WO2020105367A1 - Metallic compound film deposition method and reactive sputtering device - Google Patents

Metallic compound film deposition method and reactive sputtering device

Info

Publication number
WO2020105367A1
WO2020105367A1 PCT/JP2019/041940 JP2019041940W WO2020105367A1 WO 2020105367 A1 WO2020105367 A1 WO 2020105367A1 JP 2019041940 W JP2019041940 W JP 2019041940W WO 2020105367 A1 WO2020105367 A1 WO 2020105367A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
reaction gas
film forming
sputtering
film
Prior art date
Application number
PCT/JP2019/041940
Other languages
French (fr)
Japanese (ja)
Inventor
慎一郎 税所
田中 康仁
Original Assignee
株式会社シンクロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シンクロン filed Critical 株式会社シンクロン
Publication of WO2020105367A1 publication Critical patent/WO2020105367A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a method for forming a metal compound film and a reactive sputtering apparatus.
  • a radical electrode is provided in the film forming chamber in addition to the sputtering electrode on which the target is mounted, and oxygen radicals, that is, oxygen atoms, are supplied to the gap between the surface of the substrate and the surface of the target.
  • a metal oxide film forming apparatus is known (Patent Document 1).
  • the problem to be solved by the present invention is to provide a metal compound film forming method and a reactive sputtering apparatus capable of forming a metal compound film with a simple structure.
  • a pulse wave conversion switch for converting a DC voltage into a pulse wave voltage is provided between a DC power supply and at least two sputter electrodes in correspondence with at least two sputter electrodes.
  • At least two first targets each having a relatively large maximum absolute value of the rate of change of the film formation rate with respect to the flow rate of the reaction gas and at least two second targets are relatively small.
  • the first sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is mounted, and the sputtering target electrode is set by the pulse control signal pattern.
  • the first sputtering target electric power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is attached, and the sputtering control electrode pattern is used by the pulse control signal pattern.
  • a film forming chamber into which a substrate to be formed is placed, A decompressor for decompressing the film forming chamber to a predetermined pressure, A discharge gas introducing machine for introducing a discharge gas into the film forming chamber, A plurality of sputtering electrodes, each of which includes a target serving as a film-forming material, and which faces one of the substrates, A reaction gas introducing device for introducing a reaction gas into the film forming chamber, A direct current power supply for supplying power to the plurality of sputter electrodes, A plurality of pulse wave conversion switches connected between the DC power supply and the plurality of sputtering electrodes, for converting a DC voltage applied to each sputtering electrode into a pulse wave voltage, A reaction gas introduction controller for controlling the introduction of the reaction gas from the reaction gas introduction machine to the film forming chamber, A pulse control signal pattern according to each sputter target power supplied to the plurality of sputter electrodes and a target introduction timing of the reaction gas is programmable
  • Each of the wave conversion switches, and a programmable oscillator for controlling the gas introduction controller The reaction gas introduction machine, A reaction gas supply source, A flow rate controller for adjusting the flow rate of the reaction gas supplied from the reaction gas supply source, A first gas flow path branched from the flow rate controller to guide a reaction gas to the film forming chamber; A second gas flow path branched from the flow rate controller to guide the reaction gas to the exhaust system of the pressure reducer; A first opening / closing valve for opening / closing the first gas flow path; A second on-off valve for opening and closing the second gas flow path,
  • the reactive gas introduction controller may also achieve the above object by a reactive sputtering device that exclusively controls the opening / closing of the first opening / closing valve and the second opening / closing valve based on a pulse control signal pattern from the programmable oscillator. Solve.
  • the present invention it is possible to provide a film forming method and a reactive sputtering apparatus capable of forming a metal compound film with a simple structure.
  • FIG. 1A It is a block diagram showing one embodiment of a reactive sputtering device concerning the present invention. It is a block diagram which shows the detail of the reaction gas introduction machine of FIG. 1A. It is a principal part block diagram which shows other embodiment of the reactive sputtering apparatus which concerns on this invention. It is a block diagram which shows the electric system of the reactive sputtering apparatus of FIG. 1C. It is a figure which shows an example of the voltage pulse wave (mask pulse) produced
  • the voltage pulse wave mask pulse
  • 3 is a time chart showing a first example of a film forming method using the reactive sputtering apparatus according to the present invention.
  • 6 is a time chart showing a second example of a film forming method using the reactive sputtering apparatus according to the present invention. It is a time chart which shows the 3rd example of the film-forming method using the reactive sputtering apparatus which concerns on this invention.
  • 9 is a time chart showing a fourth example of a film forming method using the reactive sputtering apparatus according to the present invention. It is a time chart which shows the 5th example of the film-forming method using the reactive sputtering apparatus which concerns on this invention.
  • FIG. 9 is a time chart showing a sixth example of a film forming method using the reactive sputtering apparatus according to the present invention. It is a time chart which shows the 7th example of the film-forming method using the reactive sputtering apparatus which concerns on this invention.
  • 6 is a graph showing a characteristic profile of a film forming rate with respect to reaction gas flow rates of different targets under a predetermined reactive sputtering condition.
  • 4B is a graph showing an example of the material flying amount of the first target when processed by the film forming method shown in FIG. 4A.
  • FIG. 1A is a block diagram showing an embodiment of the reactive sputtering apparatus of the present invention
  • FIG. 1B is a block diagram showing details of the reaction gas introducing device 16 of FIG. 1A.
  • the reactive sputtering apparatus 1 according to the present embodiment includes a film forming chamber 11 that substantially forms a closed space, and a substrate holder 12 that holds a substrate S on which a film is formed and a film forming material in the film forming chamber 11.
  • the film forming chamber 11 also serves as a decompressor 13 that decompresses the film forming chamber 11 to a predetermined pressure and a partition valve (main valve) that controls the pressure of the film forming chamber 11 that is decompressed by the decompressor 13.
  • a reaction gas introduction controller 17 for controlling.
  • a conductance valve and a partition valve (main valve) other than the conductance valve may be provided in the pipe between the film forming chamber 11 and the pressure reducer 13 in this order from the film forming chamber 11 side.
  • the reactive sputtering apparatus 1 includes one DC power supply 20 that supplies electric power to the first sputtering electrode 18 and the second sputtering electrode 19. Further, the reactive sputtering apparatus 1 of the present embodiment is connected in parallel between the DC power supply 20 and the first sputtering electrode 18 and the second sputtering electrode 19, and the first sputtering electrode 18 and the second sputtering electrode 19 are connected. And a plurality of pulse wave conversion switches (first pulse wave conversion switch 22 and second pulse wave conversion switch 23 in this example) for converting the DC voltage applied to the pulse wave voltage to the pulse wave voltage.
  • the reactive sputtering apparatus 1 of the present embodiment has a program of a pulse control signal pattern corresponding to the respective target sputtering powers supplied to the first sputtering electrode 18 and the second sputtering electrode 19 and the target introduction timing of the reaction gas.
  • a programmable oscillator 24 that controls each of the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 according to the pulse control signal pattern, and that controls the reaction gas introduction controller 17;
  • the apparatus controller 25 that controls the machine 13, the conductance valve 14, the discharge gas introduction machine 15, and the reactive gas introduction machine 16 and the film formation controller 26 that controls the entire control of the reactive sputtering apparatus 1.
  • each component will be described.
  • the substrate holder 12 is formed, for example, in a flat plate shape, is provided in the film forming chamber 11, and the substrate S to be film-formed is placed on the upper surface thereof. Further, a heater for heating the substrate S may be provided in the substrate holder 12 in response to the case where the substrate S needs to be heated at the time of film formation.
  • a load lock chamber is continuously provided on one sidewall of the film forming chamber 11 via a gate valve, and the substrate S is opened from the load lock chamber by a load mechanism or the like. It is put in and placed on the upper surface of the substrate holder 12. Further, the substrate S for which film formation has been completed is carried out from the substrate holder 12 to the load lock chamber by using the loading mechanism.
  • the reactive sputtering apparatus 1 is a so-called single-wafer reactive sputtering apparatus that performs sputter film formation on one substrate S.
  • the reactive sputtering apparatus 1 of the present invention is not limited to the single-wafer type, and may be one in which a plurality of substrates S are put into the film forming chamber 11 for processing.
  • the substrate holder 12 of the present example is used when the substrate S is taken in and out of the rotation mechanism and the vertical mechanism for improving the uniformity of film formation quality (film thickness and composition ratio) with respect to the substrate S.
  • An elevating mechanism for improving workability may be provided.
  • the first sputtering electrode 18 is provided with a first target T1 serving as a film forming material held on the tip surface thereof, and the surface of the first target T1 faces the substrate S mounted on the substrate holder 12. ..
  • the second sputtering electrode 19 is provided such that the second target T2 serving as a film-forming material is held on the tip surface thereof, and the surface of the second target T2 faces the substrate S mounted on the substrate holder 12.
  • the reactive sputtering apparatus 1 of this embodiment two sputtering electrodes 18 and 19 are provided on one surface of the substrate S, but the reactive sputtering apparatus of the present invention uses two sputtering electrodes 18 and 19.
  • the present invention is not limited to this, and three or more sputter electrodes may be provided on one surface of the substrate S.
  • each sputter electrode is It is preferable to provide them so as to be equidistant or symmetrical with respect to the surface of S.
  • the central axis C1 of the first sputter electrode 18 and the central axis C2 of the second sputter electrode 19 face the center O of the substrate S, respectively.
  • the angles ⁇ 1 and ⁇ 2 formed by are equal to each other.
  • the decompressor 13 includes an exhaust port, an exhaust pipe, and an exhaust pump (vacuum pump) for adjusting the film forming chamber 11 to a pressure at which sputtering can be performed during the sputtering process.
  • the film forming chamber 11 is evacuated to a predetermined high vacuum pressure, and then the sputtering process is performed.
  • the discharge gas is introduced from the discharge gas introducing device 15 into the film forming chamber 11, and the conductance valve 14 also serving as a partition valve is operated so that a reduced pressure (vacuum) atmosphere of, for example, several Pa to several tens Pa is obtained.
  • the film forming chamber 11 is set to a predetermined pressure.
  • the partition valve (main valve) is a valve that performs an opening or closing operation, and the conductance valve is a valve whose opening is variable in order to adjust the exhaust speed. Further, when the film formation is completed, the conductance valve 14 also serving as a valve valve is closed, and a leak valve (not shown) provided in the film formation chamber 11 is opened to return the film formation chamber 11 to the normal pressure. .. It is desirable that the film formation chamber 11 be opened to the atmosphere by a leak valve provided in the film formation chamber 11, and that the depressurizer 13 continues to operate except when the entire film formation apparatus 1 is stopped. If the decompressor 13 is stopped and opened to the atmosphere, the decompressor 13 may be contaminated by water and dust contained in the atmosphere, and it takes a long time to restart the decompressor 13 after stopping the decompressor 13. Because.
  • the discharge gas introducing device 15 supplies a discharge gas (a gas that forms a plasma state in the sputtering process and generates ions that collide with a target) to the film forming chamber 11, a gas cylinder, a regulator, a partition valve, an introducing pipe, It includes a flow control valve and a pump if necessary.
  • the discharge gas is not particularly limited, but an inert gas such as argon gas is used.
  • the reaction gas introducing device 16 is used when performing the reactive sputtering process, and as shown in FIG. 1B, the reaction gas cylinder 161 that stores the compressed reaction gas, and the supply from the reaction gas cylinder 161 through the gas flow path 165.
  • Flow rate controller 162 for setting the gas flow rate to be controlled, first gas flow paths 166a and 166b branched from the flow rate controller 162 to guide the reaction gas to the film forming chamber 11, and branched from the flow rate controller 162.
  • Second gas passages 167a and 167b for guiding the reaction gas to the exhaust system of the pressure reducer 13, a first opening / closing valve 163 for opening / closing the first gas passage 166, and a second opening / closing valve for opening / closing the second gas passage 167.
  • reaction gas cylinder 161 Since the pressure of the reaction gas cylinder 161 is compressed to the primary pressure (for example, 100 MPa) when the cylinder is full, a regulator is provided in the reaction gas cylinder 161 to set the secondary pressure (for example, 50 to 300 KPa) to adjust the flow rate. The pressure is reduced to the operating pressure of the vessel 162 and is introduced into the gas passage 165.
  • a needle valve may be provided in the second gas passage 167b to adjust the flow rate of the reaction gas exhausted to the decompressor 13.
  • the reaction gas introduction controller 17 inputs the pulse control signal pattern generated by the programmable oscillator 24 described later, boosts this to a predetermined voltage that can be controlled by the reaction gas introduction device 16, and then performs the reaction.
  • the first opening / closing valve 163 and the second opening / closing valve 164 of the reaction gas introduction device 16 are exclusively opened / closed.
  • the introduction timing and the introduction amount of the reaction gas introduced into the film forming chamber 11 are controlled with high accuracy.
  • the flow rate control of the reaction gas is controlled by the flow rate controller 162, and the introduction time is the programmable oscillator 24.
  • "exclusively controls opening / closing” means control to close one of the first opening / closing valve 163 and the second opening / closing valve 164 and to open the other when closing one.
  • the first opening / closing valve 163 is opened and the second opening / closing valve 163 is opened.
  • While closing the valve 164 at the timing of stopping the supply of the reaction gas to the film forming chamber 11, the first opening / closing valve 163 is closed and the second opening / closing valve 164 is opened to guide the reaction gas to the exhaust system of the pressure reducer 13. By doing so, it is possible to stably control the pulse-like introduction / non-introduction of the reaction gas into the film forming chamber 11 at a highly accurate timing of 100 msec or less.
  • the pipe 166b between the first opening / closing valve 163 and the film forming chamber 11 is always in a reduced pressure atmosphere during film formation.
  • the pipe 166a between the flow rate controller 162 and the first on-off valve 163 has a reaction gas cylinder when the first on-off valve 163 is "closed".
  • the secondary pressure of 161 is returned, and when the reaction gas is introduced, the reaction gas rushes into the film forming chamber 11 due to the pressure difference between the pipe 166a and the film forming chamber 11.
  • the second opening / closing valve 164 as in the present example, even when the first opening / closing valve 163 is “closed”, the second opening / closing valve 164 is “open”, so that the flow rate controller 162 is The depressurized state of the pipe 166a between the first on-off valve 163 and the first on-off valve 163 is maintained, and as a result, generation of rush gas into the film forming chamber 11 can be suppressed.
  • reaction gas introduction controller 17 is controlled to control the reaction gas introduction device 16. It is sufficient to stop the introduction of the reaction gas by.
  • the direct-current power supply 20 applies a direct-current voltage of 1 kV or less to the target to cause discharge, and as a result, a part of the argon gas (discharge gas) that has emitted electrons to be positively ionized collides with the target and the target is discharged. The atoms are knocked out and deposited on the substrate S in the direction of the target stretching. It is desirable that the DC power supply 20 of the present embodiment is a power supply capable of automatically switching control of power control (CP), voltage control (CV), and current (CC).
  • CP power control
  • CV voltage control
  • CC current
  • the power supply line between the DC power supply 20 and the first sputtering electrode 18 of the present embodiment is provided with a first pulse wave conversion switch 22 to supply power between the DC power supply 20 and the second sputtering electrode 19.
  • a second pulse wave conversion switch 23 is provided on the line. Since the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 are connected in parallel to the DC power supply 20, the same voltage as that of the DC power supply 20 is applied. However, when the DC power supply 20 is power-controlled, the applied voltage may differ depending on the type of target.
  • the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 are composed of switching elements that convert a DC voltage from the DC power supply 20 into a pulse wave voltage, and a switching element that can withstand a high voltage of several kV, such as a MOSFET. , IGBT, SiC and other power transistors can be used.
  • the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 are independently controlled by the programmable oscillator 24 while maintaining synchronization. That is, the programmable oscillator 24 outputs the pattern of the pulse control signal corresponding to the respective target sputtering power values supplied to the first sputter electrode 18 and the second sputter electrode 19 to the first pulse wave conversion switch 22 and the second pulse wave. It outputs to each of the conversion switches 23 to control ON / OFF.
  • FIG. 2C is a diagram showing a method for generating a sputter mask pulse in the programmable oscillator 24.
  • the sputter mask pulse pattern of pulse control signal
  • the sputter mask pulse output to each of the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 is a base pulse representing a pulse sputter frequency and a sputter mask pulse. It is set as defined by the sputter mask pulse (AND condition of base pulse and mask pulse, output pulse) with the mask pulse representing the time frequency.
  • the frequency, the duty ratio, and the phase angle of each of the base pulse and the mask pulse can be individually set, and the base pulse and the mask pulse are synchronized by using the same clock.
  • a dual cathode is obtained by advancing the phase angle of the base mask of one target by 180 °. Further, the sputter timing in one cycle is performed by changing the phase angle of the mask pulse.
  • the base pulse shown in the figure is set, for example, at a frequency of 1 kHz to 500 kHz, a duty ratio of 50%, and a phase angle of 0 °, and the mask pulse has a frequency of 0.5 Hz to 1.0 Hz, a duty ratio of 50%, and a phase angle of 0 °.
  • the set example is shown.
  • the number of channels of the programmable oscillator 24 is equal to or more than the total number of the pulse wave conversion switches that are the output destinations and the number of the output destination devices that are included in the reaction gas introduction controller 17. .. Further, the programmable oscillator 24 can also set the number of repetitions of one cycle and the time from the start to the end. Further, the pulse signal output to the first opening / closing valve 163 and the second opening / closing valve 164 of the reactive gas introducing device 16 described later is composed of only mask pulses.
  • FIG. 2A is a diagram showing an example of a voltage pulse wave (mask pulse) generated by the programmable oscillator 24, the first pulse wave conversion switch 22 or the second pulse wave conversion switch 23 of FIG. 1A.
  • the programmable oscillator 24 includes a control including a frequency 1 / T and a duty ratio ⁇ / T that turn on / off the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23, respectively.
  • the signal pattern is arbitrarily programmable. Further, since it is possible to create a waveform on the time axis without depending on the repetitive waveform, it is possible to program in a single-shot phenomenon.
  • the programmable oscillator 24 has a function of adjusting the start timing of the internal cycle of the unit, and has a control signal pattern output to the first pulse wave conversion switch 22 and a control signal pattern output to the second pulse wave conversion switch 23. And are generated from the same clock, so that highly accurate synchronism is maintained.
  • FIG. 1A in the circuit on the first sputter electrode 18 side of the first pulse wave conversion switch 22 and the circuit on the second sputter electrode 19 side of the second pulse wave conversion switch 23, about +50 V (at +100 V or less A bias DC power supply 21 (preferably present) may be connected.
  • the bias DC power supply 21 When the bias DC power supply 21 is connected and the sputtering voltage is not output, the bias voltage is applied to the target.
  • FIG. 2B shows other voltage pulse waves (mask pulses) generated by the programmable oscillator 24, the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 of FIG. 1A when the bias DC power supply 21 is provided. It is a figure which shows an example.
  • the device controller 25 controls the decompressor 13, the conductance valve 14, the discharge gas introduction device 15, and the reaction gas introduction device 16 based on the control signal from the film formation controller 26. Together with the control of the reaction gas introduction controller 17 by the programmable oscillator 24, the exhaust of the film forming chamber 11 and the timing of introducing the discharge gas and the reaction gas into the film forming chamber 11 are controlled.
  • the first sputtering electrode 18 and / or the second sputtering electrode 19 argon gas or the like from the discharge gas introduction device 15 to the film forming chamber 11 is supplied.
  • reaction gas introduction controller While controlling the discharge gas introduction device 15 so that the inert gas is introduced, while the electric power is being supplied to either the first sputtering electrode 18 or the second sputtering electrode 19, the reaction gas introduction controller The reaction gas introduction device 16 is controlled so that the reaction gas is introduced from 17 to the film forming chamber 11.
  • the two sputter electrodes 18 and 19 are provided only on one surface of the substrate S.
  • film formation on both front and back surfaces of the substrate S is performed on the substrate holder 12.
  • the substrate S is held so that a part thereof is exposed, and the third sputter electrode 27 having the third target T3 serving as a film forming material held on the tip surface is also formed below the substrate holder 12, and the film is formed on the tip surface.
  • the fourth sputtering electrode 28 holding the fourth target T4 as a material is arranged so that the respective surfaces of the third target T3 and the fourth target T4 face the back surface of the substrate S held by the substrate holder 12. It may be provided.
  • the first pulse wave conversion switch 22 is provided on the power supply line between the first DC power source 201 and the first sputter electrode 18 and the second sputter electrode 19.
  • the second pulse wave conversion switch 23 is provided on the power supply line between the second DC power source 202 and the third sputtering electrode 27 and the fourth sputtering electrode 28.
  • the programmable oscillator 24 outputs to the first pulse wave conversion switch 22 a pattern of a pulse control signal according to the sputtering target power value supplied to the first sputtering electrode 18 and the second sputtering electrode 19, and the third sputtering device.
  • a pattern of a pulse control signal according to the target sputtering power value supplied to the electrode 27 and the fourth sputtering electrode 28 may be output to the second pulse wave conversion switch 23 to control ON / OFF.
  • the targets (first target T1, second target T2, third target T3, and fourth target T4) provided on the respective sputter electrodes are different film forming materials.
  • the film forming materials may be partially different, or all of the film forming materials may be the same. Even if the targets are the same film forming material, the introduction pattern of the reaction gas may be changed.
  • FIG. 3A is a block diagram of an essential part showing an electric system of still another embodiment of the reactive sputtering apparatus according to the present invention
  • FIG. 3B is an electric system of yet another embodiment of the reactive sputtering apparatus according to the present invention. It is a principal part block diagram which shows a system. In the embodiment shown in FIG.
  • a first DC power supply 201 and a second DC power supply 202 are provided for each of the two sputter electrodes (the first sputter electrode 18 and the second sputter electrode 19), and two pulse wave conversions are performed.
  • a first bias DC power supply 211 and a second bias DC power supply 212 are provided for each of the switches (first pulse wave conversion switch 22 and second pulse wave conversion switch 23).
  • the first DC power source 201 and the second DC power source 202 are provided for each of the two sputtering electrodes (the first sputtering electrode 18 and the second sputtering electrode 19), while two pulses are provided.
  • one bias DC power supply 21 is provided for the wave conversion switch (first pulse wave conversion switch 22 and second pulse wave conversion switch 23).
  • ⁇ Film forming method using reactive sputtering apparatus By using the reactive sputtering apparatus 1 according to the present embodiment as described above, it is possible to perform sputtering processing in various film formation forms.
  • a composite metal compound film such as a metal oxide film or a metal nitride film, a mixed film or a multilayer film targeting a plurality of different metals
  • the composite metal compound film and the mixed film are collectively referred to as a metal compound film.
  • FIG. 5 is a graph showing a characteristic profile of the film formation rate with respect to the flow rate of a reaction gas of a predetermined type under a predetermined reactive sputtering condition, the first target T1 is shown by a solid line, and the second target of a material different from this is shown.
  • the characteristic of T2 is shown by a dotted line.
  • a range in which the flow rate of the reaction gas is relatively small is called a metal mode
  • a range in which the flow rate of the reaction gas is relatively large is an oxidation mode (in which oxygen is used as a reaction gas.
  • a reaction mode also referred to as a reaction mode.
  • the film formation rate with respect to the reaction gas flow rate of the first target T1 gradually decreases as the reaction gas flow rate increases from 0, then rapidly decreases in the range R (near the transition mode range), and then gradually decreases again. To do.
  • the absolute value of the rate of change of the film forming rate (the slope of the profile) with respect to the reaction gas flow rate of the first target T1 gradually increases as the reaction gas flow rate increases from 0, gradually reaches a maximum value in the range R, and then gradually increases. Becomes smaller.
  • the film formation rate with respect to the reaction gas flow rate of the second target T2 gradually decreases as the reaction gas flow rate increases from 0, and then decreases abruptly in the range R (near the transition mode range). After that, it gradually decreases again.
  • the absolute value of the rate of change of the film forming rate (the slope of the profile) with respect to the reaction gas flow rate of the second target T2 gradually increases as the reaction gas flow rate increases from 0, reaches a maximum value in the range R, and then gradually increases. Becomes smaller.
  • the maximum value in the range R of the second target T2 is smaller than the maximum value of the first target T1. That is, the degree of influence of the film formation rate on the reaction gas flow rate of the second target T2 is relatively smaller than the degree of influence of the film formation rate on the reaction gas flow rate of the first target T1.
  • the present inventors applied a voltage to the second sputtering electrode 19 for the second target T2 in which the degree of influence of the film formation rate on the flow rate of the reaction gas is relatively small (in other words, insensitive). If the step of introducing the reactive gas into the film forming chamber 11 and radicalizing the reactive gas by the sputtering power at the same time as performing the sputtering treatment of the two targets T2, the decrease in the film forming rate can be suppressed to the minimum and at the same time, Attention was paid to the fact that the reaction gas introduced into the film forming chamber 11 could be radicalized by the second sputtering electrode 19.
  • the second sputtering electrode 19 is also used as a radical electrode to convert the reaction gas into a radical, and the film deposition rate has a relatively large influence on the reaction gas flow rate (in other words, With respect to the first target T1 (which is sensitive), the reaction process can be performed by the reaction gas radicals remaining in the film forming chamber 11.
  • a target having a relatively large maximum absolute value of the rate of change of the film formation rate with respect to the reaction gas flow rate is referred to as a first target T1
  • a target having a relatively small absolute value is referred to as a second target T2.
  • Examples of the first target T1 include metals such as zirconium Zr, titanium Ti, aluminum Al, niobium Nb, and tantalum Ta, and examples of the second target T2 include metals such as yttrium Y, erbium Er / yttrium Y, and silicon Si. Can be illustrated.
  • FIGS. 4A to 4C are time charts showing an example of a film forming method using the reactive sputtering apparatus 1 according to the present invention, showing one cycle (one cycle) as a unit of the film forming process.
  • This figure shows a pulse control signal pattern programmed in the programmable oscillator 24 (the vertical axis represents ON / OFF, the horizontal axis represents time), and is applied to the first sputter electrode 18 in order from the above figure. Pulse (ON / OFF), application pulse (ON / OFF) to the second sputtering electrode 19, application pulse (ON / OFF) to the reactive gas introduction controller 17, application pulse (ON / OFF) to the discharge gas introduction device 15. ) Respectively.
  • Each of the film forming methods is an example of forming a metal compound film such as a metal oxide film or a metal nitride film by introducing a desired reaction gas from the reaction gas introducing device 16 into the film forming chamber 11.
  • the applied pulse applied to the sputter electrode in the pulse control signal pattern is also referred to as a sputter mask pulse.
  • Film forming method illustrated in FIGS. 4A ⁇ FIG. 4G such as zirconium Zr as the first target T1, yttrium Y as the second target T2, oxygen respectively selected as the reaction gas, yttria stabilized zirconia YSZ (ZrO 2 ⁇ Y 2 O 3 )
  • silicon Si is selected as the first target T1
  • yttrium Y is selected as the second target T2
  • oxygen is selected as the reaction gas
  • yttrium silicate is selected.
  • silicon Si is used as the first target T1
  • erbium Er / yttrium Y is used as the second target T2
  • a reaction is performed. This can be applied to the case where oxygen is selected as a gas and a metal compound film of erbium yttrium silicate (Er x Y 2 -x SiO 2 ) is formed (fourth to seventh examples below).
  • the first target T1 for example, zirconia Zr
  • the first sputter electrode 18 for a predetermined time.
  • a sputtering mask pulse having a width Pt1 is applied to form an ultrathin film by the first target T1.
  • a sputter mask pulse having a predetermined time width Pt2 is applied to the second sputter electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y), and at the same time, a reaction gas (eg, oxygen O 2 ) is formed.
  • a reaction gas eg, oxygen O 2
  • the reaction gas is not introduced into the film forming chamber 11 at the timing of sputtering the first target T1 in which the degree of influence of the film forming rate on the reaction gas flow rate is relatively sensitive, and the reaction rate of the film forming rate on the reaction gas flow rate is not introduced.
  • the reaction gas is introduced into the film forming chamber 11 at the timing of performing the sputtering process of the second target T2, which is relatively insensitive to the influence and obtains the film forming speed.
  • the reaction gas introduced into the film forming chamber 11 is radicalized by the electric field of the second sputtering electrode 19, and the ultra thin film of the first target T1 and the ultra thin film of the second target T2 formed on the substrate S are simultaneously formed. React with reactive gas. Then, this cycle is repeated until the target film thickness is obtained.
  • the power supplied to the first sputter electrode 18 and the power supplied to the second sputter electrode 19 may be set to the same value, or the power supplied to the first sputter electrode 18 and the second sputter electrode 19 may be set to the same value. It may be set to a different value.
  • FIG. 6 is a graph showing an example of the material flying amount of the first target T1 when processed by the film forming method shown in FIG. 4A.
  • Time t1 to time t3 in FIG. 6 corresponds to the application time of the predetermined time width Pt1 in FIG. 4A
  • time t3 to time t5 in FIG. 6 corresponds to the application time of the predetermined time width Pt2 in FIG. 4A.
  • the mode transits to the metal mode and the flying amount of the material of the first target T1 increases, and at the time t2 to t3.
  • the flying amount of the material of the first target T1 is maximized.
  • the incomplete metal ultra-thin film of the first target T1 can be reacted with the reactive gas radical having high reactivity at the same time as the film formation of the second target T2. Thereby, reactive sputtering can be performed at a high film formation rate.
  • the radical electrode for the reaction gas is also used as the second sputtering electrode 19
  • the time required for the reaction can be reduced, and it is not necessary to provide a separate radical electrode, which suppresses an increase in the device cost and an increase in the size of the device. can do.
  • the application time of the predetermined time width Pt2 to the second sputtering electrode 19 in FIG. 4A and the application time to the reactive gas introduction controller 17 are preferably the same time, but at least the overlapping time is sufficient. ..
  • Second example In the film forming method shown in FIG. 4B, in a state where a discharge gas such as an inert gas is introduced into the film forming chamber 11, a sputtering mask pulse having a predetermined time width Pt2 is applied to the second sputtering electrode 19 to generate a second target. At the same time as forming an ultrathin film of T2 (eg, yttrium Y), a reaction gas (eg, oxygen O 2 ) is introduced into the film forming chamber 11.
  • a discharge gas such as an inert gas
  • a sputtering mask pulse having a predetermined time width Pt2 is applied to the second sputtering electrode 19 to generate a second target.
  • a reaction gas eg, oxygen O 2
  • a sputter mask pulse having a predetermined time width Pt1 is applied to the first sputter electrode 18 on which the first target T1 (for example, zirconia Zr) is mounted to form an ultrathin film by the first target T1. That is, also in this film forming method, the reaction gas is not introduced into the film forming chamber 11 at the timing of sputtering the first target T1 in which the degree of influence of the film forming rate on the reaction gas flow rate is relatively sensitive. The reaction gas is introduced into the film forming chamber 11 at the timing of performing the sputtering process on the second target T2 in which the influence of the film forming rate on the gas flow rate is relatively insensitive.
  • the reaction gas introduced into the film forming chamber 11 is radicalized by the electric field of the second sputtering electrode 19, and the ultrathin films of the first target T1 and the second target T2 formed on the substrate S are reacted with the reaction gas. .. Then, this cycle is repeated until the target film thickness is obtained.
  • the power supplied to the first sputter electrode 18 and the power supplied to the second sputter electrode 19 may be set to the same value, or the power supplied to the first sputter electrode 18 and the second sputter electrode 19 may be set to the same value. It may be set to a different value.
  • the application time of the predetermined time width Pt2 to the second sputtering electrode 19 of FIG. 4B and the application time to the reactive gas introduction controller 17 are preferably the same time, but at least the overlapping time is sufficient. ..
  • the first target T1 for example, zirconia Zr
  • the first sputtering electrode 18 for a predetermined time.
  • a sputtering mask pulse having a width Pt1 is applied to form an ultrathin film by the first target T1.
  • a sputter mask pulse having a predetermined time width Pt2 is applied to the second sputter electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y).
  • a pulse having the predetermined time widths Pt1 and Pt2 is applied, the reactive gas is not introduced into the film forming chamber 11, and the sputtering process is performed in the metal mode.
  • a pulse having a predetermined time width Pt3 is applied to the first sputter electrode 18 on which the first target T1 is mounted to form an ultrathin film by the first target T1.
  • a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 to form an ultrathin film by the second target T2, and at the same time, a reaction gas (eg oxygen O 2 ) is introduced into the film forming chamber 11.
  • a reaction gas eg oxygen O 2
  • the reactive gas is not introduced into the film forming chamber 11 at least at the timing of performing the sputtering process on the first target T1 in which the influence of the film forming rate on the reaction gas flow rate is relatively sensitive.
  • the reaction gas introduced into the film forming chamber 11 at the same time when a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 is radicalized by the electric field of the second sputtering electrode 19 and is formed on the substrate S.
  • the ultrathin films of the first target T1 and the second target T2 are reacted with the reaction gas. Then, this cycle is repeated until the target film thickness is obtained.
  • the power supplied to the first sputter electrode 18 and the power supplied to the second sputter electrode 19 may be set to the same value, or the power supplied to the first sputter electrode 18 and the second sputter electrode 19 may be set to the same value. It may be set to a different value.
  • the application time of the predetermined time width Pt4 to the second sputtering electrode 19 of FIG. 4C and the application time to the reactive gas introduction controller 17 are preferably the same time, but at least the overlapping time is sufficient. ..
  • the reactive gas is formed into a film at the timing of performing the sputtering process on the first target T1 in which the degree of influence of the film forming rate on the reaction gas flow rate is relatively sensitive.
  • the reaction gas is introduced into the film formation chamber 11 at the timing when the second target T2 is not introduced into the chamber 11 and the influence of the film formation rate on the reaction gas flow rate is relatively insensitive. This makes it possible to cause the ultra-thin film of the first target T1 to react with the reaction gas during the film formation of the second target T2 while maintaining the film formation speed of the first target T1 at a high speed in the metal mode.
  • the radical electrode for the reaction gas is also used as the second sputtering electrode 19, it is not necessary to provide a separate radical electrode, and it is possible to suppress an increase in device cost and an increase in size of the device.
  • metal targets such as zirconium Zr, titanium Ti, aluminum Al, niobium NB, or tantalum Ta, which is relatively sensitive to the reaction gas flow rate
  • metal targets such as yttrium Y, erbium Er / yttrium Y, or silicon Si in which the influence of the film formation rate on the reaction gas flow rate is relatively insensitive.
  • a metal compound film of yttrium silicate (Y 2 O 3 .SiO 2 ) is formed, or
  • silicon Si is used as the target T1
  • erbium Er / yttrium Y is used as the second target T2
  • oxygen is used as the reaction gas to form a metal compound film of erbium yttrium silicate (Er x Y 2-x SiO 2 ). ..
  • a discharge gas such as an inert gas is introduced into the film forming chamber 11 for a predetermined time with respect to the first sputtering electrode 18 on which the first target T1 (for example, silicon Si) is mounted.
  • a sputtering mask pulse having a width Pt1 is applied to form an ultrathin film by the first target T1.
  • a sputtering mask pulse having a width Pt2 for a predetermined time is applied to the second sputtering electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y or erbium Er / yttrium Y).
  • the reactive gas is not introduced into the film forming chamber 11, and the sputtering process is performed in the metal mode.
  • a time period for once removing the oxide on the target surface by sputtering is provided, and a regeneration for recovering the metal surface on the target surface is performed. By repeating this cycle, it is possible to recover the high film formation rate in the metal mode.
  • a pulse having a predetermined time width Pt3 is applied to the first sputter electrode 18 on which the first target T1 is mounted to form an ultrathin film by the first target T1.
  • a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 to form an ultrathin film by the second target T2. ..
  • the film formation rate in the oxidation mode becomes relatively slow. Therefore, at the timing of the sputtering process of the first target T1 and the second target T2 in the first half of one cycle of film formation, the reaction gas is not introduced into the film formation chamber 11 and the sputtering process is performed in the metal mode. To secure the film formation rate.
  • the reaction gas is introduced into the film formation chamber 11 and the sputtering process is performed in the oxidation mode.
  • the reaction gas introduced into the film forming chamber 11 is radicalized by the electric fields of the first sputtering electrode 18 and the second sputtering electrode 19, and the ultrathin film of the first target T1 and the second target T2 formed on the substrate S The thin film and the reaction gas are simultaneously reacted. Then, this cycle is repeated until the target film thickness is obtained.
  • the power supplied to the first sputter electrode 18 and the power supplied to the second sputter electrode 19 may be set to the same value, or the power supplied to the first sputter electrode 18 and the second sputter electrode 19 may be set to the same value. It may be set to a different value.
  • the film forming method shown in FIG. 4E is a modification of the film forming method shown in FIG. 4D. That is, in the film forming method shown in FIG. 4E, with the discharge gas such as an inert gas being introduced into the film forming chamber 11, the first target T1 (for example, silicon Si) is attached to the first sputter electrode 18. A sputter mask pulse having a predetermined time width Pt1 is applied to form an ultrathin film by the first target T1.
  • the discharge gas such as an inert gas
  • a sputtering mask pulse having a width Pt2 for a predetermined time is applied to the second sputtering electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y or erbium Er / yttrium Y).
  • the reaction gas is introduced into the film forming chamber 11 to perform the sputtering process in the oxidation mode.
  • the introduction of the reaction gas into the film forming chamber 11 is stopped, and a pulse having a predetermined time width Pt3 is applied to the first sputtering electrode 18 on which the first target T1 is mounted to form an ultrathin film by the first target T1.
  • the film forming method shown in FIG. 4F is a modification of the film forming method shown in FIG. 4D. That is, in the film forming method shown in FIG. 4F, with the discharge gas such as an inert gas introduced into the film forming chamber 11, the first target T1 (for example, silicon Si) is attached to the first sputter electrode 18. A sputter mask pulse having a predetermined time width Pt1 is applied to form an ultrathin film by the first target T1. While the pulse having the predetermined time width Pt1 is applied, the reactive gas is not introduced into the film forming chamber 11, and the sputtering process is performed in the metal mode.
  • the discharge gas such as an inert gas introduced into the film forming chamber 11
  • the first target T1 for example, silicon Si
  • a sputter mask pulse having a predetermined time width Pt1 is applied to form an ultrathin film by the first target T1. While the pulse having the predetermined time width Pt1 is applied, the reactive gas is not introduced into the film forming chamber
  • a sputtering mask pulse having a width Pt2 for a predetermined time is applied to the second sputtering electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y or erbium Er / yttrium Y). While the pulse having the predetermined time width Pt2 is applied, the reactive gas is introduced into the film forming chamber 11 to perform the sputtering process in the oxidation mode. Then, the introduction of the reaction gas into the film forming chamber 11 is continued, a pulse of a predetermined time width Pt3 is applied to the first sputtering electrode 18 on which the first target T1 is mounted, and the first target T1 is placed in the oxidation mode.
  • the second target T2 eg, yttrium Y or erbium Er / yttrium Y.
  • a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 without introducing a reaction gas (for example, oxygen O 2 ) into the film forming chamber 11, and the ultrathin film by the second target T2 in the metal mode is applied.
  • a reaction gas for example, oxygen O 2
  • This film forming method also has the same effects as the film forming method shown in FIG. 4D.
  • the film forming method shown in FIG. 4G is a modification of the film forming method shown in FIG. 4D. That is, in the film forming method shown in FIG. 4G, with the discharge gas such as an inert gas introduced into the film forming chamber 11, the first target T1 (for example, silicon Si) is attached to the first sputter electrode 18. A sputter mask pulse having a predetermined time width Pt1 is applied to form an ultrathin film by the first target T1. While the pulse having the predetermined time width Pt1 is applied, the reaction gas is introduced into the film forming chamber 11 to perform the sputtering process in the oxidation mode.
  • the discharge gas such as an inert gas introduced into the film forming chamber 11
  • the first target T1 for example, silicon Si
  • a sputter mask pulse having a predetermined time width Pt1 is applied to form an ultrathin film by the first target T1. While the pulse having the predetermined time width Pt1 is applied, the reaction gas is introduced into the film forming chamber 11
  • a sputtering mask pulse having a width Pt2 for a predetermined time is applied to the second sputtering electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y or erbium Er / yttrium Y). While the pulse having the predetermined time width Pt2 is applied, the reactive gas is not introduced into the film forming chamber 11, and the sputtering process in the metal mode is performed. Next, without introducing the reaction gas into the film forming chamber 11, a pulse having a predetermined time width Pt3 is applied to the first sputtering electrode 18 on which the first target T1 is mounted, and the pulse is generated by the first target T1 in the metal mode. Form a thin film.
  • the second target T2 eg, yttrium Y or erbium Er / yttrium Y.
  • a reaction gas eg, oxygen O 2
  • a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19, and an ultrathin film is formed by the second target T2 in the oxidation mode.
  • This film forming method also has the same effects as the film forming method shown in FIG. 4D.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This method is for depositing a metallic compound film, the method comprising: a first step for attaching, to a sputter electrode, at least two targets having different maximal values for the absolute value of the change rate of deposition speed with respect to a reactive gas flow rate, supplying a first sputtering intended electric power that is set in accordance with a pulse control signal pattern, to the sputter electrode having a first target attached thereto in a state where an electric discharge gas is introduced in a deposition chamber, and forming a metallic super-thin film of the first target on a substrate by stopping the introduction of the reactive gas into the deposition chamber from a reactive gas introducer only at an intended introduction timing set from the pulse control signal pattern; and a second step for supplying a second sputtering intended electric power that is set in accordance with the pulse control signal pattern, to the sputter electrode having a second target attached thereto in a state where the electric discharge gas is introduced in the deposition chamber, and forming a metallic super-thin film of the second target on the substrate by introducing the reactive gas into the deposition chamber from the reactive gas introducer only at the intended introduction timing set from the pulse control signal pattern.

Description

金属化合物膜の成膜方法及び反応性スパッタ装置Metal compound film forming method and reactive sputtering apparatus
 本発明は、金属化合物膜の成膜方法及び反応性スパッタ装置に関するものである。 The present invention relates to a method for forming a metal compound film and a reactive sputtering apparatus.
 金属酸化物の薄膜を反応性スパッタ法により成膜する場合、スパッタ雰囲気に導入する酸素分子の流量が多くなると、金属薄膜を成膜する場合に比べて成膜速度が著しく低下する。このため、成膜室に、ターゲットが装着されたスパッタ電極とは別に、ラジカル電極を設け、基板の表面と、ターゲットの表面との間隙に対し酸素ラジカル、すなわち酸素原子を供給するように構成した金属酸化物成膜装置が知られている(特許文献1)。 When a thin film of a metal oxide is formed by the reactive sputtering method, if the flow rate of oxygen molecules introduced into the sputtering atmosphere is large, the film formation rate will be significantly lower than when a thin metal film is formed. Therefore, a radical electrode is provided in the film forming chamber in addition to the sputtering electrode on which the target is mounted, and oxygen radicals, that is, oxygen atoms, are supplied to the gap between the surface of the substrate and the surface of the target. A metal oxide film forming apparatus is known (Patent Document 1).
特開2007-204819号公報JP, 2007-204819, A
 しかしながら、上記従来技術では、スパッタ電極とは別にラジカル電極が必要となるため、高周波電源その他の装置費用が増加するとともに、成膜室におけるラジカル電極の専有容積だけ成膜装置が大型化するという問題がある。 However, in the above-mentioned conventional technique, since a radical electrode is required in addition to the sputtering electrode, the cost of the high-frequency power source and other devices increases, and the film forming apparatus is increased in size by the volume occupied by the radical electrode in the film forming chamber. There is.
 本発明が解決しようとする課題は、簡単な構造で金属化合物膜を成膜することができる金属化合物膜の成膜方法及び反応性スパッタ装置を提供することである。 The problem to be solved by the present invention is to provide a metal compound film forming method and a reactive sputtering apparatus capable of forming a metal compound film with a simple structure.
 本発明は、直流電源と少なくとも2つのスパッタ電極との間に、直流電圧をパルス波電圧に変換するパルス波変換スイッチを少なくとも2つのスパッタ電極に対応して設け、パルス波変換スイッチと、反応ガス導入制御器と、反応に要する時間とを、プログラムされたパルス制御信号パターンを発生するプログラマブル発信器により制御することにより、各スパッタ電極に供給する目標電力と目標反応ガス導入タイミングとを適宜に設定することによって、上記課題を解決する。 According to the present invention, a pulse wave conversion switch for converting a DC voltage into a pulse wave voltage is provided between a DC power supply and at least two sputter electrodes in correspondence with at least two sputter electrodes. By controlling the introduction controller and the time required for the reaction with a programmable oscillator that generates a programmed pulse control signal pattern, the target power supplied to each sputter electrode and the target reaction gas introduction timing are set appropriately. By doing so, the above problem is solved.
 特に、所定の反応性スパッタ条件において、反応ガスの流量に対する成膜速度の変化率の絶対値の極大値が相対的に大きい第1ターゲットと、相対的に小さい第2ターゲットとを、少なくとも2つのスパッタ電極のそれぞれに装着したのち、
 成膜室に放電ガスを導入した状態で、前記第1ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第1スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室への反応ガスの導入を停止して、前記基板に前記第1ターゲットの金属超薄膜を形成する第1の工程と、
 前記成膜室に放電ガスを導入した状態で、前記第2ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第2スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入し、前記基板に前記第2ターゲットの金属超薄膜を形成する第2の工程と、を少なくとも備える金属化合物膜の成膜方法により、上記課題を解決する。
In particular, under a predetermined reactive sputtering condition, at least two first targets each having a relatively large maximum absolute value of the rate of change of the film formation rate with respect to the flow rate of the reaction gas and at least two second targets are relatively small. After attaching to each of the sputter electrodes,
While the discharge gas is introduced into the film forming chamber, the first sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is mounted, and the sputtering target electrode is set by the pulse control signal pattern. A first step of stopping the introduction of the reaction gas from the reaction gas introduction device to the film formation chamber only at the specified target introduction timing, and forming the ultrathin metal film of the first target on the substrate;
While the discharge gas is introduced into the film forming chamber, the second sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the second target is mounted, and the second target is supplied by the pulse control signal pattern. A second step of introducing a reaction gas from the reaction gas introduction device to the film forming chamber at a set target introduction timing to form an ultrathin metal film of the second target on the substrate. The above-mentioned problems are solved by the film forming method.
 また、第1ターゲットと第2ターゲットとを、前記少なくとも2つのスパッタ電極のそれぞれに装着したのち、
 前記成膜室に放電ガスを導入した状態で、前記第1ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第1スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入しないで、前記基板に前記第1ターゲットの金属超薄膜を形成する第1の工程と、
 前記成膜室に放電ガスを導入した状態で、前記第2ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第2スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入しないで、前記基板に前記第2ターゲットの金属超薄膜を形成する第2の工程と、
 前記成膜室に放電ガスを導入した状態で、前記第1ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第1スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入し、前記基板に前記第1ターゲットの金属超薄膜を形成する第3の工程と、
 前記成膜室に放電ガスを導入した状態で、前記第2ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第2スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入し、前記基板に前記第2ターゲットの金属超薄膜を形成する第4の工程と、を少なくとも備える金属化合物膜の成膜方法により、上記課題を解決する。
Moreover, after mounting the first target and the second target on each of the at least two sputter electrodes,
While the discharge gas is being introduced into the film forming chamber, the first sputtering target electric power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is attached, and the sputtering control electrode pattern is used by the pulse control signal pattern. A first step of forming a metal ultrathin film of the first target on the substrate without introducing a reaction gas from the reaction gas introduction machine to the film formation chamber only at a set target introduction timing;
While the discharge gas is introduced into the film forming chamber, the second sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the second target is mounted, and the second target is supplied by the pulse control signal pattern. A second step of forming an ultrathin metal film of the second target on the substrate without introducing a reaction gas from the reaction gas introduction machine to the film forming chamber at a set target introduction timing;
While the discharge gas is being introduced into the film forming chamber, the first sputtering target electric power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is attached, and the sputtering control electrode pattern is used by the pulse control signal pattern. A third step of introducing a reaction gas from the reaction gas introduction machine to the film forming chamber only at a set target introduction timing to form an ultrathin metal film of the first target on the substrate;
While the discharge gas is introduced into the film forming chamber, the second sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the second target is mounted, and the second target is supplied by the pulse control signal pattern. A fourth step of introducing a reaction gas from the reaction gas introduction machine to the film forming chamber at a set target introduction timing to form an ultrathin metal film of the second target on the substrate. The above-mentioned problems are solved by the film forming method.
 また、成膜される基板が投入される成膜室と、
 前記成膜室を所定圧力に減圧する減圧機と、
 前記成膜室に放電ガスを導入する放電ガス導入機と、
 成膜材料となるターゲットをそれぞれ備え、一つの前記基板に対して対向する複数のスパッタ電極と、
 前記成膜室に反応ガスを導入する反応ガス導入機と、
 前記複数のスパッタ電極に電力を供給する直流電源と、
 前記直流電源と前記複数のスパッタ電極との間に接続され、それぞれのスパッタ電極に印加する直流電圧をパルス波電圧に変換する複数のパルス波変換スイッチと、
 前記反応ガス導入機から前記成膜室への反応ガスの導入を制御する反応ガス導入制御器と、
 前記複数のスパッタ電極に供給するそれぞれのスパッタ目標電力と、前記反応ガスの目標導入タイミングとに応じたパルス制御信号パターンがプログラム可能とされ、プログラムされたパルス制御信号パターンにしたがって、前記複数のパルス波変換スイッチのそれぞれと、前記ガス導入制御器とを制御するプログラマブル発信器と、を備え、
 前記反応ガス導入機は、
  反応ガス供給源と、
  前記反応ガス供給源から供給する反応ガス流量を調節する流量調節器と、
  前記流量調節器から分岐して前記成膜室へ反応ガスを導く第1ガス流路と、
  前記流量調節器から分岐して前記減圧機の排気系へ反応ガスを導く第2ガス流路と、
  前記第1ガス流路を開閉する第1開閉弁と、
  前記第2ガス流路を開閉する第2開閉弁と、を備え、
 前記反応ガス導入制御器は、前記プログラマブル発信器からのパルス制御信号パターンに基づいて、前記第1開閉弁と前記第2開閉弁を排他的に開閉制御する反応性スパッタ装置によっても、上記課題を解決する。
In addition, a film forming chamber into which a substrate to be formed is placed,
A decompressor for decompressing the film forming chamber to a predetermined pressure,
A discharge gas introducing machine for introducing a discharge gas into the film forming chamber,
A plurality of sputtering electrodes, each of which includes a target serving as a film-forming material, and which faces one of the substrates,
A reaction gas introducing device for introducing a reaction gas into the film forming chamber,
A direct current power supply for supplying power to the plurality of sputter electrodes,
A plurality of pulse wave conversion switches connected between the DC power supply and the plurality of sputtering electrodes, for converting a DC voltage applied to each sputtering electrode into a pulse wave voltage,
A reaction gas introduction controller for controlling the introduction of the reaction gas from the reaction gas introduction machine to the film forming chamber,
A pulse control signal pattern according to each sputter target power supplied to the plurality of sputter electrodes and a target introduction timing of the reaction gas is programmable, and the plurality of pulses are controlled according to the programmed pulse control signal pattern. Each of the wave conversion switches, and a programmable oscillator for controlling the gas introduction controller,
The reaction gas introduction machine,
A reaction gas supply source,
A flow rate controller for adjusting the flow rate of the reaction gas supplied from the reaction gas supply source,
A first gas flow path branched from the flow rate controller to guide a reaction gas to the film forming chamber;
A second gas flow path branched from the flow rate controller to guide the reaction gas to the exhaust system of the pressure reducer;
A first opening / closing valve for opening / closing the first gas flow path;
A second on-off valve for opening and closing the second gas flow path,
The reactive gas introduction controller may also achieve the above object by a reactive sputtering device that exclusively controls the opening / closing of the first opening / closing valve and the second opening / closing valve based on a pulse control signal pattern from the programmable oscillator. Solve.
 本発明によれば、簡単な構造で金属化合物膜を成膜することができる成膜方法及び反応性スパッタ装置を提供することができる。 According to the present invention, it is possible to provide a film forming method and a reactive sputtering apparatus capable of forming a metal compound film with a simple structure.
本発明に係る反応性スパッタ装置の一実施の形態を示すブロック図である。It is a block diagram showing one embodiment of a reactive sputtering device concerning the present invention. 図1Aの反応ガス導入機の細部を示すブロック図である。It is a block diagram which shows the detail of the reaction gas introduction machine of FIG. 1A. 本発明に係る反応性スパッタ装置の他の実施の形態を示す要部ブロック図である。It is a principal part block diagram which shows other embodiment of the reactive sputtering apparatus which concerns on this invention. 図1Cの反応性スパッタ装置の電気系統を示すブロック図である。It is a block diagram which shows the electric system of the reactive sputtering apparatus of FIG. 1C. 図1Aのプログラマブル発信器24、第1パルス波変換スイッチ22又は第2パルス波変換スイッチ23により生成される電圧パルス波(マスクパルス)の一例を示す図である。It is a figure which shows an example of the voltage pulse wave (mask pulse) produced | generated by the programmable oscillator 24 of FIG. 1A, the 1st pulse wave conversion switch 22, or the 2nd pulse wave conversion switch 23. バイアス直流電源21を設けた場合における、図1Aのプログラマブル発信器24、第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23により生成される電圧パルス波(マスクパルス)の他例を示す図である。The figure which shows the other example of the voltage pulse wave (mask pulse) produced | generated by the programmable oscillator 24, the 1st pulse wave conversion switch 22 and the 2nd pulse wave conversion switch 23 of FIG. 1A when the bias DC power supply 21 is provided. Is. 図1Aのプログラマブル発信器に設定されるベースパルス及びマスクパルス並びにこれらにより生成されるスパッタマスクパルスを示す図である。It is a figure which shows the base pulse and mask pulse set to the programmable oscillator of FIG. 1A, and the sputter mask pulse generated by these. 本発明に係る反応性スパッタ装置のさらに他の実施の形態の電気系統を示す要部ブロック図である。It is a principal part block diagram which shows the electric system of other embodiment of the reactive sputtering apparatus which concerns on this invention. 本発明に係る反応性スパッタ装置のさらに他の実施の形態の電気系統を示す要部ブロック図である。It is a principal part block diagram which shows the electric system of other embodiment of the reactive sputtering apparatus which concerns on this invention. 本発明に係る反応性スパッタ装置を用いた成膜方法の第1例を示すタイムチャートである。3 is a time chart showing a first example of a film forming method using the reactive sputtering apparatus according to the present invention. 本発明に係る反応性スパッタ装置を用いた成膜方法の第2例を示すタイムチャートである。6 is a time chart showing a second example of a film forming method using the reactive sputtering apparatus according to the present invention. 本発明に係る反応性スパッタ装置を用いた成膜方法の第3例を示すタイムチャートである。It is a time chart which shows the 3rd example of the film-forming method using the reactive sputtering apparatus which concerns on this invention. 本発明に係る反応性スパッタ装置を用いた成膜方法の第4例を示すタイムチャートである。9 is a time chart showing a fourth example of a film forming method using the reactive sputtering apparatus according to the present invention. 本発明に係る反応性スパッタ装置を用いた成膜方法の第5例を示すタイムチャートである。It is a time chart which shows the 5th example of the film-forming method using the reactive sputtering apparatus which concerns on this invention. 本発明に係る反応性スパッタ装置を用いた成膜方法の第6例を示すタイムチャートである。9 is a time chart showing a sixth example of a film forming method using the reactive sputtering apparatus according to the present invention. 本発明に係る反応性スパッタ装置を用いた成膜方法の第7例を示すタイムチャートである。It is a time chart which shows the 7th example of the film-forming method using the reactive sputtering apparatus which concerns on this invention. 所定の反応性スパッタ条件において、異なるターゲットの反応ガス流量に対する成膜速度の特性プロファイルを示すグラフである。6 is a graph showing a characteristic profile of a film forming rate with respect to reaction gas flow rates of different targets under a predetermined reactive sputtering condition. 図4Aに示す成膜方法にて処理した場合の第1ターゲットの材料飛翔量の一例を示すグラフである。4B is a graph showing an example of the material flying amount of the first target when processed by the film forming method shown in FIG. 4A.
《反応性スパッタ装置》
 以下、本発明の実施形態を図面に基づいて説明する。図1Aは、本発明の反応性スパッタ装置の一実施の形態を示すブロック図、図1Bは、図1Aの反応ガス導入機16の細部を示すブロック図である。本実施形態の反応性スパッタ装置1は、実質的に密閉空間を形成する成膜室11を備え、当該成膜室11に、成膜される基板Sを保持する基板ホルダ12と、成膜材料となるターゲット(本例では第1ターゲットT1と第2ターゲットT2)をそれぞれ備え、一つの基板Sに対して対向する複数のスパッタ電極(本例では第1スパッタ電極18と,第2スパッタ電極19)とが設けられている。また、成膜室11には、当該成膜室11を所定圧力に減圧する減圧機13と、減圧機13により減圧される成膜室11の圧力を制御する、仕切バルブ(メインバルブ)を兼ねたコンダクタンスバルブ14と、成膜室11に放電ガスを導入する放電ガス導入機15と、成膜室11に反応ガスを導入する反応ガス導入機16と、反応ガス導入機16による反応ガス量を制御する反応ガス導入制御器17と、が設けられている。なお、成膜室11と減圧機13との間の配管に、成膜室11側から順にコンダクタンスバルブと、これとは別の仕切バルブ(メインバルブ)を設けてもよい。
<Reactive sputtering equipment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a block diagram showing an embodiment of the reactive sputtering apparatus of the present invention, and FIG. 1B is a block diagram showing details of the reaction gas introducing device 16 of FIG. 1A. The reactive sputtering apparatus 1 according to the present embodiment includes a film forming chamber 11 that substantially forms a closed space, and a substrate holder 12 that holds a substrate S on which a film is formed and a film forming material in the film forming chamber 11. Targets (first target T1 and second target T2 in this example) respectively, and a plurality of sputter electrodes (first sputter electrode 18 and second sputter electrode 19 in this example) facing one substrate S are provided. ) And are provided. The film forming chamber 11 also serves as a decompressor 13 that decompresses the film forming chamber 11 to a predetermined pressure and a partition valve (main valve) that controls the pressure of the film forming chamber 11 that is decompressed by the decompressor 13. A conductance valve 14, a discharge gas introduction device 15 for introducing a discharge gas into the film forming chamber 11, a reaction gas introduction device 16 for introducing a reaction gas into the film forming chamber 11, and a reaction gas amount by the reaction gas introduction device 16. And a reaction gas introduction controller 17 for controlling. In addition, a conductance valve and a partition valve (main valve) other than the conductance valve may be provided in the pipe between the film forming chamber 11 and the pressure reducer 13 in this order from the film forming chamber 11 side.
 本実施形態の反応性スパッタ装置1は、第1スパッタ電極18と第2スパッタ電極19とに電力を供給する一つの直流電源20を備える。また、本実施形態の反応性スパッタ装置1は、直流電源20と、第1スパッタ電極18及び第2スパッタ電極19と、の間に並列に接続され、第1スパッタ電極18及び第2スパッタ電極19に印加する直流電圧をパルス波電圧に変換する複数のパルス波変換スイッチ(本例では第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23)とを備える。さらに、本実施形態の反応性スパッタ装置1は、第1スパッタ電極18及び第2スパッタ電極19に供給するそれぞれのスパッタ目標電力と、反応ガスの目標導入タイミングとに応じたパルス制御信号パターンがプログラム可能とされ、当該パルス制御信号パターンにしたがって、第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23のそれぞれを制御するとともに、反応ガス導入制御器17を制御するプログラマブル発信器24と、減圧機13,コンダクタンスバルブ14,放電ガス導入機15及び反応ガス導入機16を制御する装置制御器25と、反応性スパッタ装置1の全体の制御を統括する成膜制御器26と、を備える。以下、各構成部材を説明する。 The reactive sputtering apparatus 1 according to the present embodiment includes one DC power supply 20 that supplies electric power to the first sputtering electrode 18 and the second sputtering electrode 19. Further, the reactive sputtering apparatus 1 of the present embodiment is connected in parallel between the DC power supply 20 and the first sputtering electrode 18 and the second sputtering electrode 19, and the first sputtering electrode 18 and the second sputtering electrode 19 are connected. And a plurality of pulse wave conversion switches (first pulse wave conversion switch 22 and second pulse wave conversion switch 23 in this example) for converting the DC voltage applied to the pulse wave voltage to the pulse wave voltage. Further, the reactive sputtering apparatus 1 of the present embodiment has a program of a pulse control signal pattern corresponding to the respective target sputtering powers supplied to the first sputtering electrode 18 and the second sputtering electrode 19 and the target introduction timing of the reaction gas. A programmable oscillator 24 that controls each of the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 according to the pulse control signal pattern, and that controls the reaction gas introduction controller 17; The apparatus controller 25 that controls the machine 13, the conductance valve 14, the discharge gas introduction machine 15, and the reactive gas introduction machine 16 and the film formation controller 26 that controls the entire control of the reactive sputtering apparatus 1. Hereinafter, each component will be described.
 基板ホルダ12は、たとえば平板状に形成され、成膜室11に設けられ、その上面には、成膜対象とされる基板Sが載置される。また成膜時に基板Sを加熱する必要がある場合に対応して、基板ホルダ12に基板Sを加熱する加熱器を設けてもよい。図1Aにおいては図示を省略するが、成膜室11の一側壁には、ロードロック室がゲートバルブを介して連設され、基板Sは当該ロードロック室からゲートバルブを開いてロード機構などにより投入され、基板ホルダ12の上面に載置される。また、成膜を終了した基板Sは、ロード機構を用いて基板ホルダ12からロードロック室に搬出される。本実施形態の反応性スパッタ装置1は、1枚の基板Sに対してスパッタ成膜を行う、いわゆる枚葉式反応性スパッタ装置である。ただし、本発明の反応性スパッタ装置1は、枚葉式に限定されず、成膜室11に複数の基板Sを投入して処理するものであってもよい。また、本例の基板ホルダ12は、基板Sに対する成膜品質(膜厚や組成比)の均一性を高めるための回転機構や上下機構、ロードロック室との間で基板Sを出し入れする際の作業性を高めるための昇降機構を備えてもよい。 The substrate holder 12 is formed, for example, in a flat plate shape, is provided in the film forming chamber 11, and the substrate S to be film-formed is placed on the upper surface thereof. Further, a heater for heating the substrate S may be provided in the substrate holder 12 in response to the case where the substrate S needs to be heated at the time of film formation. Although not shown in FIG. 1A, a load lock chamber is continuously provided on one sidewall of the film forming chamber 11 via a gate valve, and the substrate S is opened from the load lock chamber by a load mechanism or the like. It is put in and placed on the upper surface of the substrate holder 12. Further, the substrate S for which film formation has been completed is carried out from the substrate holder 12 to the load lock chamber by using the loading mechanism. The reactive sputtering apparatus 1 according to the present embodiment is a so-called single-wafer reactive sputtering apparatus that performs sputter film formation on one substrate S. However, the reactive sputtering apparatus 1 of the present invention is not limited to the single-wafer type, and may be one in which a plurality of substrates S are put into the film forming chamber 11 for processing. In addition, the substrate holder 12 of the present example is used when the substrate S is taken in and out of the rotation mechanism and the vertical mechanism for improving the uniformity of film formation quality (film thickness and composition ratio) with respect to the substrate S. An elevating mechanism for improving workability may be provided.
 第1スパッタ電極18は、先端面に成膜材料となる第1ターゲットT1が保持され、第1ターゲットT1の表面が、基板ホルダ12に載置された基板Sに対面するように設けられている。同様に、第2スパッタ電極19は、先端面に成膜材料となる第2ターゲットT2が保持され、第2ターゲットT2の表面が、基板ホルダ12に載置された基板Sに対面するように設けられている。本実施形態の反応性スパッタ装置1では、基板Sの一つの面に対して2つのスパッタ電極18,19を設けているが、本発明の反応性スパッタ装置は、2つのスパッタ電極18,19にのみ限定されず、基板Sの一つの面に対して3つ以上のスパッタ電極を設けてもよい。 The first sputtering electrode 18 is provided with a first target T1 serving as a film forming material held on the tip surface thereof, and the surface of the first target T1 faces the substrate S mounted on the substrate holder 12. .. Similarly, the second sputtering electrode 19 is provided such that the second target T2 serving as a film-forming material is held on the tip surface thereof, and the surface of the second target T2 faces the substrate S mounted on the substrate holder 12. Has been. In the reactive sputtering apparatus 1 of this embodiment, two sputtering electrodes 18 and 19 are provided on one surface of the substrate S, but the reactive sputtering apparatus of the present invention uses two sputtering electrodes 18 and 19. However, the present invention is not limited to this, and three or more sputter electrodes may be provided on one surface of the substrate S.
 また、複数のスパッタ電極を基板Sに対面して設ける場合、全てのターゲットの表面と基板Sの表面とは平行にならないが、成膜制御の容易性を考慮して、各スパッタ電極が、基板Sの表面に対して等配又は対称の配置になるように設けることが好ましい。図1Aに示す2つの第1スパッタ電極18と第2スパッタ電極19では、第1スパッタ電極18の中心軸C1と、第2スパッタ電極19の中心軸C2が、基板Sの中心Oに向かい、それぞれのなす角度θ1,θ2が等しくなるように設けられている。 Further, when a plurality of sputter electrodes are provided facing the substrate S, the surfaces of all targets and the surface of the substrate S are not parallel, but in consideration of the ease of film formation control, each sputter electrode is It is preferable to provide them so as to be equidistant or symmetrical with respect to the surface of S. In the two first sputter electrodes 18 and the second sputter electrodes 19 shown in FIG. 1A, the central axis C1 of the first sputter electrode 18 and the central axis C2 of the second sputter electrode 19 face the center O of the substrate S, respectively. The angles θ1 and θ2 formed by are equal to each other.
 減圧機13は、スパッタ処理時には、成膜室11をスパッタが可能な圧力にするための排気口、排気管及び排気ポンプ(真空ポンプ)を含む。成膜室11の残留ガスを除去するため、成膜室11を所定の高真空圧力まで排気した後、スパッタ処理に移行する。スパッタ処理は、放電ガス導入機15から放電ガスを成膜室11に導入し、たとえば数Pa~数10Paの減圧(真空)雰囲気になるように、仕切バルブを兼ねたコンダクタンスバルブ14を操作し、成膜室11を所定の圧力に設定する。なお、仕切バルブ(メインバルブ)は、開又は閉の動作を行うバルブであり、コンダクタンスバルブは、排気速度を調節するために開度が可変とされているバルブである。また、成膜を終了したら、バルブバルブを兼ねたコンダクタンスバルブ14を閉め、当該成膜室11に設けられたリークバルブ(不図示)を開くことで成膜室11を常圧に戻すことができる。なお、成膜室11の大気開放は、成膜室11に設けたリークバルブにて行い、減圧機13は、成膜装置1全体を停止するとき以外は、作動し続けることが望ましい。減圧機13を停止して大気開放すると、大気に含まれる水や塵埃により減圧機13が汚染されるおそれがあり、また減圧機13を停止した後に減圧機13を再起動するのに長時間かかるからである。 The decompressor 13 includes an exhaust port, an exhaust pipe, and an exhaust pump (vacuum pump) for adjusting the film forming chamber 11 to a pressure at which sputtering can be performed during the sputtering process. In order to remove the residual gas in the film forming chamber 11, the film forming chamber 11 is evacuated to a predetermined high vacuum pressure, and then the sputtering process is performed. In the sputtering process, the discharge gas is introduced from the discharge gas introducing device 15 into the film forming chamber 11, and the conductance valve 14 also serving as a partition valve is operated so that a reduced pressure (vacuum) atmosphere of, for example, several Pa to several tens Pa is obtained. The film forming chamber 11 is set to a predetermined pressure. The partition valve (main valve) is a valve that performs an opening or closing operation, and the conductance valve is a valve whose opening is variable in order to adjust the exhaust speed. Further, when the film formation is completed, the conductance valve 14 also serving as a valve valve is closed, and a leak valve (not shown) provided in the film formation chamber 11 is opened to return the film formation chamber 11 to the normal pressure. .. It is desirable that the film formation chamber 11 be opened to the atmosphere by a leak valve provided in the film formation chamber 11, and that the depressurizer 13 continues to operate except when the entire film formation apparatus 1 is stopped. If the decompressor 13 is stopped and opened to the atmosphere, the decompressor 13 may be contaminated by water and dust contained in the atmosphere, and it takes a long time to restart the decompressor 13 after stopping the decompressor 13. Because.
 放電ガス導入機15は、放電ガス(スパッタ処理においてプラズマ状態を形成し、ターゲットに衝突するイオンを発生させるガス)を成膜室11に供給するための、ガスボンベ、レギュレータ、仕切バルブ、導入管、流量調節バルブ及び必要に応じてポンプを含む。放電ガスとしては特に限定されないが、たとえばアルゴンガスなどの不活性ガスが用いられる。 The discharge gas introducing device 15 supplies a discharge gas (a gas that forms a plasma state in the sputtering process and generates ions that collide with a target) to the film forming chamber 11, a gas cylinder, a regulator, a partition valve, an introducing pipe, It includes a flow control valve and a pump if necessary. The discharge gas is not particularly limited, but an inert gas such as argon gas is used.
 反応ガス導入機16は、反応性スパッタ処理を行う場合に用いられ、図1Bに示すように、圧縮された反応ガスを貯留した反応ガスボンベ161と、反応ガスボンベ161からガス流路165を介して供給されるガス流量を設定するための流量調節器162と、流量調節器162から分岐して成膜室11へ反応ガスを導く第1ガス流路166a,166bと、流量調節器162から分岐して減圧機13の排気系へ反応ガスを導く第2ガス流路167a,167bと、第1ガス流路166を開閉する第1開閉弁163と、第2ガス流路167を開閉する第2開閉弁164と、を含む。なお、反応ガスボンベ161の圧力は、ボンベが満タン時には、一次圧(たとえば100MPa)に圧縮されていることから、反応ガスボンベ161にレギュレータを設け、二次圧(たとえば50~300KPa)とし、流量調節器162の動作圧力に減圧してガス流路165へ導く。第2ガス流路167bにニードルバルブを設け、減圧機13へ排気する反応ガス流量を調節してもよい。 The reaction gas introducing device 16 is used when performing the reactive sputtering process, and as shown in FIG. 1B, the reaction gas cylinder 161 that stores the compressed reaction gas, and the supply from the reaction gas cylinder 161 through the gas flow path 165. Flow rate controller 162 for setting the gas flow rate to be controlled, first gas flow paths 166a and 166b branched from the flow rate controller 162 to guide the reaction gas to the film forming chamber 11, and branched from the flow rate controller 162. Second gas passages 167a and 167b for guiding the reaction gas to the exhaust system of the pressure reducer 13, a first opening / closing valve 163 for opening / closing the first gas passage 166, and a second opening / closing valve for opening / closing the second gas passage 167. 164 and. Since the pressure of the reaction gas cylinder 161 is compressed to the primary pressure (for example, 100 MPa) when the cylinder is full, a regulator is provided in the reaction gas cylinder 161 to set the secondary pressure (for example, 50 to 300 KPa) to adjust the flow rate. The pressure is reduced to the operating pressure of the vessel 162 and is introduced into the gas passage 165. A needle valve may be provided in the second gas passage 167b to adjust the flow rate of the reaction gas exhausted to the decompressor 13.
 そして、反応ガス導入制御器17は、後述するプログラマブル発信器24にて生成されたパルス制御信号パターンを入力し、これを反応ガス導入機16にて制御可能な所定電圧に昇圧した後、当該反応ガス導入機16に出力することで、反応ガス導入機16の第1開閉弁163と第2開閉弁164とを排他的に開閉制御する。これにより、成膜室11へ導入される反応ガスの導入タイミングと導入量を高精度で制御する。なお、厳密にいえば、成膜室11への反応ガスの導入量を反応ガス流量×導入時間とすると、反応ガスの流量制御は流量調節器162により制御され、導入時間は、プログラマブル発信器24により制御される。ここで、「排他的に開閉制御する」とは、第1開閉弁163と第2開閉弁164の一方を開放する場合は他方を閉塞し、逆に一方を閉塞する場合は他方を開放する制御をいう。本例のように、反応ガスボンベ161から流量調節器162により一定量の反応ガスを供給した状態で、成膜室11へ反応ガスを導入するタイミングでは、第1開閉弁163を開くとともに第2開閉弁164を閉じる一方、成膜室11への反応ガスの供給を停止するタイミングでは、第1開閉弁163を閉じるとともに第2開閉弁164を開いて反応ガスを減圧機13の排気系へ導く。こうすることで、成膜室11への反応ガスのパルス的な導入/非導入を100msec以下の高精度のタイミングで安定して制御することができる。 Then, the reaction gas introduction controller 17 inputs the pulse control signal pattern generated by the programmable oscillator 24 described later, boosts this to a predetermined voltage that can be controlled by the reaction gas introduction device 16, and then performs the reaction. By outputting to the gas introduction device 16, the first opening / closing valve 163 and the second opening / closing valve 164 of the reaction gas introduction device 16 are exclusively opened / closed. As a result, the introduction timing and the introduction amount of the reaction gas introduced into the film forming chamber 11 are controlled with high accuracy. Strictly speaking, assuming that the amount of the reaction gas introduced into the film forming chamber 11 is the reaction gas flow rate × introduction time, the flow rate control of the reaction gas is controlled by the flow rate controller 162, and the introduction time is the programmable oscillator 24. Controlled by. Here, "exclusively controls opening / closing" means control to close one of the first opening / closing valve 163 and the second opening / closing valve 164 and to open the other when closing one. Say. As in this example, in the state where a certain amount of the reaction gas is supplied from the reaction gas cylinder 161 by the flow rate controller 162, at the timing of introducing the reaction gas into the film forming chamber 11, the first opening / closing valve 163 is opened and the second opening / closing valve 163 is opened. While closing the valve 164, at the timing of stopping the supply of the reaction gas to the film forming chamber 11, the first opening / closing valve 163 is closed and the second opening / closing valve 164 is opened to guide the reaction gas to the exhaust system of the pressure reducer 13. By doing so, it is possible to stably control the pulse-like introduction / non-introduction of the reaction gas into the film forming chamber 11 at a highly accurate timing of 100 msec or less.
 特に、第1開閉弁163と成膜室11間の配管166bは、成膜時において常に減圧雰囲気となっている。これに対し、仮に第2開閉弁164を設けない構成とした場合、流量調節器162と第1開閉弁163との間の配管166aは、第1開閉弁163が「閉」のときに反応ガスボンベ161の二次圧に戻ってしまい、反応ガス導入時において、当該配管166aと成膜室11との圧力差のため、成膜室11に反応ガスが突入するという問題が生じる。このため、本例のように第2開閉弁164を設けることにより、第1開閉弁163が「閉」の場合でも、第2開閉弁164が「開」となることから、流量調節器162と第1開閉弁163との間の配管166aの減圧状態が維持され、その結果、成膜室11への突入ガスの発生を抑制することができる。 Particularly, the pipe 166b between the first opening / closing valve 163 and the film forming chamber 11 is always in a reduced pressure atmosphere during film formation. On the other hand, if the second on-off valve 164 is not provided, the pipe 166a between the flow rate controller 162 and the first on-off valve 163 has a reaction gas cylinder when the first on-off valve 163 is "closed". The secondary pressure of 161 is returned, and when the reaction gas is introduced, the reaction gas rushes into the film forming chamber 11 due to the pressure difference between the pipe 166a and the film forming chamber 11. Therefore, by providing the second opening / closing valve 164 as in the present example, even when the first opening / closing valve 163 is “closed”, the second opening / closing valve 164 is “open”, so that the flow rate controller 162 is The depressurized state of the pipe 166a between the first on-off valve 163 and the first on-off valve 163 is maintained, and as a result, generation of rush gas into the film forming chamber 11 can be suppressed.
 成膜物質として金属酸化膜や金属窒化膜をスパッタする場合には、酸素ガスや窒素ガスが反応ガス導入機16から成膜室11へ導入される。なお、必要に応じ、酸素ガス用と窒素ガス用に反応ガス導入系統を分けてもよく、反応性スパッタを行わない場合には、反応ガス導入制御器17を制御して、反応ガス導入機16による反応ガスの導入を停止すればよい。 When sputtering a metal oxide film or a metal nitride film as a film forming material, oxygen gas or nitrogen gas is introduced into the film forming chamber 11 from the reaction gas introducing device 16. If necessary, the reaction gas introduction system may be separated for oxygen gas and nitrogen gas. When reactive sputtering is not performed, the reaction gas introduction controller 17 is controlled to control the reaction gas introduction device 16. It is sufficient to stop the introduction of the reaction gas by.
 直流電源20は、本実施形態の反応性スパッタ装置1では一つだけ設けられている。直流電源20は、ターゲットに1kV以下の直流電圧を印加して放電させるものであり、これにより電子を放出して陽イオン化したアルゴンガス(放電ガス)の一部が、ターゲットに衝突して当該ターゲット原子を叩き出し、これがターゲットの延伸方向にある基板Sに堆積する。なお、本実施形態の直流電源20として、電力制御(CP)、電圧制御(CV)、電流(CC)がそれぞれ自動で切り替え制御できる電源であることが望ましい。 Only one DC power supply 20 is provided in the reactive sputtering apparatus 1 of this embodiment. The direct-current power supply 20 applies a direct-current voltage of 1 kV or less to the target to cause discharge, and as a result, a part of the argon gas (discharge gas) that has emitted electrons to be positively ionized collides with the target and the target is discharged. The atoms are knocked out and deposited on the substrate S in the direction of the target stretching. It is desirable that the DC power supply 20 of the present embodiment is a power supply capable of automatically switching control of power control (CP), voltage control (CV), and current (CC).
 特に本実施形態の直流電源20と第1スパッタ電極18との間の電力供給線には、第1パルス波変換スイッチ22が設けられ、直流電源20と第2スパッタ電極19との間の電力供給線には、第2パルス波変換スイッチ23が設けられている。これら第1パルス波変換スイッチ22と第2パルス波変換スイッチ23は、直流電源20に対して並列に接続されているので、それぞれ直流電源20と同じ電圧が印加される。ただし、直流電源20を電力制御する場合、ターゲットの種類によっては印加電圧が相違することもある。第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23は、直流電源20からの直流電圧をパルス波電圧に変換するスイッチング素子などからなり、数kVの高電圧に耐え得るスイッチング素子、たとえばMOSFET,IGBT,SiCなどのパワートランジスタなどを用いることができる。 In particular, the power supply line between the DC power supply 20 and the first sputtering electrode 18 of the present embodiment is provided with a first pulse wave conversion switch 22 to supply power between the DC power supply 20 and the second sputtering electrode 19. A second pulse wave conversion switch 23 is provided on the line. Since the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 are connected in parallel to the DC power supply 20, the same voltage as that of the DC power supply 20 is applied. However, when the DC power supply 20 is power-controlled, the applied voltage may differ depending on the type of target. The first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 are composed of switching elements that convert a DC voltage from the DC power supply 20 into a pulse wave voltage, and a switching element that can withstand a high voltage of several kV, such as a MOSFET. , IGBT, SiC and other power transistors can be used.
 第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23は、プログラマブル発信器24により、同期を保ちながらそれぞれ独立して制御される。すなわち、プログラマブル発信器24は、第1スパッタ電極18及び第2スパッタ電極19に供給するそれぞれのスパッタ目標電力値に応じたパルス制御信号のパターンを、第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23のそれぞれに出力し、ON/OFF制御する。 The first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 are independently controlled by the programmable oscillator 24 while maintaining synchronization. That is, the programmable oscillator 24 outputs the pattern of the pulse control signal corresponding to the respective target sputtering power values supplied to the first sputter electrode 18 and the second sputter electrode 19 to the first pulse wave conversion switch 22 and the second pulse wave. It outputs to each of the conversion switches 23 to control ON / OFF.
 図2Cは、プログラマブル発信器24におけるスパッタマスクパルスの生成方法を示す図である。同図に示すように、第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23のそれぞれに出力されるスパッタマスクパルス(パルス制御信号のパターン)は、パルススパッタ周波数を表すベースパルスと、スパッタ時間周波数を表すマスクパルスとのスパッタマスクパルス(ベースパルスとマスクパルスのAND条件,アウトプットパルス)にて定義されるように設定される。このとき、ベースパルス及びマスクパルスのそれぞれは、周波数、デューティ比、及び位相角を個々に設定可能とされ、同一のクロックを用いることでベースパルスとマスクパルスとの同期が図られている。2つのターゲットに同じターゲット材を使った場合に、一方ターゲットのベースマスクの位相角を180°進ませることにより、デュアルカソードとなる。また、1サイクル中のスパッタ時期は、マスクパルスの位相角を変更することで行う。同図に示すベースパルスは、たとえば周波数1kHz~500kHz、デューティ比50%、位相角0°に設定され、マスクパルスは、周波数0.5Hz~1.0Hz、デューティ比50%、位相角0°に設定された例を示す。なお、プログラマブル発信器24のチャネル数は、出力先であるパルス波変換スイッチの数と、反応ガス導入制御器17に含まれる出力先の機器の数との合計数以上の数だけ備えられている。また、プログラマブル発信器24は、1サイクル回数の繰り返し回数や、開始から終了までの時間も設定可能とされている。また後述する反応ガス導入機16の第1開閉弁163及び第2開閉弁164に出力されるパルス信号は、マスクパルスのみで構成されている。 FIG. 2C is a diagram showing a method for generating a sputter mask pulse in the programmable oscillator 24. As shown in the figure, the sputter mask pulse (pattern of pulse control signal) output to each of the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 is a base pulse representing a pulse sputter frequency and a sputter mask pulse. It is set as defined by the sputter mask pulse (AND condition of base pulse and mask pulse, output pulse) with the mask pulse representing the time frequency. At this time, the frequency, the duty ratio, and the phase angle of each of the base pulse and the mask pulse can be individually set, and the base pulse and the mask pulse are synchronized by using the same clock. When the same target material is used for the two targets, a dual cathode is obtained by advancing the phase angle of the base mask of one target by 180 °. Further, the sputter timing in one cycle is performed by changing the phase angle of the mask pulse. The base pulse shown in the figure is set, for example, at a frequency of 1 kHz to 500 kHz, a duty ratio of 50%, and a phase angle of 0 °, and the mask pulse has a frequency of 0.5 Hz to 1.0 Hz, a duty ratio of 50%, and a phase angle of 0 °. The set example is shown. The number of channels of the programmable oscillator 24 is equal to or more than the total number of the pulse wave conversion switches that are the output destinations and the number of the output destination devices that are included in the reaction gas introduction controller 17. .. Further, the programmable oscillator 24 can also set the number of repetitions of one cycle and the time from the start to the end. Further, the pulse signal output to the first opening / closing valve 163 and the second opening / closing valve 164 of the reactive gas introducing device 16 described later is composed of only mask pulses.
 図2Aは、図1Aのプログラマブル発信器24、第1パルス波変換スイッチ22又は第2パルス波変換スイッチ23により生成される電圧パルス波(マスクパルス)の一例を示す図である。たとえば、図2Aに示すように、プログラマブル発信器24は、第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23のそれぞれをON/OFFする周波数1/T及びデューティ比τ/Tを含む制御信号のパターンが任意にプログラム可能とされている。また、繰り返し波形によらずに時間軸上での波形作成ができることから、単発現象でのプログラムが可能とされる。また、プログラマブル発信器24は、ユニットの内部周期の開始タイミングを調整する機能を備え、第1パルス波変換スイッチ22へ出力する制御信号パターンと、第2パルス波変換スイッチ23へ出力する制御信号パターンとは、同一のクロックから生成されるため、高精度な同期性が保たれている。 FIG. 2A is a diagram showing an example of a voltage pulse wave (mask pulse) generated by the programmable oscillator 24, the first pulse wave conversion switch 22 or the second pulse wave conversion switch 23 of FIG. 1A. For example, as shown in FIG. 2A, the programmable oscillator 24 includes a control including a frequency 1 / T and a duty ratio τ / T that turn on / off the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23, respectively. The signal pattern is arbitrarily programmable. Further, since it is possible to create a waveform on the time axis without depending on the repetitive waveform, it is possible to program in a single-shot phenomenon. Further, the programmable oscillator 24 has a function of adjusting the start timing of the internal cycle of the unit, and has a control signal pattern output to the first pulse wave conversion switch 22 and a control signal pattern output to the second pulse wave conversion switch 23. And are generated from the same clock, so that highly accurate synchronism is maintained.
 また、図1Aに示すように、第1パルス波変換スイッチ22の第1スパッタ電極18側の回路及び第2パルス波変換スイッチ23の第2スパッタ電極19側の回路に、+50V程度(+100V以下であることが好ましい)のバイアス直流電源21を接続してもよい。バイアス直流電源21を接続した場合、スパッタ電圧を出力していないときは、バイアス電圧がターゲットに印可されることになる。図2Bは、バイアス直流電源21を設けた場合における、図1Aのプログラマブル発信器24、第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23により生成される電圧パルス波(マスクパルス)の他例を示す図である。正のバイアス直流電源21を設けることで、図2Bに示すように、第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23がOFF時には、第1スパッタ電極18及び第2スパッタ電極19に反転電圧(+の直流電圧)が印加されることになる。スパッタ処理においては、ターゲット内部の含有物又は表面に付着する不純物に局所的に+電位が帯電し、-電位に印加されたターゲット又はスパッタ電極との間にアークが発生することがある。したがって、図2Bに示すように、第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23のOFF時に、反転電圧パルス波を発生させることで、こうした+電位の帯電を能動的に除去(中和)することができ、アークの発生を抑制することができる。 Further, as shown in FIG. 1A, in the circuit on the first sputter electrode 18 side of the first pulse wave conversion switch 22 and the circuit on the second sputter electrode 19 side of the second pulse wave conversion switch 23, about +50 V (at +100 V or less A bias DC power supply 21 (preferably present) may be connected. When the bias DC power supply 21 is connected and the sputtering voltage is not output, the bias voltage is applied to the target. FIG. 2B shows other voltage pulse waves (mask pulses) generated by the programmable oscillator 24, the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 of FIG. 1A when the bias DC power supply 21 is provided. It is a figure which shows an example. By providing the positive bias DC power supply 21, as shown in FIG. 2B, when the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 are OFF, the first and second sputter electrodes 18 and 19 are inverted. A voltage (+ DC voltage) will be applied. In the sputtering process, the + potential is locally charged to the inclusions inside the target or the impurities adhering to the surface, and an arc may occur between the target and the sputtering electrode applied to the − potential. Therefore, as shown in FIG. 2B, when the first pulse wave conversion switch 22 and the second pulse wave conversion switch 23 are turned off, an inversion voltage pulse wave is generated to actively remove such + potential charging (medium). And the generation of arc can be suppressed.
 図1Aに戻り、装置制御器25は、成膜制御器26からの制御信号に基づいて、減圧機13と、コンダクタンスバルブ14と、放電ガス導入機15と、反応ガス導入機16とを制御し、プログラマブル発信器24による反応ガス導入制御器17の制御と相俟って、成膜室11の排気、成膜室11への放電ガス及び反応ガスの導入タイミングを制御する。具体的な使用例は後述するが、一例として、第1スパッタ電極18及び/又は第2スパッタ電極19に電力を供給している間は、放電ガス導入機15から成膜室11へアルゴンガスなどの不活性ガスが導入されるように放電ガス導入機15を制御する一方、第1スパッタ電極18及び第2スパッタ電極19のいずれか一方に電力を供給している間は、反応ガス導入制御器17から成膜室11へ反応ガスが導入されるように反応ガス導入機16を制御する。 Returning to FIG. 1A, the device controller 25 controls the decompressor 13, the conductance valve 14, the discharge gas introduction device 15, and the reaction gas introduction device 16 based on the control signal from the film formation controller 26. Together with the control of the reaction gas introduction controller 17 by the programmable oscillator 24, the exhaust of the film forming chamber 11 and the timing of introducing the discharge gas and the reaction gas into the film forming chamber 11 are controlled. Although a specific usage example will be described later, as an example, while supplying power to the first sputtering electrode 18 and / or the second sputtering electrode 19, argon gas or the like from the discharge gas introduction device 15 to the film forming chamber 11 is supplied. While controlling the discharge gas introduction device 15 so that the inert gas is introduced, while the electric power is being supplied to either the first sputtering electrode 18 or the second sputtering electrode 19, the reaction gas introduction controller The reaction gas introduction device 16 is controlled so that the reaction gas is introduced from 17 to the film forming chamber 11.
 なお、図1Aに示す実施形態では、基板Sの片面のみに対して2つのスパッタ電極18,19を設けたが、図1Cに示すように、基板ホルダ12に、基板Sの表裏両面の成膜部分が露出するように当該基板Sを保持し、基板ホルダ12の下側にも、先端面に成膜材料となる第3ターゲットT3が保持された第3スパッタ電極27と、先端面に成膜材料となる第4ターゲットT4が保持された第4スパッタ電極28とを、第3ターゲットT3及び第4ターゲットT4のそれぞれの表面が、基板ホルダ12に保持された基板Sの裏面に対面するように設けてもよい。この場合、特に限定はされないが、図1Dに示すように、第1直流電源201と、第1スパッタ電極18及び第2スパッタ電極19との間の電力供給線に第1パルス波変換スイッチ22を設け、第2直流電源202と、第3スパッタ電極27及び第4スパッタ電極28との間の電力供給線に、第2パルス波変換スイッチ23を設ける。そして、プログラマブル発信器24は、第1スパッタ電極18及び第2スパッタ電極19に供給するスパッタ目標電力値に応じたパルス制御信号のパターンを、第1パルス波変換スイッチ22に出力し、第3スパッタ電極27及び第4スパッタ電極28に供給するスパッタ目標電力値に応じたパルス制御信号のパターンを、第2パルス波変換スイッチ23に出力し、ON/OFFを制御するように構成してもよい。 In the embodiment shown in FIG. 1A, the two sputter electrodes 18 and 19 are provided only on one surface of the substrate S. However, as shown in FIG. 1C, film formation on both front and back surfaces of the substrate S is performed on the substrate holder 12. The substrate S is held so that a part thereof is exposed, and the third sputter electrode 27 having the third target T3 serving as a film forming material held on the tip surface is also formed below the substrate holder 12, and the film is formed on the tip surface. The fourth sputtering electrode 28 holding the fourth target T4 as a material is arranged so that the respective surfaces of the third target T3 and the fourth target T4 face the back surface of the substrate S held by the substrate holder 12. It may be provided. In this case, although not particularly limited, as shown in FIG. 1D, the first pulse wave conversion switch 22 is provided on the power supply line between the first DC power source 201 and the first sputter electrode 18 and the second sputter electrode 19. The second pulse wave conversion switch 23 is provided on the power supply line between the second DC power source 202 and the third sputtering electrode 27 and the fourth sputtering electrode 28. Then, the programmable oscillator 24 outputs to the first pulse wave conversion switch 22 a pattern of a pulse control signal according to the sputtering target power value supplied to the first sputtering electrode 18 and the second sputtering electrode 19, and the third sputtering device. A pattern of a pulse control signal according to the target sputtering power value supplied to the electrode 27 and the fourth sputtering electrode 28 may be output to the second pulse wave conversion switch 23 to control ON / OFF.
 なお、上述した各実施形態において、それぞれのスパッタ電極に設けられる各ターゲット(第1ターゲットT1,第2ターゲットT2,第3ターゲットT3及び第4ターゲットT4)は、それぞれ異なる成膜用材料であってもよいし、一部が異なる成膜材料であってもよいし、全てが同じ成膜材料であってもよい。なお、ターゲットが同じ成膜材料であっても、反応ガスの導入パターンを変更してもよい。 In each of the above-described embodiments, the targets (first target T1, second target T2, third target T3, and fourth target T4) provided on the respective sputter electrodes are different film forming materials. The film forming materials may be partially different, or all of the film forming materials may be the same. Even if the targets are the same film forming material, the introduction pattern of the reaction gas may be changed.
 また、本発明に係る反応性スパッタ装置1は、図1Aに示す一つの直流電源20に限定されず、複数の直流電源20を設けてもよい。図3Aは、本発明に係る反応性スパッタ装置のさらに他の実施の形態の電気系統を示す要部ブロック図、図3Bは、本発明に係る反応性スパッタ装置のさらに他の実施の形態の電気系統を示す要部ブロック図である。図3Aに示す実施形態は、2つのスパッタ電極(第1スパッタ電極18及び第2スパッタ電極19)のそれぞれに対して第1直流電源201及び第2直流電源202を設けるとともに、2つのパルス波変換スイッチ(第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23)のそれぞれに対して第1バイアス直流電源211及び第2バイアス直流電源212を設けた例である。また、図3Bに示す実施形態は、2つのスパッタ電極(第1スパッタ電極18及び第2スパッタ電極19)のそれぞれに対して第1直流電源201及び第2直流電源202を設ける一方、2つのパルス波変換スイッチ(第1パルス波変換スイッチ22及び第2パルス波変換スイッチ23)に対しては、一つのバイアス直流電源21を設けた例である。 Further, the reactive sputtering apparatus 1 according to the present invention is not limited to the single DC power source 20 shown in FIG. 1A, and a plurality of DC power sources 20 may be provided. FIG. 3A is a block diagram of an essential part showing an electric system of still another embodiment of the reactive sputtering apparatus according to the present invention, and FIG. 3B is an electric system of yet another embodiment of the reactive sputtering apparatus according to the present invention. It is a principal part block diagram which shows a system. In the embodiment shown in FIG. 3A, a first DC power supply 201 and a second DC power supply 202 are provided for each of the two sputter electrodes (the first sputter electrode 18 and the second sputter electrode 19), and two pulse wave conversions are performed. This is an example in which a first bias DC power supply 211 and a second bias DC power supply 212 are provided for each of the switches (first pulse wave conversion switch 22 and second pulse wave conversion switch 23). In the embodiment shown in FIG. 3B, the first DC power source 201 and the second DC power source 202 are provided for each of the two sputtering electrodes (the first sputtering electrode 18 and the second sputtering electrode 19), while two pulses are provided. This is an example in which one bias DC power supply 21 is provided for the wave conversion switch (first pulse wave conversion switch 22 and second pulse wave conversion switch 23).
《反応性スパッタ装置を用いた成膜方法》
 このような本実施形態の反応性スパッタ装置1を用いると、種々の成膜形態でのスパッタ処理が可能となる。特に複数の異種金属をターゲットとして金属酸化膜や金属窒化膜などの複合金属化合物膜、混合膜又は多層膜を形成する場合に、成膜速度の低下を可能な限り抑制しつつ成膜できる方法が可能となる。複合金属化合物膜及び混合膜を含めて金属化合物膜という。
<< Film forming method using reactive sputtering apparatus >>
By using the reactive sputtering apparatus 1 according to the present embodiment as described above, it is possible to perform sputtering processing in various film formation forms. In particular, when forming a composite metal compound film such as a metal oxide film or a metal nitride film, a mixed film or a multilayer film targeting a plurality of different metals, there is a method capable of forming a film while suppressing a decrease in film formation rate as much as possible. It will be possible. The composite metal compound film and the mixed film are collectively referred to as a metal compound film.
 図5は、所定の反応性スパッタ条件において、所定種の反応ガスの流量に対する成膜速度の特性プロファイルを示すグラフであり、第1ターゲットT1を実線で示し、これとは異なる材料の第2ターゲットT2の特性を点線で示す。反応ガス流量が相対的に少量である範囲は金属モードと称され、反応ガス流量が相対的に多量である範囲は酸化モード(反応ガスとして酸素を用いた場合を示す。以下、反応モードともいう。)と称され、これらの間は遷移モードと称される領域がある。第1ターゲットT1の反応ガス流量に対する成膜速度は、反応ガス流量が0から増加するにつれて徐々に減少したのち、範囲R(遷移モードの範囲近傍)において急激に減少し、その後は再び徐々に減少する。この第1ターゲットT1の反応ガス流量に対する成膜速度の変化率(プロファイルの傾き)の絶対値は、反応ガス流量が0から増加するにつれ徐々に大きくなり、範囲Rにおいて極大値を示したのち徐々に小さくなる。 FIG. 5 is a graph showing a characteristic profile of the film formation rate with respect to the flow rate of a reaction gas of a predetermined type under a predetermined reactive sputtering condition, the first target T1 is shown by a solid line, and the second target of a material different from this is shown. The characteristic of T2 is shown by a dotted line. A range in which the flow rate of the reaction gas is relatively small is called a metal mode, and a range in which the flow rate of the reaction gas is relatively large is an oxidation mode (in which oxygen is used as a reaction gas. Hereinafter, also referred to as a reaction mode. There is a region called the transition mode between them. The film formation rate with respect to the reaction gas flow rate of the first target T1 gradually decreases as the reaction gas flow rate increases from 0, then rapidly decreases in the range R (near the transition mode range), and then gradually decreases again. To do. The absolute value of the rate of change of the film forming rate (the slope of the profile) with respect to the reaction gas flow rate of the first target T1 gradually increases as the reaction gas flow rate increases from 0, gradually reaches a maximum value in the range R, and then gradually increases. Becomes smaller.
 これに対して、第2ターゲットT2の反応ガス流量に対する成膜速度は、反応ガス流量が0から増加するにつれて徐々に減少したのち、範囲R(遷移モードの範囲近傍)においてやや急激に減少し、その後は再び徐々に減少する。この第2ターゲットT2の反応ガス流量に対する成膜速度の変化率(プロファイルの傾き)の絶対値は、反応ガス流量が0から増加するにつれ徐々に大きくなり、範囲Rにおいて極大値を示したのち徐々に小さくなる。ただし、第2ターゲットT2の範囲Rにおける極大値は、第1ターゲットT1の極大値よりも小さい。すなわち、第2ターゲットT2の反応ガス流量に対する成膜速度の影響度は、第1ターゲットT1の反応ガス流量に対する成膜速度の影響度に比べて相対的に小さい。 On the other hand, the film formation rate with respect to the reaction gas flow rate of the second target T2 gradually decreases as the reaction gas flow rate increases from 0, and then decreases abruptly in the range R (near the transition mode range). After that, it gradually decreases again. The absolute value of the rate of change of the film forming rate (the slope of the profile) with respect to the reaction gas flow rate of the second target T2 gradually increases as the reaction gas flow rate increases from 0, reaches a maximum value in the range R, and then gradually increases. Becomes smaller. However, the maximum value in the range R of the second target T2 is smaller than the maximum value of the first target T1. That is, the degree of influence of the film formation rate on the reaction gas flow rate of the second target T2 is relatively smaller than the degree of influence of the film formation rate on the reaction gas flow rate of the first target T1.
 そこで本発明者らは、反応ガスの流量に対する成膜速度の影響度が相対的に小さい(換言すれば鈍感である)第2ターゲットT2については、第2スパッタ電極19に電圧を印加して第2ターゲットT2のスパッタ処理を実施すると同時に、反応ガスを成膜室11に導入し、当該反応ガスをスパッタ電力によりラジカル化させる工程とすると、成膜速度の減少を最小限に抑制できると同時に、成膜室11に導入された反応ガスを第2スパッタ電極19によりラジカル化できる点に着目した。すなわち、反応ガスのラジカル電極を別途設けなくても、第2スパッタ電極19をラジカル電極として共用することで反応ガスをラジカル化し、反応ガス流量に対する成膜速度の影響度が相対的に大きい(換言すれば敏感である)第1ターゲットT1については、成膜室11に残留した反応ガスラジカルにより反応処理を行うことができる。以下、反応ガス流量に対する成膜速度の変化率の絶対値の極大値が相対的に大きいターゲットを第1ターゲットT1、相対的に小さいターゲットを第2ターゲットT2と称し、本実施形態の成膜方法を説明する。第1ターゲットT1としては、ジルコニウムZr,チタンTi,アルミニウムAl、ニオブNb、タンタルTa、などの金属が例示でき、第2ターゲットT2としては、イットリウムY、エルビウムEr/イットリウムY又はシリコンSiなどの金属が例示できる。 Therefore, the present inventors applied a voltage to the second sputtering electrode 19 for the second target T2 in which the degree of influence of the film formation rate on the flow rate of the reaction gas is relatively small (in other words, insensitive). If the step of introducing the reactive gas into the film forming chamber 11 and radicalizing the reactive gas by the sputtering power at the same time as performing the sputtering treatment of the two targets T2, the decrease in the film forming rate can be suppressed to the minimum and at the same time, Attention was paid to the fact that the reaction gas introduced into the film forming chamber 11 could be radicalized by the second sputtering electrode 19. That is, even if a radical electrode for a reaction gas is not separately provided, the second sputtering electrode 19 is also used as a radical electrode to convert the reaction gas into a radical, and the film deposition rate has a relatively large influence on the reaction gas flow rate (in other words, With respect to the first target T1 (which is sensitive), the reaction process can be performed by the reaction gas radicals remaining in the film forming chamber 11. Hereinafter, a target having a relatively large maximum absolute value of the rate of change of the film formation rate with respect to the reaction gas flow rate is referred to as a first target T1, and a target having a relatively small absolute value is referred to as a second target T2. Will be explained. Examples of the first target T1 include metals such as zirconium Zr, titanium Ti, aluminum Al, niobium Nb, and tantalum Ta, and examples of the second target T2 include metals such as yttrium Y, erbium Er / yttrium Y, and silicon Si. Can be illustrated.
 図4A~図4Cは、本発明に係る反応性スパッタ装置1を用いた成膜方法の例を示すタイムチャートであり、成膜工程の単位となる1周期(1サイクル)を示す。同図は、プログラマブル発信器24にプログラムされたパルス制御信号パターン(図の縦軸はON/OFFを示し、横軸は時間を示す)であり、上図から順に、第1スパッタ電極18に対する印加パルス(ON/OFF)、第2スパッタ電極19に対する印加パルス(ON/OFF)、反応ガス導入制御器17への印加パルス(ON/OFF)、放電ガス導入機15への印加パルス(ON/OFF)をそれぞれ示す。いずれの成膜方法も、所望の反応ガスを反応ガス導入機16から成膜室11に導入することで、金属酸化膜や金属窒化膜などの金属化合物膜を形成する例である。以下、パルス制御信号パターンのうちスパッタ電極に印加する印加パルスをスパッタマスクパルスとも称する。 4A to 4C are time charts showing an example of a film forming method using the reactive sputtering apparatus 1 according to the present invention, showing one cycle (one cycle) as a unit of the film forming process. This figure shows a pulse control signal pattern programmed in the programmable oscillator 24 (the vertical axis represents ON / OFF, the horizontal axis represents time), and is applied to the first sputter electrode 18 in order from the above figure. Pulse (ON / OFF), application pulse (ON / OFF) to the second sputtering electrode 19, application pulse (ON / OFF) to the reactive gas introduction controller 17, application pulse (ON / OFF) to the discharge gas introduction device 15. ) Respectively. Each of the film forming methods is an example of forming a metal compound film such as a metal oxide film or a metal nitride film by introducing a desired reaction gas from the reaction gas introducing device 16 into the film forming chamber 11. Hereinafter, the applied pulse applied to the sputter electrode in the pulse control signal pattern is also referred to as a sputter mask pulse.
 図4A~図4Gに示す成膜方法は、たとえば第1ターゲットT1としてジルコニウムZr、第2ターゲットT2としてイットリウムY、反応ガスとして酸素をそれぞれ選択し、イットリア安定化ジルコニアYSZ(ZrO・Y)の金属化合物膜を形成する場合(以下に示す第1例~第3例)、第1ターゲットT1としてシリコンSi、第2ターゲットT2としてイットリウムY、反応ガスとして酸素をそれぞれ選択し、イットリウムシリケート(Y・SiO)の金属化合物膜を形成する場合(以下に示す第4例~第7例)、第1ターゲットT1としてシリコンSi、第2ターゲットT2としてエルビウムEr/イットリウムY、反応ガスとして酸素をそれぞれ選択し、エルビウムイットリウムシリケート(Er2-xSiO)の金属化合物膜を形成する場合(以下に示す第4例~第7例)などに適用することができる。 Film forming method illustrated in FIGS. 4A ~ FIG. 4G, such as zirconium Zr as the first target T1, yttrium Y as the second target T2, oxygen respectively selected as the reaction gas, yttria stabilized zirconia YSZ (ZrO 2 · Y 2 O 3 ) In the case of forming a metal compound film (first to third examples shown below), silicon Si is selected as the first target T1, yttrium Y is selected as the second target T2, and oxygen is selected as the reaction gas, and yttrium silicate is selected. When forming a metal compound film of (Y 2 O 3 .SiO 2 ) (fourth to seventh examples shown below), silicon Si is used as the first target T1, erbium Er / yttrium Y is used as the second target T2, and a reaction is performed. This can be applied to the case where oxygen is selected as a gas and a metal compound film of erbium yttrium silicate (Er x Y 2 -x SiO 2 ) is formed (fourth to seventh examples below).
《第1例》
 図4Aに示す成膜方法は、成膜室11に不活性ガスなどの放電ガスを導入した状態で、第1ターゲットT1(たとえばジルコニアZr)が装着された第1スパッタ電極18に対して所定時間幅Pt1のスパッタマスクパルスを印加して第1ターゲットT1による超薄膜を形成する。次いで、第2スパッタ電極19に対して所定時間幅Pt2のスパッタマスクパルスを印加して第2ターゲットT2(たとえばイットリウムY)による超薄膜を形成すると同時に、反応ガス(たとえば酸素O)を成膜室11に導入する。すなわち、反応ガス流量に対する成膜速度の影響度が相対的に敏感である第1ターゲットT1をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入せず、反応ガス流量に対する成膜速度の影響度が相対的に鈍感で成膜速度が得られる第2ターゲットT2をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入する。
<< First example >>
In the film forming method shown in FIG. 4A, in a state where a discharge gas such as an inert gas is introduced into the film forming chamber 11, the first target T1 (for example, zirconia Zr) is attached to the first sputter electrode 18 for a predetermined time. A sputtering mask pulse having a width Pt1 is applied to form an ultrathin film by the first target T1. Next, a sputter mask pulse having a predetermined time width Pt2 is applied to the second sputter electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y), and at the same time, a reaction gas (eg, oxygen O 2 ) is formed. Introduce into chamber 11. That is, the reaction gas is not introduced into the film forming chamber 11 at the timing of sputtering the first target T1 in which the degree of influence of the film forming rate on the reaction gas flow rate is relatively sensitive, and the reaction rate of the film forming rate on the reaction gas flow rate is not introduced. The reaction gas is introduced into the film forming chamber 11 at the timing of performing the sputtering process of the second target T2, which is relatively insensitive to the influence and obtains the film forming speed.
 これにより、成膜室11に導入された反応ガスは、第2スパッタ電極19の電界によりラジカル化し、基板Sに形成された第1ターゲットT1の超薄膜と第2ターゲットT2の超薄膜とを同時に反応ガスと反応させる。そして、目標とする膜厚になるまで、このサイクルを繰り返す。この場合、第1スパッタ電極18に供給する電力と第2スパッタ電極19に供給する電力を同じ値に設定してもよいし、第1スパッタ電極18と第2スパッタ電極19とに供給する電力を異なる値に設定してもよい。 As a result, the reaction gas introduced into the film forming chamber 11 is radicalized by the electric field of the second sputtering electrode 19, and the ultra thin film of the first target T1 and the ultra thin film of the second target T2 formed on the substrate S are simultaneously formed. React with reactive gas. Then, this cycle is repeated until the target film thickness is obtained. In this case, the power supplied to the first sputter electrode 18 and the power supplied to the second sputter electrode 19 may be set to the same value, or the power supplied to the first sputter electrode 18 and the second sputter electrode 19 may be set to the same value. It may be set to a different value.
 図6は、図4Aに示す成膜方法にて処理した場合の第1ターゲットT1の材料飛翔量の一例を示すグラフである。図6の時間t1から時間t3が、図4Aの所定時間幅Pt1の印加時間に相当し、図6の時間t3から時間t5が、図4Aの所定時間幅Pt2の印加時間に相当する。図6に示すように、第1ターゲットT1に電圧を印加した初期の時間t1~t2においては、金属モードに遷移して当該第1ターゲットT1の材料の飛翔量が増加し、時間t2~t3において第1ターゲットT1の材料の飛翔量が最大となる。時間t3にて第1ターゲットT1への電圧の印加を停止する一方で反応ガスを導入すると、時間t3~t4において、第1ターゲットT1の表面で反応ガスとの反応が生じ、反応モードに遷移することで当該第1ターゲットT1の材料の飛翔量は急激に減少する。この時間t4~t5の間に第2ターゲットT2に電圧が印加されるので、導入された反応ガスがラジカル化され、基板Sに堆積した不完全金属超薄膜と反応ガスラジカルとの反応が生じる。 FIG. 6 is a graph showing an example of the material flying amount of the first target T1 when processed by the film forming method shown in FIG. 4A. Time t1 to time t3 in FIG. 6 corresponds to the application time of the predetermined time width Pt1 in FIG. 4A, and time t3 to time t5 in FIG. 6 corresponds to the application time of the predetermined time width Pt2 in FIG. 4A. As shown in FIG. 6, during the initial time t1 to t2 when the voltage is applied to the first target T1, the mode transits to the metal mode and the flying amount of the material of the first target T1 increases, and at the time t2 to t3. The flying amount of the material of the first target T1 is maximized. When the application of the reaction gas is stopped while the application of the voltage to the first target T1 is stopped at the time t3, the reaction with the reaction gas occurs on the surface of the first target T1 during the time t3 to t4, and the reaction mode is transited. As a result, the flying amount of the material of the first target T1 sharply decreases. Since the voltage is applied to the second target T2 during this time t4 to t5, the introduced reaction gas is radicalized, and the reaction between the incomplete metal ultra-thin film deposited on the substrate S and the reaction gas radical occurs.
 これにより、含有比率(イットリア安定化ジルコニアYSZ(ZrO・Y)を成膜する場合、ジルコニアZr:イットリウムY=9:1)の高い第1ターゲットT1を金属モードによる高い成膜速度に維持しつつ、第2ターゲットT2の成膜時に第1ターゲットT1の不完全金属超薄膜を、反応性が高い反応ガスラジカルと同時に反応させることができる。これにより、高い成膜速度での反応性スパッタリングを実施することができる。また、反応ガスのラジカル電極は、第2スパッタ電極19と共用しているので、反応に要する時間を削減できとともに別途のラジカル電極を設ける必要はなく、装置費用の増加や装置の大型化を抑制することができる。 As a result, when forming a film of the content ratio (yttria-stabilized zirconia YSZ (ZrO 2 · Y 2 O 3 ), the first target T1 having a high zirconia Zr: yttrium Y = 9: 1 has a high film formation rate by the metal mode. While maintaining the above, the incomplete metal ultra-thin film of the first target T1 can be reacted with the reactive gas radical having high reactivity at the same time as the film formation of the second target T2. Thereby, reactive sputtering can be performed at a high film formation rate. In addition, since the radical electrode for the reaction gas is also used as the second sputtering electrode 19, the time required for the reaction can be reduced, and it is not necessary to provide a separate radical electrode, which suppresses an increase in the device cost and an increase in the size of the device. can do.
 なお、図4Aの第2スパッタ電極19に対する所定時間幅Pt2の印加時間と、反応ガス導入制御器17に対する印加時間は、同じ時間であることが望ましいが、少なくとも重複している時間があればよい。 The application time of the predetermined time width Pt2 to the second sputtering electrode 19 in FIG. 4A and the application time to the reactive gas introduction controller 17 are preferably the same time, but at least the overlapping time is sufficient. ..
《第2例》
 図4Bに示す成膜方法は、成膜室11に不活性ガスなどの放電ガスを導入した状態で、第2スパッタ電極19に対して所定時間幅Pt2のスパッタマスクパルスを印加して第2ターゲットT2(たとえばイットリウムY)による超薄膜を形成すると同時に、反応ガス(たとえば酸素O)を成膜室11に導入する。次いで、第1ターゲットT1(たとえばジルコニアZr)が装着された第1スパッタ電極18に対して所定時間幅Pt1のスパッタマスクパルスを印加して第1ターゲットT1による超薄膜を形成する。すなわち、この成膜方法においても、反応ガス流量に対する成膜速度の影響度が相対的に敏感である第1ターゲットT1をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入せず、反応ガス流量に対する成膜速度の影響度が相対的に鈍感である第2ターゲットT2をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入する。
<< Second example >>
In the film forming method shown in FIG. 4B, in a state where a discharge gas such as an inert gas is introduced into the film forming chamber 11, a sputtering mask pulse having a predetermined time width Pt2 is applied to the second sputtering electrode 19 to generate a second target. At the same time as forming an ultrathin film of T2 (eg, yttrium Y), a reaction gas (eg, oxygen O 2 ) is introduced into the film forming chamber 11. Then, a sputter mask pulse having a predetermined time width Pt1 is applied to the first sputter electrode 18 on which the first target T1 (for example, zirconia Zr) is mounted to form an ultrathin film by the first target T1. That is, also in this film forming method, the reaction gas is not introduced into the film forming chamber 11 at the timing of sputtering the first target T1 in which the degree of influence of the film forming rate on the reaction gas flow rate is relatively sensitive. The reaction gas is introduced into the film forming chamber 11 at the timing of performing the sputtering process on the second target T2 in which the influence of the film forming rate on the gas flow rate is relatively insensitive.
 これにより、成膜室11に導入された反応ガスは、第2スパッタ電極19の電界によりラジカル化し、基板Sに形成された第1ターゲットT1及び第2ターゲットT2の超薄膜を反応ガスと反応させる。そして、目標とする膜厚になるまで、このサイクルを繰り返す。この場合、第1スパッタ電極18に供給する電力と第2スパッタ電極19に供給する電力を同じ値に設定してもよいし、第1スパッタ電極18と第2スパッタ電極19とに供給する電力を異なる値に設定してもよい。また、図4Bの第2スパッタ電極19に対する所定時間幅Pt2の印加時間と、反応ガス導入制御器17に対する印加時間は、同じ時間であることが望ましいが、少なくとも重複している時間があればよい。 As a result, the reaction gas introduced into the film forming chamber 11 is radicalized by the electric field of the second sputtering electrode 19, and the ultrathin films of the first target T1 and the second target T2 formed on the substrate S are reacted with the reaction gas. .. Then, this cycle is repeated until the target film thickness is obtained. In this case, the power supplied to the first sputter electrode 18 and the power supplied to the second sputter electrode 19 may be set to the same value, or the power supplied to the first sputter electrode 18 and the second sputter electrode 19 may be set to the same value. It may be set to a different value. Further, the application time of the predetermined time width Pt2 to the second sputtering electrode 19 of FIG. 4B and the application time to the reactive gas introduction controller 17 are preferably the same time, but at least the overlapping time is sufficient. ..
《第3例》
 図4Cに示す成膜方法は、成膜室11に不活性ガスなどの放電ガスを導入した状態で、第1ターゲットT1(たとえばジルコニアZr)が装着された第1スパッタ電極18に対して所定時間幅Pt1のスパッタマスクパルスを印加して第1ターゲットT1による超薄膜を形成する。次いで、第2スパッタ電極19に対して所定時間幅Pt2のスパッタマスクパルスを印加して第2ターゲットT2(たとえばイットリウムY)による超薄膜を形成する。これら所定時間幅Pt1,Pt2のパルスを印加する間は、反応ガスを成膜室11に導入せず、金属モードによるスパッタ処理を行う。次いで、第1ターゲットT1が装着された第1スパッタ電極18に対して所定時間幅Pt3のパルスを印加して第1ターゲットT1による超薄膜を形成する。次いで、第2スパッタ電極19に対して所定時間幅Pt4のパルスを印加して第2ターゲットT2による超薄膜を形成すると同時に、反応ガス(たとえば酸素O)を成膜室11に導入する。すなわち、この成膜方法においても、少なくとも反応ガス流量に対する成膜速度の影響度が相対的に敏感である第1ターゲットT1をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入しない。
<< Third example >>
In the film forming method shown in FIG. 4C, in a state where a discharge gas such as an inert gas is introduced into the film forming chamber 11, the first target T1 (for example, zirconia Zr) is attached to the first sputtering electrode 18 for a predetermined time. A sputtering mask pulse having a width Pt1 is applied to form an ultrathin film by the first target T1. Next, a sputter mask pulse having a predetermined time width Pt2 is applied to the second sputter electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y). While the pulse having the predetermined time widths Pt1 and Pt2 is applied, the reactive gas is not introduced into the film forming chamber 11, and the sputtering process is performed in the metal mode. Next, a pulse having a predetermined time width Pt3 is applied to the first sputter electrode 18 on which the first target T1 is mounted to form an ultrathin film by the first target T1. Next, a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 to form an ultrathin film by the second target T2, and at the same time, a reaction gas (eg oxygen O 2 ) is introduced into the film forming chamber 11. That is, also in this film forming method, the reactive gas is not introduced into the film forming chamber 11 at least at the timing of performing the sputtering process on the first target T1 in which the influence of the film forming rate on the reaction gas flow rate is relatively sensitive.
 これにより、第2スパッタ電極19に対して所定時間幅Pt4のパルスを印加すると同時に成膜室11に導入された反応ガスは、当該第2スパッタ電極19の電界によりラジカル化し、基板Sに形成された第1ターゲットT1及び第2ターゲットT2の超薄膜を反応ガスと反応させる。そして、目標とする膜厚になるまで、このサイクルを繰り返す。この場合、第1スパッタ電極18に供給する電力と第2スパッタ電極19に供給する電力を同じ値に設定してもよいし、第1スパッタ電極18と第2スパッタ電極19とに供給する電力を異なる値に設定してもよい。また、図4Cの第2スパッタ電極19に対する所定時間幅Pt4の印加時間と、反応ガス導入制御器17に対する印加時間は、同じ時間であることが望ましいが、少なくとも重複している時間があればよい。 As a result, the reaction gas introduced into the film forming chamber 11 at the same time when a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 is radicalized by the electric field of the second sputtering electrode 19 and is formed on the substrate S. The ultrathin films of the first target T1 and the second target T2 are reacted with the reaction gas. Then, this cycle is repeated until the target film thickness is obtained. In this case, the power supplied to the first sputter electrode 18 and the power supplied to the second sputter electrode 19 may be set to the same value, or the power supplied to the first sputter electrode 18 and the second sputter electrode 19 may be set to the same value. It may be set to a different value. Further, the application time of the predetermined time width Pt4 to the second sputtering electrode 19 of FIG. 4C and the application time to the reactive gas introduction controller 17 are preferably the same time, but at least the overlapping time is sufficient. ..
 以上のとおり、本実施形態の反応性スパッタ装置1によれば、反応ガス流量に対する成膜速度の影響度が相対的に敏感である第1ターゲットT1をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入せず、反応ガス流量に対する成膜速度の影響度が相対的に鈍感である第2ターゲットT2をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入する。これにより、第1ターゲットT1の成膜速度を金属モードによる高い速度に維持しつつ、第2ターゲットT2の成膜時に第1ターゲットT1の超薄膜を反応ガスと反応させることができる。また、反応ガスのラジカル電極は、第2スパッタ電極19と共用しているので、別途のラジカル電極を設ける必要はなく、装置費用の増加や装置の大型化を抑制することができる。 As described above, according to the reactive sputtering apparatus 1 of the present embodiment, the reactive gas is formed into a film at the timing of performing the sputtering process on the first target T1 in which the degree of influence of the film forming rate on the reaction gas flow rate is relatively sensitive. The reaction gas is introduced into the film formation chamber 11 at the timing when the second target T2 is not introduced into the chamber 11 and the influence of the film formation rate on the reaction gas flow rate is relatively insensitive. This makes it possible to cause the ultra-thin film of the first target T1 to react with the reaction gas during the film formation of the second target T2 while maintaining the film formation speed of the first target T1 at a high speed in the metal mode. Further, since the radical electrode for the reaction gas is also used as the second sputtering electrode 19, it is not necessary to provide a separate radical electrode, and it is possible to suppress an increase in device cost and an increase in size of the device.
 上述したように、反応ガス流量に対する成膜速度の影響度が相対的に敏感であるジルコニウムZr,チタンTi,アルミニウムAl、ニオブNB、タンタルTaなどの金属ターゲットを一方のターゲットとして用いる場合は、第1例~第3例のように成膜することが望ましいが、反応ガス流量に対する成膜速度の影響度が相対的に鈍感であるイットリウムY、エルビウムEr/イットリウムY又はシリコンSiなどの金属ターゲット同士を用いて成膜する場合には、以下の方法で行ってもよい。たとえば、第1ターゲットT1としてシリコンSi、第2ターゲットT2としてイットリウムY、反応ガスとして酸素をそれぞれ選択し、イットリウムシリケート(Y・SiO)の金属化合物膜を形成する場合や、第1ターゲットT1としてシリコンSi、第2ターゲットT2としてエルビウムEr/イットリウムY、反応ガスとして酸素をそれぞれ選択し、エルビウムイットリウムシリケート(Er2-xSiO)の金属化合物膜を形成する場合などである。 As described above, when a metal target such as zirconium Zr, titanium Ti, aluminum Al, niobium NB, or tantalum Ta, which is relatively sensitive to the reaction gas flow rate, is used as one target, Although it is desirable to form a film as in the first to third examples, metal targets such as yttrium Y, erbium Er / yttrium Y, or silicon Si in which the influence of the film formation rate on the reaction gas flow rate is relatively insensitive. When the film is formed using, the following method may be used. For example, when silicon Si is selected as the first target T1, yttrium Y is selected as the second target T2, and oxygen is selected as the reaction gas, a metal compound film of yttrium silicate (Y 2 O 3 .SiO 2 ) is formed, or For example, when silicon Si is used as the target T1, erbium Er / yttrium Y is used as the second target T2, and oxygen is used as the reaction gas to form a metal compound film of erbium yttrium silicate (Er x Y 2-x SiO 2 ). ..
《第4例》
 図4Dに示す成膜方法は、成膜室11に不活性ガスなどの放電ガスを導入した状態で、第1ターゲットT1(たとえばシリコンSi)が装着された第1スパッタ電極18に対して所定時間幅Pt1のスパッタマスクパルスを印加して第1ターゲットT1による超薄膜を形成する。次いで、第2スパッタ電極19に対して所定時間幅Pt2のスパッタマスクパルスを印加して第2ターゲットT2(たとえばイットリウムY又はエルビウムEr/イットリウムY)による超薄膜を形成する。これら所定時間幅Pt1,Pt2のパルスを印加する間は、反応ガスを成膜室11に導入せず、金属モードによるスパッタ処理を行う。反応ガスを導入しないスパッタ処理をすることにより、ターゲット表面にある酸化物を一度スパッタで除去する時間を設け、ターゲット表面に金属面を取り戻す再生を行う。このサイクルを繰り返すことにより、金属モードでの高い成膜速度を取り戻すことができる。次いで、第1ターゲットT1が装着された第1スパッタ電極18に対して所定時間幅Pt3のパルスを印加して第1ターゲットT1による超薄膜を形成する。次いで、同じく反応ガス(たとえば酸素O)を成膜室11に導入した状態で、第2スパッタ電極19に対して所定時間幅Pt4のパルスを印加して第2ターゲットT2による超薄膜を形成する。
<< 4th example >>
In the film forming method shown in FIG. 4D, a discharge gas such as an inert gas is introduced into the film forming chamber 11 for a predetermined time with respect to the first sputtering electrode 18 on which the first target T1 (for example, silicon Si) is mounted. A sputtering mask pulse having a width Pt1 is applied to form an ultrathin film by the first target T1. Next, a sputtering mask pulse having a width Pt2 for a predetermined time is applied to the second sputtering electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y or erbium Er / yttrium Y). While the pulse having the predetermined time widths Pt1 and Pt2 is applied, the reactive gas is not introduced into the film forming chamber 11, and the sputtering process is performed in the metal mode. By performing the sputtering process without introducing the reaction gas, a time period for once removing the oxide on the target surface by sputtering is provided, and a regeneration for recovering the metal surface on the target surface is performed. By repeating this cycle, it is possible to recover the high film formation rate in the metal mode. Next, a pulse having a predetermined time width Pt3 is applied to the first sputter electrode 18 on which the first target T1 is mounted to form an ultrathin film by the first target T1. Next, similarly, in the state where the reaction gas (for example, oxygen O 2 ) is introduced into the film forming chamber 11, a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 to form an ultrathin film by the second target T2. ..
 すなわち、この成膜方法においては、第1ターゲットT1及び第2ターゲットT2共に、反応ガス流量に対する成膜速度の影響度が相対的に鈍感であるといえども、図5の点線で示すように、金属モードと酸化モードとを比べると、酸化モードにおける成膜速度は相対的に遅くなる。このため、成膜の1サイクルの前半の、第1ターゲットT1及び第2ターゲットT2をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入しないで、金属モードにてスパッタ処理を行い、これにより成膜速度を確保する。一方において、成膜の1サイクルの後半の、第1ターゲットT1及び第2ターゲットT2をスパッタ処理するタイミングでは、反応ガスを成膜室11に導入して、酸化モードにてスパッタ処理を行い、これにより成膜室11に導入された反応ガスを、第1スパッタ電極18及び第2スパッタ電極19の電界によりラジカル化し、基板Sに形成された第1ターゲットT1の超薄膜と第2ターゲットT2の超薄膜とを同時に反応ガスと反応させる。そして、目標とする膜厚になるまで、このサイクルを繰り返す。この場合、第1スパッタ電極18に供給する電力と第2スパッタ電極19に供給する電力を同じ値に設定してもよいし、第1スパッタ電極18と第2スパッタ電極19とに供給する電力を異なる値に設定してもよい。 That is, in this film forming method, although the degree of influence of the film forming rate on the reaction gas flow rate is relatively insensitive to both the first target T1 and the second target T2, as shown by the dotted line in FIG. Comparing the metal mode and the oxidation mode, the film formation rate in the oxidation mode becomes relatively slow. Therefore, at the timing of the sputtering process of the first target T1 and the second target T2 in the first half of one cycle of film formation, the reaction gas is not introduced into the film formation chamber 11 and the sputtering process is performed in the metal mode. To secure the film formation rate. On the other hand, at the timing of the sputtering process of the first target T1 and the second target T2 in the latter half of one cycle of film formation, the reaction gas is introduced into the film formation chamber 11 and the sputtering process is performed in the oxidation mode. The reaction gas introduced into the film forming chamber 11 is radicalized by the electric fields of the first sputtering electrode 18 and the second sputtering electrode 19, and the ultrathin film of the first target T1 and the second target T2 formed on the substrate S The thin film and the reaction gas are simultaneously reacted. Then, this cycle is repeated until the target film thickness is obtained. In this case, the power supplied to the first sputter electrode 18 and the power supplied to the second sputter electrode 19 may be set to the same value, or the power supplied to the first sputter electrode 18 and the second sputter electrode 19 may be set to the same value. It may be set to a different value.
《第5例》
 図4Eに示す成膜方法は、図4Dに示す成膜方法の変形例である。すなわち、図4Eに示す成膜方法は、成膜室11に不活性ガスなどの放電ガスを導入した状態で、第1ターゲットT1(たとえばシリコンSi)が装着された第1スパッタ電極18に対して所定時間幅Pt1のスパッタマスクパルスを印加して第1ターゲットT1による超薄膜を形成する。次いで、第2スパッタ電極19に対して所定時間幅Pt2のスパッタマスクパルスを印加して第2ターゲットT2(たとえばイットリウムY又はエルビウムEr/イットリウムY)による超薄膜を形成する。これら所定時間幅Pt1,Pt2のパルスを印加する間は、反応ガスを成膜室11に導入し、酸化モードによるスパッタ処理を行う。次いで、反応ガスの成膜室11への導入を停止し、第1ターゲットT1が装着された第1スパッタ電極18に対して所定時間幅Pt3のパルスを印加して第1ターゲットT1による超薄膜を形成する。次いで、同じく反応ガス(たとえば酸素O)を成膜室11に導入しない状態で、第2スパッタ電極19に対して所定時間幅Pt4のパルスを印加して第2ターゲットT2による超薄膜を形成する。この成膜方法によっても、図4Dに示す成膜方法と同様の作用効果を奏する。
<< 5th example >>
The film forming method shown in FIG. 4E is a modification of the film forming method shown in FIG. 4D. That is, in the film forming method shown in FIG. 4E, with the discharge gas such as an inert gas being introduced into the film forming chamber 11, the first target T1 (for example, silicon Si) is attached to the first sputter electrode 18. A sputter mask pulse having a predetermined time width Pt1 is applied to form an ultrathin film by the first target T1. Next, a sputtering mask pulse having a width Pt2 for a predetermined time is applied to the second sputtering electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y or erbium Er / yttrium Y). While applying the pulses having the predetermined time widths Pt1 and Pt2, the reaction gas is introduced into the film forming chamber 11 to perform the sputtering process in the oxidation mode. Then, the introduction of the reaction gas into the film forming chamber 11 is stopped, and a pulse having a predetermined time width Pt3 is applied to the first sputtering electrode 18 on which the first target T1 is mounted to form an ultrathin film by the first target T1. Form. Next, similarly, in a state in which the reaction gas (eg, oxygen O 2 ) is not introduced into the film forming chamber 11, a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 to form an ultrathin film by the second target T2. .. This film forming method also has the same effects as the film forming method shown in FIG. 4D.
《第6例》
 図4Fに示す成膜方法は、図4Dに示す成膜方法の変形例である。すなわち、図4Fに示す成膜方法は、成膜室11に不活性ガスなどの放電ガスを導入した状態で、第1ターゲットT1(たとえばシリコンSi)が装着された第1スパッタ電極18に対して所定時間幅Pt1のスパッタマスクパルスを印加して第1ターゲットT1による超薄膜を形成する。この所定時間幅Pt1のパルスを印加する間は、反応ガスを成膜室11に導入しないで、金属モードによるスパッタ処理を行う。次いで、第2スパッタ電極19に対して所定時間幅Pt2のスパッタマスクパルスを印加して第2ターゲットT2(たとえばイットリウムY又はエルビウムEr/イットリウムY)による超薄膜を形成する。この所定時間幅Pt2のパルスを印加する間は、反応ガスを成膜室11に導入し、酸化モードによるスパッタ処理を行う。次いで、反応ガスの成膜室11への導入を継続し、第1ターゲットT1が装着された第1スパッタ電極18に対して所定時間幅Pt3のパルスを印加し、酸化モードにて第1ターゲットT1による超薄膜を形成する。次いで、反応ガス(たとえば酸素O)を成膜室11に導入しない状態で、第2スパッタ電極19に対して所定時間幅Pt4のパルスを印加し、金属モードにて第2ターゲットT2による超薄膜を形成する。この成膜方法によっても、図4Dに示す成膜方法と同様の作用効果を奏する。
<< 6th example >>
The film forming method shown in FIG. 4F is a modification of the film forming method shown in FIG. 4D. That is, in the film forming method shown in FIG. 4F, with the discharge gas such as an inert gas introduced into the film forming chamber 11, the first target T1 (for example, silicon Si) is attached to the first sputter electrode 18. A sputter mask pulse having a predetermined time width Pt1 is applied to form an ultrathin film by the first target T1. While the pulse having the predetermined time width Pt1 is applied, the reactive gas is not introduced into the film forming chamber 11, and the sputtering process is performed in the metal mode. Next, a sputtering mask pulse having a width Pt2 for a predetermined time is applied to the second sputtering electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y or erbium Er / yttrium Y). While the pulse having the predetermined time width Pt2 is applied, the reactive gas is introduced into the film forming chamber 11 to perform the sputtering process in the oxidation mode. Then, the introduction of the reaction gas into the film forming chamber 11 is continued, a pulse of a predetermined time width Pt3 is applied to the first sputtering electrode 18 on which the first target T1 is mounted, and the first target T1 is placed in the oxidation mode. To form an ultra thin film. Then, a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19 without introducing a reaction gas (for example, oxygen O 2 ) into the film forming chamber 11, and the ultrathin film by the second target T2 in the metal mode is applied. To form. This film forming method also has the same effects as the film forming method shown in FIG. 4D.
《第7例》
 図4Gに示す成膜方法は、図4Dに示す成膜方法の変形例である。すなわち、図4Gに示す成膜方法は、成膜室11に不活性ガスなどの放電ガスを導入した状態で、第1ターゲットT1(たとえばシリコンSi)が装着された第1スパッタ電極18に対して所定時間幅Pt1のスパッタマスクパルスを印加して第1ターゲットT1による超薄膜を形成する。この所定時間幅Pt1のパルスを印加する間は、反応ガスを成膜室11に導入し、酸化モードによるスパッタ処理を行う。次いで、第2スパッタ電極19に対して所定時間幅Pt2のスパッタマスクパルスを印加して第2ターゲットT2(たとえばイットリウムY又はエルビウムEr/イットリウムY)による超薄膜を形成する。この所定時間幅Pt2のパルスを印加する間は、反応ガスを成膜室11に導入しないで、金属モードによるスパッタ処理を行う。次いで、反応ガスを成膜室11へ導入しないで、第1ターゲットT1が装着された第1スパッタ電極18に対して所定時間幅Pt3のパルスを印加し、金属モードにて第1ターゲットT1による超薄膜を形成する。次いで、反応ガス(たとえば酸素O)を成膜室11に導入し、第2スパッタ電極19に対して所定時間幅Pt4のパルスを印加し、酸化モードにて第2ターゲットT2による超薄膜を形成する。この成膜方法によっても、図4Dに示す成膜方法と同様の作用効果を奏する。
<< 7th example >>
The film forming method shown in FIG. 4G is a modification of the film forming method shown in FIG. 4D. That is, in the film forming method shown in FIG. 4G, with the discharge gas such as an inert gas introduced into the film forming chamber 11, the first target T1 (for example, silicon Si) is attached to the first sputter electrode 18. A sputter mask pulse having a predetermined time width Pt1 is applied to form an ultrathin film by the first target T1. While the pulse having the predetermined time width Pt1 is applied, the reaction gas is introduced into the film forming chamber 11 to perform the sputtering process in the oxidation mode. Next, a sputtering mask pulse having a width Pt2 for a predetermined time is applied to the second sputtering electrode 19 to form an ultrathin film of the second target T2 (eg, yttrium Y or erbium Er / yttrium Y). While the pulse having the predetermined time width Pt2 is applied, the reactive gas is not introduced into the film forming chamber 11, and the sputtering process in the metal mode is performed. Next, without introducing the reaction gas into the film forming chamber 11, a pulse having a predetermined time width Pt3 is applied to the first sputtering electrode 18 on which the first target T1 is mounted, and the pulse is generated by the first target T1 in the metal mode. Form a thin film. Then, a reaction gas (eg, oxygen O 2 ) is introduced into the film forming chamber 11, a pulse having a predetermined time width Pt4 is applied to the second sputtering electrode 19, and an ultrathin film is formed by the second target T2 in the oxidation mode. To do. This film forming method also has the same effects as the film forming method shown in FIG. 4D.
1…反応性スパッタ装置
 11…成膜室
 12…基板ホルダ
 13…減圧機
 14…コンダクタンスバルブ
 15…放電ガス導入機
 16…反応ガス導入機
  161…反応ガスボンベ
  162…流量調節器
  163…第1開閉弁
  164…第2開閉弁
  165…ガス流路
  166…第1ガス流路
  167…第2ガス流路
 17…反応ガス導入制御器
 18…第1スパッタ電極
 19…第2スパッタ電極
 20…直流電源
  201…第1直流電源
  202…第2直流電源
 21…バイアス直流電源
  211…第1バイアス直流電源
  212…第2バイアス直流電源
 22…第1パルス波変換スイッチ
 23…第2パルス波変換スイッチ
 24…プログラマブル発信器
 25…装置制御器
 26…成膜制御器
 27…第3スパッタ電極
 28…第4スパッタ電極
T1…第1ターゲット
T2…第2ターゲット
T3…第3ターゲット
T4…第4ターゲット
S…基板
DESCRIPTION OF SYMBOLS 1 ... Reactive sputtering apparatus 11 ... Film-forming chamber 12 ... Substrate holder 13 ... Decompressor 14 ... Conductance valve 15 ... Discharge gas introduction machine 16 ... Reaction gas introduction machine 161 ... Reaction gas cylinder 162 ... Flow controller 163 ... First opening / closing valve 164 ... 2nd on-off valve 165 ... Gas channel 166 ... 1st gas channel 167 ... 2nd gas channel 17 ... Reactive gas introduction controller 18 ... 1st sputter electrode 19 ... 2nd sputter electrode 20 ... DC power supply 201 ... 1st DC power supply 202 ... 2nd DC power supply 21 ... Bias DC power supply 211 ... 1st bias DC power supply 212 ... 2nd bias DC power supply 22 ... 1st pulse wave conversion switch 23 ... 2nd pulse wave conversion switch 24 ... Programmable oscillator 25 ... Device controller 26 ... Film formation controller 27 ... Third sputter electrode 28 ... Fourth sputter electrode T1 ... First target T2 ... Second target T3 ... Third target T4 ... Fourth target S ... Substrate

Claims (11)

  1.  成膜される基板が投入される成膜室と、
     前記成膜室を所定圧力に減圧する減圧機と、
     前記成膜室に放電ガスを導入する放電ガス導入機と、
     成膜材料となるターゲットをそれぞれ備え、一つの前記基板に対して対向する、少なくとも2つのスパッタ電極と、
     前記成膜室に反応ガスを導入する反応ガス導入機と、
     前記少なくとも2つのスパッタ電極のそれぞれに電力を供給する直流電源と、
     前記直流電源と前記少なくとも2つのスパッタ電極との間に接続され、それぞれのスパッタ電極に印加する直流電圧をパルス波電圧に変換する、すくなくとも2つのパルス波変換スイッチと、
     前記反応ガス導入機から前記成膜室への反応ガスの導入を制御する反応ガス導入制御器と、
     前記少なくとも2つのスパッタ電極に供給するそれぞれのスパッタ目標電力と、前記反応ガスの目標導入タイミングとに応じたパルス制御信号パターンがプログラム可能とされ、プログラムされたパルス制御信号パターンにしたがって、前記少なくとも2つのパルス波変換スイッチのそれぞれと、前記反応ガス導入制御器とを制御するプログラマブル発信器と、を備える反応性スパッタ装置を用い、前記基板に成膜処理を施す金属化合物膜の成膜方法であって、
     所定の反応性スパッタ条件において、前記反応ガスの流量に対する成膜速度の変化率の絶対値の極大値が相対的に大きい第1ターゲットと、相対的に小さい第2ターゲットとを、前記少なくとも2つのスパッタ電極のそれぞれに装着したのち、
     前記成膜室に放電ガスを導入した状態で、前記第1ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第1スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入しないで、前記基板に前記第1ターゲットの金属超薄膜を形成する第1の工程と、
     前記成膜室に放電ガスを導入した状態で、前記第2ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第2スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入し、前記基板に前記第2ターゲットの金属超薄膜を形成する第2の工程と、を少なくとも備える金属化合物膜の成膜方法。
    A deposition chamber into which a substrate to be deposited is loaded,
    A decompressor for decompressing the film forming chamber to a predetermined pressure,
    A discharge gas introducing machine for introducing a discharge gas into the film forming chamber,
    At least two sputter electrodes, each of which is provided with a target serving as a film forming material and faces one of the substrates;
    A reaction gas introducing device for introducing a reaction gas into the film forming chamber,
    A DC power supply for supplying power to each of the at least two sputter electrodes,
    A pulse wave conversion switch, which is connected between the DC power supply and the at least two sputter electrodes and converts a DC voltage applied to each sputter electrode into a pulse wave voltage;
    A reaction gas introduction controller for controlling the introduction of the reaction gas from the reaction gas introduction machine to the film forming chamber,
    A pulse control signal pattern according to each target sputtering power supplied to the at least two sputtering electrodes and a target introduction timing of the reaction gas is programmable, and the at least two pulse control signal patterns are programmed according to the programmed pulse control signal pattern. A method for depositing a metal compound film, wherein a reactive sputtering apparatus comprising a pulse wave conversion switch and a programmable oscillator that controls the reactive gas introduction controller is used to perform a deposition process on the substrate. hand,
    Under a predetermined reactive sputtering condition, a first target having a relatively large maximum absolute value of a change rate of a film forming rate with respect to a flow rate of the reaction gas and a second target having a relatively small absolute value are used as the at least two targets. After attaching to each of the sputter electrodes,
    While the discharge gas is being introduced into the film forming chamber, the first sputtering target electric power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is attached, and the sputtering control electrode pattern is used by the pulse control signal pattern. A first step of forming a metal ultrathin film of the first target on the substrate without introducing a reaction gas from the reaction gas introduction machine to the film formation chamber only at a set target introduction timing;
    While the discharge gas is introduced into the film forming chamber, the second sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the second target is mounted, and the second target is supplied by the pulse control signal pattern. A second step of introducing a reaction gas from the reaction gas introduction device to the film forming chamber at a set target introduction timing to form an ultrathin metal film of the second target on the substrate. Film forming method.
  2.  前記第1ターゲットと前記第2ターゲットとを前記少なくとも2つのスパッタ電極のそれぞれに装着した後の成膜工程の1周期において、
     前記第1の工程を実施した後に前記第2の工程を実施するか、又は、
     前記第2の工程を実施した後に前記第1の工程を実施する請求項1に記載の金属化合物膜の成膜方法。
    In one cycle of the film forming process after mounting the first target and the second target on each of the at least two sputtering electrodes,
    Performing the second step after performing the first step, or
    The method for forming a metal compound film according to claim 1, wherein the first step is performed after performing the second step.
  3.  前記成膜工程の1周期において、
     前記第1の工程を実施した後に前記第2の工程を実施する場合には、前記第1の工程を実施する前又は前記第2の工程を実施した後に、
     前記第2の工程を実施した後に前記第1の工程を実施する場合には、前記第2の工程を実施する前又は前記第1の工程を実施した後に、
      前記成膜室に放電ガスを導入した状態で、前記第1ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第1スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入しないで、前記基板に前記第1ターゲットの金属超薄膜を形成する第3の工程と、
      前記成膜室に放電ガスを導入した状態で、前記第2ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第2スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入しないで、前記基板に前記第2ターゲットの金属超薄膜を形成する第4の工程と、を備える請求項2に記載の金属化合物膜の成膜方法。
    In one cycle of the film forming process,
    When carrying out the second step after carrying out the first step, before carrying out the first step or after carrying out the second step,
    When carrying out the first step after carrying out the second step, before carrying out the second step or after carrying out the first step,
    While the discharge gas is being introduced into the film forming chamber, the first sputtering target electric power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is attached, and the sputtering control electrode pattern is used by the pulse control signal pattern. A third step of forming an ultrathin metal film of the first target on the substrate without introducing a reaction gas from the reaction gas introduction machine to the film forming chamber at a set target introduction timing;
    While the discharge gas is introduced into the film forming chamber, the second sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the second target is mounted, and the second target is supplied by the pulse control signal pattern. The fourth step of forming the ultra-thin metal film of the second target on the substrate without introducing the reaction gas from the reaction gas introduction device to the film forming chamber at the set target introduction timing. A method for forming a metal compound film according to item 1.
  4.  前記第1ターゲットは、Zr,Ti,Alであり、前記第2ターゲットは、Y,Er/Y又はSiである請求項1~3のいずれか一項に記載の金属化合物膜の成膜方法。 The method for forming a metal compound film according to any one of claims 1 to 3, wherein the first target is Zr, Ti, Al and the second target is Y, Er / Y or Si.
  5.  成膜される基板が投入される成膜室と、
     前記成膜室を所定圧力に減圧する減圧機と、
     前記成膜室に放電ガスを導入する放電ガス導入機と、
     成膜材料となるターゲットをそれぞれ備え、一つの前記基板に対して対向する、少なくとも2つのスパッタ電極と、
     前記成膜室に反応ガスを導入する反応ガス導入機と、
     前記少なくとも2つのスパッタ電極のそれぞれに電力を供給する直流電源と、
     前記直流電源と前記少なくとも2つのスパッタ電極との間に接続され、それぞれのスパッタ電極に印加する直流電圧をパルス波電圧に変換する、すくなくとも2つのパルス波変換スイッチと、
     前記反応ガス導入機から前記成膜室への反応ガスの導入を制御する反応ガス導入制御器と、
     前記少なくとも2つのスパッタ電極に供給するそれぞれのスパッタ目標電力と、前記反応ガスの目標導入タイミングとに応じたパルス制御信号パターンがプログラム可能とされ、プログラムされたパルス制御信号パターンにしたがって、前記少なくとも2つのパルス波変換スイッチのそれぞれと、前記反応ガス導入制御器とを制御するプログラマブル発信器と、を備える反応性スパッタ装置を用い、前記基板に成膜処理を施す金属化合物膜の成膜方法であって、
     第1ターゲットと第2ターゲットとを、前記少なくとも2つのスパッタ電極のそれぞれに装着したのち、
     前記成膜室に放電ガスを導入した状態で、前記第1ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第1スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入しないで、前記基板に前記第1ターゲットの金属超薄膜を形成する第1の工程と、
     前記成膜室に放電ガスを導入した状態で、前記第2ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第2スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入しないで、前記基板に前記第2ターゲットの金属超薄膜を形成する第2の工程と、
     前記成膜室に放電ガスを導入した状態で、前記第1ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第1スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入し、前記基板に前記第1ターゲットの金属超薄膜を形成する第3の工程と、
     前記成膜室に放電ガスを導入した状態で、前記第2ターゲットが装着されたスパッタ電極に、前記パルス制御信号パターンにより設定された第2スパッタ目標電力を供給するとともに、前記パルス制御信号パターンにより設定された目標導入タイミングだけ前記反応ガス導入機から前記成膜室へ反応ガスを導入し、前記基板に前記第2ターゲットの金属超薄膜を形成する第4の工程と、を少なくとも備える金属化合物膜の成膜方法。
    A deposition chamber into which a substrate to be deposited is loaded,
    A decompressor for decompressing the film forming chamber to a predetermined pressure,
    A discharge gas introducing machine for introducing a discharge gas into the film forming chamber,
    At least two sputter electrodes, each of which is provided with a target serving as a film forming material and faces one of the substrates;
    A reaction gas introducing device for introducing a reaction gas into the film forming chamber,
    A DC power supply for supplying power to each of the at least two sputter electrodes,
    A pulse wave conversion switch, which is connected between the DC power supply and the at least two sputter electrodes and converts a DC voltage applied to each sputter electrode into a pulse wave voltage;
    A reaction gas introduction controller for controlling the introduction of the reaction gas from the reaction gas introduction machine to the film forming chamber,
    A pulse control signal pattern according to each target sputtering power supplied to the at least two sputtering electrodes and a target introduction timing of the reaction gas is programmable, and the at least two pulse control signal patterns are programmed according to the programmed pulse control signal pattern. A method for depositing a metal compound film, wherein a reactive sputtering apparatus comprising a pulse wave conversion switch and a programmable oscillator that controls the reactive gas introduction controller is used to perform a deposition process on the substrate. hand,
    After mounting a first target and a second target on each of the at least two sputter electrodes,
    While the discharge gas is being introduced into the film forming chamber, the first sputtering target electric power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is attached, and the sputtering control electrode pattern is used by the pulse control signal pattern. A first step of forming a metal ultrathin film of the first target on the substrate without introducing a reaction gas from the reaction gas introduction machine to the film formation chamber only at a set target introduction timing;
    While the discharge gas is introduced into the film forming chamber, the second sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the second target is mounted, and the second target is supplied by the pulse control signal pattern. A second step of forming an ultrathin metal film of the second target on the substrate without introducing a reaction gas from the reaction gas introduction machine to the film forming chamber at a set target introduction timing;
    While the discharge gas is being introduced into the film forming chamber, the first sputtering target electric power set by the pulse control signal pattern is supplied to the sputtering electrode on which the first target is attached, and the sputtering control electrode pattern is used by the pulse control signal pattern. A third step of introducing a reaction gas from the reaction gas introduction machine to the film forming chamber only at a set target introduction timing to form an ultrathin metal film of the first target on the substrate;
    While the discharge gas is introduced into the film forming chamber, the second sputtering target power set by the pulse control signal pattern is supplied to the sputtering electrode on which the second target is mounted, and the second target is supplied by the pulse control signal pattern. A fourth step of introducing a reaction gas from the reaction gas introduction device into the film forming chamber at a set target introduction timing to form an ultrathin metal film of the second target on the substrate. Film forming method.
  6.  前記第1の工程、前記第2の工程、前記第3の工程及び前記第4の工程を、この順序で実施する請求項5に記載の金属化合物膜の成膜方法。 The method for forming a metal compound film according to claim 5, wherein the first step, the second step, the third step, and the fourth step are performed in this order.
  7.  前記第3の工程、前記第4の工程、前記第1の工程及び前記第2の工程を、この順序で実施する請求項5に記載の金属化合物膜の成膜方法。 The method for forming a metal compound film according to claim 5, wherein the third step, the fourth step, the first step and the second step are performed in this order.
  8.  前記第1の工程、前記第4の工程、前記第3の工程及び前記第2の工程を、この順序で実施する請求項5に記載の金属化合物膜の成膜方法。 The method for forming a metal compound film according to claim 5, wherein the first step, the fourth step, the third step, and the second step are performed in this order.
  9.  前記第3の工程、前記第2の工程、前記第1の工程及び前記第4の工程を、この順序で実施する請求項5に記載の金属化合物膜の成膜方法。 The method for forming a metal compound film according to claim 5, wherein the third step, the second step, the first step and the fourth step are performed in this order.
  10.  前記第1ターゲット及び前記第2ターゲットは、Y,Er/Y又はSiのいずれかである請求項5~9のいずれか一項に記載の金属化合物膜の成膜方法。 The method for forming a metal compound film according to any one of claims 5 to 9, wherein the first target and the second target are any of Y, Er / Y, and Si.
  11.  成膜される基板が投入される成膜室と、
     前記成膜室を所定圧力に減圧する減圧機と、
     前記成膜室に放電ガスを導入する放電ガス導入機と、
     成膜材料となるターゲットをそれぞれ備え、一つの前記基板に対して対向する複数のスパッタ電極と、
     前記成膜室に反応ガスを導入する反応ガス導入機と、
     前記複数のスパッタ電極に電力を供給する直流電源と、
     前記直流電源と前記複数のスパッタ電極との間に接続され、それぞれのスパッタ電極に印加する直流電圧をパルス波電圧に変換する複数のパルス波変換スイッチと、
     前記反応ガス導入機から前記成膜室への反応ガスの導入を制御する反応ガス導入制御器と、
     前記複数のスパッタ電極に供給するそれぞれのスパッタ目標電力と、前記反応ガスの目標導入タイミングとに応じたパルス制御信号パターンがプログラム可能とされ、プログラムされたパルス制御信号パターンにしたがって、前記複数のパルス波変換スイッチのそれぞれと前記反応ガス導入制御器とを制御するプログラマブル発信器と、を備え、
     前記反応ガス導入機は、
      反応ガス供給源と、
      前記反応ガス供給源から供給する反応ガス流量を調節する流量調節器と、
      前記流量調節器から分岐して前記成膜室へ反応ガスを導く第1ガス流路と、
      前記流量調節器から分岐して前記減圧機の排気系へ反応ガスを導く第2ガス流路と、
      前記第1ガス流路を開閉する第1開閉弁と、
      前記第2ガス流路を開閉する第2開閉弁と、を備え、
     前記反応ガス導入制御器は、前記プログラマブル発信器からのパルス制御信号パターンに基づいて、前記第1開閉弁と前記第2開閉弁を排他的に開閉制御する反応性スパッタ装置。
    A deposition chamber into which a substrate to be deposited is loaded,
    A decompressor for decompressing the film forming chamber to a predetermined pressure,
    A discharge gas introducing machine for introducing a discharge gas into the film forming chamber,
    A plurality of sputtering electrodes, each of which includes a target serving as a film-forming material, and which faces one of the substrates,
    A reaction gas introducing device for introducing a reaction gas into the film forming chamber,
    A direct current power supply for supplying power to the plurality of sputter electrodes,
    A plurality of pulse wave conversion switches connected between the DC power supply and the plurality of sputtering electrodes, for converting a DC voltage applied to each sputtering electrode into a pulse wave voltage,
    A reaction gas introduction controller for controlling the introduction of the reaction gas from the reaction gas introduction machine to the film forming chamber,
    A pulse control signal pattern according to each sputter target power supplied to the plurality of sputter electrodes and a target introduction timing of the reaction gas is programmable, and the plurality of pulses are controlled according to the programmed pulse control signal pattern. A programmable oscillator that controls each of the wave conversion switches and the reaction gas introduction controller,
    The reaction gas introduction machine,
    A reaction gas supply source,
    A flow rate controller for adjusting the flow rate of the reaction gas supplied from the reaction gas supply source,
    A first gas flow path branched from the flow rate controller to guide a reaction gas to the film forming chamber;
    A second gas flow path branched from the flow rate controller to guide the reaction gas to the exhaust system of the pressure reducer;
    A first on-off valve for opening and closing the first gas flow path;
    A second on-off valve for opening and closing the second gas flow path,
    The reactive sputtering apparatus, wherein the reaction gas introduction controller exclusively controls opening / closing of the first opening / closing valve and the second opening / closing valve based on a pulse control signal pattern from the programmable transmitter.
PCT/JP2019/041940 2018-11-20 2019-10-25 Metallic compound film deposition method and reactive sputtering device WO2020105367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-217319 2018-11-20
JP2018217319A JP6778439B2 (en) 2018-11-20 2018-11-20 Metal compound film film forming method and reactive sputtering equipment

Publications (1)

Publication Number Publication Date
WO2020105367A1 true WO2020105367A1 (en) 2020-05-28

Family

ID=70773963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041940 WO2020105367A1 (en) 2018-11-20 2019-10-25 Metallic compound film deposition method and reactive sputtering device

Country Status (3)

Country Link
JP (1) JP6778439B2 (en)
TW (1) TWI721619B (en)
WO (1) WO2020105367A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0123572B2 (en) * 1983-09-27 1989-05-08 Kanai Hiroyuki
JP2006299412A (en) * 2005-03-25 2006-11-02 Bridgestone Corp METHOD FOR FORMING In-Ga-Zn-O FILM
JP2012084526A (en) * 2010-10-08 2012-04-26 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev Magnetron device, and pulse operation method of magnetron device
JP2013129901A (en) * 2011-12-22 2013-07-04 Ulvac Japan Ltd Sputtering apparatus and sputtering method
JP2016527400A (en) * 2013-07-17 2016-09-08 アドバンスト・エナジー・インダストリーズ・インコーポレイテッドAdvanced Energy Industries, Inc. System and method for balanced consumption of targets in a pulsed double magnetron sputtering (DMS) process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202729A1 (en) * 2018-04-20 2019-10-24 株式会社シンクロン Reactive sputtering device and method for forming mixture film or film of composite metal compound using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0123572B2 (en) * 1983-09-27 1989-05-08 Kanai Hiroyuki
JP2006299412A (en) * 2005-03-25 2006-11-02 Bridgestone Corp METHOD FOR FORMING In-Ga-Zn-O FILM
JP2012084526A (en) * 2010-10-08 2012-04-26 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev Magnetron device, and pulse operation method of magnetron device
JP2013129901A (en) * 2011-12-22 2013-07-04 Ulvac Japan Ltd Sputtering apparatus and sputtering method
JP2016527400A (en) * 2013-07-17 2016-09-08 アドバンスト・エナジー・インダストリーズ・インコーポレイテッドAdvanced Energy Industries, Inc. System and method for balanced consumption of targets in a pulsed double magnetron sputtering (DMS) process

Also Published As

Publication number Publication date
TW202022141A (en) 2020-06-16
JP6778439B2 (en) 2020-11-04
JP2020084240A (en) 2020-06-04
TWI721619B (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US9637814B2 (en) High-rate reactive sputtering of dielectric stoichiometric films
KR20150051879A (en) Plasma processing apparatus
CN110637103B (en) Reactive sputtering apparatus and method for forming composite metal compound or mixed film using same
JP2019090113A (en) High-output impulse coating method
US9994950B2 (en) Method for depositing a piezoelectric film containing AIN, and a piezoelectric film containing AIN
JP2007138268A (en) Film-forming method and film-forming apparatus
US10407767B2 (en) Method for depositing a layer using a magnetron sputtering device
WO2020105367A1 (en) Metallic compound film deposition method and reactive sputtering device
JP6858985B2 (en) Metal compound film film forming method and reactive sputtering equipment
US11094515B2 (en) Sputtering apparatus and sputtering method
TW202034745A (en) Method of producing ions and apparatus
JP2007031815A (en) Planer magnetron sputtering apparatus and planer magnetron sputtering film deposition method
WO2007099780A1 (en) Sputtering apparatus and film forming method thereof
Yakovin et al. Double magnetron cluster set-up for synthesis of micro and nano structure coatings
JP2002167670A (en) Method and system for sputtering
JP2002085962A (en) Method and device for plasma treatment
RU2657671C2 (en) Device for forming multicomponent and multilayer coatings
JP2000192236A (en) Sputtering method and device
KR20210106619A (en) Aerosol deposition apparatus
KR20230151538A (en) Pulsed DC power for film deposition
TW202010857A (en) Method of treating a substrate and vacuum deposition apparatus
JP2006089833A (en) Ecr sputtering apparatus
JP2008041723A (en) Method and device for dry etching
JPH0641740A (en) Sputtering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887815

Country of ref document: EP

Kind code of ref document: A1