the response, and the content is at least one of the problem and the response.
このような学習システム1000は、習熟度の状態に応じた問題、及び、応答の少なくとも一方をユーザ100に取り組ませることができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 enables the user 100 to tackle at least one of a problem and a response according to the state of proficiency level. The user 100 can effectively improve the proficiency level.
また、例えば、応答は、ユーザ100に休憩を促す内容である。
Further, for example, the response is content that prompts the user 100 to take a break.
このような学習システム1000は、習熟度の状態に応じてユーザ100に休憩を促すことができる。ユーザ100は、効果的に休憩をすることができる。
Such a learning system 1000 can prompt the user 100 to take a break in accordance with the state of proficiency. The user 100 can take a break effectively.
また、例えば、制御部200は、(a)において、(a1)第1の脳波から、第1の脳波のシータ波帯域の成分を抽出し、(a2)抽出したシータ波帯域の成分に基づいて、ユーザ100の第1のひらめきの有無を判定する。
Further, for example, in (a), the control unit 200 extracts (a1) a theta wave band component of the first brain wave from the first brain wave, and (a2) based on the extracted theta wave band component. , The presence / absence of the first inspiration of the user 100 is determined.
このような学習システム1000は、シータ波帯域の成分に基づいて、ユーザ100の第1のひらめきの有無を判定することによって、より詳細な習熟度が決定でき、その習熟度の状態に応じた内容をユーザ100に取り組ませることができる。つまり、ユーザ100は、習熟度を効果的に向上させることができる。
The learning system 1000 as described above can determine a more detailed proficiency level by determining the presence or absence of the first inspiration of the user 100 based on the theta wave band component, and the content according to the state of the proficiency level. Can be made to work on the user 100. That is, the user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(a1)において、第1の問題が出力された時点を起点として、200msec以上2000msec以下の時間範囲における脳波から、第1の脳波を抽出する。
Further, for example, in (a1), the control unit 200 extracts the first electroencephalogram from the electroencephalogram in the time range of 200 msec or more and 2000 msec or less, starting from the time point when the first problem is output.
このような学習システム1000は、第1の問題が出力された時点を起点として、200msec以上2000msec以下の時間範囲における脳波から、第1の脳波を抽出する。そのため、学習システム1000は、より詳細な習熟度が決定でき、その習熟度の状態に応じた内容をユーザ100に取り組ませることができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 extracts the first electroencephalogram from the electroencephalogram in the time range of 200 msec or more and 2000 msec or less, starting from the time point when the first problem is output. Therefore, the learning system 1000 can determine a more detailed proficiency level and allow the user 100 to work on the content according to the proficiency level. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(d1)解答が正答であり、第1のひらめきが有る場合、(e1)出力部210に、第1の問題よりも難しい第2の問題を出力させる。
Further, for example, when the answer (d1) is a correct answer and there is the first inspiration, the control unit 200 causes the (e1) output unit 210 to output the second problem that is more difficult than the first problem.
このような学習システム1000は、習熟度の状態に応じた第1の問題よりも難しい第2の問題をユーザ100に取り組ませることができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 allows the user 100 to tackle the second problem that is more difficult than the first problem according to the state of proficiency. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(d2)解答が誤答であり、第1のひらめきが有る場合、(e2)出力部210に、第1の問題と同じ難度の第3の問題を出力させる。
In addition, for example, when the answer (d2) is an incorrect answer and there is a first inspiration, the controller 200 causes the output unit 210 to output the third question having the same difficulty level as the first question (e2). ..
このような学習システム1000は、習熟度の状態に応じた第1の問題と同じ難度の第3の問題をユーザ100に取り組ませることができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 allows the user 100 to work on the third problem having the same difficulty level as the first problem according to the state of proficiency level. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(d3)解答が正答であり、第1のひらめきが無い場合、(e3)出力部210に、第1の問題と同じ難度の第3の問題、又は、第1の問題よりも簡単な第4の問題のいずれかを出力させる。
Further, for example, when the answer (d3) is a correct answer and there is no first inspiration, the control unit 200 causes the output unit 210 to (e3) output the third problem of the same difficulty level as the first problem, or the Output one of the fourth problems, which is simpler than the first problem.
このような学習システム1000は、習熟度の状態に応じた第1の問題と同じ難度の第3の問題、又は、第1の問題よりも簡単な第4の問題のいずれかをユーザ100に取り組ませることができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 tackles the user 100 with either the third problem having the same difficulty level as the first problem or the fourth problem simpler than the first problem according to the state of proficiency. Can be made. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(d4)解答が誤答であり、第1のひらめきが無い場合、(e4)出力部210に、第1の問題よりも簡単な第4の問題、又は、休憩を促す内容を出力させる。
Further, for example, when the answer (d4) is an incorrect answer and there is no first inspiration, the control unit 200 causes the output unit 210 to (e4) output a fourth problem that is simpler than the first problem, or Output the content that encourages a break.
このような学習システム1000は、習熟度の状態に応じた第1の問題よりも簡単な第4の問題をユーザ100に取り組ませるか、休憩を促すことができる。ユーザ100は、習熟度を効果的に向上させることができる。
The learning system 1000 as described above can cause the user 100 to work on the fourth problem, which is easier than the first problem according to the state of proficiency, or prompt the user to take a break. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(b)において、正答と対応付けられた問題が複数記憶されているデータベースを参照して、解答が正答であるか否かを判定する。さらに、制御部200は、(e1)において、難度と対応付けられた問題が複数記憶されているデータベースを参照して、出力部210に、第2の問題を出力させる。
Further, for example, in (b), the control unit 200 refers to a database in which a plurality of questions associated with correct answers are stored and determines whether or not the answer is a correct answer. Further, in (e1), the control unit 200 refers to the database in which a plurality of questions associated with the degree of difficulty are stored, and causes the output unit 210 to output the second question.
このような学習システム1000は、正答と対応付けられた問題が複数記憶されているデータベースを参照して、解答が正答であるか否かを判定すること、及び、難度と対応付けられた問題が複数記憶されているデータベースを参照することを実行する。これにより、学習システム1000は、より詳細な習熟度が決定でき、その習熟度の状態に応じた第1の問題よりも難しい第2の問題をユーザ100に取り組ませることができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 refers to a database in which a plurality of questions associated with correct answers are stored to determine whether or not an answer is a correct answer, and a question associated with difficulty is Performing reference to multiple stored databases. As a result, the learning system 1000 can determine a more detailed proficiency level and allow the user 100 to tackle the second problem that is more difficult than the first problem according to the proficiency level. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(b)において、正答と対応付けられた問題が複数記憶されているデータベースを参照して、解答が正答であるか否かを判定する。さらに、制御部200は、(e2)において、難度と対応付けられた問題が複数記憶されているデータベースを参照して、出力部210に、第3の問題を出力させる。
Further, for example, in (b), the control unit 200 refers to a database in which a plurality of questions associated with correct answers are stored and determines whether or not the answer is a correct answer. Further, in (e2), the control unit 200 refers to the database that stores a plurality of questions associated with the difficulty levels, and causes the output unit 210 to output the third question.
このような学習システム1000は、正答と対応付けられた問題が複数記憶されているデータベースを参照して、解答が正答であるか否かを判定すること、及び、難度と対応付けられた問題が複数記憶されているデータベースを参照することを実行する。これにより、学習システム1000は、より詳細な習熟度が決定でき、その習熟度の状態に応じた第1の問題と同じ難度の第3の問題をユーザ100に取り組ませることができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 refers to a database in which a plurality of questions associated with correct answers are stored to determine whether or not an answer is a correct answer, and a question associated with difficulty is Performing reference to multiple stored databases. Accordingly, the learning system 1000 can determine a more detailed proficiency level and allow the user 100 to work on the third problem having the same difficulty level as the first problem according to the proficiency level. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(b)において、正答と対応付けられた問題が複数記憶されているデータベースを参照して、解答が正答であるか否かを判定する。さらに、制御部200は、(e3)において、難度と対応付けられた問題が複数記憶されているデータベースを参照して、出力部210に、第3の問題、又は、第4の問題のいずれかを出力させる。
Further, for example, in (b), the control unit 200 refers to a database in which a plurality of questions associated with correct answers are stored and determines whether or not the answer is a correct answer. Further, in (e3), the control unit 200 refers to the database in which a plurality of problems associated with the difficulty levels are stored, and outputs either the third problem or the fourth problem to the output unit 210. Is output.
このような学習システム1000は、正答と対応付けられた問題が複数記憶されているデータベースを参照して、解答が正答であるか否かを判定すること、及び、難度と対応付けられた問題が複数記憶されているデータベースを参照することを実行する。これにより、学習システム1000は、より詳細な習熟度が決定でき、その習熟度の状態に応じた第1の問題と同じ難度の第3の問題、又は、第1の問題よりも簡単な第4の問題のいずれかをユーザ100に取り組ませることができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 refers to a database in which a plurality of questions associated with correct answers are stored to determine whether or not an answer is a correct answer, and a question associated with difficulty is Performing reference to multiple stored databases. Accordingly, the learning system 1000 can determine a more detailed proficiency level, and the third problem having the same difficulty level as the first problem or the fourth problem that is simpler than the first problem according to the state of the proficiency level. The user 100 can be made to tackle any of the above problems. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、(b)において、正答と対応付けられた問題が複数記憶されているデータベースを参照して、解答が正答であるか否かを判定する。さらに、制御部200は、(e4)において、難度と対応付けられた問題が複数記憶されているデータベースを参照して、出力部210に、第4の問題を出力させる。
Further, for example, in (b), the control unit 200 refers to a database in which a plurality of questions associated with correct answers are stored and determines whether or not the answer is a correct answer. Further, in (e4), the control unit 200 causes the output unit 210 to output the fourth question by referring to the database in which a plurality of questions associated with the difficulty levels are stored.
このような学習システム1000は、正答と対応付けられた問題が複数記憶されているデータベースを参照して、解答が正答であるか否かを判定すること、及び、難度と対応付けられた問題が複数記憶されているデータベースを参照することを実行する。これにより、学習システム1000は、より詳細な習熟度が決定でき、その習熟度の状態に応じた第1の問題よりも簡単な第4の問題をユーザ100に取り組ませるか、休憩を促すことができる。ユーザ100は、習熟度を効果的に向上させることができる。
Such a learning system 1000 refers to a database in which a plurality of questions associated with correct answers are stored to determine whether or not an answer is a correct answer, and a question associated with difficulty is Performing reference to multiple stored databases. Accordingly, the learning system 1000 can determine a more detailed proficiency level, and can cause the user 100 to work on the fourth problem, which is easier than the first problem according to the proficiency level, or prompt the user to take a break. it can. The user 100 can effectively improve the proficiency level.
また、例えば、制御部200は、プロセッサとメモリとを有し、メモリには、(a)と(b)と(c)とを実行するためのプログラムが記憶されており、プロセッサは、メモリに記憶されているプログラムを実行する。
Further, for example, the control unit 200 has a processor and a memory, and the memory stores a program for executing (a), (b), and (c), and the processor has the memory. Execute a stored program.
このような学習システム1000は、ユーザ100の問題に対する解答と、問題を解く過程に対する脳波とに基づいて、問題に対する習熟度の状態を決定し、次に、習熟度の状態に応じた内容をユーザ100に取り組ませることができる。つまり、ユーザ100は、習熟度を効果的に向上させることができる。
The learning system 1000 as described above determines the state of proficiency for the problem based on the answer to the problem of the user 100 and the electroencephalogram of the process of solving the problem, and then determines the content according to the state of the proficiency level. You can work on 100. That is, the user 100 can effectively improve the proficiency level.
また、例えば、学習システム1000などのコンピュータが実行する学習方法は、ユーザ100に第1の問題を出力する第1出力ステップと、第1の問題に対するユーザ100の解答を取得する取得ステップとを含む。さらに、学習システム1000などのコンピュータが実行する学習方法は、ユーザ100の脳波を計測する脳波計測ステップと、制御ステップとを含む。制御ステップは、(a)脳波に含まれる、第1の問題が出力された時点を起点とする第1の脳波に基づいて、ユーザ100の第1のひらめきの有無を判定する第1判定ステップと、(b)解答の正誤を判定する第2判定ステップとを有する。さらに、制御ステップは、(c)第1のひらめきの有無と、正誤とに基づいて、第1出力ステップにて出力させる内容を決定し、内容を出力させる第2出力ステップとを有する。
Further, for example, the learning method executed by the computer such as the learning system 1000 includes a first output step of outputting the first question to the user 100 and an acquisition step of acquiring the answer of the user 100 to the first question. .. Further, the learning method executed by the computer such as the learning system 1000 includes an electroencephalogram measurement step of measuring the electroencephalogram of the user 100 and a control step. The control step includes (a) a first determination step of determining the presence / absence of a first inspiration of the user 100 based on a first electroencephalogram that is included in the electroencephalogram and starts from a time point when the first problem is output. , (B) a second determination step for determining the correctness of the answer. Further, the control step has (c) a second output step of determining the content to be output in the first output step based on the presence / absence of the first inspiration and correctness, and outputting the content.
このような学習方法は、ユーザ100の問題に対する解答と、問題を解く過程に対する脳波とに基づいて、問題に対する習熟度の状態を決定し、次に、習熟度の状態に応じた内容をユーザ100に取り組ませることができる。つまり、ユーザ100は、習熟度を効果的に向上させることができる。
In such a learning method, the state of proficiency level for the problem is determined based on the answer to the problem of the user 100 and the electroencephalogram for the process of solving the problem, and then the content according to the state of the proficiency level is set by the user 100. Can be worked on. That is, the user 100 can effectively improve the proficiency level.
また、例えば、学習システム1000など実行するコンピュータプログラムは、学習方法を実行するためのコンピュータプログラムである。コンピュータプログラムは、(f1)出力装置を介してユーザ100に第1の問題を出力し、(f2)第1の問題に対するユーザ100の解答を取得し、(f3)ユーザ100の脳波を計測する。さらに、コンピュータプログラムは、(f4)脳波に含まれる、第1の問題が出力された時点を起点とする第1の脳波に基づいて、ユーザ100の第1のひらめきの有無を判定し、(f5)解答の正誤を判定する。さらに、コンピュータプログラムは、(f6)第1のひらめきの有無と正誤とに基づいて、出力装置が出力する内容を決定し、出力装置に出力させる。
Further, for example, the computer program that executes the learning system 1000 or the like is a computer program for executing the learning method. The computer program outputs the first question to the user 100 via the (f1) output device, (f2) obtains the answer of the user 100 to the first question, and (f3) measures the electroencephalogram of the user 100. Further, the computer program determines whether or not there is a first inspiration of the user 100 based on the first brain wave included in the (f4) brain wave and starting from the time point when the first problem is output, and (f5) ) Determine the correctness of the answer. Further, the computer program determines (f6) the content to be output by the output device based on the presence or absence of the first inspiration and the correctness, and causes the output device to output the content.
このような学習方法は、ユーザ100の問題に対する解答と、問題を解く過程に対する脳波とに基づいて、問題に対する習熟度の状態を決定し、次に、習熟度の状態に応じた内容をユーザ100に取り組ませることができる。つまり、ユーザ100は、習熟度を効果的に向上させることができる。
In such a learning method, the state of proficiency level for the problem is determined based on the answer to the problem of the user 100 and the electroencephalogram for the process of solving the problem, and then the content according to the state of the proficiency level is set by the user 100. Can be worked on. That is, the user 100 can effectively improve the proficiency level.
(実施の形態2)
実施の形態2では、第2信号判定部205の判定結果を用いて、より詳細なユーザ100の習熟度の状態を決定する点が、実施の形態1と異なる。第1のひらめきが無かった場合に、実施の形態1では、第1の脳波の時間範囲が経過した後には、ユーザ100の習熟度の状態を詳細に判断することが難しくなる。しかし、実施の形態2では、第1の脳波において、第1のひらめきが無かった場合に、第2の脳波において、第2のひらめきの有無を判断することで、より詳細にユーザ100の習熟度の状態を判断することができる。これにより、本実施の形態では、より詳細にユーザ100の習熟度に応じた内容を、出力部210に出力させることができるため、ユーザ100の習熟度を、より効果的に向上させることができる。 (Embodiment 2)
The second embodiment differs from the first embodiment in that the determination result of the secondsignal determination unit 205 is used to determine a more detailed state of the proficiency level of the user 100. In the first embodiment, when there is no first inspiration, it is difficult to determine the state of the proficiency level of the user 100 in detail after the elapse of the first brain wave time range. However, in the second embodiment, if there is no first inspiration in the first electroencephalogram, the presence or absence of the second inspiration is determined in the second electroencephalogram, and thus the user's proficiency level is more detailed. The state of can be determined. Accordingly, in the present embodiment, the content according to the proficiency level of the user 100 can be output in more detail to the output unit 210, so that the proficiency level of the user 100 can be improved more effectively. ..
実施の形態2では、第2信号判定部205の判定結果を用いて、より詳細なユーザ100の習熟度の状態を決定する点が、実施の形態1と異なる。第1のひらめきが無かった場合に、実施の形態1では、第1の脳波の時間範囲が経過した後には、ユーザ100の習熟度の状態を詳細に判断することが難しくなる。しかし、実施の形態2では、第1の脳波において、第1のひらめきが無かった場合に、第2の脳波において、第2のひらめきの有無を判断することで、より詳細にユーザ100の習熟度の状態を判断することができる。これにより、本実施の形態では、より詳細にユーザ100の習熟度に応じた内容を、出力部210に出力させることができるため、ユーザ100の習熟度を、より効果的に向上させることができる。 (Embodiment 2)
The second embodiment differs from the first embodiment in that the determination result of the second
[システム構成]
図12は、実施の形態2における学習システム1000Aの機能ブロックを示す図である。なお、実施の形態2では、実施の形態1と共通の構成要素については同一の符号を付し、その詳細な説明を省略する。 [System configuration]
FIG. 12 is a diagram showing functional blocks of thelearning system 1000A in the second embodiment. In the second embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
図12は、実施の形態2における学習システム1000Aの機能ブロックを示す図である。なお、実施の形態2では、実施の形態1と共通の構成要素については同一の符号を付し、その詳細な説明を省略する。 [System configuration]
FIG. 12 is a diagram showing functional blocks of the
実施の形態2における学習システム1000Aは、実施の形態1に加え、第2信号判定部205を備える。したがって、実施の形態2では、第1信号判定部204、第2信号判定部205、解答判定部207、状態決定部208、提示部209が、制御部200に含まれる構成要素である。この制御部200は、実施の形態1と同様、例えば少なくとも1つのプロセッサにより構成されている。
The learning system 1000A according to the second embodiment includes a second signal determination unit 205 in addition to the first embodiment. Therefore, in the second embodiment, the first signal determination unit 204, the second signal determination unit 205, the answer determination unit 207, the state determination unit 208, and the presentation unit 209 are components included in the control unit 200. This control unit 200 is configured by, for example, at least one processor, as in the first embodiment.
第2信号判定部205は、脳波に含まれる、問題が出力された時点を起点とする第2の脳波に基づいて、ユーザ100の第2のひらめきの有無を判定する。この第2の脳波は、脳波計測部201によって計測されたユーザ100の脳波から抽出したものである。また、問題が出力された時点は、提示部209から通知された時点である。
The second signal determination unit 205 determines the presence or absence of the second inspiration of the user 100 based on the second electroencephalogram, which is included in the electroencephalogram and starts from the time when the problem is output. The second electroencephalogram is extracted from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201. The time when the problem is output is the time when the presentation unit 209 notifies the problem.
具体的には、第2信号判定部205は、脳波から、問題が出力された時点を起点とする第2の脳波を抽出する。そして、第1信号判定部204は、その第2の脳波に基づいて、ユーザ100の第2のひらめきの有無を判定する。より具体的には、第2信号判定部205は、問題が出力された時点を起点として、2000msec経過した以降における脳波から、第2の脳波を抽出する。第2のひらめきが有るときとは、具体的には、問題が出力された直後の反射的なひらめきは無いが、問題内容のイメージを行った後にひらめきが有った心理状態を示している。さらに、第2信号判定部205は、判定した第2のひらめきの有無と、第2のひらめきが発生した時点であるタイミングとを状態決定部208へ通知する。
Specifically, the second signal determination unit 205 extracts, from the electroencephalogram, the second electroencephalogram starting from the time when the problem is output. Then, the first signal determination unit 204 determines the presence or absence of the second inspiration of the user 100 based on the second electroencephalogram. More specifically, the second signal determination unit 205 extracts the second electroencephalogram from the electroencephalogram after 2000 msec has elapsed, starting from the time when the problem was output. When there is the second inspiration, specifically, there is no reflexive inspiration immediately after the problem is output, but it indicates a psychological state in which there is an inspiration after the image of the problem content is made. Further, the second signal determination unit 205 notifies the state determination unit 208 of the presence / absence of the determined second inspiration and the timing at which the second inspiration occurs.
また、第2のひらめきの有無の判定方法として、第1のひらめきの有無の判定方法と同様に、脳波に含まれるシータ波を利用する。
Also, theta waves included in the brain waves are used as the method for determining the presence or absence of the second inspiration, as in the method for determining the presence or absence of the first inspiration.
さらに、第2のひらめきの有無を判定する方法について、詳細を述べる。
Further, the details of the method for determining the presence or absence of the second inspiration are described.
上述のように、第2信号判定部205は、脳波計測部201によって計測されたユーザ100の脳波から、問題表示後の所定の時間範囲において、第2のひらめきの有無を判定する。例えば、所定の時間範囲は、出力部210が問題を表示したタイミングから、約2000msec後の範囲であり、この時間範囲における脳波から、第2の脳波を抽出する。さらに、第2信号判定部205は、この第2の脳波から、第2の脳波のシータ波帯域の成分を抽出し、抽出したシータ波帯域の成分に基づいて、ユーザ100の第2のひらめきの有無を判定する。
As described above, the second signal determination unit 205 determines the presence or absence of the second inspiration in the predetermined time range after the problem is displayed from the electroencephalogram of the user 100 measured by the electroencephalogram measurement unit 201. For example, the predetermined time range is a range about 2000 msec after the timing when the output unit 210 displays the problem, and the second electroencephalogram is extracted from the electroencephalogram in this time range. Further, the second signal determination unit 205 extracts a theta wave band component of the second brain wave from the second brain wave, and based on the extracted theta wave band component, the second inspiration of the user 100. Determine the presence or absence.
第2信号判定部205は、シータ波帯域の成分において、Vppなどの指標を用いることにより、第2のひらめきの有無を判定する。例えば、第2信号判定部205は、ユーザ100の第2の脳波において、Vppが、所定の閾値以上を有する場合に、第2のひらめきが有ると判定する。所定の閾値とは、例えば、10μVが挙げられるが、これに限られるものではない。一方で、Vppが、この所定の閾値未満の場合は、第2のひらめきが無い、と判定する。
The second signal determination unit 205 determines the presence or absence of the second inspiration in the theta wave band component by using an index such as Vpp. For example, the second signal determination unit 205 determines that the second inspiration is present when Vpp in the second electroencephalogram of the user 100 is equal to or greater than the predetermined threshold. The predetermined threshold value is, for example, 10 μV, but is not limited to this. On the other hand, when Vpp is less than this predetermined threshold value, it is determined that there is no second inspiration.
なお、第2信号判定部205は、問題が出力された時点を起点として、第2の脳波を抽出するが、その時間範囲は上記に限られない。例えば、抽出を開始する時点は、問題が出力された時点を起点として、1000msec以上4000msec以下であればよく、好ましくは、1400msec以上3000msec以下、さらに好ましくは、1500msec以上2500msec以下であればよい。また、例えば、抽出を終了する時点は、問題が出力された時点を起点として、4000msec以上10000msec以下であればよく、好ましくは、5000msec以上7000msec以下、さらに好ましくは、5500msec以上6500msec以下であればよい。また、当然だが、第2信号判定部205が第2の脳波の抽出を開始する時点は、第1信号判定部204が第1の脳波抽出を終了する時点より、後である必要がある。
The second signal determination unit 205 extracts the second electroencephalogram starting from the time when the problem is output, but the time range is not limited to the above. For example, the extraction start time may be 1000 msec or more and 4000 msec or less, preferably 1400 msec or more and 3000 msec or less, and more preferably 1500 msec or more and 2500 msec or less, starting from the time when the problem is output. Further, for example, the time to end the extraction may be 4000 msec or more and 10000 msec or less, preferably 5000 msec or more and 7000 msec or less, more preferably 5500 msec or more and 6500 msec or less, starting from the time when the problem is output. .. Further, as a matter of course, the time when the second signal determination unit 205 starts the extraction of the second brain wave needs to be after the time when the first signal determination unit 204 ends the first brain wave extraction.
また、所定の閾値は上記に限られない。所定の閾値は、1μV以上50μV以下であればよく、好ましくは、3μV以上30μV以下、さらに好ましくは6μV以上20μV以下であればよい。また、所定の閾値は、常に一定である必要はない。この所定の閾値は、個々のユーザ100によって異なることや、同一のユーザ100でも日々の心理状態によって異なることが想定される。そのため、第1信号判定部204は、個々のユーザ100に対応する個別の閾値を決定してもよい。
Also, the predetermined threshold is not limited to the above. The predetermined threshold may be 1 μV or more and 50 μV or less, preferably 3 μV or more and 30 μV or less, and more preferably 6 μV or more and 20 μV or less. Further, the predetermined threshold does not have to be always constant. It is assumed that the predetermined threshold value varies depending on the individual user 100, and that the same user 100 varies depending on the daily psychological state. Therefore, the first signal determination unit 204 may determine an individual threshold value corresponding to each user 100.
[動作例]
図13は、図12で示した学習システム1000Aが行う第2の脳波の取得と表示のタイミングを示した図である。 [Operation example]
FIG. 13 is a diagram showing the timing of acquisition and display of the second electroencephalogram performed by thelearning system 1000A shown in FIG.
図13は、図12で示した学習システム1000Aが行う第2の脳波の取得と表示のタイミングを示した図である。 [Operation example]
FIG. 13 is a diagram showing the timing of acquisition and display of the second electroencephalogram performed by the
第2信号判定部205は、問題が出力された時点、つまり問題表示の時刻t1を起点とする第2の脳波を、脳波計測部201によって計測された脳波から抽出する。また、問題が出力された時点は、提示部209から通知された時点である。この時刻t1を起点とする第2の脳波は、時刻t1から2000msec経過した時点(すなわちt2)と、時刻t2から4000msec経過した時点(すなわちt3)との間の時間範囲における脳波である。さらに、第2信号判定部205は、この第2の脳波に基づいて、ユーザ100の第2のひらめきの有無を判定する。具体的には、第2の脳波から、第2の脳波のシータ波帯域の成分を抽出し、抽出したシータ波帯域の成分に基づいて、ユーザ100の第2のひらめきの有無を判定する。
The second signal determination unit 205 extracts, from the electroencephalogram measured by the electroencephalogram measurement unit 201, a second electroencephalogram having a time point when the problem is output, that is, a time point t1 when the problem is displayed as a starting point. The time when the problem is output is the time when the presentation unit 209 notifies the problem. The second electroencephalogram starting from the time t1 is an electroencephalogram in a time range between a time point 2000 msec after the time t1 (that is, t2) and a time point 4000 msec after the time t2 (that is, t3). Further, the second signal determination unit 205 determines the presence or absence of the second inspiration of the user 100 based on the second electroencephalogram. Specifically, the theta wave band component of the second electroencephalogram is extracted from the second electroencephalogram, and the presence or absence of the second inspiration of the user 100 is determined based on the extracted theta wave band component.
取得部206は、時刻t1で出力された問題に対する解答が取得された時点、つまり解答入力の時刻t7において、解答と、解答を取得した時点であるタイミングと取得する。なお、図4に示したように実施の形態1においては、第2の脳波の取得が完了する時刻t6と比べて、解答入力の時刻t7が遅い状態、すなわち、t7>t6>t1としているが、第2の脳波の取得が完了する時刻t6と比べて、解答入力の時刻t7が早くてもよい。すなわち、t6>t7>t1となってもよい。また、第2の脳波の取得が完了する時刻t6と、解答入力の時刻t7が同時、すなわち、t6=t7となってもよい。
The acquisition unit 206 acquires the answer at the time when the answer to the question output at time t1 is acquired, that is, at the time t7 when the answer is input, and the timing at which the answer is acquired. In the first embodiment, as shown in FIG. 4, the answer input time t7 is later than the time t6 when the acquisition of the second electroencephalogram is completed, that is, t7> t6> t1. , The time t7 for answer input may be earlier than the time t6 when the acquisition of the second electroencephalogram is completed. That is, t6> t7> t1 may be satisfied. Further, the time t6 when the acquisition of the second electroencephalogram is completed and the time t7 when the answer is input may be the same, that is, t6 = t7.
解答判定部207は、時刻t8において、解答の正誤を判定する。なお解答の正誤を判定する時刻t8と、解答入力の時刻t7との時間関係は、図13に示したようにt8>t6であってもよいが、これに限られるものではない。
The answer determination unit 207 determines whether the answer is correct at time t8. The time relationship between the time t8 for determining whether the answer is correct and the time t7 for inputting the answer may be t8> t6 as shown in FIG. 13, but is not limited to this.
提示部209は、時刻t9において、解答の正誤と応答とを出力部210に出力させる。なお、解答の正誤と応答とを出力させる時刻t9と、解答の正誤を判定する時刻t8との時間関係は、t9>t8であればよい。また、提示部209は、この時刻t9において、解答の正誤と応答だけでなく、状態決定部208が決定した状態に応じて、同時に、次の問題を、出力部210に出力させてもよい。さらに、提示部209は、同時ではなく、解答の正誤と応答を出力部210に出力させた後に、次の問題を出力部210に出力させてもよい。
The presentation unit 209 causes the output unit 210 to output the correctness of the answer and the response at time t9. Note that the time relationship between the time t9 at which the correctness of the answer and the response are output and the time t8 at which the correctness of the answer is determined may be t9> t8. Further, the presenting unit 209 may cause the output unit 210 to simultaneously output the next question in accordance with not only the correctness of the answer and the response but also the state determined by the state determining unit 208 at this time t9. Further, the presentation unit 209 may output the next question to the output unit 210 after the output unit 210 outputs the correctness of the answer and the response, not at the same time.
また、解答入力の時刻t7と解答の正誤を判定する時刻t8との間は、特に定められるものではないが、例えば100msecから10000msecであり、好ましくは1000msecから8000msec、より好ましくは、1500msecから5000msecである。また、正誤を判定する時刻t8と解答の正誤と応答とを出力させる時刻t9との間は、特に定められるものではないが、例えば100msecから10000msecであり、好ましくは1000msecから8000msec、より好ましくは、1500msecから5000msecである。
In addition, the time t7 at which the answer is input and the time t8 at which the correctness of the answer is determined are not particularly set, but are, for example, 100 msec to 10000 msec, preferably 1000 msec to 8000 msec, and more preferably 1500 msec to 5000 msec. is there. In addition, the time t8 for determining the correctness and the time t9 for outputting the correctness of the answer and the response are not particularly limited, but are, for example, 100 msec to 10000 msec, preferably 1000 msec to 8000 msec, and more preferably, It is 1500 msec to 5000 msec.
図14は、第2信号判定部205の処理を示すフローチャートである。
FIG. 14 is a flowchart showing the processing of the second signal determination unit 205.
第2信号判定部205は、脳波計測部201からユーザ100の脳波に関する信号を受け取る(ステップS500)。この信号には、脳波が含まれているが、ノイズも含まれていることがある。なお、ノイズ源には、人体外からの機器ノイズ、商用交流ノイズ、人体内からの筋電ノイズ、人体内からの眼電ノイズ、問題の提示、又は、解答の入力とは関連のない動きに起因するノイズ、及び、背景脳波等様々なものが考えられる。また、ノイズ源は1つに限られるものではなく、2つ以上の場合も考えられる。
The second signal determination unit 205 receives a signal regarding the electroencephalogram of the user 100 from the electroencephalogram measurement unit 201 (step S500). The signal contains brain waves, but may also contain noise. Note that noise sources include device noise from outside the human body, commercial AC noise, myoelectric noise from the human body, ocular noise from the human body, problem presentation, or movements unrelated to answer input. Various noises such as noise and background brain waves can be considered. Further, the number of noise sources is not limited to one, and two or more noise sources may be considered.
第2信号判定部205は、受け取った信号に対して特定の周波数帯域が含まれる波形を抽出するためにノイズ除去処理を行う(ステップS501)。例えば、第2信号判定部205は、信号に対してバンドパスフィルタにおいて、例えば2Hzから10Hzの帯域制限処理を行うことによって、特定の周波数帯域が含まれる脳波を抽出する。これにより、ノイズが除去される。
The second signal determination unit 205 performs noise removal processing on the received signal to extract a waveform including a specific frequency band (step S501). For example, the second signal determination unit 205 extracts an electroencephalogram including a specific frequency band by performing band limitation processing on the signal in a bandpass filter, for example, 2 Hz to 10 Hz. This removes noise.
次に、第2信号判定部205は、提示部209から、問題をユーザ100に提示したタイミングを示す情報を受け取る(ステップS502)。
Next, the second signal determination unit 205 receives information indicating the timing of presenting the question to the user 100 from the presentation unit 209 (step S502).
第2信号判定部205は、ステップS501でノイズを除去したユーザ100の脳波に関する信号から、ステップS102で受け取った情報によって示されるタイミングを起点として、所定の時間範囲の脳波信号を切り出す(ステップS503)。例えば、第2信号判定部205は、問題表示のタイミングを起点として、2000msec以降の脳波信号を切り出しても良い。この切り出された脳波信号が、第2の脳波である。
The second signal determination unit 205 cuts out an electroencephalogram signal within a predetermined time range from the signal relating to the electroencephalogram of the user 100 from which noise has been removed in step S501, starting from the timing indicated by the information received in step S102 (step S503). .. For example, the second signal determination unit 205 may cut out an electroencephalogram signal after 2000 msec, starting from the timing of displaying a question. This cut-out electroencephalogram signal is the second electroencephalogram.
第2信号判定部205は、ステップS503で切り出された所定の時間範囲のシータ波成分に対してVpp値を算出する(ステップS504)。
The second signal determination unit 205 calculates the Vpp value for the theta wave component in the predetermined time range cut out in step S503 (step S504).
第2信号判定部205は、ステップS504で算出されたVppが閾値以上かどうかを判定する(ステップS505)。この閾値の設定は、予め定められた値を用いて行ってもよい。
The second signal determination unit 205 determines whether Vpp calculated in step S504 is equal to or greater than a threshold value (step S505). The threshold value may be set using a predetermined value.
第2信号判定部205は、ステップS505の判定結果がYESの場合、第2のひらめきが有ると判定する(ステップS506)。
If the determination result of step S505 is YES, the second signal determining unit 205 determines that there is a second inspiration (step S506).
また、第2信号判定部205は、ステップS505の判定結果がNOの場合、第2のひらめきが無いと判定する(ステップS507)。
Further, if the determination result in step S505 is NO, the second signal determination unit 205 determines that there is no second inspiration (step S507).
次に、第2のひらめきの有無、また、第2のひらめきが発生した時点であるタイミングを利用して、ユーザ100の習熟度の状態を判定する方法について述べる。ここでは、一例として、第1のひらめきが無い場合について示す。すなわち第1のひらめきが無い場合とは、図7で示した状態決定部208によって決定される状態のうち、第1のひらめきが「無」でかつ解答が「正答」である状態3と、第1のひらめきが「無」でかつ解答が「誤答」である状態4の場合である。
Next, a method for determining the state of the proficiency level of the user 100 by using the presence or absence of the second inspiration and the timing when the second inspiration occurs will be described. Here, as an example, a case where there is no first inspiration is shown. That is, when there is no first inspiration, among the states determined by the state determination unit 208 shown in FIG. 7, the first inspiration is “none” and the answer is “correct answer”, and the third This is the case of the state 4 in which the inspiration of 1 is “none” and the answer is “wrong answer”.
状態3(第1のひらめき無でかつ解答が正答)において、第2のひらめきが有る場合、問題が出力された直後の反射的なひらめきは無いが、問題内容のイメージを行った後にひらめきが有り、問題に対して習熟度が低い状態を示している。
In state 3 (no first inspiration and correct answer), if there is a second inspiration, there is no reflexive inspiration immediately after the question is output, but there is inspiration after the image of the content of the question is given. , Shows a low level of proficiency with the problem.
また、この場合、第2のひらめきが発生した時点であるタイミングに着目する。次々と問題が出題されるときに、それぞれの問題に対する第2のひらめきが発生した時点であるタイミングが徐々に早くなる場合は、徐々に習熟度が高まっている状態を示している。一方で、次々と問題が出題されるときに、それぞれの問題に対する第2のひらめきが発生した時点であるタイミングが一定の場合や、徐々に遅くなる場合は、習熟度が一定のままの状態を示している。
Also, in this case, pay attention to the timing when the second inspiration occurs. When the questions are given one after another and the timing at which the second inspiration for each question occurs is gradually advanced, it indicates that the skill level is gradually increased. On the other hand, when questions are asked one after another, if the timing at which the second inspiration for each question occurs is constant, or if the timing is gradually delayed, keep the proficiency level constant. Shows.
また、状態3(第1のひらめき無でかつ解答が正答)において、第2のひらめきが無い場合、問題が出力された直後の反射的なひらめきは無く、問題内容のイメージを行った後にもひらめきは無く、問題に対して習熟度が不足している状態を示している。
Further, in the state 3 (without the first inspiration and the answer is correct), when the second inspiration does not exist, there is no reflexive inspiration immediately after the question is output, and the inspiration does not occur even after the image of the question content is given. No, it indicates that the problem is insufficiently proficient.
次に、状態4(第1のひらめき無でかつ解答が誤答)において、第2のひらめきが有る場合について記す。この場合、問題が出力された直後の反射的なひらめきは無く、問題内容のイメージを行った後にひらめきが有るが、表示された問題に対し、計算の過程、又は、記入を間違えている状態を示している。すなわち、ユーザ100は、ケアレスミスの状態である。
Next, describe the case where there is a second inspiration in state 4 (the first inspiration is absent and the answer is incorrect). In this case, there is no reflexive inspiration immediately after the problem is output, and there is inspiration after the image of the content of the problem is displayed, but for the displayed problem, make a mistake in the calculation process or in the state of entry. Shows. That is, the user 100 is in a careless miss state.
また、状態4(第1のひらめき無でかつ解答が誤答)において、第2のひらめきが無い場合、問題が出力された直後の反射的なひらめきは無く、問題内容のイメージを行った後にもひらめきは無く、表示された問題を解くことができない状態を示している。
Further, in state 4 (the first inspiration is not given and the answer is incorrect), when there is no second inspiration, there is no reflexive inspiration immediately after the question is output, and even after the image of the content of the question is given. There is no inspiration and it indicates that the displayed problem cannot be solved.
なお、実施の形態2においては、第1信号判定部204と第2信号判定部205とは、それぞれ独立して稼働する構成を示した。しかしながら、第2信号判定部205が、第2のひらめきの有無を判定するか否かは、第1のひらめきが無い場合に限ってもよい。すなわち、第1信号判定部204が、第1のひらめきが無いと判断した場合にのみ、第2信号判定部205が、脳波から、問題が出力された時点を起点とする第2の脳波を抽出してもよい。その場合には、第1信号判定部204は、第2信号判定部205へ向けて、第1のひらめきが無い旨を通知し、その後、第2信号判定部205は、第2の脳波を取得し、第2のひらめきの有無を判定する。
Note that, in the second embodiment, the first signal determination unit 204 and the second signal determination unit 205 are configured to operate independently of each other. However, whether or not the second signal determination unit 205 determines whether or not there is the second inspiration may be limited to the case where there is no first inspiration. That is, only when the first signal determination unit 204 determines that there is no first inspiration, the second signal determination unit 205 extracts the second brain wave starting from the time point when the problem is output, from the brain wave. You may. In that case, the first signal determination unit 204 notifies the second signal determination unit 205 that there is no first inspiration, and then the second signal determination unit 205 acquires the second brain wave. Then, the presence or absence of the second inspiration is determined.
[効果]
以上説明したように、学習システム1000Aにおいては、上記学習システム1000に加えて、制御部200は、以下の動作を行う。制御部200は、(a)に続いて、(a3)第1の問題が出力した時点を起点として、2000msec以上経過した以降の時間範囲における脳波から、第2の脳波を抽出し、第2の脳波に基づいて、ユーザ100の第2のひらめきの有無を判定する。さらに、制御部200は、(b)解答の正誤を判定し、(c)において、(c1)第1のひらめきの有無と、第2のひらめきの有無と、正誤とに基づいて、出力部210に出力させる内容を決定し、出力部210に内容を出力させる。 [effect]
As described above, in thelearning system 1000A, in addition to the learning system 1000, the control unit 200 performs the following operations. Following (a), the control unit 200 extracts the second electroencephalogram from the electroencephalogram in the time range after lapse of 2000 msec or more, starting from the time point when the (a3) first problem is output, and The presence or absence of the second inspiration of the user 100 is determined based on the electroencephalogram. Furthermore, the control unit 200 determines (b) whether the answer is correct or not, and in (c), based on (c1) the presence or absence of the first inspiration, the presence or absence of the second inspiration, and the correctness, the output unit 210. Determines the content to be output to and outputs the content to the output unit 210.
以上説明したように、学習システム1000Aにおいては、上記学習システム1000に加えて、制御部200は、以下の動作を行う。制御部200は、(a)に続いて、(a3)第1の問題が出力した時点を起点として、2000msec以上経過した以降の時間範囲における脳波から、第2の脳波を抽出し、第2の脳波に基づいて、ユーザ100の第2のひらめきの有無を判定する。さらに、制御部200は、(b)解答の正誤を判定し、(c)において、(c1)第1のひらめきの有無と、第2のひらめきの有無と、正誤とに基づいて、出力部210に出力させる内容を決定し、出力部210に内容を出力させる。 [effect]
As described above, in the
このような学習システム1000Aは、ユーザ100の問題に対する解答と、問題を解く過程に対する脳波とに基づいて、問題に対する、より詳細な習熟度の状態を決定し、次に、習熟度の状態に応じた内容をユーザ100に取り組ませることができる。つまり、ユーザ100は、習熟度をより効果的に向上させることができる。
The learning system 1000A determines a more detailed proficiency level of the problem based on the answer to the problem of the user 100 and the electroencephalogram of the process of solving the problem, and then determines the proficiency level according to the proficiency level. It is possible for the user 100 to work on the contents. That is, the user 100 can improve the proficiency level more effectively.
(実施の形態3)
実施の形態3では、脈波計測部202と、動き計測部203と、認証部211aと、記憶部211bとを用いて、より詳細な、ユーザ100の状態を決定する点が、実施の形態1、実施の形態2とは異なる。実施の形態1と実施の形態2では、ひらめきの有無と解答の正誤とに基づいて、状態決定部208がユーザ100の状態(すなわち習熟度の状態)を決定した。実施の形態3においては、さらに、ユーザ100の脈波や動きによって習熟度の状態を判断するため、より詳細にユーザ100の習熟度の状態を判断することができる。さらに、ユーザ100の認証により、ユーザ100の特定を容易に行うことができる。つまり、実施の形態3のおいては、第1のひらめきの有無と第2のひらめきの有無と解答の正誤に加えて、脈波や動きによって、習熟度を判断する。その結果、ユーザ100に応じた最適な出題内容とすることや、また、ひらめきの有無をより高い精度で判断することも可能となる。 (Embodiment 3)
In the third embodiment, the pulsewave measuring unit 202, the movement measuring unit 203, the authentication unit 211a, and the storage unit 211b are used to determine a more detailed state of the user 100. Different from the second embodiment. In the first and second embodiments, the state determination unit 208 determines the state of the user 100 (that is, the state of proficiency) based on the presence or absence of inspiration and the correctness of the answer. In the third embodiment, the state of the proficiency level of the user 100 is further determined because the state of the proficiency level of the user 100 is determined based on the pulse wave and the movement of the user 100. Further, the user 100 can be easily identified by authenticating the user 100. That is, in the third embodiment, the degree of proficiency is determined based on the presence or absence of the first inspiration, the presence or absence of the second inspiration, the correctness of the answer, and the pulse wave or the movement. As a result, it becomes possible to set the optimal question content according to the user 100, and to judge the presence or absence of inspiration with higher accuracy.
実施の形態3では、脈波計測部202と、動き計測部203と、認証部211aと、記憶部211bとを用いて、より詳細な、ユーザ100の状態を決定する点が、実施の形態1、実施の形態2とは異なる。実施の形態1と実施の形態2では、ひらめきの有無と解答の正誤とに基づいて、状態決定部208がユーザ100の状態(すなわち習熟度の状態)を決定した。実施の形態3においては、さらに、ユーザ100の脈波や動きによって習熟度の状態を判断するため、より詳細にユーザ100の習熟度の状態を判断することができる。さらに、ユーザ100の認証により、ユーザ100の特定を容易に行うことができる。つまり、実施の形態3のおいては、第1のひらめきの有無と第2のひらめきの有無と解答の正誤に加えて、脈波や動きによって、習熟度を判断する。その結果、ユーザ100に応じた最適な出題内容とすることや、また、ひらめきの有無をより高い精度で判断することも可能となる。 (Embodiment 3)
In the third embodiment, the pulse
[システム構成]
図15は、実施の形態3における学習システム1000Bの機能ブロックを示す図である。なお、実施の形態3では、実施の形態1、実施の形態2と共通の構成要素については同一の符号を付し、その詳細な説明を省略する。 [System configuration]
FIG. 15 is a diagram showing functional blocks of thelearning system 1000B in the third embodiment. In the third embodiment, the same components as those in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
図15は、実施の形態3における学習システム1000Bの機能ブロックを示す図である。なお、実施の形態3では、実施の形態1、実施の形態2と共通の構成要素については同一の符号を付し、その詳細な説明を省略する。 [System configuration]
FIG. 15 is a diagram showing functional blocks of the
実施の形態3における学習システム1000Bは、実施の形態2に加え、脈波計測部202、動き計測部203、認証部211a、記憶部211bを備える。したがって、実施の形態3では、第1信号判定部204、第2信号判定部205、解答判定部207、状態決定部208、提示部209、認証部211a、記憶部211bが、制御部200に含まれる構成要素である。この制御部200は、実施の形態1や実施の形態2と同様、例えば少なくとも1つのプロセッサにより構成されている。
The learning system 1000B according to the third embodiment includes a pulse wave measuring unit 202, a motion measuring unit 203, an authentication unit 211a, and a storage unit 211b in addition to the second embodiment. Therefore, in the third embodiment, the control unit 200 includes the first signal determination unit 204, the second signal determination unit 205, the answer determination unit 207, the state determination unit 208, the presentation unit 209, the authentication unit 211a, and the storage unit 211b. Is a constituent element. The control unit 200 is composed of, for example, at least one processor, as in the first and second embodiments.
脈波計測部202は、ユーザ100の脈波を計測する。脈波計測部202は、脳波計102と、プロセッサの一部の機能とによって実現される。なお、脳波計102は、上述のように、ユーザ100に装着されて、ユーザ100の脈波が取得できるように準備されている。脈波計測部202は、脳波計102に含まれており、さらに具体的には、図1に示す基台部102bに設置されている。また、脈波計測部202は、光源及び光検出器を備える。脈波を測定する方法としては、以下の手順の通りである。光源(例えば、赤外線発光ダイオード)が光を放射し、光検出器(例えば、フォトダイオード)が耳朶の中を透過した光を受光し、受光した光の強さに応じた電気信号を出力する。耳朶の中で吸収される光の強さは、ユーザ100の心臓の拍動に応じて経時的に変化する血管内の血流量(ヘモグロビンの数)によって変化するため、この透過した光の強さの変化が、例えばユーザ100の脈波の計測に用いられる。つまり、この例における脈波計測部202は、透過型の脈波計として機能する。さらに、脈波計測部202は、認証部211aへ向け脈波に関する電気信号を出力する。
The pulse wave measuring unit 202 measures the pulse wave of the user 100. The pulse wave measuring unit 202 is realized by the electroencephalograph 102 and a partial function of the processor. As described above, the electroencephalograph 102 is attached to the user 100 and is prepared so that the pulse wave of the user 100 can be acquired. The pulse wave measuring unit 202 is included in the electroencephalograph 102, and more specifically, is installed in the base unit 102b shown in FIG. The pulse wave measurement unit 202 also includes a light source and a photodetector. The method for measuring the pulse wave is as follows. A light source (for example, an infrared light emitting diode) emits light, a photodetector (for example, a photodiode) receives the light transmitted through the earlobe, and outputs an electric signal corresponding to the intensity of the received light. The intensity of the light absorbed in the earlobe changes according to the blood flow rate (the number of hemoglobin) in the blood vessel that changes with time according to the heartbeat of the user 100, and thus the intensity of the transmitted light. Change is used to measure the pulse wave of the user 100, for example. That is, the pulse wave measuring unit 202 in this example functions as a transmission type pulse wave meter. Further, the pulse wave measuring unit 202 outputs an electric signal regarding the pulse wave to the authentication unit 211a.
動き計測部203は、ユーザ100の動きを計測する。動き計測部203は、脳波計102と、プロセッサの一部の機能とによって実現される。なお、脳波計102は、上述のように、ユーザ100に装着されて、ユーザ100の動きが取得できるように準備されている。動き計測部203は、脳波計102に含まれており、さらに具体的には、図1に示す基台部102bに設置されている。また、動き計測部203は、3次元の加速度センサ、及び/又は、3次元のジャイロセンサ(角速度センサ)などにより構成され、動きを検出してその加速度、及び/又は、角速度、及び/又は、角加速度を示す動き信号を状態決定部208へ出力する。
The movement measuring unit 203 measures the movement of the user 100. The movement measuring unit 203 is realized by the electroencephalograph 102 and a part of the functions of the processor. As described above, the electroencephalograph 102 is attached to the user 100 and is prepared so that the movement of the user 100 can be acquired. The motion measuring unit 203 is included in the electroencephalograph 102, and more specifically, is installed in the base unit 102b shown in FIG. Further, the motion measuring unit 203 is configured by a three-dimensional acceleration sensor, and / or a three-dimensional gyro sensor (angular velocity sensor), etc., and detects a motion to accelerate the acceleration and / or the angular velocity and / or The motion signal indicating the angular acceleration is output to the state determination unit 208.
認証部211aは、学習システム1000Bを現在使用中のユーザ100を特定する。具体的には、認証部211aは、脈波計測部202から得られた脈波に関する電気信号に従って、ユーザ100を特定する。特定するための詳細な方法は後述するが、認証部211aは、記憶部211bに記録されているユーザ100の特定に関するデータベースと、脈波計測部202から得られた脈波とを利用し、使用中のユーザ100として特定する。
The authentication unit 211a identifies the user 100 who is currently using the learning system 1000B. Specifically, the authentication unit 211a identifies the user 100 according to the electrical signal regarding the pulse wave obtained from the pulse wave measurement unit 202. Although a detailed method for specifying will be described later, the authentication unit 211a uses and uses the database regarding the user 100 specified in the storage unit 211b and the pulse wave obtained from the pulse wave measurement unit 202. It is specified as the inside user 100.
記憶部211bは、ユーザ100の特定に関するデータベースを記録している。具体的には、記憶部211bは、RAM107により構成されている。認証部211aから要請があった場合、記憶部211bは、ユーザ100の特定に関するデータベースを認証部211aへ提供する。また、ユーザ100の特定に関する情報には、ユーザ100の氏名、及び/又は、ユーザ100のIDとユーザ100の脈波とが対応付けられたデータベースであってもよい。
The storage unit 211b records a database regarding the identification of the user 100. Specifically, the storage unit 211b is configured by the RAM 107. When requested by the authentication unit 211a, the storage unit 211b provides the authentication unit 211a with a database regarding the identification of the user 100. Further, the information regarding the identification of the user 100 may be a database in which the name of the user 100 and / or the ID of the user 100 and the pulse wave of the user 100 are associated with each other.
[動作]
図16は、実施の形態3における認証部211aの処理を示すフローチャートである。以下に認証部211aが、現在使用中のユーザ100を認証し、決定する方法を示す。 [motion]
FIG. 16 is a flowchart showing the processing of theauthentication unit 211a according to the third embodiment. The method by which the authentication unit 211a authenticates and determines the user 100 currently in use is shown below.
図16は、実施の形態3における認証部211aの処理を示すフローチャートである。以下に認証部211aが、現在使用中のユーザ100を認証し、決定する方法を示す。 [motion]
FIG. 16 is a flowchart showing the processing of the
認証部211aは、脈波計測部202が取得した脈波を入手する(ステップS600)。
The authentication unit 211a acquires the pulse wave acquired by the pulse wave measurement unit 202 (step S600).
認証部211aは、記憶部211bに記録されているユーザ100の特定に関するデータベースを参照する(ステップS601)。
The authentication unit 211a refers to the database regarding the identification of the user 100 recorded in the storage unit 211b (step S601).
次に、認証部211aは、ステップS600において入手した脳波と、ステップS601で参照したユーザ100の特定に関するデータベースとを照合する(ステップS602)。例えば、ユーザ100の特定に関するデータベースは、ユーザ100の氏名とユーザ100の脈波とが対応付けられたデータベースであり、脈波計測部202から入手した脈波と一致するユーザ100を、照らし合わせる。
Next, the authentication unit 211a collates the electroencephalogram obtained in step S600 with the database relating to the identification of the user 100 referred to in step S601 (step S602). For example, the database regarding the identification of the user 100 is a database in which the name of the user 100 and the pulse wave of the user 100 are associated with each other, and the user 100 that matches the pulse wave obtained from the pulse wave measurement unit 202 is checked.
最後に、脈波計測部202から入手した脈波と一致するユーザ100を、現在使用中のユーザ100として決定する(ステップS603)。
Finally, the user 100 that matches the pulse wave obtained from the pulse wave measuring unit 202 is determined as the user 100 currently in use (step S603).
図17は、実施の形態3における状態決定部208によって決定される状態を示す図である。状態決定部208は、第1信号判定部204によって判定された第1のひらめきの有無(ひらめき有/無)と、解答判定部207によって判定された解答の正誤(正/誤)と、動き計測部203によって、ユーザ100の状態を決定する。状態1、状態2、状態3、状態4については、実施の形態1と同様の決定となるため、動き計測部203と第2信号判定部205によって判定された第2のひらめきの有無によって新たに加わった状態5について詳細を述べる。
FIG. 17 is a diagram showing states determined by the state determination unit 208 according to the third embodiment. The state determination unit 208 determines whether the first inspiration is determined by the first signal determination unit 204 (whether or not the inspiration is present), the correctness (correctness / incorrectness) of the answer determined by the answer determination unit 207, and the motion measurement. The unit 203 determines the state of the user 100. State 1, state 2, state 3, and state 4 are determined in the same manner as in the first embodiment, and therefore are newly added depending on the presence / absence of the second inspiration determined by the motion measuring unit 203 and the second signal determining unit 205. The added state 5 will be described in detail.
状態決定部208は、実施の形態1と同様に、第1のひらめきが「無」で、かつ解答が「正答」の場合にユーザ100の状態を状態3と決定する。さらに、状態決定部208は、第2のひらめきが「有」で、動き計測部203の出力した加速度が閾値未満の場合に、ユーザ100の状態を状態5と決定する。さらに詳細には、動き計測部203が出力した加速度に関する閾値とは、例としては、3Gであるが、これに限られるものではない。例えば、0Gから6Gの間であればよい。また、動き計測部203の出力した加速度が閾値未満になる、とは、習熟度が低いユーザ100の頭部の揺れが収まり、姿勢正しく問題に取り組んでおり、徐々にだが習熟度が向上していることを示す。
Like the first embodiment, the state determination unit 208 determines the state of the user 100 to be state 3 when the first inspiration is “none” and the answer is “correct”. Furthermore, the state determination unit 208 determines the state of the user 100 as the state 5 when the second inspiration is “present” and the acceleration output by the motion measurement unit 203 is less than the threshold value. More specifically, the threshold regarding the acceleration output by the motion measuring unit 203 is, for example, 3G, but is not limited to this. For example, it may be between 0G and 6G. In addition, the acceleration output by the motion measuring unit 203 is less than the threshold value means that the sway of the head of the user 100 having a low proficiency level has subsided, the posture is correct, and the proficiency level gradually improves. Indicates that
つまり、この状態5は、表示された問題に対して反射的にひらめきが無いが、問題内容のイメージを行った後にひらめきが有り、正答であり、頭部の揺れが収まった状態であり、表示された問題に対し、習熟度が不足している状態を示している。すなわち、ユーザ100は、未習熟かつ要練習の状態である。一方で、状態3と比べると、第2のひらめきが「有」で、動き計測部203の出力した加速度が閾値未満であるため、徐々にではあるが、習熟度が高まっていることを示している。
In other words, in this state 5, there is no reflexive inspiration for the displayed problem, but there is inspiration after the image of the content of the problem is present, the answer is correct, and the shaking of the head is suppressed. It shows a state where the proficiency level is insufficient for the given problem. That is, the user 100 is in a state of being unfamiliar and requiring practice. On the other hand, as compared with the state 3, the second inspiration is “present”, and the acceleration output from the motion measuring unit 203 is less than the threshold value, which indicates that the proficiency level is gradually increasing. There is.
さらに、状態決定部208は、脈波計測部202が得たユーザ100の脈波を用いて、ユーザ100の状態を決定してもよい。例えば、状態決定部208は、第1の問題が出力された時点から2000msecまでのユーザ100の脈波を利用し、ユーザ100の状態を決定してもよい。出力部210の表示する問題が、ユーザ100にとって、難しく感じる問題である場合、ユーザ100は、動揺し、脈波から得られる脈が速くなる。つまり、状態決定部208は、ユーザ100の習熟度が低いと決定する。一方で、出力部210が表示する問題が、ユーザ100にとって、易しく感じる問題である場合、ユーザ100は、リラックスし、平時の脈波となる。つまり、状態決定部208は、ユーザ100の習熟度が高いと決定する。
Further, the state determining unit 208 may determine the state of the user 100 using the pulse wave of the user 100 obtained by the pulse wave measuring unit 202. For example, the state determination unit 208 may determine the state of the user 100 by using the pulse wave of the user 100 from the time when the first problem is output to 2000 msec. When the problem displayed by the output unit 210 is a problem that the user 100 feels difficult, the user 100 is upset and the pulse obtained from the pulse wave becomes faster. That is, the state determination unit 208 determines that the proficiency level of the user 100 is low. On the other hand, when the problem displayed by the output unit 210 is a problem that the user 100 feels easy, the user 100 relaxes and becomes a pulse wave in normal times. That is, the state determination unit 208 determines that the proficiency level of the user 100 is high.
図18は、実施の形態3における、各状態に対応する提示部209の処理を示す図である。提示部209は、状態決定部208による判定結果に応じて出力部210に表示させる内容を選定する。また、図17で示したように、状態1、状態2、状態3、状態4については、実施の形態1と同様の表示となるため、動き計測部203によって新たに加わった状態5について詳細を述べる。
FIG. 18 is a diagram showing processing of the presentation unit 209 corresponding to each state in the third embodiment. The presentation unit 209 selects the content to be displayed on the output unit 210 according to the determination result by the state determination unit 208. Further, as shown in FIG. 17, since the display of the state 1, the state 2, the state 3, and the state 4 is the same as that of the first embodiment, the details of the state 5 newly added by the motion measuring unit 203 will be described. State.
具体的には、提示部209は、状態決定部208による判定結果が状態5であった場合には、出力部210に表示させる内容として、次回は今回よりも速く問題を解くことを促す応答を選択する。そして、提示部209は、速く問題を解くことを促す表示を出力部210に出力させる。このような表示を行うのは、ユーザ100が状態5の場合、ユーザ100は、未習熟かつ要練習の状態であると考えられるためである。提示部209は、速く問題を解くことを促す応答として、例えば「次の問題は解いてみましょう」といった具体的な行動を促す応答を選定してもよい。
Specifically, when the determination result of the state determining unit 208 is state 5, the presenting unit 209 provides a response prompting to solve the problem next time as the content to be displayed on the output unit 210 next time. select. Then, the presentation unit 209 causes the output unit 210 to output a display that prompts the user to solve the problem quickly. The reason why such a display is performed is that when the user 100 is in the state 5, it is considered that the user 100 is in an unskilled state and needs to practice. The presentation unit 209 may select, as the response to promptly solve the problem, a response to prompt a specific action such as “Let's solve the next problem”.
さらに、提示部209は、状態決定部208による判定結果が状態5であった場合には、出力部210に表示させる内容として、第1の問題と同じ難度の第3の問題、又は、第1の問題よりも簡単な第4の問題を選定する。そして提示部209は、第1の問題と同じ難度の第3の問題、又は、第1の問題よりも簡単な第4の問題を出力部210に出力させる。
Furthermore, when the determination result by the state determination unit 208 is the state 5, the presentation unit 209 sets the content displayed on the output unit 210 to the third problem having the same difficulty level as the first problem, or the first problem. Select the fourth problem, which is simpler than the problem. Then, the presentation unit 209 causes the output unit 210 to output the third problem having the same difficulty level as the first problem or the fourth problem that is simpler than the first problem.
さらに、提示部209は、ユーザ100の脈波に基づいて状態決定部208が決定した状態に応じて出力部210に表示させる内容を選定してもよい。例えば、出力部210が表示する問題が、ユーザ100にとって、難しく感じる問題である場合、ユーザ100は、動揺し、脈波から得られる脈が速くなる。この場合においては、状態決定部208は、習熟度が低いと判断し、さらに、提示部209は、出力部210に表示させる内容として、第1の問題と同じ難度の第3の問題を選定する。一方で、出力部210が表示する問題が、ユーザ100にとって、易しく感じる問題である場合、ユーザ100は、リラックスし、平時の脈波となる。この場合においては、状態決定部208は、習熟度が高いと判断し、さらに、提示部209は、出力部210に表示させる内容として、第1の問題より難度の高い第2の問題を選定する。
Further, the presentation unit 209 may select the content to be displayed on the output unit 210 according to the state determined by the state determination unit 208 based on the pulse wave of the user 100. For example, when the problem displayed by the output unit 210 is a problem that the user 100 feels difficult, the user 100 is upset and the pulse obtained from the pulse wave becomes faster. In this case, the state determination unit 208 determines that the proficiency level is low, and the presentation unit 209 further selects the third problem having the same difficulty level as the first problem as the content to be displayed on the output unit 210. .. On the other hand, when the problem displayed by the output unit 210 is a problem that the user 100 feels easy, the user 100 relaxes and becomes a pulse wave in normal times. In this case, the state determination unit 208 determines that the skill level is high, and the presentation unit 209 further selects the second problem having a higher difficulty level than the first problem as the content to be displayed on the output unit 210. ..
ここで、更なるひらめきの有無の判定の精度向上の方法について記述する。実施の形態1においては第1信号判定部204が、実施の形態2においては第1信号判定部204と第2信号判定部205とが、第1の脳波、又は、第2の脳波に基づいて、ひらめきの有無を判定する。さらに、第1信号判定部204と第2信号判定部205は、第1の脳波、又は、第2の脳波に含まれるシータ波のVppが、閾値以上であれば、ひらめきが有る、閾値未満であれば、ひらめきが無いとした。しかし、この閾値は、個々のユーザ100によって異なることや、同一のユーザ100でも日々の心理状態によって異なることが想定される。そのため、個々のユーザ100に対応する閾値を、問題が出題される前に決定されていてもよい。このようにすることで、ひらめきの有無の判定の精度が向上する。具体的には、次のような方法を用いる。
Here, describe the method for improving the accuracy of the determination of the presence of further inspiration. The first signal determination unit 204 in the first embodiment, and the first signal determination unit 204 and the second signal determination unit 205 in the second embodiment are based on the first electroencephalogram or the second electroencephalogram. , Determine the presence of inspiration. Furthermore, the first signal determination unit 204 and the second signal determination unit 205 have the inspiration if the Vpp of the first electroencephalogram or theta wave included in the second electroencephalogram is equal to or greater than the threshold, and is less than the threshold. If there is, there is no inspiration. However, it is assumed that this threshold value varies depending on the individual user 100, and that the same user 100 varies depending on the daily psychological state. Therefore, the threshold value corresponding to each user 100 may be determined before the question is asked. By doing so, the accuracy of determination of the presence or absence of inspiration improves. Specifically, the following method is used.
図19は、実施の形態3におけるひらめきの有無の判定の精度向上の方法を示すフローチャートである。
FIG. 19 is a flowchart showing a method of improving the accuracy of the determination of the presence or absence of inspiration in the third embodiment.
問題が出題される前に、図16で示すように脈波計測部202と、認証部211aと、記憶部211bを用いて、ユーザ100の認証が行われる(ステップS700)。
Before the problem is posed, the user 100 is authenticated using the pulse wave measurement unit 202, the authentication unit 211a, and the storage unit 211b as shown in FIG. 16 (step S700).
提示部209は、第1の問題とは異なる閾値を決めるための問題を、出力部210に出力させる(ステップS701)。この時、閾値を決めるための問題は、図9に示す画面300の問題表示欄301に表示される。閾値を決めるための問題とは、非常に低い習熟度の学習者であっても、正答できる程度の難度の問題である。
The presentation unit 209 causes the output unit 210 to output a problem for determining a threshold different from the first problem (step S701). At this time, the question for determining the threshold value is displayed in the question display field 301 of the screen 300 shown in FIG. The problem for deciding the threshold is a problem that the learner with a very low proficiency can answer correctly.
第1信号判定部204は、脳波計測部201によって計測される脳波から、閾値を決めるための問題に対する第1の脳波を抽出する(ステップS702)。
The first signal determination unit 204 extracts the first electroencephalogram for the problem for determining the threshold from the electroencephalogram measured by the electroencephalogram measurement unit 201 (step S702).
次に、第1信号判定部204は、ステップS702において抽出した第1の脳波に基づき、ステップS701の問題提示に対してユーザ100のシータ波形を抽出し、状態決定部208へ通知する(ステップS703)。
Next, the first signal determination unit 204 extracts the theta waveform of the user 100 for the question presentation in step S701 based on the first electroencephalogram extracted in step S702 and notifies the state determination unit 208 (step S703). ).
次に、ユーザ100は、画面300における問題表示欄301に表示された問題に対する解答を、その画面300の解答入力欄303に入力する。この解答の入力は、このようなユーザ100による解答の入力によって、取得部206は、その解答を取得し、解答判定部207へ通知する(ステップS704)。
Next, the user 100 inputs the answer to the question displayed in the question display field 301 on the screen 300 into the answer input field 303 on the screen 300. Regarding the input of the answer, the acquisition unit 206 acquires the answer by the input of the answer by the user 100 and notifies the answer determination unit 207 (step S704).
次に、解答判定部207は、データベースを参照し、受け取った解答に対し、ROM105に記録された正答と対応付けられた問題が複数記憶されているデータベースを参照し、正答と一致するかを判定する(ステップS705)。
Next, the answer determination unit 207 refers to the database, and with respect to the received answer, refers to the database in which a plurality of questions stored in the ROM 105 and associated with the correct answer are stored, and determines whether the answer matches the correct answer. (Step S705).
さらに、ステップS705の判定がYESの場合、第1信号判定部204は、ステップ703において抽出したシータ波形に基づいて、第1のひらめきの有無を判定するための閾値を決定する(ステップS706)。
Further, if the determination in step S705 is YES, the first signal determination unit 204 determines a threshold value for determining the presence or absence of the first inspiration based on the theta waveform extracted in step 703 (step S706).
また、ステップS705の判定がNOの場合、何も実行せず、再度、ステップS701へ戻る(ステップS707)。
If the determination in step S705 is NO, nothing is executed and the process returns to step S701 again (step S707).
以上のように、非常に低い習熟度の学習者であっても、正答できる程度の難度の問題を出題することで、ひらめきが有ることが期待できる。つまり、そのとき得られたシータ波の波形は、使用中のユーザ100にひらめきが有ったことを示す波形となる。このシータ波の波形に基づいて、個々のユーザ100に対応するひらめきの有無を判定する閾値を決定することで、ひらめきの有無をより高い精度で判断することができる。
As mentioned above, even a learner with a very low level of proficiency can be expected to have inspiration by giving a question of a difficulty level that can be answered correctly. In other words, the waveform of the theta wave obtained at that time is a waveform indicating that the user 100 in use has an inspiration. By determining the threshold value for determining the presence or absence of the inspiration corresponding to each user 100 based on the waveform of the theta wave, the presence or absence of the inspiration can be determined with higher accuracy.
なお、その他の方法を用いて更なるひらめきの有無の判定の精度向上の方法について記述する。例えば、機械学習等を利用したひらめきの有無の判定手法を適用することが効果的である。具体的な方法として、多数の学習者に対し問題を出題し、上記の手法を用いて学習者のシータ波を抽出する方法が挙げられる。このとき得られたシータ波は、ひらめきが有る場合のシータ波である。多数の学習者を対象とすることで、ひらめきと関連付けられたシータ波を多数得ることができる。この結果を利用することで、ひらめきの有無を判定するための閾値を容易に選定できるようになる。
Note that the method for improving the accuracy of the determination of the presence of further inspiration using other methods will be described. For example, it is effective to apply a method for determining the presence or absence of inspiration using machine learning or the like. As a concrete method, there is a method of asking a question to many learners and extracting the theta waves of the learners by using the above method. The theta wave obtained at this time is a theta wave in the case of inspiration. By targeting a large number of learners, it is possible to obtain a large number of theta waves associated with the inspiration. By using this result, it becomes possible to easily select the threshold value for determining the presence or absence of inspiration.
[効果]
以上説明したように、学習システム1000Bにおいては、上記学習システム1000Aに加え、ユーザ100の脈波を計測する脈波計測部202と、ユーザ100の動作を計測する動き計測部203とを備える。制御部200は、(c1)において、内容を、第1のひらめきの有無と、第2のひらめきの有無と、脈波、及び、動作の少なくとも一方とに基づいて決定する。 [effect]
As described above, thelearning system 1000B includes the pulse wave measuring unit 202 that measures the pulse wave of the user 100 and the motion measuring unit 203 that measures the motion of the user 100, in addition to the learning system 1000A. In (c1), the control unit 200 determines the content based on the presence / absence of the first inspiration, the presence / absence of the second inspiration, the pulse wave, and / or the operation.
以上説明したように、学習システム1000Bにおいては、上記学習システム1000Aに加え、ユーザ100の脈波を計測する脈波計測部202と、ユーザ100の動作を計測する動き計測部203とを備える。制御部200は、(c1)において、内容を、第1のひらめきの有無と、第2のひらめきの有無と、脈波、及び、動作の少なくとも一方とに基づいて決定する。 [effect]
As described above, the
このような学習システム1000Bは、ユーザ100の問題に対する解答と、問題を解く過程に対する脳波と、脈波と、動作とに基づいて、問題に対するより詳細な習熟度の状態を決定し、次に、習熟度の状態に応じた内容をユーザ100に取り組ませることができる。つまり、ユーザ100は、習熟度を、より効果的に向上させることができる。
The learning system 1000B determines a more detailed state of proficiency with respect to the problem based on the answer to the problem of the user 100, the electroencephalogram for the process of solving the problem, the pulse wave, and the motion, and then The user 100 can be made to work on the content according to the state of proficiency level. That is, the user 100 can improve the proficiency level more effectively.
また、例えば、制御部200は、脈波に基づいて、ユーザ100の認証を行う。
Further, for example, the control unit 200 authenticates the user 100 based on the pulse wave.
このような学習システム1000Bは、個別のユーザ100を容易に識別できる。ユーザ100に関する出題や解答の履歴を容易に管理することができる。
Such a learning system 1000B can easily identify individual users 100. The history of questions and answers about the user 100 can be easily managed.
(その他の実施の形態)
実施の形態1、実施の形態2、実施の形態3における学習システム1000、学習システム1000A、学習システム1000Bは、端末装置101と脳波計102から構成されているが、実施の形態の学習システムは、このような構成に限らない。 (Other embodiments)
Thelearning system 1000, the learning system 1000A, and the learning system 1000B according to the first, second, and third embodiments include the terminal device 101 and the electroencephalograph 102. The configuration is not limited to this.
実施の形態1、実施の形態2、実施の形態3における学習システム1000、学習システム1000A、学習システム1000Bは、端末装置101と脳波計102から構成されているが、実施の形態の学習システムは、このような構成に限らない。 (Other embodiments)
The
図20は、実施の形態における学習システムの外観構成の他の例を示す図である。
FIG. 20 is a diagram showing another example of the external configuration of the learning system in the embodiment.
この例では、学習システム1000Cは、脳波計102と、端末装置101と、サーバ112とを備える。端末装置101とサーバ112とは、無線装置110及びインターネット111を介して通信することによって、上記実施の形態1、2、3の端末装置101として機能する。この場合、端末装置101は、端末装置101が備える複数の構成要素のうちの少なくとも1つを備え、サーバ112が残りの構成要素を備えてもよい。例えば、端末装置101は、取得部206及び出力部210を備え、サーバ112が制御部200を備えてもよい。このような学習システム1000Cであっても、上記実施の形態1、2、3における学習システムと同様の学習方法を行うことができる。
In this example, the learning system 1000C includes an electroencephalograph 102, a terminal device 101, and a server 112. The terminal device 101 and the server 112 function as the terminal device 101 of the first, second, and third embodiments by communicating via the wireless device 110 and the Internet 111. In this case, the terminal device 101 may include at least one of the plurality of components included in the terminal device 101, and the server 112 may include the remaining components. For example, the terminal device 101 may include the acquisition unit 206 and the output unit 210, and the server 112 may include the control unit 200. Even with such a learning system 1000C, the same learning method as that of the learning system according to the first, second, and third embodiments can be performed.
つまり、図20に示す例では、学習方法の処理は、端末装置101に閉じておらず、端末装置101とサーバ112とが、無線装置110及びインターネット111を経由して通信しながら、学習方法に含まれる各種の処理を実行する。
That is, in the example shown in FIG. 20, the processing of the learning method is not closed in the terminal device 101, and the terminal device 101 and the server 112 communicate with each other via the wireless device 110 and the Internet 111 while the learning method is performed. Performs various included processes.
また、実施の形態において、ユニット、装置、部材、又は、部の全部、又は、一部、又は、図2、図3、図12及び図15に示されるブロック図の機能ブロックの全部、又は、一部は、以下によって実行されてもよい。これらは、例えば、半導体装置、半導体集積回路(IC(Integrated Circuit))、又は、大規模集積回路(LSI(Large Scale Integration))を含む一つ、又は、複数の電子回路によって実行されてもよい。IC、又は、LSIは、一つのチップ(システムLSI)に集積されてもよいし、複数のチップを組み合わせて一つのシステム(チップセット)に構成されてもよい。例えば、画面の表示処理以外の機能ブロックは、一つのチップに集積されてもよい。ここでは、IC、又は、LSIと呼んでいるが、集積の度合いによって呼び方が変わり、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる電子ヒューズ(eFuse)を搭載したシステムLSI、又は、FPGA(Field Programmable Gate Array)、又は、LSI内部の接続関係の再構成、又は、LSI内部の論理回路の動的な再構成ができるリコンフィギュラブルデバイス(reconfigurable device)も同じ目的で使うことができる。
In the embodiment, all or part of the units, devices, members, or parts, or all of the functional blocks in the block diagrams shown in FIGS. 2, 3, 12, and 15, or Some may be performed by: These may be executed by one or a plurality of electronic circuits including, for example, a semiconductor device, a semiconductor integrated circuit (IC (Integrated Circuit)), or a large-scale integrated circuit (LSI (Large Scale Integration)). .. The IC or LSI may be integrated in one chip (system LSI), or may be configured by combining a plurality of chips into one system (chip set). For example, the functional blocks other than the screen display processing may be integrated in one chip. Here, it is called IC or LSI, but the name may be changed depending on the degree of integration, and may be called VLSI (Very Large Scale Integration) or ULSI (Ultra Large Scale Integration). A system LSI equipped with an electronic fuse (eFuse) that is programmed after the LSI is manufactured, a FPGA (Field Programmable Gate Array), or a reconfiguration of the connection relationship inside the LSI, or a dynamic logic circuit inside the LSI. A reconfigurable device that can be reconfigured can also be used for the same purpose.
さらに、ユニット、装置、部材、又は、部の全部、又は、一部の機能、又は、操作は、ソフトウエア処理によって実行することが可能である。この場合、ソフトウエアは一つ、又は、複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウエアがマイクロコントローラ(MCU(microcontroller))、又は、マイクロプロセッサ(MPU(microprocessor))等の処理装置(processor)によって実行されたときに、そのソフトウエアで特定された機能が処理装置及び周辺装置によって実行される。システム、又は、装置は、ソフトウエアが記録されている一つ、又は、複数の非一時的記録媒体、処理装置、及び必要とされるハードウェアデバイス、例えばデジタルインターフェース、を備えていても良い。
Furthermore, all or some of the functions, or operations of the units, devices, members, or parts can be executed by software processing. In this case, the software is recorded in a non-transitory recording medium such as one or more ROMs, optical disks, hard disk drives, etc., and the software is a microcontroller (MCU (micro controller)) or a microprocessor (MPU (MPU). When executed by a processing device such as a microprocessor), the functions specified by the software are executed by the processing device and peripheral devices. The system or apparatus may include one or a plurality of non-transitory recording media in which software is recorded, a processing device, and required hardware devices such as a digital interface.
また、上記各実施の形態における制御部200は、プロセッサとメモリとを有し、メモリには、図5、図6、図10、図11、図14、図16、又は、図19に示すフローチャートの各ステップを実行するためのプログラムが記憶されていてもよい。この場合、プロセッサは、そのメモリに記憶されているプログラムを実行する。
Further, the control unit 200 in each of the above-described embodiments has a processor and a memory, and the memory has a flowchart shown in FIG. 5, FIG. 10, FIG. 11, FIG. 14, FIG. 16, or FIG. A program for executing each step of may be stored. In this case, the processor executes the program stored in that memory.
100 ユーザ
200 制御部
201 脳波計測部
202 脈波計測部
203 動き計測部
206 取得部
210 出力部
300 画面
1000、1000A、1000B、1000C 学習システム 100user 200 control unit 201 brain wave measuring unit 202 pulse wave measuring unit 203 motion measuring unit 206 acquisition unit 210 output unit 300 screen 1000, 1000A, 1000B, 1000C learning system
200 制御部
201 脳波計測部
202 脈波計測部
203 動き計測部
206 取得部
210 出力部
300 画面
1000、1000A、1000B、1000C 学習システム 100
Claims (19)
- ユーザに第1の問題を出力する出力部と、
前記第1の問題に対する前記ユーザの解答を取得する取得部と、
前記ユーザの脳波を計測する脳波計測部と、
制御部とを備え、
前記制御部は、
(a)前記脳波に含まれる、前記第1の問題が出力された時点を起点とする第1の脳波に基づいて、前記ユーザの第1のひらめきの有無を判定し、
(b)前記解答の正誤を判定し、
(c)前記第1のひらめきの有無と、前記正誤とに基づいて、前記出力部に出力させる内容を決定し、前記出力部に前記内容を出力させる
学習システム。 An output unit that outputs the first problem to the user,
An acquisition unit that acquires the user's answer to the first problem;
An electroencephalogram measuring unit for measuring the electroencephalogram of the user,
And a control unit,
The control unit is
(A) Based on a first electroencephalogram that is included in the electroencephalogram and has a time point when the first problem is output as a starting point, the presence or absence of the first inspiration of the user is determined,
(B) Determine the correctness of the answer,
(C) A learning system in which the content to be output to the output unit is determined based on the presence or absence of the first inspiration and the correctness, and the content is output to the output unit. - 前記制御部は、さらに、前記出力部に、前記第1の問題の次の問題、及び、応答の少なくとも一方を出力させ、
前記内容は、前記次の問題、及び、前記応答の少なくとも一方である
請求項1に記載の学習システム。 The control unit further causes the output unit to output at least one of a problem next to the first problem and a response,
The learning system according to claim 1, wherein the content is at least one of the next problem and the response. - 前記応答は、前記ユーザに休憩を促す前記内容である
請求項2に記載の学習システム。 The learning system according to claim 2, wherein the response is the content prompting the user to take a break. - 前記制御部は、
前記(a)において、
(a1)前記第1の脳波から、前記第1の脳波のシータ波帯域の成分を抽出し、
(a2)抽出した前記シータ波帯域の成分に基づいて、前記ユーザの前記第1のひらめきの有無を判定する
請求項1から3のいずれか1項に記載の学習システム。 The control unit is
In the above (a),
(A1) extracting a theta wave band component of the first electroencephalogram from the first electroencephalogram,
The learning system according to claim 1, wherein (a2) the presence or absence of the first inspiration of the user is determined based on the extracted component of the theta wave band. - 前記制御部は、
前記(a1)において、前記第1の問題が出力された時点を起点として、200msec以上2000msec以下の時間範囲における前記脳波から、前記第1の脳波を抽出する
請求項4に記載の学習システム。 The control unit is
The learning system according to claim 4, wherein in (a1), the first electroencephalogram is extracted from the electroencephalogram in a time range of 200 msec or more and 2000 msec or less, starting from a time point when the first problem is output. - 前記制御部は、
前記(a)に続いて、
(a3)前記第1の問題が出力した時点を起点として、2000msec以上経過した以降の時間範囲における前記脳波から、第2の脳波を抽出し、前記第2の脳波に基づいて、前記ユーザの第2のひらめきの有無を判定し、
(b)前記解答の前記正誤を判定し、
前記(c)において、
(c1)前記第1のひらめきの有無と、前記第2のひらめきの有無と、前記正誤とに基づいて、前記出力部に出力させる内容を決定し、前記出力部に前記内容を出力させる
請求項1から5のいずれか1項に記載の学習システム。 The control unit is
Following (a) above,
(A3) A second electroencephalogram is extracted from the electroencephalogram in a time range after a lapse of 2000 msec or more, starting from the time point when the first problem is output, and the second electroencephalogram of the user is extracted based on the second electroencephalogram. Determine the presence of 2 inspiration,
(B) Determine the correctness of the answer,
In (c) above,
(C1) The content to be output to the output unit is determined based on the presence or absence of the first inspiration, the presence or absence of the second inspiration, and the correctness, and the content is output to the output unit. The learning system according to any one of 1 to 5. - 前記学習システムは、さらに、
前記ユーザの脈波を計測する脈波計測部と、
前記ユーザの動作を計測する動作計測部とを備え、
前記制御部は、
前記(c1)において、
前記内容を、前記第1のひらめきの有無と、前記第2のひらめきの有無と、前記脈波、及び、前記動作の少なくとも一方とに基づいて決定する
請求項6に記載の学習システム。 The learning system further comprises:
A pulse wave measuring unit that measures the pulse wave of the user,
And a motion measuring unit that measures the motion of the user,
The control unit is
In (c1) above,
The learning system according to claim 6, wherein the content is determined based on the presence / absence of the first inspiration, the presence / absence of the second inspiration, the pulse wave, and / or at least one of the operations. - 前記制御部は、
前記脈波に基づいて、前記ユーザの認証を行う
請求項7に記載の学習システム。 The control unit is
The learning system according to claim 7, wherein the user is authenticated based on the pulse wave. - 前記制御部は、
(d1)前記解答が正答であり、前記第1のひらめきが有る場合、
(e1)前記出力部に、前記第1の問題よりも難しい第2の問題を出力させる
請求項1から8のいずれか1項に記載の学習システム。 The control unit is
(D1) When the answer is a correct answer and the first inspiration is present,
(E1) The learning system according to any one of claims 1 to 8, wherein the output unit outputs a second problem that is more difficult than the first problem. - 前記制御部は、
(d2)前記解答が誤答であり、前記第1のひらめきが有る場合、
(e2)前記出力部に、前記第1の問題と同じ難度の第3の問題を出力させる
請求項1から8のいずれか1項に記載の学習システム。 The control unit is
(D2) When the answer is a wrong answer and there is the first inspiration,
(E2) The learning system according to any one of claims 1 to 8, wherein the output unit outputs a third problem having the same degree of difficulty as the first problem. - 前記制御部は、
(d3)前記解答が正答であり、前記第1のひらめきが無い場合、
(e3)前記出力部に、前記第1の問題と同じ難度の第3の問題、又は、前記第1の問題よりも簡単な第4の問題のいずれかを出力させる
請求項1から8のいずれか1項に記載の学習システム。 The control unit is
(D3) If the answer is correct and there is no first inspiration,
(E3) Either of the third problem having the same difficulty level as the first problem or the fourth problem simpler than the first problem is output to the output unit. The learning system according to item 1. - 前記制御部は、
(d4)前記解答が誤答であり、前記第1のひらめきが無い場合、
(e4)前記出力部に、前記第1の問題よりも簡単な第4の問題、又は、前記休憩を促す内容を出力させる
請求項1から8のいずれか1項に記載の学習システム。 The control unit is
(D4) If the answer is a wrong answer and there is no first inspiration,
(E4) The learning system according to any one of claims 1 to 8, wherein the output unit outputs a fourth problem that is simpler than the first problem or a content that prompts the break. - 前記制御部は、
前記(b)において、正答と対応付けられた問題が複数記憶されているデータベースを参照して、前記解答が正答であるか否かを判定し、
前記(e1)において、難度と対応付けられた問題が複数記憶されているデータベースを参照して、前記出力部に、前記第2の問題を出力させる
請求項9に記載の学習システム。 The control unit is
In (b), it is determined whether or not the answer is a correct answer by referring to a database in which a plurality of questions associated with the correct answer are stored.
The learning system according to claim 9, wherein in (e1), the output unit outputs the second question by referring to a database in which a plurality of questions associated with a difficulty level are stored. - 前記制御部は、
前記(b)において、正答と対応付けられた問題が複数記憶されているデータベースを参照して、前記解答が正答であるか否かを判定し、
前記(e2)において、難度と対応付けられた問題が複数記憶されているデータベースを参照して、前記出力部に、前記第3の問題を出力させる
請求項10に記載の学習システム。 The control unit is
In (b), it is determined whether or not the answer is a correct answer by referring to a database in which a plurality of questions associated with the correct answer are stored.
The learning system according to claim 10, wherein in (e2), the output unit outputs the third question by referring to a database in which a plurality of questions associated with the degree of difficulty are stored. - 前記制御部は、
前記(b)において、正答と対応付けられた問題が複数記憶されているデータベースを参照して、前記解答が正答であるか否かを判定し、
前記(e3)において、難度と対応付けられた問題が複数記憶されているデータベースを参照して、前記出力部に、前記第3の問題、又は、前記第4の問題のいずれかを出力させる
請求項11に記載の学習システム。 The control unit is
In (b), it is determined whether or not the answer is a correct answer by referring to a database in which a plurality of questions associated with the correct answer are stored.
In (e3), the output unit is caused to output either the third problem or the fourth problem by referring to a database in which a plurality of problems associated with the degree of difficulty are stored. The learning system according to Item 11. - 前記制御部は、
前記(b)において、正答と対応付けられた問題が複数記憶されているデータベースを参照して、前記解答が正答であるか否かを判定し、
前記(e4)において、難度と対応付けられた問題が複数記憶されているデータベースを参照して、前記出力部に、前記第4の問題を出力させる
請求項12に記載の学習システム。 The control unit is
In (b), it is determined whether or not the answer is a correct answer by referring to a database in which a plurality of questions associated with the correct answer are stored.
The learning system according to claim 12, wherein, in (e4), the output unit outputs the fourth question by referring to a database in which a plurality of questions associated with the degree of difficulty are stored. - 前記制御部は、プロセッサとメモリとを有し、
前記メモリには、前記(a)と前記(b)と前記(c)とを実行するためのプログラムが記憶されており、
前記プロセッサは、前記メモリに記憶されているプログラムを実行する
請求項1に記載の学習システム。 The control unit has a processor and a memory,
A program for executing the above (a), the above (b), and the above (c) is stored in the memory,
The learning system according to claim 1, wherein the processor executes a program stored in the memory. - ユーザに第1の問題を出力する第1出力ステップと、
前記第1の問題に対する前記ユーザの解答を取得する取得ステップと、
前記ユーザの脳波を計測する脳波計測ステップと、
制御ステップとを含み、
前記制御ステップは、
(a)前記脳波に含まれる、前記第1の問題が出力された時点を起点とする第1の脳波に基づいて、前記ユーザの第1のひらめきの有無を判定する第1判定ステップと、
(b)前記解答の正誤を判定する第2判定ステップと、
(c)前記第1のひらめきの有無と、前記正誤とに基づいて、前記第1出力ステップにて出力させる内容を決定し、前記内容を出力させる第2出力ステップとを有する
学習方法。 A first output step of outputting the first problem to the user,
An acquisition step of acquiring the user's answer to the first question;
An electroencephalogram measuring step of measuring the electroencephalogram of the user,
Including a control step,
The control step is
(A) a first determination step of determining the presence or absence of a first inspiration of the user based on a first electroencephalogram, which is included in the electroencephalogram and has a time point when the first problem is output as a starting point,
(B) a second determination step of determining whether the answer is correct or incorrect;
(C) A learning method, comprising: determining the content to be output in the first output step based on the presence or absence of the first inspiration and the correctness, and outputting the content in the second output step. - 学習方法を実行するためのコンピュータプログラムであって、
(f1)出力装置を介してユーザに第1の問題を出力し、
(f2)前記第1の問題に対する前記ユーザの解答を取得し、
(f3)前記ユーザの脳波を計測し、
(f4)前記脳波に含まれる、前記第1の問題が出力された時点を起点とする第1の脳波に基づいて、前記ユーザの第1のひらめきの有無を判定し、
(f5)前記解答の正誤を判定し、
(f6)前記第1のひらめきの有無と前記正誤とに基づいて、前記出力装置が出力する内容を決定し、前記出力装置に出力させることをコンピュータに実行させる
コンピュータプログラム。 A computer program for performing the learning method, comprising:
(F1) outputting the first problem to the user via the output device,
(F2) obtaining the user's answer to the first question,
(F3) measuring the electroencephalogram of the user,
(F4) The presence or absence of the first inspiration of the user is determined based on the first electroencephalogram, which is included in the electroencephalogram and starts from the time point when the first problem is output,
(F5) Determine the correctness of the answer,
(F6) A computer program that causes a computer to determine the content to be output by the output device based on the presence or absence of the first inspiration and the correctness, and to cause the computer to output the content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020558237A JP7113380B2 (en) | 2018-11-22 | 2019-11-05 | LEARNING SYSTEM, LEARNING METHOD AND COMPUTER PROGRAM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018219681 | 2018-11-22 | ||
JP2018-219681 | 2018-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105413A1 true WO2020105413A1 (en) | 2020-05-28 |
Family
ID=70773986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/043226 WO2020105413A1 (en) | 2018-11-22 | 2019-11-05 | Learning system and learning method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7113380B2 (en) |
WO (1) | WO2020105413A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4174823A4 (en) * | 2020-06-26 | 2024-07-24 | Nat Inst Inf & Comm Tech | Learning system, learning method, and learning program |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006023566A (en) * | 2004-07-08 | 2006-01-26 | Matsushita Electric Ind Co Ltd | Degree-of-comprehension determining system and method therefor |
WO2007066451A1 (en) * | 2005-12-09 | 2007-06-14 | Matsushita Electric Industrial Co., Ltd. | Information processing system, information processing apparatus and method |
JP2010231084A (en) * | 2009-03-27 | 2010-10-14 | Nomura Research Institute Ltd | Learning support system, learning support method, and computer program |
JP2011007963A (en) * | 2009-06-24 | 2011-01-13 | Tokyo Denki Univ | Remote learning system and remote learning method |
JP2017207733A (en) * | 2016-05-13 | 2017-11-24 | パナソニックIpマネジメント株式会社 | Learning system, learning method, and program |
-
2019
- 2019-11-05 WO PCT/JP2019/043226 patent/WO2020105413A1/en active Application Filing
- 2019-11-05 JP JP2020558237A patent/JP7113380B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006023566A (en) * | 2004-07-08 | 2006-01-26 | Matsushita Electric Ind Co Ltd | Degree-of-comprehension determining system and method therefor |
WO2007066451A1 (en) * | 2005-12-09 | 2007-06-14 | Matsushita Electric Industrial Co., Ltd. | Information processing system, information processing apparatus and method |
JP2010231084A (en) * | 2009-03-27 | 2010-10-14 | Nomura Research Institute Ltd | Learning support system, learning support method, and computer program |
JP2011007963A (en) * | 2009-06-24 | 2011-01-13 | Tokyo Denki Univ | Remote learning system and remote learning method |
JP2017207733A (en) * | 2016-05-13 | 2017-11-24 | パナソニックIpマネジメント株式会社 | Learning system, learning method, and program |
Non-Patent Citations (1)
Title |
---|
TAKAHASHI, TOMOHIRO ET AL.: "Detection of Inspiration Moment from EEG Features", PROCEEDINGS (4) OF THE 78TH NATIONAL CONVENTION, 10 March 2016 (2016-03-10), pages 579 - 580 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4174823A4 (en) * | 2020-06-26 | 2024-07-24 | Nat Inst Inf & Comm Tech | Learning system, learning method, and learning program |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020105413A1 (en) | 2021-10-07 |
JP7113380B2 (en) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11839473B2 (en) | Systems and methods for estimating and predicting emotional states and affects and providing real time feedback | |
US10945654B2 (en) | Methods, systems, and apparatus for self-calibrating EEG neurofeedback | |
US10366778B2 (en) | Method and device for processing content based on bio-signals | |
KR102320815B1 (en) | Wearable apparatus and the controlling method thereof | |
US10325066B2 (en) | System for mental health clinical application | |
CN109285602B (en) | Master module, system and method for self-checking a user's eyes | |
US20210401338A1 (en) | Systems and methods for estimating and predicting emotional states and affects and providing real time feedback | |
US10390722B2 (en) | Method for quantifying the perceptive faculty of a person | |
JP6771199B2 (en) | Learning systems, learning methods and programs | |
US20220338785A1 (en) | Information processing apparatus, information processing system, and non-transitory computer readable medium | |
CN109394207A (en) | Emotion identification method and system, electronic equipment | |
TW202205311A (en) | System for treating myopia and operating method thereof and non-transitory computer readable medium | |
US10987014B2 (en) | Information processing apparatus, information processing system, and non-transitory computer readable medium | |
WO2020105413A1 (en) | Learning system and learning method | |
KR101667102B1 (en) | Apparatus and Method for Inducing User Adaptive Brainwave using Motion Sensor | |
JP2017176580A (en) | Emotion control device, emotion control method, and program | |
JP2016066287A (en) | Intention transmission support method and intention transmission support system | |
Zhu et al. | An investigation into the effectiveness of using acoustic touch to assist people who are blind | |
JP2021071549A (en) | Learning system and method for learning | |
KR20220047187A (en) | Server and method for cognitive function testing using feature combination | |
JP2019022540A (en) | Program, information processor, and stress evaluation method | |
JP6226288B2 (en) | Impression evaluation apparatus and impression evaluation method | |
US20240188852A1 (en) | Apparatus and method for user recognition based on oxygen saturation | |
TWI678189B (en) | Brain Intelligent Development Detection System | |
US20230338698A1 (en) | Multi-sensory, assistive wearable technology, and method of providing sensory relief using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19886743 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020558237 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19886743 Country of ref document: EP Kind code of ref document: A1 |