WO2020104257A1 - Charges de centrage balistiques - Google Patents

Charges de centrage balistiques

Info

Publication number
WO2020104257A1
WO2020104257A1 PCT/EP2019/081050 EP2019081050W WO2020104257A1 WO 2020104257 A1 WO2020104257 A1 WO 2020104257A1 EP 2019081050 W EP2019081050 W EP 2019081050W WO 2020104257 A1 WO2020104257 A1 WO 2020104257A1
Authority
WO
WIPO (PCT)
Prior art keywords
liner
casing
shaped
shaped charge
charge
Prior art date
Application number
PCT/EP2019/081050
Other languages
English (en)
Inventor
Joern Olaf LOEHKEN
Original Assignee
DynaEnergetics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DynaEnergetics Europe GmbH filed Critical DynaEnergetics Europe GmbH
Priority to US17/294,958 priority Critical patent/US20220003085A1/en
Publication of WO2020104257A1 publication Critical patent/WO2020104257A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1078Stabilisers or centralisers for casing, tubing or drill pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/117Shaped-charge perforators

Definitions

  • the present disclosure is generally related to shaped charges and more particularly related to a centering of wellbore casings utilizing shaped charges.
  • Perforating gun assemblies are used in many oilfield or gas well completions.
  • the assemblies are used to generate holes in steel casing pipe/tubing and/or cement lining a well to gain access to the oil and/or gas deposit formation.
  • These assemblies are usually cylindrical and include a detonating cord arranged within the interior of the assembly and connected to shaped charges (or shaped charge perforators) disposed therein.
  • shaped charges are configured to focus ballistic energy onto a target to initiate production flow.
  • the configuration of shaped charges may include conical or round aspects having a single point of initiation through a metal case, which contains an explosive charge material and a liner therein, and that produces a perforating jet upon initiation. It should be recognized that the casing, case or housing of the shaped charge is distinguished from the casing of the wellbore, which is placed in the wellbore after the drilling process.
  • FIG. 2A shows an outer casing 202 having a hollow interior and an inner casing 204 having a hollow interior 206.
  • the inner casing 204 is shown disposed in the hollow interior of the outer casing 202 with an annulus 208 present between the outer casing 202 and the inner casing 204. Since annulus 208 defines a space, i.e., no structural element present, between outer casing 202 and inner casing 204, the potential exists for the cross-section of well bore system 200 to deviate between the idealized cross-section of FIG. 2A toward the potentially problematic cross-section shown in FIG. 1.
  • FIG. 1 Another ways to characterize the arrangement of FIG. 1 is to say the inner casing 204 is not centered in outer casing 202 or that the casings are not concentrically arranged.
  • FIG. 2A presents ideal circumstances for purposes of fluid flow through annulus 208, the equal annulus width between the casings would typically be expected to improve fluid flow parameters.
  • the annulus between casings is sometimes injected at a later point with cement.
  • the cross-section of FIG. 2A presents a far better profile for filling with cement than situations where the inner and outer casings are very close to one another, or touching, on one side and the annulus if maximized on the opposite side. While cement will not flow between portions of casing that are too close together, gas and liquids will have little problem flowing through such areas. The flow of gas, oil and other fluids through the annulus in spite of cementing can present significant problems.
  • the thickness of the annulus will vary between zero and about twice the ideal annulus thickness.
  • the uncertainties presented by such a variance may severely impact the ability of an engineer to properly choose perforation charges and may result in unacceptable variances in the perforations achieved, based on how much annulus was present radially from a given perforation charge.
  • a shaped charge is described herein.
  • the shaped charge includes a shaped charge casing, an explosive load within the shaped charge casing and a liner positioned above the explosive load within the shaped charge casing.
  • the liner includes a low-density material, which allows the shaped charge to deform a wellbore casing without penetrating the casing when the shaped charge is detonated.
  • the shaped charge may also include a detonating device configured to initiate detonation of the explosive load. An aperture in the shaped charge casing may allow the detonating device to contact the explosive load through the aperture.
  • the detonating device may include a detonating cord.
  • the shaped charge may be a slotted shaped charge and the liner is a slotted shaped charge liner.
  • the low-density material associated with the shaped charge may be a plastic, a low- density metal or a lacquer.
  • the lacquer may be disposed above the liner and/or adhered to the liner.
  • the liner may be at least one of a conically-shaped liner, a hemispherically-shaped liner, a frustoconically-shaped liner, a trumpet-shaped liner, and/or any combination thereof.
  • a liner-less shaped charge including a shaped charge casing and an explosive load within the shaped charge casing.
  • the shaped charge is configured to deform a wellbore casing without penetrating the casing when the shaped charge is detonated.
  • a detonating device may be configured to initiate detonation of the explosive load.
  • An aperture may be present in the shaped charge casing and the detonating device may be configured to contact the explosive load through the aperture.
  • the detonating device may include detonating cord.
  • the liner-less shaped charge may also comprise an inlay of a low-density material.
  • the inlay may be at least one of a plastic, a low-density metal and a lacquer.
  • the lacquer may be disposed above the explosive load and/or coated onto the explosive load.
  • a further embodiment includes a shaped charge including a shaped charge casing, an explosive load within the shaped charge casing, a liner positioned above the explosive load within the shaped charge casing and an inlay adjacent to a front facing surface of the liner within the shaped charge casing. At least one of the liner and the inlay includes a low-density material, which allows the shaped charge to deform a wellbore casing without penetrating the casing when the shaped charge is detonated.
  • the shaped charge may also include a detonating device configured to initiate detonation of the explosive load.
  • the shaped charge may also include an aperture in the shaped charge casing, wherein the detonating device is configured to contact the explosive load through the aperture.
  • the detonating device may be a detonating cord.
  • the low- density material may be a plastic, a low-density metal and/or a lacquer. If a lacquer, the lacquer may be disposed above the liner and/or adhered to the liner.
  • the shaped charge liner may be at least one of a conically-shaped liner, a hemispherically-shaped liner, a frustoconically-shaped liner, a trumpet-shaped liner and any combination thereof.
  • the shaped charge may be a slotted shaped charge and the liner is a slotted shaped charge liner.
  • the shaped charge inlay may cover at least a portion of the front facing surface of the liner or substantially all of the front facing surface of the liner.
  • a substantially cylindrical outer casing defines a hollow interior of the outer casing
  • a substantially cylindrical inner casing defines a hollow interior of the inner casing
  • the inner casing is disposed within the hollow interior of the outer casing
  • the outer casing and the inner casing define an annulus between the outer casing and the inner casing and a gun including one or more shaped charges disposed within the hollow interior of the inner casing.
  • At least one of the shaped charges includes a shaped charge casing, an explosive load within the shaped charge casing, and a liner positioned above the explosive load within the shaped charge casing.
  • the liner includes a low-density material, and the shaped charge is configured to create a deformation in the inner casing without penetrating the inner casing when the shaped charge is detonated.
  • the deformation may be a dimple that extends between the inner casing and the outer casing.
  • the wellbore system may also comprise a detonating device configured to initiate detonation of the explosive load in at least one shaped charge.
  • the wellbore system may also have a shaped charge further including an aperture in the shaped charge casing, wherein the detonating device is configured to contact the explosive load through the aperture and the detonating device may be a detonating cord.
  • the low-density material may be plastic, low-density metal and/or a lacquer.
  • the lacquer may be disposed above the liner and/or adhered to the liner.
  • the liner may be at least one of a conically-shaped liner, a hemispherically- shaped liner, a frustoconically-shaped liner, a trumpet-shaped liner, and any combination thereof.
  • the shaped charge may be a slotted shaped charge and the liner a slotted shaped charge liner.
  • a shaped charge may comprise a shaped charge casing, an explosive load within the shaped charge casing and a projectile disposed above the explosive load within the shaped charge casing.
  • the shaped charge may be configured to deform a wellbore casing without penetrating the casing when the shaped charge is detonated.
  • the projectile may be a ball, a bullet or a gel cushion.
  • a system for forming a deformation pattern in an inner casing within an outer casing inside a wellbore can include a gun holding a plurality of shaped charges.
  • the shaped charge includes a shaped charge casing, an explosive load within the shaped charge casing and a liner positioned above the explosive load within the shaped charge casing.
  • the liners may comprise a low-density material and the shaped charges may be configured to create a deformation in the inner casing without penetrating the inner casing when the shaped charges are detonated.
  • the shaped charges may be arranged in a pattern on the gun such that a deformation pattern that is created in the inner casing upon detonation of the shaped charges centers the inner casing and provides a fluid flow path around each deformation in an annulus between the inner casing and the outer casing.
  • the shaped charges may be arranged in a helical pattern around the gun.
  • FIG. 1 is a cross-sectional view of non-concentric pipes
  • FIG. 2A is a cross-sectional view of an outer casing, inner casing and shaped charges
  • FIG. 2B is a cross sectional view of an inner casing centered within an outer casing
  • FIG. 3 is a perspective view of a shaped charge in a shaped charge casing
  • FIG. 4 is a perspective view of a conical shaped liner
  • FIG. 5 is a perspective view of hemispherical shaped liner
  • FIG. 6A is a cross-sectional front view of a shaped charge
  • FIG. 6B is a perspective view of a shaped charge liner
  • FIG. 7 is a perspective view of a shaped charge
  • FIG. 8 is a cross-sectional view of a ball projectile in a shaped charge
  • FIG. 9 is a cross-sectional view of a bullet projectile in a shaped charge
  • FIG. 10 is a cross-sectional view of a pillow projectile in a shaped charge
  • FIG. 11 A is a perspective view of a portion of casing in which a dimple has been formed
  • FIG. 1 IB is a side view of the portion of casing of FIG. 11A showing the deformation on the side of the casing opposite the side on which the dimple was formed;
  • FIG. 12 is a cross-sectional view of a gun system
  • FIG. 13 is a side view of a portion of the gun system.
  • FIG. 14 is a side view of a portion of the gun system.
  • FIG. 2A is a cross-section of a well bore system 200.
  • the well bore system 200 includes an outer casing 202 having a hollow interior.
  • the well bore system 200 may further comprise an inner casing 204 having a hollow interior 206.
  • the inner casing 204 may be disposed in the hollow interior of the outer casing 202.
  • An annulus 208 may be present between the outer casing 202 and the inner casing 204. Since annulus 208 defines a space, i.e., no structural element present, between outer casing 202 and inner casing 204, the potential exists for the cross-section of well bore system 200 to deviate between the idealized cross-section of FIG. 2A toward the potentially problematic cross-section shown in FIG. 1.
  • well bore system 200 may further comprise a gun 210 disposed within the hollow interior 206 of the inner casing 204.
  • the gun 210 may include one or more shaped charges 212.
  • the shaped charges 212 may be disposed in any one of a number of arrangements, depending upon the total number of charges included with the gun 210 and the ultimate purpose the particular gun is achieving. Examples of such arrangements include circular, helical, axial or other predefined patterns.
  • FIG. 2B shows the well bore system 200 after detonation of shaped charges 212 arranged and sized in accordance with an embodiment.
  • the shaped charges are designed so as to cause a deformation 1102, also referred to as a dimple 1 102, formed on the interior of inner casing 204.
  • the deformation 1102 will be large enough to result in the exterior surface of inner casing 204 to also be deformed.
  • multiple deformations 1102 around the periphery of inner casing 204 result in a centered arrangement of the outer casing 202 and inner casing 204.
  • a‘centered’ arrangement is the ideal result, any result that increases the offset between the inner casing and outer casing has the potential to achieve the described benefits.
  • detonating the explosive load 310 results in deformations that center the inner casing 204 within the outer casing 202.
  • the explosive load 310 may be detonated using the detonating device 318.
  • a deformation 802 may be created in the inner casing 204 due to force produced by the detonation.
  • Such force created upon detonation may be sufficient only to create the deformation 802, i.e., dimples 802, and will not penetrate either of the inner casing 204 and the outer casing 202.
  • the annulus 208 present between the outer casing 202 and the inner casing 204 provides a path for fluid flow around the deformations 802.
  • FIG. 11 A illustrates an exemplary dimple 802 formed on the interior surface of the inner casing 204.
  • FIG. 1 IB is a side view of FIG. 11A, showing how the formation of dimple 802 on the interior surface of inner casing 204 resulted a dimple 802 on the outer surface of inner casing 204 that may now be used, in combination with other deformations, to center inner casing 204 within outer casing 202.
  • FIG. 3 shows an example of a shaped charge 300 that may be used with gun 210.
  • Shaped charge 300 may include a shaped charge casing 302.
  • the shaped charge casing 302 may comprise an outer wall 304, rear walls 306 and an open top portion 308. Further, a portion of the shaped charge casing 302 may be filled with an explosive load 310.
  • a bottom section of the shaped charge casing 302 may be filled with the explosive load 310 and an upper section 312 of the shaped charge casing 302 may be empty.
  • a liner 314 may be positioned above the explosive load 310, separating it from and defining the shape of both the explosive load 310 and the empty upper section 312 of the shaped charge casing 302.
  • the liner 314 may be made of a low-density material such as plastic, low-density metal or lacquer.
  • the liner 314 may be a conically shaped, hemispherically shaped, frustoconically shaped, trumpet shaped, or any combination thereof.
  • the shaped charge 300 may comprise an aperture 316 for connecting a detonating device 318 to the explosive load 310.
  • the aperture 316 may be present in middle of the outer wall 304 of the shaped charge casing 302.
  • the detonating device 318 may be a detonating cord.
  • FIG. 4 shows a conical shaped liner 400 having an open top 402, a hollow interior 404, an outer wall 406 and an apex 408 present at bottom of the conical shaped liner 400.
  • An aperture may be present at the apex 408 of the liner 400.
  • the aperture of conical shaped liner 400 would be similarly disposed to the aperture 510 of hemispherical shaped liner 500, discussed next.
  • FIG.5 shows a hemispherical shaped liner 500 having an open top portion 502, a hollow interior 504, an outer wall 506 and an apex 508 present at bottom of the hemispherical shaped liner 500. Further, an aperture 510 may be present at the apex 508 of the hemispherical shaped liner 500.
  • FIG. 6A shows a slotted shaped charge 600 that may be enclosed in the shaped charge casing 302.
  • the shaped charge casing 302 may comprise outer wall 304, rear walls 306 and open top 308. Further, a portion of the slotted shaped charge 600 may be filled with the explosive load 310. The bottom section of the shaped charge casing 302 may be filled with the explosive load 310 and an upper section 312 of the shaped charge casing 302 may be empty.
  • the slotted shaped charge 600 may comprise the aperture 316 for connecting the detonating device 318 to the explosive load 310. The aperture 316 may be present in middle of the outer wall 304 of the shaped charge casing 302. Further, the detonating device 318 may be a detonating cord.
  • FIG. 6B shows a slotted shaped charge liner 602 that may be present above the explosive load 310.
  • the slotted shaped charge liner 602 may be made of a low-density material, such as plastic, low-density metal or lacquer. Further, as illustrated in FIG. 6B, the slotted shaped charge liner 602 can have an open top portion 608, a hollow interior 604, side walls 606 and an apex 608 present at the bottom of the slotted shaped charge liner 602.
  • the shaped charge 700 includes a liner inlay 702 present in the shaped charge casing 302.
  • the shaped charge may be enclosed in the shaped charge casing 302.
  • the shaped charge casing 302 may comprise the outer wall 304, the rear walls 306, and the open top 308. Further, a portion of the shaped charge casing 302 may be filled with the explosive load 310. In one case, a bottom section of the shaped charge casing 302 may be filled with the explosive load 310 and the upper section 312 of the shaped charge casing 302 may be empty, with the bottom and upper sections separated by liner inlay 702 and liner 314. The liner 314 may not be present above the explosive load 310.
  • the liner inlay 702 may be present above the explosive load 310.
  • the liner inlay 702 may be made of a low-density material, such as plastic, low-density metal or lacquer.
  • the liner inlay 702 may be conically shaped, hemispherically-shaped, frustoconically-shaped, trumpet shaped or any combination thereof.
  • the liner inlay 702 may be made of lacquer, and the lacquer may be disposed above the explosive load 310 and coated onto the explosive load 310.
  • the shaped charge 700 may comprise aperture 316 for connecting the detonating device 318 to the explosive load 310.
  • the aperture 316 may be present in the middle of the outer wall 304 of the shaped charge casing 302.
  • the detonating device 318 may be a detonating cord.
  • FIG. 8 is a cross-section of a shaped charge casing 302 with a ball projectile 800 disposed above the explosive load 310 within the shaped charge casing 302.
  • FIG. 9 is a cross- section of a shaped charge casing 302 with a bullet projectile 900 disposed above the explosive load 310.
  • FIG. 10 is a cross-section of a shaped charge casing 302 with a gel cushion projectile 1000 disposed above the explosive load 310. Positioning and utilization of the projectiles will be described below.
  • any of the above mentioned projectiles 800, 900 or 1000 may be positioned through the open top portion 402 for disposing the projectile 800, 900 or 1000 above the explosive load 310.
  • the projectile 800, 900 or 1000 may be placed in the hollow interior 404 of the conical shaped charge. Further, the projectile 800, 900 or 1000 may be surrounded by the outer wall 406 of conical shaped liner 400.
  • any of the above mentioned projectiles 800, 900 or 1000 may be positioned through the open top portion 502 for disposing the projectile 800, 900 or 1000 above the explosive load 310.
  • the projectile 800, 900 or 1000 may be placed in the hollow interior 504 of the shaped charge.
  • the projectile 800, 900 or 1000 may be surrounded by the outer wall 506 of
  • any of the above mentioned projectiles 800, 900 or 1000 may be positioned through the open top portion 602 for disposing the projectile 800, 900 or 1000 above the explosive load 310.
  • the projectile 800, 900 or 1000 may be placed in the hollow interior 604 of the shaped charge.
  • the projectile 800, 900 or 1000 may be surrounded by the side walls 606 of the shaped charge.
  • the gun 210 may take the form of a gun system 10 similar to the gun systems described in U.S. Patent No. 9,494,021, which is incorporated herein by reference in its entirety.
  • Gun system 10 may include a top connector 14 and a plurality of charge holders 16. Each charge holder is adapted to hold a single shaped charge 212 within the gun carrier 12.
  • gun carrier 12 may be eliminated completely, have openings adjacent the charge holders or otherwise present sufficiently small resistance to projectiles from adjacent shaped charges 212.
  • a detonation cord 20 is connected to the top connector 14 and to each stackable charge holder 16.
  • gun system 10 which includes at least one bottom connector 22 for terminating the detonation cord 20 in the gun system. As better shown in FIG. 2, it is also possible that the bottom connector 22 double as or serve the function of a spacer 24 for spacing a plurality of stackable charge holders 16.
  • the gun system 10 may also include a detonator 26 energetically coupled to the detonation cord 20.
  • a top sub 72 facilitates use of an off the shelf quick change assembly 140 to enable electrical signals from the surface, as well as to adapt gun system 10 to mechanically run with conventional downhole equipment.
  • the quick change assembly 140 may include a threaded adapter 143 to set an offset distance between an electrical connector 142 and the contact pin 126B extending from the bulkhead assembly 58.
  • the bottom sub 70 may be configured to receive an off the shelf quick change assembly 140 (not shown) and insulator 150 that communicates with a firing head threaded below it (not shown).
  • the snap ring 54 is preinstalled on the bottom of the carrier 12. The assembly can thus shoulder up to the snap ring 54.
  • Inner components within the carrier 12 or within the connectors/subs may be protected from the outside environment by sealing elements 60 (shown herein as o-rings).
  • the present disclosure in various embodiments, configurations and aspects, includes components, methods, processes, systems and/or apparatus substantially developed as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. Those of skill in the art will understand how to make and use the present disclosure after understanding the present disclosure.
  • the present disclosure in various embodiments, configurations and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and/or reducing cost of implementation.
  • each of the expressions“at least one of A, B and C”,“at least one of A, B, or C”,“one or more of A, B, and C”,“one or more of A, B, or C” and“A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
  • Approximating language may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Terms such as “first,” “second,” “upper,” “lower” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
  • the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of "may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur - this distinction is captured by the terms “may” and “may be.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

L'invention concerne des charges creuses pour le centrage de cuvelages. Une charge creuse (300) comprend un cuvelage de charge creuse (302) et une charge explosive (310) à l'intérieur du cuvelage de charge creuse. La charge creuse peut également comprendre un chemisage (314) positionné au-dessus de la charge explosive à l'intérieur du cuvelage de charge creuse. Le chemisage peut être constitué d'un matériau à faible densité. La charge creuse est configurée pour déformer un cuvelage de puits de forage (204) sans pénétrer dans le cuvelage lorsque la charge creuse détonne.
PCT/EP2019/081050 2018-11-19 2019-11-12 Charges de centrage balistiques WO2020104257A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/294,958 US20220003085A1 (en) 2018-11-19 2019-11-12 Ballistic centering charges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862769033P 2018-11-19 2018-11-19
US62/769,033 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020104257A1 true WO2020104257A1 (fr) 2020-05-28

Family

ID=68621236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/081050 WO2020104257A1 (fr) 2018-11-19 2019-11-12 Charges de centrage balistiques

Country Status (2)

Country Link
US (1) US20220003085A1 (fr)
WO (1) WO2020104257A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480021B2 (en) 2018-08-16 2022-10-25 James G. Rairigh Shaped charge assembly, explosive units, and methods for selectively expanding wall of a tubular
US11781393B2 (en) 2018-08-16 2023-10-10 James G. Rairigh Explosive downhole tools having improved wellbore conveyance and debris properties, methods of using the explosive downhole tools in a wellbore, and explosive units for explosive column tools
WO2020037267A1 (fr) 2018-08-16 2020-02-20 Rairigh James G Ensemble charge façonnée, unités explosives et procédés de dilatation sélective d'une paroi d'un élément tubulaire
EP3837424A4 (fr) 2018-08-16 2022-05-18 Rairigh, James, G. Outils de colonne à double extrémité de mise à feu d'explosif et procédés d'expansion sélective d'une paroi de matériel tubulaire
US11536104B2 (en) * 2018-08-16 2022-12-27 James G. Rairigh Methods of pre-testing expansion charge for selectively expanding a wall of a tubular, and methods of selectively expanding walls of nested tubulars

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251034A1 (en) * 1999-12-03 2004-12-16 Larry Kendziora Mono-diameter wellbore casing
US20070051267A1 (en) * 2003-10-10 2007-03-08 Qinetiq Limited Perforators
US20090050321A1 (en) * 2004-11-16 2009-02-26 Rhodes Mark R Oil well perforators
US20160237763A1 (en) * 2013-09-20 2016-08-18 Statoil Petroleum As Method of centralising tubing in a wellbore
US9494021B2 (en) 2013-07-18 2016-11-15 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284824B2 (en) * 2011-04-21 2016-03-15 Halliburton Energy Services, Inc. Method and apparatus for expendable tubing-conveyed perforating gun
WO2019117874A1 (fr) * 2017-12-12 2019-06-20 Halliburton Energy Services, Inc. Charge profilée à pénétration limitée
DE112018006779T5 (de) * 2018-01-05 2020-12-03 Halliburton Energy Services, Inc. Additive herstellung von energetischen materialien in ölquellenhohlladungen
US11480021B2 (en) * 2018-08-16 2022-10-25 James G. Rairigh Shaped charge assembly, explosive units, and methods for selectively expanding wall of a tubular
US11499401B2 (en) * 2021-02-04 2022-11-15 DynaEnergetics Europe GmbH Perforating gun assembly with performance optimized shaped charge load

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251034A1 (en) * 1999-12-03 2004-12-16 Larry Kendziora Mono-diameter wellbore casing
US20070051267A1 (en) * 2003-10-10 2007-03-08 Qinetiq Limited Perforators
US20090050321A1 (en) * 2004-11-16 2009-02-26 Rhodes Mark R Oil well perforators
US9494021B2 (en) 2013-07-18 2016-11-15 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
US20160237763A1 (en) * 2013-09-20 2016-08-18 Statoil Petroleum As Method of centralising tubing in a wellbore

Also Published As

Publication number Publication date
US20220003085A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US20220003085A1 (en) Ballistic centering charges
AU2018208822B2 (en) Perforating gun for oil and gas wells
US11753909B2 (en) Perforating gun system and method of use
CA2995139C (fr) Initiation a points multiples pour charge de forme non-axisymetrique
EP3663702B1 (fr) Charge creuse pour trous d'entrée à caractéristiques constantes
CN111133170A (zh) 基于高密度集束的射孔系统和方法
US10077641B2 (en) Perforating gun with integrated initiator
EP3108200B1 (fr) Charge à effet dirigé à circulateur de fond à angle faible
US7762351B2 (en) Exposed hollow carrier perforation gun and charge holder
US4534423A (en) Perforating gun carrier and method of making
US4519313A (en) Charge holder
EP3627092A1 (fr) Dispositif de retenue de revêtement encliquetable
EP3114425B1 (fr) Système de ventilation pour dispositif de coupe à jet en cas de déflagration
WO2022184654A1 (fr) Système de perforateur modulaire
GB2430479A (en) Apparatus for controling explosive energy generated by a shaped charge in a perforating tool in a wellbore
US20220195824A1 (en) Well abandonment system
WO2022148557A1 (fr) Ensemble perforateur à balles et composants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806126

Country of ref document: EP

Kind code of ref document: A1