WO2020103954A1 - 永磁式直流电机驱动装置以及电动设备 - Google Patents

永磁式直流电机驱动装置以及电动设备

Info

Publication number
WO2020103954A1
WO2020103954A1 PCT/CN2019/120401 CN2019120401W WO2020103954A1 WO 2020103954 A1 WO2020103954 A1 WO 2020103954A1 CN 2019120401 W CN2019120401 W CN 2019120401W WO 2020103954 A1 WO2020103954 A1 WO 2020103954A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
permanent magnet
current
power switch
motor
Prior art date
Application number
PCT/CN2019/120401
Other languages
English (en)
French (fr)
Inventor
金爱娟
李少龙
Original Assignee
上海理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811404819.9A external-priority patent/CN111313776A/zh
Priority claimed from CN201811404812.7A external-priority patent/CN111313777A/zh
Priority claimed from CN201811404847.0A external-priority patent/CN111313775A/zh
Application filed by 上海理工大学 filed Critical 上海理工大学
Publication of WO2020103954A1 publication Critical patent/WO2020103954A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/292Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC

Definitions

  • the invention belongs to the field of DC motors, and particularly relates to a permanent magnet DC motor drive device and an electric device including the permanent magnet DC motor drive device.
  • Permanent magnet DC motor is a DC motor consisting of one or more permanent magnets. It has the advantages of small size, high efficiency, simple structure, and convenient speed regulation by changing the armature voltage, so it is widely used in automobiles and motorcycles. , Electric bicycles, battery vehicles, ships and aviation industries.
  • DC motors are generally used with choppers to form a DC motor speed control device.
  • the maximum output current of the chopper is generally 2 to 3 times the rated current of the motor.
  • High-power high-performance DC motors, especially low-voltage high-current DC motors require choppers with a large continuous operating current, and related technologies and products are controlled and monopolized by individual countries and companies, resulting in high prices and market availability.
  • the output current value of the purchased high-performance motor chopper is only below one thousand amperes, which seriously restricts and affects the development of low-voltage high-current DC motors.
  • the chopper uses pulse width modulation technology to control the on and off of the power switch tube to change the output voltage and output current.
  • the output current ripple is inversely proportional to the switching frequency of the power switch tube.
  • the switch of the power switch tube The size of the frequency is proportional to the switching loss (or temperature rise, failure rate).
  • the motor output torque ripple is proportional to the current ripple. Therefore, in order to reduce the motor output torque ripple or reduce the current ripple, the switching frequency must be increased; and in order to reduce the switching loss, the switching frequency must be reduced. This contradictory relationship has affected the development of DC motor drives. As a result, it is difficult to apply to devices such as CNC machine tools that require high speed and torque ripple.
  • Permanent magnet DC motors used in defense equipment are particularly sensitive to vibration and electromagnetic interference due to stealth requirements, that is, the requirements for the output torque ripple and current ripple of the motor are particularly strict.
  • traditional permanent magnet DC motors used in high-power defense electric equipment have been unable to cope with the increasingly advanced detection technology.
  • the present invention is made to solve the above-mentioned problems, and an object is to provide a permanent magnet DC motor drive device.
  • the invention provides a permanent magnet DC motor driving device, which is characterized by comprising: a permanent magnet DC motor having a rated voltage; a DC power source having a constant voltage corresponding to the rated voltage; and a chopper according to the driving signal Convert a constant voltage to a variable voltage and provide it to a permanent magnet DC motor, where the chopper has m chopper units, each chopper unit has a first power output and a second power output, all chopper units The m first power output terminals correspond to the m second power output terminals of all the chopper units respectively to form m pairs of power output terminals.
  • the output currents of the m pairs of power output terminals all contain current ripple, permanent magnet DC motor Including: housing; m pairs of brushes, fixed in the housing; stator, provided in the housing, containing m pairs of permanent magnet-type main poles corresponding to m pairs of brushes; and rotor, provided in the stator, Contains a plurality of armature windings connected to each other by a predetermined connection method, each pair of main magnetic poles includes adjacent S-polarity main magnetic poles and N-polarity main magnetic poles, the position of 2 brushes in each pair of brushes Adjacent, each pair of brushes contains an S-pole corresponding brush corresponding to the S-polar main magnetic pole and an N-pole corresponding brush corresponding to the N-polar main magnetic pole, and all S poles correspond to the leading end of the brush M first terminals are formed, and all N poles correspond to the lead terminals of the brush to form m second terminals; or, all N poles correspond to the lead terminals of the brush to form m first terminals, and all
  • each chopper unit includes an upper bridge arm and a lower bridge arm connected in series with each other, and the upper bridge arm includes at least one power switch tube,
  • the lower arm includes at least one diode, the current output of the upper arm of each chopper unit and the current output of the lower arm are connected to each other to form a first power output, and the current input of the lower arm of each chopper unit The terminal forms a second power output terminal.
  • the above-mentioned permanent magnet DC motor driving device may also have such technical features, in which the upper arm includes one power switch tube, when all power switch tubes have the same maximum output current I1, the maximum current of the permanent magnet DC motor When Imax, m satisfies the following conditions: m> Imax ⁇ I1; or, the upper arm contains p power switch tubes connected in parallel with each other. When all power switch tubes have the same maximum output current I1, the permanent magnet DC motor The maximum current is Imax, and m satisfies the following conditions: m> Imax ⁇ (k ⁇ p ⁇ I1), p is an integer not less than 2, k is the parallel coefficient, 1 / p ⁇ k ⁇ 1.
  • each chopper unit includes a first bridge arm and a second bridge arm connected in parallel to each other, and the first bridge arm corresponds to the corresponding 1 pair of first signal output terminals are connected, and the second bridge arm is connected to a corresponding pair of second signal output terminals.
  • the first bridge arm includes a first upper bridge arm and a first lower bridge arm connected in series with each other.
  • the second bridge arm includes a second upper bridge arm and a second lower bridge arm connected in series with each other.
  • the first upper bridge arm, the first lower bridge arm, the second upper bridge arm and the second lower bridge arm respectively include at least one power switch tube And a diode connected in reverse parallel with the power switch tube, the current output terminal of the power switch tube of the first upper arm of each chopper unit and the current input terminal of the power switch tube of the first lower bridge are connected to each other to form a first
  • the power output terminal, the current output terminal of the power switch tube of the second upper bridge arm of each chopper unit and the current input terminal of the power switch tube of the second lower bridge arm are mutually connected to form a second power output terminal.
  • the above-mentioned permanent magnet DC motor driving device may also have such technical characteristics, wherein the first upper bridge arm includes a power switch tube, the first lower bridge arm includes a power switch tube, and the second upper bridge arm includes 1 power switch tube, the second lower bridge arm contains 1 power switch tube, when all power switch tubes have the same maximum output current I1, and the maximum current of permanent magnet DC motor is Imax, m satisfies the following conditions: m> Imax ⁇ I1; or, the first upper arm contains p power switches connected in parallel, the first lower arm contains p power switches connected in parallel, and the second upper arm contains p power switches connected in parallel Power switch tube, the second lower bridge arm contains p power switch tubes connected in parallel with each other.
  • the maximum current of the permanent magnet DC motor is Imax
  • m meets the following conditions: m > Imax ⁇ (k ⁇ p ⁇ I1), p is an integer not less than 2, k is the parallel coefficient, 1 / p ⁇ k ⁇ 1.
  • each chopper unit includes an upper bridge arm and a lower bridge arm connected in series with each other, and the upper bridge arm and the lower bridge arm respectively include at least A power switch tube and a diode connected in reverse parallel with the power switch tube, the current output terminal of the power switch tube of the upper bridge arm of each chopper unit and the current input terminal of the power switch tube of the lower bridge arm are mutually connected to form a first power output
  • the current output terminal of the power switch tube of the lower bridge arm of each chopper unit forms a second power output terminal.
  • the above-mentioned permanent magnet DC motor driving device may also have such technical characteristics, in which the upper bridge arm contains a power switch tube, and the lower bridge arm contains a power switch tube, when all power switch tubes have the same maximum output Current I1, when the maximum current of the permanent magnet DC motor is Imax, m satisfies the following conditions: m> Imax ⁇ I1; or, the upper arm includes p power switch tubes connected in parallel with each other, and the lower arm contains parallel connected p power switch tubes, when all power switch tubes have the same maximum output current I1, the maximum current of permanent magnet DC motor is Imax, m satisfies the following conditions: m> Imax ⁇ (k ⁇ p ⁇ I1), n is not Integer less than 2, k is the parallel coefficient, 1 / p ⁇ k ⁇ 1.
  • the permanent magnet DC motor driving device provided by the present invention may also have such technical features, wherein the frequency of the current ripple of m to the output current of the power supply output terminal is the same.
  • the above-mentioned permanent magnet DC motor driving device may also have a technical feature in which the phases of the current ripple of m to the output current of the power output terminal are all the same.
  • the above-mentioned permanent magnet DC motor drive device may also have a technical feature in which the phase of the current ripple of m to the output current of the power supply output terminal is sequentially shifted by one-mth of the switching period.
  • the permanent magnet DC motor driving device provided by the present invention may also have such technical characteristics, and further includes: a driving unit that generates a driving signal according to a control signal, wherein the driving unit has m signal outputs composed of at least one driving unit End, the m signal output terminals are connected to the m chopper units in one-to-one correspondence.
  • the above-mentioned permanent magnet DC motor driving device may also have such technical characteristics, wherein the driving unit includes one driving unit, and the driving unit includes m signal output terminals; or, the driving unit includes m independent driving units Each drive unit contains a signal output terminal and an enable control signal input terminal.
  • the permanent magnet DC motor driving device may also have such technical features, wherein the DC power supply includes one DC unit, and the DC unit includes m pairs of power supply output terminals, and the m pairs of power supply output terminals and m choppers The wave units are connected in one-to-one correspondence; or, the DC power supply includes m independent DC units, each DC unit includes a pair of power supply output terminals, and the m-pair power supply output terminals of all DC units are connected in correspondence with the m chopper units .
  • the permanent magnet DC motor driving device provided by the present invention may also have such technical characteristics, wherein the predetermined connection mode is any one of single stack, cascade, and complex wave.
  • the permanent magnet DC motor driving device may also have such technical characteristics, in which the power switch tube is a semi-controlled or fully controlled device, the semi-controlled device is an ordinary thyristor, and the fully controlled device is an electric field Any one of an effect transistor, a gate turn-off thyristor, an integrated gate commutation thyristor, an insulated gate bipolar transistor, and a power bipolar transistor.
  • the invention also provides an electric device, which is characterized by comprising the permanent magnet DC motor driving device as described above.
  • each chopper unit has a first power output terminal and a second power output terminal, m of all chopper units
  • the first power output end corresponds to the m second power output ends of all the chopper units respectively to form m pairs of power output terminals
  • the output currents of m pairs of power output terminals all contain current ripple
  • the power output terminals are connected one by one, that is to say, the branches formed by each pair of brushes in the permanent magnet DC motor are independent of each other, the current of each branch is also independent, and each branch can work independently , And powered by a corresponding pair of power output terminals, that is: each pair of power output terminals only needs to bear the working current of one branch, only one-mth of the rated current of the motor.
  • the power switch tube can meet the requirements of high-power high-performance motors, which not only reduces the cost of the chopper, but also reduces the connection wires and connectors between the power output terminal and the external terminal, and the requirements for contact resistance and insulation , which reduces the difficulty of manufacturing and helps to improve the reliability and safety of the system.
  • the output current of m pairs of power output terminals contains current ripple, that is, the output current contains higher harmonic components, and the output current ripple of each pair of power output terminals is independent of each other.
  • the output Torque and speed ripple are related to the superimposed value of current ripple.
  • the phase of the current ripple of each pair of power output terminals can be different from each other, causing ripple peaks after m current ripples are superimposed The peak value is reduced, thereby reducing the peak-to-peak value of the output torque and speed ripple, thereby improving the performance and life of the permanent magnet DC motor.
  • the permanent magnet DC motor drive device of the present invention has a simple structure, short connecting wires, simple production process, easy manufacturing, convenient maintenance, low production cost and maintenance cost, and has a reasonable and simple structural design, high reliability and safety, etc.
  • Advantages able to break the monopoly and blockade of power modules, controllers and high-performance electric drives abroad, making the invention applicable not only to large-load electric vehicles such as electric vehicles, electric transport vehicles, rail cars, sightseeing cars, trucks, and ships Equipment, and can also improve the performance of electric equipment, used in high-performance electric equipment such as CNC machine tools and submarines, to achieve the localization of high-performance electric drive devices.
  • FIG. 1 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device in Embodiment 1 of the present invention
  • Embodiment 3 is a schematic longitudinal cross-sectional view of a permanent magnet DC motor in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic cross-sectional circuit connection diagram of a permanent magnet DC motor in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic development view of a single-stack connection of an armature winding of a permanent magnet DC motor in Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of circuit connection of a conventional permanent magnet DC motor drive device
  • FIG. 10 is a comparison diagram of the rotation speed of the permanent magnet DC motor and the conventional permanent magnet DC motor in Embodiment 1 of the present invention.
  • FIG. 11 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to a first modification of the present invention.
  • FIG. 12 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to Embodiment 2 of the present invention.
  • FIG. 13 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device in Embodiment 2 of the present invention.
  • FIG. 14 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to a second modification of the present invention.
  • FIG. 15 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to Embodiment 3 of the present invention.
  • FIG. 16 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device in Embodiment 3 of the present invention.
  • 17 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to a third modification of the present invention.
  • FIG. 1 is a schematic diagram of the circuit connection of the permanent magnet DC motor drive device of the present invention
  • FIG. 2 is a schematic diagram of the circuit connection of the permanent magnet DC motor drive device in the first embodiment of the invention.
  • the permanent magnet DC motor driving device 1-100 in the first embodiment includes a permanent magnet DC motor 10, a chopper 1-20, a DC power supply 30, and a command sending unit (not shown) ), The sensor unit 40, the controller 50, and the drive unit 60.
  • FIG. 3 is a schematic longitudinal cross-sectional view of the permanent magnet DC motor in Embodiment 1 of the present invention
  • FIG. 4 is a schematic cross-sectional circuit connection diagram of the permanent magnet DC motor in Embodiment 1 of the present invention.
  • the permanent magnet DC motor 10 has a rated voltage and a rated current, including a casing 11, a stator 12, a brush 13, a rotor 14 and a junction box (not shown).
  • the logarithm of the brush 13 is set to m according to the value of the rated current, and m is an integer not less than 2.
  • m is set to 3 in the first embodiment.
  • the stator 12 is provided in the casing 11 and includes m pairs of permanent magnet-type main magnetic poles 121.
  • the stator 12 includes 3 pairs of 6 main magnetic poles 121 in total.
  • each pair of main magnetic poles 121 includes an S-polar main magnetic pole 1211 and an N-polar main magnetic pole 1212 composed of permanent magnets, respectively.
  • S-polar main magnetic pole 1211 S-polar main magnetic pole 1211
  • N-polar main magnetic pole 1212 composed of permanent magnets, respectively.
  • two adjacent main magnetic poles 121 have opposite polarities.
  • m pairs of brushes 13 are fixedly disposed in the casing 11 and respectively correspond to m pairs of main magnetic poles 121.
  • the number of brushes 13 is 3 pairs and 6 in total.
  • each pair of brushes 13 includes an S-pole corresponding brush 131 corresponding to the S-polarity main magnetic pole 1211 and an N-pole corresponding brush corresponding to the N-polarity main magnetic pole 1212 132.
  • the positions of the two brushes 13 in each pair of brushes 13 are adjacent; moreover, each pair of brushes 13 corresponds to the corresponding spatial position of each pair of main magnetic poles 121.
  • the brush 13 is any one of a narrow brush and a wide brush.
  • the brush 13 is a narrow brush.
  • Each brush 13 includes one brush body or at least two separately formed brush bodies arranged along the axis of the motor and electrically connected in parallel; when the brush 13 includes at least two brush bodies, each brush can be made The actual contact area of the brush and the commutator is increased, thereby improving the commutation performance of the brush.
  • the brush 13 includes a brush body.
  • each pair of brushes 13 respectively form a first terminal 1511 and a second terminal 1512.
  • the m first terminals 1511 and m second terminals 1512 of all brushes 13 The m pairs of external terminals 151 are formed correspondingly, respectively.
  • the first terminal 1511 and the second terminal 1512 form a pair of external terminals 151, and the first terminal 1521 corresponds to the second terminal 1522
  • a pair of external terminals 152 are formed on the ground, and a pair of terminals 153 are formed corresponding to the first terminals 1531 and the second terminals 1532.
  • FIG. 5 is a schematic development view of the single-stack connection of the armature winding of the permanent magnet DC motor in Embodiment 1 of the present invention.
  • the rotor 14 is provided in the stator 12 and includes a plurality of armature windings 141 which are mutually connected by a predetermined connection method.
  • the number of armature windings 141 is set to 2m ⁇ n, and the predetermined connection
  • the mode is any one of single-stack, cascade, and complex wave.
  • the connection method of the multiple armature windings 141 is a single stack, and two adjacent brushes 13 are connected to an armature winding branch, and each armature winding branch contains n pieces Armature winding 141.
  • a junction box (not shown) is fixed on the cabinet 11, and as shown in FIGS. 2 and 4, three pairs of external connection terminals 151, 152, and 153 are provided in the junction box.
  • the chopper 1-20 converts the constant voltage of the DC power supply 30 into a variable voltage with an average voltage controllable according to the driving signal sent by the controller 50 through the driving unit 60, and provides it to the permanent magnet DC Motor 10.
  • the chopper 1-20 includes m chopper units 1-21 corresponding to m pairs of brushes 13, respectively.
  • the chopper 1-20 includes three chopper units 1-21.
  • Each chopper unit 1-21 includes an upper bridge arm 1-211 and a lower bridge arm 1-212 connected in series, the upper bridge arm 1-211 contains a power switch tube 1-111, and the lower bridge arm 1-212 contains 1 freewheeling diode 1-2121.
  • all the power switch tubes 1-2111 are semi-controlled or fully controlled devices, the semi-controlled devices are ordinary thyristors, and the fully controlled devices are power field effect transistors, the gate can turn off the thyristors, integrated Any one of a gate commutation thyristor, an insulated gate bipolar transistor, and a power bipolar transistor.
  • the current output terminal of the upper arm 1-211 and the current output terminal of the lower arm 1-212 of each chopper unit 1-21 are connected to each other to form a first power output terminal 1-2211, each The current input terminal of the lower arm 1-212 of the chopper unit 1-21 forms a second power output terminal 1-2212.
  • the m first power output terminals 1-2211 of all the chopper units 1-21 form m pairs of power output terminals 1-221 corresponding to the m second power output terminals 1-2212 of all the chopper units 1-21, respectively
  • the m-pair power output terminals 1-221 and the m-pair external terminals 151 are connected in a one-to-one correspondence, and the output currents of the m-pair power output terminals 1-221 each contain current ripple.
  • the first power output terminal 1-2211 and the second power output terminal 1-2212 form a pair of power output terminals 1-221, and the first power output terminal 1-2221
  • a pair of power output terminals 1-222 are formed corresponding to the second power output terminals 1-222
  • a pair of power output terminals 1- are formed corresponding to the first power output terminals 1-231 2 and the second power output terminals 1-232 223, 3 pairs of power output terminals 1-221, 1-222, and 1-223 are connected in one-to-one correspondence with the three pairs of external terminals 151, 152, and 153.
  • the DC power supply 30 has a constant voltage corresponding to the rated voltage of the permanent magnet DC motor 10, and has m pairs of power supply output terminals connected in one-to-one correspondence with the m chopper units.
  • the DC power supply 30 includes one DC unit 31, and the DC unit 31 includes m positive power supply output terminals 311 and m negative power supply output terminals 312, m positive power supply output terminals 311 and m negative power supply outputs The terminals 312 respectively form m pairs of power supply output terminals.
  • the command transmission unit (not shown) transmits a command signal corresponding to the displacement, rotation speed, or torque output by the permanent magnet DC motor 10.
  • the sensor unit 40 is used to detect the physical quantity of the permanent magnet DC motor 10 and output a feedback signal to the control unit 50.
  • the sensor unit 40 includes an output sensor 41 and a current sensor 42.
  • the output sensor 41 detects the displacement, rotation speed, or torque output by the permanent magnet DC motor 10 and outputs a corresponding output feedback signal to the control unit 50.
  • the current sensor 42 detects the line current value of the lead wire of the brush in the permanent magnet DC motor 10 and outputs a corresponding current feedback signal to the control unit 50.
  • the controller 50 calculates and outputs the motor control signal 51 and the enable control signal 52 to the drive unit 60 based on the command signal of the command transmission unit and the output feedback signal and current feedback signal of the sensor unit 40.
  • the controller 50 includes one motor control signal output terminal and one enable control signal output terminal.
  • the driving unit 60 enters an operating state under the control of the enable control signal 52, and generates a driving signal that drives the chopper 20 to operate according to the motor control signal 51.
  • the driving unit 60 includes one driving unit 61, and the driving unit 61 includes one motor control signal input terminal, one enable control signal input terminal, and m signal output terminals 611.
  • the motor control signal input terminal and the enable control signal input terminal are respectively connected to the motor signal output terminal and the enable control signal output terminal of the controller 50, m signal output terminals 611 and m chopper units 1-21 one by one Correspondingly connected, so as to control the current ripple of the output current of the power output terminal 1-221 of each chopper unit 1-21, so that the frequency of the current ripple of the output current of the power output terminal 1-221 and m
  • the phases are all the same, or the frequency of the current ripple of m to the output current of the power supply output terminal 1-221 is the same, but the phases are sequentially shifted by one-mth of the switching period.
  • FIG. 6 is a schematic diagram of connection of a conventional permanent magnet DC motor driving device
  • FIG. 7 is a waveform diagram of input current waveforms of three pairs of brushes of a permanent magnet DC motor in an example of the present invention
  • FIG. 9 is a comparison chart of the torque of the permanent magnet DC motor and the torque of the conventional permanent magnet DC motor in Embodiment 1 of the present invention
  • FIG. 10 is the present invention A comparison diagram of the rotation speed of the permanent magnet DC motor in Embodiment 1 and the rotation speed of the conventional permanent magnet DC motor.
  • the external connection terminals of the permanent magnet DC motor in the conventional permanent magnet DC motor drive device 600 have only one pair of external connection terminals, and the pair of external connection terminals corresponds to the pair of power output terminals of the chopper. connection.
  • the peak-to-peak value of the current ripple is the difference between the maximum value and the minimum value
  • the ripple coefficient is the percentage of the peak-to-peak value and the average value.
  • the average value is equal to 279.98 amperes
  • the average value is equal to 279.98 amps
  • the current average value of the permanent magnet DC motor 10 in the first embodiment and the conventional permanent magnet DC motor are the same, the peak-to-peak value and the ripple coefficient of the current ripple of the permanent magnet DC motor 10 in this embodiment are only One-ninth of the traditional permanent magnet DC motor.
  • T em is the electromagnetic torque
  • C T is the torque constant
  • is the magnetic flux of the main magnetic field
  • I a armature current
  • T load is the load torque
  • J is the load's rotational inertia, which is a constant
  • is the output Angular velocity.
  • the input current of the permanent magnet DC motor is equal to the armature current, and the rated current of the permanent magnet DC motor is the maximum input current of the motor in the rated working state.
  • the electromagnetic torque T em is proportional to the product of the armature current I a and the magnetic flux ⁇ of the main magnetic field.
  • the main magnetic field of the DC motor is excited by permanent magnets.
  • the electromagnetic rotation The moment T em is proportional to the armature current I a .
  • the ripple coefficient of the armature current I a will cause the electromagnetic torque T em to produce a larger ripple coefficient, and the output angular velocity ⁇ will have a greater ripple or ripple, which will result in a worse performance of the drive device.
  • the average speed of the permanent magnet DC motor 10 in the first embodiment and the conventional permanent magnet DC motor are the same, the peak-to-peak and ripple coefficients of the speed ripple of the permanent magnet DC motor 10 in the first embodiment are the same as the conventional ones.
  • the ratio of the permanent magnet DC motor is 1 / 26.7.
  • the permanent magnet DC motor 10 in the first embodiment is basically the same as the average torque value of the conventional permanent magnet DC motor, the torque ripple of the permanent magnet DC motor 10 in the first embodiment
  • the peak-to-peak value and ripple coefficient are only one-ninth of the traditional permanent magnet DC motor, reducing the peak-to-peak value and ripple coefficient of the output torque of the motor, thereby reducing the peak of the ripple of the motor output speed Peak value and ripple coefficient
  • the speed ripple coefficient of the permanent magnet DC motor in this embodiment is only one-sixteenth of that of the traditional permanent magnet DC motor, and ultimately reduces the electromagnetic interference, vibration and noise of the motor and improves the permanent magnet
  • the purpose of the performance of magnetic DC motors and drives are only one-ninth of the traditional permanent magnet DC motor, reducing the peak-to-peak value and ripple coefficient of the output torque of the motor, thereby reducing the peak of the ripple of the motor output speed Peak value and ripple coefficient
  • the speed ripple coefficient of the permanent magnet DC motor in this embodiment is only one-sixteenth of that of
  • each chopper unit includes an upper bridge arm and a lower bridge arm connected in series with each other, and the upper bridge arm includes 1 Power switch tube, the lower bridge arm contains a diode, the current output terminal of the upper bridge arm of each chopper unit and the current output terminal of the lower bridge arm are connected to each other to form a first power output terminal, and the lower end of each chopper unit
  • the current input terminal of the bridge arm forms the second power output terminal
  • the m first power output terminals of all the chopper units correspond to the m second power output terminals of all the chopper units respectively to form m pairs of power output terminals
  • all The S poles correspond to the lead terminals of the brush to form m first terminals
  • all the N poles correspond to the lead terminals of the brush to form m second terminals; or, all the N poles correspond to the lead terminals of the brush to form m first terminals Terminal, all the S
  • the power switch tube can meet the requirements of high-power high-performance motors, which not only reduces the cost of the chopper, but also reduces the connection wires and connectors between the power output terminal and the external terminal, and the requirements for contact resistance and insulation , which reduces the difficulty of manufacturing and helps to improve the reliability and safety of the system.
  • the chopper in the first embodiment has a simple structure, reliability, high safety, easy control, and low cost.
  • the output current of m to the power supply output terminals contains current ripple, that is, the output current contains higher harmonic components, and the output current ripple of each pair of power output terminals is independent of each other.
  • the output Torque and speed ripple are related to the superimposed value of current ripple.
  • the phase of the current ripple of each pair of power output terminals can be different from each other, causing ripple peaks after m current ripples are superimposed The peak value is reduced, thereby reducing the peak-to-peak value of the output torque and speed ripple, thereby improving the performance and life of the permanent magnet DC motor.
  • the permanent magnet DC motor driving device of the first embodiment has a simple structure, short connecting wires, simple production process, easy manufacturing, convenient maintenance, low production cost and low maintenance cost, and has reasonable, simple, reliable, and safe structural design It has the advantages of high performance; it can break the foreign monopoly and blockade of power modules, controllers and high-performance electric drive devices, making the invention not only applicable to large electric vehicles, electric vans, rail cars, sightseeing cars, trucks, ships, etc. Load electric equipment, and can also improve the performance of electric equipment. It is used in high-performance electric equipment such as CNC machine tools and submarines to achieve the localization of high-performance electric drive devices.
  • This first modification is a modification of the first embodiment.
  • the same configuration as that of the first embodiment is given the same symbol and the same description is omitted.
  • FIG. 11 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to a first modification of the present invention.
  • the permanent magnet DC motor drive device 1-200 in the first modification includes a permanent magnet DC motor 10, a chopper 1-220, a DC power supply 230, a command transmission unit (not shown), The sensing unit 40, the controller 250, and the driving unit 260.
  • the chopper 1-220 includes m chopper units 1-221 corresponding to m pairs of brushes, respectively.
  • Each chopper unit 1-221 includes an upper bridge arm 1-2211 and a lower bridge arm 1-2212 connected in series, and the upper bridge arm 1-2211 includes p power switch tubes 1-22111 connected in parallel with each other, p is not An integer less than 2, the lower arm 1-2121 contains a freewheeling diode 1-22121.
  • p is 2-4, and the parallel technology is mature and reliable, which can appropriately reduce the number of m, reduce the workload and complexity in manufacturing, and improve the cost performance of the product.
  • the maximum current of the permanent magnet DC motor 10 is I max , and m satisfies the following conditions: m> I max ⁇ (k ⁇ p ⁇ I 1 ), k is the parallel coefficient, 1 / p ⁇ k ⁇ 1.
  • each chopper unit 1-221 and the current output terminal of the lower bridge arm 1-212 are connected to each other to form a first power output terminal 1-22211, and each chopper unit 1-221
  • the current input terminal of the lower arm 1-2212 forms a second power output terminal 1-22212.
  • the m first power output terminals 1-22211 of all the chopper units 1-221 correspond to the m second power output terminals 1-22212 of all the chopper units 1-221 respectively to form m pairs of power output terminals 1-221
  • the m-pair power output terminals 1-2221 and the m-pair external connection terminals 151 are connected in a one-to-one correspondence, and the output currents of the m-pair power output terminals 1-2221 all contain current ripple.
  • the DC power supply 230 includes m independent DC units 231, and each DC unit 231 includes a positive power supply output 2311 and a negative power supply output 2312, and m positive power supply outputs 2311 and The m negative power supply output terminals 2312 respectively form m pairs of power supply output terminals correspondingly, and the m pairs of power supply output terminals are connected to the m chopper units 1-221 in a one-to-one correspondence.
  • the controller 250 calculates and outputs m motor control signals 251 and m enable control signals 252 to the drive unit 260 based on the command signal of the DC transmission unit and the output feedback signal and current feedback signal of the sensor unit 40 .
  • the driving unit 260 includes m independent driving units 261, and each driving unit 261 includes a motor control signal input terminal, an enable control signal input terminal, and a signal output terminal 2611.
  • the m motor signal control input terminals of all drive units 261 are connected in one-to-one correspondence with the m motor control signals 251, and the m enable control signal input terminals of all drive units 261 are connected in one-to-one correspondence with the m enable control signal output terminals ,
  • the m signal output terminals 2611 of the driving unit 261 are connected in one-to-one correspondence with the m chopper units 1-221, so that the driving unit 261 enters the working state under the control of the corresponding enable control signal 252, and according to the corresponding
  • the motor control signal 251 generates a driving signal that drives the corresponding chopper unit 1-221 to work.
  • the upper arm of the chopper unit includes p power switch tubes connected in parallel with each other, p is an integer not less than 2. Therefore, when the rated current of the motor is constant, relative to p is equal to In the case of 1, especially the case where p is 2-4, because the technology is relatively reliable and stable, the output current of each chopper unit can be increased to a certain extent, and the value of m can be reduced accordingly, which can not only reduce
  • the number of brushes reduces the number of power lines of the motor and the number of output lines of the chopper unit, reduces the difficulty of repair and maintenance, and also appropriately reduces production costs. It can also increase the heat dissipation area, reduce temperature rise, and improve reliability and life.
  • the DC power supply includes m DC units, and each DC unit includes a pair of power supply output terminals, when a power supply output terminal or a connection line of a certain DC unit fails, you only need to shield the part where the fault is located. Other normal parts can still work, which not only avoids the sudden loss of control of traditional permanent magnet DC motors, improves the reliability and safety of the system, but also has a large effective output torque.
  • a single large-capacity DC power supply is replaced by a plurality of independent relatively small-capacity DC units. Compared with the traditional parallel battery pack, the power supply is reduced due to parallel connection when the number of power supply units is the same. The overall performance decay improves energy density, power, performance, durability and safety, and can provide better guarantee for the endurance and performance of electric equipment.
  • each drive unit is correspondingly connected to the bridge arm unit, a brush, and two armature winding branches in a chopper unit.
  • the permanent magnet DC motor drive device of the invention calculates the current value detected by the current sensor and determines the faulty drive unit, chopper unit, brush or electric
  • the controller outputs the operation control signal to make the corresponding drive unit stop working, thereby shielding and isolating the damaged drive unit, chopper unit, brush or armature winding branch, to avoid further expansion of the fault, and to ensure
  • the electric drive device and electric equipment can continue to work normally or run under light load, which greatly reduces the probability of safety accidents of electric equipment, especially high-speed running electric equipment.
  • the lower arm includes one freewheeling diode.
  • the lower arm may also include a plurality of freewheeling diodes connected in parallel with each other. In this case, when any one of the freewheeling diodes fails, the remaining diodes can also work normally, which helps to improve System reliability and security.
  • the drive unit includes only one drive unit
  • the permanent magnet DC motor drive system of the present invention is required to work normally, the drive unit must be in an operating mode, therefore, it is not necessary to apply an enable control signal to the drive unit.
  • m can also be based on the peak-to-peak value of the corresponding armature current, speed and torque ripple and Ripple coefficient setting.
  • the DC power supply 230 and / or the driving unit 260 may be applied to the driving device 100, or the DC power supply 30 and / or the driving unit 60 may be applied to the driving device 200.
  • FIG. 12 is a schematic diagram of the circuit connection of the permanent magnet DC motor driving device according to the second embodiment of the invention
  • FIG. 13 is a schematic diagram of the circuit connection of the permanent magnet DC motor driving device according to the second embodiment of the invention.
  • the permanent magnet DC motor driving device 2-100 in the second embodiment includes a permanent magnet DC motor 10, a chopper 2-20, a DC power supply 30, and a command sending unit (not shown) ), The sensor unit 40, the controller 50, and the drive unit 60.
  • the chopper 2-20 converts the constant voltage of the DC power supply 30 into a variable voltage with an average voltage controllable according to the driving signal sent by the controller 50 through the driving unit 60, and provides it to the permanent magnet DC Motor 10.
  • the chopper 2-20 includes m chopper units 2-21 corresponding to m pairs of brushes 13, respectively.
  • the chopper 20 includes three chopper units 2-21.
  • Each chopper unit 2-21 includes a first bridge arm 2-211 and a second bridge arm 2-212 connected in series with each other, and the first bridge arm 2-211 includes a first upper bridge arm 2-2111 connected in series with each other
  • the first upper arm 2-2111 includes one
  • the first lower arm 2-2112 includes a power switch tube 2-21121 and a power switch tube 2-21121
  • the second upper arm 2-2121 includes a power switch 2-21211 and the diode 2-210 connected in reverse parallel to the power switch 2-21211
  • the second lower arm 2 -2122 includes a power switch 2-21221 and a diode 2-210 connected in reverse parallel with the power switch 2-21221, when all the power switches 2-21111 of the first upper arm 2-2111, all the first The power switch
  • all power switch tubes 2-21111, 2-21121, 2-21211 and 2-21221 are semi-controlled or fully-controlled devices, the semi-controlled devices are ordinary thyristors, and the fully-controlled devices are electric Any one of a field effect transistor, a gate turn-off thyristor, an integrated gate commutation thyristor, an insulated gate bipolar transistor, and a power bipolar transistor.
  • the current output end of the power switch tube 2-21111 of the first upper bridge arm 2-2111 of each chopper unit 2-21 and the power switch tube 2-21121 of the first lower bridge arm 2-2112 The current input terminals are connected to each other to form a first power output terminal 2-2211, the current output terminal of the power switch tube 2-21211 of the second upper bridge arm 2-2121 of each chopper unit 2-21 and the second lower bridge arm
  • the current input terminals of the power switch tube 2-21221 of 2-2122 are connected to each other to form a second power output terminal 2-2212.
  • the m first power output terminals 2-2211 of all the chopper units 2-21 form m pairs of power output terminals 2-221 corresponding to the m second power output terminals 2-2212 of all the chopper units 2-21, respectively
  • the m-pair power output terminals 2-221 and m-pair external terminals 2-151 are connected in a one-to-one correspondence, and the output current of the m-pair power output terminals 2-221 contains current ripple.
  • the first power output terminal 2-2211 and the second power output terminal 2-2212 form a pair of power output terminals 2-221, and the first power output terminal 2-2221
  • a pair of power output terminals 2-222 is formed corresponding to the second power output 2-2222
  • a pair of power output terminals 2- is formed corresponding to the second power output 2-2231 and the second power output 2-2232 223, 3 pairs of power output terminals 2-221, 2-222 and 2-223 are connected in one-to-one correspondence with three pairs of external terminals 151, 152 and 153.
  • the driving unit 60 enters an operating state under the control of the enable control signal 52 and generates a driving signal that drives the chopper 20 to operate according to the motor control signal 51.
  • the driving unit 60 includes one driving unit 61, and the driving unit 61 includes one motor control signal input terminal, one enable control signal input terminal, and m sets of signal output terminals 611.
  • the motor control signal input terminal and the enable control signal input terminal are respectively connected to the motor signal output terminal and the enable control signal output terminal of the controller 50, m sets of signal output terminals 611 and m chopper units 2-21 one by one
  • the signal output terminal 6111 is connected to the corresponding power switch tube 2-21111 of the first upper bridge arm 2-2111
  • the signal output terminal 6112 is connected to the power of the corresponding first lower bridge arm 2-2112
  • the switch tube 2-21121 is connected
  • the signal output terminal 6121 is connected to the corresponding power switch tube 2-21211 of the second upper bridge arm 2-2121
  • the signal output terminal 6122 is connected to the corresponding second lower bridge arm 2-2122
  • the power switch tube 2-21221 is connected, so as to realize the control of the current ripple of the output current of the power output terminal 2-221 of each chopper unit 2-21, so that m on the output current of the power output terminal 2-221
  • the frequency and phase of the current ripple are the same, or the frequency of the current ripple on the output current
  • the second embodiment can work in the working state of the first embodiment.
  • the permanent magnet DC motor 10 in the second embodiment is basically the same as the average torque value of the traditional permanent magnet DC motor
  • the peak-to-peak value and ripple coefficient of the torque ripple of the permanent magnet DC motor 10 in the second embodiment are only one-ninth that of the conventional permanent magnet DC motor, reducing the peak of the output torque ripple of the motor Peak and ripple coefficients, thereby reducing the peak-to-peak and ripple coefficients of the ripple of the motor output speed
  • the permanent magnet DC motor speed ripple coefficient in this embodiment 2 is only 26 points of the traditional permanent magnet DC motor One, the ultimate goal of reducing the electromagnetic interference, vibration and noise of the motor, and improving the performance of the permanent magnet DC motor and drive device.
  • each chopper unit includes an upper bridge arm and a lower bridge arm connected in series with each other, and the upper bridge arm includes 1 Power switch tube, the lower bridge arm contains a diode, the current output terminal of the upper bridge arm of each chopper unit and the current output terminal of the lower bridge arm are connected to each other to form a first power output terminal, and the lower end of each chopper unit
  • the current input terminal of the bridge arm forms the second power output terminal
  • the m first power output terminals of all the chopper units correspond to the m second power output terminals of all the chopper units respectively to form m pairs of power output terminals
  • all The S poles correspond to the lead terminals of the brush to form m first terminals
  • all the N poles correspond to the lead terminals of the brush to form m second terminals; or, all the N poles correspond to the lead terminals of the brush to form m first terminals Terminal, all the S
  • the power switch tube can meet the requirements of high-power high-performance motors, which not only reduces the cost of the chopper, but also reduces the connection wires and connectors between the power output terminal and the external terminal, and the requirements for contact resistance and insulation , which reduces the difficulty of manufacturing and helps to improve the reliability and safety of the system.
  • each chopper unit includes a first bridge arm and a second bridge arm
  • each bridge arm includes a power switch tube and a diode connected in antiparallel with the power switch tube, so any two chopper units output
  • the currents are independent of each other and do not interfere with each other, and using appropriate control methods can realize the feedback of the energy generated by the motor during the braking process to the power supply, and can also change the current flow to realize the motor's forward and reverse rotation.
  • the chopper has a reliable structure, high safety, various functions, and the purpose of saving electricity.
  • the output current of m to the power supply output terminals contains current ripple, that is, the output current contains higher harmonic components, and the output current ripple of each pair of power output terminals is independent of each other.
  • the output Torque and speed ripple are related to the superimposed value of current ripple.
  • the phase of the current ripple of each pair of power output terminals can be different from each other, causing ripple peaks after m current ripples are superimposed The peak value is reduced, thereby reducing the peak-to-peak value of the output torque and speed ripple, thereby improving the performance and life of the permanent magnet DC motor.
  • the permanent magnet DC motor drive device of the second embodiment has a simple structure, short connecting lines, simple production process, easy manufacturing, easy maintenance, low production cost and low maintenance cost, and has reasonable, simple, reliable, and safe structural design It has the advantages of high performance; it can break the foreign monopoly and blockade of power modules, controllers and high-performance electric drive devices, making the invention not only applicable to large electric vehicles, electric vans, rail cars, sightseeing cars, trucks, ships, etc. Load electric equipment, and can also improve the performance of electric equipment. It is used in high-performance electric equipment such as CNC machine tools and submarines to achieve the localization of high-performance electric drive devices.
  • This second modification is a modification of the second embodiment.
  • the same configuration as that of the second embodiment is given the same symbol and the same description is omitted.
  • FIG. 14 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to a second modification of the present invention.
  • the permanent magnet DC motor drive device 2-200 in the second modification includes a permanent magnet DC motor 10, a chopper 2-220, a DC power supply 230, a command transmission unit (not shown), The sensing unit 40, the controller 250, and the driving unit 260.
  • the chopper 2-220 includes m chopper units 2-221 corresponding to m pairs of brushes, respectively.
  • Each chopper unit 2-221 includes a first bridge arm 2-2211 and a second bridge arm 2-2212 connected in series with each other, and the first bridge arm 2-2211 includes a first upper bridge arm 2-22111 connected in series with each other
  • the first lower arm 2-22112, the second arm 2-2212 includes a second upper arm 2-22121 and a second lower arm 2-22122 connected in series, and the first upper arm 2-22111 includes p
  • the power switch tube 2-221111 and the diode 2-210 connected in reverse parallel with the power switch tube 2-221111.
  • the first lower arm 2-22112 includes p power switch tubes 2-221121 and the power switch tube 2-221121.
  • the second upper arm 2-22121 includes p power switch tubes 2-221211 and the diode 2-210 connected in reverse parallel to the power switch tube 2-221211
  • the second lower arm 2 -22122 includes p power switch tubes 2-221221 and a diode 2-210 connected in reverse parallel with the power switch tube 2-221221
  • p is an integer not less than 2.
  • p is 2-4, and the parallel technology is mature and reliable, which can appropriately reduce the number of m, reduce the workload and complexity in manufacturing, and improve the cost performance of the product.
  • the current output terminal of the power switch tube 2-221111 of the first upper arm 2-22111 of each chopper unit 2-221 is connected to the current input terminal of the power switch tube 2-221121 of the first lower bridge arm 2-22112 Forming a first power output terminal 2-2211, a current output terminal of the power switch tube 2-221211 of the second upper arm 2-22121 of each chopper unit 2-221 and a power switch of the second lower arm 2-22122
  • the current input terminals of the tube 2-221221 are connected to each other to form a second power output terminal 2-2212.
  • the m first power output terminals 2-22211 of all the chopper units 2-221 form m pairs of power output terminals 2-2221 corresponding to the m second power output terminals 2-22212 of all the chopper units 2-221, respectively.
  • the m-pair power output terminals 2-2221 and the m-pair external terminals 151 are connected in a one-to-one correspondence, and the output current of the m-pair power output terminals 2-2221 contains current ripple.
  • the DC power supply 230 includes m independent DC units 231, and each DC unit 231 includes a positive power supply output 2311 and a negative power supply output 2312, and m positive power supply outputs 2311 and The m negative power supply output terminals 2312 respectively form m pairs of power supply output terminals, and the m pairs of power supply output terminals are connected to the m chopper units 2-221 in a one-to-one correspondence.
  • the controller 250 calculates and outputs m motor control signals 251 and m enable control signals 252 to the drive unit 260 based on the command signal of the DC transmission unit and the output feedback signal and current feedback signal of the sensor unit 40 .
  • the driving unit 260 includes m independent driving units 261, and each driving unit 261 includes a motor control signal input terminal, an enable control signal input terminal, and a set of signal output terminals 2611.
  • the m motor signal control input terminals of all drive units 261 are connected in one-to-one correspondence with the m motor control signals 251, and the m enable control signal input terminals of all drive units 261 are connected in one-to-one correspondence with the m enable control signal output terminals ,
  • the m sets of signal output terminals 2611 of the driving unit 261 are connected in a one-to-one correspondence with the m chopper units 2-221, specifically: the signal output terminal 6111 and the corresponding power switch tube 2-2111 of the first upper arm 2- 21111 is connected, the signal output terminal 2-6112 is connected to the corresponding power switch tube 2-21121 of the first lower bridge arm 2-2112, and the signal output terminal 6121 is connected to the power of the corresponding second upper bridge arm 2-2121
  • the switch 2-21211 is connected, and the signal
  • the first upper arm, the first lower arm, the second upper arm, and the second lower arm of the chopper unit include p power switch tubes connected in parallel, p is not less than Integer of 2, so when the rated current of the motor is constant, relative to the case where p is equal to 1, especially p is 2-4, because the technology is relatively reliable and stable, it can increase each to a certain extent.
  • the output current of the chopper unit which can reduce the value of m accordingly, can not only reduce the number of brushes, reduce the number of power lines of the motor and the number of output lines of the chopper unit, reduce the difficulty of repair and maintenance, but also appropriately reduce Cost of production. It can also increase the heat dissipation area, reduce temperature rise, and improve reliability and life.
  • the DC power supply includes m DC units, and each DC unit includes a pair of power supply output terminals, when a power supply output terminal or a connection line of a certain DC unit fails, you only need to shield the part where the fault is located. Other normal parts can still work, which not only avoids the sudden loss of control of traditional permanent magnet DC motors, improves the reliability and safety of the system, but also has a large effective output torque.
  • a single large-capacity DC power supply is replaced by a plurality of independent relatively small-capacity DC units. Compared with the traditional parallel battery pack, the power supply is reduced due to parallel connection when the number of power supply units is the same. The overall performance decay improves energy density, power, performance, durability and safety, and can provide better guarantee for the endurance and performance of electric equipment.
  • each drive unit is correspondingly connected to the bridge arm unit, a brush, and two armature winding branches in a chopper unit.
  • the permanent magnet DC motor drive device of the invention calculates the current value detected by the current sensor and determines the faulty drive unit, chopper unit, brush or electric
  • the controller outputs the operation control signal to make the corresponding drive unit stop working, thereby shielding and isolating the damaged drive unit, chopper unit, brush or armature winding branch, to avoid further expansion of the fault, and to ensure
  • the electric drive device and electric equipment can continue to work normally or run under light load, which greatly reduces the probability of safety accidents of electric equipment, especially high-speed running electric equipment.
  • the power switch is connected in reverse parallel with one diode.
  • the power switch can also be connected with multiple diodes connected in reverse parallel. In this case, when any one diode fails, the remaining diodes can also work normally, which helps to improve the reliability of the system and safety.
  • the drive unit includes only one drive unit
  • the permanent magnet DC motor drive system of the present invention is required to work normally, the drive unit must be in an operating mode, therefore, it is not necessary to apply an enable control signal to the drive unit.
  • m can also be based on the peak-to-peak value of the corresponding armature current, speed and torque ripple and Ripple coefficient setting.
  • the DC power supply 230 and / or the driving unit 260 may be applied to the driving device 100, or the DC power supply 30 and / or the driving unit 60 may be applied to the driving device 200.
  • FIG. 15 is a schematic diagram of a circuit connection of a permanent magnet DC motor drive device according to Embodiment 3 of the present invention
  • FIG. 16 is a schematic diagram of a circuit connection of a permanent magnet DC motor drive device according to Embodiment 3 of the invention
  • the permanent magnet DC motor driving device 3-100 in the third embodiment includes a permanent magnet DC motor 10, a chopper 3-20, a DC power supply 30, and a command sending unit (not shown) ), The sensor unit 40, the controller 50, and the drive unit 60.
  • the choppers 3-20 convert the constant voltage of the DC power supply 30 into a variable voltage with a controllable average voltage according to the drive signal sent by the controller 50 through the drive unit 60, and provide it to the permanent magnet DC motor 10.
  • the chopper 3-20 includes m chopper units 3-21 corresponding to the m pairs of brushes 13, respectively. In the third embodiment, the chopper 3-20 includes three chopper units 3-21.
  • Each chopper unit 3-21 includes an upper bridge arm 3-211 and a lower bridge arm 3-212 connected in series with each other.
  • the upper bridge arm 3-211 includes a power switch 3-2111 and a power switch 3-2111
  • the diode 3-210 connected in antiparallel and the lower arm 3-212 includes a power switch 3-2121 and a diode 3-210 connected in antiparallel with the power switch 3-2121.
  • all power switch tubes 3-2111 and 3-2121 are semi-controlled or fully-controlled devices, the semi-controlled devices are ordinary thyristors, and the fully-controlled devices are power field effect transistors and gates can be turned off. Any one of thyristor, integrated gate commutation thyristor, insulated gate bipolar transistor and power bipolar transistor.
  • the current output terminal of the power switch tube 3-2111 of the upper arm 3-211 of each chopper unit 3-21 and the current input terminal of the power switch tube 3-2121 of the lower bridge arm 3-212 are connected to each other
  • the first power supply output terminal 3-2211 is formed, and the current output terminal of the power switch tube 3-2121 of the lower arm 3-212 of each chopper unit 3-21 forms the second power supply output terminal 3-2212.
  • the m first power output terminals 3-2211 of all the chopper units 3-21 correspond to the m second power output terminals 3-2212 of all the chopper units 3-21 respectively to form m pairs of power output terminals 3-221
  • the m-pair power output terminals 3-221 and the m-pair external connection terminals 151 are connected in a one-to-one correspondence, and the output currents of the m-pair power output terminals 3-221 all contain current ripple.
  • the first power output terminal 3-2211 and the second power output terminal 3-2212 form a pair of power output terminals 3-221, and the first power output terminal 3-2221
  • a pair of power output terminals 3-222 is formed corresponding to the second power output terminal 3-2222
  • a pair of power output terminals 3- is formed corresponding to the second power output terminal 3-2231 corresponding to the second power output terminal 3-2232 223, 3 pairs of power output terminals 3-221, 3-222, and 3-223 are connected in a one-to-one correspondence with 3 pairs of external terminals 151, 152, and 153.
  • the driving unit 60 enters an operating state under the control of the enable control signal 52 and generates a driving signal that drives the chopper 3-20 to operate according to the motor control signal 51.
  • the driving unit 60 includes one driving unit 61, and the driving unit 61 includes one motor control signal input terminal, one enable control signal input terminal, and m pair signal output terminals 611.
  • the motor control signal input terminal and the enable control signal input terminal are respectively connected to the motor signal output terminal and the enable control signal output terminal of the controller 50, m to the signal output terminal 611 and m chopper units 3-21 one by one
  • the signal output terminal 611 is connected to the corresponding power switch tube 3-2111 of the upper arm 3-211
  • the signal output terminal 612 is connected to the corresponding power switch tube 3-211 of the lower bridge arm 3-212
  • 2121 is connected to realize the control of the current ripple of the output current of the power output terminal 3-221 of each chopper unit 3-21, so that the frequency of the current ripple of the output current of the power output terminal 3-221 of m It is the same as the phase, or the frequency of the current ripple of m to the output current of the power output terminal 3-221 is the same, but the phase is sequentially shifted by one-mth of the switching period.
  • the third embodiment can work in the working state of the first embodiment.
  • the permanent magnet DC motor 10 in the third embodiment is basically the same as the average torque value of the traditional permanent magnet DC motor, but
  • the peak-to-peak value and ripple coefficient of the torque ripple of the permanent magnet DC motor 10 in the third embodiment are only one-ninth of the conventional permanent magnet DC motor, reducing the peak of the output torque ripple of the motor Peak and ripple coefficients, thereby reducing the peak-to-peak and ripple coefficients of the ripple of the output speed of the motor
  • the permanent magnet DC motor speed ripple coefficient in this third embodiment is only 26 points of the traditional permanent magnet DC motor One, the ultimate goal of reducing the electromagnetic interference, vibration and noise of the motor, and improving the performance of the permanent magnet DC motor and drive device.
  • each chopper unit includes an upper bridge arm and a lower bridge arm connected in series with each other, and the upper bridge arm includes 1 Power switch tube, the lower bridge arm contains a diode, the current output terminal of the upper bridge arm of each chopper unit and the current output terminal of the lower bridge arm are connected to each other to form a first power output terminal, and the lower end of each chopper unit
  • the current input terminal of the bridge arm forms the second power output terminal
  • the m first power output terminals of all the chopper units correspond to the m second power output terminals of all the chopper units respectively to form m pairs of power output terminals
  • all The S poles correspond to the lead terminals of the brush to form m first terminals
  • all the N poles correspond to the lead terminals of the brush to form m second terminals; or, all the N poles correspond to the lead terminals of the brush to form m first terminals Terminal, all the S
  • the power switch tube can meet the requirements of high-power high-performance motors, which not only reduces the cost of the chopper, but also reduces the connection wires and connectors between the power output terminal and the external terminal, and the requirements for contact resistance and insulation , which reduces the difficulty of manufacturing and helps to improve the reliability and safety of the system.
  • each bridge arm contains a power switch tube and a diode connected in reverse parallel with the power switch tube, the currents output by any two chopper units are independent and do not interfere with each other, and an appropriate control method is adopted The energy generated by the motor during braking can be fed back to the power supply. Therefore, the chopper of the present invention has a simple structure, reliability, and high safety, and at the same time achieves the purpose of saving electric energy. Moreover, because the output current of m to the power supply output terminals contains current ripple, that is, the output current contains higher harmonic components, and the output current ripple of each pair of power output terminals is independent of each other. In a permanent magnet DC motor, the output Torque and speed ripple are related to the superimposed value of current ripple.
  • the phase of the current ripple of each pair of power output terminals can be different from each other, causing ripple peaks after m current ripples are superimposed
  • the peak value is reduced, thereby reducing the peak-to-peak value of the output torque and speed ripple, thereby improving the performance and life of the permanent magnet DC motor.
  • the permanent magnet DC motor driving device of the third embodiment has a simple structure, short connecting lines, simple production process, easy manufacturing, convenient maintenance, low production cost and low maintenance cost, and has reasonable, simple, reliable, and safe structural design It has the advantages of high performance; it can break the foreign monopoly and blockade of power modules, controllers and high-performance electric drive devices, making the invention not only applicable to large electric vehicles, electric vans, rail cars, sightseeing cars, trucks, ships, etc Load electric equipment, and can also improve the performance of electric equipment. It is used in high-performance electric equipment such as CNC machine tools and submarines to achieve the localization of high-performance electric drive devices.
  • 17 is a schematic diagram of a circuit connection of a permanent magnet DC motor driving device according to a third modification of the present invention.
  • the permanent magnet DC motor driving device 3-200 in the third modification includes a permanent magnet DC motor 10, a chopper 3-220, a DC power supply 230, a command transmission unit (not shown), The sensing unit 40, the controller 250, and the driving unit 260.
  • the chopper 3-220 includes m chopper units 3-221 corresponding to m pairs of brushes, respectively.
  • Each chopper unit 3-221 includes an upper bridge arm 3-2211 and a lower bridge arm 3-2212 connected in series, and the upper bridge arm 3-211 includes a power switch tube 3-2111 and a power switch tube 3-2111
  • the diode 3-210 connected in antiparallel and the lower arm 3-212 includes a power switch 3-2121 and a diode 3-210 connected in antiparallel with the power switch 3-2121.
  • p is 2-4, and the parallel technology is mature and reliable, which can appropriately reduce the number of m, reduce the workload and complexity in manufacturing, and improve the cost performance of the product.
  • the maximum current of the permanent magnet DC motor 10 is Imax, and m satisfies The following conditions: m> Imax ⁇ (k ⁇ p ⁇ I1), k is the parallel coefficient, 1 / p ⁇ k ⁇ 1.
  • the current output terminal of the power switch tube 3-22111 of the upper arm 3-2211 of each chopper unit 3-221 and the current input terminal of the power switch tube 3-22121 of the lower bridge arm 3-2212 are connected to each other to form a first power output terminal 3-22211, the current output terminal of the power switch tube 3-22121 of the lower arm 3-2212 of each chopper unit 3-221 forms the second power output terminal 3-22212.
  • the m first power output terminals 3-22211 of all the chopper units 3-221 form m pairs of power output terminals 3-2221 corresponding to the m second power output terminals 3-22212 of all the chopper units 3-221, respectively
  • the m-pair power output terminals 3-2221 are connected in one-to-one correspondence with the m-pair external terminals 151, and the output current of the m-pair power output terminals 3-2221 contains current ripple.
  • the DC power supply 230 includes m independent DC units 231, and each DC unit 231 includes a positive power supply output 2311 and a negative power supply output 2312, and m positive power supply outputs 2311 and The m negative power supply output terminals 2312 respectively form m pairs of power supply output terminals correspondingly, and the m pairs of power supply output terminals are connected to the m chopper units 3-221 in a one-to-one correspondence.
  • the controller 250 calculates and outputs m motor control signals 251 and m enable control signals 252 to the drive unit 260 based on the command signal of the DC transmission unit and the output feedback signal and current feedback signal of the sensor unit 40 .
  • the driving unit 260 includes m independent driving units 261, and each driving unit 261 includes a motor control signal input terminal, an enable control signal input terminal, and a pair of signal output terminals 2611.
  • M motor signal control input terminals of all drive units 261 are connected to m motor control signals 251 in one-to-one correspondence
  • m enable control signal input terminals of all drive units 261 are connected to m enable control signal outputs in one-to-one correspondence
  • the m-pair signal output terminal 2611 of the driving unit 261 is connected in one-to-one correspondence with the m chopper units 3-221, specifically: the signal output terminal 2611 is in phase with the corresponding power switch tube 3-22111 of the upper bridge arm 3-2211 Connection, the signal output terminal 2612 is connected to the corresponding power switch tube 3-22121 of the lower bridge arm 3-2212, so that the drive unit 261 enters the working state under the control of the corresponding enable control signal 252, and according to the phase
  • the corresponding motor control signal 251 generates a driving
  • the upper arm of the chopper unit includes p power switch tubes connected in parallel with each other, p is an integer not less than 2, so, when the rated current of the motor is constant, relative to p is equal to In the case of 1, especially the case where p is 2-4, because the technology is relatively reliable and stable, the output current of each chopper unit can be increased to a certain extent, and the value of m can be reduced accordingly, which can not only reduce
  • the number of brushes reduces the number of power lines of the motor and the number of output lines of the chopper unit, reduces the difficulty of repair and maintenance, and also appropriately reduces production costs. It can also increase the heat dissipation area, reduce temperature rise, and improve reliability and life. .
  • the DC power supply includes m DC units, and each DC unit includes a pair of power supply output terminals, when a power supply output terminal or a connection line of a certain DC unit fails, you only need to shield the part where the fault is located. Other normal parts can still work, which not only avoids the sudden loss of control of traditional permanent magnet DC motors, improves the reliability and safety of the system, but also has a large effective output torque.
  • a single large-capacity DC power supply is replaced by a plurality of independent relatively small-capacity DC units. Compared with the traditional parallel battery pack, the power supply is reduced due to parallel connection when the number of power supply units is the same. The overall performance decay improves energy density, power, performance, durability and safety, and can provide better guarantee for the endurance and performance of electric equipment.
  • each drive unit is correspondingly connected to the bridge arm unit, a brush, and two armature winding branches in a chopper unit.
  • the permanent magnet DC motor drive device of the invention calculates the current value detected by the current sensor and determines the faulty drive unit, chopper unit, brush or electric
  • the controller outputs the operation control signal to make the corresponding drive unit stop working, thereby shielding and isolating the damaged drive unit, chopper unit, brush or armature winding branch, to avoid further expansion of the fault, and to ensure
  • the electric drive device and electric equipment can continue to work normally or run under light load, which greatly reduces the probability of safety accidents of electric equipment, especially high-speed running electric equipment.
  • the power switch is connected in reverse parallel with one diode.
  • the power switch can also be connected with multiple diodes connected in reverse parallel. In this case, when any one diode fails, the remaining diodes can also work normally, which helps to improve the reliability of the system and safety.
  • the drive unit includes only one drive unit
  • the permanent magnet DC motor drive system of the present invention is required to work normally, the drive unit must be in an operating mode, therefore, it is not necessary to apply an enable control signal to the drive unit.
  • m can also be based on the peak-to-peak value of the corresponding armature current, speed and torque ripple and Ripple coefficient setting.
  • the DC power supply 230 and / or the driving unit 260 may be applied to the driving device 100, or the DC power supply 30 and / or the driving unit 60 may be applied to the driving device 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc Machiner (AREA)

Abstract

一种永磁式直流电机驱动装置以及电动设备,包括:永磁直流电机(10);直流电源(30);以及斩波器(1-20),斩波器(1-20)具有m个斩波单元(1-21),每个斩波单元(1-21)具有第一电源输出端(1-2211)和第二电源输出端(1-2212),所有斩波单元的m个第一电源输出端(1-2211)与所有斩波单元的m个第二电源输出端(1-2212)分别相对应地形成m对电源输出端子(1-221),m对电源输出端子(1-221)的输出电流都含有电流纹波,永磁直流电机(10)包括:机壳(11);m对电刷(13);定子(12);转子(14),以及m对外部接线端子(151),m对外部接线端子(151)与m对电源输出端子(1-221)一一对应连接,m为不小于2的整数。

Description

永磁式直流电机驱动装置以及电动设备 技术领域
本发明属于直流电机领域,特别涉及一种永磁式直流电机驱动装置以及包含该永磁式直流电机驱动装置的电动设备。
背景技术
永磁直流电动机是由一块或多块永磁体构成磁场的直流电动机,具有体积小、效率高、结构简单以及通过改变电枢电压的方法来方便调速等优点,因而广泛应用在汽车、摩托车、电动自行车、蓄电池车、船舶以及航空中等行业中。
直流电机一般是与斩波器一起使用构成直流电机调速装置的,为了保证系统可靠性,斩波器的最大输出电流一般是电机额定电流的2到3倍。大功率高性能直流电机,特别是低压大电流直流电机,需要连续工作电流很大的斩波器,而相关的技术和产品被个别国家和公司控制和垄断,导致价格很高,而且市场上能够采购到的高性能电机用斩波器的输出电流值也仅仅是在一千安培以下,这严重制约和影响了低压大电流直流电机的发展。
斩波器是采用脉冲宽度调制技术控制功率开关管的导通和关断来改变输出电压和输出电流的,其输出电流纹波的大小与功率开关管的开关频率成反比,功率开关管的开关频率的大小与开关损耗(或温升、故障率)成正比。而电机输出转矩纹波是与电流纹波成正比的。因此,为了减小电机输出转矩纹波或者减小电流纹波,必须提高开关频率;而为了减小开关损耗,又必须降低开关频率。这一个矛盾关系影响了直流电机驱动装置的发展。导致其在数控机床等对转速和转矩纹波要求很高的装置上难以应用。
应用于国防设备中的永磁直流电动机,由于隐身的需求对振动和电磁干扰特别敏感,也就是说对电机输出转矩的纹波和电流的纹波要求特别严格。而目前,应用于大功率国防电动设备的传统型永磁直流电机已经难以应对技术日益发达的侦查技术。
基于上述原因,永磁直流电动机发展受到了制约和影响,影响了经济建设和国防建设。
发明内容
本发明是为解决上述问题而进行的,目的在于提供一种永磁式直流电机驱动装置。
为了实现上述目的,本发明采用了下述技术方案:
本发明提供了一种永磁式直流电机驱动装置,其特征在于,包括:永磁直流电机,具有额定电压;直流电源,具有与额定电压相对应的恒定电压;以及斩波器,根据驱动信号将恒定电压转换为可变电压并提供给永磁直流电机,其中,斩波器具有m个斩波单元,每个斩波单元具有第一电源输出端和第二电源输出端,所有斩波单元的m个第一电源输出端与所有斩波单元的m个第二电源输出端分别相对应地形成m对电源输出端子,m对电源输出端子的输出电流都含有电流纹波,永磁直流电机包括:机壳;m对电刷,固定在机壳内;定子,设置在机壳内,包含与m对电刷相对应的m对永磁式的主磁极;以及转子,设置在定子内,包含采用预定的联结方式进行相互联结的多个电枢绕组,每一对主磁极含有相邻的S极性主磁极和N极性主磁极,每一对电刷中的2个电刷的位置相邻,每一对电刷含有一个与S极性主磁极相对应的S极对应电刷和一个与N极性主磁极相对应的N极对应电刷,所有S极对应电刷的引出端形成m个第一接线端,所有N极对应电刷的引出端形成m个第二接线端;或者,所有N极对应电刷的引出端形成m个第一接线端,所有S极对应电刷的引出端形成m个第二接线端,m个第一接线端与m个第二接线端分别相对应地形成m对外部接线端子,m对外部接线端子与m对电源输出端子一一对应连接,m为不小于2的整数。
本发明提供的永磁式直流电机驱动装置,还可以具有这样的技术特征,其中,每个斩波单元包含相互串联联结的上桥臂和下桥臂,上桥臂包含至少一个功率开关管,下桥臂包含至少一个二极管,每个斩波单元的上桥臂的电流输出端与下桥臂的电流输出端相互联结形成第一电源输出端,每个斩波单元的下桥臂的电流输入端形成第二电源输出端。
进一步,上述永磁式直流电机驱动装置还可以具有这样的技术特征,其中,上桥臂包含 1个功率开关管,当所有功率开关管具有相同的最大输出电流I1,永磁直流电机的最大电流为Imax时,m满足下述条件:m>Imax÷I1;或者,上桥臂包含相互并联联结的p个功率开关管,当所有功率开关管具有相同的最大输出电流I1,永磁直流电机的最大电流为Imax,m满足下述条件:m>Imax÷(k×p×I1),p为不小于2的整数,k为并联系数,1/p<k<1。
本发明提供的永磁式直流电机驱动装置,还可以具有这样的技术特征,其中,每个斩波单元包含相互并联联结的第一桥臂和第二桥臂,第一桥臂与相对应的1对第一信号输出端子相连接,第二桥臂与相对应的1对第二信号输出端子相连接,第一桥臂包含相互串联联结的第一上桥臂和第一下桥臂,第二桥臂包含相互串联联结的第二上桥臂和第二下桥臂,第一上桥臂、第一下桥臂、第二上桥臂以及第二下桥臂分别包含至少一个功率开关管以及与功率开关管反向并联联结的二极管,每个斩波单元的第一上桥臂的功率开关管的电流输出端与第一下桥臂的功率开关管的电流输入端相互联结形成第一电源输出端,每个斩波单元的第二上桥臂的功率开关管的电流输出端与第二下桥臂的功率开关管的电流输入端相互联结形成第二电源输出端。
进一步,上述永磁式直流电机驱动装置还可以具有这样的技术特征,其中,第一上桥臂包含1个功率开关管,第一下桥臂包含1个功率开关管,第二上桥臂包含1个功率开关管,第二下桥臂包含1个功率开关管,当所有功率开关管具有相同的最大输出电流I1,永磁直流电机的最大电流为Imax时,m满足下述条件:m>Imax÷I1;或者,第一上桥臂包含相互并联联结的p个功率开关管,第一下桥臂包含相互并联联结的p个功率开关管,第二上桥臂包含相互并联联结的p个功率开关管,第二下桥臂包含相互并联联结的p个功率开关管,当所有功率开关管具有相同的最大输出电流I1,永磁直流电机的最大电流为Imax,m满足下述条件:m>Imax÷(k×p×I1),p为不小于2的整数,k为并联系数,1/p<k<1。
本发明提供的永磁式直流电机驱动装置,还可以具有这样的技术特征,其中,每个斩波单元包含相互串联联结的上桥臂和下桥臂,上桥臂、下桥臂分别包含至少一个功率开关管以及与功率开关管反向并联联结的二极管,每个斩波单元的上桥臂的功率开关管电流输出端与下桥臂的功率开关管电流输入端相互联结形成第一电源输出端,每个斩波单元的下桥臂的功率开关管电流输出端形成第二电源输出端。
进一步,上述永磁式直流电机驱动装置还可以具有这样的技术特征,其中,上桥臂包含1个功率开关管,下桥臂包含1个功率开关管,当所有功率开关管具有相同的最大输出电流I1,永磁直流电机的最大电流为Imax时,m满足下述条件:m>Imax÷I1;或者,上桥臂包含相互并联联结的p个功率开关管,下桥臂包含相互并联联结的p个功率开关管,当所有功率开关管具有相同的最大输出电流I1,永磁直流电机的最大电流为Imax,m满足下述条件:m>Imax÷(k×p×I1),n为不小于2的整数,k为并联系数,1/p<k<1。
本发明提供的永磁式直流电机驱动装置,还可以具有这样的技术特征,其中,m对电源输出端子的输出电流的电流纹波的频率都相同。
进一步,上述永磁式直流电机驱动装置还可以具有这样的技术特征,其中,m对电源输出端子的输出电流的电流纹波的相位都相同。
进一步,上述永磁式直流电机驱动装置还可以具有这样的技术特征,其中,m对电源输出端子的输出电流的电流纹波的相位依次错开m分之一开关周期。
本发明提供的永磁式直流电机驱动装置,还可以具有这样的技术特征,还包括:驱动部,根据控制信号产生驱动信号,其中,驱动部具有由至少一个驱动单元所构成的m个信号输出端,该m个信号输出端与m个斩波单元一一对应连接。
进一步,上述永磁式直流电机驱动装置还可以具有这样的技术特征,其中,驱动部包含1个驱动单元,该驱动单元包含m个信号输出端;或者,驱动部包含相互独立的m个驱动单元,每个驱动单元都包含1个信号输出端并且包含1个使能控制信号输入端。
本发明提供的永磁式直流电机驱动装置,还可以具有这样的技术特征,其中,直流电源包含1个直流单元,该直流单元包含m对供电输出端子,该m对供电输出端子与m个斩波单元一一对应连接;或者,直流电源包含相互独立的m个直流单元,每一个直流单元包含1对供电输出端子,所有直流单元的m对供电输出端子与m个斩波单元一一对应连接。
本发明提供的永磁式直流电机驱动装置,还可以具有这样的技术特征,其中,预定的联结方式是单叠、复叠和复波中的任意一种。
本发明提供的永磁式直流电机驱动装置,还可以具有这样的技术特征,其中,功率开关 管为半控型或全控型器件,半控型器件为普通晶闸管,全控型器件为电力场效应晶体管、门极可关断晶闸管、集成门极换流晶闸管、绝缘栅双极型晶体管以及电力双极型晶体管中的任意一种。
本发明还提供了一种电动设备,其特征在于,包括如上任一项的永磁式直流电机驱动装置。
发明的作用与效果
根据本发明结构一的永磁式直流电机驱动装置,因为斩波器具有m个斩波单元,每个斩波单元具有第一电源输出端和第二电源输出端,所有斩波单元的m个第一电源输出端与所有斩波单元的m个第二电源输出端分别相对应地形成m对电源输出端子,m对电源输出端子的输出电流都含有电流纹波,m对外部接线端子与m对电源输出端子一一对应连接,也就是说,永磁直流电机中每对电刷所构成的支路是相互独立的,每条支路的电流也是独立的,每条支路都能够独立工作,并由相对应的一对电源输出端子供电,即:每对电源输出端子只要承担一条支路的工作电流,只有电机额定电流的m分之一。对于额定电流很大的电机,只要m够大,每条支路的工作电流或者每对电源输出端子的输出电流就会相对应的减小,降低每个斩波单元的功率要求,故使用普通的功率开关管即可满足大功率高性能电机的要求,不仅降低了斩波器的成本,还降低了电源输出端子和外部接线端子之间的连接线和连接件,对接触电阻和绝缘的要求,降低了生产制造的难度,有助于提高系统的可靠性和安全性。
另外,因为m对电源输出端子的输出电流都含有电流纹波,即输出电流含有高次谐波成分,而且每对电源输出端子的输出电流纹波是相互独立,在永磁直流电机中,输出转矩和转速的纹波又与电流纹波的叠加值相关的,通过适当的控制,每对电源输出端子的电流纹波的相位可以互不相同,引起m个电流纹波叠加后的纹波峰峰值减小,从而减小输出转矩和转速的纹波的峰峰值,进而提高永磁直流电机的性能和寿命。
综上,本发明的永磁式直流电机驱动装置结构简单、连接线短、生产工艺简单,制造容易,维修方便,生产成本和维护成本低,具有结构设计合理、简单、可靠性和安全性高等优点;能够打破国外对于功率模块、控制器和高性能电驱动装置的垄断和封锁,使得该发明不但可以应用于电动汽车、电动搬运车、轨道车、观光游览车、货车、船舶等大负荷电动设备,而且还可以提高电动设备的性能,应用于数控机床和潜艇等高性能电动设备,实现高性能电动驱动装置的国产化。
附图说明
图1为本发明实施例一的永磁式直流电机驱动装置的电路连接示意图;
图2为本发明实施例一中的永磁式直流电机驱动装置的电路连接示意图;
图3为本发明实施例一中的永磁直流电机的纵向剖面示意图;
图4为本发明实施例一中的永磁直流电机的横向剖面电路连接示意图;
图5为本发明实施例一中的永磁直流电机的电枢绕组单叠联结展开示意图;
图6为传统的永磁直流电机驱动装置的电路连接示意图;
图7为本发明实例中的永磁直流电机三对电刷的输入电流波形图;
图8为本发明实施例一中的永磁直流电机的电流和传统的永磁直流电机的电流比较图;
图9为本发明实施例一中的永磁直流电机的转矩和传统的永磁直流电机的转矩比较图;
图10为本发明实施例一中的永磁直流电机的转速和传统的永磁直流电机的转速比较图;
图11为本发明变形例一的永磁式直流电机驱动装置的电路连接示意图;
图12为本发明实施例二的永磁式直流电机驱动装置的电路连接示意图;
图13为本发明实施例二中的永磁式直流电机驱动装置的电路连接示意图;
图14为本发明变形例二的永磁式直流电机驱动装置的电路连接示意图;
图15为本发明实施例三的永磁式直流电机驱动装置的电路连接示意图;
图16为本发明实施例三中的永磁式直流电机驱动装置的电路连接示意图;
图17为本发明变形例三的永磁式直流电机驱动装置的电路连接示意图。
具体实施方式
以下结合附图来说明本发明的具体实施方式。
<实施例一>
图1为本发明的永磁式直流电机驱动装置的电路连接示意图;图2为本发明实施例一中的永磁式直流电机驱动装置的电路连接示意图。
如图1和图2所示,本实施例一中的永磁式直流电机驱动装置1-100包括永磁直流电机10、斩波器1-20、直流电源30、指令发送部(图未示)、传感部40、控制器50以及驱动部60。
图3为本发明实施例一中的永磁直流电机的纵向剖面示意图;图4为本发明实施例一中的永磁直流电机的横向剖面电路连接示意图。
如图1至图4所示,永磁直流电机10具有额定电压和额定电流,包括机壳11、定子12、电刷13、转子14以及接线盒(图未示)。如图1所示,根据额定电流的值将电刷13的对数设置为m,m为不小于2的整数。如图2和图4所示,本实施例一中m设置为3。
如图3和图4所示,定子12设置在机壳11内,包含m对永磁式的主磁极121。本实施例一中,定子12包含3对共6个主磁极121。
如图4所示,每一对主磁极121含有分别由永磁体构成的S极性主磁极1211和N极性主磁极1212。在所有主磁极121中,相邻的2个主磁极121的极性相反。
如图1至图4所示,m对电刷13固定设置在机壳11内,且分别与m对主磁极121相对应。本实施例一中,电刷13的数目为3对共6个。
如图2和图4所示,每一对电刷13含有一个与S极性主磁极1211相对应的S极对应电刷131和一个与N极性主磁极1212相对应的N极对应电刷132。每一对电刷13中的2个电刷13的位置相邻;而且,每一对电刷13与相对应的每一对主磁极121的空间位置相对应。
电刷13是窄电刷和宽电刷中的任意一种,本实施例一中电刷13是窄电刷。每个电刷13包含一个电刷本体或至少两个沿电机轴向布置并在电气上并联的分开成形的电刷本体;当电刷13包含至少两个电刷本体时,能够使得每个电刷与换向器的实际接触面积增大,从而改善了电刷的换向性能。如图2至图4所示,本实施例一中电刷13包含一个电刷本体。
如图1所示,每对电刷13的两个引出端分别形成第一接线端1511和第二接线端1512,所有电刷13的m个第一接线端1511与m个第二接线端1512分别相对应地形成m对外部接线端子151。
本实施例一中,如图2和图4所示,第一接线端1511与第二接线端1512相对应地形成1对外部接线端子151,第一接线端1521与第二接线端1522相对应地形成1对外部接线端子152,第一接线端1531与第二接线端1532相对应地形成1对接线端子153。
图5为本发明实施例一中的永磁直流电机的电枢绕组单叠联结展开示意图。
如图1至图4所示,转子14设置在定子12内,包含采用预定的联结方式进行相互联结的多个电枢绕组141,电枢绕组141的数目设置为2m×n个,预定的联结方式是单叠、复叠和复波中的任意一种。本实施例一中,如图5所示,多个电枢绕组141的联结方式是单叠,相邻2个电刷13连接一条电枢绕组支路,每条电枢绕组支路含有n个电枢绕组141。
接线盒(图未示)固定在机壳11上,如图2和图4所示,3对外部接线端子151、152 和153被设置在接线盒内。
如图1所示,斩波器1-20是根据控制器50通过驱动部60发出的驱动信号将直流电源30的恒压电压转换为平均电压可控的可变电压,并提供给永磁直流电机10。该斩波器1-20包括与m对电刷13分别相对应的m个斩波单元1-21。本实施例一中,如图2所示,斩波器1-20包括3个斩波单元1-21。
每个斩波单元1-21包含相互串联联结的上桥臂1-211和下桥臂1-212,上桥臂1-211包含1个功率开关管1-2111,下桥臂1-212包含1个续流二极管1-2121。当所有上桥臂1-211的功率开关管1-2111具有相同的最大输出电流I 1,永磁直流电机10的最大电流为I max时,m满足下述条件:m>I max÷I 1。最大电流I 1是功率开关管的一个重要参数,只有在这个电流值以下时,功率开关管才有可能稳定运行,如果工作电流超过这个电流值,功率开关管就会由于过流而被击穿,从而损坏。
在本实施例一中,所有功率开关管1-2111为半控型或全控型器件,半控型器件为普通晶闸管,全控型器件为电力场效应晶体管、门极可关断晶闸管、集成门极换流晶闸管、绝缘栅双极型晶体管以及电力双极型晶体管中的任意一种。
如图1所示,每个斩波单元1-21的上桥臂1-211的电流输出端与下桥臂1-212的电流输出端相互联结形成第一电源输出端1-2211,每个斩波单元1-21的下桥臂1-212的电流输入端形成第二电源输出端1-2212。所有斩波单元1-21的m个第一电源输出端1-2211与所有斩波单元1-21的m个第二电源输出端1-2212分别相对应地形成m对电源输出端子1-221,该m对电源输出端子1-221与m对外部接线端子151一一对应连接,并且m对电源输出端子1-221的输出电流都含有电流纹波。
本实施例一中,如图2所示,第一电源输出端1-2211与第二电源输出端1-2212相对应地形成1对电源输出端子1-221,第一电源输出端1-2221与第二电源输出端1-2222相对应地形成1对电源输出端子1-222,第一电源输出端1-2231与第二电源输出端1-2232相对应地形成1对电源输出端子1-223,3对电源输出端子1-221、1-222和1-223与3对外部接线端子151、152和153一一对应连接。
如图1和图2所示,直流电源30具有与永磁直流电机10的额定电压相对应的恒定电压,具有与m个斩波单元一一对应连接的m对供电输出端子。本实施例一中,直流电源30包含1个直流单元31,该直流单元31包含m个正极供电输出端311和m个负极供电输出端312,m个正极供电输出端311和m个负极供电输出端312分别相对应地形成m对供电输出端子。
指令发送部(图未示)发送与永磁直流电机10输出的位移、转速或转矩相对应的指令信号。
如图1和图2所示,传感部40用于对永磁直流电机10的物理量进行检测并输出反馈信号给控制部50。该传感部40包括输出传感器41以及电流传感器42。
输出传感器41对永磁直流电机10输出的位移、转速或转矩进行检测并输出相对应的输出反馈信号给控制部50。
电流传感器42对永磁直流电机10中的电刷引出线的线电流值进行检测并输出相对应的电流反馈信号给控制部50。
如图1和图2所示,控制器50根据指令发送部的指令信号以及传感部40的输出反馈信号和电流反馈信号计算并输出电机控制信号51和使能控制信号52给驱动部60。该控制器50包含1个电机控制信号输出端以及1个使能控制信号输出端。
如图1和图2所示,驱动部60在使能控制信号52的控制下进入工作状态,并根据电机控制信号51产生驱动斩波器20进行工作的驱动信号。本实施例一中,驱动部60包含1个驱动单元61,该驱动单元61包含1个电机控制信号输入端、1个使能控制信号输入端以及 m个信号输出端611。
电机控制信号输入端和使能控制信号输入端分别与控制器50的电机信号输出端和使能控制信号输出端相对应连接,m个信号输出端611与m个斩波单元1-21一一对应连接,从而实现对每个斩波单元1-21的电源输出端子1-221的输出电流的电流纹波进行控制,使得m对电源输出端子1-221的输出电流的电流纹波的频率和相位都相同,或者m对电源输出端子1-221的输出电流的电流纹波的频率都相同,但相位依次错开m分之一开关周期。
图6为传统的永磁式直流电机驱动装置连接示意图;图7为本发明实例中的永磁直流电机三对电刷的输入电流波形图;图8为本发明实施例一中的永磁直流电机的电流和传统的永磁直流电机的电流比较图;图9为本发明实施例一中的永磁直流电机的转矩和传统的永磁直流电机的转矩比较图;图10为本发明实施例一中的永磁直流电机的转速和传统的永磁直流电机的转速比较图。
如图6所示,传统的永磁直流电机驱动装置600中的永磁直流电机的外部接线端子只有1对外部接线端子,该1对外部接线端子与斩波器的1对电源输出端子对应电气连接。
在稳定状态下,电流纹波的峰峰值为最大值和最小值之差,纹波系数为峰峰值与平均值的百分比。下面以输出电流的电流纹波的频率都相同但相位依次错开1/3开关周期的三对电源输出端子1-221、1-222和1-223并且斩波器的开关频率为1千赫兹为例,进行说明。
如图7所示,本实施例一中的永磁直流电机10的三个电刷A1B1、A2B2和A3B3的输入电流的电流纹波的峰峰值都等于99.32-87.36=11.96安培,平均值都等于93.33安培,纹波系数都等于11.96/93.33×100%=12.8%。
如图8所示,在稳定状态下,本实施例一中的永磁直流电机10的电流纹波的峰峰值等于281.96-278.00=3.96安培,平均值等于279.98安培,纹波系数都等于3.96/279.98×100%=1.41%。传统的永磁直流电机的电流纹波的峰峰值等于297.95-261.99=35.96安培,平均值等于279.98安培,纹波系数等于3.96/279.98×100%=12.8%。虽然本实施例一中的永磁直流电机10和传统的永磁直流电机的电流平均值相同,但是本实施例一中的永磁直流电机10的电流纹波的峰峰值和纹波系数都只有传统的永磁直流电机的九分之一。
已知,永磁直流电机的电磁转矩和运动方程如下
Figure PCTCN2019120401-appb-000001
其中,T em为电磁转矩;C T为转矩常数;Φ为主磁场的磁通;I a电枢电流;T load为负载转矩;J为负载的转动惯量,为常数;Ω为输出角速度。
在本实施例一中,永磁直流电机的输入电流等于电枢电流,永磁直流电机的额定电流是电机在额定工作状态下的最大输入电流。
在式(1)中,电磁转矩T em与电枢电流I a和主磁场的磁通Φ乘积成正比,直流电机的主磁场是由永磁体激励的,根据式(1)可知,电磁转矩T em与电枢电流I a成正比。电枢电流I a的纹波系数将导致电磁转矩T em产生更大的纹波系数、输出角速度Ω的脉动或纹波更大,进而导致驱动装置的性能更差。
在本实施例一中,在稳定状态下,如图9所示,本实施例一中的永磁直流电机10的转矩纹波的峰峰值等于79503.7-77281.1=2222.6N·m,平均值都等于78390.9N·m,纹波系数都等于2.84%。传统的永磁直流电机的转矩纹波的峰峰值等于88776.6-68639.9=20136.7N·m,平均值等于78497.4N·m,纹波系数等于25.65%。
如图10所示,在稳定状态下,本实施例一中的永磁直流电机10的转速纹波的峰峰值等 于1725.5157-1725.5142=0.0015转/分钟,平均值等于1725.515转/分钟,纹波系数等于0.000087%。传统的永磁直流电机的转速纹波的峰峰值等于1725.535-1725.4949=0.0401转/分钟,平均值等于1725.515转/分钟,纹波系数等于0.002324%。虽然本实施例一中的永磁直流电机10和传统的永磁直流电机的转速平均值相同,但是本实施例一中的永磁直流电机10的转速纹波的峰峰值和纹波系数与传统的永磁直流电机的比值为1/26.7。
也就是说,本实施例一中的永磁直流电机10尽管和传统的永磁直流电机的转矩平均值基本相同,但是本实施例一中的永磁直流电机10的转矩的纹波的峰峰值和纹波系数都只有传统的永磁直流电机的九分之一,减小电机的输出转矩的纹波的峰峰值和纹波系数,进而减小电机输出转速的的纹波的峰峰值和纹波系数,本实施例一中的永磁直流电机转速纹波系数只有传统的永磁直流电机的二十六分之一,最终实现减小电机的电磁干扰、振动和噪声,提高永磁直流电机和驱动装置的性能的目的。
实施例一作用与效果
根据本实施例一所涉及的永磁式直流电机驱动装置,因为斩波器具有m个斩波单元,每个斩波单元包含相互串联联结的上桥臂和下桥臂,上桥臂包含1个功率开关管,下桥臂包含1个二极管,每个斩波单元的上桥臂的电流输出端与下桥臂的电流输出端相互联结形成第一电源输出端,每个斩波单元的下桥臂的电流输入端形成第二电源输出端,所有斩波单元的m个第一电源输出端与所有斩波单元的m个第二电源输出端分别相对应地形成m对电源输出端子,所有S极对应电刷的引出端形成m个第一接线端,所有N极对应电刷的引出端形成m个第二接线端;或者,所有N极对应电刷的引出端形成m个第一接线端,所有S极对应电刷的引出端形成m个第二接线端,m个第一接线端与m个第二接线端分别相对应地形成m对外部接线端子,m对外部接线端子与m对电源输出端子一一对应连接,也就是说,永磁直流电机中每对电刷所构成的支路是相互独立的,每条支路的电流也是独立的,每条支路都能够独立工作,并由相对应的一对电源输出端子供电,即:每对电源输出端子只要承担一条支路的工作电流,只有电机额定电流的m分之一。对于额定电流很大的电机,只要m够大,每条支路的工作电流或者每对电源输出端子的输出电流就会相对应的减小,降低每个斩波单元的功率要求,故使用普通的功率开关管即可满足大功率高性能电机的要求,不仅降低了斩波器的成本,还降低了电源输出端子和外部接线端子之间的连接线和连接件,对接触电阻和绝缘的要求,降低了生产制造的难度,有助于提高系统的可靠性和安全性。
进一步,因为上桥臂包含1个功率开关管,下桥臂包含1个二极管,所以,本实施例一中的斩波器结构简单,可靠,安全性高,控制容易实现,成本低。
而且,因为m对电源输出端子的输出电流都含有电流纹波,即输出电流含有高次谐波成分,而且每对电源输出端子的输出电流纹波是相互独立,在永磁直流电机中,输出转矩和转速的纹波又与电流纹波的叠加值相关的,通过适当的控制,每对电源输出端子的电流纹波的相位可以互不相同,引起m个电流纹波叠加后的纹波峰峰值减小,从而减小输出转矩和转速的纹波的峰峰值,进而提高永磁直流电机的性能和寿命。
综上,本实施例一的永磁式直流电机驱动装置结构简单、连接线短、生产工艺简单,制造容易,维修方便,生产成本和维护成本低,具有结构设计合理、简单、可靠性和安全性高等优点;能够打破国外对于功率模块、控制器和高性能电驱动装置的垄断和封锁,使得该发明不但可以应用于电动汽车、电动搬运车、轨道车、观光游览车、货车、船舶等大负荷电动设备,而且还可以提高电动设备的性能,应用于数控机床和潜艇等高性能电动设备,实现高性能电动驱动装置的国产化。
<变形例一>
本变形例一为实施例一的变形。在本变形例一中,对于和实施例一相同的结构,给予相同的符号并省略相同的说明。
图11为本发明变形例一的永磁式直流电机驱动装置的电路连接示意图。
如图11所示,本变形例一中的永磁式直流电机驱动装置1-200包括永磁直流电机10、斩波器1-220、直流电源230、指令发送部(图未示)、传感部40、控制器250以及驱动部260。
如图11所示,斩波器1-220包括与m对电刷分别相对应的m个斩波单元1-221。每个斩波单元1-221包含相互串联联结的上桥臂1-2211和下桥臂1-2212,上桥臂1-2211包含相互并联联结的p个功率开关管1-22111,p为不小于2的整数,下桥臂1-2121包含1个续流二极管1-22121。在本变形例一中,p为2-4,并联的技术成熟、可靠,可以适当减少m的数量,减少生产制造中的工作量和复杂程度,提高产品的性价比。当所有上桥臂1-2211的功率开关管1-22111具有相同的最大输出电流I 1,永磁直流电机10的最大电流为I max,m满足下述条件:m>I max÷(k×p×I 1),k为并联系数,1/p<k<1。
每个斩波单元1-221的上桥臂1-2211的电流输出端与下桥臂1-2212的电流输出端相互联结形成第一电源输出端1-22211,每个斩波单元1-221的下桥臂1-2212的电流输入端形成第二电源输出端1-22212。所有斩波单元1-221的m个第一电源输出端1-22211与所有斩波单元1-221的m个第二电源输出端1-22212分别相对应地形成m对电源输出端子1-2221,该m对电源输出端子1-2221与m对外部接线端子151一一对应连接,并且m对电源输出端子1-2221的输出电流都含有电流纹波。
如图11所示,直流电源230包含相互独立的m个直流单元231,每一个直流单元231都包含1个正极供电输出端2311和1个负极供电输出端2312,m个正极供电输出端2311和m个负极供电输出端2312分别相对应地形成m对供电输出端子,该m对供电输出端子与m个斩波单元1-221一一对应连接。
如图11所示,控制器250根据直流发送部的指令信号以及传感部40的输出反馈信号和电流反馈信号计算并输出m个电机控制信号251和m个使能控制信号252给驱动部260。
如图11所示,驱动部260包含相互独立的m个驱动单元261,每个驱动单元261都包含1个电机控制信号输入端、1个使能控制信号输入端以及1个信号输出端2611。所有驱动单元261的m个电机信号控制输入端与m个电机控制信号251一一对应连接,所有驱动单元261的m个使能控制信号输入端与m个使能控制信号输出端一一对应连接,驱动单元261的m个信号输出端2611与m个斩波单元1-221一一对应连接,从而使得驱动单元261在相对应的使能控制信号252的控制下进入工作状态,并根据相对应的电机控制信号251产生驱动相对应的斩波单元1-221进行工作的驱动信号。
在本变形例一中,因为斩波单元的上桥臂包含相互并联连接的p个功率开关管,p为不小于2的整数,所以,在电机的额定电流一定的情况下,相对于p等于1的情况,特别是p为2-4这种情况,由于技术相对可靠稳定,能够在一定程度上增大每个斩波单元的输出电流,进而能够相应的减小m的数值,不仅可以减少电刷个数,减少电机的电源线数量和斩波单元输出线的数量,减轻维修和维护难度,而且还适当降低生产成本。而且还可以增加散热面积,减小温升,提高可靠性和寿命。
另外,因为直流电源包含m个直流单元,每个直流单元包含1对供电输出端子,所以,当某一个直流单元的供电输出端子或者连接线出现故障时,只需要把故障所在部分屏蔽即可,其他正常部分依然可以工作,不但避免出现传统永磁直流电机的突然失控现象,提高了系统的可靠性和安全性,而且有效输出转矩较大。并且,在供电方面,由多个独立相对小容量的直流单元代替了单个的大容量直流电源,与传统并联电池组相比,在电源单体数量相同的情况下,减小了电源由于并联引起的整体性能衰减,提高了能量密度、功率、性能、耐久 性和安全性,可以为电动设备的续航和性能提供更好的保障。
此外,因为驱动部包含m个驱动单元,所以,每一个驱动单元对应连接着一个斩波单元中的桥臂单元、一个电刷和两个电枢绕组支路,当任意一个驱动单元、斩波单元、电刷或电枢绕组支路产生故障时,本发明的永磁式直流电机驱动装置通过计算电流传感器检测到的电流值并判断出发生故障的驱动单元、斩波单元、电刷或电枢绕组支路后,控制器输出运行控制信号令对应的驱动单元停止工作,从而将损坏的驱动单元、斩波单元、电刷或电枢绕组支路进行屏蔽隔离,避免故障的进一步扩大,保证电动驱动装置和电动设备可以继续正常工作或轻载运行,大幅度地减小了电动设备、特别是高速运行的电动设备安全事故发生的概率。
在上述实施方式中,下桥臂包含1个续流二极管。但是,在本发明中,下桥臂也可以包含相互并联联结的多个续流二极管,在这种情况下,当任意一个续流二极管发生故障时,其余二极管也可正常工作,有助于提高系统的可靠性和安全性。
又如,当驱动部仅包含一个驱动单元时,若需要本发明的永磁式直流电机驱动系统正常工作,该驱动单元必须处于工作模式,因此,也可以不对驱动部施加使能控制信号。
又如,在对永磁直流电机稳态运行时的电枢电流、转速以及转矩要求精度较高的场合下,m也可根据相应的电枢电流、转速以及转矩纹波的峰峰值与纹波系数设置。
再如,根据实际需要,可以将直流电源230和/或驱动部260应用到驱动装置100中,也可以将直流电源30和/或驱动部60应用到驱动装置200中。
<实施例二>
在本实施例二中,对于与实施例一相同的结构给与相同的符号。
图12为本发明实施例二的永磁式直流电机驱动装置的电路连接示意图;图13为本发明实施例二中的永磁式直流电机驱动装置的电路连接示意图。
如图12和图13所示,本实施例二中的永磁式直流电机驱动装置2-100包括永磁直流电机10、斩波器2-20、直流电源30、指令发送部(图未示)、传感部40、控制器50以及驱动部60。
如图12所示,斩波器2-20是根据控制器50通过驱动部60发出的驱动信号将直流电源30的恒压电压转换为平均电压可控的可变电压,并提供给永磁直流电机10。该斩波器2-20包括与m对电刷13分别相对应的m个斩波单元2-21。本实施例二中,如图13所示,斩波器20包括3个斩波单元2-21。
每个斩波单元2-21包含相互串联联结的第一桥臂2-211和第二桥臂2-212,第一桥臂2-211包含相互串联联结的第一上桥臂2-2111和第一下桥臂2-2112,第二桥臂2-212包含相互串联联结的第二上桥臂2-2121和第二下桥臂2-2122,第一上桥臂2-2111包含1个功率开关管2-21111以及与功率开关管2-21111反向并联联结的二极管2-210,第一下桥臂2-2112包含1个功率开关管2-21121以及与功率开关管2-21121反向并联联结的二极管2-210,第二上桥臂2-2121包含1个功率开关管2-21211以及与功率开关管2-21211反向并联联结的二极管2-210,第二下桥臂2-2122包含1个功率开关管2-21221以及与功率开关管2-21221反向并联联结的二极管2-210,当所有第一上桥臂2-2111的功率开关管2-21111、所有第一下桥臂2-2112的功率开关管2-21121、所有第二上桥臂2-2121的功率开关管2-21211以及所有第二下桥臂2-2122的功率开关管2-21221具有相同的最大输出电流I1,永磁直流电机10的最大电流为Imax时,m满足下述条件:m>Imax÷I1。最大电流I1是功率开关管的一个重要参数,只有在这个电流值以下时,功率开关管才有可能稳定运行,如果工作电流超过这个电流值,功率开关管就会由于过流而被击穿,从而损坏。
在本实施例二中,所有功率开关管2-21111、2-21121、2-21211以及2-21221为半控型 或全控型器件,半控型器件为普通晶闸管,全控型器件为电力场效应晶体管、门极可关断晶闸管、集成门极换流晶闸管、绝缘栅双极型晶体管以及电力双极型晶体管中的任意一种。
如图12所示,每个斩波单元2-21的第一上桥臂2-2111的功率开关管2-21111的电流输出端与第一下桥臂2-2112的功率开关管2-21121的电流输入端相互联结形成第一电源输出端2-2211,每个斩波单元2-21的第二上桥臂2-2121的功率开关管2-21211的电流输出端与第二下桥臂2-2122的功率开关管2-21221的电流输入端相互联结形成第二电源输出端2-2212。所有斩波单元2-21的m个第一电源输出端2-2211与所有斩波单元2-21的m个第二电源输出端2-2212分别相对应地形成m对电源输出端子2-221,该m对电源输出端子2-221与m对外部接线端子2-151一一对应连接,并且m对电源输出端子2-221的输出电流都含有电流纹波。
本实施例二中,如图13所示,第一电源输出端2-2211与第二电源输出端2-2212相对应地形成1对电源输出端子2-221,第一电源输出端2-2221与第二电源输出端2-2222相对应地形成1对电源输出端子2-222,第一电源输出端2-2231与第二电源输出端2-2232相对应地形成1对电源输出端子2-223,3对电源输出端子2-221、2-222和2-223与3对外部接线端子151、152和153一一对应连接。
如图12和图13所示,驱动部60在使能控制信号52的控制下进入工作状态,并根据电机控制信号51产生驱动斩波器20进行工作的驱动信号。本实施例二中,驱动部60包含1个驱动单元61,该驱动单元61包含1个电机控制信号输入端、1个使能控制信号输入端以及m组信号输出端611。
电机控制信号输入端和使能控制信号输入端分别与控制器50的电机信号输出端和使能控制信号输出端相对应连接,m组信号输出端611与m个斩波单元2-21一一对应连接,具体为:信号输出端6111与相对应的第一上桥臂2-2111的功率开关管2-21111相连接,信号输出端6112与相对应的第一下桥臂2-2112的功率开关管2-21121相连接,信号输出端6121与相对应的第二上桥臂2-2121的功率开关管2-21211相连接,信号输出端6122与相对应的第二下桥臂2-2122的功率开关管2-21221相连接,从而实现对每个斩波单元2-21的电源输出端子2-221的输出电流的电流纹波进行控制,使得m对电源输出端子2-221的输出电流的电流纹波的频率和相位都相同,或者m对电源输出端子2-221的输出电流的电流纹波的频率都相同,但相位依次错开m分之一开关周期。
本实施例二可以工作在实施例一的工作状态,如图7~10所示,本实施例二中的永磁直流电机10尽管和传统的永磁直流电机的转矩平均值基本相同,但是本实施例二中的永磁直流电机10的转矩的纹波的峰峰值和纹波系数都只有传统的永磁直流电机的九分之一,减小电机的输出转矩的纹波的峰峰值和纹波系数,进而减小电机输出转速的的纹波的峰峰值和纹波系数,本实施例二中的永磁直流电机转速纹波系数只有传统的永磁直流电机的二十六分之一,最终实现减小电机的电磁干扰、振动和噪声,提高永磁直流电机和驱动装置的性能的目的。
实施例二作用与效果
根据本实施例二所涉及的永磁式直流电机驱动装置,因为斩波器具有m个斩波单元,每个斩波单元包含相互串联联结的上桥臂和下桥臂,上桥臂包含1个功率开关管,下桥臂包含1个二极管,每个斩波单元的上桥臂的电流输出端与下桥臂的电流输出端相互联结形成第一电源输出端,每个斩波单元的下桥臂的电流输入端形成第二电源输出端,所有斩波单元的m个第一电源输出端与所有斩波单元的m个第二电源输出端分别相对应地形成m对电源输出端子,所有S极对应电刷的引出端形成m个第一接线端,所有N极对应电刷的引出端形成m个第二接线端;或者,所有N极对应电刷的引出端形成m个第一接线端,所有S极对 应电刷的引出端形成m个第二接线端,m个第一接线端与m个第二接线端分别相对应地形成m对外部接线端子,m对外部接线端子与m对电源输出端子一一对应连接,也就是说,永磁直流电机中每对电刷所构成的支路是相互独立的,每条支路的电流也是独立的,每条支路都能够独立工作,并由相对应的一对电源输出端子供电,即:每对电源输出端子只要承担一条支路的工作电流,只有电机额定电流的m分之一。对于额定电流很大的电机,只要m够大,每条支路的工作电流或者每对电源输出端子的输出电流就会相对应的减小,降低每个斩波单元的功率要求,故使用普通的功率开关管即可满足大功率高性能电机的要求,不仅降低了斩波器的成本,还降低了电源输出端子和外部接线端子之间的连接线和连接件,对接触电阻和绝缘的要求,降低了生产制造的难度,有助于提高系统的可靠性和安全性。
进一步,因为每个斩波单元包含第一桥臂和第二桥臂,每个桥臂包含一个功率开关管与一个与功率开关管反向并联联结的二极管,因此任意两个斩波单元输出的电流是相互独立、互不干扰的,并且采用适当的控制方法可以实现将电机在制动过程中产生的能量回馈给电源,还能够改变电流流向从而实现电机正反转,所以,本发明中的斩波器结构可靠,安全性高,实现功能多样,同时达到节约电能的目的。
而且,因为m对电源输出端子的输出电流都含有电流纹波,即输出电流含有高次谐波成分,而且每对电源输出端子的输出电流纹波是相互独立,在永磁直流电机中,输出转矩和转速的纹波又与电流纹波的叠加值相关的,通过适当的控制,每对电源输出端子的电流纹波的相位可以互不相同,引起m个电流纹波叠加后的纹波峰峰值减小,从而减小输出转矩和转速的纹波的峰峰值,进而提高永磁直流电机的性能和寿命。
综上,本实施例二的永磁式直流电机驱动装置结构简单、连接线短、生产工艺简单,制造容易,维修方便,生产成本和维护成本低,具有结构设计合理、简单、可靠性和安全性高等优点;能够打破国外对于功率模块、控制器和高性能电驱动装置的垄断和封锁,使得该发明不但可以应用于电动汽车、电动搬运车、轨道车、观光游览车、货车、船舶等大负荷电动设备,而且还可以提高电动设备的性能,应用于数控机床和潜艇等高性能电动设备,实现高性能电动驱动装置的国产化。
<变形例二>
本变形例二为实施例二的变形。在本变形例二中,对于和实施例二相同的结构,给予相同的符号并省略相同的说明。
图14为本发明变形例二的永磁式直流电机驱动装置的电路连接示意图。
如图14所示,本变形例二中的永磁式直流电机驱动装置2-200包括永磁直流电机10、斩波器2-220、直流电源230、指令发送部(图未示)、传感部40、控制器250以及驱动部260。
如图14所示,斩波器2-220包括与m对电刷分别相对应的m个斩波单元2-221。每个斩波单元2-221包含相互串联联结的第一桥臂2-2211和第二桥臂2-2212,第一桥臂2-2211包含相互串联联结的第一上桥臂2-22111和第一下桥臂2-22112,第二桥臂2-2212包含相互串联联结的第二上桥臂2-22121和第二下桥臂2-22122,第一上桥臂2-22111包含p个功率开关管2-221111以及与功率开关管2-221111反向并联联结的二极管2-210,第一下桥臂2-22112包含p个功率开关管2-221121以及与功率开关管2-221121反向并联联结的二极管2-210,第二上桥臂2-22121包含p个功率开关管2-221211以及与功率开关管2-221211反向并联联结的二极管2-210,第二下桥臂2-22122包含p个功率开关管2-221221以及与功率开关管2-221221反向并联联结的二极管2-210,p为不小于2的整数。在本变形例二中,p为2-4,并联的技术成熟、可靠,可以适当减少m的数量,减少生产制造中的工作量和复杂程度,提高产品的性价比。当所有第一上桥臂2-22111的功率开关管2-221111、所有第一下桥 臂2-22112的功率开关管2-221121、所有第二上桥臂2-22121的功率开关管2-221211以及所有第二下桥臂2-22122的功率开关管2-221221具有相同的最大输出电流I1,永磁直流电机10的最大电流为Imax,m满足下述条件:m>Imax÷(k×p×I1),k为并联系数,1/p<k<1。
每个斩波单元2-221的第一上桥臂2-22111的功率开关管2-221111的电流输出端与第一下桥臂2-22112的功率开关管2-221121的电流输入端相互联结形成第一电源输出端2-2211,每个斩波单元2-221的第二上桥臂2-22121的功率开关管2-221211的电流输出端与第二下桥臂2-22122的功率开关管2-221221的电流输入端相互联结形成第二电源输出端2-2212。所有斩波单元2-221的m个第一电源输出端2-22211与所有斩波单元2-221的m个第二电源输出端2-22212分别相对应地形成m对电源输出端子2-2221,该m对电源输出端子2-2221与m对外部接线端子151一一对应连接,并且m对电源输出端子2-2221的输出电流都含有电流纹波。
如图14所示,直流电源230包含相互独立的m个直流单元231,每一个直流单元231都包含1个正极供电输出端2311和1个负极供电输出端2312,m个正极供电输出端2311和m个负极供电输出端2312分别相对应地形成m对供电输出端子,该m对供电输出端子与m个斩波单元2-221一一对应连接。
如图14所示,控制器250根据直流发送部的指令信号以及传感部40的输出反馈信号和电流反馈信号计算并输出m个电机控制信号251和m个使能控制信号252给驱动部260。
如图14所示,驱动部260包含相互独立的m个驱动单元261,每个驱动单元261都包含1个电机控制信号输入端、1个使能控制信号输入端以及1组信号输出端2611。所有驱动单元261的m个电机信号控制输入端与m个电机控制信号251一一对应连接,所有驱动单元261的m个使能控制信号输入端与m个使能控制信号输出端一一对应连接,驱动单元261的m组信号输出端2611与m个斩波单元2-221一一对应连接,具体为:信号输出端6111与相对应的第一上桥臂2-2111的功率开关管2-21111相连接,信号输出端2-6112与相对应的第一下桥臂2-2112的功率开关管2-21121相连接,信号输出端6121与相对应的第二上桥臂2-2121的功率开关管2-21211相连接,信号输出端6122与相对应的第二下桥臂2-2122的功率开关管2-21221相连接,从而使得驱动单元261在相对应的使能控制信号252的控制下进入工作状态,并根据相对应的电机控制信号251产生驱动相对应的斩波单元2-221进行工作的驱动信号。
在本变形例二中,因为斩波单元的第一上桥臂、第一下桥臂、第二上桥臂以及第二下桥臂包含相互并联连接的p个功率开关管,p为不小于2的整数,所以,在电机的额定电流一定的情况下,相对于p等于1的情况,特别是p为2-4这种情况,由于技术相对可靠稳定,能够在一定程度上增大每个斩波单元的输出电流,进而能够相应的减小m的数值,不仅可以减少电刷个数,减少电机的电源线数量和斩波单元输出线的数量,减轻维修和维护难度,而且还适当降低生产成本。而且还可以增加散热面积,减小温升,提高可靠性和寿命。
另外,因为直流电源包含m个直流单元,每个直流单元包含1对供电输出端子,所以,当某一个直流单元的供电输出端子或者连接线出现故障时,只需要把故障所在部分屏蔽即可,其他正常部分依然可以工作,不但避免出现传统永磁直流电机的突然失控现象,提高了系统的可靠性和安全性,而且有效输出转矩较大。并且,在供电方面,由多个独立相对小容量的直流单元代替了单个的大容量直流电源,与传统并联电池组相比,在电源单体数量相同的情况下,减小了电源由于并联引起的整体性能衰减,提高了能量密度、功率、性能、耐久性和安全性,可以为电动设备的续航和性能提供更好的保障。
此外,因为驱动部包含m个驱动单元,所以,每一个驱动单元对应连接着一个斩波单元中的桥臂单元、一个电刷和两个电枢绕组支路,当任意一个驱动单元、斩波单元、电刷或电枢绕组支路产生故障时,本发明的永磁式直流电机驱动装置通过计算电流传感器检测到的 电流值并判断出发生故障的驱动单元、斩波单元、电刷或电枢绕组支路后,控制器输出运行控制信号令对应的驱动单元停止工作,从而将损坏的驱动单元、斩波单元、电刷或电枢绕组支路进行屏蔽隔离,避免故障的进一步扩大,保证电动驱动装置和电动设备可以继续正常工作或轻载运行,大幅度地减小了电动设备、特别是高速运行的电动设备安全事故发生的概率。
在上述实施方式中,功率开关管反向并联联结1个二极管。但是,在本发明中,功率开关也可以反向并联联结的多个二极管,在这种情况下,当任意一个二极管发生故障时,其余二极管也可正常工作,有助于提高系统的可靠性和安全性。
又如,当驱动部仅包含一个驱动单元时,若需要本发明的永磁式直流电机驱动系统正常工作,该驱动单元必须处于工作模式,因此,也可以不对驱动部施加使能控制信号。
又如,在对永磁直流电机稳态运行时的电枢电流、转速以及转矩要求精度较高的场合下,m也可根据相应的电枢电流、转速以及转矩纹波的峰峰值与纹波系数设置。
再如,根据实际需要,可以将直流电源230和/或驱动部260应用到驱动装置100中,也可以将直流电源30和/或驱动部60应用到驱动装置200中。
<实施例三>
图15为本发明实施例三的永磁式直流电机驱动装置的电路连接示意图;图16为本发明实施例三中的永磁式直流电机驱动装置的电路连接示意图;
如图15和图16所示,本实施例三中的永磁式直流电机驱动装置3-100包括永磁直流电机10、斩波器3-20、直流电源30、指令发送部(图未示)、传感部40、控制器50以及驱动部60。
斩波器3-20是根据控制器50通过驱动部60发出的驱动信号将直流电源30的恒压电压转换为平均电压可控的可变电压,并提供给永磁直流电机10。该斩波器3-20包括与m对电刷13分别相对应的m个斩波单元3-21。本实施例三中,斩波器3-20包括3个斩波单元3-21。
每个斩波单元3-21包含相互串联联结的上桥臂3-211和下桥臂3-212,上桥臂3-211包含1个功率开关管3-2111以及与功率开关管3-2111反向并联联结的二极管3-210,下桥臂3-212包含1个功率开关管3-2121以及与功率开关管3-2121反向并联联结的二极管3-210。当所有上桥臂3-211的功率开关管3-2111和所有下桥臂3-212的功率开关管3-2121具有相同的最大输出电流I1,永磁直流电机10的最大电流为Imax时,m满足下述条件:m>Imax÷I1。最大电流I1是功率开关管的一个重要参数,只有在这个电流值以下时,功率开关管才有可能稳定运行,如果工作电流超过这个电流值,功率开关管就会由于过流而被击穿,从而损坏。
在本实施例三中,所有功率开关管3-2111、3-2121为半控型或全控型器件,半控型器件为普通晶闸管,全控型器件为电力场效应晶体管、门极可关断晶闸管、集成门极换流晶闸管、绝缘栅双极型晶体管以及电力双极型晶体管中的任意一种。
如图15所示,每个斩波单元3-21的上桥臂3-211的功率开关管3-2111电流输出端与下桥臂3-212的功率开关管3-2121电流输入端相互联结形成第一电源输出端3-2211,每个斩波单元3-21的下桥臂3-212的功率开关管3-2121电流输出端形成第二电源输出端3-2212。所有斩波单元3-21的m个第一电源输出端3-2211与所有斩波单元3-21的m个第二电源输出端3-2212分别相对应地形成m对电源输出端子3-221,该m对电源输出端子3-221与m对外部接线端子151一一对应连接,并且m对电源输出端子3-221的输出电流都含有电流纹波。
本实施例三中,如图16所示,第一电源输出端3-2211与第二电源输出端3-2212相对应地形成1对电源输出端子3-221,第一电源输出端3-2221与第二电源输出端3-2222相对应地形成1对电源输出端子3-222,第一电源输出端3-2231与第二电源输出端3-2232相对 应地形成1对电源输出端子3-223,3对电源输出端子3-221、3-222和3-223与3对外部接线端子151、152和153一一对应连接。
如图15和图16所示,驱动部60在使能控制信号52的控制下进入工作状态,并根据电机控制信号51产生驱动斩波器3-20进行工作的驱动信号。本实施例三中,驱动部60包含1个驱动单元61,该驱动单元61包含1个电机控制信号输入端、1个使能控制信号输入端以及m对信号输出端611。
电机控制信号输入端和使能控制信号输入端分别与控制器50的电机信号输出端和使能控制信号输出端相对应连接,m对信号输出端611与m个斩波单元3-21一一对应连接,具体为:信号输出端611与相对应的上桥臂3-211的功率开关管3-2111相连接,信号输出端612与相对应的下桥臂3-212的功率开关管3-2121相连接,从而实现对每个斩波单元3-21的电源输出端子3-221的输出电流的电流纹波进行控制,使得m对电源输出端子3-221的输出电流的电流纹波的频率和相位都相同,或者m对电源输出端子3-221的输出电流的电流纹波的频率都相同,但相位依次错开m分之一开关周期。
本实施例三可以工作在实施例一的工作状态,如图7~10所示,本实施例三中的永磁直流电机10尽管和传统的永磁直流电机的转矩平均值基本相同,但是本实施例三中的永磁直流电机10的转矩的纹波的峰峰值和纹波系数都只有传统的永磁直流电机的九分之一,减小电机的输出转矩的纹波的峰峰值和纹波系数,进而减小电机输出转速的的纹波的峰峰值和纹波系数,本实施例三中的永磁直流电机转速纹波系数只有传统的永磁直流电机的二十六分之一,最终实现减小电机的电磁干扰、振动和噪声,提高永磁直流电机和驱动装置的性能的目的。
实施例三作用与效果
根据本实施例三所涉及的永磁式直流电机驱动装置,因为斩波器具有m个斩波单元,每个斩波单元包含相互串联联结的上桥臂和下桥臂,上桥臂包含1个功率开关管,下桥臂包含1个二极管,每个斩波单元的上桥臂的电流输出端与下桥臂的电流输出端相互联结形成第一电源输出端,每个斩波单元的下桥臂的电流输入端形成第二电源输出端,所有斩波单元的m个第一电源输出端与所有斩波单元的m个第二电源输出端分别相对应地形成m对电源输出端子,所有S极对应电刷的引出端形成m个第一接线端,所有N极对应电刷的引出端形成m个第二接线端;或者,所有N极对应电刷的引出端形成m个第一接线端,所有S极对应电刷的引出端形成m个第二接线端,m个第一接线端与m个第二接线端分别相对应地形成m对外部接线端子,m对外部接线端子与m对电源输出端子一一对应连接,也就是说,永磁直流电机中每对电刷所构成的支路是相互独立的,每条支路的电流也是独立的,每条支路都能够独立工作,并由相对应的一对电源输出端子供电,即:每对电源输出端子只要承担一条支路的工作电流,只有电机额定电流的m分之一。对于额定电流很大的电机,只要m够大,每条支路的工作电流或者每对电源输出端子的输出电流就会相对应的减小,降低每个斩波单元的功率要求,故使用普通的功率开关管即可满足大功率高性能电机的要求,不仅降低了斩波器的成本,还降低了电源输出端子和外部接线端子之间的连接线和连接件,对接触电阻和绝缘的要求,降低了生产制造的难度,有助于提高系统的可靠性和安全性。
进一步,因为每个桥臂包含一个功率开关管与一个与功率开关管反向并联联结的二极管,因此任意两个斩波单元输出的电流是相互独立、互不干扰的,并且采用适当的控制方法可以实现将电机在制动过程中产生的能量回馈给电源。所以,本发明中的斩波器结构简单,可靠,安全性高,同时达到节约电能的目的。而且,因为m对电源输出端子的输出电流都含有电流纹波,即输出电流含有高次谐波成分,而且每对电源输出端子的输出电流纹波是相互独立,在永磁直流电机中,输出转矩和转速的纹波又与电流纹波的叠加值相关的,通过适 当的控制,每对电源输出端子的电流纹波的相位可以互不相同,引起m个电流纹波叠加后的纹波峰峰值减小,从而减小输出转矩和转速的纹波的峰峰值,进而提高永磁直流电机的性能和寿命。
综上,本实施例三的永磁式直流电机驱动装置结构简单、连接线短、生产工艺简单,制造容易,维修方便,生产成本和维护成本低,具有结构设计合理、简单、可靠性和安全性高等优点;能够打破国外对于功率模块、控制器和高性能电驱动装置的垄断和封锁,使得该发明不但可以应用于电动汽车、电动搬运车、轨道车、观光游览车、货车、船舶等大负荷电动设备,而且还可以提高电动设备的性能,应用于数控机床和潜艇等高性能电动设备,实现高性能电动驱动装置的国产化。
<变形例三>
在本变形例三中,对于和实施例三相同的结构,给予相同的符号并省略相同的说明。
图17为本发明变形例三的永磁式直流电机驱动装置的电路连接示意图。
如图17所示,本变形例三中的永磁式直流电机驱动装置3-200包括永磁直流电机10、斩波器3-220、直流电源230、指令发送部(图未示)、传感部40、控制器250以及驱动部260。
如图17所示,斩波器3-220包括与m对电刷分别相对应的m个斩波单元3-221。每个斩波单元3-221包含相互串联联结的上桥臂3-2211和下桥臂3-2212,上桥臂3-211包含1个功率开关管3-2111以及与功率开关管3-2111反向并联联结的二极管3-210,下桥臂3-212包含1个功率开关管3-2121以及与功率开关管3-2121反向并联联结的二极管3-210。在本变形例三中,p为2-4,并联的技术成熟、可靠,可以适当减少m的数量,减少生产制造中的工作量和复杂程度,提高产品的性价比。当所有上桥臂3-2211的功率开关管3-22111和下桥臂3-2212的功率开关管3-22121具有相同的最大输出电流I1,永磁直流电机10的最大电流为Imax,m满足下述条件:m>Imax÷(k×p×I1),k为并联系数,1/p<k<1。
每个斩波单元3-221的上桥臂3-2211的功率开关管3-22111电流输出端与下桥臂3-2212的功率开关管3-22121电流输入端相互联结形成第一电源输出端3-22211,每个斩波单元3-221的下桥臂3-2212的功率开关管3-22121电流输出端形成第二电源输出端3-22212。所有斩波单元3-221的m个第一电源输出端3-22211与所有斩波单元3-221的m个第二电源输出端3-22212分别相对应地形成m对电源输出端子3-2221,该m对电源输出端子3-2221与m对外部接线端子151一一对应连接,并且m对电源输出端子3-2221的输出电流都含有电流纹波。
如图17所示,直流电源230包含相互独立的m个直流单元231,每一个直流单元231都包含1个正极供电输出端2311和1个负极供电输出端2312,m个正极供电输出端2311和m个负极供电输出端2312分别相对应地形成m对供电输出端子,该m对供电输出端子与m个斩波单元3-221一一对应连接。
如图17所示,控制器250根据直流发送部的指令信号以及传感部40的输出反馈信号和电流反馈信号计算并输出m个电机控制信号251和m个使能控制信号252给驱动部260。
如图17所示,驱动部260包含相互独立的m个驱动单元261,每个驱动单元261都包含1个电机控制信号输入端、1个使能控制信号输入端以及1对信号输出端2611。所有驱动单元261的m个电机信号控制输入端与m个电机控制信号251一一对应连接,所有驱动单元261的m个使能控制信号输入端与m个使能控制信号输出端一一对应连接,驱动单元261的m对信号输出端2611与m个斩波单元3-221一一对应连接,具体为:信号输出端2611与相对应的上桥臂3-2211的功率开关管3-22111相连接,信号输出端2612与相对应的下桥臂3-2212的功率开关管3-22121相连接,从而使得驱动单元261在相对应的使能控制信号 252的控制下进入工作状态,并根据相对应的电机控制信号251产生驱动相对应的斩波单元3-221进行工作的驱动信号。
在本变形例三中,因为斩波单元的上桥臂包含相互并联连接的p个功率开关管,p为不小于2的整数,所以,在电机的额定电流一定的情况下,相对于p等于1的情况,特别是p为2-4这种情况,由于技术相对可靠稳定,能够在一定程度上增大每个斩波单元的输出电流,进而能够相应的减小m的数值,不仅可以减少电刷个数,减少电机的电源线数量和斩波单元输出线的数量,减轻维修和维护难度,而且还适当降低生产成本。而且还可以增加散热面积,减小温升,提高可靠性和寿命。。
另外,因为直流电源包含m个直流单元,每个直流单元包含1对供电输出端子,所以,当某一个直流单元的供电输出端子或者连接线出现故障时,只需要把故障所在部分屏蔽即可,其他正常部分依然可以工作,不但避免出现传统永磁直流电机的突然失控现象,提高了系统的可靠性和安全性,而且有效输出转矩较大。并且,在供电方面,由多个独立相对小容量的直流单元代替了单个的大容量直流电源,与传统并联电池组相比,在电源单体数量相同的情况下,减小了电源由于并联引起的整体性能衰减,提高了能量密度、功率、性能、耐久性和安全性,可以为电动设备的续航和性能提供更好的保障。
此外,因为驱动部包含m个驱动单元,所以,每一个驱动单元对应连接着一个斩波单元中的桥臂单元、一个电刷和两个电枢绕组支路,当任意一个驱动单元、斩波单元、电刷或电枢绕组支路产生故障时,本发明的永磁式直流电机驱动装置通过计算电流传感器检测到的电流值并判断出发生故障的驱动单元、斩波单元、电刷或电枢绕组支路后,控制器输出运行控制信号令对应的驱动单元停止工作,从而将损坏的驱动单元、斩波单元、电刷或电枢绕组支路进行屏蔽隔离,避免故障的进一步扩大,保证电动驱动装置和电动设备可以继续正常工作或轻载运行,大幅度地减小了电动设备、特别是高速运行的电动设备安全事故发生的概率。
在上述实施方式中,功率开关管反向并联联结1个二极管。但是,在本发明中,功率开关也可以反向并联联结的多个二极管,在这种情况下,当任意一个二极管发生故障时,其余二极管也可正常工作,有助于提高系统的可靠性和安全性。
又如,当驱动部仅包含一个驱动单元时,若需要本发明的永磁式直流电机驱动系统正常工作,该驱动单元必须处于工作模式,因此,也可以不对驱动部施加使能控制信号。
又如,在对永磁直流电机稳态运行时的电枢电流、转速以及转矩要求精度较高的场合下,m也可根据相应的电枢电流、转速以及转矩纹波的峰峰值与纹波系数设置。
再如,根据实际需要,可以将直流电源230和/或驱动部260应用到驱动装置100中,也可以将直流电源30和/或驱动部60应用到驱动装置200中。

Claims (16)

  1. 一种永磁式直流电机驱动装置,其特征在于,包括:
    永磁直流电机,具有额定电压;
    直流电源,具有与所述额定电压相对应的恒定电压;以及
    斩波器,根据驱动信号将所述恒定电压转换为可变电压并提供给所述永磁直流电机,
    其中,所述斩波器具有m个斩波单元,
    每个所述斩波单元具有第一电源输出端和第二电源输出端,
    所有所述斩波单元的m个所述第一电源输出端与所有所述斩波单元的m个所述第二电源输出端分别相对应地形成m对电源输出端子,
    所述m对电源输出端子的输出电流都含有电流纹波,
    所述永磁直流电机包括:
    机壳;
    m对电刷,固定在所述机壳内;
    定子,设置在所述机壳内,包含与m对所述电刷相对应的m对永磁式的主磁极;以及
    转子,设置在所述定子内,包含采用预定的联结方式进行相互联结的多个电枢绕组,
    每一对所述主磁极含有相邻的S极性主磁极和N极性主磁极,
    每一对所述电刷中的2个所述电刷的位置相邻,
    每一对所述电刷含有一个与S极性主磁极相对应的S极对应电刷和一个与N极性主磁极相对应的N极对应电刷,
    所有所述S极对应电刷的引出端形成m个第一接线端,所有所述N极对应电刷的引出端形成m个第二接线端;或者,所有所述N极对应电刷的引出端形成m个第一接线端,所有所述S极对应电刷的引出端形成m个第二接线端,
    所述m个第一接线端与所述m个第二接线端分别相对应地形成m对外部接线端子,
    所述m对外部接线端子与所述m对电源输出端子一一对应连接,
    所述m为不小于2的整数。
  2. 根据权利要求1所述的永磁式直流电机驱动装置,其特征在于:
    其中,每个所述斩波单元包含相互串联联结的上桥臂和下桥臂,
    所述上桥臂包含至少一个功率开关管,
    所述下桥臂包含至少一个二极管,
    每个所述斩波单元的所述上桥臂的电流输出端与所述下桥臂的电流输出端相互联结形成第一电源输出端,每个所述斩波单元的所述下桥臂的电流输入端形成第二电源输出端。
  3. 根据权利要求2所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述上桥臂包含1个所述功率开关管,当所有所述功率开关管具有相同的最大输出电流I 1,所述永磁直流电机的最大电流为 I max时,所述m满足下述条件:m>I max÷I 1;或者,
    所述上桥臂包含相互并联联结的p个所述功率开关管,当所有所述功率开关管具有相同的最大输出电流I 1,所述永磁直流电机的最大电流为I max,所述m满足下述条件:m>I max÷(k×p×I 1),所述p为不小于2的整数,所述k为并联系数,1/p<k<1。
  4. 根据权利要求1所述的永磁式直流电机驱动装置,其特征在于:
    其中,每个所述斩波单元包含相互并联联结的第一桥臂和第二桥臂,
    所述第一桥臂与相对应的所述1对第一信号输出端子相连接,
    所述第二桥臂与相对应的所述1对第二信号输出端子相连接,
    所述第一桥臂包含相互串联联结的第一上桥臂和第一下桥臂,
    所述第二桥臂包含相互串联联结的第二上桥臂和第二下桥臂,
    所述第一上桥臂、所述第一下桥臂、所述第二上桥臂以及所述第二下桥臂分别包含至少一个功率开关管以及与所述功率开关管反向并联联结的二极管,
    每个所述斩波单元的所述第一上桥臂的所述功率开关管的电流输出端与所述第一下桥臂的所述功率开关管的电流输入端相互联结形成第一电源输出端,
    每个所述斩波单元的所述第二上桥臂的所述功率开关管的电流输出端与所述第二下桥臂的所述功率开关管的电流输入端相互联结 形成第二电源输出端。
  5. 根据权利要求4所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述第一上桥臂包含1个所述功率开关管,所述第一下桥臂包含1个所述功率开关管,所述第二上桥臂包含1个所述功率开关管,所述第二下桥臂包含1个所述功率开关管,当所有所述功率开关管具有相同的最大输出电流I 1,所述永磁直流电机的最大电流为I max时,所述m满足下述条件:m>I max÷I 1;或者,
    所述第一上桥臂包含相互并联联结的p个所述功率开关管,所述第一下桥臂包含相互并联联结的p个所述功率开关管,所述第二上桥臂包含相互并联联结的p个所述功率开关管,所述第二下桥臂包含相互并联联结的p个所述功率开关管,当所有所述功率开关管具有相同的最大输出电流I 1,所述永磁直流电机的最大电流为I max,所述m满足下述条件:m>I max÷(k×p×I 1),所述p为不小于2的整数,所述k为并联系数,1/p<k<1。
  6. 根据权利要求1所述的永磁式直流电机驱动装置,其特征在于:
    其中,每个所述斩波单元包含相互串联联结的上桥臂和下桥臂,
    所述上桥臂、所述下桥臂分别包含至少一个功率开关管以及与所述功率开关管反向并联联结的二极管,
    每个所述斩波单元的所述上桥臂的所述功率开关管电流输出端与所述下桥臂的所述功率开关管电流输入端相互联结形成第一电源输出端,每个所述斩波单元的所述下桥臂的所述功率开关管电流输出端形成第二电源输出端。
  7. 根据权利要求6所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述上桥臂包含1个所述功率开关管,所述下桥臂包含1个所述功率开关管,当所有所述功率开关管具有相同的最大输出电流I 1,所述永磁直流电机的最大电流为I max时,所述m满足下述条件:m>I max÷I 1;或者,
    所述上桥臂包含相互并联联结的p个所述功率开关管,所述下桥臂包含相互并联联结的p个所述功率开关管,当所有所述功率开关管具有相同的最大输出电流I 1,所述永磁直流电机的最大电流为I max,所述m满足下述条件:m>I max÷(k×p×I 1),所述n为不小于2的整数,所述k为并联系数,1/p<k<1。
  8. 根据权利要求1所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述m对电源输出端子的所述输出电流的所述电流纹波的频率都相同。
  9. 根据权利要求8所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述m对电源输出端子的所述输出电流的所述电流纹波的相位都相同。
  10. 根据权利要求8所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述m对电源输出端子的所述输出电流的所述电流纹波的相位依次错开m分之一开关周期。
  11. 根据权利要求1所述的永磁式直流电机驱动装置,其特征在于,还包括:
    驱动部,根据控制信号产生所述驱动信号,
    其中,所述驱动部具有由至少一个驱动单元所构成的m个信号输出端,该m个信号输出端与所述m个斩波单元一一对应连接。
  12. 根据权利要求11所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述驱动部包含1个所述驱动单元,该驱动单元包含m个所述信号输出端;或者,
    所述驱动部包含相互独立的m个所述驱动单元,每个所述驱动单元都包含1个所述信号输出端并且包含1个使能控制信号输入端。
  13. 根据权利要求1所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述直流电源包含1个直流单元,该直流单元包含m对供电输出端子,该m对供电输出端子与所述m个斩波单元一一对应连接;或者,
    所述直流电源包含相互独立的m个直流单元,每一个所述直流单元包含1对供电输出端子,所有所述直流单元的m对供电输出端子与所述m个斩波单元一一对应连接。
  14. 根据权利要求1所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述预定的联结方式是单叠、复叠和复波中的任意一种。
  15. 根据权利要求1所述的永磁式直流电机驱动装置,其特征在于:
    其中,所述功率开关管为半控型或全控型器件,所述半控型器件为普通晶闸管,所述全控型器件为电力场效应晶体管、门极可关断晶闸管、集成门极换流晶闸管、绝缘栅双极型晶体管以及电力双极型晶体管中的任意一种。
  16. 一种电动设备,其特征在于,包括如权利要求1~15中任一项 所述的永磁式直流电机驱动装置。
PCT/CN2019/120401 2018-11-23 2019-11-22 永磁式直流电机驱动装置以及电动设备 WO2020103954A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811404819.9A CN111313776A (zh) 2018-11-23 2018-11-23 永磁式直流电机驱动装置
CN201811404812.7A CN111313777A (zh) 2018-11-23 2018-11-23 永磁式直流电机驱动装置
CN201811404847.0 2018-11-23
CN201811404819.9 2018-11-23
CN201811404812.7 2018-11-23
CN201811404847.0A CN111313775A (zh) 2018-11-23 2018-11-23 永磁式直流电机驱动装置

Publications (1)

Publication Number Publication Date
WO2020103954A1 true WO2020103954A1 (zh) 2020-05-28

Family

ID=70773114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120401 WO2020103954A1 (zh) 2018-11-23 2019-11-22 永磁式直流电机驱动装置以及电动设备

Country Status (1)

Country Link
WO (1) WO2020103954A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3717481A1 (de) * 1987-05-23 1988-12-01 Asea Brown Boveri Schaltungsanordnung zum antrieb einer gleichstrommaschine mit mehreren gleichstromstellern
CN106602947A (zh) * 2016-12-28 2017-04-26 上海理工大学 电动驱动装置、斩波电路、直流电机以及电动设备
CN106849782A (zh) * 2017-04-19 2017-06-13 上海理工大学 电动驱动装置以及电动设备
CN106899245A (zh) * 2017-05-03 2017-06-27 上海理工大学 直流电动驱动装置以及电动设备
CN106899246A (zh) * 2017-05-03 2017-06-27 上海理工大学 直流电动驱动装置以及电动设备
CN106911272A (zh) * 2017-05-03 2017-06-30 上海理工大学 直流电动驱动装置以及电动设备
CN107070325A (zh) * 2017-05-03 2017-08-18 上海理工大学 直流电动驱动装置以及电动设备
CN107070323A (zh) * 2017-04-19 2017-08-18 上海理工大学 电动驱动装置以及电动设备
CN107086830A (zh) * 2017-05-03 2017-08-22 上海理工大学 直流电动驱动装置以及电动设备
CN107086831A (zh) * 2017-05-03 2017-08-22 上海理工大学 直流电动驱动装置以及电动设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3717481A1 (de) * 1987-05-23 1988-12-01 Asea Brown Boveri Schaltungsanordnung zum antrieb einer gleichstrommaschine mit mehreren gleichstromstellern
CN106602947A (zh) * 2016-12-28 2017-04-26 上海理工大学 电动驱动装置、斩波电路、直流电机以及电动设备
CN106849782A (zh) * 2017-04-19 2017-06-13 上海理工大学 电动驱动装置以及电动设备
CN107070323A (zh) * 2017-04-19 2017-08-18 上海理工大学 电动驱动装置以及电动设备
CN106899245A (zh) * 2017-05-03 2017-06-27 上海理工大学 直流电动驱动装置以及电动设备
CN106899246A (zh) * 2017-05-03 2017-06-27 上海理工大学 直流电动驱动装置以及电动设备
CN106911272A (zh) * 2017-05-03 2017-06-30 上海理工大学 直流电动驱动装置以及电动设备
CN107070325A (zh) * 2017-05-03 2017-08-18 上海理工大学 直流电动驱动装置以及电动设备
CN107086830A (zh) * 2017-05-03 2017-08-22 上海理工大学 直流电动驱动装置以及电动设备
CN107086831A (zh) * 2017-05-03 2017-08-22 上海理工大学 直流电动驱动装置以及电动设备

Similar Documents

Publication Publication Date Title
CN104953920A (zh) 一种实现全压双极性控制的开关磁阻电机功率拓扑结构
CN110518770B (zh) 一种串励直流电机
CN110518773B (zh) 一种他励直流电机
CN110518772B (zh) 一种并串励直流电机
WO2020103954A1 (zh) 永磁式直流电机驱动装置以及电动设备
CN110518771A (zh) 一种串并励直流电机
CN112825449B (zh) 一种并串励直流电机
US11329582B2 (en) Series shunt wound DC motor driving device and equipment
CN112825448B (zh) 一种串并励直流电机
CN110518769B (zh) 一种并励直流电机
WO2021195945A1 (zh) 一种多电机驱动电路及其控制方法
CN2870300Y (zh) 一种无刷直流电机控制器
WO2020135682A1 (zh) 串励直流电机驱动装置及设备
CN208754089U (zh) 一种电机绕组切换装置
WO2019223253A1 (zh) 直流电机
WO2020073405A1 (zh) 直流电机
CN111313777A (zh) 永磁式直流电机驱动装置
CN111313776A (zh) 永磁式直流电机驱动装置
CN216146173U (zh) 无刷直流电机、电动驱动装置以及电动设备
CN111313775A (zh) 永磁式直流电机驱动装置
CN111277098A (zh) 并串励直流电机
WO2020135688A1 (zh) 他励直流电机驱动装置及设备
CN112825447B (zh) 一种并串励直流电机
CN215580964U (zh) 电动驱动装置以及电动设备
Chen The switched reluctance motor drive for application in electric bicycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886730

Country of ref document: EP

Kind code of ref document: A1