WO2020105135A1 - Power supply device - Google Patents

Power supply device

Info

Publication number
WO2020105135A1
WO2020105135A1 PCT/JP2018/042963 JP2018042963W WO2020105135A1 WO 2020105135 A1 WO2020105135 A1 WO 2020105135A1 JP 2018042963 W JP2018042963 W JP 2018042963W WO 2020105135 A1 WO2020105135 A1 WO 2020105135A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switching elements
voltage
power supply
switch circuit
Prior art date
Application number
PCT/JP2018/042963
Other languages
French (fr)
Japanese (ja)
Inventor
暁▲チン▼ 張
俊秀 中野
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2018/042963 priority Critical patent/WO2020105135A1/en
Priority to US16/959,520 priority patent/US11245337B2/en
Priority to JP2019531478A priority patent/JP6666526B1/en
Priority to KR1020207023820A priority patent/KR102382136B1/en
Priority to CN201880089955.5A priority patent/CN111771320B/en
Publication of WO2020105135A1 publication Critical patent/WO2020105135A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits

Definitions

  • This invention relates to a power supply device.
  • Patent Document 1 discloses a power conversion device having a circuit configured by connecting a plurality of self-turn-off type semiconductor switching elements in series.
  • detection means for detecting the inability to cut off is provided for each semiconductor switching element.
  • the detection means is configured to detect the inability to cut off by using the voltage across the terminals of a GTO (Gate Turn-Off thyristor) which is a semiconductor switching element.
  • GTO Gate Turn-Off thyristor
  • An instantaneous power failure compensation device (Multiple Power Compensator) as a power supply device for supplying AC power to a load.
  • An instantaneous power failure compensator is generally connected between an AC power supply and a load, and supplies stable AC power to the load without interruption even when a power failure or an instantaneous voltage drop occurs in the AC power supply. Can be configured.
  • a switch circuit configured by connecting a plurality of semiconductor switching elements in series is provided between the AC power supply and the load. Normally, the AC power of the AC power supply is supplied to the load by turning on the plurality of semiconductor switching elements. On the other hand, when a power failure or momentary voltage drop occurs or a control abnormality occurs, the semiconductor switching elements are shut off (OFF) to shut off the AC power supply, and the bidirectional converter supplies power from the power storage device to the load. Start.
  • the output voltage of the switch circuit is supplied with an AC voltage that is synchronized with the AC voltage applied to the input side of the switch circuit, under the control of the bidirectional converter. Therefore, the input voltage and the output voltage of the switch circuit may be at the same voltage level. In such a case, a significant voltage difference does not occur between the terminals of the normally-off semiconductor switching element inside the switch circuit. Therefore, as described in the above-mentioned Patent Document 1, if the terminal voltage of the semiconductor switching element is used, there is a concern that the interruption failure may be erroneously detected.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to prevent an abnormality in a power supply device from interrupting a switch circuit having a plurality of semiconductor switching elements connected in series. It is to detect accurately.
  • the power supply device that supplies power to the load includes a switch circuit, a power converter, and a control device that controls the switch circuit and the power converter.
  • the switch circuit has an input node connected to the AC power supply and an output node connected to the load.
  • the power converter is configured to perform bidirectional power conversion between AC power output to the output node and DC power input to and output from the power storage device.
  • the switch circuit includes n (n is an integer of 2 or more) switching elements connected in series between an input node and an output node.
  • the control device controls the electric power converter to control the electric power when an abnormality is detected in at least one of the AC power supply and the switch circuit in a state in which a conduction command for conducting the n switching elements is output.
  • the control device is configured to convert the DC power of the storage device to AC power that is synchronized with the AC power supplied from the AC power supply during normal operation and supply the AC power to the output node.
  • the control device further generates a cutoff command for cutting off the n switching elements during execution of the power conversion in the power converter, and the inter-terminal voltage of the n switching elements is generated during the cutoff command. Based on this, an abnormality regarding the cutoff of the switch circuit is detected.
  • the power supply device it is possible to accurately detect an abnormality regarding interruption of a switch circuit having a plurality of semiconductor switching elements connected in series.
  • FIG. 6 is a flowchart illustrating a control process of the power supply device according to the first embodiment. It is a block diagram for demonstrating the 1st structural example of the determination part which performs the disconnection abnormality determination process shown to step S05 of FIG. It is a block diagram for demonstrating the 2nd structural example of the determination part which performs the disconnection abnormality determination process shown to step S05 of FIG.
  • FIG. 1 is a diagram showing a schematic configuration of a power supply device according to a first embodiment of the present invention.
  • power supply device 10 is connected between AC power supply 1 and load 2, and is configured to receive AC power from AC power supply 1 and supply AC power to load 2.
  • the power supply device 10 is applied to, for example, a device (for example, a momentary power failure compensation device) that supplies stable AC power to the load 2 without interruption in the event of a power failure or an instantaneous voltage drop of the AC power supply 1. obtain.
  • a device for example, a momentary power failure compensation device
  • the power supply device 10 may receive three-phase AC power and output three-phase AC power.
  • the AC power supply 1 is typically a commercial AC power supply, and supplies AC power having a commercial frequency to the power supply device 10.
  • the load 2 is driven by AC power of commercial frequency supplied from the power supply device 10.
  • the power supply device 10 includes an input terminal T1, an output terminal T2, a DC terminal T3, a switch circuit 11, a bidirectional converter 12, voltage detectors 14, 16 and 18, and a control device 20.
  • the input terminal T1 is electrically connected to the AC power supply 1 and receives the AC power of the commercial frequency supplied from the AC power supply 1.
  • the output terminal T2 is connected to the load 2.
  • the DC terminal T3 is connected to the battery 3.
  • the battery 3 corresponds to an example of “power storage device” that stores DC power. As the power storage device, an electric double layer capacitor may be connected to the DC terminal T3 instead of the battery 3.
  • the switch circuit 11 is connected between the input terminal T1 and the output terminal T2, and is configured to switch electrical connection and disconnection between the AC power supply 1 and the load 2. Specifically, the switch circuit 11 has an input node N1 and an output node N2, and n (n is an integer of 2 or more) semiconductor switching elements SW1 to SWn. The input node N1 is connected to the input terminal T1 and the output node N2 is connected to the output terminal T2.
  • semiconductor switching elements SW1 to SWn are connected in series between the input node N1 and the output node N2. Conduction (ON) and interruption (OFF) of the semiconductor switching elements SW1 to SWn are controlled by control signals S1 to Sn input from the control device 20, respectively.
  • control signals S1 to Sn input from the control device 20, respectively.
  • the semiconductor switching element SW is turned on by the control signal S of H (logical high) level and turned off by the control signal S of L (logical low) level. That is, the control signal S of H level corresponds to an ON command (conduction command) for turning on the semiconductor switching element SW, and the control signal S of L level is an OFF command (interruption command) for turning off the semiconductor switching element SW. Equivalent to.
  • FWD Freewheeling Diode
  • any self-extinguishing type switching element such as IGBT (Insulated Gate Bipolar Transistor), GCT (Gate Commutated Turn-off) thyristor.
  • IGBT Insulated Gate Bipolar Transistor
  • GCT Gate Commutated Turn-off
  • the semiconductor switching element is used as the “switching element” in the switch circuit 11.
  • the control device 20 controls ON / OFF to control passage and interruption of current, other switching elements are used.
  • the bidirectional converter 12 is connected between the output node N2 of the switch circuit 11 and the DC terminal T3.
  • Bidirectional converter 12 is configured to perform bidirectional power conversion between AC power output to output node N2 and DC power input / output to / from battery 3.
  • the bidirectional converter 12 corresponds to an example of “a power converter”.
  • the bidirectional converter 12 converts the AC power from the AC power supply 1 into DC power and stores the DC power in the battery 3 during normal operation when the AC power is supplied from the AC power supply 1. On the other hand, in the event of a power outage in which the supply of AC power from the AC power supply 1 is stopped or an instantaneous voltage drop of the AC power supply 1 occurs, the bidirectional converter 12 converts the DC power of the battery 3 into AC power of commercial frequency, and AC power is applied to the load 2.
  • the bidirectional converter 12 has a plurality of semiconductor switching elements, although not shown. ON / OFF of the plurality of semiconductor switching elements is controlled by a control signal generated by the control device 20.
  • the control signal is a pulse signal train and is a PWM (Pulse Width Modulation) signal.
  • the bidirectional converter 12 turns on or off a plurality of semiconductor switching elements at a predetermined timing in response to a control signal to generate AC power output at the output node N2 and DC power input / output at the DC terminal T3. Bi-directional power conversion can be performed between.
  • the voltage detector 14 detects an AC voltage (hereinafter, also referred to as “input voltage Vin”) input to the input node N1 of the switch circuit 11.
  • the voltage detector 16 detects an AC voltage (hereinafter, also referred to as “output voltage Vout”) output to the output node N2 of the switch circuit 11.
  • the voltage detector 18 detects the terminal voltage of the semiconductor switching element SW.
  • voltage detector 18 is configured to detect the voltage across the collector and emitter terminals of the IGBT.
  • the detected values V1 to Vn detected by the voltage detector 18 correspond to the inter-terminal voltages of the semiconductor switching elements SW1 to SWn, respectively.
  • inter-terminal voltage V when the inter-terminal voltages V1 to Vn are collectively described, they are also simply referred to as “inter-terminal voltage V”.
  • the controller 20 turns on / off the switch circuit 11 (semiconductor switching element SW) and turns on / off the bidirectional converter 12 by using a command from a host controller (not shown) or a detection signal input from the voltage detectors 14, 16 and 18.
  • the control device 20 can be composed of, for example, a microcomputer.
  • the control device 20 includes a CPU (Central Processing Unit) and a memory (not shown), and executes the control operation described below by software processing by the CPU executing a program stored in advance in the memory. You can Alternatively, part or all of the control operation can be realized by hardware processing using a built-in dedicated electronic circuit or the like instead of software processing.
  • FIG. 2 is a diagram for explaining the power supply path during normal times.
  • control device 20 controls semiconductor switching elements SW1 to SWn forming switch circuit 11 to control signals S1 to Sn at H level. (Conduction command) is given respectively.
  • the switch circuit 11 is turned on, and the AC power supply 1 and the load 2 are electrically connected.
  • the AC power from the AC power supply 1 is supplied to the load 2 via the switch circuit 11 as indicated by the arrow in the figure.
  • the AC power from the AC power supply 1 is further converted into DC power by the bidirectional converter 12 and stored in the battery 3.
  • the control device 20 stops the operation of the bidirectional converter 12.
  • FIG. 3 is a diagram for explaining the power supply path at the time of abnormality.
  • a power failure occurs when the supply of AC power from AC power supply 1 is stopped, or when an instantaneous voltage drop occurs in which the supply voltage of AC power supply 1 instantaneously drops, the DC power of battery 3 is It is converted into AC power by the directional converter 12, and the AC power is supplied to the load 2 via the output terminal T2.
  • the AC voltage (output voltage Vout) output from the bidirectional converter 12 to the output node N2 is input to the input node N1 from the AC power supply 1 before the abnormality occurs (input voltage Vin ),
  • the power conversion in the bidirectional converter 12 is controlled. According to this, it is possible to prevent the voltage from fluctuating or being instantaneously interrupted when the power supply path is switched.
  • the control device 20 gives the L level control signals S1 to Sn (cutoff command) to the semiconductor switching elements SW1 to SWn of the switch circuit 11, respectively.
  • the switch circuit 11 is turned off, and the AC power supply 1 and the load 2 are electrically cut off.
  • control device 20 stops the operation of bidirectional converter 12.
  • the bidirectional converter 12 is operated and the switch circuit 11 is turned off, so that the load 2 is connected to the load 2 using the power supply path shown in FIG. It is possible to continue supplying stable power. As a result, even when an abnormality occurs in the AC power supply 1 or the switch circuit 11, it is possible to continuously supply stable power to the load 2 without interruption.
  • FIG. 4 is a flowchart illustrating a control process of power supply device 10 according to the first embodiment. The control device 20 periodically executes the control process shown in FIG.
  • control device 20 determines whether or not the voltage drop of AC power supply 1 has occurred. Specifically, control device 20 determines whether a power failure or an instantaneous voltage drop has occurred in AC power supply 1, based on the detected value of input voltage Vin by voltage detector 14. For example, control device 20 determines whether a power failure or an instantaneous voltage drop has occurred by comparing the maximum value (or effective value) of the detected values of voltage detector 14 with a predetermined reference value.
  • the control device 20 determines in step S02 whether or not the switch circuit 11 is abnormal. For example, when a control abnormality occurs due to a failure of at least one semiconductor switching element SW or a failure of an IGBT gate drive circuit included in the semiconductor switching element SW, the control device 20 determines that the switch circuit 11 is abnormal.
  • control device 20 When the switch circuit 11 is normal (when NO is determined in S02), the control device 20 gives a conduction instruction to the semiconductor switching element SW of the switch circuit 11 in step S06.
  • the control device 20 performs the steps. Proceeding to S03, the DC power of the battery 3 is converted into AC power of commercial frequency by the control of the bidirectional converter 12, and the AC power is given to the load 2.
  • the AC voltage (output voltage Vout) output from the bidirectional converter 12 to the output node N2 is synchronized with the AC voltage (input voltage Vin) applied to the input node N1 from the AC power supply 1 before the voltage drop. In such a manner, the power conversion in the bidirectional converter 12 is controlled.
  • the battery 3 is switched from charging by the AC power from the AC power supply 1 to discharging for supplying power to the load 2.
  • control device 20 issues a cutoff command to the semiconductor switching elements SW1 to SWn of the switch circuit 11 in step S04.
  • control device 20 executes a cutoff abnormality determination process for determining whether there is an abnormality in the cutoff of switch circuit 11.
  • FIG. 5 is a block diagram for explaining a first configuration example of a determination unit that executes the disconnection abnormality determination processing shown in step S05 of FIG.
  • the function of each block shown in FIG. 5 can be realized by software processing and / or hardware processing by the control device 20.
  • the determination unit 22A includes a subtractor 30, a comparator 32, n comparators 34_1 to 34_n, a logical sum circuit 36, and a logical product circuit 38.
  • the subtractor 30 calculates the voltage difference between the detected value of the input voltage Vin by the voltage detector 14 and the detected value of the output voltage Vout by the voltage detector 16.
  • the comparator 32 compares the voltage difference between the input voltage Vin and the output voltage Vout with the threshold value Vth1, and outputs a signal indicating the comparison result. When the voltage difference is larger than the threshold value Vth1, the output signal of the comparator 32 becomes H level, and when the voltage difference is smaller than the threshold value Vth1, the output signal of the comparator 32 becomes L level.
  • the threshold value Vth1 corresponds to an example of “first threshold value”.
  • the n comparators 34_1 to 34_n receive the inter-terminal voltages V1 to Vn of the semiconductor switching element by the n voltage detectors 18, respectively.
  • the comparator 34 compares the inter-terminal voltage V of the corresponding semiconductor switching element SW with the reference value Vref1 and outputs a signal indicating the comparison result.
  • the output signal of the comparator 34 becomes H level
  • the output signal of the comparator 34 becomes L level.
  • the reference value Vref1 corresponds to an example of the “reference value”.
  • the logical sum circuit 36 calculates the logical sum (OR) of the output signals of the comparators 34_1 to 34_n and outputs a signal indicating the calculation result.
  • the logical product circuit 38 calculates the logical product (AND) of the output signal of the comparator 32 and the output signal of the logical sum circuit 36, and outputs a signal indicating the calculation result.
  • the output signal of the AND circuit 38 is output to the outside of the power supply device 10 (for example, the host controller) as the detection signal DET.
  • the determination unit 22A when the voltage difference between the input voltage Vin and the output voltage Vout is larger than the threshold value Vth1, p (1 ⁇ p ⁇ n) semiconductor switching elements out of the n semiconductor switching elements SW1 to SWn.
  • the H-level detection signal DET is output.
  • the determination unit 22A When p semiconductor switching elements SW (1 ⁇ p ⁇ n) that cannot be interrupted are included among the n semiconductor switching elements SW1 to SWn, the determination unit 22A outputs the H-level detection signal DET. ..
  • the disconnection abnormality determination processing by the determination unit 22A when the voltage difference between the input voltage Vin and the output voltage Vout is smaller than the threshold value Vth1, the voltage across the terminals of the semiconductor switching element SW that is normally turned off is significant. Since there is no voltage difference, it is not possible to detect the disconnection abnormality.
  • the output voltage Vout is generated by the bidirectional converter 12 due to the occurrence of an abnormality in the switch circuit 11 (however, the AC power supply 1 is normal) (S03 in FIG. 4), and a cutoff command is sent to the switch circuit 11.
  • the inter-terminal voltage V of the normally-off semiconductor switching element SW becomes a value close to zero voltage. .. Therefore, a significant difference does not appear between the terminal voltage V of the semiconductor switching element SW that cannot be interrupted and the terminal voltage V of the semiconductor switching element SW that is in the OFF state, and as a result, the disconnection abnormality can be detected. Becomes difficult.
  • the determination unit 22A is configured to detect the disconnection abnormality based on the inter-terminal voltages V1 to Vn of the n semiconductor switching elements SW1 to SWn, and thus such erroneous detection can be avoided.
  • the power supply device 10 As described above, according to the power supply device 10 according to the first embodiment, it is possible to accurately detect the abnormality regarding the interruption of the semiconductor switching element forming the switch circuit.
  • FIG. 6 is a block diagram for explaining a second configuration example of the determination unit that executes the disconnection abnormality determination processing shown in step S05 of FIG.
  • the function of each block shown in FIG. 6 can be realized by software processing and / or hardware processing by the control device 20.
  • the determination unit 22B includes n comparators 40_1 to 40_n, a logical sum circuit 42, and logical product circuits 44 and 46.
  • the n comparators 40_1 to 40_n receive the inter-terminal voltages V1 to Vn of the semiconductor switching element by the n voltage detectors 18, respectively.
  • the comparator 40 compares the terminal voltage V of the corresponding semiconductor switching element SW with the reference value Vref2, and outputs a signal indicating the comparison result.
  • the output signal of the comparator 40 becomes H level
  • the output signal of the comparator 40 becomes L level.
  • the reference value Vref2 corresponds to an example of the “reference value”.
  • the logical sum circuit 42 calculates the logical sum (OR) of the output signals of the comparators 40_1 to 40_n and outputs a signal indicating the calculation result.
  • the logical product circuit 44 calculates the logical product (AND) of the output signals of the comparators 40_1 to 40_n and outputs a signal indicating the calculation result.
  • the logical product circuit 46 calculates the logical product of the output signal of the logical sum circuit 42 and the inverted signal of the output signal of the logical product circuit 44, and outputs a signal indicating the calculation result. ..
  • the output signal of the AND circuit 46 is output to the outside of the power supply device 10 (for example, the host controller) as the detection signal DET.
  • each semiconductor switching element SW is normally turned off.
  • the logical sum circuit 42 outputs an H level signal and the logical product circuit 44 outputs an L level signal.
  • the logical product circuit 46 outputs the H level detection signal DET. Is output.
  • the determination unit 22B when the inter-terminal voltage V of the q (1 ⁇ q ⁇ n ⁇ 1) semiconductor switching elements SW out of the n semiconductor switching elements SW1 to SWn is smaller than the reference value Vref2. Then, the H-level detection signal DET is output.
  • the detection signal DET is received by receiving the L level output signal of the AND circuit 42. Since it becomes L level, it is not possible to detect the disconnection abnormality. Considering that the probability that the n semiconductor switching elements SW cannot be interrupted at the same time is extremely low, it is considered that there is no defect due to the inability to detect the disconnection abnormality.
  • the disconnection abnormality determination processing by the determination unit 22B similarly to the determination unit 22A, when the voltage difference between the input voltage Vin and the output voltage Vout is small, the voltage V between the terminals of the semiconductor switching element SW that cannot be interrupted. And a voltage V between the terminals of the semiconductor switching element SW that has been normally turned off do not appear to be significantly different, which makes it difficult to detect the disconnection abnormality.
  • a situation in which an overvoltage is applied to the semiconductor switching element SW that is in the off state does not occur, and thus it is considered that there is no problem due to the detection of the disconnection abnormality.
  • the determination unit 22B is configured to detect the disconnection abnormality based on the inter-terminal voltages V1 to Vn of the n semiconductor switching elements SW1 to SWn, and thus such erroneous detection can be avoided.
  • the power supply device 10 According to the power supply device 10 according to the second embodiment, it is possible to accurately detect the abnormality regarding the interruption of the semiconductor switching element forming the switch circuit.
  • FIG. 7 is a block diagram for explaining a third configuration example of the determination unit that executes the disconnection abnormality determination processing shown in step S05 of FIG.
  • the function of each block shown in FIG. 7 can be realized by software processing and / or hardware processing by the control device 20.
  • the determination unit 22C includes n comparators 50_1 to 50_n, n AND circuits 52_1 to 52_n, and an OR circuit 54.
  • the n comparators 40_1 to 40_n receive the inter-terminal voltages V1 to Vn of the semiconductor switching element by the n voltage detectors 18, respectively.
  • the comparators 40_1 to 40_n are collectively described, they are also simply referred to as “comparators 40”.
  • the comparator 40 compares the terminal voltage V of the corresponding semiconductor switching element SW with the reference value Vref2, and outputs a signal indicating the comparison result.
  • the output signal of the comparator 40 becomes H level
  • the output signal of the comparator 40 becomes L level.
  • the n logical product circuits 52_1 to 52_n calculate the logical product of the output signals of the n comparators 50_1 to 50_n, and output the signal tail indicating the calculation result.
  • the logical product circuits 52_1 to 52_n are collectively described, they are also simply referred to as the “logical product circuit 52”.
  • one of the output signals of the n comparators 50 receives the inverted signal thereof.
  • the n AND circuits 52 are different from each other.
  • the logical sum circuit 54 calculates the logical sum (OR) of the output signals of the logical product circuits 52_1 to 52_n and outputs a signal indicating the calculation result.
  • the output signal of the OR circuit 54 is output to the outside of the power supply device 10 (for example, the host controller) as the detection signal DET.
  • the comparator 50_1 When any one of the above semiconductor switching elements SW is the semiconductor switching element SW1, the comparator 50_1 outputs an L level signal and the comparators 50_2 to 50_n output an H level signal. Accordingly, the AND circuit 52_1 receives the inverted signal of the output signal of the comparator 50_1 and the output signals of the comparators 50_2 to 50_n and outputs a signal of H level. On the other hand, each of the AND circuits 52_2 to 52_n receives the output signal of the comparator 50_1 and the output signals of the comparators 50_2 to 50_n (one of them is an inverted signal) and outputs an L level signal. As a result, the AND circuit 54 outputs the H-level detection signal DET.
  • the determination unit 22C when the inter-terminal voltage V of any one of the n semiconductor switching elements SW1 to SWn is smaller than the reference value Vref2, the H level detection signal is detected. DET will be output.
  • the disconnection abnormality determination processing by the determination unit 22C when the two or more semiconductor switching elements SW cannot be shut off, the output signals of the n AND circuits 52 are all at the L level. Abnormality cannot be detected. Therefore, it is preferable that the disconnection abnormality determination processing by the determination unit 22C be applied to the power supply device 10 in which the plurality of semiconductor switching elements SW are unlikely to be unable to be disconnected at the same time.
  • the disconnection abnormality determination processing by the determination unit 22C similarly to the determination units 22A and 22B, when the voltage difference between the input voltage Vin and the output voltage Vout is small, the terminals of the semiconductor switching element SW that cannot be shut off are disconnected. Since there is no significant difference between the voltage V and the voltage V between the terminals of the semiconductor switching element SW that has been normally turned off, it is difficult to detect the disconnection abnormality. However, in such a situation, a situation in which an overvoltage is applied to the semiconductor switching element SW that is in the off state does not occur, so it is considered that there is no problem due to the detection of the disconnection abnormality.
  • the determination unit 22C is configured to detect the disconnection abnormality based on the inter-terminal voltages V1 to Vn of the n semiconductor switching elements SW1 to SWn, such erroneous detection can be avoided.
  • the power supply device 10 According to the power supply device 10 according to the third embodiment, it is possible to accurately detect an abnormality regarding interruption of the semiconductor switching element forming the switch circuit.
  • V1 to V4 in the table represent the voltage across the terminals of the semiconductor switching elements SW1 to SW4.
  • the value (H or L) of V1 to V4 indicates the output signal level of the comparator to which V1 to V4 is input.
  • the output signal of the corresponding comparator 34_1 Becomes H level.
  • the output signal of the comparator 34_1 becomes L level.
  • the determination unit 22B when the inter-terminal voltage V1 of the semiconductor switching element SW1 is smaller than the reference value Vref2 (V1 ⁇ Vref2), that is, when the semiconductor switching element SW1 cannot be shut off, the corresponding comparator 40_1 ( Alternatively, the output signal of 50_1) becomes L level.
  • the output signal of the comparator 40_1 when the inter-terminal voltage V1 of the semiconductor switching element SW1 is larger than the reference value Vref2 (V1> Vref2), that is, when the semiconductor switching element SW1 is normally turned off, the output signal of the comparator 40_1 (or 50_1) is L. It becomes a level.
  • the determination unit 22A 22C indicate whether or not the disconnection abnormality can be detected. “OK” indicates that the determination unit can detect the disconnection abnormality, and “NG” indicates that the determination unit cannot detect the disconnection abnormality.
  • the determination units 22A to 22C differ in the form of the cutoff abnormality that can be detected. Therefore, the determination units 22A to 22C can be selected depending on what kind of mode is desired to be detected. Alternatively, any one of the determination units 22A to 22C may be selected according to the total number n of the semiconductor switching elements SW included in the switch circuit 11. For example, when n is a relatively large value and it is determined that there is a low possibility that 100% abnormality will occur, the determination unit 22B or 22C can be applied. Further, when it is determined that it is unlikely that two or more semiconductor switching elements SW cannot be shut off at the same time, the determination unit 22C can be applied. On the other hand, the determination unit 22A can be applied when there is a possibility that a total number of abnormalities will occur regardless of the size of n.
  • FIG. 9 is a block diagram for explaining a fourth configuration example of the determination unit that executes the disconnection abnormality determination processing shown in step S05 of FIG.
  • the determination unit 22 includes determination units 22A to 22C and a selection unit 24 for selecting any one of these determination units.
  • the selection unit 24 is provided with a selection signal for selecting a determination unit to be used in the disconnection abnormality determination process from the host controller.
  • the selection unit 24 is configured to output the detection signals of the voltage detectors 14, 16, 18 to the determination unit selected by the selection signal.
  • the configuration when the voltage difference between the input voltage Vin and the output voltage Vout is small, the configuration may be such that the cutoff abnormality is not detected.
  • FIG. 10 is a flowchart illustrating a control process of power supply device 10 according to the fourth embodiment.
  • the flowchart of FIG. 10 is obtained by adding the process of step S07 to the flowchart of FIG.
  • control device 20 issues a cutoff command to semiconductor switching elements SW1 to SWn of switch circuit 11 in step S04.
  • control device 20 determines whether or not the voltage difference (
  • > Vth2 when YES is determined in S07, the control device 20 proceeds to step S05, and executes a disconnection abnormality determination process that determines whether or not there is an abnormality in the disconnection of the switch circuit 11.
  • ⁇ Vth2 when NO is determined in S07), control device 20 does not perform the disconnection abnormality determination process.
  • the power supply device 10 when the voltage difference (
  • the determination units 22B and 22C are configured to determine the disconnection abnormality by using only the inter-terminal voltage V of the semiconductor switching element SW, by applying the control processing of the fourth embodiment, the disconnection abnormality is erroneously made. Can be prevented from being detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Electronic Switches (AREA)

Abstract

In this power supply device, a switch circuit (11) includes n (n ≧ 2) switching elements (SW) connected in series between an input node (N1) and an output node (N2). If an abnormality of at least one of an AC power supply (1) and the switch circuit (11) is detected in a state in which conduction commands to the n switching elements (SW) are output, a control device (20) controls a power converter (12) to convert the DC power of a power storage device (3) to an AC power synchronized with the AC power supplied from the AC power supply (1) during normal time and supplies the converted AC power to the output node (N2). The control device (20) further generates interruption commands for interrupting the n switching elements (SW) while the power converter (12) is performing power conversion, and detects, during the generation of the interruption commands, an abnormality of the interruption of the switch circuit (11) on the basis of the inter-terminal voltages of the n switching elements (SW).

Description

電源装置Power supply
 この発明は、電源装置に関する。 This invention relates to a power supply device.
 特開平2-106158号公報(特許文献1)には、複数の自己消弧型の半導体スイッチング素子を直列接続して構成された回路を有する電力変換装置が開示される。特許文献1には、各半導体スイッチング素子に対し、遮断不能を検出するための検出手段を設ける。検出手段は、半導体スイッチング素子であるGTO(Gate Turn-Off thyristor)の端子間電圧を利用して、遮断不能を検出するように構成される。 Japanese Patent Laying-Open No. 2-106158 (Patent Document 1) discloses a power conversion device having a circuit configured by connecting a plurality of self-turn-off type semiconductor switching elements in series. In Patent Document 1, detection means for detecting the inability to cut off is provided for each semiconductor switching element. The detection means is configured to detect the inability to cut off by using the voltage across the terminals of a GTO (Gate Turn-Off thyristor) which is a semiconductor switching element.
特開平2-106158号公報JP-A-2-106158
 負荷に交流電力を供給するための電源装置として、瞬停補償装置(Multiple Power Compensator)がある。瞬停補償装置は、一般的に、交流電源および負荷の間に接続され、交流電源の停電または瞬時電圧低下が発生した場合であっても安定した交流電力を無瞬断で負荷に供給することが可能に構成される。 There is an instantaneous power failure compensation device (Multiple Power Compensator) as a power supply device for supplying AC power to a load. An instantaneous power failure compensator is generally connected between an AC power supply and a load, and supplies stable AC power to the load without interruption even when a power failure or an instantaneous voltage drop occurs in the AC power supply. Can be configured.
 瞬停補償装置において、交流電源および負荷の間には、複数の半導体スイッチング素子を直列接続して構成されたスイッチ回路が設けられている。通常時は複数の半導体スイッチング素子を導通(オン)させることにより、交流電源の交流電力を負荷へ供給する。一方、停電または瞬時電圧低下の発生時や制御異常の発生時には、複数の半導体スイッチング素子を遮断(オフ)して交流電源を遮断するとともに、双方向コンバータが電力貯蔵装置から負荷への電力供給を開始する。 In the instantaneous power failure compensator, a switch circuit configured by connecting a plurality of semiconductor switching elements in series is provided between the AC power supply and the load. Normally, the AC power of the AC power supply is supplied to the load by turning on the plurality of semiconductor switching elements. On the other hand, when a power failure or momentary voltage drop occurs or a control abnormality occurs, the semiconductor switching elements are shut off (OFF) to shut off the AC power supply, and the bidirectional converter supplies power from the power storage device to the load. Start.
 このような電源装置において、複数の半導体スイッチング素子のいずれかが遮断不能となると、スイッチ回路の内部では、スイッチ回路の入力端子および出力端子の電圧差が、正常にオフされた一部の半導体スイッチング素子に集中的に印加される可能性がある。したがって、半導体スイッチング素子の遮断不能を検知する手段が必要となる。 In such a power supply device, when one of the plurality of semiconductor switching elements cannot be shut off, the voltage difference between the input terminal and the output terminal of the switch circuit is partially turned off inside the switch circuit. It may be applied intensively to the device. Therefore, a means for detecting the inability to cut off the semiconductor switching element is required.
 しかしながら、電源装置においてスイッチ回路が遮断される場面では、双方向コンバータの制御によって、スイッチ回路の出力側には、スイッチ回路の入力側にされる交流電圧と同期した交流電圧が供給されている。そのため、スイッチ回路の入力電圧と出力電圧とが同等の電圧レベルとなっている場合がある。このような場合、スイッチ回路内部では、正常にオフされた半導体スイッチング素子の端子間に有意な電圧差が生じていない。そのため、上記特許文献1に記載されるように、半導体スイッチング素子の端子間電圧を利用すると、誤って遮断不能を検知することが懸念される。 However, when the switch circuit is cut off in the power supply device, the output voltage of the switch circuit is supplied with an AC voltage that is synchronized with the AC voltage applied to the input side of the switch circuit, under the control of the bidirectional converter. Therefore, the input voltage and the output voltage of the switch circuit may be at the same voltage level. In such a case, a significant voltage difference does not occur between the terminals of the normally-off semiconductor switching element inside the switch circuit. Therefore, as described in the above-mentioned Patent Document 1, if the terminal voltage of the semiconductor switching element is used, there is a concern that the interruption failure may be erroneously detected.
 この発明は上述のような問題点を解決するためになされたものであって、この発明の目的は、電源装置において、直列接続された複数の半導体スイッチング素子を有するスイッチ回路の遮断についての異常を正確に検知することである。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to prevent an abnormality in a power supply device from interrupting a switch circuit having a plurality of semiconductor switching elements connected in series. It is to detect accurately.
 この発明によれば、負荷に電力を供給する電源装置は、スイッチ回路と、電力変換器と、スイッチ回路および電力変換器を制御する制御装置とを備える。スイッチ回路は、交流電源に接続される入力ノードと、負荷に接続される出力ノードとを有する。電力変換器は、出力ノードに出力される交流電力と電力貯蔵装置に入出力される直流電力との間で双方向の電力変換を実行するように構成される。スイッチ回路は、入力ノードと出力ノードとの間に直列に接続されるn個(nは2以上の整数)のスイッチング素子を含む。制御装置は、n個のスイッチング素子を導通するための導通指令を出力している状態において、交流電源およびスイッチ回路の少なくとも一方の異常が検知された場合には、電力変換器の制御によって、電力貯蔵装置の直流電力を、正常時に交流電源から供給される交流電力に同期した交流電力に変換して出力ノードへ供給するように構成される。制御装置は、さらに、電力変換器における電力変換の実行中にn個のスイッチング素子を遮断するための遮断指令を発生し、かつ、遮断指令の発生中、n個のスイッチング素子の端子間電圧に基づいてスイッチ回路の遮断についての異常を検知する。 According to the present invention, the power supply device that supplies power to the load includes a switch circuit, a power converter, and a control device that controls the switch circuit and the power converter. The switch circuit has an input node connected to the AC power supply and an output node connected to the load. The power converter is configured to perform bidirectional power conversion between AC power output to the output node and DC power input to and output from the power storage device. The switch circuit includes n (n is an integer of 2 or more) switching elements connected in series between an input node and an output node. The control device controls the electric power converter to control the electric power when an abnormality is detected in at least one of the AC power supply and the switch circuit in a state in which a conduction command for conducting the n switching elements is output. It is configured to convert the DC power of the storage device to AC power that is synchronized with the AC power supplied from the AC power supply during normal operation and supply the AC power to the output node. The control device further generates a cutoff command for cutting off the n switching elements during execution of the power conversion in the power converter, and the inter-terminal voltage of the n switching elements is generated during the cutoff command. Based on this, an abnormality regarding the cutoff of the switch circuit is detected.
 この発明によれば、電源装置において、直列接続された複数の半導体スイッチング素子を有するスイッチ回路の遮断についての異常を正確に検知することができる。 According to the present invention, in the power supply device, it is possible to accurately detect an abnormality regarding interruption of a switch circuit having a plurality of semiconductor switching elements connected in series.
この発明の実施の形態1に従う電源装置の概略構成を示す図である。It is a figure which shows schematic structure of the power supply device according to Embodiment 1 of this invention. 通常時における電力供給経路を説明するための図である。It is a figure for demonstrating the electric power supply path at the time of normal. 異常時における電力供給経路を説明するための図である。It is a figure for explaining a power supply course at the time of abnormalities. 実施の形態1に従う電源装置の制御処理を説明するフローチャートである。6 is a flowchart illustrating a control process of the power supply device according to the first embodiment. 図4のステップS05に示す遮断異常判定処理を実行する判定部の第1の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the 1st structural example of the determination part which performs the disconnection abnormality determination process shown to step S05 of FIG. 図4のステップS05に示す遮断異常判定処理を実行する判定部の第2の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the 2nd structural example of the determination part which performs the disconnection abnormality determination process shown to step S05 of FIG. 図4のステップS05に示す遮断異常判定処理を実行する判定部の第3の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the 3rd example of a structure of the determination part which performs the interruption | blocking abnormality determination process shown to step S05 of FIG. 第1から第3の制御構成例の判定部が検知できる遮断異常の態様を比較した結果を示す図である。It is a figure which shows the result of having compared the aspect of the disconnection abnormality which the determination part of the 1st-3rd control structural example can detect. 図4のステップS05に示す遮断異常判定処理を実行する判定部の第4の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the 4th structural example of the determination part which performs the disconnection abnormality determination process shown to step S05 of FIG. 実施の形態4に従う電源装置の制御処理を説明するフローチャートである。9 is a flowchart illustrating a control process of the power supply device according to the fourth embodiment.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下では図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, the same or corresponding parts in the drawings will be denoted by the same reference numerals, and the description thereof will not be repeated in principle.
 [実施の形態1]
 図1は、この発明の実施の形態1に従う電源装置の概略構成を示す図である。
[Embodiment 1]
1 is a diagram showing a schematic configuration of a power supply device according to a first embodiment of the present invention.
 図1を参照して、電源装置10は、交流電源1および負荷2の間に接続され、交流電源1から交流電力を受けて負荷2に交流電力を供給するように構成される。電源装置10は、例えば、交流電源1の停電または瞬時電圧低下が発生した場合において、安定した交流電力を無瞬断で負荷2に供給するための装置(例えば、瞬停補償装置)に適用され得る。なお、図1では、一相の交流電力に関連する部分のみが示されているが、電源装置10は三相交流電力を受けて三相交流電力を出力するようにしてもよい。 Referring to FIG. 1, power supply device 10 is connected between AC power supply 1 and load 2, and is configured to receive AC power from AC power supply 1 and supply AC power to load 2. The power supply device 10 is applied to, for example, a device (for example, a momentary power failure compensation device) that supplies stable AC power to the load 2 without interruption in the event of a power failure or an instantaneous voltage drop of the AC power supply 1. obtain. Although only the portion related to one-phase AC power is shown in FIG. 1, the power supply device 10 may receive three-phase AC power and output three-phase AC power.
 交流電源1は、代表的には商用交流電源であり、商用周波数の交流電力を電源装置10に供給する。負荷2は、電源装置10から供給される商用周波数の交流電力によって駆動される。 The AC power supply 1 is typically a commercial AC power supply, and supplies AC power having a commercial frequency to the power supply device 10. The load 2 is driven by AC power of commercial frequency supplied from the power supply device 10.
 図1に示すように、電源装置10は、入力端子T1、出力端子T2、直流端子T3、スイッチ回路11、双方向コンバータ12、電圧検出器14,16,18、および制御装置20を備える。 As shown in FIG. 1, the power supply device 10 includes an input terminal T1, an output terminal T2, a DC terminal T3, a switch circuit 11, a bidirectional converter 12, voltage detectors 14, 16 and 18, and a control device 20.
 入力端子T1は、交流電源1に電気的に接続されており、交流電源1から供給される商用周波数の交流電力を受ける。出力端子T2は負荷2に接続される。直流端子T3はバッテリ3に接続される。バッテリ3は、直流電力を蓄積する「電力貯蔵装置」の一実施例に対応する。電力貯蔵装置として、バッテリ3に代えて、電気二重層コンデンサを直流端子T3に接続してもよい。 The input terminal T1 is electrically connected to the AC power supply 1 and receives the AC power of the commercial frequency supplied from the AC power supply 1. The output terminal T2 is connected to the load 2. The DC terminal T3 is connected to the battery 3. The battery 3 corresponds to an example of “power storage device” that stores DC power. As the power storage device, an electric double layer capacitor may be connected to the DC terminal T3 instead of the battery 3.
 スイッチ回路11は、入力端子T1および出力端子T2の間に接続され、交流電源1と負荷2との電気的接続および遮断を切り替えるように構成される。具体的には、スイッチ回路11は、入力ノードN1および出力ノードN2と、n個(nは2以上の整数)の半導体スイッチング素子SW1~SWnとを有する。入力ノードN1は入力端子T1に接続され、出力ノードN2は出力端子T2に接続される。 The switch circuit 11 is connected between the input terminal T1 and the output terminal T2, and is configured to switch electrical connection and disconnection between the AC power supply 1 and the load 2. Specifically, the switch circuit 11 has an input node N1 and an output node N2, and n (n is an integer of 2 or more) semiconductor switching elements SW1 to SWn. The input node N1 is connected to the input terminal T1 and the output node N2 is connected to the output terminal T2.
 n個の半導体スイッチング素子SW1~SWnは、入力ノードN1および出力ノードN2の間に直列に接続される。半導体スイッチング素子SW1~SWnは、制御装置20からそれぞれ入力される制御信号S1~Snによって、導通(オン)および遮断(オフ)が制御される。以下では、半導体スイッチング素子SW1~SWnを包括的に表記する場合には、単に「半導体スイッチング素子SW」とも称し、制御信号S1~Snを包括的に表記する場合には、単に「制御信号S」とも称する。 The n semiconductor switching elements SW1 to SWn are connected in series between the input node N1 and the output node N2. Conduction (ON) and interruption (OFF) of the semiconductor switching elements SW1 to SWn are controlled by control signals S1 to Sn input from the control device 20, respectively. Hereinafter, when the semiconductor switching elements SW1 to SWn are collectively described, they are also simply referred to as “semiconductor switching elements SW”, and when the control signals S1 to Sn are collectively described, they are simply referred to as “control signal S”. Also called.
 半導体スイッチング素子SWは、H(論理ハイ)レベルの制御信号Sによってオンされ、L(論理ロー)レベルの制御信号Sによってオフされる。すなわち、Hレベルの制御信号Sは半導体スイッチング素子SWをオンするためのオン指令(導通指令)に相当し、Lレベルの制御信号Sは半導体スイッチング素子SWをオフするためのオフ指令(遮断指令)に相当する。 The semiconductor switching element SW is turned on by the control signal S of H (logical high) level and turned off by the control signal S of L (logical low) level. That is, the control signal S of H level corresponds to an ON command (conduction command) for turning on the semiconductor switching element SW, and the control signal S of L level is an OFF command (interruption command) for turning off the semiconductor switching element SW. Equivalent to.
 半導体スイッチング素子SWは、IGBT(Insulated Gate Bipolar Transistor)、GCT(Gate Commutated Turn-off)サイリスタ等の任意の自己消弧型のスイッチング素子に対して、FWD(Freewheeling Diode)を逆並列に接続することによって構成することができる。本実施の形態では、半導体スイッチング素子をスイッチ回路11内の「スイッチング素子」として使用するが、制御装置20によってオンオフが制御されて、電流の通過および遮断が制御可能であれば、その他のスイッチング素子を半導体スイッチング素子SWに代えて用いることも可能である。 For the semiconductor switching element SW, FWD (Freewheeling Diode) should be connected in anti-parallel to any self-extinguishing type switching element such as IGBT (Insulated Gate Bipolar Transistor), GCT (Gate Commutated Turn-off) thyristor. Can be configured by. In the present embodiment, the semiconductor switching element is used as the “switching element” in the switch circuit 11. However, if the control device 20 controls ON / OFF to control passage and interruption of current, other switching elements are used. Can be used instead of the semiconductor switching element SW.
 双方向コンバータ12は、スイッチ回路11の出力ノードN2と直流端子T3との間に接続される。双方向コンバータ12は、出力ノードN2に出力される交流電力とバッテリ3に入出力される直流電力との間で双方向の電力変換を行なうように構成される。双方向コンバータ12は「電力変換器」の一実施例に対応する。 The bidirectional converter 12 is connected between the output node N2 of the switch circuit 11 and the DC terminal T3. Bidirectional converter 12 is configured to perform bidirectional power conversion between AC power output to output node N2 and DC power input / output to / from battery 3. The bidirectional converter 12 corresponds to an example of “a power converter”.
 双方向コンバータ12は、交流電源1から交流電力が供給されている通常時は、交流電源1からの交流電力を直流電力に変換し、その直流電力をバッテリ3に蓄える。一方、交流電源1からの交流電力の供給が停止する停電もしくは、交流電源1の瞬時電圧低下の発生時には、双方向コンバータ12は、バッテリ3の直流電力を商用周波数の交流電力に変換し、その交流電力を負荷2に与える。 The bidirectional converter 12 converts the AC power from the AC power supply 1 into DC power and stores the DC power in the battery 3 during normal operation when the AC power is supplied from the AC power supply 1. On the other hand, in the event of a power outage in which the supply of AC power from the AC power supply 1 is stopped or an instantaneous voltage drop of the AC power supply 1 occurs, the bidirectional converter 12 converts the DC power of the battery 3 into AC power of commercial frequency, and AC power is applied to the load 2.
 双方向コンバータ12は、図示は省略するが、複数の半導体スイッチング素子を有する。複数の半導体スイッチング素子は、制御装置20により生成される制御信号によってオンオフが制御される。制御信号は、パルス信号列であり、PWM(Pulse Width Modulation)信号である。双方向コンバータ12は、制御信号に応答して複数の半導体スイッチング素子を所定のタイミングでオンまたはオフさせることにより、出力ノードN2に出力される交流電力と直流端子T3に入出力される直流電力との間で双方向の電力変換を実行することができる。 The bidirectional converter 12 has a plurality of semiconductor switching elements, although not shown. ON / OFF of the plurality of semiconductor switching elements is controlled by a control signal generated by the control device 20. The control signal is a pulse signal train and is a PWM (Pulse Width Modulation) signal. The bidirectional converter 12 turns on or off a plurality of semiconductor switching elements at a predetermined timing in response to a control signal to generate AC power output at the output node N2 and DC power input / output at the DC terminal T3. Bi-directional power conversion can be performed between.
 電圧検出器14は、スイッチ回路11の入力ノードN1に入力される交流電圧(以下、「入力電圧Vin」とも称する)を検出する。電圧検出器16は、スイッチ回路11の出力ノードN2に出力される交流電圧(以下、「出力電圧Vout」とも称する)を検出する。 The voltage detector 14 detects an AC voltage (hereinafter, also referred to as “input voltage Vin”) input to the input node N1 of the switch circuit 11. The voltage detector 16 detects an AC voltage (hereinafter, also referred to as “output voltage Vout”) output to the output node N2 of the switch circuit 11.
 電圧検出器18は、半導体スイッチング素子SWの端子間電圧を検出する。図1の例では、電圧検出器18は、IGBTのコレクタ端子およびエミッタ端子間の電圧を検出するように構成される。電圧検出器18によって検出される検出値V1~Vnは、それぞれ、半導体スイッチング素子SW1~SWnの端子間電圧に対応する。以下では、端子間電圧V1~Vnを包括的に表記する場合には、単に「端子間電圧V」とも称する。 The voltage detector 18 detects the terminal voltage of the semiconductor switching element SW. In the example of FIG. 1, voltage detector 18 is configured to detect the voltage across the collector and emitter terminals of the IGBT. The detected values V1 to Vn detected by the voltage detector 18 correspond to the inter-terminal voltages of the semiconductor switching elements SW1 to SWn, respectively. In the following, when the inter-terminal voltages V1 to Vn are collectively described, they are also simply referred to as “inter-terminal voltage V”.
 制御装置20は、図示しない上位コントローラからの指令や、電圧検出器14,16,18から入力された検出信号などを用いて、スイッチ回路11(半導体スイッチング素子SW)のオンオフおよび双方向コンバータ12の運転を制御する。制御装置20は、例えばマイクロコンピュータなどで構成することが可能である。一例として、制御装置20は、図示しないCPU(Central Processing Unit)およびメモリを内蔵し、メモリに予め格納されたプログラムをCPUが実行することによるソフトウェア処理によって、以下で説明する制御動作を実行することができる。あるいは、当該制御動作の一部または全部について、ソフトウェア処理に代えて、内蔵された専用の電子回路などを用いたハードウェア処理によって実現することも可能である。 The controller 20 turns on / off the switch circuit 11 (semiconductor switching element SW) and turns on / off the bidirectional converter 12 by using a command from a host controller (not shown) or a detection signal input from the voltage detectors 14, 16 and 18. Control driving. The control device 20 can be composed of, for example, a microcomputer. As an example, the control device 20 includes a CPU (Central Processing Unit) and a memory (not shown), and executes the control operation described below by software processing by the CPU executing a program stored in advance in the memory. You can Alternatively, part or all of the control operation can be realized by hardware processing using a built-in dedicated electronic circuit or the like instead of software processing.
 次に、図2および図3を参照して、本実施の形態に従う電源装置10の動作について説明する。 Next, the operation of power supply device 10 according to the present embodiment will be described with reference to FIGS. 2 and 3.
 図2は、通常時における電力供給経路を説明するための図である。
 図2を参照して、交流電源1から正常に電力が供給される通常時には、制御装置20は、スイッチ回路11を構成する半導体スイッチング素子SW1~SWnに対して、Hレベルの制御信号S1~Sn(導通指令)をそれぞれ与える。半導体スイッチング素子SW1~SWnがオンすることにより、スイッチ回路11がオン状態となり、交流電源1および負荷2が電気的に接続される。この結果、図中に矢印で示すように、交流電源1からの交流電力はスイッチ回路11を経由して負荷2に供給される。
FIG. 2 is a diagram for explaining the power supply path during normal times.
Referring to FIG. 2, in a normal state in which power is normally supplied from AC power supply 1, control device 20 controls semiconductor switching elements SW1 to SWn forming switch circuit 11 to control signals S1 to Sn at H level. (Conduction command) is given respectively. When the semiconductor switching elements SW1 to SWn are turned on, the switch circuit 11 is turned on, and the AC power supply 1 and the load 2 are electrically connected. As a result, the AC power from the AC power supply 1 is supplied to the load 2 via the switch circuit 11 as indicated by the arrow in the figure.
 交流電源1からの交流電力は、さらに、双方向コンバータ12によって直流電力に変換されてバッテリ3に蓄えられる。バッテリ3の端子間電圧が所定の充電停止電圧に達した場合には、制御装置20は、双方向コンバータ12の運転を停止させる。 The AC power from the AC power supply 1 is further converted into DC power by the bidirectional converter 12 and stored in the battery 3. When the voltage between the terminals of the battery 3 reaches a predetermined charging stop voltage, the control device 20 stops the operation of the bidirectional converter 12.
 図3は、異常時における電力供給経路を説明するための図である。
 図3を参照して、交流電源1からの交流電力の供給が停止された停電時、または交流電源1の供給電圧が瞬間的に低下する瞬時電圧低下の発生時、バッテリ3の直流電力が双方向コンバータ12によって交流電力に変換され、その交流電力が出力端子T2を介して負荷2に供給される。
FIG. 3 is a diagram for explaining the power supply path at the time of abnormality.
Referring to FIG. 3, when a power failure occurs when the supply of AC power from AC power supply 1 is stopped, or when an instantaneous voltage drop occurs in which the supply voltage of AC power supply 1 instantaneously drops, the DC power of battery 3 is It is converted into AC power by the directional converter 12, and the AC power is supplied to the load 2 via the output terminal T2.
 このとき、制御装置20は、双方向コンバータ12から出力ノードN2に出力される交流電圧(出力電圧Vout)が、異常発生前の交流電源1から入力ノードN1に入力される交流電圧(入力電圧Vin)に同期するように双方向コンバータ12における電力変換を制御する。これによると、電力供給経路の切り替え時に電圧が変動または瞬断することを抑制することができる。 At this time, in the control device 20, the AC voltage (output voltage Vout) output from the bidirectional converter 12 to the output node N2 is input to the input node N1 from the AC power supply 1 before the abnormality occurs (input voltage Vin ), The power conversion in the bidirectional converter 12 is controlled. According to this, it is possible to prevent the voltage from fluctuating or being instantaneously interrupted when the power supply path is switched.
 双方向コンバータ12の運転中、制御装置20は、スイッチ回路11の半導体スイッチング素子SW1~SWnに対して、Lレベルの制御信号S1~Sn(遮断指令)をそれぞれ与える。半導体スイッチング素子SW1~SWnがオフすることにより、スイッチ回路11がオフ状態となり、交流電源1および負荷2が電気的に遮断される。 During the operation of the bidirectional converter 12, the control device 20 gives the L level control signals S1 to Sn (cutoff command) to the semiconductor switching elements SW1 to SWn of the switch circuit 11, respectively. When the semiconductor switching elements SW1 to SWn are turned off, the switch circuit 11 is turned off, and the AC power supply 1 and the load 2 are electrically cut off.
 この結果、異常時には、図中に矢印で示すように、バッテリ3の直流電力が双方向コンバータ12を経由して負荷2に供給される。バッテリ3の端子間電圧が所定の放電停止電圧に低下すると、制御装置20は、双方向コンバータ12の運転を停止させる。 As a result, when an abnormality occurs, the DC power of the battery 3 is supplied to the load 2 via the bidirectional converter 12 as indicated by the arrow in the figure. When the voltage between terminals of battery 3 drops to a predetermined discharge stop voltage, control device 20 stops the operation of bidirectional converter 12.
 なお、スイッチ回路11において素子故障または制御異常が発生した場合においても、双方向コンバータ12を運転するとともに、スイッチ回路11をオフすることにより、図3に示した電力供給経路を用いて負荷2に安定した電力を供給し続けることができる。この結果、交流電源1またはスイッチ回路11に異常が発生した場合であっても、無瞬断で負荷2に安定した電力を供給し続けることが可能となる。 Even when an element failure or control abnormality occurs in the switch circuit 11, the bidirectional converter 12 is operated and the switch circuit 11 is turned off, so that the load 2 is connected to the load 2 using the power supply path shown in FIG. It is possible to continue supplying stable power. As a result, even when an abnormality occurs in the AC power supply 1 or the switch circuit 11, it is possible to continuously supply stable power to the load 2 without interruption.
 しかしながら、半導体スイッチング素子SW1~SWnの一部において遮断不能となる異常が生じている場合、遮断指令の発生中、当該一部の半導体スイッチング素子SWがオフせず、オン状態を維持する一方で、残りの半導体スイッチング素子SWがオフするという不揃いの状態が発生することがある。このように直列接続される半導体スイッチング素子SW1~SWnに不揃いの状態が発生すると、入力ノードN1および出力ノードN2の電圧差が、オフ状態となっている残りの半導体スイッチング素子SWに集中的に印加されることになる。したがって、当該残りの半導体スイッチング素子SWに過電圧が印加されることが懸念される。 However, in the case where an abnormality that makes it impossible to cut off occurs in some of the semiconductor switching elements SW1 to SWn, during the generation of the cutoff command, some of the semiconductor switching elements SW do not turn off, and while maintaining the on state, There may be a non-uniform state in which the remaining semiconductor switching elements SW are turned off. When an irregular state occurs in the semiconductor switching elements SW1 to SWn connected in series as described above, the voltage difference between the input node N1 and the output node N2 is intensively applied to the remaining semiconductor switching elements SW in the off state. Will be done. Therefore, there is a concern that an overvoltage is applied to the remaining semiconductor switching elements SW.
 そこで、本実施の形態では、制御装置20は、遮断指令の発生中、スイッチ回路11の遮断についての異常を検知するように構成される。図4は、実施の形態1に従う電源装置10の制御処理を説明するフローチャートである。制御装置20は、図4に示される制御処理を周期的に実行する。 Therefore, in the present embodiment, the control device 20 is configured to detect an abnormality regarding the disconnection of the switch circuit 11 during the generation of the disconnection command. FIG. 4 is a flowchart illustrating a control process of power supply device 10 according to the first embodiment. The control device 20 periodically executes the control process shown in FIG.
 図4を参照して、ステップS01では、制御装置20は、交流電源1の電圧低下が発生したか否かを判定する。具体的には、制御装置20は、電圧検出器14による入力電圧Vinの検出値に基づいて、交流電源1に停電または瞬時電圧低下が発生したか否かを判定する。例えば、制御装置20は、電圧検出器14の検出値の最大値(または実効値)と所定の基準値とを比較することにより、停電または瞬時電圧低下が発生したか否かを判定する。 Referring to FIG. 4, in step S01, control device 20 determines whether or not the voltage drop of AC power supply 1 has occurred. Specifically, control device 20 determines whether a power failure or an instantaneous voltage drop has occurred in AC power supply 1, based on the detected value of input voltage Vin by voltage detector 14. For example, control device 20 determines whether a power failure or an instantaneous voltage drop has occurred by comparing the maximum value (or effective value) of the detected values of voltage detector 14 with a predetermined reference value.
 交流電源1の電圧低下が発生していない場合(S01のNO判定時)、制御装置20は、ステップS02により、スイッチ回路11の異常が発生していないか否かを判定する。例えば、少なくとも1つの半導体スイッチング素子SWの故障または半導体スイッチング素子SWに含まれるIGBTのゲート駆動回路の故障などによる制御異常が発生している場合、制御装置20はスイッチ回路11の異常と判定する。 When the voltage drop of the AC power supply 1 has not occurred (NO determination in S01), the control device 20 determines in step S02 whether or not the switch circuit 11 is abnormal. For example, when a control abnormality occurs due to a failure of at least one semiconductor switching element SW or a failure of an IGBT gate drive circuit included in the semiconductor switching element SW, the control device 20 determines that the switch circuit 11 is abnormal.
 スイッチ回路11が正常である場合(S02のNO判定時)、制御装置20は、ステップS06により、スイッチ回路11の半導体スイッチング素子SWに導通指令を与える。 When the switch circuit 11 is normal (when NO is determined in S02), the control device 20 gives a conduction instruction to the semiconductor switching element SW of the switch circuit 11 in step S06.
 一方、交流電源1の電圧低下が発生している場合(S01のYES判定時)、またはスイッチ回路11の異常が発生している場合(S02のYES判定時)には、制御装置20は、ステップS03に進み、双方向コンバータ12の制御によって、バッテリ3の直流電力を商用周波数の交流電力に変換し、その交流電力を負荷2に与える。制御装置20は、双方向コンバータ12から出力ノードN2に出力される交流電圧(出力電圧Vout)が、電圧低下発生前の交流電源1から入力ノードN1に与えられる交流電圧(入力電圧Vin)に同期するように、双方向コンバータ12における電力変換を制御する。バッテリ3は、交流電源1からの交流電力による充電から、負荷2に電力を供給するための放電に切り替えられる。 On the other hand, when the voltage drop of the AC power supply 1 is occurring (when YES is determined in S01) or when the abnormality of the switch circuit 11 is occurring (when YES is determined in S02), the control device 20 performs the steps. Proceeding to S03, the DC power of the battery 3 is converted into AC power of commercial frequency by the control of the bidirectional converter 12, and the AC power is given to the load 2. In the control device 20, the AC voltage (output voltage Vout) output from the bidirectional converter 12 to the output node N2 is synchronized with the AC voltage (input voltage Vin) applied to the input node N1 from the AC power supply 1 before the voltage drop. In such a manner, the power conversion in the bidirectional converter 12 is controlled. The battery 3 is switched from charging by the AC power from the AC power supply 1 to discharging for supplying power to the load 2.
 制御装置20は、双方向コンバータ12の運転中、ステップS04により、スイッチ回路11の半導体スイッチング素子SW1~SWnに対して遮断指令を発生する。遮断指令の発生中、ステップS05により、制御装置20は、スイッチ回路11の遮断における異常の有無を判定する遮断異常判定処理を実行する。 During the operation of the bidirectional converter 12, the control device 20 issues a cutoff command to the semiconductor switching elements SW1 to SWn of the switch circuit 11 in step S04. During the generation of the cutoff command, in step S05, control device 20 executes a cutoff abnormality determination process for determining whether there is an abnormality in the cutoff of switch circuit 11.
 図5は、図4のステップS05に示す遮断異常判定処理を実行する判定部の第1の構成例を説明するためのブロック図である。図5に示される各ブロックの機能は、制御装置20によるソフトウェア処理および/またはハードウェア処理によって実現することができる。 FIG. 5 is a block diagram for explaining a first configuration example of a determination unit that executes the disconnection abnormality determination processing shown in step S05 of FIG. The function of each block shown in FIG. 5 can be realized by software processing and / or hardware processing by the control device 20.
 図5を参照して、判定部22Aは、減算器30と、比較器32と、n個の比較器34_1~34_nと、論理和回路36と、論理積回路38とを有する。 Referring to FIG. 5, the determination unit 22A includes a subtractor 30, a comparator 32, n comparators 34_1 to 34_n, a logical sum circuit 36, and a logical product circuit 38.
 減算器30は、電圧検出器14による入力電圧Vinの検出値と、電圧検出器16による出力電圧Voutの検出値との電圧差を算出する。比較器32は、入力電圧Vinおよび出力電圧Voutの電圧差と閾値Vth1とを比較し、比較結果を示す信号を出力する。電圧差が閾値Vth1よりも大きいとき、比較器32の出力信号はHレベルとなり、電圧差が閾値Vth1よりも小さいとき、比較器32の出力信号はLレベルとなる。閾値Vth1は「第1の閾値」の一実施例に対応する。 The subtractor 30 calculates the voltage difference between the detected value of the input voltage Vin by the voltage detector 14 and the detected value of the output voltage Vout by the voltage detector 16. The comparator 32 compares the voltage difference between the input voltage Vin and the output voltage Vout with the threshold value Vth1, and outputs a signal indicating the comparison result. When the voltage difference is larger than the threshold value Vth1, the output signal of the comparator 32 becomes H level, and when the voltage difference is smaller than the threshold value Vth1, the output signal of the comparator 32 becomes L level. The threshold value Vth1 corresponds to an example of “first threshold value”.
 n個の比較器34_1~34_nは、n個の電圧検出器18による半導体スイッチング素子の端子間電圧V1~Vnをそれぞれ受ける。比較器34_1~34_nを包括的に表記する場合には、単に「比較器34」とも称する。比較器34は、対応する半導体スイッチング素子SWの端子間電圧Vと基準値Vref1とを比較し、比較結果を示す信号を出力する。端子間電圧Vが基準値Vref1よりも小さいとき、比較器34の出力信号はHレベルとなり、端子間電圧Vが基準値Vref1よりも大きいとき、比較器34の出力信号はLレベルとなる。基準値Vref1は「基準値」の一実施例に対応する。 The n comparators 34_1 to 34_n receive the inter-terminal voltages V1 to Vn of the semiconductor switching element by the n voltage detectors 18, respectively. When the comparators 34_1 to 34_n are collectively described, they are also simply referred to as “comparators 34”. The comparator 34 compares the inter-terminal voltage V of the corresponding semiconductor switching element SW with the reference value Vref1 and outputs a signal indicating the comparison result. When the terminal voltage V is smaller than the reference value Vref1, the output signal of the comparator 34 becomes H level, and when the terminal voltage V is larger than the reference value Vref1, the output signal of the comparator 34 becomes L level. The reference value Vref1 corresponds to an example of the “reference value”.
 論理和回路36は、比較器34_1~34_nの出力信号の論理和(OR)を算出し、算出結果を示す信号を出力する。 The logical sum circuit 36 calculates the logical sum (OR) of the output signals of the comparators 34_1 to 34_n and outputs a signal indicating the calculation result.
 論理積回路38は、比較器32の出力信号と論理和回路36の出力信号との論理積(AND)を算出し、算出結果を示す信号を出力する。論理積回路38の出力信号は検出信号DETとして、電源装置の10外部(例えば上位コントローラ)へ出力される。 The logical product circuit 38 calculates the logical product (AND) of the output signal of the comparator 32 and the output signal of the logical sum circuit 36, and outputs a signal indicating the calculation result. The output signal of the AND circuit 38 is output to the outside of the power supply device 10 (for example, the host controller) as the detection signal DET.
 判定部22Aによれば、入力電圧Vinおよび出力電圧Voutの電圧差が閾値Vth1より大きい場合において、n個の半導体スイッチング素子SW1~SWnのうちのp個(1≦p≦n)の半導体スイッチング素子SWの端子間電圧Vが基準値Vref1よりも小さいときに、Hレベルの検出信号DETが出力されることになる。 According to the determination unit 22A, when the voltage difference between the input voltage Vin and the output voltage Vout is larger than the threshold value Vth1, p (1 ≦ p ≦ n) semiconductor switching elements out of the n semiconductor switching elements SW1 to SWn. When the voltage V between the terminals of SW is smaller than the reference value Vref1, the H-level detection signal DET is output.
 これによると、交流電源1の異常により入力電圧Vinが低下し、双方向コンバータ12が出力電圧Voutを生成した場合、入力電圧Vinおよび出力電圧Voutの電圧差が閾値Vth1よりも大きくなる。この状態でn個の半導体スイッチング素子SW1~SWnには遮断指令が与えられる。遮断指令に従って半導体スイッチング素子SWが正常にオフすると、当該半導体スイッチング素子SWの端子間電圧Vが基準値Vref1よりも大きくなる。一方、当該半導体スイッチング素子SWが遮断不能となる異常が生じていると、当該半導体スイッチング素子SWはオン状態を維持するため、端子間電圧Vは基準値Vref1よりも小さくなる。 According to this, when the input voltage Vin decreases due to the abnormality of the AC power supply 1 and the bidirectional converter 12 generates the output voltage Vout, the voltage difference between the input voltage Vin and the output voltage Vout becomes larger than the threshold value Vth1. In this state, a cutoff command is given to the n semiconductor switching elements SW1 to SWn. When the semiconductor switching element SW is normally turned off in accordance with the cutoff command, the terminal voltage V of the semiconductor switching element SW becomes larger than the reference value Vref1. On the other hand, when the semiconductor switching element SW has an abnormality such that the semiconductor switching element SW cannot be shut off, the semiconductor switching element SW maintains the ON state, so that the inter-terminal voltage V becomes smaller than the reference value Vref1.
 n個の半導体スイッチング素子SW1~SWnのうち、遮断不能となる半導体スイッチング素子SWがp個(1≦p≦n)含まれている場合、判定部22AからHレベルの検出信号DETが出力される。 When p semiconductor switching elements SW (1 ≦ p ≦ n) that cannot be interrupted are included among the n semiconductor switching elements SW1 to SWn, the determination unit 22A outputs the H-level detection signal DET. ..
 なお、判定部22Aによる遮断異常判定処理によれば、入力電圧Vinおよび出力電圧Voutの電圧差が閾値Vth1よりも小さい場合には、正常にオフされた半導体スイッチング素子SWの端子間電圧に有意な電圧差が生じないため、遮断異常を検知することができない。 According to the disconnection abnormality determination processing by the determination unit 22A, when the voltage difference between the input voltage Vin and the output voltage Vout is smaller than the threshold value Vth1, the voltage across the terminals of the semiconductor switching element SW that is normally turned off is significant. Since there is no voltage difference, it is not possible to detect the disconnection abnormality.
 詳細には、スイッチ回路11の異常発生(ただし、交流電源1は正常)に起因して双方向コンバータ12によって出力電圧Voutが生成され(図4のS03)、かつ、スイッチ回路11に遮断指令が出力された場合(図4のS04)には、入力電圧Vinおよび出力電圧Voutが同等レベルであるために、正常にオフされた半導体スイッチング素子SWの端子間電圧Vは零電圧に近い値となる。そのため、遮断不能となる半導体スイッチング素子SWの端子間電圧Vと、オフ状態となっている半導体スイッチング素子SWの端子間電圧Vとの間に有意差が現れず、結果として遮断異常を検知することが困難となる。 More specifically, the output voltage Vout is generated by the bidirectional converter 12 due to the occurrence of an abnormality in the switch circuit 11 (however, the AC power supply 1 is normal) (S03 in FIG. 4), and a cutoff command is sent to the switch circuit 11. When output (S04 in FIG. 4), since the input voltage Vin and the output voltage Vout are at the same level, the inter-terminal voltage V of the normally-off semiconductor switching element SW becomes a value close to zero voltage. .. Therefore, a significant difference does not appear between the terminal voltage V of the semiconductor switching element SW that cannot be interrupted and the terminal voltage V of the semiconductor switching element SW that is in the OFF state, and as a result, the disconnection abnormality can be detected. Becomes difficult.
 ただし、このような状況では、オフ状態となっている半導体スイッチング素子SWに過電圧が印加されるという事態が発生しないため、遮断異常が検知できないことによる不具合はないものと考えられる。 However, in such a situation, the situation in which an overvoltage is applied to the semiconductor switching element SW that is in the off state does not occur, so it is considered that there is no problem due to the fact that the disconnection abnormality cannot be detected.
 なお、半導体スイッチング素子ごとにその端子間電圧に基づいて遮断異常を検知する従来技術によれば、正常にオフされた半導体スイッチング素子SWの端子間電圧が小さい場合、当該半導体スイッチング素子SWが遮断不能であると誤って検知される可能性がある。一方、判定部22Aは、n個の半導体スイッチング素子SW1~SWnの端子間電圧V1~Vnに基づいて遮断異常を検知する構成であるため、このような誤った検知を回避することができる。 It should be noted that, according to the conventional technique for detecting the disconnection abnormality for each semiconductor switching element based on the voltage between the terminals, when the voltage between the terminals of the semiconductor switching element SW that is normally turned off is small, the semiconductor switching element SW cannot be disconnected. May be falsely detected. On the other hand, the determination unit 22A is configured to detect the disconnection abnormality based on the inter-terminal voltages V1 to Vn of the n semiconductor switching elements SW1 to SWn, and thus such erroneous detection can be avoided.
 以上説明したように、実施の形態1に従う電源装置10によれば、スイッチ回路を構成する半導体スイッチング素子の遮断についての異常を正確に検知することができる。 As described above, according to the power supply device 10 according to the first embodiment, it is possible to accurately detect the abnormality regarding the interruption of the semiconductor switching element forming the switch circuit.
 [実施の形態2]
 実施の形態2では、遮断異常判定処理を実行する判定部の第2の構成例について説明する。
[Embodiment 2]
In the second embodiment, a second configuration example of the determination unit that executes the cutoff abnormality determination process will be described.
 図6は、図4のステップS05に示す遮断異常判定処理を実行する判定部の第2の構成例を説明するためのブロック図である。図6に示される各ブロックの機能は、制御装置20によるソフトウェア処理および/またはハードウェア処理によって実現することができる。 FIG. 6 is a block diagram for explaining a second configuration example of the determination unit that executes the disconnection abnormality determination processing shown in step S05 of FIG. The function of each block shown in FIG. 6 can be realized by software processing and / or hardware processing by the control device 20.
 図6を参照して、判定部22Bは、n個の比較器40_1~40_nと、論理和回路42と、論理積回路44,46とを有する。 Referring to FIG. 6, the determination unit 22B includes n comparators 40_1 to 40_n, a logical sum circuit 42, and logical product circuits 44 and 46.
 n個の比較器40_1~40_nは、n個の電圧検出器18による半導体スイッチング素子の端子間電圧V1~Vnをそれぞれ受ける。比較器40_1~40_nを包括的に表記する場合には、単に「比較器40」とも称する。比較器40は、対応する半導体スイッチング素子SWの端子間電圧Vと基準値Vref2とを比較し、比較結果を示す信号を出力する。端子間電圧Vが基準値Vref2よりも大きいとき、比較器40の出力信号はHレベルとなり、端子間電圧Vが基準値Vref2よりも小さいとき、比較器40の出力信号はLレベルとなる。基準値Vref2は「基準値」の一実施例に対応する。 The n comparators 40_1 to 40_n receive the inter-terminal voltages V1 to Vn of the semiconductor switching element by the n voltage detectors 18, respectively. When the comparators 40_1 to 40_n are collectively described, they are also simply referred to as “comparators 40”. The comparator 40 compares the terminal voltage V of the corresponding semiconductor switching element SW with the reference value Vref2, and outputs a signal indicating the comparison result. When the terminal voltage V is higher than the reference value Vref2, the output signal of the comparator 40 becomes H level, and when the terminal voltage V is smaller than the reference value Vref2, the output signal of the comparator 40 becomes L level. The reference value Vref2 corresponds to an example of the “reference value”.
 論理和回路42は、比較器40_1~40_nの出力信号の論理和(OR)を算出し、算出結果を示す信号を出力する。 The logical sum circuit 42 calculates the logical sum (OR) of the output signals of the comparators 40_1 to 40_n and outputs a signal indicating the calculation result.
 論理積回路44は、比較器40_1~40_nの出力信号の論理積(AND)を算出し、算出結果を示す信号を出力する。 The logical product circuit 44 calculates the logical product (AND) of the output signals of the comparators 40_1 to 40_n and outputs a signal indicating the calculation result.
 論理積回路46は、論理和回路42の出力信号と、論理積回路44の出力信号の反転信号との論理積を算出し、算出結果を示す信号を出力する。。論理積回路46の出力信号は検出信号DETとして、電源装置10の外部(例えば上位コントローラ)へ出力される。 The logical product circuit 46 calculates the logical product of the output signal of the logical sum circuit 42 and the inverted signal of the output signal of the logical product circuit 44, and outputs a signal indicating the calculation result. .. The output signal of the AND circuit 46 is output to the outside of the power supply device 10 (for example, the host controller) as the detection signal DET.
 例えば、n個の半導体スイッチング素子SW1~SWnに遮断指令が与えられている状態において、q個(1≦q≦n-1)の半導体スイッチング素子SWが遮断不能となり、残りの(n-q)個の半導体スイッチング素子SWは正常にオフされた場合を想定する。 For example, q (1 ≦ q ≦ n−1) semiconductor switching elements SW cannot be turned off and the remaining (n−q) semiconductor switching elements SW1 to SWn are turned off. It is assumed that each semiconductor switching element SW is normally turned off.
 この場合、q個の半導体スイッチング素子SWの端子間電圧Vは基準値Vref2よりも小さくなる一方で、(n-q)個の半導体スイッチング素子SWの端子間電圧Vが基準値Vref2よりも大きくなる。したがって、論理和回路42からHレベルの信号が出力され、かつ、論理積回路44からLレベルの信号が出力されることになり、結果的に論理積回路46からはHレベルの検出信号DETが出力される。 In this case, the inter-terminal voltage V of the q semiconductor switching elements SW becomes smaller than the reference value Vref2, while the inter-terminal voltage V of the (n−q) semiconductor switching elements SW becomes larger than the reference value Vref2. .. Therefore, the logical sum circuit 42 outputs an H level signal and the logical product circuit 44 outputs an L level signal. As a result, the logical product circuit 46 outputs the H level detection signal DET. Is output.
 すなわち、判定部22Bによれば、n個の半導体スイッチング素子SW1~SWnのうちのq個(1≦q≦n-1)の半導体スイッチング素子SWの端子間電圧Vが基準値Vref2よりも小さいときに、Hレベルの検出信号DETが出力されることになる。 That is, according to the determination unit 22B, when the inter-terminal voltage V of the q (1 ≦ q ≦ n−1) semiconductor switching elements SW out of the n semiconductor switching elements SW1 to SWn is smaller than the reference value Vref2. Then, the H-level detection signal DET is output.
 なお、判定部22Bによる遮断異常判定処理によれば、n個の半導体スイッチング素子SW1~SWnの全てが遮断不能である場合には、論理積回路42のLレベルの出力信号を受けて検出信号DETがLレベルとなるため、遮断異常を検知することができない。n個の半導体スイッチング素子SWが同時に遮断不能となる不具合が発生する確率は極めて低いことを鑑みると、遮断異常が検知できないことによる不具合はないと考えられる。 According to the disconnection abnormality determination processing by the determination unit 22B, when all the n semiconductor switching elements SW1 to SWn cannot be disconnected, the detection signal DET is received by receiving the L level output signal of the AND circuit 42. Since it becomes L level, it is not possible to detect the disconnection abnormality. Considering that the probability that the n semiconductor switching elements SW cannot be interrupted at the same time is extremely low, it is considered that there is no defect due to the inability to detect the disconnection abnormality.
 また、判定部22Bによる遮断異常判定処理によれば、判定部22Aと同様に、入力電圧Vinおよび出力電圧Voutの電圧差が小さい場合には、遮断不能となる半導体スイッチング素子SWの端子間電圧Vと、正常にオフされた半導体スイッチング素子SWの端子間電圧Vとの間に有意差が現れないため、遮断異常を検知することが困難となる。ただし、このような状況では、オフ状態となっている半導体スイッチング素子SWに過電圧が印加されるという事態が発生しないため、遮断異常が検知できないことによる不具合はないと考えられる。 Further, according to the disconnection abnormality determination processing by the determination unit 22B, similarly to the determination unit 22A, when the voltage difference between the input voltage Vin and the output voltage Vout is small, the voltage V between the terminals of the semiconductor switching element SW that cannot be interrupted. And a voltage V between the terminals of the semiconductor switching element SW that has been normally turned off do not appear to be significantly different, which makes it difficult to detect the disconnection abnormality. However, in such a situation, a situation in which an overvoltage is applied to the semiconductor switching element SW that is in the off state does not occur, and thus it is considered that there is no problem due to the detection of the disconnection abnormality.
 半導体スイッチング素子ごとにその端子間電圧に基づいて遮断異常を検知する従来技術では、正常にオフされた半導体スイッチング素子SWの端子間電圧Vが小さい場合に、当該半導体スイッチング素子SWが遮断不能であると誤って検知される可能性がある。一方、判定部22Bは、n個の半導体スイッチング素子SW1~SWnの端子間電圧V1~Vnに基づいて遮断異常を検知する構成であるため、このような誤った検知を回避することができる。 In the conventional technique for detecting the disconnection abnormality for each semiconductor switching element based on the voltage across the terminals, when the voltage V between the terminals of the semiconductor switching element SW that is normally turned off is small, the semiconductor switching element SW cannot be disconnected. May be erroneously detected. On the other hand, the determination unit 22B is configured to detect the disconnection abnormality based on the inter-terminal voltages V1 to Vn of the n semiconductor switching elements SW1 to SWn, and thus such erroneous detection can be avoided.
 以上説明したように、実施の形態2に従う電源装置10によれば、スイッチ回路を構成する半導体スイッチング素子の遮断についての異常を正確に検知することができる。 As described above, according to the power supply device 10 according to the second embodiment, it is possible to accurately detect the abnormality regarding the interruption of the semiconductor switching element forming the switch circuit.
 [実施の形態3]
 実施の形態3では、遮断異常判定処理を実行する判定部の第3の構成例について説明する。
[Third Embodiment]
In the third embodiment, a third configuration example of the determination unit that executes the cutoff abnormality determination process will be described.
 図7は、図4のステップS05に示す遮断異常判定処理を実行する判定部の第3の構成例を説明するためのブロック図である。図7に示される各ブロックの機能は、制御装置20によるソフトウェア処理および/またはハードウェア処理によって実現することができる。 FIG. 7 is a block diagram for explaining a third configuration example of the determination unit that executes the disconnection abnormality determination processing shown in step S05 of FIG. The function of each block shown in FIG. 7 can be realized by software processing and / or hardware processing by the control device 20.
 図7を参照して、判定部22Cは、n個の比較器50_1~50_nと、n個の論理積回路52_1~52_nと、論理和回路54とを有する。 Referring to FIG. 7, the determination unit 22C includes n comparators 50_1 to 50_n, n AND circuits 52_1 to 52_n, and an OR circuit 54.
 n個の比較器40_1~40_nは、n個の電圧検出器18による半導体スイッチング素子の端子間電圧V1~Vnをそれぞれ受ける。比較器40_1~40_nを包括的に表記する場合には、単に「比較器40」とも称する。比較器40は、対応する半導体スイッチング素子SWの端子間電圧Vと基準値Vref2とを比較し、比較結果を示す信号を出力する。端子間電圧Vが基準値Vref2よりも大きいとき、比較器40の出力信号はHレベルとなり、端子間電圧Vが基準値Vref2よりも小さいとき、比較器40の出力信号はLレベルとなる。 The n comparators 40_1 to 40_n receive the inter-terminal voltages V1 to Vn of the semiconductor switching element by the n voltage detectors 18, respectively. When the comparators 40_1 to 40_n are collectively described, they are also simply referred to as “comparators 40”. The comparator 40 compares the terminal voltage V of the corresponding semiconductor switching element SW with the reference value Vref2, and outputs a signal indicating the comparison result. When the terminal voltage V is higher than the reference value Vref2, the output signal of the comparator 40 becomes H level, and when the terminal voltage V is smaller than the reference value Vref2, the output signal of the comparator 40 becomes L level.
 n個の論理積回路52_1~52_nは、n個の比較器50_1~50_nの出力信号の論理積を算出し、算出結果を示す信号尾出力する。論理積回路52_1~52_nを包括的に表記する場合には、単に「論理積回路52」とも称する。各論理積回路52において、n個の比較器50の出力信号のうちの1つは、その反転信号が入力される。どの比較器50の出力信号が反転されるかについては、n個の論理積回路52の間で互いに異なっている。 The n logical product circuits 52_1 to 52_n calculate the logical product of the output signals of the n comparators 50_1 to 50_n, and output the signal tail indicating the calculation result. When the logical product circuits 52_1 to 52_n are collectively described, they are also simply referred to as the “logical product circuit 52”. In each AND circuit 52, one of the output signals of the n comparators 50 receives the inverted signal thereof. Regarding which comparator 50 output signal is inverted, the n AND circuits 52 are different from each other.
 論理和回路54は、論理積回路52_1~52_nの出力信号の論理和(OR)を算出し、算出結果を示す信号を出力する。論理和回路54の出力信号は検出信号DETとして、電源装置10の外部(例えば上位コントローラ)へ出力される。 The logical sum circuit 54 calculates the logical sum (OR) of the output signals of the logical product circuits 52_1 to 52_n and outputs a signal indicating the calculation result. The output signal of the OR circuit 54 is output to the outside of the power supply device 10 (for example, the host controller) as the detection signal DET.
 例えば、n個の半導体スイッチング素子SW1~SWnに遮断指令が与えられている状態において、いずれか1個の半導体スイッチング素子SWが遮断不能となり、残りの(n-1)個の半導体スイッチング素子SWは正常にオフされた場合を想定する。 For example, in the state where the cutoff command is given to the n semiconductor switching elements SW1 to SWn, one of the semiconductor switching elements SW cannot be cut off, and the remaining (n-1) semiconductor switching elements SW are Suppose that it is turned off normally.
 上記いずれか1個の半導体スイッチング素子SWが半導体スイッチング素子SW1である場合、比較器50_1からLレベルの信号が出力され、比較器50_2~50_nからHレベルの信号が出力される。これにより、論理積回路52_1は、比較器50_1の出力信号の反転信号と、比較器50_2~50_nの出力信号とを受けて、Hレベルの信号を出力する。一方、論理積回路52_2~52_nの各々は、比較器50_1の出力信号と、比較器50_2~50_nの出力信号(いずれか1つは反転信号)とを受けて、Lレベルの信号を出力する。その結果、論理積回路54からはHレベルの検出信号DETが出力される。 When any one of the above semiconductor switching elements SW is the semiconductor switching element SW1, the comparator 50_1 outputs an L level signal and the comparators 50_2 to 50_n output an H level signal. Accordingly, the AND circuit 52_1 receives the inverted signal of the output signal of the comparator 50_1 and the output signals of the comparators 50_2 to 50_n and outputs a signal of H level. On the other hand, each of the AND circuits 52_2 to 52_n receives the output signal of the comparator 50_1 and the output signals of the comparators 50_2 to 50_n (one of them is an inverted signal) and outputs an L level signal. As a result, the AND circuit 54 outputs the H-level detection signal DET.
 すなわち、判定部22Cによれば、n個の半導体スイッチング素子SW1~SWnのうちのいずれか1個の半導体スイッチング素子SWの端子間電圧Vが基準値Vref2よりも小さいときに、Hレベルの検出信号DETが出力されることになる。 That is, according to the determination unit 22C, when the inter-terminal voltage V of any one of the n semiconductor switching elements SW1 to SWn is smaller than the reference value Vref2, the H level detection signal is detected. DET will be output.
 なお、判定部22Cによる遮断異常判定処理によれば、2個以上の半導体スイッチング素子SWが遮断不能である場合には、n個の論理積回路52の出力信号が全てLレベルとなるため、遮断異常を検知することができない。したがって、判定部22Cによる遮断異常判定処理は、複数の半導体スイッチング素子SWが同時に遮断不能となる可能性が低い電源装置10に対して適用されることが好ましい。 According to the disconnection abnormality determination processing by the determination unit 22C, when the two or more semiconductor switching elements SW cannot be shut off, the output signals of the n AND circuits 52 are all at the L level. Abnormality cannot be detected. Therefore, it is preferable that the disconnection abnormality determination processing by the determination unit 22C be applied to the power supply device 10 in which the plurality of semiconductor switching elements SW are unlikely to be unable to be disconnected at the same time.
 また、判定部22Cによる遮断異常判定処理によれば、判定部22A,22Bと同様に、入力電圧Vinおよび出力電圧Voutの電圧差が小さい場合には、遮断不能となる半導体スイッチング素子SWの端子間電圧Vと、正常にオフされた半導体スイッチング素子SWの端子間電圧Vとの間に有意差が現れないため、遮断異常を検知することが困難となる。ただし、このような状況では、オフ状態となっている半導体スイッチング素子SWに過電圧が印加されるという事態が発生しないため、遮断異常が検知できないことによる不具合はないものと考えられる。 Further, according to the disconnection abnormality determination processing by the determination unit 22C, similarly to the determination units 22A and 22B, when the voltage difference between the input voltage Vin and the output voltage Vout is small, the terminals of the semiconductor switching element SW that cannot be shut off are disconnected. Since there is no significant difference between the voltage V and the voltage V between the terminals of the semiconductor switching element SW that has been normally turned off, it is difficult to detect the disconnection abnormality. However, in such a situation, a situation in which an overvoltage is applied to the semiconductor switching element SW that is in the off state does not occur, so it is considered that there is no problem due to the detection of the disconnection abnormality.
 半導体スイッチング素子ごとにその端子間電圧に基づいて遮断異常を検知する従来技術では、正常にオフされた半導体スイッチング素子SWの端子間電圧Vが小さい場合に、当該半導体スイッチング素子SWが遮断不能であると誤って検知される可能性がある。一方、判定部22Cは、n個の半導体スイッチング素子SW1~SWnの端子間電圧V1~Vnに基づいて遮断異常を検知する構成であるため、このような誤った検知を回避することができる。 In the conventional technique for detecting the disconnection abnormality for each semiconductor switching element based on the voltage across the terminals, when the voltage V between the terminals of the semiconductor switching element SW that is normally turned off is small, the semiconductor switching element SW cannot be disconnected. May be erroneously detected. On the other hand, since the determination unit 22C is configured to detect the disconnection abnormality based on the inter-terminal voltages V1 to Vn of the n semiconductor switching elements SW1 to SWn, such erroneous detection can be avoided.
 以上説明したように、実施の形態3に従う電源装置10によれば、スイッチ回路を構成する半導体スイッチング素子の遮断についての異常を正確に検知することができる。 As described above, according to the power supply device 10 according to the third embodiment, it is possible to accurately detect an abnormality regarding interruption of the semiconductor switching element forming the switch circuit.
 ここで、上述した第1から第3の制御構成例の判定部22A~22Cについて、検知できる遮断異常の態様を比較した結果を示す。図8は、半導体スイッチング素子SWの総数n=4である場合に、判定部22A~22Cの各々が検知することができる遮断異常の態様を表形式でまとめたものである。 Here, the results of comparison of the forms of the cutoff abnormality that can be detected by the determination units 22A to 22C of the above-described first to third control configuration examples will be shown. FIG. 8 is a tabular form showing a summary of modes of disconnection abnormality that can be detected by each of the determination units 22A to 22C when the total number of semiconductor switching elements SW is n = 4.
 表中のV1~V4は、半導体スイッチング素子SW1~SW4の端子間電圧を表している。V1~V4の値(HまたはL)は、V1~V4が入力される比較器の出力信号レベルを示している。 V1 to V4 in the table represent the voltage across the terminals of the semiconductor switching elements SW1 to SW4. The value (H or L) of V1 to V4 indicates the output signal level of the comparator to which V1 to V4 is input.
 例えば、判定部22Aにおいては、半導体スイッチング素子SW1の端子間電圧V1が基準値Vref1より小さい場合(V1<Vref1)、すなわち半導体スイッチング素子SW1が遮断不能である場合、対応する比較器34_1の出力信号がHレベルとなる。一方、半導体スイッチング素子SW1の端子間電圧V1が基準値Vref1より大きい場合(V1>Vref1)、すなわち半導体スイッチング素子SW1が正常にオフされている場合、比較器34_1の出力信号がLレベルとなる。 For example, in the determination unit 22A, when the inter-terminal voltage V1 of the semiconductor switching element SW1 is smaller than the reference value Vref1 (V1 <Vref1), that is, when the semiconductor switching element SW1 cannot be shut off, the output signal of the corresponding comparator 34_1 Becomes H level. On the other hand, when the inter-terminal voltage V1 of the semiconductor switching element SW1 is larger than the reference value Vref1 (V1> Vref1), that is, when the semiconductor switching element SW1 is normally turned off, the output signal of the comparator 34_1 becomes L level.
 判定部22B(または22C)においては、半導体スイッチング素子SW1の端子間電圧V1が基準値Vref2より小さい場合(V1<Vref2)、すなわち半導体スイッチング素子SW1が遮断不能である場合、対応する比較器40_1(または50_1)の出力信号がLレベルとなる。一方、半導体スイッチング素子SW1の端子間電圧V1が基準値Vref2より大きい場合(V1>Vref2)、すなわち半導体スイッチング素子SW1が正常にオフされている場合、比較器40_1(または50_1)の出力信号がLレベルとなる。 In the determination unit 22B (or 22C), when the inter-terminal voltage V1 of the semiconductor switching element SW1 is smaller than the reference value Vref2 (V1 <Vref2), that is, when the semiconductor switching element SW1 cannot be shut off, the corresponding comparator 40_1 ( Alternatively, the output signal of 50_1) becomes L level. On the other hand, when the inter-terminal voltage V1 of the semiconductor switching element SW1 is larger than the reference value Vref2 (V1> Vref2), that is, when the semiconductor switching element SW1 is normally turned off, the output signal of the comparator 40_1 (or 50_1) is L. It becomes a level.
 図8では、4個の半導体スイッチング素子SW1~SW4のうちいずれか1個が遮断不能である場合(異常素子数=1)、2個以上の半導体スイッチング素子SWが遮断不能であり、かつ、1個以上の半導体スイッチング素子が正常である場合(異常素子数≧2かつ正常素子数≧1)、4個の半導体スイッチング素子SWが全て遮断不能である場合(全数異常)の各々について、判定部22A~22Cが遮断異常を検知することができるか否かを示している。「OK」は判定部が遮断異常を検知できることを示し、「NG」は判定部が遮断異常を検知できないことを示す。 In FIG. 8, when any one of the four semiconductor switching elements SW1 to SW4 cannot be cut off (the number of abnormal elements = 1), two or more semiconductor switching elements SW cannot be cut off, and 1 When at least two semiconductor switching elements are normal (abnormal element number ≧ 2 and normal element number ≧ 1), when all four semiconductor switching elements SW cannot be shut off (total number abnormality), the determination unit 22A 22C indicate whether or not the disconnection abnormality can be detected. “OK” indicates that the determination unit can detect the disconnection abnormality, and “NG” indicates that the determination unit cannot detect the disconnection abnormality.
 図8に示されるように、判定部22Aによれば、異常素子数=1の場合、異常素子数≧2かつ正常素子数≧1の場合、および全数異常の場合の全てについて、遮断異常を検知することができる。 As shown in FIG. 8, according to the determination unit 22A, the disconnection abnormality is detected in the case where the number of abnormal elements = 1, the number of abnormal elements ≧ 2 and the number of normal elements ≧ 1, and all the cases of abnormalities. can do.
 これに対して、判定部22Bによれば、異常素子数=1の場合および異常素子数≧2かつ正常素子数≧1の場合に遮断異常を検知できるが、全数異常の場合には遮断異常を検知することができない。 On the other hand, the determination unit 22B can detect the disconnection abnormality when the number of abnormal elements = 1 and when the number of abnormal elements ≧ 2 and the number of normal elements ≧ 1. It cannot be detected.
 また、判定部22Cによれば、異常素子数=1の場合に遮断異常を検知することができるが、異常素子数≧2かつ正常素子数≧1の場合および全数異常の場合には遮断異常を検知することができない。 Further, according to the determination unit 22C, the cutoff abnormality can be detected when the number of abnormal elements = 1, but when the number of abnormal elements ≧ 2 and the number of normal elements ≧ 1 or when the total number is abnormal, the cutoff abnormality is detected. It cannot be detected.
 このように、判定部22A~22Cは、検知できる遮断異常の態様が異なる。したがって、どのような態様を検知したいかによって、判定部22A~22Cを選択することができる。あるいは、スイッチ回路11を構成する半導体スイッチング素子SWの総数nに応じて、判定部22A~22Cのいずれかを選択する構成としてもよい。例えば、nが比較的大きい値であり、全数異常が発生する可能性が低いと判断される場合には、判定部22Bまたは22Cを適用することができる。さらに2個以上の半導体スイッチング素子SWが同時に遮断不能となる可能性が低いと判断される場合には、判定部22Cを適用することができる。一方、nの大小によらず、全数異常が発生する可能性がある場合には、判定部22Aを適用することができる。 As described above, the determination units 22A to 22C differ in the form of the cutoff abnormality that can be detected. Therefore, the determination units 22A to 22C can be selected depending on what kind of mode is desired to be detected. Alternatively, any one of the determination units 22A to 22C may be selected according to the total number n of the semiconductor switching elements SW included in the switch circuit 11. For example, when n is a relatively large value and it is determined that there is a low possibility that 100% abnormality will occur, the determination unit 22B or 22C can be applied. Further, when it is determined that it is unlikely that two or more semiconductor switching elements SW cannot be shut off at the same time, the determination unit 22C can be applied. On the other hand, the determination unit 22A can be applied when there is a possibility that a total number of abnormalities will occur regardless of the size of n.
 図9は、図4のステップS05に示す遮断異常判定処理を実行する判定部の第4の構成例を説明するためのブロック図である。図9を参照して、判定部22は、判定部22A~22Cと、これらの判定部のうちのいずれか1つを選択するための選択部24とを有する。選択部24には、上位コントローラから、遮断異常判定処理に使用する判定部を選択するための選択信号が与えられる。選択部24は、選択信号によって選択された判定部に対して電圧検出器14,16,18の検出信号を出力するように構成される。 FIG. 9 is a block diagram for explaining a fourth configuration example of the determination unit that executes the disconnection abnormality determination processing shown in step S05 of FIG. With reference to FIG. 9, the determination unit 22 includes determination units 22A to 22C and a selection unit 24 for selecting any one of these determination units. The selection unit 24 is provided with a selection signal for selecting a determination unit to be used in the disconnection abnormality determination process from the host controller. The selection unit 24 is configured to output the detection signals of the voltage detectors 14, 16, 18 to the determination unit selected by the selection signal.
 [実施の形態4]
 上述した第1から第3の制御構成例の判定部22A~22Cによる遮断異常判定処理によれば、入力電圧Vinおよび出力電圧Voutの電圧差が小さい場合には、遮断不能となる半導体スイッチング素子SWの端子間電圧Vと、正常にオフされた半導体スイッチング素子SWの端子間電圧Vとの間に有意差が現れないため、遮断異常を検知することが困難となる。
[Embodiment 4]
According to the disconnection abnormality determination processing by the determination units 22A to 22C of the above-described first to third control configuration examples, when the voltage difference between the input voltage Vin and the output voltage Vout is small, the semiconductor switching element SW that cannot be interrupted. Since there is no significant difference between the inter-terminal voltage V and the inter-terminal voltage V of the semiconductor switching element SW that is normally turned off, it becomes difficult to detect the disconnection abnormality.
 そこで、図10に示すように、入力電圧Vinおよび出力電圧Voutの電圧差が小さい場合には、遮断異常の検知を行なわない構成としてもよい。 Therefore, as shown in FIG. 10, when the voltage difference between the input voltage Vin and the output voltage Vout is small, the configuration may be such that the cutoff abnormality is not detected.
 図10は、実施の形態4に従う電源装置10の制御処理を説明するフローチャートである。図10のフローチャートは、図4のフローチャートに対して、ステップS07の処理を追加したものである。 FIG. 10 is a flowchart illustrating a control process of power supply device 10 according to the fourth embodiment. The flowchart of FIG. 10 is obtained by adding the process of step S07 to the flowchart of FIG.
 図10を参照して、双方向コンバータ12の運転中、ステップS04により、制御装置20は、スイッチ回路11の半導体スイッチング素子SW1~SWnに対して遮断指令を発生する。 Referring to FIG. 10, during the operation of bidirectional converter 12, control device 20 issues a cutoff command to semiconductor switching elements SW1 to SWn of switch circuit 11 in step S04.
 遮断指令の発生中、ステップS06により、制御装置20は、入力電圧Vinおよび出力電圧Voutの電圧差(|Vin-Vout|)が閾値Vth2より大きいか否かを判定する。|Vin-Vout|>Vth2の場合(S07のYES判定時)、制御装置20は、ステップS05に進み、スイッチ回路11の遮断における異常の有無を判定する遮断異常判定処理を実行する。一方、|Vin-Vout|≦Vth2の場合(S07のNO判定時)、制御装置20は、遮断異常判定処理を行なわない。 During the generation of the interruption command, in step S06, control device 20 determines whether or not the voltage difference (| Vin−Vout |) between input voltage Vin and output voltage Vout is larger than threshold value Vth2. When | Vin−Vout |> Vth2 (when YES is determined in S07), the control device 20 proceeds to step S05, and executes a disconnection abnormality determination process that determines whether or not there is an abnormality in the disconnection of the switch circuit 11. On the other hand, when | Vin−Vout | ≦ Vth2 (when NO is determined in S07), control device 20 does not perform the disconnection abnormality determination process.
 実施の形態4に従う電源装置10によると、電圧差(|Vin-Vout|)が小さい場合において、正常にオフされた半導体スイッチング素子SWの端子間電圧Vが小さいことから、当該半導体スイッチング素子SWが遮断不能であると誤って判定される可能性を回避することができる。特に、判定部22B,22Cでは半導体スイッチング素子SWの端子間電圧Vのみを用いて遮断異常を判定する構成となっているため、実施の形態4の制御処理を適用することで、誤って遮断異常が検知されることを防ぐことができる。 According to the power supply device 10 according to the fourth embodiment, when the voltage difference (| Vin−Vout |) is small, the voltage V between the terminals of the semiconductor switching element SW that is normally turned off is small. It is possible to avoid the possibility of being erroneously determined to be unblockable. In particular, since the determination units 22B and 22C are configured to determine the disconnection abnormality by using only the inter-terminal voltage V of the semiconductor switching element SW, by applying the control processing of the fourth embodiment, the disconnection abnormality is erroneously made. Can be prevented from being detected.
 なお、電圧差(|Vin-Vout|)が小さい状況では、オフ状態となっている半導体スイッチング素子SWに過電圧が印加されるという事態が発生しないため、遮断異常が検知できないことによる不具合はないと考えられる。 It should be noted that in a situation where the voltage difference (| Vin−Vout |) is small, the situation in which an overvoltage is applied to the semiconductor switching element SW that is in the off state does not occur, so there is no problem due to the detection of the disconnection abnormality. Conceivable.
 なお、以上で説明した複数の実施の形態について、明細書内で言及されていない組み合わせを含めて、不整合や矛盾が生じない範囲内で、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。 It should be noted that, regarding the plurality of embodiments described above, including the combinations not mentioned in the specification, the configurations described in the respective embodiments are appropriately combined within a range that does not cause inconsistency or contradiction. Is scheduled from the beginning of application.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 1 交流電源、2 負荷、3 バッテリ(電力貯蔵装置)、10 電源装置、11 スイッチ回路、12 双方向コンバータ(電力変換器)、14,16,18 電圧検出器、20 制御装置、22,22A,22B,22C 判定部、24 選択部、30 減算器、32,34_1~34_n,38,40_1~40_n,46,50_1~50_n 比較器、52_1~52_n 論理積回路、36,42,54 論理和回路、DET 検出信号、N1 入力ノード、N2 出力ノード、SW1~SWn 半導体スイッチング素子(スイッチング素子)。 1 AC power supply, 2 load, 3 battery (power storage device), 10 power supply device, 11 switch circuit, 12 bidirectional converter (power converter), 14, 16, 18 voltage detector, 20 control device, 22, 22A, 22B, 22C determination unit, 24 selection unit, 30 subtractor, 32, 34_1 to 34_n, 38, 40_1 to 40_n, 46, 50_1 to 50_n comparator, 52_1 to 52_n AND circuit, 36, 42, 54 OR circuit, DET detection signal, N1 input node, N2 output node, SW1 to SWn semiconductor switching element (switching element).

Claims (6)

  1.  負荷に電力を供給する電源装置であって、
     交流電源に接続される入力ノードと、前記負荷に接続される出力ノードとを有するスイッチ回路と、
     前記出力ノードに出力される交流電力と電力貯蔵装置に入出力される直流電力との間で双方向の電力変換を実行するように構成された電力変換器と、
     前記スイッチ回路および前記電力変換器を制御する制御装置とを備え、
     前記スイッチ回路は、前記入力ノードと前記出力ノードとの間に直列に接続されるn個(nは2以上の整数)のスイッチング素子を含み、
     前記制御装置は、前記n個のスイッチング素子を導通するための導通指令を出力している状態において、前記交流電源および前記スイッチ回路の少なくとも一方の異常が検知された場合には、前記電力変換器の制御によって、前記電力貯蔵装置の直流電力を、正常時に前記交流電源から供給される交流電力に同期した交流電力に変換して前記出力ノードへ供給するように構成され、
     前記制御装置は、さらに、前記電力変換器における電力変換の実行中に前記n個のスイッチング素子を遮断するための遮断指令を発生し、かつ、前記遮断指令の発生中、前記n個のスイッチング素子の端子間電圧に基づいて前記スイッチ回路の遮断についての異常を検知する、電源装置。
    A power supply device for supplying power to a load,
    A switch circuit having an input node connected to an AC power supply and an output node connected to the load;
    A power converter configured to perform bidirectional power conversion between AC power output to the output node and DC power input to and output from a power storage device;
    A controller for controlling the switch circuit and the power converter,
    The switch circuit includes n (n is an integer of 2 or more) switching elements connected in series between the input node and the output node,
    The control device outputs the electric power converter when an abnormality is detected in at least one of the AC power supply and the switch circuit in a state where a conduction command for conducting the n switching elements is output. By the control of, the direct current power of the power storage device is configured to be converted to alternating current power that is synchronized with the alternating current power supplied from the alternating current power source and supplied to the output node during normal operation,
    The control device further generates a cutoff command for cutting off the n switching elements during execution of power conversion in the power converter, and the n switching elements during generation of the cutoff command. A power supply device that detects an abnormality regarding interruption of the switch circuit based on the voltage between the terminals.
  2.  前記制御装置は、前記入力ノードおよび前記出力ノードの電圧差が第1の閾値を超えている場合であって、前記n個のスイッチング素子のうちのp個(1≦p≦n)のスイッチング素子の前記端子間電圧が基準値よりも小さいときに、前記スイッチ回路の遮断についての異常を検知する、請求項1に記載の電源装置。 In the case where the voltage difference between the input node and the output node exceeds a first threshold value, the control device sets p (1 ≦ p ≦ n) switching elements out of the n switching elements. The power supply device according to claim 1, wherein when the voltage between the terminals is smaller than a reference value, an abnormality regarding interruption of the switch circuit is detected.
  3.  前記制御装置は、前記n個のスイッチング素子のうちのq個(1≦q≦(n-1))のスイッチング素子の前記端子間電圧が基準値よりも小さいときに、前記スイッチ回路の遮断についての異常を検知する、請求項1に記載の電源装置。 The control device interrupts the switching circuit when the inter-terminal voltage of q (1 ≦ q ≦ (n−1)) switching elements among the n switching elements is smaller than a reference value. The power supply device according to claim 1, wherein the abnormality is detected.
  4.  前記制御装置は、前記n個のスイッチング素子のうちいずれかの1個のスイッチング素子の端子間電圧が基準値よりも小さくなったときに、前記スイッチ回路の遮断についての異常を検知する、請求項1に記載の電源装置。 The control device detects an abnormality regarding interruption of the switch circuit when a voltage between terminals of any one of the n switching elements becomes smaller than a reference value. 1. The power supply device according to 1.
  5.  前記制御装置は、以下の
     (a)前記入力ノードおよび前記出力ノードの電圧差が第1の閾値を超えている場合であって、前記n個のスイッチング素子のうちのm個(1≦m≦n)のスイッチング素子の前記端子間電圧が基準値よりも小さいときに、前記スイッチ回路の遮断についての異常を検知する処理、
     (b)前記n個のスイッチング素子のうちのq個(1≦q≦(n-1))のスイッチング素子の前記端子間電圧が基準値よりも小さいとき、前記スイッチ回路の遮断についての異常を検知する処理、
     (c)前記n個のスイッチング素子のうちいずれかの1個のスイッチング素子の端子間電圧が基準値よりも小さくなったとき、前記スイッチ回路の遮断についての異常を検知する処理、
     のいずれか1つを選択的に実行する、請求項1に記載の電源装置。
    The control device includes the following (a) when the voltage difference between the input node and the output node exceeds a first threshold value, and m (1 ≦ m ≦) of the n switching elements are used. n) a process of detecting an abnormality regarding interruption of the switch circuit when the voltage between the terminals of the switching element is smaller than a reference value;
    (B) When the inter-terminal voltage of q switching elements (1 ≦ q ≦ (n−1)) of the n switching elements is smaller than a reference value, an abnormality regarding disconnection of the switch circuit is detected. Processing to detect,
    (C) a process of detecting an abnormality regarding interruption of the switch circuit when a voltage between terminals of any one of the n switching elements becomes smaller than a reference value,
    The power supply device according to claim 1, wherein any one of the above is selectively executed.
  6.  前記制御装置は、前記遮断指令の発生中、前記入力ノードおよび前記出力ノードの電圧差が第2の閾値よりも小さいときには、前記スイッチ回路の遮断についての異常の検知を行なわない、請求項1から5のいずれか1項に記載の電源装置。 The control device does not detect an abnormality regarding the cutoff of the switch circuit when the voltage difference between the input node and the output node is smaller than a second threshold during the generation of the cutoff command. The power supply device according to any one of 5 above.
PCT/JP2018/042963 2018-11-21 2018-11-21 Power supply device WO2020105135A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/042963 WO2020105135A1 (en) 2018-11-21 2018-11-21 Power supply device
US16/959,520 US11245337B2 (en) 2018-11-21 2018-11-21 Power supply device
JP2019531478A JP6666526B1 (en) 2018-11-21 2018-11-21 Power supply
KR1020207023820A KR102382136B1 (en) 2018-11-21 2018-11-21 power supply
CN201880089955.5A CN111771320B (en) 2018-11-21 2018-11-21 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/042963 WO2020105135A1 (en) 2018-11-21 2018-11-21 Power supply device

Publications (1)

Publication Number Publication Date
WO2020105135A1 true WO2020105135A1 (en) 2020-05-28

Family

ID=70000438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042963 WO2020105135A1 (en) 2018-11-21 2018-11-21 Power supply device

Country Status (5)

Country Link
US (1) US11245337B2 (en)
JP (1) JP6666526B1 (en)
KR (1) KR102382136B1 (en)
CN (1) CN111771320B (en)
WO (1) WO2020105135A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102547464B1 (en) * 2019-03-05 2023-06-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 power unit
US11349382B2 (en) * 2019-03-06 2022-05-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Controller
EP3992133B1 (en) * 2020-10-28 2024-03-13 KONE Corporation Method for detecting loss or undervoltage condition of phase of electric converter unit, conveyor control unit, and conveyor system
JP2022081912A (en) * 2020-11-20 2022-06-01 株式会社デンソーウェーブ Output module for industrial control device
KR20230042109A (en) 2021-06-02 2023-03-27 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 power unit
KR102619615B1 (en) 2021-06-30 2024-01-03 홍소현 Heating humidifier for temperature and humidity supply in insect breeding grounds
CN118318363A (en) 2022-10-06 2024-07-09 东芝三菱电机产业系统株式会社 Power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219047U (en) * 1985-07-17 1987-02-04
JPH0536332A (en) * 1991-07-30 1993-02-12 Mitsubishi Electric Corp Switch operation control circuit
JPH06104712A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Semiconductor switch

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106158A (en) 1988-10-14 1990-04-18 Mitsubishi Electric Corp Power converter
JP5988079B2 (en) 2012-03-05 2016-09-07 パナソニックIpマネジメント株式会社 Control device, conversion device, control method, and power distribution system
JP5449593B1 (en) * 2013-03-05 2014-03-19 三菱電機株式会社 On-vehicle electronic control device and power supply control method thereof
JP6441503B2 (en) * 2015-11-27 2018-12-19 東芝三菱電機産業システム株式会社 Uninterruptible power system
JP6665757B2 (en) * 2016-11-08 2020-03-13 株式会社デンソー Power control device and battery unit
KR102547464B1 (en) * 2019-03-05 2023-06-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 power unit
US11349382B2 (en) * 2019-03-06 2022-05-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219047U (en) * 1985-07-17 1987-02-04
JPH0536332A (en) * 1991-07-30 1993-02-12 Mitsubishi Electric Corp Switch operation control circuit
JPH06104712A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Semiconductor switch

Also Published As

Publication number Publication date
JPWO2020105135A1 (en) 2021-02-15
CN111771320B (en) 2024-01-16
JP6666526B1 (en) 2020-03-13
US11245337B2 (en) 2022-02-08
KR102382136B1 (en) 2022-04-01
US20210057997A1 (en) 2021-02-25
CN111771320A (en) 2020-10-13
KR20200106205A (en) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2020105135A1 (en) Power supply device
JP6730515B2 (en) Power converter
US10003273B2 (en) Power conversion device
JP6575289B2 (en) Power converter
US20200295595A1 (en) Uninterruptible power supply device
US9780681B2 (en) Power conversion system including plurality of power converters connected in parallel to load
KR20200019986A (en) Uninterruptible power system
KR102620030B1 (en) Method for detecting abnormalities in power devices and AC power
US20190353715A1 (en) Failure detection device for onboard power supply device, and onboard power supply device
JP2015156740A (en) Power conversion device
JP6552774B1 (en) Power converter
US10886843B2 (en) Electric power supplying system
JP6455938B2 (en) Power conversion apparatus and control method thereof
KR102566563B1 (en) power supply system
JP2017184496A (en) Power conversion device and method for controlling the same
KR20230019957A (en) power unit
JP4575876B2 (en) Inverter device and inverter system
JP5481055B2 (en) Power converter
KR102675248B1 (en) Power supply system and control method of power supply system
JP7108130B1 (en) Uninterruptible power system
JP2021158799A (en) Power device
KR20230042109A (en) power unit
JP2019092311A (en) Power conversion device
JP2005210819A (en) Fault-detecting method for pulse-width-modulation dc power supply

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531478

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207023820

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940859

Country of ref document: EP

Kind code of ref document: A1