WO2020103719A1 - 服务质量控制的方法、设备及系统 - Google Patents

服务质量控制的方法、设备及系统

Info

Publication number
WO2020103719A1
WO2020103719A1 PCT/CN2019/117189 CN2019117189W WO2020103719A1 WO 2020103719 A1 WO2020103719 A1 WO 2020103719A1 CN 2019117189 W CN2019117189 W CN 2019117189W WO 2020103719 A1 WO2020103719 A1 WO 2020103719A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
extended
bearer
rat
ambr
Prior art date
Application number
PCT/CN2019/117189
Other languages
English (en)
French (fr)
Inventor
景昊
宗在峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020103719A1 publication Critical patent/WO2020103719A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements

Definitions

  • This application relates to the field of communication technology, and in particular, to a method, device, and system for quality of service (QoS) control.
  • QoS quality of service
  • the terminal supports DC means that the terminal can access two access devices at the same time, one of the two access devices is called a primary access device or a first access device, and the other access device is called a secondary Access device or second access device.
  • the terminal can simultaneously access two access devices, one of which is the next generation node B (next generation node B, gNB)
  • the next generation node B gNB
  • One is an evolved NodeB (evolved NodeB, eNodeB or eNB)
  • MR-DC multi-radio access technology dual connectivity
  • extended QoS information in the MR-DC scenario, such as extended access point granularity (Access Point Name, APN) maximum aggregate bit rate (per APN-aggregate maximum bit rate, APN-AMBR), extended Guaranteed bit rate (guaranteed bit rate, GBR) or extended maximum bit rate (maximum bit rate, MBR), etc., are used to support the use of new radio (NR) access to gNB for data transmission.
  • APN Access Point Name
  • APN-AMBR maximum aggregate bit rate
  • GBR Guaranteed bit rate
  • MBR extended maximum bit rate
  • the theoretical maximum rate can be reached 4T bits per second (bits per second, bps). If the terminal only uses the evolved universal terrestrial radio access network (evolved universal terrestrial radio access network, E-UTRAN) technology to access the eNB, the theoretical maximum rate can only reach 10Gbps.
  • E-UTRAN evolved universal terrestrial radio access network
  • Embodiments of the present application provide a QoS control method, device, and system, which are used to implement QoS control in a DC scenario.
  • a method of quality of service QoS control includes: a packet data gateway receiving indication information and an identifier of a bearer, the indication information indicating a radio access technology RAT used by the bearer; the packet data gateway according to The indication information and the identifier of the bearer obtain the first QoS parameter of the bearer corresponding to the RAT; the packet data gateway sends the first QoS parameter, and the first QoS parameter is used for the bearer in the network corresponding to the RAT Perform QoS control.
  • the packet data gateway can obtain the first QoS parameter of the bearer corresponding to the RAT according to the indication information indicating the RAT used by the bearer and the identifier of the bearer, the first QoS parameter is used for the network corresponding to the RAT
  • the bearer in is subject to QoS control.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the bearer can be adjusted through the core network device, so the appropriate QoS parameters can be assigned to the bearer, so that the bearer can be stably and efficiently transmitted on different access devices To ensure user experience.
  • the packet data gateway obtains the first QoS parameter of the bearer corresponding to the RAT according to the indication information and the bearer identification, including: the packet data gateway according to the indication information and the bearer identification, The first QoS parameter of the bearer corresponding to the RAT is allocated. That is, the packet data gateway may allocate the first QoS parameter of the bearer corresponding to the RAT.
  • the packet data gateway obtains the first QoS parameter of the bearer corresponding to the RAT according to the indication information and the identifier of the bearer, including: the packet data gateway sends the indication to the policy control network element Information and identification of the bearer; the packet data gateway receives the first QoS parameter of the bearer corresponding to the RAT from the policy control network element. That is, the packet data gateway may request the policy control network element for the first QoS parameter of the bearer corresponding to the RAT.
  • the first QoS parameter includes extended access point granularity, maximum aggregation bit rate, APN-AMBR, extended At least one of the guaranteed bit rate GBR or the extended maximum bit rate MBR.
  • the packet data gateway sends the first QoS parameter, and the first QoS parameter is used to perform QoS control on the bearer in the network corresponding to the RAT, including: the first QoS parameter includes the extended APN-AMBR
  • the packet data gateway sends the extended APN-AMBR to the mobile management network element, the extended APN-AMBR is used to determine the extended user equipment maximum aggregate bit rate UE-AMBR, and the extended UE-AMBR is used to QoS control is performed on the bearer in the network corresponding to the NR technology; or, in the case where the first QoS parameter includes the extended GBR or the extended MBR, the packet data gateway uses the extended GBR or the extended MBR Sent to the master access device, the extended GBR or the extended MBR is used to perform QoS control of the bearer in the network corresponding to the NR technology.
  • the master access device can obtain corresponding QoS parameters, and then perform QoS control on the bearer in the network corresponding
  • the first QoS parameter when the indication information is used to indicate that the RAT used by the bearer is the E-UTRAN technology of the evolved universal mobile communication system terrestrial radio access network, the first QoS parameter includes a non-extended APN -At least one of AMBR, non-extended GBR or non-extended MBR.
  • the packet data gateway sends the first QoS parameter, and the first QoS parameter is used to perform QoS control on the bearer in the network corresponding to the RAT, including: the first QoS parameter includes the non-extended APN-
  • the packet data gateway sends the non-extended APN-AMBR to the mobile management network element, the non-extended APN-AMBR is used to determine the non-extended UE-AMBR, and the non-extended UE-AMBR is used to The bearer in the network corresponding to the E-UTRAN technology performs QoS control; or, in the case where the first QoS parameter includes the non-extended GBR or the non-extended MBR, the packet data gateway uses the non-extended GBR or The non-extended MBR is sent to the main access device, and the non-extended GBR or the non-extended MBR is used to perform QoS control on the bearer in the network corresponding to the E-UTRAN technology. Based on this
  • the RAT used by the bearer is: the RAT that the bearer will use or the RAT that the bearer will subsequently use.
  • the bearer can switch the RAT to be used.
  • the master access device can obtain the QoS parameters corresponding to the RAT to be used by the bearer or the RAT to be subsequently used by the bearer.
  • a method of quality of service QoS control includes: a master access device sends indication information and an identifier of a bearer, the indication information is used to indicate a radio access technology RAT used by the bearer; the master access device Receiving a second QoS parameter of the bearer corresponding to the RAT; the master access device performs QoS control on the bearer in the network corresponding to the RAT according to the second QoS parameter.
  • the master access device can receive the second QoS parameter of the bearer corresponding to the RAT used by the bearer, and perform QoS control on the bearer in the network corresponding to the RAT according to the second QoS parameter.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the bearer can be adjusted through the core network device, so the appropriate QoS parameters can be assigned to the bearer, so that the bearer can be stably and efficiently transmitted on different access devices To ensure user experience.
  • the second QoS parameter includes the extended maximum aggregate bit rate of the user equipment UE-AMBR, the extended guarantee At least one of the bit rate GBR or the extended maximum bit rate MBR.
  • the master access device receives the second QoS parameter of the bearer corresponding to the RAT, including: in the case where the second QoS parameter includes the extended UE-AMBR, the master access The device receives the extended UE-AMBR from the mobile management network element, where the extended UE-AMBR is determined according to the extended access point granularity maximum aggregation bit rate APN-AMBR from the policy control network element.
  • the extended UE-AMBR is used to perform QoS control of the bearer in the network corresponding to the NR technology; or, in the case where the second QoS parameter includes the extended GBR or the extended MBR, the master access device receives the policy from Control the extended GBR or the extended MBR of the network element, and the extended GBR or the extended MBR is used to perform QoS control on the bearer in the network corresponding to the NR technology.
  • the second QoS parameter includes a non-extended UE -At least one of AMBR, non-extended GBR or non-extended MBR.
  • the primary access device receives the second QoS parameter of the bearer corresponding to the RAT, including: in the case where the second QoS parameter includes the non-extended UE-AMBR, the primary access device The incoming device receives the non-extended UE-AMBR from the mobility management network element, where the non-extended UE-AMBR is determined according to the non-extended APN-AMBR from the policy control network element, and the non-extended UE -AMBR is used for QoS control of the bearer in the network corresponding to the E-UTRAN technology; or, in the case where the second QoS parameter includes the non-extended GBR or the non-extended MBR, the master access device Receive the non-extended GBR or the non-extended MBR from the policy control network element, and the non-extended GBR or the non-extended MBR is used to perform QoS control on the bearer in the network corresponding to the E-UTRAN technology.
  • the method further includes: the primary access device determines that the bearer on the primary access device or the secondary access device has a QoS modification requirement. That is to say, in the embodiment of the present application, the master access device may send the indication information and the bearer identification when it is determined that the bearer on the master access device or the secondary access device has QoS modification requirements, so as to obtain the The second QoS parameter of the bearer corresponding to the RAT.
  • the primary access device determines that the bearer on the primary access device or the secondary access device has QoS modification requirements, which may include: the primary access device determines that the secondary access device is to be released; or, the primary access device The access device determines that the signal on the secondary access device is weakened to fail to transmit data normally; or, the primary access device determines that the bearer transmitted on the secondary access device needs to be reduced or increased; or, the primary access device determines that it needs Reduce or increase the bandwidth of the bearer transmitted on the secondary access device.
  • QoS modification requirements may include: the primary access device determines that the secondary access device is to be released; or, the primary access device The access device determines that the signal on the secondary access device is weakened to fail to transmit data normally; or, the primary access device determines that the bearer transmitted on the secondary access device needs to be reduced or increased; or, the primary access device determines that it needs Reduce or increase the bandwidth of the bearer transmitted on the secondary access device.
  • a method of quality of service QoS control includes: a session management network element receiving indication information and an identifier of a QoS flow, where the indication information is used to indicate a radio access technology RAT used by the QoS flow; a session The management network element obtains the QoS parameters of the QoS flow corresponding to the RAT according to the indication information and the identifier of the QoS flow; the session management network element sends the QoS parameters, and the QoS parameters are used for the RAT in the network corresponding to the RAT QoS flow performs QoS control.
  • the session management network element can obtain the QoS parameters of the QoS flow corresponding to the RAT according to the indication information for indicating the RAT used by the QoS flow and the identification of the QoS flow, the QoS parameter is used in QoS flow for QoS control.
  • the QoS parameters of the QoS flow can be adjusted through the core network device, and then the QoS control can be realized in the DC scenario. Therefore, appropriate QoS parameters can be assigned to the QoS flow, so that the QoS flow can be stably and efficiently transmitted on different access devices, thereby ensuring the user experience.
  • the session management network element obtains the QoS parameters of the QoS flow corresponding to the RAT according to the indication information and the identifier of the QoS flow, including: the session management network element according to the indication information and the QoS Flow identification, assign the QoS parameters of the QoS flow corresponding to the RAT. That is, the QoS parameters of the QoS flow corresponding to the RAT may be allocated by the session management network element.
  • the session management network element obtains the QoS parameters of the QoS flow corresponding to the RAT according to the indication information and the identifier of the QoS flow, including: the session management network element sends the indication to the policy control network element Information and identification of the QoS flow; the session management network element receives the QoS parameters of the QoS flow corresponding to the RAT from the policy control network element. That is, the session management network element may request the QoS parameter of the QoS flow corresponding to the RAT from the policy control network element.
  • the QoS parameter includes the maximum aggregated bit rate of the first session corresponding to the NR technology session-AMBR , At least one of the first guaranteed bit rate GBR or the first maximum bit rate MBR.
  • the QoS parameter includes the second session corresponding to the E-UTRAN technology -At least one of AMBR, second GBR or second MBR.
  • the second session-AMBR is derived from the first session-AMBR mapping; or, the second GBR is derived from the first GBR mapping; or, the second MBR is derived from Obtained by the first MBR mapping.
  • the RAT used by the QoS flow is: the RAT to be used by the QoS flow or the RAT to be subsequently used by the QoS flow.
  • the QoS flow can switch the used RAT.
  • the master access device can obtain the QoS parameters corresponding to the RAT to be used by the QoS flow or the RAT to be used by the QoS flow subsequently.
  • the QoS flow can be transmitted stably and efficiently on different access devices.
  • a method of quality of service QoS control includes: a master access device sending indication information and an identifier of a QoS flow, where the indication information is used to indicate a radio access technology RAT used by the QoS flow;
  • the access device receives the QoS parameter of the QoS flow corresponding to the RAT;
  • the master access device performs QoS control on the QoS flow in the network corresponding to the RAT according to the QoS parameter.
  • the master access device can receive the QoS parameters of the QoS flow corresponding to the RAT, and perform QoS control on the QoS flows in the network corresponding to the RAT according to the QoS parameters.
  • the QoS parameters of the QoS flow can be adjusted through the core network device, and then the QoS control can be realized in the DC scenario. Therefore, appropriate QoS parameters can be assigned to the QoS flow, so that the QoS flow can be stably and efficiently transmitted on different access devices, thereby ensuring the user experience.
  • the QoS parameter includes the maximum aggregated bit rate of the first session corresponding to the NR technology session-AMBR , At least one of the first guaranteed bit rate GBR or the first maximum bit rate MBR.
  • the master access device performs QoS control on the QoS flow in the network corresponding to the RAT according to the QoS parameter, including: when the QoS parameter includes the first session-AMBR, the master access device The device determines the maximum aggregate bit rate of the first user equipment UE-AMBR according to the first session-AMBR; the master access device performs QoS control on the QoS flow in the network corresponding to the NR technology according to the first UE-AMBR .
  • the QoS parameter includes At least one of the second session-AMBR, the second GBR, or the second MBR corresponding to the technology.
  • the master access device performs QoS control on the QoS flow in the network corresponding to the RAT according to the QoS parameter, including: in the case where the QoS parameter includes the second session-AMBR, the master access device The second session-AMBR determines the second UE-AMBR; the master access device performs QoS control on the QoS flow in the network corresponding to the E-UTRAN technology according to the second UE-AMBR.
  • the method before the primary access device sends the indication information and the identification of the QoS flow, the method further includes: the primary access device determines that the QoS flow on the primary access device or the secondary access device has a QoS modification demand. That is to say, in the embodiment of the present application, the primary access device may send the indication information and the bearer identification when it is determined that the QoS flow on the primary access device or the secondary access device requires QoS modification, so as to obtain The second QoS parameter of the QoS flow corresponding to the RAT.
  • the primary access device determines that the QoS flow on the primary access device or the secondary access device has QoS modification requirements, including: the primary access device determines that the secondary access device is to be released; or, the primary access device The device determines that the signal on the secondary access device is weakened to fail to transmit data normally; or, the primary access device determines that the QoS flow transmitted on the secondary access device needs to be reduced or increased; or, the primary access device determines that it needs to be reduced Or increase the bandwidth of the QoS flow transmitted on the secondary access device.
  • a method of quality of service QoS control includes:
  • the packet data gateway obtains the indication information and the identifier of the bearer, and the indication information is used to indicate that the network system supports dual connection; the packet data gateway obtains the correspondence with the first radio access technology RAT on the dual connection according to the indication information and the identifier of the bearer The first QoS parameter of the bearer and the second QoS parameter of the bearer corresponding to the second RAT on the dual connection; the packet data gateway sends the first QoS parameter of the bearer corresponding to the first RAT and the A second QoS parameter of the bearer corresponding to the second RAT, wherein the first QoS parameter is used to perform QoS control of the bearer in the network corresponding to the first RAT; the second QoS parameter is used to perform the second RAT The bearer in the corresponding network performs QoS control.
  • the packet data gateway sends the first QoS parameter of the bearer corresponding to the first RAT and the second QoS parameter of the bearer corresponding to the second RAT, where the first QoS parameter is used for QoS control is performed on the bearer in the network corresponding to the first RAT; the second QoS parameter is used to perform QoS control on the bearer in the network corresponding to the second RAT.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the bearer can be adjusted through the core network device, so the appropriate QoS parameters can be assigned to the bearer, thereby enabling the stable and efficient transmission of the bearer on different access devices To ensure user experience.
  • the packet data gateway obtains the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the second RAT on the dual connection according to the indication information and the identifier of the bearer
  • the second QoS parameter of the bearer includes: the packet data gateway allocates the first QoS parameter of the bearer corresponding to the first RAT on the dual connection according to the indication information, the identifier of the bearer and the subscription information of the terminal, and The second QoS parameter of the bearer corresponding to the second RAT on the dual connection. That is, the packet data gateway may allocate the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the second QoS parameter of the bearer corresponding to the second RAT on the dual connection.
  • the packet data gateway obtains the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the second RAT on the dual connection according to the indication information and the identifier of the bearer
  • the second QoS parameter of the bearer includes: the packet data gateway sends the indication information and the identifier of the bearer to the policy control network element; the packet data gateway receives the policy control network element corresponding to the first RAT on the dual connection.
  • the first QoS parameter of the bearer Including one or more of the extended access point granularity maximum aggregate bit rate APN-AMBR, the extended guaranteed bit rate GBR or the extended maximum bit rate MBR; the second QoS parameter of the bearer includes non-extended APN-AMBR, One or more of non-extended GBR or non-extended MBR.
  • the packet data gateway sends the first QoS parameter of the bearer corresponding to the first RAT and the second QoS parameter of the bearer corresponding to the second RAT, where the first QoS parameter is used to QoS control is performed on the bearer in the network corresponding to the first RAT; the second QoS parameter is used to perform QoS control on the bearer in the network corresponding to the second RAT, including: the first QoS parameter in the bearer includes the Extended APN-AMBR, in the case where the second QoS parameter of the bearer includes the non-extended APN-AMBR, the packet data gateway sends the extended APN-AMBR and the non-extended APN-AMBR to the mobile management network element, the The extended APN-AMBR is used to determine the extended user equipment maximum aggregate bit rate UE-AMBR, and the extended UE-AMBR is used to perform QoS control on the bearer in the network corresponding to the NR technology; the non-extended APN-AMBR Used to determine
  • a method of quality of service QoS control includes: the master access device sends indication information, which is used to indicate that the network system supports dual connectivity; the master access device receives The third QoS parameter of the bearer corresponding to a radio access technology RAT and the fourth QoS parameter of the bearer corresponding to the second RAT on the dual connection; the master access device determines that the bearer corresponds to the first RAT In the case of network transmission, the master access device performs QoS control on the bearer in the network corresponding to the first RAT according to the third QoS parameter; or, when the master access device determines that the bearer corresponds to the second RAT In the case of network transmission, the master access device performs QoS control on the bearer in the network corresponding to the second RAT according to the fourth QoS parameter.
  • the master access device can obtain the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection from the session management network element and the second QoS of the QoS flow corresponding to the second RAT on the dual connection Parameters, and when it is determined that the bearer is transmitted by the network corresponding to the first RAT, perform QoS control on the QoS flow in the network corresponding to the first RAT according to the first QoS parameters; or, when determining that the bearer is the network corresponding to the second RAT In the case of transmission, QoS control is performed on the QoS flow in the network corresponding to the second RAT according to the second QoS parameter.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the bearer can be adjusted through the core network device, so the appropriate QoS parameters can be assigned to the bearer, so that the bearer can be stably and efficiently transmitted on different access devices To ensure user experience.
  • the third QoS parameter of the bearer Including one or more of the extended user equipment maximum aggregate bit rate UE-AMBR, the extended guaranteed bit rate GBR or the extended maximum bit rate MBR; the fourth QoS parameter of the bearer includes non-extended UE-AMBR, non-extended One or more of the GBR or non-extended MBR.
  • the master access device receives the third QoS parameter of the bearer corresponding to the first RAT on the dual connection and the fourth QoS parameter of the bearer corresponding to the second RAT on the dual connection, Including: when the third QoS parameter of the bearer includes the extended UE-AMBR, and the fourth QoS parameter of the bearer includes the non-extended UE-AMBR, the master access device receives the The extended UE-AMBR and the non-extended UE-AMBR; wherein, the extended UE-AMBR is determined according to the extended access point granularity maximum aggregation bit rate APN-AMBR from the policy control network element, the non-extended The UE-AMBR is determined according to the non-extended APN-AMBR from the policy control network element; or, the third QoS parameter in the bearer includes the extended GBR, and the fourth QoS parameter in the bearer includes the non-extended In the case of GBR, the master access device receives the extended GBR and the
  • a method of quality of service QoS control includes: a session management network element acquiring indication information and a QoS flow identifier, the indication information is used to indicate that the network system supports dual connectivity; the session management network element is based on the The indication information and the identifier of the QoS flow, to obtain the first QoS parameter of the QoS flow corresponding to the first radio access technology RAT on the dual connection, and the second of the QoS flow corresponding to the second RAT on the dual connection QoS parameters; the session management network element sends the first QoS parameters of the QoS flow corresponding to the first RAT and the second QoS parameters of the QoS flow corresponding to the second RAT, where the first QoS parameters are used to QoS control is performed on the QoS flow in the network corresponding to the first RAT; the second QoS parameter is used to perform QoS control on the QoS flow in the network corresponding to the second RAT.
  • the session management network element can send the first QoS parameter of the QoS flow corresponding to the first RAT and the second QoS parameter of the QoS flow corresponding to the second RAT, where the first QoS The parameter is used to perform QoS control on the QoS flow in the network corresponding to the first RAT; the second QoS parameter is used to perform QoS control on the QoS flow in the network corresponding to the second RAT.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the QoS flow can be adjusted through the core network device. Therefore, appropriate QoS parameters can be assigned to the QoS flow, thereby making the QoS flow stable on different access devices. Efficient transmission can ensure user experience.
  • the session management network element obtains the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection and the dual connection on the basis of the indication information and the identifier of the QoS flow
  • the second QoS parameter of the QoS flow corresponding to the second RAT includes: the session management network element allocates the corresponding to the first RAT on the dual connection according to the indication information, the identifier of the QoS flow and the subscription information of the terminal.
  • the session management network element obtains the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection according to the indication information and the identifier of the QoS flow, and the first QoS parameter on the dual connection
  • the second QoS parameter of the QoS flow corresponding to the second RAT includes: the session management network element sends the indication information and the identifier of the QoS flow to the policy control network element; the session management network element receives from the policy control network element and the dual The first QoS parameter of the QoS flow corresponding to the first RAT on the connection, and the second QoS parameter of the QoS flow corresponding to the second RAT on the dual connection.
  • the session management network element may request the policy control network element for the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection and the second QoS of the QoS flow corresponding to the second RAT on the dual connection parameter.
  • the first QoS of the QoS flow includes one or more of the first session maximum aggregate bit rate session-AMBR, the first guaranteed bit rate GBR or the first maximum bit rate MBR corresponding to the NR technology;
  • the second QoS parameter of the QoS flow includes One or more of the second session-AMBR, the second GBR, or the second MBR corresponding to the E-UTRAN technology.
  • a method of quality of service QoS control includes: the master access device sends indication information, which is used to indicate that the network system supports dual connectivity; the master access device receives A first QoS parameter of the QoS flow corresponding to a radio access technology RAT and a second QoS parameter of the QoS flow corresponding to the second RAT on the dual connection; the master access device determines that the QoS flow is determined by the first In the case of network transmission corresponding to the RAT, the master access device performs QoS control on the QoS flow in the network corresponding to the first RAT according to the first QoS parameter; or, the master access device determines that the QoS flow is determined by the In the case of network transmission corresponding to the second RAT, the master access device performs QoS control on the QoS flow in the network corresponding to the second RAT according to the second QoS parameter.
  • the primary access device can receive the first QoS parameters of the QoS flow corresponding to the first RAT on the dual connection and the second QoS parameters of the QoS flow corresponding to the second RAT on the dual connection, and determine the bearer In the case of transmission by the network corresponding to the first RAT, perform QoS control on the QoS flow in the network corresponding to the first RAT according to the first QoS parameters; or, in the case of determining that the bearer is transmitted by the network corresponding to the second RAT, according to The second QoS parameter performs QoS control on the QoS flow in the network corresponding to the second RAT.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the QoS flow can be adjusted through the core network device. Therefore, appropriate QoS parameters can be assigned to the QoS flow, thereby making the QoS flow stable on different access devices. Efficient transmission can ensure user experience.
  • the first QoS of the QoS flow includes one or more of the first session maximum aggregate bit rate session-AMBR, the first guaranteed bit rate GBR or the first maximum bit rate MBR corresponding to the NR technology; the second QoS parameter of the QoS flow includes the E- One or more of the second session-AMBR, the second GBR, or the second MBR corresponding to the UTRAN technology.
  • the master access device performs QoS control on the QoS flow in the network corresponding to the first RAT according to the first QoS parameter, including: when the first QoS parameter includes the first session-AMBR, The master access device determines the maximum aggregate bit rate UE-AMBR of the first user equipment according to the first session-AMBR; the master access device switches to the network in the network corresponding to the NR technology according to the first UE-AMBR QoS flow performs QoS control.
  • the master access device performs QoS control on the QoS flow in the network corresponding to the second RAT according to the second QoS parameter, including when the second QoS parameter includes the second session-AMBR
  • the master access device determines the second UE-AMBR according to the second session-AMBR; the master access device switches to the QoS in the network corresponding to the E-UTRAN technology according to the second UE-AMBR QoS control of the flow.
  • a packet data gateway has the function of implementing the method described in the first aspect or the fifth aspect. This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a packet data gateway including: a processor and a memory; the memory is used to store computer-executed instructions, and when the packet data gateway is running, the processor executes the computer-executed instructions stored in the memory, to The method for causing the packet data gateway to perform the QoS control as described in any one of the above first or fifth aspects.
  • a packet data gateway including: a processor; the processor is configured to couple with a memory and read an instruction in the memory, and then execute the first aspect or the fifth aspect according to the instruction according to the instruction The QoS control method described in any one of the above.
  • a computer-readable storage medium having instructions stored therein, which when run on a computer, enables the computer to execute any one of the first aspect or the fifth aspect The QoS control method.
  • a computer program product containing instructions that, when run on a computer, enable the computer to execute the method for QoS control according to any one of the first aspect or the fifth aspect.
  • an apparatus for example, the apparatus may be a chip system
  • the apparatus includes a processor for supporting a packet data gateway to implement the functions mentioned in the first aspect or the fifth aspect, for example, according to The indication information and the identifier of the bearer acquire the first QoS parameter of the bearer corresponding to the RAT.
  • the device further includes a memory for storing necessary program instructions and data of the packet data gateway.
  • the device When the device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • the technical effects brought by any one of the design methods in the ninth aspect to the fourteenth aspect can be referred to the technical effects brought by the different design methods in the first aspect or the fifth aspect, which will not be repeated here.
  • a session management network element having the function of implementing the method described in the third aspect or the seventh aspect.
  • This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a session management network element including: a processor and a memory; the memory is used to store computer execution instructions; when the session management network element is running, the processor executes the computer execution stored in the memory Instructions to cause the session management network element to perform the QoS control method according to any one of the third aspect or the seventh aspect.
  • a session management network element including: a processor; the processor is configured to couple with a memory and read an instruction in the memory, and then perform the third aspect or the seventh as described above according to the instruction The method of QoS control of any one of the aspects.
  • An eighteenth aspect provides a computer-readable storage medium having instructions stored therein, which when run on a computer, enables the computer to perform any one of the third aspect or the seventh aspect The QoS control method.
  • a computer program product containing instructions, which when run on a computer, enables the computer to perform the method of QoS control according to any one of the third or seventh aspects.
  • an apparatus for example, the apparatus may be a chip system
  • the apparatus includes a processor for supporting a session management network element to implement the functions mentioned in the third aspect or the seventh aspect, for example
  • the QoS parameters of the QoS flow corresponding to the RAT are obtained.
  • the device further includes a memory, which is used to store necessary program instructions and data of the session management network element.
  • the device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • a session management network element having a function of implementing the method described in the second aspect or the fourth aspect or the sixth aspect or the eighth aspect.
  • This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a session management network element including: a processor and a memory; the memory is used to store computer execution instructions, and when the session management network element is running, the processor executes the computer stored in the memory Executing an instruction, so that the session management network element executes the QoS control method according to any one of the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
  • a session management network element including: a processor; the processor is configured to couple with a memory and read an instruction in the memory, and then execute the second aspect or the first as described above according to the instruction
  • the QoS control method according to any one of the fourth aspect or the sixth aspect or the eighth aspect.
  • a computer-readable storage medium in which instructions are stored in a computer-readable storage medium, which when executed on a computer, enables the computer to execute the second aspect or the fourth aspect or the sixth aspect
  • the method of QoS control according to any one of the aspects or the eighth aspect.
  • a twenty-fifth aspect provides a computer program product containing instructions that when run on a computer, allows the computer to perform any of the above second or fourth aspects or sixth or eighth aspects.
  • an apparatus for example, the apparatus may be a chip system
  • the apparatus includes a processor for supporting a session management network element to implement the foregoing second aspect or fourth aspect or sixth aspect or first
  • the functions involved in the eight aspects for example, perform QoS control on the bearer in the network corresponding to the RAT according to the second QoS parameter.
  • the device further includes a memory, which is used to store necessary program instructions and data of the session management network element.
  • the device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • a communication system includes a main access device, a mobile management network element, and a packet data gateway; the main access device is used to send indication information and bearers to the mobile management network element Identification; the indication information is used to indicate the radio access technology RAT used by the bearer; the mobile management network element is used to receive the indication information and the bearer identification from the master access device, and the indication information and the The identifier of the bearer is sent to the packet data gateway; the packet data gateway is used to receive the indication information from the mobile management network element and the identifier of the bearer, and obtain the correspondence with the RAT according to the indication information and the identifier of the bearer After the first QoS parameter of the bearer, the first QoS parameter is sent to the mobile management network element; the mobile management network element is used to receive the first QoS parameter from the packet data gateway and access to the master The device sends a second QoS parameter; wherein, the second QoS parameter is the same as the first Qo
  • a communication system in a twenty-eighth aspect, includes a main access device and a session management network element; the main access device is used to send indication information and an identifier of a QoS flow to the session management network element;
  • the indication information is used to indicate the radio access technology RAT used by the QoS flow;
  • the session management network element is used to receive the indication information and the identification of the QoS flow from the master access device, and according to the indication information and the QoS Flow identification, after obtaining the QoS parameters of the QoS flow corresponding to the RAT, the QoS parameters are sent to the master access device;
  • the master access device is used to receive the QoS parameters from the session management network element,
  • the QoS parameter is used to perform QoS control on the QoS flow in the network corresponding to the RAT.
  • the technical effects brought by the 28th aspect can be referred to the technical effects brought by the different design methods in the third aspect or the fourth aspect, which will not be repeated here.
  • a communication system in a twenty-ninth aspect, includes a main access device, a mobile management network element, and a packet data gateway; the main access device is used to send indication information to the mobile management network element, the indication The information is used to indicate that the network system supports dual connectivity; the mobile management network element is used to receive the indication information from the main access device and send the indication information and the bearer identification to the packet data gateway; the packet data gateway is used to receive the data from the mobile Manage the indication information and bearer identification of the network element, and according to the indication information and bearer identification, obtain the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the first QoS parameter of the bearer corresponding to the second RAT on the dual connection After the second QoS parameter, the first QoS parameter and the second QoS parameter are sent to the mobile management network element; the mobile management network element is used to receive the first QoS parameter and the second QoS parameter from the packet data gateway and access to the master The device sends the
  • the third QoS parameter is the same as the first QoS parameter, or the third QoS parameter is obtained according to the first QoS parameter.
  • the fourth QoS parameter is the same as the second QoS parameter, or the fourth QoS parameter is obtained according to the second QoS parameter.
  • the main access device is used to receive the third QoS parameter and the fourth QoS parameter from the mobility management network element, and in the case of determining that the bearer is transmitted by the network corresponding to the first RAT, correspond to the first RAT according to the third QoS parameter
  • the bearer in the network performs QoS control; or, in the case where the bearer is determined to be transmitted by the network corresponding to the second RAT, the QoS control is performed on the bearer in the network corresponding to the second RAT according to the fourth QoS parameter.
  • a communication system includes a main access device and a session management network element; the main access device is used to send indication information to the session management network element, and the indication information is used to indicate The network system supports dual connection; the session management network element is used to receive the indication information from the main access device, and obtain the first QoS parameters of the QoS flow corresponding to the first RAT on the dual connection according to the indication information and the identifier of the QoS flow And the second QoS parameter of the QoS flow corresponding to the second RAT on the dual connection, the first QoS parameter and the second QoS parameter are sent to the master access device; the master access device is used to receive the session management network element The first QoS parameter and the second QoS parameter, and when it is determined that the QoS flow is transmitted by the network corresponding to the first RAT, perform QoS control on the QoS flow in the network corresponding to the first RAT according to the first QoS parameter; or, When
  • the technical effects brought by the thirtieth aspect can refer to the technical effects brought by the different design methods in the seventh aspect or the eighth aspect, which will not be repeated here.
  • Figure 1 is a schematic diagram 1 of a deployment method of a 5G non-independent networking architecture provided by the prior art
  • FIG. 2 is a schematic diagram 2 of a deployment method of a 5G non-independent networking architecture provided by the prior art
  • FIG. 3 is a schematic diagram 3 of a deployment method of a 5G non-independent networking architecture provided by the prior art
  • FIG. 4 is a schematic diagram of an MR-DC architecture corresponding to the 5G non-independent networking architecture in FIG. 1 provided by an embodiment of this application;
  • FIG. 5 is a schematic diagram of an MR-DC architecture corresponding to the 5G non-independent networking architecture in FIG. 2 provided by an embodiment of this application;
  • FIG. 6 is a schematic diagram of an MR-DC architecture corresponding to the 5G non-independent networking architecture in FIG. 3 provided by an embodiment of this application;
  • FIG. 7 is a first schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the application of the communication system shown in FIG. 7 in EPC;
  • FIG. 9 is a second schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the application of the communication system shown in FIG. 9 in NGC;
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a first schematic flowchart of a QoS control method provided by an embodiment of this application.
  • FIG. 13 is a second schematic flowchart of a QoS control method provided by an embodiment of this application.
  • FIG. 14 is a schematic flowchart 3 of a method for QoS control provided by an embodiment of the present application.
  • 15 is a fourth schematic flowchart of a QoS control method provided by an embodiment of this application.
  • 16 is a schematic structural diagram of a packet data gateway provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a session management network element provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a main access device provided by an embodiment of the present application.
  • GBR and non-GBR are both GBR and non-GBR (non-GBR):
  • GBR refers to the minimum bit rate that the network system guarantees to carry. Even when the network resources are tight, the corresponding bit rate can be maintained.
  • the MBR parameter defines the upper limit of the rate that GBR can be carried under sufficient resources. Among them, the value of MBR may be greater than or equal to the value of GBR.
  • non-GBR refers to the need for services (or bearers) to withstand a reduced rate when the network is congested. Since the non-GBR bearer does not need to occupy fixed network resources, it can be established for a long time. The GBR bearer is generally only established when needed.
  • APN-MMBR and terminal equipment (user equipment, UE) -AMBR are identical to APN-MMBR and terminal equipment (user equipment, UE) -AMBR:
  • APN-AMBR refers to the upper limit of the sum of the bit rates of all non-GBR bearers on an APN connection.
  • UE-AMBR refers to the upper limit of the sum of the bit rates of all the APN connections and all non-GBR bearers of a certain UE.
  • APN1-AMBR is the upper limit of the sum of the bit rates of all non-GBR bearers connected by APN1
  • APN2-AMBR is the upper limit of the total bit rates of all non-GBR bearers connected by APN2. If all APN connections of a certain UE include the above-mentioned APN1 connection and APN2 connection, then UE-AMBR may be equal to the sum of APN2-AMBR and APN2-AMBR.
  • option3 includes three types of architecture, which are divided into option 3, option 3a, and option 3x, as shown in (a), (b), and (c) in FIG. 1, respectively.
  • the three architectures of option 3 have in common that the primary access device is an eNB and the secondary access device is an NR node; the terminal can move to the core network in an evolved packet core (EPC)
  • EPC evolved packet core
  • the device sends EPC non-access stratum (NAS) signaling; the terminal can communicate with the eNB through a long-term evolution (LTE) -Uu interface, and the eNB can communicate through the S1-mobility management entity , MME) interface to access EPC.
  • LTE long-term evolution
  • MME S1-mobility management entity
  • the terminal can communicate with the NR node, and the NR node can communicate with the eNB.
  • the eNB can also access the EPC through the S1-U interface; in Figure 1 (b), both the eNB and the NR node can access the EPC through the S1-U interface;
  • the NR node accesses the EPC through the S1-U interface.
  • the EPC here is a fourth-generation (4th generation, 4G) core network, where the S1-U interface is a user plane interface, and the S-MME interface is a control plane interface.
  • option4 includes two types of architectures, which are divided into option 4 and option 4a, as shown in (a) and (b) in FIG. 2, respectively.
  • the two architectures of option 4 have in common that the primary access device is an NR node and the secondary access device is an evolved eNB; the terminal can interface with the next-generation core through the next-generation (NG) 1 interface
  • the core network equipment in the NG core (NGC) communicates; the terminal can communicate with the evolved eNB and the NR node; the NR node can access the NGC through the NG2 interface and the NG3 interface; the NR node can communicate with the evolved eNB.
  • the evolved eNB can also access NGC through the NG3 interface.
  • the NGC here is a 5G core network
  • the NG2 interface here is a control plane interface
  • the NG3 interface is a user plane interface.
  • option7 includes two types of architecture, which are divided into option 7 and option 7a, as shown in (a) and (b) in FIG. 3, respectively.
  • the two architectures of option 7 have in common that the primary access device is an evolved eNB and the secondary access device is an NR node; the terminal can communicate with the core network device in NGC through the NG1 interface; the terminal can communicate with the evolved eNB Communicate with NR node; evolved eNB can access NGC through NG2 interface and NG3 interface; NR node can communicate with evolved eNB.
  • the NR node can also access NGC communication through the NG3 interface.
  • the NGC here is a 5G core network
  • the NG2 interface here is a control plane interface
  • the NG3 interface is a user plane interface.
  • the main access device or the auxiliary access device and the core network device are connected through different interfaces.
  • FIG. 4 is an MR-DC architecture corresponding to the above option 3 provided by an embodiment of the present application.
  • gNB in FIG. 4 may correspond to the NR node in option 3 above.
  • the eNB in E-UTRAN may have an S1 interface with the core network device in EPC; the X2 interface between eNB and gNB; the X2 interface between eNB and eNB; the X2 between gNB and gNB -U interface.
  • the X2 interface here may include an X2-C interface and an X2-U interface, where the X2-C interface is a control plane interface and the X2-U interface is a user plane interface.
  • the S1 interface here includes an S1-MME interface and an S1-U interface, where the S1-MME interface is a control plane interface and the S1-U interface is a user plane interface.
  • the S1-MME interface is a control plane interface
  • the S1-U interface is a user plane interface.
  • FIG. 5 is an MR-DC architecture corresponding to the above option 4 provided by an embodiment of the present application.
  • the gNB in FIG. 5 may correspond to the NR node in option 4 above.
  • gNB may have an NG2 interface or an NG3 interface with the core network equipment in NGC; an Xn interface exists between the evolved eNB and gNB; an Xn-U interface exists between the evolved eNB and the evolved eNB; gNB There is an Xn interface with gNB.
  • the Xn interface here may include an Xn-U interface and an Xn-C interface, where the Xn-C interface is a control plane interface and the Xn-U interface is a user plane interface.
  • gNB is the primary access device in the 5G access network
  • the evolved eNB is the secondary access device in the 5G access network.
  • FIG. 6 is an MR-DC architecture corresponding to the above option 7 provided by an embodiment of the present application.
  • the evolved eNB may have an NG2 or NG3 interface with the core network equipment in NGC; the Xn interface exists between the evolved eNB and gNB; the Xn interface exists between the evolved eNB and the evolved eNB; There is an Xn-U interface between gNB.
  • the Xn interface here may include an Xn-U interface and an Xn-C interface, where the Xn-C interface is a control plane interface and the Xn-U interface is a user plane interface.
  • the evolved eNB is the primary access device in the 5G access network
  • the gNB is the secondary access device in the 5G access network.
  • At least one of the following or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • at least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • the words “first” and “second” are used to distinguish the same or similar items that have substantially the same functions and functions. Those skilled in the art may understand that the words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean different.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • the embodiments of the present application provide the following QoS control methods, devices, and systems, which are used to implement QoS control in a DC scenario.
  • the communication system 70 includes a main access device 701, a mobility management network element 702, and a packet data gateway 703.
  • the mobile management network element 702 and the packet data gateway 703 can communicate directly or communicate through forwarding of other devices, which is not specifically limited in the embodiments of the present application.
  • the main access device 701 is used to send the indication information and the bearer identification to the mobility management network element 702.
  • the indication information is used to indicate the radio access technology (RAT) used by the bearer.
  • the mobility management network element 702 is configured to receive the indication information and bearer identification from the main access device 701, and send the indication information and bearer identification to the packet data gateway 703.
  • the packet data gateway 703 is configured to receive the indication information and the bearer identification from the mobility management network element 702, and obtain the first QoS parameter of the bearer corresponding to the RAT according to the indication information and the bearer identification.
  • the packet data gateway 703 is also used to send the first QoS parameter to the mobility management network element 702.
  • the mobility management network element 702 is configured to receive the first QoS parameter from the packet data gateway 703 and send the second QoS parameter to the master access device 701.
  • the second QoS parameter is the same as the first QoS parameter, or the second QoS parameter is obtained according to the first QoS parameter.
  • the master access device 701 is configured to receive a second QoS parameter from the mobility management network element 702, where the second QoS parameter is used to perform QoS control on the bearer in the network corresponding to the RAT.
  • the packet data gateway can obtain the first QoS parameter of the bearer corresponding to the RAT according to the indication information for indicating the RAT used by the bearer and the identifier of the bearer, the first QoS parameter may be based on The second QoS parameter obtained by the first QoS parameter is used to perform QoS control on the bearer in the network corresponding to the RAT.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the bearer can be adjusted through the core network device, so the appropriate QoS parameters can be assigned to the bearer, so that the bearer can be stably and efficiently transmitted on different access devices To ensure user experience.
  • the main access device 701 is used to send indication information to the mobile management network element 702, and the indication information is used to indicate the network system Support dual connection.
  • the mobility management network element 702 is used to receive the indication information from the main access device 701, and send the indication information and the bearer identification to the packet data gateway 703.
  • the packet data gateway 703 is configured to receive indication information and bearer identification from the mobile management network element 702, and according to the indication information and bearer identification, acquire the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the After the second QoS parameter of the bearer corresponding to the second RAT on the dual connection, the first QoS parameter and the second QoS parameter are sent to the mobility management network element 702.
  • the mobility management network element 702 is configured to receive the first QoS parameter and the second QoS parameter from the packet data gateway 703, and send the third QoS parameter and the fourth QoS parameter to the master access device 701.
  • the third QoS parameter is the same as the first QoS parameter, or the third QoS parameter is obtained according to the first QoS parameter.
  • the fourth QoS parameter is the same as the second QoS parameter, or the fourth QoS parameter is obtained according to the second QoS parameter.
  • the main access device 701 is configured to receive the third QoS parameter and the fourth QoS parameter from the mobility management network element 702, and when it is determined that the bearer is transmitted by the network corresponding to the first RAT, the first The bearer in the network corresponding to the RAT performs QoS control; or, when it is determined that the bearer is transmitted by the network corresponding to the second RAT, the QoS control is performed on the bearer in the network corresponding to the second RAT according to the fourth QoS parameter.
  • the dual connection in the embodiment of the present application may be a connection corresponding to two RATs or a connection corresponding to more than two RAT technologies, which will be described here in a unified manner and will not be described in detail below.
  • the master access device can obtain the third QoS parameter of the bearer corresponding to the first RAT on the dual connection from the packet data gateway and the bearer corresponding to the second RAT on the dual connection A fourth QoS parameter, and when it is determined that the bearer is transmitted by the network corresponding to the first RAT, perform QoS control on the bearer in the network corresponding to the first RAT according to the third QoS parameter; or, when it is determined that the bearer corresponds to the second RAT In the case of a network transmission of QoS, perform QoS control on the bearer in the network corresponding to the second RAT according to the fourth QoS parameter.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the bearer can be adjusted through the core network device, so the appropriate QoS parameters can be assigned to the bearer, so that the bearer can be stably and efficiently transmitted on different access devices To ensure user experience.
  • the communication system shown in FIG. 7 may be applied to the option 3 architecture shown in FIG. 1, and at this time, as shown in FIG. 8, the network element or entity corresponding to the packet data gateway 701 may be packet data in the EPC A network (packet data, network, PDN) gateway (PDN gateway, PGW), the network element or entity corresponding to the mobile management network element 702 may be the MME in the EPC, and the network element or entity corresponding to the main access device may be option 3 ENB in the architecture.
  • the EPC may also include policy and charging rule (PCRF) network elements, serving gateway (SGW), and home subscriber server (HSS) ) Etc., for details, please refer to the existing EPC architecture, which will not be repeated here.
  • PCRF policy and charging rule
  • SGW serving gateway
  • HSS home subscriber server
  • the eNB communicates with the MME through the S1-MME interface
  • the eNB communicates with the SGW through the S1-U interface
  • the MME communicates with the SGW through the S11 interface
  • the SGW communicates with the PGW through the S5 interface or S8 interface
  • the MME through the S6a interface Communicate with HSS
  • PGW communicates with PCRF network element through Gx interface.
  • the communication system 90 includes a main access device 901 and a session management network element 902.
  • the session management network element 902 and the main access device 901 can communicate directly or communicate through forwarding of other devices, which is not specifically limited in the embodiment of the present application.
  • the main access device 901 is used to send the indication information and the identifier of the QoS flow to the session management network element 902.
  • the indication information is used to indicate the RAT used by the QoS flow.
  • the session management network element 902 is used to receive the indication information and the QoS flow identification from the master access device 901, and obtain the QoS parameters of the QoS flow corresponding to the RAT according to the indication information and the QoS flow identification, and then send the QoS parameters To the main access device 901.
  • the master access device 901 is configured to receive QoS parameters from the session management network element 902, where the QoS parameters are used to perform QoS control on the QoS flow in the network corresponding to the RAT.
  • the session management network element can obtain the QoS parameters of the QoS flow corresponding to the RAT according to the indication information for indicating the RAT used by the QoS flow and the identification of the QoS flow, the QoS parameter is used for Perform QoS control on the QoS flow in the network corresponding to the RAT.
  • the QoS parameters of the QoS flow can be adjusted through the core network device, and then the QoS control can be realized in the DC scenario. Therefore, appropriate QoS parameters can be assigned to the QoS flow, so that the QoS flow can be stably and efficiently transmitted on different access devices, thereby ensuring the user experience.
  • the main access device 901 is configured to send the indication information to the session management network element 902.
  • the instruction information is used to indicate that the network system supports dual connection.
  • the session management network element 902 is used to receive the indication information from the master access device 901, and obtain the first QoS parameters of the QoS flow corresponding to the first RAT on the dual connection and the dual After connecting the second QoS parameter of the QoS flow corresponding to the second RAT, the first QoS parameter and the second QoS parameter are sent to the master access device 901.
  • the master access device 701 is configured to receive the first QoS parameter and the second QoS parameter from the session management network element 902, and when it is determined that the QoS flow is transmitted by the network corresponding to the first RAT, according to the first QoS parameter QoS control of the QoS flow in the network corresponding to a RAT; or, when it is determined that the QoS flow is transmitted by the network corresponding to the second RAT, QoS control is performed on the QoS flow in the network corresponding to the second RAT according to the second QoS parameter .
  • the master access device can receive the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection and the second QoS of the QoS flow corresponding to the second RAT on the dual connection Parameters, and when it is determined that the bearer is transmitted by the network corresponding to the first RAT, perform QoS control on the QoS flow in the network corresponding to the first RAT according to the first QoS parameters; or, when determining that the bearer is the network corresponding to the second RAT In the case of transmission, QoS control is performed on the QoS flow in the network corresponding to the second RAT according to the second QoS parameter.
  • QoS control can be implemented in the DC scenario, and the QoS parameters of the QoS flow can be adjusted through the core network device. Therefore, appropriate QoS parameters can be assigned to the QoS flow, thereby making the QoS flow stable on different access devices. Efficient transmission can ensure user experience.
  • the communication system shown in FIG. 9 can be applied to the option 4 architecture shown in FIG. 2 or the option 7 architecture shown in FIG. 3, and at this time, as shown in FIG. 10, the network corresponding to the session management network element 902
  • the element or entity may be a session management function (SMF) network element in NGC
  • the network element or entity corresponding to the main access device may be an eNB in option 4 architecture or a gNB in option 7 architecture.
  • SMF session management function
  • NGC may also include access and mobility management (Access and Mobility Management Function, AMF) network elements, user plane function (user plane function (UPF) network elements, and policy control functions (policy control function (PCF) network element or unified data management network element (unified data management, UDM), etc., for details, refer to the existing NGC architecture, which will not be repeated here.
  • AMF Access and Mobility Management Function
  • UPF user plane function
  • PCF policy control function
  • UDM unified data management network element
  • eNB or gNB communicates with AMF network element through NG2 interface
  • eNB or gNB communicates with UPF network element through NG3 interface
  • AMF network element communicates with SMF network element through NG11 interface
  • AMF network element communicates with NG8 interface UDM network element communication
  • SMF network element communicates with UPF network element through NG4 interface
  • SMF network element communicates with UDM network element through NG10 interface
  • SMF network element communicates with PCF network element through NG7 interface.
  • the terminals involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem; or Including subscriber units, cellular phones, smart phones, wireless data cards, personal digital assistant (PDA) computers, tablet computers, wireless modems, handheld devices (handheld), laptop (laptop computer), cordless phone (cordless phone) or wireless local loop (wireless local loop (WLL) station, machine type communication (machine type communication (MTC) terminal, user equipment (user equipment) , UE), mobile station (mobile station, MS), terminal device (terminal device) or relay user equipment, etc.
  • the relay user equipment may be, for example, a 5G residential gateway (RG).
  • RG 5G residential gateway
  • the primary access device in FIG. 7 or FIG. 9, the packet data gateway in FIG. 7, or the session management network element in FIG. 9 may be implemented by one device, or may be implemented by multiple devices in an embodiment of the present application. It may also be a functional module in a device, which is not specifically limited in this embodiment of the present application. It can be understood that the above function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualized function instantiated on a platform (for example, a cloud platform).
  • FIG. 11 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device 1100 includes a processor 1101, a communication line 1102, a memory 1103, and at least one communication interface (FIG. 11 is only exemplary by including the communication interface 1104 as an example).
  • the processor 1101 may be a general-purpose central processing unit (central processing unit, CPU), microprocessor, application-specific integrated circuit (ASIC), or one or more used to control the execution of the program program of the application integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 1102 may include a path to transfer information between the above components.
  • Communication interface 1104 using any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 1103 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM), or other types of information and instructions that can be stored
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), read-only compact disc (compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Access to any other media, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 1102. The memory can also be integrated with the processor.
  • the memory 1103 is used to store computer execution instructions for executing the solution of the present application, and the processor 1101 controls execution.
  • the processor 1101 is configured to execute computer-executed instructions stored in the memory 1103, thereby implementing the QoS control method provided in the following embodiments of the present application.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 1101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 11.
  • the communication device 1100 may include multiple processors, such as the processor 1101 and the processor 1108 in FIG. 11. Each of these processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and / or processing cores for processing data (eg, computer program instructions).
  • the communication device 1100 may further include an output device 1105 and an input device 1106.
  • the output device 1105 communicates with the processor 1101 and can display information in various ways.
  • the output device 1105 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 1106 communicates with the processor 1101 and can receive user input in various ways.
  • the input device 1106 may be a mouse, keyboard, touch screen device, or sensor device.
  • the aforementioned communication device 1100 may be a general-purpose device or a dedicated device.
  • the communication device 1100 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure as shown in FIG. 11 device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 1100.
  • the communication system shown in FIG. 7 is applied to the option 3 architecture shown in FIG. 1, and the EPC in the option 3 architecture is shown in FIG. 8 as an example.
  • FIG. 12 it is a QoS control method provided by an embodiment of the present application.
  • the QoS control method includes the following steps:
  • the primary access device determines that the bearer on the primary access device or the secondary access device has a QoS modification requirement.
  • the primary access device in the embodiment of the present application is the eNB in FIG. 1, and the secondary access device is the NR node in FIG. 1, which will be described here in a unified manner and will not be described in detail below.
  • the primary access device determines that the bearer on the primary access device or the secondary access device has QoS modification requirements, for example, it may include: the primary access device determines that the secondary access device is to be released; or , The primary access device determines that the signal on the secondary access device has weakened to fail to transmit data normally; or, the primary access device determines that the bearer transmitted on the secondary access device needs to be reduced or increased; The bandwidth of the bearer transmitted on the auxiliary access device is increased, which is not specifically limited in this embodiment of the present application.
  • the main access device in the embodiment of the present application may also be called a master node (MN), and the auxiliary access device in the embodiment of the present application may also be called a second node (secondary node) , this embodiment of the present application does not specifically limit this.
  • MN master node
  • SN second node
  • the master access device sends a bearer modification request 1 to the MME.
  • the MME receives the bearer modification request 1 from the master access device.
  • the bearer modification request 1 carries indication information and bearer identification, and the indication information is used to indicate the RAT used by the bearer.
  • the indication information may be, for example, a RAT type, such as NR technology or E-UTRAN technology.
  • the identifier of the bearer may be at least one of an EPS bearer (bearer) ID or an evolved radio access bearer (evolved radio access bearer, E-RAB) ID.
  • EPS bearer bearer
  • E-RAB evolved radio access bearer
  • the RAT used by the bearer may be the RAT to be used by the bearer or the RAT to be used subsequently by the bearer.
  • the RAT to be used by the bearer or the RAT to be used by the bearer may be the same as the RAT currently used by the bearer, which is not specifically limited in this embodiment of the present application.
  • the bearer modification request 1 in the embodiment of the present application may also be replaced with an E-RAB modification indication message, which is not specifically limited in the embodiment of the present application.
  • the MME sends a bearer modification request 2 to the SGW.
  • the SGW receives the bearer modification request 2 from the MME.
  • the bearer modification request 2 carries the indication information in step S1202 and the bearer identification.
  • the SGW sends a bearer modification request 3 to the PGW.
  • the PGW receives the bearer modification request 3 from the SGW.
  • the bearer modification request 3 carries the indication information in step S1202 and the bearer identification.
  • the PGW obtains the first QoS parameter of the bearer corresponding to the RAT according to the indication information and the bearer identifier.
  • the PGW may allocate the first QoS parameter of the bearer corresponding to the RAT according to the indication information and the identifier of the bearer.
  • the PGW may trigger processes such as IP connectivity access network (IP-connectivity access network (IP-CAN) session modification, etc. to request the PCRF network element for the first bearer corresponding to the RAT.
  • IP-connectivity access network IP-CAN
  • the PGW sends an IP-CAN session modification request to the PCRF network element.
  • the PCRF network element receives the IP-CAN session modification request from the PGW.
  • the IP-CAN session modification request includes the indication information and the identifier of the bearer, and requests the PCRF network element to allocate the first QoS parameter of the bearer corresponding to the RAT.
  • the PCRF network element may send the first QoS parameter to the PGW.
  • the PGW receives the first QoS parameter from the PCRF network element.
  • the first QoS parameter when the indication information is used to indicate that the RAT used by the bearer is the NR technology, the first QoS parameter includes at least one of extended APN-AMBR, extended GBR, or extended MBR.
  • the first QoS parameter includes non-extended APN-AMBR, non-extended GBR, or non-extended At least one of MBR.
  • the non-extended APN-AMBR is the existing APN-AMBR
  • the non-extended GBR is the existing GBR
  • the non-extended MBR is the existing MBR.
  • the QoS parameter corresponding to the bearer on the PGW may also be updated, which is not specifically limited in the embodiment of the present application.
  • the PGW sends a bearer modification response 3 to the SGW.
  • the SGW receives the bearer modification response 3 from the PGW.
  • the bearer modification response 3 carries the first QoS parameter.
  • the SGW sends a bearer modification response 2 to the MME.
  • the MME receives the bearer modification response 2 from the SGW.
  • the bearer modification response 2 carries the first QoS parameter.
  • the MME determines the second QoS parameter according to the first QoS parameter.
  • the MME may, according to the extended APN-AMBR included in the first QoS parameter, combine the subscription obtained from the HSS in the previous process (such as the terminal attachment process)
  • the extended contracted UE-AMBR in the information determines a suitable extended UE-AMBR, and then the second QoS parameter includes the extended UE-AMBR.
  • the MME may combine the previous process (such as the terminal's attachment process) according to the non-extended APN-AMBR included in the first QoS parameter.
  • the non-extended UE-AMBR in the subscription information acquired by the HSS determines a suitable non-extended UE-AMBR, and then the second QoS parameter includes the non-extended UE-AMBR.
  • the MME sends a bearer modification response 1 to the master access device.
  • the master access device receives the bearer modification response 1 from the MME.
  • the bearer modification response 1 includes a second QoS parameter, and the second QoS parameter may be the same as the above-mentioned first QoS parameter, or may be different from the above-mentioned first QoS parameter.
  • the second QoS parameter includes at least one of the extended UE-AMBR, the extended GBR, or the extended MBR.
  • the extended UE-AMBR is obtained through the above step S1208.
  • the extended GBR is the extended GBR in the first QoS parameter; or, the extended MBR is the extended MBR in the first QoS parameter.
  • the second QoS parameter includes non-extended UE-AMBR, non-extended GBR, or non-extended At least one of MBR.
  • the non-extended UE-AMBR is obtained through the above step S1208.
  • the non-extended GBR is the non-extended GBR in the first QoS parameter; or, the non-extended MBR is the non-extended MBR in the first QoS parameter.
  • the master access device performs QoS control on the bearer in the network corresponding to the RAT according to the second QoS parameter.
  • step S1210 For the specific implementation of step S1210, reference may be made to the existing QoS control method for the bearer according to the QoS parameters, which will not be repeated here.
  • the master access device sends a radio resource control (RRC) connection reconfiguration message to the terminal.
  • the terminal receives the RRC connection reconfiguration message from the master access device.
  • RRC radio resource control
  • the RRC connection reconfiguration message carries a second QoS parameter, which is used by the terminal to perform QoS control on the bearer.
  • QoS control can be implemented in a DC scenario, and the QoS parameters of the bearer can be adjusted through the core network device, and the appropriate QoS parameters can be assigned to the bearer, so that the bearer can be accessed in different Stable and efficient transmission on the device, which can ensure the user experience.
  • the actions of the master access device or PGW in the above steps S1201 to S1211 can be executed by the processor 1101 in the communication device 1100 shown in FIG. 11 calling the application program code stored in the memory 1103, which is not done in this embodiment Any restrictions.
  • the communication system shown in FIG. 9 is applied to option 4 shown in FIG. 2 or option 7 shown in FIG. 3, and NGC in option 4 or option 7 is shown in FIG. 10 as an example. Be explained.
  • FIG. 13 it is a QoS control method provided by an embodiment of the present application.
  • the QoS control method includes the following steps:
  • the primary access device determines that the QoS flow on the primary access device or the secondary access device has a QoS modification requirement.
  • the primary access device in the embodiment of the present application may be the NR node in FIG. 2, and the secondary access device may be the evolved eNB in FIG. 2; or, the primary access device may be the evolved eNB in FIG. 3.
  • the secondary access device may be the NR node in FIG. 3, which is described here in a unified manner and will not be described in detail below.
  • the primary access device determines that the QoS flow on the primary access device or the secondary access device has a QoS modification requirement. For example, the primary access device may determine that the secondary access device is to be released; Or, the primary access device determines that the signal on the secondary access device is weakened to fail to transmit data normally; or, the primary access device determines that the QoS flow transmitted on the secondary access device needs to be reduced or increased; or, the primary access device determines that it needs to The bandwidth of the QoS flow transmitted on the auxiliary access device is reduced or increased, which is not specifically limited in the embodiments of the present application.
  • the primary access device in the embodiment of this application may also be referred to as MN
  • the secondary access device in the embodiment of this application may also be referred to as SN, which is not specifically limited in this embodiment of the application.
  • the master access device sends a QoS flow mobility indication message to the AMF network element.
  • the AMF network element receives the QoS flow mobility indication message from the main access device.
  • the QoS flow mobility indication message carries indication information and an identifier of the QoS flow, and the indication information is used to indicate the RAT used by the QoS flow.
  • the indication information may be, for example, a RAT type, such as NR technology or E-UTRAN technology.
  • the identifier of the QoS flow may be, for example, a QoS flow identifier (QoS flow identifier, QFI).
  • QoS flow identifier QoS flow identifier
  • the QoS flow mobility indication message may further include a PDU session ID (PDU session ID), which is not specifically limited in the embodiment of the present application.
  • PDU session ID PDU session ID
  • the RAT used by the QoS flow may be the RAT to be used by the QoS flow or the RAT used by the QoS flow subsequently.
  • the RAT to be used by the QoS flow or the RAT to be used subsequently by the QoS flow may be the same as the RAT currently used by the QoS flow, which is not specifically limited in this embodiment of the present application.
  • the AMF network element sends an update SM context request to the SMF network element.
  • the SMF network element receives the SM context update request from the AMF network element.
  • the update SM context request includes the indication information in step S1302 and the identifier of the QoS flow.
  • the update SM context request may also include a PDU session identifier, which is not specifically limited in this embodiment of the application.
  • the SMF network element obtains the QoS parameters of the QoS flow corresponding to the RAT according to the indication information and the QoS flow identifier.
  • the SMF network element may allocate the QoS parameters of the QoS flow corresponding to the RAT according to the indication information and the identifier of the QoS flow.
  • the SMF network element may trigger processes such as SM policy association to request the QoS parameters of the QoS flow corresponding to the RAT from the PCF network element.
  • the SMF network element sends an SM policy modification request to the PCF network element.
  • the PCF network element receives the SM policy modification request from the SMF network element.
  • the SM policy modification request includes the indication information and the identifier of the QoS flow, and requests the PCF network element to allocate QoS parameters of the QoS flow corresponding to the RAT.
  • the PCF network element can send the QoS parameters to the SMF network element.
  • the SMF network element receives the QoS parameters from the PCF network element.
  • the QoS parameters include the maximum aggregated bit rate of the first session corresponding to the NR technology session-AMBR and the first GBR Or at least one of the first MBR.
  • the QoS parameters include the second session-AMBR corresponding to the E-UTRAN technology and the second At least one of GBR or second MBR.
  • the second session-AMBR may be derived from the first session-AMBR mapping; or, the second GBR may be derived from the first GBR mapping; or, the second MBR may be derived from The first MBR mapping is obtained, which is not specifically limited in this embodiment of the present application.
  • the QoS parameters corresponding to the QoS flow on the SMF network element may also be updated, which is not specifically limited in the embodiment of the present application.
  • the SMF network element and the UPF network element perform N4 session modification to obtain a user plane tunnel.
  • the SMF network element sends an SM context update response to the AMF network element.
  • the AMF network element receives the updated SM context response from the SMF network element.
  • the update SM context response carries the above-mentioned QoS parameters.
  • the AMF network element sends a QoS flow mobility confirmation to the main access device.
  • the master access device receives the QoS flow mobility confirmation from the AMF network element.
  • the QoS flow mobility confirmation response carries the above-mentioned QoS parameters.
  • the master access device performs QoS control on the QoS flow in the network corresponding to the RAT according to the QoS parameters.
  • the master access device may determine the first UE-AMBR according to the first session-AMBR; and further according to the first UE-AMBR, QoS control is performed on the QoS flow in the network corresponding to the NR technology.
  • the master access device may determine the second UE-AMBR according to the second session-AMBR; and further according to the second UE- AMBR performs QoS control on the QoS flow in the network corresponding to the E-UTRAN technology.
  • the master access device performs QoS control on the QoS flow in the network corresponding to the NR technology according to at least one of the first UE-AMBR, the first GBR, or the first MBR or the master access device according to the second UE-AMBR 2.
  • At least one of the second GBR or the second MBR can perform QoS control on the QoS flow in the network corresponding to the E-UTRAN technology with reference to existing implementation methods, and details are not described herein again.
  • the master access device sends an RRC connection reconfiguration message to the terminal.
  • the terminal receives the RRC connection reconfiguration message from the master access device.
  • the RRC connection reconfiguration message carries at least one of the first UE-AMBR, the first GBR, or the first MBR , Used to establish an NG-RAN resource associated with the second QoS parameter;
  • the RRC connection reconfiguration message carries the second UE-AMBR, the second GBR, or the second MBR. At least one for establishing an NG-RAN resource associated with the second QoS parameter.
  • QoS control can be implemented in the DC scenario.
  • appropriate QoS parameters can be assigned to the QoS flow, thereby making the QoS flow different.
  • the actions of the master access device or SMF network element in the above steps S1301 to S1309 can be executed by the processor 1101 in the communication device 1100 shown in FIG. 11 calling the application program code stored in the memory 1103. There are no restrictions.
  • the communication system shown in FIG. 7 is applied to the option 3 architecture shown in FIG. 1, and the EPC in the option 3 architecture is shown in FIG. 8 as an example for description.
  • FIG. 14 it is a QoS control method provided by an embodiment of the present application.
  • the QoS control method includes the following steps:
  • the terminal sends a request message 1 to the main access device.
  • the master access device receives the request message 1 from the terminal.
  • the primary access device in the embodiment of the present application is the eNB in FIG. 1, and the secondary access device is the NR node in FIG. 1, which will be described here in a unified manner and will not be described in detail below.
  • the request message 1 may be, for example, an attachment request message 1 in an attachment process, or a PDN connection establishment request message 1 in a PDN connection establishment process, or a TAU request in a tracking area update (TAU) process
  • the message 1 and the like are not specifically limited in the embodiment of the present application.
  • the above attachment process or PDN connection establishment process or TAU process may involve modification of the bearer.
  • main access device in the embodiment of the present application may also be a MN
  • auxiliary access device in the embodiment of the present application may also be called an SN, which is not specifically limited in the embodiment of the present application.
  • the master access device sends a request message 2 to the MME.
  • the MME receives the request message 2 from the master access device.
  • the request message 2 carries indication information, which is used to indicate that the network system supports dual connectivity.
  • the indication information may be, for example, NR technology and E-UTRAN technology; or, the indication information may be, for example, E-UTRAN with NR; or, the indication information may be, for example, NR with E-UTRAN, etc., this application The embodiment does not specifically limit this.
  • the request message 2 may be, for example, an attachment request message 2 in the attachment process, or a PDN connection establishment request message 2 in the PDN connection establishment process, or a TAU request message 2 in the TAU process, etc. This is not specifically limited.
  • the MME obtains the contract information of the terminal from the HSS.
  • the contract information includes the contracted UE-AMBR, and the contracted UE-AMBR may include an extended contracted UE-AMBR and a non-extended contracted UE-AMBR.
  • the subscription information may further include a contracted APN-AMBR
  • the contracted APN-AMBR may include an extended contracted APN-AMBR and a non-extended contracted APN-AMBR.
  • step S1403 does not exist for the PDN connection establishment process, because in the PDN connection establishment process, the MME has already obtained the contract information of the terminal in the previously executed processes, such as the registration process, etc., here is a unified description, The details are not repeated below.
  • the MME sends a request message 3 to the SGW.
  • the SGW receives the request message 3 from the MME.
  • the request message 3 includes the identifier of the bearer allocated by the MME and the above indication information.
  • the identifier of the bearer may be included in the context of the terminal and sent to the SGW through the request message 3 in the context of the terminal, which is not specifically limited in this embodiment of the present application.
  • the identifier of the bearer may be at least one of an EPS bearer ID or an E-RAB ID, for example.
  • the request message 3 may be, for example, a session establishment request 1 or a bearer modification request 1, which is not specifically limited in this embodiment of the present application.
  • the SGW sends a request message 4 to the PGW.
  • the PGW receives the request message 4 from the SGW.
  • the request message 4 includes the identifier of the bearer and the indication information.
  • the identifier of the bearer may be included in the context of the terminal and sent to the PGW through the request message 4 in the context of the terminal, which is not specifically limited in this embodiment of the present application.
  • the request message 4 in the step S1405 may be a session establishment request 2; or, if the request message 3 in the above step S1404 is a bearer modification request 1 Then, the request message 4 in step S1405 may be a bearer modification request 2, which is not specifically limited in this embodiment of the present application.
  • the PGW obtains the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the second QoS parameter of the bearer corresponding to the second RAT on the dual connection according to the indication information and the bearer identifier.
  • the PGW may allocate the first QoS parameter of the bearer corresponding to the first RAT on the dual connection according to the indication information and the bearer identifier, combined with the terminal subscription information sent by the SGW, and the The second QoS parameter of the bearer corresponding to the second RAT on the dual connection.
  • the PGW may trigger the IP-CAN session modification process to request the PCRF network element for the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the first QoS parameter on the dual connection.
  • the PGW sends an IP-CAN session establishment or IP-CAN session modification request to the PCRF network element.
  • the PCRF network element receives the IP-CAN session establishment request or IP-CAN session modification request from the PGW.
  • the IP-CAN session establishment or IP-CAN session modification request includes the indication information and the identifier of the bearer, and requests the PCRF network element to allocate the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the dual connection The second QoS parameter of the bearer corresponding to the second RAT. Further, the PCRF network element may allocate the first bearer corresponding to the first RAT on the dual connection according to the indication information and the bearer identifier, and the subscription information obtained by the PCRF network element from the subscription database (Subscription Profile Repository, SPR). After the QoS parameter and the second QoS parameter of the bearer corresponding to the second RAT on the dual connection, the first QoS parameter and the second QoS parameter are sent to the PGW. Correspondingly, the PGW receives the first QoS parameter and the second QoS parameter from the PCRF network element.
  • SPR Subscribescription Profile Repository
  • the first QoS parameter carried includes extended APN-AMBR, extended GBR, or extended medium At least one; the second QoS parameter carried includes at least one of non-extended APN-AMBR, non-extended GBR, or non-extended MBR.
  • the non-extended APN-AMBR is the existing APN-AMBR
  • the non-extended GBR is the existing GBR
  • the non-extended MBR is the existing MBR.
  • the QoS parameters of the bearer corresponding to the first RAT on the PGW may also be updated; and, the PGW obtains After the second QoS parameter of the bearer corresponding to the second RAT, the second QoS parameter of the bearer corresponding to the second RAT on the PGW may also be updated, which is not specifically limited in the embodiment of the present application.
  • the PGW can obtain the extended APN-AMBR when acquiring the extended APN-AMBR; or, the PGW can obtain the non-extended APN-AMBR when acquiring the non-extended APN-AMBR.
  • This application The embodiment does not specifically limit this.
  • the PGW sends a response message 4 to the SGW.
  • SGW receives response message 4 from PGW.
  • the response message 4 carries the first QoS parameter and the second QoS parameter.
  • the response message 4 in the step S1407 may be a session establishment response 2.
  • the request message 4 in the above step S1405 is the bearer modification request 2
  • the response message 4 in the step S1407 may be the bearer modification response 2, which is not specifically limited in the embodiment of the present application.
  • the SGW sends a response message 3 to the MME.
  • the MME receives the response message 3 from the SGW.
  • the response message 3 carries the first QoS parameter and the second QoS parameter.
  • the response message 3 in the step S1408 may be a session establishment response 1.
  • the request message 3 in the above step S1404 is the bearer modification request 1
  • the response message 3 in the step S1408 may be the bearer modification response 1, which is not specifically limited in this embodiment of the present application.
  • the MME determines the third QoS parameter according to the first QoS parameter; and, the MME determines the fourth QoS parameter according to the second QoS parameter.
  • the MME may combine the extended contracted UE-AMBR in the subscription information obtained from the HSS according to the extended APN-AMBR included in the first QoS parameter To determine a suitable extended UE-AMBR, and then the third QoS parameter includes the extended UE-AMBR.
  • the MME may combine the non-extended APN-AMBR included in the second QoS parameter with the non-extended
  • the contracted UE-AMBR determines a suitable non-extended UE-AMBR, and then the fourth QoS parameter includes the non-extended UE-AMBR.
  • the MME sends a response message 2 to the master access device.
  • the master access device receives the response message 2 from the MME.
  • the response message 2 includes a third QoS parameter and a fourth QoS parameter.
  • the third QoS parameter may be the same as the above first QoS parameter, or may be different from the above first QoS parameter;
  • the fourth QoS parameter may be the same as the above second QoS parameter, or may be the same as the above second QoS parameter different.
  • the third QoS parameter carried includes at least one of extended UE-AMBR, extended GBR, or extended;
  • the fourth QoS parameter includes at least one of non-extended UE-AMBR, non-extended GBR, or non-extended MBR.
  • the response message 2 in step S1410 is an attachment response message 2; or, if the request message 2 in step S1402 is a PDN connection establishment request message 2, Then, the response message 2 in step S1410 is a PDN connection establishment response message 2; or, if the request message 2 in step S1402 is a TAU request message 2, the response message 2 in step S1410 is a TAU response message 2, an embodiment of this application This is not specifically limited.
  • the master access device performs QoS control on the bearer according to the first QoS parameter and the second QoS parameter.
  • the master access device may determine to use the third QoS parameter and the fourth QoS parameter according to whether the bearer is transmitted by the network corresponding to the first RAT or the network transmission corresponding to the second RAT. Where the master access device determines that the bearer is transmitted by the network corresponding to the first RAT, the master access device performs QoS control on the bearer in the network corresponding to the first RAT according to the third QoS parameter; or, at the master access When the device determines that the bearer is transmitted by the network corresponding to the second RAT, the master access device performs QoS control on the bearer in the network corresponding to the second RAT according to the fourth QoS parameter.
  • the master access device may use the extended UE-AMBR, At least one of the extended GBR or the extended performs QoS control on the bearer in the network corresponding to the NR technology, that is, its bandwidth is the extended bandwidth; or, if the master access device determines that the bearer is transmitted by the network corresponding to the E-UTRAN technology , The master access device can perform QoS control on the bearer in the network corresponding to the E-UTRAN technology according to at least one of non-extended UE-AMBR, non-extended GBR, or non-extended, that is, its bandwidth is non-extended bandwidth.
  • the primary access device may also send the third QoS parameter and the fourth QoS parameter to the secondary access device through the X2 interface, so that the secondary access device according to the third QoS parameter and the fourth QoS Parameters for QoS control of the bearer.
  • the secondary access device performs QoS control on the bearer according to the third QoS parameter and the fourth QoS parameter, similar to the manner in which the primary access device performs QoS control on the bearer according to the third QoS parameter and the fourth QoS parameter, I will not repeat them here.
  • the master access device sends a response message 1 to the terminal.
  • the terminal receives the response message 1 from the main access device.
  • the response message 1 includes the third QoS parameter and the fourth QoS parameter, which are used for the terminal to perform QoS control on the bearer.
  • the response message 1 in step S1412 is an attachment response message 1; or, if the request message 1 in step S1401 is a PDN connection establishment request message 1, Then, the response message 1 in step S1412 is the PDN connection establishment response message 1; or, if the request message 1 in step S1401 is the TAU request message 1, the response message 1 in step S1412 is the TAU response message 1, an embodiment of the present application This is not specifically limited.
  • QoS control can be implemented in a DC scenario, and the QoS parameters of the bearer can be adjusted through the core network device, and the appropriate QoS parameters can be assigned to the bearer, so that the bearer can be accessed in different Stable and efficient transmission on the device, which can ensure the user experience.
  • the actions of the master access device or PGW in the above steps S1401 to S1412 can be executed by the processor 1101 in the communication device 1100 shown in FIG. 11 calling the application program code stored in the memory 1103, which is not done in this embodiment Any restrictions.
  • the communication system shown in FIG. 9 is applied to option 4 shown in FIG. 2 or option 7 shown in FIG. 3, and NGC in option 4 or option 7 is shown in FIG. 10 as an example. Be explained.
  • FIG. 15 it is a QoS control method provided by an embodiment of the present application.
  • the QoS control method includes the following steps:
  • the terminal sends a PDU session establishment request 1 to the main access device.
  • the master access device receives the PDU session establishment request 1 from the terminal.
  • the primary access device in the embodiment of the present application may be the NR node in FIG. 2, and the secondary access device may be the evolved eNB in FIG. 2; or, the primary access device may be the evolved eNB in FIG. 3.
  • the secondary access device may be the NR node in FIG. 3, which is described here in a unified manner and will not be described in detail below.
  • FIG. 15 is only an example to illustrate the PDU session establishment process as an example.
  • SR process reference may be made to the embodiment shown in FIG. 15, for example, the difference is that the PDU session establishment process and the service request process are different in messages or steps, which will not be repeated here.
  • main access device in the embodiment of the present application may also be a MN
  • auxiliary access device in the embodiment of the present application may also be called an SN, which is not specifically limited in the embodiment of the present application.
  • the master access device sends a PDU session establishment request 2 to the AMF network element.
  • the AMF network element receives the PDU session establishment request 2 from the main access device.
  • the PDU session establishment request 2 carries indication information, which is used to indicate that the network system supports dual connectivity.
  • the AMF network element sends an update SM context request to the SMF network element.
  • the SMF network element receives the SM context update request from the AMF network element.
  • the update SM context request includes the above indication information.
  • the SM context update request may further include an identifier of the QoS flow, and the identifier of the QoS flow may be, for example, QFI, which is not specifically limited in this embodiment of the present application.
  • the SMF network element obtains the contract information of the terminal from the UDM network element.
  • the contract information includes the contracted QoS parameters, such as at least one of the contracted session-AMBR, the contracted GBR, or the contracted MBR.
  • the contracted session-AMBR may include, for example, a contracted session-AMBR corresponding to the first RAT and a contracted session-AMBR corresponding to the second RAT.
  • the SMF network element obtains the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection and the second QoS parameter of the QoS flow corresponding to the second RAT on the dual connection according to the indication information and the identifier of the QoS flow.
  • the identifier of the QoS flow here may be sent by the AMF network element to the SMF network element, or may be generated by the SMF network element itself, which is not specifically limited in the embodiment of the present application.
  • the SMF network element may allocate the QoS flow corresponding to the first RAT on the dual connection according to the indication information and the QoS flow identifier in combination with the terminal subscription information obtained from the UDM network element The first QoS parameter and the second QoS parameter of the QoS flow corresponding to the second RAT on the dual connection.
  • the SMF network element may trigger the SM policy association process to request the PCF network element for the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection and the dual connection The second QoS parameter of the QoS flow corresponding to the second RAT.
  • the SMF network element sends an SM policy modification request to the PCF network element.
  • the PCF network element receives the SM policy modification request from the SMF network element.
  • the SM policy modification request includes the indication information and the identifier of the QoS flow, and requests the PCF network element to allocate the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection and the corresponding QoS parameter of the second RAT on the dual connection The second QoS parameter of the QoS flow.
  • the PCF network element can allocate the QoS corresponding to the first RAT on the dual connection according to the indication information and the QoS flow identifier, combined with the terminal subscription information obtained from the unified data (UDR) network element by the PCF network element After the first QoS parameter of the flow and the second QoS parameter of the QoS flow corresponding to the second RAT on the dual connection, the first QoS parameter and the second QoS parameter are sent to the SMF network element.
  • the PGW receives the first QoS parameter and the second QoS parameter from the PCRF network element.
  • the first QoS parameter of the QoS flow includes the first session-AMBR corresponding to the NR technology, the first At least one of a GBR or a first MBR; the second QoS parameter of the QoS flow includes at least one of a second session-AMBR, a second GBR, or a second MBR corresponding to the E-UTRAN technology.
  • the SMF network element may also update the QoS flow corresponding to the first RAT corresponding to the QoS flow on the SMF network element QoS parameters; and, after the SMF network element obtains the second QoS parameters of the QoS flow corresponding to the second RAT, it may also update the second QoS parameters of the QoS flow corresponding to the second RAT on the SMF network element,
  • This embodiment of the present application does not specifically limit this.
  • the SMF network element and the UPF network element perform N4 session modification to obtain a user plane tunnel.
  • the SMF network element sends an SM context update response to the AMF network element.
  • the AMF network element receives the updated SM context response from the SMF network element.
  • the update SM context response carries the above-mentioned first QoS parameter and second QoS parameter.
  • the AMF network element sends a PDU session establishment response 2 to the main access device.
  • the master access device receives the PDU session establishment response 2 from the AMF network element.
  • the PDU session establishment response 2 carries the first QoS parameter and the second QoS parameter.
  • the master access device performs QoS control on the QoS flow in the network corresponding to the RAT according to the QoS parameters.
  • the primary access device may determine the first A UE-AMBR may determine the second UE-AMBR according to the second session-AMBR.
  • the master access device may determine whether to use at least one of the first UE-AMBR, the first GBR, or the first MBR or the first At least one of the second UE-AMBR, the second GBR, or the second MBR. Where the master access device determines that the QoS flow is transmitted by the network corresponding to the first RAT, the master access device corresponds to the first RAT according to at least one of the first UE-AMBR, the first GBR, or the first MBR The QoS flow in the network performs QoS control; or, when the master access device determines that the QoS flow is transmitted by the network corresponding to the second RAT, the master access device according to the second UE-AMBR, the second GBR, or the second MBR At least one performs QoS control on the QoS flow in the network corresponding to the second RAT.
  • the master access device may use the first UE-AMBR , At least one of the first GBR or the first MBR performs QoS control on the QoS flow in the network corresponding to the NR technology; or, if the master access device determines that the QoS flow is transmitted by the network corresponding to the E-UTRAN technology, the master access The device may perform QoS control on the QoS flow in the network corresponding to the E-UTRAN technology according to at least one of the second UE-AMBR, the second GBR, or the second MBR.
  • the master access device performs QoS control on the QoS flow in the network corresponding to the NR technology according to at least one of the first UE-AMBR, the first GBR, or the first MBR or the master access device according to the second UE-AMBR 2.
  • At least one of the second GBR or the second MBR can perform QoS control on the QoS flow in the network corresponding to the E-UTRAN technology with reference to existing implementation methods, and details are not described herein again.
  • the primary access device may also send the first QoS parameter and the second QoS parameter to the secondary access device through the X2 interface, so that the secondary access device according to the first QoS parameter and the second QoS Parameters to perform QoS control on the QoS flow.
  • the auxiliary access device performs QoS control on the QoS flow according to the first QoS parameter and the second QoS parameter and can refer to the above-mentioned primary access device performs QoS control on the QoS flow according to the first QoS parameter and the second QoS parameter The method will not be repeated here.
  • the master access device sends a PDU session establishment response 1 to the terminal.
  • the terminal receives the PDU session establishment response 1 from the master access device.
  • the PDU session establishment response includes the above-mentioned first QoS parameter and second QoS parameter, which are used to establish an NG-RAN resource associated with the first QoS parameter or the second QoS parameter.
  • QoS control can be implemented in the DC scenario.
  • appropriate QoS parameters can be assigned to the QoS flow, thereby making the QoS flow different.
  • the actions of the master access device or the SMF network element in the above steps S1501 to S1510 can be executed by the processor 1101 in the communication device 1100 shown in FIG. 11 calling the application program code stored in the memory 1103. There are no restrictions.
  • the main access device, the packet data gateway, or the session management network element includes a hardware structure and / or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the main access device, the packet data gateway, or the session management network element according to the above method example.
  • each function module may be divided corresponding to each function, or two or more than two
  • the functions are integrated in one processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 16 shows a schematic structural diagram of a packet data gateway 160.
  • the packet data gateway 160 includes a transceiver module 1602 and a processing module 1601.
  • the transceiver module 1602 is used to receive the indication information and the bearer identification, and the indication information is used to indicate the RAT used by the bearer; the processing module 1601 is used to obtain the first QoS parameter of the bearer corresponding to the RAT according to the indication information and the bearer identification.
  • the transceiver module 1602 is also used to send a first QoS parameter, and the first QoS parameter is used to perform QoS control on the bearer in the network corresponding to the RAT.
  • the processing module 1601 is specifically configured to allocate the first QoS parameter of the bearer corresponding to the RAT according to the indication information and the identifier of the bearer.
  • the processing module 1601 is specifically configured to: send the indication information and the bearer identification to the policy control network element; and receive the first QoS parameter of the bearer corresponding to the RAT from the policy control network element.
  • the first QoS parameter includes at least one of extended APN-AMBR, extended GBR, or extended MBR.
  • the transceiver module 1602 is used to send a first QoS parameter, and the first QoS parameter is used to perform QoS control on the bearer in the network corresponding to the RAT, including: when the first QoS parameter includes extended APN-AMBR Next, send the extended APN-AMBR to the mobile management network element, the extended APN-AMBR is used to determine the extended UE-AMBR, and the extended UE-AMBR is used to perform QoS control on the bearer in the network corresponding to the NR technology; or , Used to send the extended GBR or the extended MBR to the primary access device when the first QoS parameter includes the extended GBR or the extended MBR, and the extended GBR or the extended MBR is used for the network corresponding to the NR technology
  • the bearer in is subject to QoS control.
  • the first QoS parameter includes at least one of non-extended APN-AMBR, non-extended GBR, or non-extended MBR.
  • the transceiver module 1602 is used to send a first QoS parameter, and the first QoS parameter is used to perform QoS control on the bearer in the network corresponding to the RAT, including: the first QoS parameter includes a non-extended APN-AMBR
  • the non-extended APN-AMBR is sent to the mobile management network element
  • the non-extended APN-AMBR is used to determine the non-extended UE-AMBR
  • the non-extended UE-AMBR is used in the network corresponding to the E-UTRAN technology QoS control of the bearer.
  • the non-extended GBR or the non-extended MBR is used to send the non-extended GBR or the non-extended MBR to the primary access device when the first QoS parameter includes the non-extended GBR or the non-extended MBR.
  • the first QoS parameter includes the non-extended GBR or the non-extended MBR.
  • the processing module 1601 is used to obtain indication information and bearer identification, and the indication information is used to indicate that the network system supports dual connectivity.
  • the processing module 1601 is further configured to obtain the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the second QoS parameter of the bearer corresponding to the second RAT on the dual connection according to the indication information and the identifier of the bearer.
  • the transceiver module 1602 is configured to send a first QoS parameter of the bearer corresponding to the first RAT and a second QoS parameter of the bearer corresponding to the second RAT, where the first QoS parameter is used in the network corresponding to the first RAT QoS control of the bearer; the second QoS parameter is used for QoS control of the bearer in the network corresponding to the second RAT.
  • the processing module 1601 is configured to obtain the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the second QoS parameter of the bearer corresponding to the second RAT on the dual connection according to the indication information and the identifier of the bearer , Including: used to allocate the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the second QoS of the bearer corresponding to the second RAT on the dual connection according to the indication information, the bearer identification and the subscription information of the terminal parameter.
  • the processing module 1601 is configured to obtain the first QoS parameter of the bearer corresponding to the first RAT on the dual connection and the second QoS parameter of the bearer corresponding to the second RAT on the dual connection according to the indication information and the identifier of the bearer Includes: a first QoS parameter for receiving a bearer corresponding to a first RAT on a dual connection from a policy control network element, and a second QoS parameter of a bearer corresponding to a second RAT on the dual connection.
  • the first QoS parameter carried includes one or more of extended APN-AMBR, extended GBR, or extended MBR ;
  • the second QoS parameter carried includes one or more of non-extended APN-AMBR, non-extended GBR, or non-extended MBR.
  • the transceiver module 1602 is used to send the first QoS parameter of the bearer corresponding to the first RAT and the second QoS parameter of the bearer corresponding to the second RAT, where the first QoS parameter is used to correspond to the first RAT QoS control of the bearer in the network; the second QoS parameter is used for QoS control of the bearer in the network corresponding to the second RAT, including: the first QoS parameter used in the bearer includes extended APN-AMBR, the first Two QoS parameters include non-extended APN-AMBR, the extended APN-AMBR and non-extended APN-AMBR are sent to the mobile management network element, the extended APN-AMBR is used to determine the extended UE-AMBR, extended UE-AMBR is used for QoS control of bearers in the network corresponding to NR technology; non-extended APN-AMBR is used to determine non-extended UE-AMBR, and non-extended UE-AMBR is used for the
  • the packet data gateway 160 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and / or other devices that can provide the above functions.
  • the packet data gateway 160 may take the form shown in FIG. 11.
  • the processor 1101 in FIG. 11 may call the computer stored in the memory 1103 to execute instructions, so that the packet data gateway 160 executes the QoS control method in the foregoing method embodiment.
  • the functions / implementation processes of the transceiver module 1602 and the processing module 1601 in FIG. 16 can be implemented by the processor 1101 in FIG. 11 calling the computer execution instructions stored in the memory 1103.
  • the function / implementation process of the processing module 1601 in FIG. 16 can be implemented by the processor 1101 in FIG. 11 calling the computer execution instructions stored in the memory 1103, and the function / implementation process of the transceiver module 1602 in FIG. 11 to achieve the communication interface 1104.
  • the packet data gateway 160 provided in this embodiment can perform the above-mentioned QoS control method, the technical effects that can be obtained can refer to the above-mentioned method embodiments, which will not be repeated here.
  • an embodiment of the present application further provides an apparatus (for example, the apparatus may be a chip system), and the apparatus includes a processor for supporting the packet data gateway to implement the foregoing QoS control method. For example, according to the indication information and the identifier of the bearer, the first QoS parameter of the bearer corresponding to the RAT is obtained.
  • the device also includes a memory. The memory is used to store necessary program instructions and data of the packet data gateway. Of course, the memory may not be in the device.
  • the device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • FIG. 17 shows a schematic structural diagram of a session management network element 170.
  • the session management network element 170 includes a transceiver module 1702 and a processing module 1701.
  • the transceiver module 1702 is used to receive indication information and QoS flow identification, and the indication information is used to indicate the RAT used by the QoS flow.
  • the processing module 1701 is configured to acquire the QoS parameters of the QoS flow corresponding to the RAT according to the indication information and the QoS flow identification.
  • the transceiver module 1702 is also used to send QoS parameters, and the QoS parameters are used to perform QoS control on the QoS flow in the network corresponding to the RAT.
  • the processing module 1701 is specifically configured to allocate QoS parameters of the QoS flow corresponding to the RAT according to the indication information and the identification of the QoS flow. Or, the processing module 1701 is specifically configured to: send the indication information and the QoS flow identifier to the policy control network element; and receive the QoS parameters of the QoS flow corresponding to the RAT from the policy control network element.
  • the processing module 1701 is used to obtain the indication information and the identifier of the QoS flow.
  • the indication information is used to indicate that the network system supports dual connectivity.
  • the processing module 1701 is further configured to obtain the first QoS parameter of the QoS flow corresponding to the first RAT on the dual connection and the second QoS of the QoS flow corresponding to the second RAT on the dual connection according to the indication information and the identifier of the QoS flow Parameters; transceiver module 1702, used to send the first QoS parameters of the QoS flow corresponding to the first RAT and the second QoS parameters of the QoS flow corresponding to the second RAT, wherein the first QoS parameters are used for the first RAT
  • the QoS flow in the corresponding network performs QoS control; the second QoS parameter is used to perform QoS control on the QoS flow in the network corresponding to the second RAT.
  • the processing module 1701 is configured to obtain the first QoS parameters of the QoS flow corresponding to the first RAT on the dual connection and the first QoS parameters of the QoS flow corresponding to the second RAT on the dual connection according to the indication information and the identifier of the QoS flow.
  • Two QoS parameters including: the first QoS parameter used to allocate the QoS flow corresponding to the first RAT on the dual connection according to the indication information, the identification of the QoS flow and the subscription information of the terminal, and the one corresponding to the second RAT on the dual connection The second QoS parameter of the QoS flow.
  • the processing module 1701 is configured to obtain the first QoS parameters of the QoS flow corresponding to the first RAT on the dual connection and the first QoS parameters of the QoS flow corresponding to the second RAT on the dual connection according to the indication information and the identifier of the QoS flow.
  • Two QoS parameters including: an indicator used to send indication information and a QoS flow to the policy control network element; a first QoS parameter that receives the QoS flow corresponding to the first RAT on the dual connection from the policy control network element, and the dual connection The second QoS parameter of the QoS flow corresponding to the second RAT.
  • the session management network element 170 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and / or other devices that can provide the above functions.
  • the session management network element 170 may adopt the form shown in FIG. 11.
  • the processor 1101 in FIG. 11 may call the computer stored in the memory 1103 to execute instructions, so that the session management network element 170 executes the QoS control method in the foregoing method embodiment.
  • the functions / implementation processes of the transceiver module 1702 and the processing module 1701 in FIG. 17 can be implemented by the processor 1101 in FIG. 11 calling the computer execution instructions stored in the memory 1103.
  • the function / implementation process of the processing module 1701 in FIG. 17 can be implemented by the processor 1101 in FIG. 11 calling the computer execution instructions stored in the memory 1103, and the function / implementation process of the transceiver module 1702 in FIG. 11 to achieve the communication interface 1104.
  • the session management network element 170 provided in this embodiment can perform the above-mentioned QoS control method, the technical effects that can be obtained can refer to the above-mentioned method embodiments, which will not be repeated here.
  • an embodiment of the present application further provides an apparatus (for example, the apparatus may be a chip system), and the apparatus includes a processor, which is used to support a session management network element to implement the foregoing QoS control method. For example, according to the indication information and the identifier of the QoS flow, the QoS parameters of the QoS flow corresponding to the RAT are obtained.
  • the device also includes a memory. The memory is used to store necessary program instructions and data of the session management network element. Of course, the memory may not be in the device.
  • the device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • FIG. 18 shows a schematic structural diagram of a main access device 180.
  • the main access device 180 includes a transceiver module 1802 and a processing module 1801.
  • the transceiver module 1802 is used to send indication information and bearer identification, and the indication information is used to indicate the RAT used by the bearer.
  • the transceiver module 1802 is also used to receive the second QoS parameter of the bearer corresponding to the RAT.
  • the processing module 1801 is configured to perform QoS control on the bearer in the network corresponding to the RAT according to the second QoS parameter.
  • the second QoS parameter includes at least one of extended UE-AMBR, extended GBR, or extended MBR.
  • the transceiver module 1802 is used to receive the second QoS parameter of the bearer corresponding to the RAT, including: for receiving the extended UE from the mobile management network element when the second QoS parameter includes the extended UE-AMBR -AMBR, wherein the extended UE-AMBR is determined according to the extended APN-AMBR from the policy control network element, and the extended UE-AMBR is used to perform QoS control on the bearer in the network corresponding to the NR technology; or, When the second QoS parameter includes the extended GBR or the extended MBR, the extended GBR or the extended MBR from the policy control network element is received, and the extended GBR or the extended MBR is used for the bearer in the network corresponding to the NR technology. Perform QoS control.
  • the second QoS parameter includes at least one of a non-extended UE-AMBR, a non-extended GBR, or a non-extended MBR.
  • the transceiver module 1802 is used to receive the second QoS parameter of the bearer corresponding to the RAT, including: for receiving the non-extended from the mobile management network element when the second QoS parameter includes the non-extended UE-AMBR UE-AMBR, where the non-extended UE-AMBR is determined according to the non-extended APN-AMBR from the policy control network element, and the non-extended UE-AMBR is used to carry the bearers in the network corresponding to the E-UTRAN technology QoS control; or for receiving non-extended GBR or non-extended MBR, non-extended GBR or non-extended from the policy control network element when the second QoS parameter includes non-extended GBR or non-extended MBR
  • the MBR is used for QoS control of bearers in the network corresponding to the E-UTRAN technology.
  • the transceiver module 1802 is used to send indication information and QoS flow identification, and the indication information is used to indicate the RAT used by the QoS flow; the transceiver module 1802 is also used to receive QoS parameters of the QoS flow corresponding to the RAT; the processing module 1801 is used to According to the QoS parameters, QoS control is performed on the QoS flow in the network corresponding to the RAT.
  • the transceiver module 1802 is used to send instruction information indicating that the network system supports dual connectivity; the transceiver module 1802 is also used to receive the third QoS parameter of the bearer corresponding to the first RAT on the dual connection and the dual connection The fourth QoS parameter of the bearer corresponding to the second RAT; the processing module 1801 is configured to perform QoS on the bearer in the network corresponding to the first RAT according to the third QoS parameter when it is determined that the bearer is transmitted by the network corresponding to the first RAT Control; or, the processing module 1801 is configured to perform QoS control on the bearer in the network corresponding to the second RAT according to the fourth QoS parameter when it is determined that the bearer is transmitted by the network corresponding to the second RAT.
  • the third QoS parameter carried includes one or more of extended UE-AMBR, extended GBR, or extended MBR
  • the fourth QoS parameter carried includes one or more of non-extended UE-AMBR, non-extended GBR, or non-extended MBR.
  • the transceiver module 1802 is used to receive the third QoS parameter of the bearer corresponding to the first RAT on the dual connection and the fourth QoS parameter of the bearer corresponding to the second RAT on the dual connection, including:
  • the third QoS parameter includes the extended UE-AMBR, and the fourth QoS parameter carried includes the non-extended UE-AMBR, receiving the extended UE-AMBR and the non-extended UE-AMBR from the mobile management network element; wherein, The extended UE-AMBR is determined based on the extended APN-AMBR from the policy control network element, and the non-extended UE-AMBR is determined based on the non-extended APN-AMBR from the policy control network element; or, used in the bearer
  • the third QoS parameter includes the extended GBR
  • the fourth QoS parameter of the bearer includes the non-extended GBR, receiving the extended GBR and the non-extended GBR from the policy control network element; or, used for the third When the Qo
  • the transceiver module 1802 is used to send indication information, which is used to indicate that the network system supports dual connection; the transceiver module 1802 is also used to receive the first QoS parameter of the QoS flow corresponding to the first radio access technology RAT on the dual connection, And the second QoS parameter of the QoS flow corresponding to the second RAT on the dual connection; the processing module 1801 is configured to correspond to the first RAT according to the first QoS parameter when it is determined that the QoS flow is transmitted by the network corresponding to the first RAT QoS control of the QoS flow in the network; or, when it is determined that the QoS flow is transmitted by the network corresponding to the second RAT, QoS control is performed on the QoS flow in the network corresponding to the second RAT according to the second QoS parameter.
  • the first QoS parameter of the QoS flow includes the first session-AMBR, the first GBR, or the first MBR corresponding to the NR technology
  • the second QoS parameters of the QoS flow include one or more of the second session-AMBR, the second GBR, or the second MBR corresponding to the E-UTRAN technology.
  • the processing module is used to perform QoS control on the QoS flow in the network corresponding to the first RAT according to the first QoS parameter, which includes: when the first QoS parameter includes the first session-AMBR, according to the first session-AMBR, to determine the maximum aggregate bit rate of the first user equipment UE-AMBR; according to the first UE-AMBR, perform QoS control on the QoS flow in the network corresponding to the NR technology.
  • the processing module is configured to perform QoS control on the QoS flow in the network corresponding to the second RAT according to the second QoS parameter, including: when the second QoS parameter includes the second session-AMBR, according to the second session-AMBR, to determine the second UE-AMBR; according to the second UE-AMBR, to perform QoS control on the QoS flow in the network corresponding to the E-UTRAN technology.
  • the main access device 180 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and / or other devices that can provide the above functions.
  • the main access device 180 may adopt the form shown in FIG. 11.
  • the processor 1101 in FIG. 11 may call the computer stored in the memory 1103 to execute instructions, so that the master access device 180 executes the QoS control method in the foregoing method embodiment.
  • the functions / implementation processes of the transceiver module 1802 and the processing module 1801 in FIG. 18 can be implemented by the processor 1101 in FIG. 11 calling the computer execution instructions stored in the memory 1103.
  • the function / implementation process of the processing module 1801 in FIG. 18 can be implemented by the processor 1101 in FIG. 11 calling the computer execution instructions stored in the memory 1103, and the function / implementation process of the transceiver module 1802 in FIG. 11 to achieve the communication interface 1104.
  • the main access device 180 provided in this embodiment can perform the above-mentioned QoS control method, the technical effects that can be obtained can refer to the above-mentioned method embodiments, which will not be repeated here.
  • an embodiment of the present application further provides an apparatus (for example, the apparatus may be a chip system), and the apparatus includes a processor for supporting the method for the master access device to implement the above-mentioned QoS control.
  • the master access device performs QoS control on the bearer in the network corresponding to the RAT according to the second QoS parameter.
  • the device also includes a memory.
  • the memory is used to store the necessary program instructions and data of the main access device. Of course, the memory may not be in the device.
  • the device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供服务质量控制的方法、设备及系统,用于在DC场景下实现QoS控制。方法包括:分组数据网关接收指示信息和承载的标识,该指示信息用于指示该承载使用的无线接入技术RAT;分组数据网关根据该指示信息和该承载的标识,获取与该RAT对应的该承载的第一QoS参数;分组数据网关发送该第一QoS参数,该第一QoS参数用于对该RAT对应的网络中的该承载进行QoS控制。

Description

服务质量控制的方法、设备及系统
本申请要求于2018年11月19日提交国家知识产权局、申请号为201811379022.8、申请名称为“服务质量控制的方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及服务质量(Quality of Service,QoS)控制的方法、设备及系统。
背景技术
在现有网络架构中,对于非独立网(non-standalone)架构存在双连接(dual connectivity,DC)的场景。终端支持DC是指终端可以在同一时刻接入两个接入设备,这两个接入设备中一个接入设备称为主接入设备或第一接入设备,另一个接入设备称为辅接入设备或第二接入设备。在第五代移动通信系统(5th generation system,5GS)的网络架构中,终端可以同时接入两个接入设备,这两个接入设备一个是下一代节点B(next generation node B,gNB),一个是演进型基站(evolved NodeB,eNodeB或eNB),可以将5GS中的DC称为多无线接入技术双连接(multi-radio access technology dual connectivity,MR-DC)。
其中,在MR-DC场景中会存在一些扩展的QoS信息,如扩展的接入点粒度(Access Point name,APN)最大聚合比特率(per APN-aggregate maximum bit rate,APN-AMBR),扩展的保证比特率(guaranteed bit rate,GBR)或者扩展的最大比特率(maximum bit rate,MBR)等,用于支持使用新空口(new radio,NR)接入gNB进行数据传输,最高速率理论值可以达到4T比特每秒(bits per second,bps)。而若终端只使用演进通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)技术接入eNB,最高速率理论值只能达到10Gbps。
然而目前,针对上述DC场景,无法对通过eNB传输的承载或者通过gNB传输的QoS流的信息(如最大带宽等)进行调整。这样,在MR-DC场景下,高带宽用户可能会挤占其他用户的带宽,导致其他用户无法正常使用。同时反之,低带宽用户可能得不到及时的带宽提升,从而会影响用户体验。因此,如何在DC场景下如何实现QoS控制是目前亟待解决的问题。
发明内容
本申请实施例提供QoS控制的方法、设备及系统,用于在DC场景下实现QoS控制。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种服务质量QoS控制的方法,该方法包括:分组数据网关接收指示信息和承载的标识,该指示信息用于指示该承载使用的无线接入技术RAT;分组数据网关根据该指示信息和该承载的标识,获取与该RAT对应的该承载的第一QoS参数;分组数据网关发送该第一QoS参数,该第一QoS参数用于对该RAT对应的网 络中的该承载进行QoS控制。基于该方案,由于分组数据网关可以根据用于指示承载使用的RAT的指示信息和承载的标识,获取与RAT对应的承载的第一QoS参数,该第一QoS参数用于对该RAT对应的网络中的该承载进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对承载的QoS参数进行调整,因此可以为承载分配合适的QoS参数,进而使承载在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
在一种可能的设计中,分组数据网关根据该指示信息和该承载的标识,获取与该RAT对应的该承载的第一QoS参数,包括:分组数据网关根据该指示信息和该承载的标识,分配与该RAT对应的该承载的第一QoS参数。即,可以由分组数据网关分配与该RAT对应的该承载的第一QoS参数。
或者,在一种可能的设计中,分组数据网关根据该指示信息和该承载的标识,获取与该RAT对应的该承载的第一QoS参数,包括:分组数据网关向策略控制网元发送该指示信息和该承载的标识;分组数据网关接收来自该策略控制网元的与该RAT对应的该承载的第一QoS参数。即,分组数据网关可以向策略控制网元请求与该RAT对应的该承载的第一QoS参数。
在一种可能的设计中,在该指示信息用于指示该承载使用的RAT为新空口NR技术的情况下,该第一QoS参数包括扩展的接入点粒度最大聚合比特率APN-AMBR、扩展的保证比特率GBR或者扩展的最大比特率MBR中的至少一个。
该场景下,分组数据网关发送该第一QoS参数,该第一QoS参数用于对该RAT对应的网络中的该承载进行QoS控制,包括:在该第一QoS参数包括该扩展的APN-AMBR的情况下,分组数据网关将该扩展的APN-AMBR发送至移动管理网元,该扩展的APN-AMBR用于确定扩展的用户设备最大聚合比特率UE-AMBR,该扩展的UE-AMBR用于对该NR技术对应的网络中的该承载进行QoS控制;或者,在该第一QoS参数包括该扩展的GBR或该扩展的MBR的情况下,分组数据网关将该扩展的GBR或该扩展的MBR发送至主接入设备,该扩展的GBR或该扩展的MBR用于对该NR技术对应的网络中的该承载进行QoS控制。基于该方案,主接入设备可以获取相应的QoS参数,进而根据该QoS参数对该NR技术对应的网络中的该承载进行QoS控制。
在一种可能的设计中,在该指示信息用于指示该承载使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,该第一QoS参数包括非扩展的APN-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。
该场景下,分组数据网关发送该第一QoS参数,该第一QoS参数用于对该RAT对应的网络中的该承载进行QoS控制,包括:在该第一QoS参数包括该非扩展的APN-AMBR的情况下,分组数据网关将该非扩展的APN-AMBR发送至移动管理网元,该非扩展的APN-AMBR用于确定非扩展的UE-AMBR,该非扩展的UE-AMBR用于对该E-UTRAN技术对应的网络中的该承载进行QoS控制;或者,在该第一QoS参数包括该非扩展的GBR或该非扩展的MBR的情况下,分组数据网关将该非扩展的GBR或该非扩展的MBR发送至主接入设备,该非扩展的GBR或该非扩展的MBR用于对该E-UTRAN技术对应的网络中的该承载进行QoS控制。基于该方案,主接入设备可 以获取相应的QoS参数,进而根据该QoS参数对该E-UTRAN技术对应的网络中的该承载进行QoS控制。
在一种可能的设计中,该承载使用的RAT为:该承载将使用的RAT或该承载后续使用的RAT。也就是说,承载可以切换使用的RAT,此时,主接入设备可以获取该承载将使用的RAT或该承载后续使用的RAT对应的QoS参数。从而可以使承载在不同的接入设备上稳定、高效的传输。
第二方面,提供一种服务质量QoS控制的方法,该方法包括:主接入设备发送指示信息和承载的标识,该指示信息用于指示该承载使用的无线接入技术RAT;主接入设备接收与该RAT对应的该承载的第二QoS参数;主接入设备根据该第二QoS参数,对该RAT对应的网络中的该承载进行QoS控制。基于该方案,由于主接入设备可以接收与承载使用的RAT对应的该承载的第二QoS参数,并根据该第二QoS参数,对该RAT对应的网络中的该承载进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对承载的QoS参数进行调整,因此可以为承载分配合适的QoS参数,进而使承载在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
在一种可能的设计中,在该指示信息用于指示该承载使用的RAT为新空口NR技术的情况下,该第二QoS参数包括扩展的用户设备最大聚合比特率UE-AMBR、扩展的保证比特率GBR或者扩展的最大比特率MBR中的至少一个。
在一种可能的设计中,该主接入设备接收与该RAT对应的该承载的第二QoS参数,包括:在该第二QoS参数包括该扩展的UE-AMBR的情况下,该主接入设备接收来自移动管理网元的该扩展的UE-AMBR,其中,该扩展的UE-AMBR是根据来自策略控制网元的扩展的接入点粒度最大聚合比特率APN-AMBR确定的,该扩展的UE-AMBR用于对该NR技术对应的网络中的该承载进行QoS控制;或者,在该第二QoS参数包括该扩展的GBR或该扩展的MBR的情况下,该主接入设备接收来自策略控制网元的该扩展的GBR或该扩展的MBR,该扩展的GBR或该扩展的MBR用于对该NR技术对应的网络中的该承载进行QoS控制。
在一种可能的设计中,在该指示信息用于指示该承载使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,该第二QoS参数包括非扩展的UE-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。
在一种可能的设计中,该主接入设备接收与该RAT对应的该承载的第二QoS参数,包括:在该第二QoS参数包括该非扩展的UE-AMBR的情况下,该主接入设备接收来自该移动管理网元的该非扩展的UE-AMBR,其中,该非扩展的UE-AMBR是根据来自该策略控制网元的非扩展的APN-AMBR确定的,该非扩展的UE-AMBR用于对该E-UTRAN技术对应的网络中的该承载进行QoS控制;或者,在该第二QoS参数包括该非扩展的GBR或该非扩展的MBR的情况下,该主接入设备接收来自该策略控制网元的该非扩展的GBR或该非扩展的MBR,该非扩展的GBR或该非扩展的MBR用于对该E-UTRAN技术对应的网络中的该承载进行QoS控制。
在一种可能的设计中,在主接入设备发送指示信息和承载的标识之前,该方法还包括:主接入设备确定该主接入设备或辅接入设备上的承载有QoS修改需求。也就是说,本申请实施例中,主接入设备可以在确定该主接入设备或辅接入设备上的承载有 QoS修改需求的情况下,再发送指示信息和承载的标识,从而获取与RAT对应的该承载的第二QoS参数。
示例性的,该主接入设备确定该主接入设备或辅接入设备上的承载有QoS修改需求,可以包括:该主接入设备确定该辅接入设备要被释放;或者,该主接入设备确定该辅接入设备上的信号减弱至无法正常传输数据;或者,该主接入设备确定需要减少或增加该辅接入设备上传输的承载;或者,该主接入设备确定需要减少或增加该辅接入设备上传输的承载的带宽。
第三方面,提供了一种服务质量QoS控制的方法,该方法包括:会话管理网元接收指示信息和QoS流的标识,该指示信息用于指示该QoS流使用的无线接入技术RAT;会话管理网元根据该指示信息和该QoS流的标识,获取与该RAT对应的该QoS流的QoS参数;会话管理网元发送该QoS参数,该QoS参数用于对该RAT对应的网络中的该QoS流进行QoS控制。基于该方案,由于会话管理网元可以根据用于指示QoS流使用的RAT的指示信息和QoS流的标识,获取与RAT对应的QoS流的QoS参数,该QoS参数用于对RAT对应的网络中的QoS流进行QoS控制。也就是说,可以通过核心网设备对QoS流的QoS参数进行调整,进而在DC场景下实现QoS控制。因此可以为QoS流分配合适的QoS参数,进而使QoS流在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
在一种可能的设计中,该会话管理网元根据该指示信息和该QoS流的标识,获取与该RAT对应的该QoS流的QoS参数,包括:会话管理网元根据该指示信息和该QoS流的标识,分配与该RAT对应的该QoS流的QoS参数。即,可以由会话管理网元分配与该RAT对应的该QoS流的QoS参数。
在一种可能的设计中,会话管理网元根据该指示信息和该QoS流的标识,获取与该RAT对应的该QoS流的QoS参数,包括:会话管理网元向策略控制网元发送该指示信息和该QoS流的标识;会话管理网元接收来自该策略控制网元的与该RAT对应的该QoS流的QoS参数。即,会话管理网元可以向策略控制网元请求与该RAT对应的该QoS流的QoS参数。
在一种可能的设计中,在该指示信息用于指示该QoS流使用的RAT为新空口NR技术的情况下,该QoS参数包括与该NR技术对应的第一会话最大聚合比特率session-AMBR、第一保证比特率GBR或者第一最大比特率MBR中的至少一个。或者,在该指示信息用于指示该QoS流使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,该QoS参数包括与该E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的至少一个。
在一种可能的设计中,该第二session-AMBR是由该第一session-AMBR映射得到的;或者,该第二GBR是由该第一GBR映射得到的;或者,该第二MBR是由该第一MBR映射得到的。
在一种可能的设计中,该QoS流使用的RAT为:该QoS流将使用的RAT或该QoS流后续使用的RAT。也就是说,QoS流可以切换使用的RAT,此时,主接入设备可以获取该QoS流将使用的RAT或该QoS流后续使用的RAT对应的QoS参数。从而可以使QoS流在不同的接入设备上稳定、高效的传输。
第四方面,提供一种服务质量QoS控制的方法,该方法包括:主接入设备发送指示信息和QoS流的标识,所述指示信息用于指示该QoS流使用的无线接入技术RAT;主接入设备接收与该RAT对应的该QoS流的QoS参数;主接入设备根据该QoS参数,对该RAT对应的网络中的该QoS流进行QoS控制。基于该方案,由于主接入设备可以接收与该RAT对应的该QoS流的QoS参数,并根据该QoS参数,对该RAT对应的网络中的该QoS流进行QoS控制。也就是说,可以通过核心网设备对QoS流的QoS参数进行调整,进而在DC场景下实现QoS控制。因此可以为QoS流分配合适的QoS参数,进而使QoS流在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
在一种可能的设计中,在该指示信息用于指示该QoS流使用的RAT为新空口NR技术的情况下,该QoS参数包括与该NR技术对应的第一会话最大聚合比特率session-AMBR、第一保证比特率GBR或者第一最大比特率MBR中的至少一个。
该场景下,该主接入设备根据该QoS参数,对该RAT对应的网络中的该QoS流进行QoS控制,包括:在该QoS参数包括该第一session-AMBR的情况下,该主接入设备根据该第一session-AMBR,确定第一用户设备最大聚合比特率UE-AMBR;该主接入设备根据该第一UE-AMBR,对该NR技术对应的网络中的该QoS流进行QoS控制。
在一种可能的设计中,在该指示信息用于指示该QoS流使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,该QoS参数包括与该E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的至少一个。
该场景下,主接入设备根据该QoS参数,对该RAT对应的网络中的该QoS流进行QoS控制,包括:在该QoS参数包括该第二session-AMBR的情况下,主接入设备根据该第二session-AMBR,确定第二UE-AMBR;该主接入设备根据该第二UE-AMBR,对该E-UTRAN技术对应的网络中的该QoS流进行QoS控制。
在一种可能的设计中,在主接入设备发送指示信息和QoS流的标识之前,该方法还包括:主接入设备确定该主接入设备或辅接入设备上的QoS流有QoS修改需求。也就是说,本申请实施例中,主接入设备可以在确定该主接入设备或辅接入设备上的QoS流有QoS修改需求的情况下,再发送指示信息和承载的标识,从而获取与RAT对应的该QoS流的第二QoS参数。
示例性的,主接入设备确定该主接入设备或辅接入设备上的QoS流有QoS修改需求,包括:主接入设备确定该辅接入设备要被释放;或者,该主接入设备确定该辅接入设备上的信号减弱至无法正常传输数据;或者,该主接入设备确定需要减少或增加该辅接入设备上传输的QoS流;或者,该主接入设备确定需要减少或增加该辅接入设备上传输的QoS流的带宽。
第五方面,提供了一种服务质量QoS控制的方法,该方法包括:
分组数据网关获取指示信息和承载的标识,该指示信息用于指示网络系统支持双连接;分组数据网关根据该指示信息和该承载的标识,获取与该双连接上第一无线接入技术RAT对应的该承载的第一QoS参数、以及与该双连接上第二RAT对应的该承载的第二QoS参数;分组数据网关发送与该第一RAT对应的该承载的第一QoS参数、以及与该第二RAT对应的该承载的第二QoS参数,其中,该第一QoS参数用于对该 第一RAT对应的网络中的该承载进行QoS控制;该第二QoS参数用于对该第二RAT对应的网络中的该承载进行QoS控制。基于该方案,由于分组数据网关发送与该第一RAT对应的该承载的第一QoS参数、以及与该第二RAT对应的该承载的第二QoS参数,其中,该第一QoS参数用于对该第一RAT对应的网络中的该承载进行QoS控制;该第二QoS参数用于对该第二RAT对应的网络中的该承载进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对承载的QoS参数进行调整,因此可以为承载分配合适的QoS参数,进而使承载在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
在一种可能的设计中,分组数据网关根据该指示信息和该承载的标识,获取与该双连接上第一RAT对应的该承载的第一QoS参数、以及与该双连接上第二RAT对应的该承载的第二QoS参数,包括:分组数据网关根据该指示信息、该承载的标识和该终端的签约信息,分配与该双连接上第一RAT对应的该承载的第一QoS参数、以及与该双连接上第二RAT对应的该承载的第二QoS参数。即,可以由分组数据网关分配与该双连接上第一RAT对应的该承载的第一QoS参数、以及与该双连接上第二RAT对应的该承载的第二QoS参数。
在一种可能的设计中,分组数据网关根据该指示信息和该承载的标识,获取与该双连接上第一RAT对应的该承载的第一QoS参数、以及与该双连接上第二RAT对应的该承载的第二QoS参数,包括:分组数据网关向策略控制网元发送该指示信息和该承载的标识;分组数据网关接收来自该策略控制网元的与该双连接上第一RAT对应的该承载的第一QoS参数、以及与该双连接上第二RAT对应的该承载的第二QoS参数。即,分组数据网关可以向策略控制网元请求与该双连接上第一RAT对应的该承载的第一QoS参数、以及与该双连接上第二RAT对应的该承载的第二QoS参数。
在一种可能的设计中,在该第一RAT为新空口NR技术,该第二RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,该承载的第一QoS参数包括扩展的接入点粒度最大聚合比特率APN-AMBR、扩展的保证比特率GBR或者扩展的最大比特率MBR中的一个或多个;该承载的第二QoS参数包括非扩展的APN-AMBR、非扩展的GBR或者非扩展MBR中的一个或多个。
该场景下,该分组数据网关发送与该第一RAT对应的该承载的第一QoS参数、以及与该第二RAT对应的该承载的第二QoS参数,其中,该第一QoS参数用于对该第一RAT对应的网络中的该承载进行QoS控制;该第二QoS参数用于对该第二RAT对应的网络中的该承载进行QoS控制,包括:在该承载的第一QoS参数包括该扩展的APN-AMBR,该承载的第二QoS参数包括该非扩展的APN-AMBR的情况下,分组数据网关将扩展的APN-AMBR和该非扩展的APN-AMBR发送至移动管理网元,该扩展的APN-AMBR用于确定扩展的用户设备最大聚合比特率UE-AMBR,该扩展的UE-AMBR用于对该NR技术对应的网络中的该承载进行QoS控制;该非扩展的APN-AMBR用于确定非扩展的UE-AMBR,该非扩展的UE-AMBR用于对该E-UTRAN技术对应的网络中的该承载进行QoS控制;或者,在该承载的第一QoS参数包括该扩展的GBR,该承载的第二QoS参数包括该非扩展的GBR的情况下,该分组数据网关将该扩展的GBR和该非扩展的GBR发送至主接入设备,该扩展的GBR用于对该NR 技术对应的网络中的该承载进行QoS控制;该非扩展的GBR用于对该E-UTRAN技术对应的网络中的该承载进行QoS控制;或者,在该承载的第一QoS参数包括该扩展的MBR,该承载的第二QoS参数包括该非扩展的MBR的情况下,该分组数据网关将该扩展的MBR和该非扩展的MBR发送至主接入设备,该扩展的MBR用于对该NR技术对应的网络中的该承载进行QoS控制;该非扩展的MBR用于对该E-UTRAN技术对应的网络中的该承载进行QoS控制。基于该方案,主接入设备可以获取相应的QoS参数,进而可以根据相应的QoS参数对该网络中的承载进行QoS控制。
第六方面,提供了一种服务质量QoS控制的方法,该方法包括:主接入设备发送指示信息,该指示信息用于指示网络系统支持双连接;主接入设备接收与该双连接上第一无线接入技术RAT对应的承载的第三QoS参数、以及与该双连接上第二RAT对应的该承载的第四QoS参数;在该主接入设备确定该承载由该第一RAT对应的网络传输的情况下,该主接入设备根据该第三QoS参数对该第一RAT对应的网络中的该承载进行QoS控制;或者,在该主接入设备确定该承载由该第二RAT对应的网络传输的情况下,该主接入设备根据该第四QoS参数对该第二RAT对应的网络中的该承载进行QoS控制。基于该方案,由于主接入设备可以获取来自会话管理网元的与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数,并在确定承载由第一RAT对应的网络传输的情况下,根据第一QoS参数对第一RAT对应的网络中的QoS流进行QoS控制;或者,在确定承载由第二RAT对应的网络传输的情况下,根据第二QoS参数对第二RAT对应的网络中的QoS流进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对承载的QoS参数进行调整,因此可以为承载分配合适的QoS参数,进而使承载在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
在一种可能的设计中,在该第一RAT为新空口NR技术,该第二RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,该承载的第三QoS参数包括扩展的用户设备最大聚合比特率UE-AMBR、扩展的保证比特率GBR或者扩展的最大比特率MBR中的一个或多个;该承载的第四QoS参数包括非扩展的UE-AMBR、非扩展的GBR或者非扩展MBR中的一个或多个。
在一种可能的设计中,该主接入设备接收与该双连接上第一RAT对应的承载的第三QoS参数、以及与该双连接上第二RAT对应的该承载的第四QoS参数,包括:在该承载的第三QoS参数包括该扩展的UE-AMBR,该承载的第四QoS参数包括该非扩展的UE-AMBR的情况下,该主接入设备接收来自该移动管理网元的该扩展的UE-AMBR和该非扩展的UE-AMBR;其中,该扩展的UE-AMBR是根据来自策略控制网元的扩展的接入点粒度最大聚合比特率APN-AMBR确定的,该非扩展的UE-AMBR是根据来自该策略控制网元的非扩展的APN-AMBR确定的;或者,在该承载的第三QoS参数包括该扩展的GBR,该承载的第四QoS参数包括该非扩展的GBR的情况下,该主接入设备接收来自该策略控制网元的该扩展的GBR和该非扩展的GBR;或者,在该承载的第三QoS参数包括该扩展的MBR,该承载的第四QoS参数包括该非扩展的MBR的情况下,该主接入设备接收来自该策略控制网元的该扩展的MBR和该非扩展的MBR。
第七方面,提供了一种服务质量QoS控制的方法,该方法包括:会话管理网元获取指示信息和QoS流的标识,该指示信息用于指示网络系统支持双连接;会话管理网元根据该指示信息和该QoS流的标识,获取与该双连接上第一无线接入技术RAT对应的该QoS流的第一QoS参数、以及与该双连接上第二RAT对应的该QoS流的第二QoS参数;会话管理网元发送与该第一RAT对应的该QoS流的第一QoS参数、以及与该第二RAT对应的该QoS流的第二QoS参数,其中,该第一QoS参数用于对该第一RAT对应的网络中的该QoS流进行QoS控制;该第二QoS参数用于对该第二RAT对应的网络中的该QoS流进行QoS控制。基于该方案,由于会话管理网元可以发送与该第一RAT对应的该QoS流的第一QoS参数、以及与该第二RAT对应的该QoS流的第二QoS参数,其中,该第一QoS参数用于对该第一RAT对应的网络中的该QoS流进行QoS控制;该第二QoS参数用于对该第二RAT对应的网络中的该QoS流进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对QoS流的QoS参数进行调整,因此可以为QoS流分配合适的QoS参数,进而使QoS流在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
在一种可能的设计中,该会话管理网元根据该指示信息和该QoS流的标识,获取与该双连接上第一RAT对应的该QoS流的第一QoS参数、以及与该双连接上第二RAT对应的该QoS流的第二QoS参数,包括:该会话管理网元根据该指示信息、该QoS流的标识和该终端的签约信息,分配与该双连接上第一RAT对应的该QoS流的第一QoS参数、以及与该双连接上第二RAT对应的该QoS流的第二QoS参数。即,会话管理网元可以分配与该双连接上第一RAT对应的该QoS流的第一QoS参数、以及与该双连接上第二RAT对应的该QoS流的第二QoS参数。
在一种可能的设计中,会话管理网元根据该指示信息和该QoS流的标识,获取与该双连接上第一RAT对应的该QoS流的第一QoS参数、以及与该双连接上第二RAT对应的该QoS流的第二QoS参数,包括:会话管理网元向策略控制网元发送该指示信息和该QoS流的标识;会话管理网元接收来自该策略控制网元的与该双连接上第一RAT对应的该QoS流的第一QoS参数、以及与该双连接上第二RAT对应的该QoS流的第二QoS参数。即,会话管理网元可以向策略控制网元请求与该双连接上第一RAT对应的该QoS流的第一QoS参数、以及与该双连接上第二RAT对应的该QoS流的第二QoS参数。
在一种可能的设计中,在该第一RAT为新空口NR技术,该第二RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,该QoS流的第一QoS参数包括与该NR技术对应的第一会话最大聚合比特率session-AMBR、第一保证比特率GBR或者第一最大比特率MBR中的一个或多个;该QoS流的第二QoS参数包括与该E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的一个或多个。
第八方面,提供了一种服务质量QoS控制的方法,该方法包括:主接入设备发送指示信息,该指示信息用于指示网络系统支持双连接;主接入设备接收与该双连接上第一无线接入技术RAT对应的QoS流的第一QoS参数、以及与该双连接上第二RAT对应的该QoS流的第二QoS参数;在该主接入设备确定该QoS流由该第一RAT对应的网络传输的情况下,该主接入设备根据该第一QoS参数对该第一RAT对应的网络 中的该QoS流进行QoS控制;或者,在该主接入设备确定该QoS流由该第二RAT对应的网络传输的情况下,该主接入设备根据该第二QoS参数对该第二RAT对应的网络中的该QoS流进行QoS控制。基于该方案,由于主接入设备可以接收与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数,并在确定承载由第一RAT对应的网络传输的情况下,根据第一QoS参数对第一RAT对应的网络中的QoS流进行QoS控制;或者,在确定承载由第二RAT对应的网络传输的情况下,根据第二QoS参数对第二RAT对应的网络中的QoS流进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对QoS流的QoS参数进行调整,因此可以为QoS流分配合适的QoS参数,进而使QoS流在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
在一种可能的设计中,在该第一RAT为新空口NR技术,该第二RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,该QoS流的第一QoS参数包括与NR技术对应的第一会话最大聚合比特率session-AMBR、第一保证比特率GBR或者第一最大比特率MBR中的一个或多个;该QoS流的第二QoS参数包括与E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的一个或多个。
该场景下,主接入设备根据该第一QoS参数对该第一RAT对应的网络中的该QoS流进行QoS控制,包括:在该第一QoS参数包括该第一session-AMBR的情况下,主接入设备根据该第一session-AMBR,确定第一用户设备最大聚合比特率UE-AMBR;该主接入设备根据该第一UE-AMBR,对切换到该NR技术对应的网络中的该QoS流进行QoS控制。
或者,该场景下,主接入设备根据该第二QoS参数对该第二RAT对应的网络中的该QoS流进行QoS控制,包括:在该第二QoS参数包括该第二session-AMBR的情况下,该主接入设备根据该第二session-AMBR,确定第二UE-AMBR;该主接入设备根据该第二UE-AMBR,对切换到该E-UTRAN技术对应的网络中的该QoS流进行QoS控制。
第九方面,提供了一种分组数据网关,该分组数据网关具有实现上述第一方面或第五方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十方面,提供了一种分组数据网关,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该分组数据网关运行时,该处理器执行该存储器存储的该计算机执行指令,以使该分组数据网关执行如上述第一方面或第五方面中任一项所述的QoS控制的方法。
第十一方面,提供了一种分组数据网关,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第一方面或第五方面中任一项所述的QoS控制的方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或第五方面中任一项所述的QoS控制的方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时, 使得计算机可以执行上述第一方面或第五方面中任一项所述的QoS控制的方法。
第十四方面,提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持分组数据网关实现上述第一方面或第五方面中所涉及的功能,例如根据指示信息和承载的标识,获取与RAT对应的承载的第一QoS参数。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存分组数据网关必要的程序指令和数据。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第九方面至第十四方面中任一种设计方式所带来的技术效果可参见上述第一方面或第五方面中不同设计方式所带来的技术效果,此处不再赘述。
第十五方面,提供了一种会话管理网元,该会话管理网元具有实现上述第三方面或第七方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十六方面,提供了一种会话管理网元,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该会话管理网元运行时,该处理器执行该存储器存储的该计算机执行指令,以使该会话管理网元执行如上述第三方面或第七方面中任一项所述的QoS控制的方法。
第十七方面,提供了一种会话管理网元,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第三方面或第七方面中任一项所述的QoS控制的方法。
第十八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第三方面或第七方面中任一项所述的QoS控制的方法。
第十九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第三方面或第七方面中任一项所述的QoS控制的方法。
第二十方面,提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持会话管理网元实现上述第三方面或第七方面中所涉及的功能,例如根据指示信息和QoS流的标识,获取与RAT对应的QoS流的QoS参数。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存会话管理网元必要的程序指令和数据。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第十五方面至第二十方面中任一种设计方式所带来的技术效果可参见上述第三方面或第七方面中不同设计方式所带来的技术效果,此处不再赘述。
第二十一方面,提供了一种会话管理网元,该会话管理网元具有实现上述第二方面或第四方面或第六方面或第八方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第二十二方面,提供了一种会话管理网元,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该会话管理网元运行时,该处理器执行该存储器存储的该计算机执行指令,以使该会话管理网元执行如上述第二方面或第四方面或第六方面或第八方面中任一项所述的QoS控制的方法。
第二十三方面,提供了一种会话管理网元,包括:处理器;所述处理器用于与存 储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第二方面或第四方面或第六方面或第八方面中任一项所述的QoS控制的方法。
第二十四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第二方面或第四方面或第六方面或第八方面中任一项所述的QoS控制的方法。
第二十五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面或第四方面或第六方面或第八方面中任一项所述的QoS控制的方法。
第二十六方面,提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持会话管理网元实现上述第二方面或第四方面或第六方面或第八方面中所涉及的功能,例如根据第二QoS参数,对RAT对应的网络中的所述承载进行QoS控制。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存会话管理网元必要的程序指令和数据。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第二十一方面至第二十六方面中任一种设计方式所带来的技术效果可参见上述第二方面或第四方面或第六方面或第八方面中不同设计方式所带来的技术效果,此处不再赘述。
第二十七方面,提供了一种通信系统,该通信系统包括主接入设备、移动管理网元和分组数据网关;该主接入设备,用于向该移动管理网元发送指示信息和承载的标识;该指示信息用于指示承载使用的无线接入技术RAT;该移动管理网元,用于接收来自该主接入设备的该指示信息和该承载的标识,并将该指示信息和该承载的标识发送至该分组数据网关;该分组数据网关,用于接收来自该移动管理网元的该指示信息和该承载的标识,并根据该指示信息和该承载的标识,获取与该RAT对应的该承载的第一QoS参数之后,将该第一QoS参数发送至该移动管理网元;该移动管理网元,用于接收来自该分组数据网关的第一QoS参数,并向该主接入设备发送第二QoS参数;其中,该第二QoS参数与该第一QoS参数相同,或者该第二QoS参数是根据该第一QoS参数获得的;该主接入设备,用于接收来自该移动管理网元的该第二QoS参数,其中,该第二QoS参数用于对该RAT对应的网络中的该承载进行QoS控制。
其中,第二十七方面所带来的技术效果可参见第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第二十八方面,提供了一种通信系统,该通信系统包括主接入设备和会话管理网元;该主接入设备,用于将指示信息和QoS流的标识发送至会话管理网元;该指示信息用于指示QoS流使用的无线接入技术RAT;该会话管理网元,用于接收来自该主接入设备的该指示信息和该QoS流的标识,并根据该指示信息和该QoS流的标识,获取与该RAT对应的该QoS流的QoS参数之后,将该QoS参数发送至该主接入设备;该主接入设备,用于接收来自该会话管理网元的该QoS参数,其中,该QoS参数用于对该RAT对应的网络中的该QoS流进行QoS控制。
其中,第二十八方面所带来的技术效果可参见第三方面或第四方面中不同设计方式所带来的技术效果,此处不再赘述。
第二十九方面,提供了一种通信系统,该通信系统包括主接入设备、移动管理网元和分组数据网关;该主接入设备,用于向移动管理网元发送指示信息,该指示信息用于指示网络系统支持双连接;移动管理网元,用于接收来自主接入设备的指示信息,并将指示信息和承载的标识发送至分组数据网关;分组数据网关,用于接收来自移动管理网元的指示信息和承载的标识,并根据指示信息和承载的标识,获取与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数之后,将第一QoS参数和第二QoS参数发送至移动管理网元;移动管理网元,用于接收来自分组数据网关的第一QoS参数和第二QoS参数,并向主接入设备发送第三QoS参数和第四QoS参数。其中,第三QoS参数与第一QoS参数相同,或者第三QoS参数是根据第一QoS参数获得的。第四QoS参数与第二QoS参数相同,或者第四QoS参数是根据第二QoS参数获得的。主接入设备,用于接收来自移动管理网元的第三QoS参数和第四QoS参数,并在确定承载由第一RAT对应的网络传输的情况下,根据第三QoS参数对第一RAT对应的网络中的承载进行QoS控制;或者,在确定承载由第二RAT对应的网络传输的情况下,根据第四QoS参数对第二RAT对应的网络中的承载进行QoS控制。
其中,第二十九方面所带来的技术效果可参见第五方面或第六方面中不同设计方式所带来的技术效果,此处不再赘述。
第三十方面,提供了一种通信系统,该通信系统包括主接入设备和会话管理网元;该主接入设备,用于将指示信息发送至会话管理网元,该指示信息用于指示网络系统支持双连接;会话管理网元,用于接收来自主接入设备的指示信息,并根据指示信息和QoS流的标识,获取与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数之后,将第一QoS参数和第二QoS参数发送至主接入设备;主接入设备,用于接收来自会话管理网元的第一QoS参数和第二QoS参数,并在确定QoS流由第一RAT对应的网络传输的情况下,根据第一QoS参数对第一RAT对应的网络中的QoS流进行QoS控制;或者,在确定QoS流由第二RAT对应的网络传输的情况下,根据第二QoS参数对第二RAT对应的网络中的QoS流进行QoS控制。
其中,第三十方面所带来的技术效果可参见第七方面或第八方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术提供的5G非独立组网架构的部署方式示意图一;
图2为现有技术提供的5G非独立组网架构的部署方式示意图二;
图3为现有技术提供的5G非独立组网架构的部署方式示意图三;
图4为本申请实施例提供的与图1中的5G非独立组网架构对应的MR-DC架构示意图;
图5为本申请实施例提供的与图2中的5G非独立组网架构对应的MR-DC架构示意图;
图6为本申请实施例提供的与图3中的5G非独立组网架构对应的MR-DC架构示意图;
图7为本申请实施例提供的通信系统的架构示意图一;
图8为图7所示的通信系统在EPC中的应用示意图;
图9为本申请实施例提供的通信系统的架构示意图二;
图10为图9所示的通信系统在NGC中的应用示意图;
图11为本申请实施例提供的通信设备的架构示意图;
图12为本申请实施例提供的QoS控制的方法流程示意图一;
图13为本申请实施例提供的QoS控制的方法流程示意图二;
图14为本申请实施例提供的QoS控制的方法流程示意图三;
图15为本申请实施例提供的QoS控制的方法流程示意图四;
图16为本申请实施例提供的分组数据网关的结构示意图;
图17为本申请实施例提供的会话管理网元的结构示意图;
图18为本申请实施例提供的主接入设备的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
第一,GBR和非GBR(non-GBR):
GBR是指网络系统保证承载的最小比特速率,即使在网络资源紧张的情况下,相应的比特速率也能够保持。MBR参数定义了GBR承载在资源充足的条件下,能够达到的速率上限。其中,MBR的数值有可能大于或等于GBR的数值。
相反的,非GBR指的是在网络拥挤的情况下,业务(或者承载)需要承受降低速率的要求。由于非GBR承载不需要占用固定的网络资源,因而可以长时间地建立。而GBR承载一般只是在需要时才建立。
第二,APN-MMBR和终端设备(user equipment,UE)-AMBR:
其中,APN-AMBR是关于某个APN连接的、所有非GBR承载的比特速率总和的上限。UE-AMBR是关于某个UE的、所有APN连接的、所有非GBR承载的比特速率总和的上限。如APN1-AMBR就是关于APN1连接的所有非GBR承载的比特速率总和的上限,APN2-AMBR就是关于APN2连接的所有非GBR承载的比特速率总和的上限。若某个UE的所有APN连接包括上述APN1连接和APN2连接,则UE-AMBR可以等于APN2-AMBR与APN2-AMBR的和。
第三,5G非独立组网架构:
现有的5G非独立组网架构有多种部署方式,可以分为选择option3、option 4、和option7。
其中,option3包括三种类型的架构,分为option 3、option 3a、option 3x,分别如图1中的(a)、(b)和(c)所示。可以看出,option3三种架构的共同点在于:主接入设备为eNB,辅接入设备为NR节点(node);终端可以向演进的分组核心网(evolved packet core,EPC)中的核心网设备发送EPC非接入层(non-access stratum,NAS)信令;终端可以通过长期演进(long term evolution,LTE)-Uu接口与eNB通信,eNB可以通过S1-移动性管理实体(mobility management entity,MME)接口接入EPC。终端可以与NR节点通信,NR节点可以与eNB通信。区别点在于,在图1的 (a)中,eNB还可以通过S1-U接口接入EPC;在图1的(b)中,eNB和NR节点均可以通过S1-U接口接入EPC;在图1的(c)中,NR节点通过S1-U接口接入EPC。其中,这里的EPC为第四代(4th generation,4G)核心网,这里的S1-U接口为用户面接口,S-MME接口为控制面接口。
其中,option4包括两种类型的架构,分为option 4、option 4a,分别如图2中的(a)和(b)所示。可以看出,option4两种架构的共同点在于:主接入设备为NR节点,辅接入设备为演进的(evolved)eNB;终端可以通过下一代(next generation,NG)1接口与下一代核心网(NG core,NGC)中的核心网设备通信;终端可以与演进的eNB和NR节点通信;NR节点可以通过NG2接口和NG3接口接入NGC;NR节点可以与演进的eNB通信。区别点在于,在图2的(b)中,演进的eNB还可以通过NG3接口接入NGC。其中,这里的NGC为5G核心网,这里的NG2接口为控制面接口,NG3接口为用户面接口。
其中,option7包括两种类型的架构,分为option 7、option 7a,分别如图3中的(a)和(b)所示。可以看出,option7两种架构的共同点在于:主接入设备为演进的eNB,辅接入设备为NR节点;终端可以通过NG1接口与NGC中的核心网设备通信;终端可以与演进的eNB和NR节点通信;演进的eNB可以通过NG2接口和NG3接口接入NGC;NR节点可以与演进的eNB通信。区别点在于,在图3的(b)中,NR节点还可以通过NG3接口接入NGC通信。其中,这里的NGC为5G核心网,这里的NG2接口为控制面接口,NG3接口为用户面接口。
综上,非独立组网架构的不同部署方式下,主接入设备或辅接入设备与核心网设备通过不同的接口连接。
第四,MR-DC架构:
图4为本申请实施例提供的与上述option3对应的一种MR-DC架构。其中,图4中的gNB可以对应上述option3中的NR节点。在图4中,E-UTRAN中的eNB可以与EPC中的核心网设备之间存在S1接口;eNB与gNB之间存在X2接口;eNB与eNB之间存在X2接口;gNB与gNB之间存在X2-U接口。其中,这里的X2接口可以包括X2-C接口和X2-U接口,其中,X2-C接口为控制面接口,X2-U接口为用户面接口。这里的S1接口包括S1-MME接口和S1-U接口,其中,S1-MME接口为控制面接口,S1-U接口为用户面接口。此外,对于上述option 3a和option 3x,gNB与EPC中的核心网设备之间存在S1-U接口。
图5为本申请实施例提供的与上述option4对应的一种MR-DC架构。其中,图5中的gNB可以对应上述option4中的NR节点。在图5中,gNB可以与NGC中的核心网设备之间存在NG2接口或NG3接口;演进的eNB与gNB之间存在Xn接口;演进的eNB与演进的eNB之间存在Xn-U接口;gNB与gNB之间存在Xn接口。其中,这里的Xn接口可以包括Xn-U接口和Xn-C接口,其中,Xn-C接口为控制面接口,Xn-U接口为用户面接口。可选的,演进的eNB与NGC中的核心网设备之间存在NG3接口。其中,gNB为5G接入网中的主接入设备,演进的eNB为5G接入网中的辅接入设备。
图6为本申请实施例提供的与上述option7对应的一种MR-DC架构。在图6中,演进的eNB可以与NGC中的核心网设备之间存在NG2或NG3接口;演进的eNB与 gNB之间存在Xn接口;演进的eNB与演进的eNB之间存在Xn接口;gNB与gNB之间存在Xn-U接口。其中,这里的Xn接口可以包括Xn-U接口和Xn-C接口,其中,Xn-C接口为控制面接口,Xn-U接口为用户面接口。可选的,gNB与NGC中的核心网设备之间存在NG3接口。其中,演进的eNB为5G接入网中的主接入设备,gNB为5G接入网中的辅接入设备。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
现有技术中,针对DC场景,无法对通过eNB传输的承载或者通过gNB传输的QoS流的信息(如最大带宽等)进行调整。这样,在MR-DC场景下,若一个承载的带宽设置为扩展的带宽(即可以通过gNB传输),而其他承载的带宽设置为非扩展的带宽(即可以通过eNB传输)。则当通过gNB传输的信号减弱,该承载的发送速率需要减弱时,若该承载设置的带宽未修改,仍为大带宽承载,数据传输速率很高,则将导致优先级低于该承载的其他非扩展带宽承载可能会得不到任何机会收发数据。也就是说,该承载可能会挤占其他用户的带宽,导致其他用户无法正常使用。同时反之,低带宽用户可能得不到及时的带宽提升,从而会影响用户体验。为解决上述问题,本申请实施例提供如下QoS控制的方法、设备及系统,用于在DC场景下实现QoS控制。
如图7所示,为本申请实施例提供的一种通信系统70。该通信系统70包括主接入设备701、移动管理网元702和分组数据网关703。移动管理网元702和分组数据网关703之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。
其中,基于图7所示的通信系统,一种可能的实现方式中,主接入设备701,用于向移动管理网元702发送指示信息和承载的标识。该指示信息用于指示承载使用的无线接入技术(radio access technology,RAT)。
移动管理网元702,用于接收来自主接入设备701的指示信息和承载的标识,并将指示信息和承载的标识发送至分组数据网关703。
分组数据网关703,用于接收来自移动管理网元702的指示信息和承载的标识,并根据指示信息和承载的标识,获取与RAT对应的承载的第一QoS参数。
分组数据网关703,还用于将第一QoS参数发送至移动管理网元702。
移动管理网元702,用于接收来自分组数据网关703的第一QoS参数,并向主接入设备701发送第二QoS参数。其中,第二QoS参数与第一QoS参数相同,或者第二QoS参数是根据第一QoS参数获得的。
主接入设备701,用于接收来自移动管理网元702的第二QoS参数,其中,第二QoS参数用于对RAT对应的网络中的承载进行QoS控制。
基于本申请实施例提供的通信系统,由于分组数据网关可以根据用于指示承载使用的RAT的指示信息和承载的标识,获取与RAT对应的承载的第一QoS参数,该第一QoS参数或者根据该第一QoS参数获得的第二QoS参数用于对RAT对应的网络中的承载进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对承载的QoS参数进行调整,因此可以为承载分配合适的QoS参数,进而使承载在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
或者,可选的,基于图7所示的通信系统,另一种可能的实现方式中,主接入设备701,用于向移动管理网元702发送指示信息,该指示信息用于指示网络系统支持双连接。
移动管理网元702,用于接收来自主接入设备701的指示信息,并将指示信息和承载的标识发送至分组数据网关703。
分组数据网关703,用于接收来自移动管理网元702的指示信息和承载的标识,并根据指示信息和承载的标识,获取与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数之后,将第一QoS参数和第二QoS参数发送至移动管理网元702。
移动管理网元702,用于接收来自分组数据网关703的第一QoS参数和第二QoS参数,并向主接入设备701发送第三QoS参数和第四QoS参数。其中,第三QoS参数与第一QoS参数相同,或者第三QoS参数是根据第一QoS参数获得的。第四QoS参数与第二QoS参数相同,或者第四QoS参数是根据第二QoS参数获得的。
主接入设备701,用于接收来自移动管理网元702的第三QoS参数和第四QoS参数,并在确定承载由第一RAT对应的网络传输的情况下,根据第三QoS参数对第一RAT对应的网络中的承载进行QoS控制;或者,在确定承载由第二RAT对应的网络传输的情况下,根据第四QoS参数对第二RAT对应的网络中的承载进行QoS控制。
需要说明的是,本申请实施例中的双连接可以是两个RAT对应的连接或者两个以上的RAT技术对应的连接,在此统一说明,以下不再赘述。
基于本申请实施例提供的通信系统,由于主接入设备可以获取来自分组数据网关的与双连接上第一RAT对应的承载的第三QoS参数、以及与双连接上第二RAT对应的承载的第四QoS参数,并在确定承载由第一RAT对应的网络传输的情况下,根据第三QoS参数对第一RAT对应的网络中的承载进行QoS控制;或者,在确定承载由第二RAT对应的网络传输的情况下,根据第四QoS参数对第二RAT对应的网络中的承载进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对 承载的QoS参数进行调整,因此可以为承载分配合适的QoS参数,进而使承载在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
可选的,图7所示的通信系统可以应用于如图1所示的option 3架构,此时如图8所示,分组数据网关701所对应的网元或者实体可以为EPC中的分组数据网络(packet data network,PDN)网关(PDN gateway,PGW),移动管理网元702所对应的网元或者实体可以为EPC中的MME,主接入设备所对应的网元或者实体可以为option 3架构中的eNB。此外,如图8所示,EPC中还可以包括策略与计费规则功能(policy and charging rules function,PCRF)网元、服务网关(serving gateway,SGW)以及归属签约用户服务器(home subscriber server,HSS)等,具体可参考现有的EPC架构,在此不再赘述。
其中,如图8所示eNB通过S1-MME接口与MME通信,eNB通过S1-U接口与SGW通信,MME通过S11接口与SGW通信,SGW通过S5接口或S8接口与PGW通信,MME通过S6a接口与HSS通信,PGW通过Gx接口与PCRF网元通信。
当然,上述实施例仅是以图7所示的通信系统应用于如图1所示的option 3架构为例进行说明,当然,图7所示的通信系统还可以应用于其他类似的网络架构中,本申请实施例对此不作具体限定。
如图9所示,为本申请实施例提供的一种通信系统90。该通信系统90包括主接入设备901和会话管理网元902。会话管理网元902和主接入设备901之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。
其中,基于图9所示的通信系统,一种可能的实现方式中,主接入设备901,用于将指示信息和QoS流的标识发送至会话管理网元902。该指示信息用于指示QoS流使用的RAT。
会话管理网元902,用于接收来自主接入设备901的指示信息和QoS流的标识,并根据指示信息和QoS流的标识,获取与RAT对应的QoS流的QoS参数之后,将QoS参数发送至主接入设备901。
主接入设备901,用于接收来自会话管理网元902的QoS参数,其中,该QoS参数用于对RAT对应的网络中的QoS流进行QoS控制。
基于本申请实施例提供的通信系统,由于会话管理网元可以根据用于指示QoS流使用的RAT的指示信息和QoS流的标识,获取与RAT对应的QoS流的QoS参数,该QoS参数用于对RAT对应的网络中的QoS流进行QoS控制。也就是说,可以通过核心网设备对QoS流的QoS参数进行调整,进而在DC场景下实现QoS控制。因此可以为QoS流分配合适的QoS参数,进而使QoS流在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
或者,可选的,基于图9所示的通信系统,另一种可能的实现方式中,主接入设备901,用于将指示信息发送至会话管理网元902。该指示信息用于指示网络系统支持双连接。
会话管理网元902,用于接收来自主接入设备901的指示信息,并根据指示信息和QoS流的标识,获取与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数之后,将第一QoS参数和第二QoS 参数发送至主接入设备901。
主接入设备701,用于接收来自会话管理网元902的第一QoS参数和第二QoS参数,并在确定QoS流由第一RAT对应的网络传输的情况下,根据第一QoS参数对第一RAT对应的网络中的QoS流进行QoS控制;或者,在确定QoS流由第二RAT对应的网络传输的情况下,根据第二QoS参数对第二RAT对应的网络中的QoS流进行QoS控制。
基于本申请实施例提供的通信系统,由于主接入设备可以接收与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数,并在确定承载由第一RAT对应的网络传输的情况下,根据第一QoS参数对第一RAT对应的网络中的QoS流进行QoS控制;或者,在确定承载由第二RAT对应的网络传输的情况下,根据第二QoS参数对第二RAT对应的网络中的QoS流进行QoS控制。也就是说,可以在DC场景下实现QoS控制,通过核心网设备对QoS流的QoS参数进行调整,因此可以为QoS流分配合适的QoS参数,进而使QoS流在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
可选的,图9所示的通信系统可以应用于如图2所示的option 4架构或图3所示的option 7架构,此时如图10所示,会话管理网元902所对应的网元或者实体可以为NGC中的会话管理功能(session management function,SMF)网元,主接入设备所对应的网元或者实体可以为option4架构中的eNB或option 7架构中的gNB。此外,如图10所示,NGC中还可以包括接入与移动管理功能(Access and Mobility Management Function,AMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元或者统一数据管理网元(unified data management,UDM)等,具体可参考现有的NGC架构,在此不再赘述。
其中,如图10所示eNB或gNB通过NG2接口与AMF网元通信,eNB或gNB通过NG3接口与UPF网元通信,AMF网元通过NG11接口与SMF网元通信,AMF网元通过NG8接口与UDM网元通信,SMF网元通过NG4接口与UPF网元通信,SMF网元通过NG10接口与UDM网元通信,SMF网元通过NG7接口与PCF网元通信。
当然,上述实施例仅是以图9所示的通信系统应用于如图2所示的option 4架构或图3所示的option 7架构为例进行说明,当然,图9所示的通信系统还可以应用于其他类似的网络架构中,本申请实施例对此不作具体限定。
可选的,本申请实施例中所涉及到的终端(terminal)可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device)或者中继用户设备等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。为方便描述,本申请中,上面提到的设备统称为终端。
可选的,本申请实施例图7或图9中的主接入设备,图7中的分组数据网关或者图9中的会话管理网元可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例图7或图9中的主接入设备,图7中的分组数据网关或者图9中的会话管理网元可以通过图11中的通信设备来实现。图11所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备1100包括处理器1101,通信线路1102,存储器1103以及至少一个通信接口(图11中仅是示例性的以包括通信接口1104为例进行说明)。
处理器1101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路1102可包括一通路,在上述组件之间传送信息。
通信接口1104,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器1103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1102与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1103用于存储执行本申请方案的计算机执行指令,并由处理器1101来控制执行。处理器1101用于执行存储器1103中存储的计算机执行指令,从而实现本申请下述实施例提供的QoS控制的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1101可以包括一个或多个CPU,例如图11中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备1100可以包括多个处理器,例如图11中的处理器1101和处理器1108。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备1100还可以包括输出设备1105和输入设备1106。输出设备1105和处理器1101通信,可以以多种方式来显示信息。例如, 输出设备1105可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1106和处理器1101通信,可以以多种方式接收用户的输入。例如,输入设备1106可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备1100可以是一个通用设备或者是一个专用设备。在具体实现中,通信设备1100可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图11中类似结构的设备。本申请实施例不限定通信设备1100的类型。
下面将结合图1至图11对本申请实施例提供的QoS控制的方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
首先,以图7所示的通信系统应用于图1所示的option 3架构,option 3架构中的EPC如图8所示为例进行说明。如图12所示,为本申请实施例提供的一种QoS控制的方法,该QoS控制的方法包括如下步骤:
S1201、可选的,主接入设备确定主接入设备或辅接入设备上的承载有QoS修改需求。
其中,本申请实施例中的主接入设备为图1中的eNB,辅接入设备为图1中的NR节点,在此统一说明,以下不再赘述。
示例性的,本申请实施例中,主接入设备确定主接入设备或辅接入设备上的承载有QoS修改需求,例如可以包括:主接入设备确定辅接入设备要被释放;或者,主接入设备确定辅接入设备上的信号减弱至无法正常传输数据;或者,主接入设备确定需要减少或增加辅接入设备上传输的承载;或者,主接入设备确定需要减少或增加辅接入设备上传输的承载的带宽等,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中的主接入设备也可以称之为主节点(master node,MN),本申请实施例中的辅接入设备也可以称之为第二节点(secondary node,SN),本申请实施例对此不作具体限定。
S1202、主接入设备向MME发送承载修改请求1。相应的,MME接收来自主接入设备的承载修改请求1。
其中,该承载修改请求1携带指示信息和承载的标识,该指示信息用于指示承载使用的RAT。
示例性的,该指示信息例如可以是RAT类型,如NR技术或者E-UTRAN技术。
示例性的,该承载的标识例如可以是EPS承载(bearer)ID或演进的无线接入承载(evolved radio access bearer,E-RAB)ID中的至少一个。
可选的,本申请实施例中,承载使用的RAT可以为承载将使用的RAT或承载后续使用的RAT。其中,承载将使用的RAT或承载后续使用的RAT可以和承载当前使用的RAT相同,本申请实施例对此不作具体限定。
可选的,本申请实施例中的承载修改请求1还可以替换为E-RAB修改指示消息,本申请实施例对此不作具体限定。
S1203、MME向SGW发送承载修改请求2。相应的,SGW接收来自MME的承载修改请求2。
其中,该承载修改请求2携带步骤S1202中的指示信息和承载的标识。
S1204、SGW向PGW发送承载修改请求3。相应的,PGW接收来自SGW的承载修改请求3。
其中,该承载修改请求3携带步骤S1202中的指示信息和承载的标识。
S1205、PGW根据指示信息和承载的标识,获取与RAT对应的承载的第一QoS参数。
可选的,一种可能的实现方式中,PGW可以根据指示信息和承载的标识,分配与RAT对应的承载的第一QoS参数。
或者,可选的,一种可能的实现方式中,PGW可以触发IP连通性接入网(IP-connectivity access network,IP-CAN)会话修改等流程向PCRF网元请求与RAT对应的承载的第一QoS参数。比如,PGW向PCRF网元发送IP-CAN会话修改请求。相应的,PCRF网元接收来自PGW的IP-CAN会话修改请求。其中,该IP-CAN会话修改请求包括该指示信息和该承载的标识,请求PCRF网元分配与RAT对应的承载的第一QoS参数。进而,PCRF网元根据指示信息和承载的标识,分配与RAT对应的承载的第一QoS参数之后,可以向PGW发送该第一QoS参数。相应的,PGW接收来自PCRF网元的第一QoS参数。
可选的,本申请实施例中,在指示信息用于指示承载使用的RAT为NR技术的情况下,第一QoS参数包括扩展的APN-AMBR、扩展的GBR或者扩展的MBR中的至少一个。
或者,可选的,本申请实施例中,在指示信息用于指示承载使用的RAT为E-UTRAN技术的情况下,第一QoS参数包括非扩展的APN-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。其中,这里非扩展的APN-AMBR即是现有的APN-AMBR,非扩展的GBR即是现有的GBR,非扩展MBR即是现有的MBR,使用非扩展进行描述仅是为了与上述的扩展的予以区分,在此统一说明,以下不再赘述。
可选的,本申请实施例中,PGW获取与RAT对应的承载的第一QoS参数之后,还可以更新PGW上该承载对应的QoS参数,本申请实施例对此不作具体限定。
S1206、PGW向SGW发送承载修改响应3。相应的,SGW接收来自PGW的承载修改响应3。
其中,该承载修改响应3携带第一QoS参数。
S1207、SGW向MME发送承载修改响应2。相应的,MME接收来自SGW的承载修改响应2。
其中,该承载修改响应2携带第一QoS参数。
S1208、可选的,MME根据第一QoS参数,确定第二QoS参数。
示例性的,若第一QoS参数中包括扩展的APN-AMBR,则MME可以根据第一QoS参数中包括的扩展的APN-AMBR,结合之前流程(比如终端的附着流程)中从HSS获取的签约信息中的扩展的签约的UE-AMBR,确定出合适的扩展的UE-AMBR,进而第二QoS参数中包括扩展的UE-AMBR。
或者,示例性的,若第一QoS参数中包括非扩展的APN-AMBR,则MME可以根据第一QoS参数中包括的非扩展的APN-AMBR,结合之前流程(比如终端的附着流程)中从HSS获取的签约信息中的非扩展的签约的UE-AMBR,确定出合适的非扩展的UE-AMBR,进而第二QoS参数中包括非扩展的UE-AMBR。
S1209、MME向主接入设备发送承载修改响应1。相应的,主接入设备接收来自MME的承载修改响应1。
其中,该承载修改响应1中包括第二QoS参数,该第二QoS参数可以与上述的第一QoS参数相同,也可以与上述的第一QoS参数不同。
示例性的,本申请实施例中,在指示信息用于指示承载使用的RAT为NR技术的情况下,第二QoS参数包括扩展的UE-AMBR、扩展的GBR或者扩展的MBR中的至少一个。其中,扩展的UE-AMBR是通过上述步骤S1208获取的。扩展的GBR即为第一QoS参数中的扩展的GBR;或者,扩展的MBR即为第一QoS参数中的扩展的MBR。
或者,示例性的,本申请实施例中,在指示信息用于指示承载使用的RAT为E-UTRAN技术的情况下,第二QoS参数包括非扩展的UE-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。其中,非扩展的UE-AMBR是通过上述步骤S1208获取的。非扩展的GBR即为第一QoS参数中的非扩展的GBR;或者,非扩展的MBR即为第一QoS参数中的非扩展的MBR。
S1210、主接入设备根据第二QoS参数,对RAT对应的网络中的承载进行QoS控制。
其中,步骤S1210的具体实现可参考现有的根据QoS参数对承载进行QoS控制的方式,在此不予赘述。
S1211、可选的,主接入设备向终端发送无线资源控制(radio resource control,RRC)连接重配置消息。相应的,终端接收来自主接入设备的RRC连接重配置消息。
其中,该RRC连接重配置消息携带第二QoS参数,用于终端对承载进行QoS控制。
基于本申请实施例提供的QoS控制的方法,可以在DC场景下实现QoS控制,通过核心网设备对承载的QoS参数进行调整,可以为承载分配合适的QoS参数,进而使承载在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
其中,上述步骤S1201至S1211中的主接入设备或者PGW的动作可以由图11所示的通信设备1100中的处理器1101调用存储器1103中存储的应用程序代码来执行,本实施例对此不作任何限制。
或者,可选的,以图9所示的通信系统应用于图2所示的option 4或图3所示的option 7架构,option 4架构或option 7架构中的NGC如图10所示为例进行说明。如图13所示,为本申请实施例提供的一种QoS控制的方法,该QoS控制的方法包括如下步骤:
S1301、可选的,主接入设备确定主接入设备或辅接入设备上的QoS流有QoS修改需求。
其中,本申请实施例中的主接入设备可以为图2中的NR节点,辅接入设备可以 为图2中的演进的eNB;或者,主接入设备可以为图3中的演进的eNB,辅接入设备可以为图3中的NR节点,在此统一说明,以下不再赘述。
示例性的,本申请实施例中,主接入设备确定主接入设备或辅接入设备上的QoS流有QoS修改需求,例如可以包括:主接入设备确定辅接入设备要被释放;或者,主接入设备确定辅接入设备上的信号减弱至无法正常传输数据;或者,主接入设备确定需要减少或增加辅接入设备上传输的QoS流;或者,主接入设备确定需要减少或增加辅接入设备上传输的QoS流的带宽等,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中的主接入设备也可以称之为MN,本申请实施例中的辅接入设备也可以称之为SN,本申请实施例对此不作具体限定。
S1302、主接入设备向AMF网元发送QoS流移动性指示消息。相应的,AMF网元接收来自主接入设备的QoS流移动性指示消息。
其中,该QoS流移动性指示消息携带指示信息和QoS流的标识,该指示信息用于指示QoS流使用的RAT。
示例性的,该指示信息例如可以是RAT类型,如NR技术或者E-UTRAN技术。
示例性的,该QoS流的标识例如可以是QoS流标识(QoS flow identifier,QFI)。
可选的,本申请实施例中,QoS流移动性指示消息还可以包括PDU会话标识(PDU session ID),本申请实施例对此不作具体限定。
可选的,本申请实施例中,QoS流使用的RAT可以为QoS流将使用的RAT或QoS流后续使用的RAT。其中,QoS流将使用的RAT或QoS流后续使用的RAT可以和QoS流当前使用的RAT相同,本申请实施例对此不作具体限定。
S1303、AMF网元向SMF网元发送更新(update)SM上下文请求。相应的,SMF网元接收来自AMF网元的更新SM上下文请求。
其中,该更新SM上下文请求中包括步骤S1302中的指示信息和QoS流的标识。
可选的,若步骤S1302中的QoS流移动性指示消息还包括PDU会话标识,则该更新SM上下文请求中还可以包括PDU会话标识,本申请实施例对此不作具体限定。
S1304、SMF网元根据指示信息和QoS流的标识,获取与RAT对应的QoS流的QoS参数。
可选的,一种可能的实现方式中,SMF网元可以根据指示信息和QoS流的标识,分配与RAT对应的QoS流的QoS参数。
或者,可选的,一种可能的实现方式中,SMF网元可以触发SM策略关联等流程向PCF网元请求与RAT对应的QoS流的QoS参数。比如,SMF网元向PCF网元发送SM策略修改请求。相应的,PCF网元接收来自SMF网元的SM策略修改请求。其中,该SM策略修改请求包括该指示信息和该QoS流的标识,请求PCF网元分配与RAT对应的QoS流的QoS参数。进而,PCF网元根据指示信息和QoS流的标识,分配与RAT对应的QoS流的QoS参数之后,可以向SMF网元发送该QoS参数。相应的,SMF网元接收来自PCF网元的QoS参数。
可选的,本申请实施例中,在指示信息用于指示QoS流使用的RAT为NR技术的情况下,QoS参数包括与NR技术对应的第一会话最大聚合比特率session-AMBR、第一GBR或者第一MBR中的至少一个。
或者,可选的,本申请实施例中,在指示信息用于指示QoS流使用的RAT为E-UTRAN技术的情况下,QoS参数包括与E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的至少一个。
可选的,本申请实施例中,第二session-AMBR可以是由第一session-AMBR映射得到的;或者,第二GBR可以是由第一GBR映射得到的;或者,第二MBR可以是由第一MBR映射得到的,本申请实施例对此不作具体限定。
可选的,本申请实施例中,SMF网元获取与RAT对应的QoS流的QoS参数之后,还可以更新SMF网元上该QoS流对应的QoS参数,本申请实施例对此不作具体限定。
S1305、SMF网元与UPF网元进行N4会话修改,用于获取用户面隧道。
S1306、SMF网元向AMF网元发送更新SM上下文响应。相应的,AMF网元接收来自SMF网元的更新SM上下文响应。
其中,该更新SM上下文响应携带上述QoS参数。
S1307、AMF网元向主接入设备发送QoS流移动性确认。相应的,主接入设备接收来自AMF网元的QoS流移动性确认。
其中,该QoS流移动性确认响应携带上述QoS参数。
S1308、主接入设备根据QoS参数,对RAT对应的网络中的QoS流进行QoS控制。
可选的,本申请实施例中,在QoS参数包括第一session-AMBR的情况下,主接入设备可以根据第一session-AMBR,确定第一UE-AMBR;进而根据第一UE-AMBR,对NR技术对应的网络中的QoS流进行QoS控制。
或者,可选的,本申请实施例中,在QoS参数包括第二session-AMBR的情况下,主接入设备可以根据第二session-AMBR,确定第二UE-AMBR;进而根据第二UE-AMBR,对E-UTRAN技术对应的网络中的QoS流进行QoS控制。
其中,主接入设备根据第一UE-AMBR、第一GBR或者第一MBR中的至少一个对NR技术对应的网络中的QoS流进行QoS控制的方式或者主接入设备根据第二UE-AMBR、第二GBR或者第二MBR中的至少一个对E-UTRAN技术对应的网络中的QoS流进行QoS控制的方式可参考现有的实现方式,在此不再赘述。
S1309、可选的,主接入设备向终端发送RRC连接重配置消息。相应的,终端接收来自主接入设备的RRC连接重配置消息。
其中,本申请实施例中,在指示信息用于指示QoS流使用的RAT为NR技术的情况下,该RRC连接重配置消息携带第一UE-AMBR、第一GBR或者第一MBR中的至少一个,用于建立与该第二QoS参数关联的NG-RAN资源;
或者,本申请实施例中,在指示信息用于指示QoS流使用的RAT为E-UTRAN技术的情况下,该RRC连接重配置消息携带第二UE-AMBR、第二GBR或者第二MBR中的至少一个,用于建立与该第二QoS参数关联的NG-RAN资源。
基于本申请实施例提供的QoS控制的方法,可以在DC场景下实现QoS控制,通过核心网设备对QoS流的QoS参数进行调整,可以为QoS流分配合适的QoS参数,进而使QoS流在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
其中,上述步骤S1301至S1309中的主接入设备或者SMF网元的动作可以由图 11所示的通信设备1100中的处理器1101调用存储器1103中存储的应用程序代码来执行,本实施例对此不作任何限制。
或者,可选的,以图7所示的通信系统应用于图1所示的option 3架构,option 3架构中的EPC如图8所示为例进行说明。如图14所示,为本申请实施例提供的一种QoS控制的方法,该QoS控制的方法包括如下步骤:
S1401、终端向主接入设备发送请求消息1。相应的,主接入设备接收来自终端的请求消息1。
其中,本申请实施例中的主接入设备为图1中的eNB,辅接入设备为图1中的NR节点,在此统一说明,以下不再赘述。
可选的,该请求消息1例如可以是附着流程中的附着请求消息1,或者PDN连接建立流程中的PDN连接建立请求消息1,或者跟踪区更新(tracking area update,TAU)流程中的TAU请求消息1等,本申请实施例对此不作具体限定。其中,上述附着流程或PDN连接建立流程或TAU流程可能涉及承载的修改。
需要说明的是,本申请实施例中的主接入设备也可以MN,本申请实施例中的辅接入设备也可以称之为SN,本申请实施例对此不作具体限定。
S1402、主接入设备向MME发送请求消息2。相应的,MME接收来自主接入设备的请求消息2。
其中,该请求消息2携带指示信息,该指示信息用于指示网络系统支持双连接。
示例性的,该指示信息例如可以是NR技术和E-UTRAN技术;或者,该指示信息例如可以是E-UTRAN with NR;或者,该指示信息例如可以是NR with E-UTRAN,等,本申请实施例对此不作具体限定。
可选的,该请求消息2例如可以是附着流程中的附着请求消息2,或者PDN连接建立流程中的PDN连接建立请求消息2,或者TAU流程中的TAU请求消息2等,本申请实施例对此不作具体限定。
S1403、可选的,MME从HSS获取终端的签约信息。
其中,该签约信息中包含了签约的UE-AMBR,签约的UE-AMBR中可以包括扩展的签约的UE-AMBR和非扩展的签约的UE-AMBR。
可选的,该签约信息信息中还可以包括签约的APN-AMBR,签约的APN-AMBR中可以包括扩展的签约的APN-AMBR和非扩展签约的APN-AMBR。
需要说明的是,步骤S1403对于PDN连接建立流程是没有的,因为在PDN连接建立流程中,MME已在之前已执行的流程,比如注册流程等,获取到了终端的签约信息,在此统一说明,以下不再赘述。
S1404、MME向SGW发送请求消息3。相应的,SGW接收来自MME的请求消息3。
其中,该请求消息3包括MME分配的承载的标识和上述的指示信息。
可选的,上述承载的标识可以和终端的签约信息一起包含在终端的上下文中通过上述请求消息3发送给SGW,本申请实施例对此不作具体限定。
示例性的,该承载的标识例如可以是EPS承载(bearer)ID或E-RAB ID中的至少一个。
可选的,该请求消息3例如可以是建立会话请求1或承载修改请求1,本申请实施例对此不作具体限定。
S1405、SGW向PGW发送请求消息4。相应的,PGW接收来自SGW的请求消息4。
其中,该请求消息4包括上述承载的标识和上述的指示信息。
可选的,上述承载的标识可以和终端的签约信息一起包含在终端的上下文中通过上述请求消息4发送给PGW,本申请实施例对此不作具体限定。
可选的,若上述步骤S1404中的请求消息3为建立会话请求1,则步骤S1405中的请求消息4可以为建立会话请求2;或者,若上述步骤S1404中的请求消息3为承载修改请求1,则步骤S1405中的请求消息4可以为承载修改请求2,本申请实施例对此不作具体限定。
S1406、PGW根据指示信息和承载的标识,获取与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数。
可选的,一种可能的实现方式中,PGW可以根据指示信息和承载的标识,结合SGW发送的终端的签约信息,分配与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数。
或者,可选的,一种可能的实现方式中,PGW可以触发IP-CAN会话修改流程向PCRF网元请求与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数。比如,PGW向PCRF网元发送IP-CAN会话建立或IP-CAN会话修改请求。相应的,PCRF网元接收来自PGW的IP-CAN会话建立或IP-CAN会话修改请求。其中,IP-CAN会话建立或IP-CAN会话修改请求包括该指示信息和该承载的标识,请求PCRF网元分配与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数。进而,PCRF网元可以根据指示信息和承载的标识,结合PCRF网元从签约数据库(subscription profile repository,SPR)中获取的终端的签约信息,分配与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数之后,向PGW发送第一QoS参数和第二QoS参数。相应的,PGW接收来自PCRF网元的第一QoS参数和第二QoS参数。
可选的,本申请实施例中,在第一RAT为NR技术,第二RAT为E-UTRAN技术的情况下,承载的第一QoS参数包括扩展的APN-AMBR、扩展的GBR或者扩展的中的至少一个;承载的第二QoS参数包括非扩展的APN-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。其中,这里非扩展的APN-AMBR即是现有的APN-AMBR,非扩展的GBR即是现有的GBR,非扩展MBR即是现有的MBR,使用非扩展进行描述仅是为了与上述的扩展的予以区分,在此统一说明,以下不再赘述。
可选的,本申请实施例中,PGW获取与第一RAT对应的承载的第一QoS参数之后,还可以更新PGW上该承载对应的与第一RAT对应的承载的QoS参数;以及,PGW获取与第二RAT对应的承载的第二QoS参数之后,还可以更新PGW上该承载对应的与第二RAT对应的承载的第二QoS参数,本申请实施例对此不作具体限定。
可选的,本申请实施例中,若上述签约信息信息中包括签约的APN-AMBR。此时 PGW在获取扩展的APN-AMBR时,可以结合扩展的签约的APN-AMBR获取;或者,PGW在获取非扩展的APN-AMBR时,可以结合非扩展的签约的APN-AMBR获取,本申请实施例对此不作具体限定。
S1407、PGW向SGW发送响应消息4。相应的,SGW接收来自PGW的响应消息4。
其中,该响应消息4携带第一QoS参数和第二QoS参数。
可选的,若上述步骤S1405中的请求消息4为建立会话请求2,则步骤S1407中的响应消息4可以为建立会话响应2。或者,若上述步骤S1405中的请求消息4为承载修改请求2,则步骤S1407中的响应消息4可以为承载修改响应2,本申请实施例对此不作具体限定。
S1408、SGW向MME发送响应消息3。相应的,MME接收来自SGW的响应消息3。
其中,该响应消息3携带第一QoS参数和第二QoS参数。
可选的,若上述步骤S1404中的请求消息3为建立会话请求1,则步骤S1408中的响应消息3可以为建立会话响应1。或者,若上述步骤S1404中的请求消息3为承载修改请求1,则步骤S1408中的响应消息3可以为承载修改响应1,本申请实施例对此不作具体限定。
S1409、可选的,MME根据第一QoS参数,确定第三QoS参数;以及,MME根据第二QoS参数,确定第四QoS参数。
示例性的,若第一QoS参数中包括扩展的APN-AMBR,则MME可以根据第一QoS参数中包括的扩展的APN-AMBR,结合从HSS获取的签约信息中的扩展的签约的UE-AMBR,确定出合适的扩展的UE-AMBR,进而第三QoS参数中包括扩展的UE-AMBR。
或者,示例性的,若第二QoS参数中包括非扩展的APN-AMBR,则MME可以根据第二QoS参数中包括的非扩展的APN-AMBR,结合从HSS获取的签约信息中的非扩展的签约的UE-AMBR,确定出合适的非扩展的UE-AMBR,进而第四QoS参数中包括非扩展的UE-AMBR。
S1410、MME向主接入设备发送响应消息2。相应的,主接入设备接收来自MME的响应消息2。
其中,该响应消息2中包括第三QoS参数和第四QoS参数。该第三QoS参数可以与上述的第一QoS参数相同,也可以与上述的第一QoS参数不同;该第四QoS参数可以与上述的第二QoS参数相同,也可以与上述的第二QoS参数不同。
示例性的,在第一RAT为NR技术,第二RAT为E-UTRAN技术的情况下,承载的第三QoS参数包括扩展的UE-AMBR、扩展的GBR或者扩展的中的至少一个;承载的第四QoS参数包括非扩展的UE-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。
可选的,若步骤S1402中的请求消息2为附着请求消息2,则步骤S1410中的响应消息2为附着响应消息2;或者,若步骤S1402中的请求消息2为PDN连接建立请求消息2,则步骤S1410中的响应消息2为PDN连接建立响应消息2;或者,若步骤 S1402中的请求消息2为TAU请求消息2,则步骤S1410中的响应消息2为TAU响应消息2,本申请实施例对此不作具体限定。
S1411、主接入设备根据第一QoS参数和第二QoS参数,对承载进行QoS控制。
具体的,主接入设备可以根据承载由第一RAT对应的网络传输还是由第二RAT对应的网络传输确定使用第三QoS参数和第四QoS参数。其中,在主接入设备确定承载由第一RAT对应的网络传输的情况下,主接入设备根据第三QoS参数对第一RAT对应的网络中的承载进行QoS控制;或者,在主接入设备确定承载由第二RAT对应的网络传输的情况下,主接入设备根据第四QoS参数对第二RAT对应的网络中的承载进行QoS控制。
比如,在第一RAT为NR技术,第二RAT为E-UTRAN技术的情况下,若主接入设备确定承载由NR技术对应的网络传输,则主接入设备可以根据扩展的UE-AMBR、扩展的GBR或者扩展的中的至少一个对NR技术对应的网络中的承载进行QoS控制,即其带宽即为扩展的带宽;或者,若主接入设备确定承载由E-UTRAN技术对应的网络传输,则主接入设备可以根据非扩展的UE-AMBR、非扩展的GBR或者非扩展的中的至少一个对E-UTRAN技术对应的网络中的承载进行QoS控制,即其带宽即为非扩展的带宽。
可选的,本申请实施例中,主接入设备也可以将第三QoS参数和第四QoS参数通过X2接口发送至辅接入设备,使辅接入设备根据第三QoS参数和第四QoS参数,对承载进行QoS控制。其中,辅接入设备根据第三QoS参数和第四QoS参数,对承载进行QoS控制的方式与上述主接入设备根据第三QoS参数和第四QoS参数,对承载进行QoS控制的方式类似,在此不再赘述。
S1412、主接入设备向终端发送响应消息1。相应的,终端接收来自主接入设备的响应消息1。
其中,该响应消息1中包括上述第三QoS参数和第四QoS参数,用于终端对承载进行QoS控制。
可选的,若步骤S1401中的请求消息1为附着请求消息1,则步骤S1412中的响应消息1为附着响应消息1;或者,若步骤S1401中的请求消息1为PDN连接建立请求消息1,则步骤S1412中的响应消息1为PDN连接建立响应消息1;或者,若步骤S1401中的请求消息1为TAU请求消息1,则步骤S1412中的响应消息1为TAU响应消息1,本申请实施例对此不作具体限定。
基于本申请实施例提供的QoS控制的方法,可以在DC场景下实现QoS控制,通过核心网设备对承载的QoS参数进行调整,可以为承载分配合适的QoS参数,进而使承载在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
其中,上述步骤S1401至S1412中的主接入设备或者PGW的动作可以由图11所示的通信设备1100中的处理器1101调用存储器1103中存储的应用程序代码来执行,本实施例对此不作任何限制。
或者,可选的,以图9所示的通信系统应用于图2所示的option 4或图3所示的option 7架构,option 4架构或option 7架构中的NGC如图10所示为例进行说明。如图15所示,为本申请实施例提供的一种QoS控制的方法,该QoS控制的方法包括如 下步骤:
S1501、终端向主接入设备发送PDU会话建立请求1。相应的,主接入设备接收来自终端的PDU会话建立请求1。
其中,本申请实施例中的主接入设备可以为图2中的NR节点,辅接入设备可以为图2中的演进的eNB;或者,主接入设备可以为图3中的演进的eNB,辅接入设备可以为图3中的NR节点,在此统一说明,以下不再赘述。
需要说明的是,本实施例的方案可以适用于多个流程,如PDU会话建立流程或服务请求(service request)流程等,图15中仅是示例性的以PDU会话建立流程为例进行说明,SR流程可参考图15所示的实施例,区别比如在于PDU会话建立流程与服务请求流程在消息或步骤上有所差别,在此不再赘述。
需要说明的是,本申请实施例中的主接入设备也可以MN,本申请实施例中的辅接入设备也可以称之为SN,本申请实施例对此不作具体限定。
S1502、主接入设备向AMF网元发送PDU会话建立请求2。相应的,AMF网元接收来自主接入设备的PDU会话建立请求2。
其中,该PDU会话建立请求2携带指示信息,该指示信息用于指示网络系统支持双连接。
其中,指示信息的相关描述可参考上述步骤S1402,在此不再赘述。
S1503、AMF网元向SMF网元发送更新(update)SM上下文请求。相应的,SMF网元接收来自AMF网元的更新SM上下文请求。
其中,该更新SM上下文请求中包括上述的指示信息。
可选的,该更新SM上下文请求中还可以包括QoS流的标识,该QoS流的标识例如可以为QFI,本申请实施例对此不作具体限定。
S1504、可选的,SMF网元从UDM网元获取终端的签约信息。
其中,该签约信息中包含了签约的QoS参数,如签约的session-AMBR、签约的GBR或者签约的MBR中的至少一个。其中,该签约的session-AMBR例如可以包括与第一RAT对应的签约的session-AMBR,以及与第二RAT对应的签约的session-AMBR。
S1505、SMF网元根据指示信息和QoS流的标识,获取与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数。
其中,这里的QoS流的标识可以是AMF网元发送给SMF网元的,也可以是SMF网元自己生成的,本申请实施例对此不作具体限定。
可选的,一种可能的实现方式中,SMF网元可以根据指示信息和QoS流的标识,结合从UDM网元获取的终端的签约信息,分配与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数。
或者,可选的,一种可能的实现方式中,SMF网元可以触发SM策略关联流程向PCF网元请求与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数。SMF网元向PCF网元发送SM策略修改请求。相应的,PCF网元接收来自SMF网元的SM策略修改请求。其中,该SM策略修改请求包括该指示信息和该QoS流的标识,请求PCF网元分配与双连接上第一RAT 对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数。进而,PCF网元可以根据指示信息和QoS流的标识,结合PCF网元从统一数据库(unified data repository,UDR)网元中获取的终端的签约信息,分配与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数之后,向SMF网元发送第一QoS参数和第二QoS参数。相应的,PGW接收来自PCRF网元的第一QoS参数和第二QoS参数。
可选的,本申请实施例中,在第一RAT为NR技术,第二RAT为E-UTRAN技术的情况下,QoS流的第一QoS参数包括与NR技术对应的第一session-AMBR、第一GBR或者第一MBR中的至少一个;QoS流的第二QoS参数包括与E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的至少一个。
可选的,本申请实施例中,SMF网元获取与第一RAT对应的QoS流的第一QoS参数之后,还可以更新SMF网元上该QoS流对应的与第一RAT对应的QoS流的QoS参数;以及,SMF网元获取与第二RAT对应的QoS流的第二QoS参数之后,还可以更新SMF网元上该QoS流对应的与第二RAT对应的QoS流的第二QoS参数,本申请实施例对此不作具体限定。
S1506、SMF网元与UPF网元进行N4会话修改,用于获取用户面隧道。
S1507、SMF网元向AMF网元发送更新SM上下文响应。相应的,AMF网元接收来自SMF网元的更新SM上下文响应。
其中,该更新SM上下文响应携带上述第一QoS参数和第二QoS参数。
S1508、AMF网元向主接入设备发送PDU会话建立响应2。相应的,主接入设备接收来自AMF网元的PDU会话建立响应2。
其中,该PDU会话建立响应2携带上述第一QoS参数和第二QoS参数。
S1509、主接入设备根据QoS参数,对RAT对应的网络中的QoS流进行QoS控制。
可选的,本申请实施例中,在第一QoS参数包括第一session-AMBR,第二QoS参数包括第二session-AMBR的情况下,主接入设备可以根据第一session-AMBR,确定第一UE-AMBR,可以根据第二session-AMBR,确定第二UE-AMBR。
具体的,主接入设备可以根据QoS流由第一RAT对应的网络传输还是由第二RAT对应的网络传输确定使用第一UE-AMBR、第一GBR或者第一MBR中的至少一个或者使用第二UE-AMBR、第二GBR或者第二MBR中的至少一个。其中,在主接入设备确定QoS流由第一RAT对应的网络传输的情况下,主接入设备根据第一UE-AMBR、第一GBR或者第一MBR中的至少一个对第一RAT对应的网络中的QoS流进行QoS控制;或者,在主接入设备确定QoS流由第二RAT对应的网络传输的情况下,主接入设备根据第二UE-AMBR、第二GBR或者第二MBR中的至少一个对第二RAT对应的网络中的QoS流进行QoS控制。
比如,在第一RAT为NR技术,第二RAT为E-UTRAN技术的情况下,若主接入设备确定QoS流由NR技术对应的网络传输,则主接入设备可以根据第一UE-AMBR、第一GBR或者第一MBR中的至少一个对NR技术对应的网络中的QoS流进行QoS控制;或者,若主接入设备确定QoS流由E-UTRAN技术对应的网络传输,则主接入 设备可以根据第二UE-AMBR、第二GBR或者第二MBR中的至少一个对E-UTRAN技术对应的网络中的QoS流进行QoS控制。
其中,主接入设备根据第一UE-AMBR、第一GBR或者第一MBR中的至少一个对NR技术对应的网络中的QoS流进行QoS控制的方式或者主接入设备根据第二UE-AMBR、第二GBR或者第二MBR中的至少一个对E-UTRAN技术对应的网络中的QoS流进行QoS控制的方式可参考现有的实现方式,在此不再赘述。
可选的,本申请实施例中,主接入设备也可以将第一QoS参数和第二QoS参数通过X2接口发送至辅接入设备,使辅接入设备根据第一QoS参数和第二QoS参数,对QoS流进行QoS控制。其中,辅接入设备根据第一QoS参数和第二QoS参数,对QoS流进行QoS控制的方式与可参考上述主接入设备根据第一QoS参数和第二QoS参数,对QoS流进行QoS控制的方式,在此不再赘述。
S1510、主接入设备向终端发送PDU会话建立响应1。相应的,终端接收来自主接入设备的PDU会话建立响应1。
其中,该PDU会话建立响应包括上述第一QoS参数和第二QoS参数,用于建立与该第一QoS参数或该第二QoS参数关联的NG-RAN资源。
基于本申请实施例提供的QoS控制的方法,可以在DC场景下实现QoS控制,通过核心网设备对QoS流的QoS参数进行调整,可以为QoS流分配合适的QoS参数,进而使QoS流在不同的接入设备上稳定、高效的传输,从而可以保证用户体验。
其中,上述步骤S1501至S1510中的主接入设备或者SMF网元的动作可以由图11所示的通信设备1100中的处理器1101调用存储器1103中存储的应用程序代码来执行,本实施例对此不作任何限制。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述主接入设备或分组数据网关或会话管理网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对主接入设备或分组数据网关或会话管理网元进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图16示出了一种分组数据网关160的结构示意图。该分组数据网关160包括收发模块1602和处理模块1601。
一种可能的实现方式中:
收发模块1602,用于接收指示信息和承载的标识,指示信息用于指示承载使用的RAT;处理模块1601,用于根据指示信息和承载的标识,获取与RAT对应的承载的 第一QoS参数。收发模块1602,还用于发送第一QoS参数,第一QoS参数用于对RAT对应的网络中的承载进行QoS控制。
可选的,处理模块1601具体用于:根据指示信息和承载的标识,分配与RAT对应的承载的第一QoS参数。或者,处理模块1601具体用于:向策略控制网元发送指示信息和承载的标识;接收来自策略控制网元的与RAT对应的承载的第一QoS参数。
可选的,在指示信息用于指示承载使用的RAT为NR技术的情况下,第一QoS参数包括扩展的APN-AMBR、扩展的GBR或者扩展的MBR中的至少一个。
该场景下,收发模块1602用于发送第一QoS参数,第一QoS参数用于对RAT对应的网络中的承载进行QoS控制,包括:用于在第一QoS参数包括扩展的APN-AMBR的情况下,将扩展的APN-AMBR发送至移动管理网元,扩展的APN-AMBR用于确定扩展的UE-AMBR,扩展的UE-AMBR用于对NR技术对应的网络中的承载进行QoS控制;或者,用于在第一QoS参数包括扩展的GBR或扩展的MBR的情况下,将扩展的GBR或扩展的MBR发送至主接入设备,扩展的GBR或扩展的MBR用于对NR技术对应的网络中的承载进行QoS控制。
可选的,在指示信息用于指示承载使用的RAT为E-UTRAN技术的情况下,第一QoS参数包括非扩展的APN-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。
该场景下,收发模块1602用于发送第一QoS参数,第一QoS参数用于对RAT对应的网络中的承载进行QoS控制,包括:用于在第一QoS参数包括非扩展的APN-AMBR的情况下,将非扩展的APN-AMBR发送至移动管理网元,非扩展的APN-AMBR用于确定非扩展的UE-AMBR,非扩展的UE-AMBR用于对E-UTRAN技术对应的网络中的承载进行QoS控制。或者,用于在第一QoS参数包括非扩展的GBR或非扩展的MBR的情况下,将非扩展的GBR或非扩展的MBR发送至主接入设备,非扩展的GBR或非扩展的MBR用于对E-UTRAN技术对应的网络中的承载进行QoS控制。
另一种可能的实现方式中:
处理模块1601,用于获取指示信息和承载的标识,指示信息用于指示网络系统支持双连接。处理模块1601,还用于根据指示信息和承载的标识,获取与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数。收发模块1602,用于发送与第一RAT对应的承载的第一QoS参数、以及与第二RAT对应的承载的第二QoS参数,其中,第一QoS参数用于对第一RAT对应的网络中的承载进行QoS控制;第二QoS参数用于对第二RAT对应的网络中的承载进行QoS控制。
可选的,处理模块1601用于根据指示信息和承载的标识,获取与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数,包括:用于根据指示信息、承载的标识和终端的签约信息,分配与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数。
可选的,处理模块1601用于根据指示信息和承载的标识,获取与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS 参数,包括:用于接收来自策略控制网元的与双连接上第一RAT对应的承载的第一QoS参数、以及与双连接上第二RAT对应的承载的第二QoS参数。
可选的,在第一RAT为NR技术,第二RAT为E-UTRAN技术的情况下,承载的第一QoS参数包括扩展的APN-AMBR、扩展的GBR或者扩展的MBR中的一个或多个;承载的第二QoS参数包括非扩展的APN-AMBR、非扩展的GBR或者非扩展MBR中的一个或多个。
该场景下,收发模块1602用于发送与第一RAT对应的承载的第一QoS参数、以及与第二RAT对应的承载的第二QoS参数,其中,第一QoS参数用于对第一RAT对应的网络中的承载进行QoS控制;第二QoS参数用于对第二RAT对应的网络中的承载进行QoS控制,包括:用于在承载的第一QoS参数包括扩展的APN-AMBR,承载的第二QoS参数包括非扩展的APN-AMBR的情况下,将扩展的APN-AMBR和非扩展的APN-AMBR发送至移动管理网元,扩展的APN-AMBR用于确定扩展的UE-AMBR,扩展的UE-AMBR用于对NR技术对应的网络中的承载进行QoS控制;非扩展的APN-AMBR用于确定非扩展的UE-AMBR,非扩展的UE-AMBR用于对E-UTRAN技术对应的网络中的承载进行QoS控制;或者,用于在承载的第一QoS参数包括扩展的GBR,承载的第二QoS参数包括非扩展的GBR的情况下,将扩展的GBR和非扩展的GBR发送至主接入设备,扩展的GBR用于对NR技术对应的网络中的承载进行QoS控制;非扩展的GBR用于对E-UTRAN技术对应的网络中的承载进行QoS控制;或者,用于在承载的第一QoS参数包括扩展的MBR,承载的第二QoS参数包括非扩展的MBR的情况下,将扩展的MBR和非扩展的MBR发送至主接入设备,扩展的MBR用于对NR技术对应的网络中的承载进行QoS控制;非扩展的MBR用于对E-UTRAN技术对应的网络中的承载进行QoS控制。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该分组数据网关160以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该分组数据网关160可以采用图11所示的形式。
比如,图11中的处理器1101可以通过调用存储器1103中存储的计算机执行指令,使得分组数据网关160执行上述方法实施例中的QoS控制的方法。
具体的,图16中的收发模块1602和处理模块1601的功能/实现过程可以通过图11中的处理器1101调用存储器1103中存储的计算机执行指令来实现。或者,图16中的处理模块1601的功能/实现过程可以通过图11中的处理器1101调用存储器1103中存储的计算机执行指令来实现,图16中的收发模块1602的功能/实现过程可以通过图11中的通信接口1104来实现。
由于本实施例提供的分组数据网关160可执行上述QoS控制的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持分组数据网关实现上述QoS控制的方法。例如据指示信息 和承载的标识,获取与RAT对应的承载的第一QoS参数。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存分组数据网关必要的程序指令和数据。当然,存储器也可以不在该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
或者,比如,以采用集成的方式划分各个功能模块的情况下,图17示出了一种会话管理网元170的结构示意图。该会话管理网元170包括收发模块1702和处理模块1701。
一种可能的实现方式中:
收发模块1702,用于接收指示信息和QoS流的标识,指示信息用于指示QoS流使用的RAT。处理模块1701,用于根据指示信息和QoS流的标识,获取与RAT对应的QoS流的QoS参数。收发模块1702,还用于发送QoS参数,QoS参数用于对RAT对应的网络中的QoS流进行QoS控制。
可选的,处理模块1701,具体用于:根据指示信息和QoS流的标识,分配与RAT对应的QoS流的QoS参数。或者,处理模块1701具体用于:向策略控制网元发送指示信息和QoS流的标识;接收来自策略控制网元的与RAT对应的QoS流的QoS参数。
另一种可能的实现方式中:
处理模块1701,用于获取指示信息和QoS流的标识,指示信息用于指示网络系统支持双连接。处理模块1701,还用于根据指示信息和QoS流的标识,获取与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数;收发模块1702,用于发送与第一RAT对应的QoS流的第一QoS参数、以及与第二RAT对应的QoS流的第二QoS参数,其中,第一QoS参数用于对第一RAT对应的网络中的QoS流进行QoS控制;第二QoS参数用于对第二RAT对应的网络中的QoS流进行QoS控制。
可选的,处理模块1701用于根据指示信息和QoS流的标识,获取与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数,包括:用于根据指示信息、QoS流的标识和终端的签约信息,分配与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数。
可选的,处理模块1701用于根据指示信息和QoS流的标识,获取与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数,包括:用于向策略控制网元发送指示信息和QoS流的标识;接收来自策略控制网元的与双连接上第一RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该会话管理网元170以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该会话管理网元170可以采用图11所示的形式。
比如,图11中的处理器1101可以通过调用存储器1103中存储的计算机执行指令,使得会话管理网元170执行上述方法实施例中的QoS控制的方法。
具体的,图17中的收发模块1702和处理模块1701的功能/实现过程可以通过图11中的处理器1101调用存储器1103中存储的计算机执行指令来实现。或者,图17中的处理模块1701的功能/实现过程可以通过图11中的处理器1101调用存储器1103中存储的计算机执行指令来实现,图17中的收发模块1702的功能/实现过程可以通过图11中的通信接口1104来实现。
由于本实施例提供的会话管理网元170可执行上述QoS控制的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持会话管理网元实现上述QoS控制的方法。例如据指示信息和QoS流的标识,获取与RAT对应的QoS流的QoS参数。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存会话管理网元必要的程序指令和数据。当然,存储器也可以不在该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
或者,比如,以采用集成的方式划分各个功能模块的情况下,图18示出了一种主接入设备180的结构示意图。该主接入设备180包括收发模块1802和处理模块1801。
一种可能的实现方式中:
收发模块1802,用于发送指示信息和承载的标识,指示信息用于指示承载使用的RAT。收发模块1802,还用于接收与RAT对应的承载的第二QoS参数。处理模块1801,用于根据第二QoS参数,对RAT对应的网络中的承载进行QoS控制。
可选的,在指示信息用于指示承载使用的RAT为NR技术的情况下,第二QoS参数包括扩展的UE-AMBR、扩展的GBR或者扩展的MBR中的至少一个。
该场景下,收发模块1802用于接收与RAT对应的承载的第二QoS参数,包括:用于在第二QoS参数包括扩展的UE-AMBR的情况下,接收来自移动管理网元的扩展的UE-AMBR,其中,扩展的UE-AMBR是根据来自策略控制网元的扩展的APN-AMBR确定的,扩展的UE-AMBR用于对NR技术对应的网络中的承载进行QoS控制;或者,用于在第二QoS参数包括扩展的GBR或扩展的MBR的情况下,接收来自策略控制网元的扩展的GBR或扩展的MBR,扩展的GBR或扩展的MBR用于对NR技术对应的网络中的承载进行QoS控制。
可选的,在指示信息用于指示承载使用的RAT为E-UTRAN技术的情况下,第二QoS参数包括非扩展的UE-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。
该场景下,收发模块1802用于接收与RAT对应的承载的第二QoS参数,包括:用于在第二QoS参数包括非扩展的UE-AMBR的情况下,接收来自移动管理网元的非扩展的UE-AMBR,其中,非扩展的UE-AMBR是根据来自策略控制网元的非扩展的APN-AMBR确定的,非扩展的UE-AMBR用于对E-UTRAN技术对应的网络中的承载进行QoS控制;或者,用于在第二QoS参数包括非扩展的GBR或非扩展的MBR的情况下,接收来自策略控制网元的非扩展的GBR或非扩展的MBR,非扩展的GBR或非扩展的MBR用于对E-UTRAN技术对应的网络中的承载进行QoS控制。
另一种可能的实现方式中:
收发模块1802,用于发送指示信息和QoS流的标识,指示信息用于指示QoS流使用的RAT;收发模块1802,还用于接收与RAT对应的QoS流的QoS参数;处理模块1801,用于根据QoS参数,对RAT对应的网络中的QoS流进行QoS控制。
又一种可能的实现方式中:
收发模块1802,用于发送指示信息,指示信息用于指示网络系统支持双连接;收发模块1802,还用于接收与双连接上第一RAT对应的承载的第三QoS参数、以及与双连接上第二RAT对应的承载的第四QoS参数;处理模块1801,用于在确定承载由第一RAT对应的网络传输的情况下,根据第三QoS参数对第一RAT对应的网络中的承载进行QoS控制;或者,处理模块1801,用于在确定承载由第二RAT对应的网络传输的情况下,根据第四QoS参数对第二RAT对应的网络中的承载进行QoS控制。
可选的,在第一RAT为NR技术,第二RAT为E-UTRAN技术的情况下,承载的第三QoS参数包括扩展的UE-AMBR、扩展的GBR或者扩展的MBR中的一个或多个;承载的第四QoS参数包括非扩展的UE-AMBR、非扩展的GBR或者非扩展MBR中的一个或多个。
该场景下,收发模块1802用于接收与双连接上第一RAT对应的承载的第三QoS参数、以及与双连接上第二RAT对应的承载的第四QoS参数,包括:用于在承载的第三QoS参数包括扩展的UE-AMBR,承载的第四QoS参数包括非扩展的UE-AMBR的情况下,接收来自移动管理网元的扩展的UE-AMBR和非扩展的UE-AMBR;其中,扩展的UE-AMBR是根据来自策略控制网元的扩展的APN-AMBR确定的,非扩展的UE-AMBR是根据来自策略控制网元的非扩展的APN-AMBR确定的;或者,用于在承载的第三QoS参数包括扩展的GBR,承载的第四QoS参数包括非扩展的GBR的情况下,接收来自策略控制网元的扩展的GBR和非扩展的GBR;或者,用于在承载的第三QoS参数包括扩展的MBR,承载的第四QoS参数包括非扩展的MBR的情况下,接收来自策略控制网元的扩展的MBR和非扩展的MBR。
又一种可能的实现方式中:
收发模块1802,用于发送指示信息,指示信息用于指示网络系统支持双连接;收发模块1802,还用于接收与双连接上第一无线接入技术RAT对应的QoS流的第一QoS参数、以及与双连接上第二RAT对应的QoS流的第二QoS参数;处理模块1801,用于在确定QoS流由第一RAT对应的网络传输的情况下,根据第一QoS参数对第一RAT对应的网络中的QoS流进行QoS控制;或者,在确定QoS流由第二RAT对应的网络传输的情况下,根据第二QoS参数对第二RAT对应的网络中的QoS流进行QoS控制。
可选的,在第一RAT为NR技术,第二RAT为E-UTRAN技术的情况下,QoS流的第一QoS参数包括与NR技术对应的第一session-AMBR、第一GBR或者第一MBR中的一个或多个;QoS流的第二QoS参数包括与E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的一个或多个。
该场景下,处理模块用于根据第一QoS参数对第一RAT对应的网络中的QoS流进行QoS控制,包括:用于在第一QoS参数包括第一session-AMBR的情况下,根据第一session-AMBR,确定第一用户设备最大聚合比特率UE-AMBR;根据第一 UE-AMBR,对切换到NR技术对应的网络中的QoS流进行QoS控制。
或者,该场景下,处理模块用于根据第二QoS参数对第二RAT对应的网络中的QoS流进行QoS控制,包括:在第二QoS参数包括第二session-AMBR的情况下,根据第二session-AMBR,确定第二UE-AMBR;根据第二UE-AMBR,对切换到E-UTRAN技术对应的网络中的QoS流进行QoS控制。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该主接入设备180以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该主接入设备180可以采用图11所示的形式。
比如,图11中的处理器1101可以通过调用存储器1103中存储的计算机执行指令,使得主接入设备180执行上述方法实施例中的QoS控制的方法。
具体的,图18中的收发模块1802和处理模块1801的功能/实现过程可以通过图11中的处理器1101调用存储器1103中存储的计算机执行指令来实现。或者,图18中的处理模块1801的功能/实现过程可以通过图11中的处理器1101调用存储器1103中存储的计算机执行指令来实现,图18中的收发模块1802的功能/实现过程可以通过图11中的通信接口1104来实现。
由于本实施例提供的主接入设备180可执行上述QoS控制的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持主接入设备实现上述QoS控制的方法。例如主接入设备根据该第二QoS参数,对该RAT对应的网络中的该承载进行QoS控制。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存主接入设备必要的程序指令和数据。当然,存储器也可以不在该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (45)

  1. 一种服务质量QoS控制的方法,其特征在于,所述方法包括:
    分组数据网关接收指示信息和承载的标识,所述指示信息用于指示所述承载使用的无线接入技术RAT;
    所述分组数据网关根据所述指示信息和所述承载的标识,获取与所述RAT对应的所述承载的第一QoS参数;
    所述分组数据网关发送所述第一QoS参数,所述第一QoS参数用于对所述RAT对应的网络中的所述承载进行QoS控制。
  2. 根据权利要求1所述的方法,其特征在于,所述分组数据网关根据所述指示信息和所述承载的标识,获取与所述RAT对应的所述承载的第一QoS参数,包括:
    所述分组数据网关根据所述指示信息和所述承载的标识,分配与所述RAT对应的所述承载的第一QoS参数。
  3. 根据权利要求1所述的方法,其特征在于,所述分组数据网关根据所述指示信息和所述承载的标识,获取与所述RAT对应的所述承载的第一QoS参数,包括:
    所述分组数据网关向策略控制网元发送所述指示信息和所述承载的标识;
    所述分组数据网关接收来自所述策略控制网元的与所述RAT对应的所述承载的第一QoS参数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,在所述指示信息用于指示所述承载使用的RAT为新空口NR技术的情况下,所述第一QoS参数包括扩展的接入点粒度最大聚合比特率APN-AMBR、扩展的保证比特率GBR或者扩展的最大比特率MBR中的至少一个。
  5. 根据权利要求4所述的方法,其特征在于,所述分组数据网关发送所述第一QoS参数,所述第一QoS参数用于对所述RAT对应的网络中的所述承载进行QoS控制,包括:
    在所述第一QoS参数包括所述扩展的APN-AMBR的情况下,所述分组数据网关将所述扩展的APN-AMBR发送至移动管理网元,所述扩展的APN-AMBR用于确定扩展的用户设备最大聚合比特率UE-AMBR,所述扩展的UE-AMBR用于对所述NR技术对应的网络中的所述承载进行QoS控制;
    或者,在所述第一QoS参数包括所述扩展的GBR或所述扩展的MBR的情况下,所述分组数据网关将所述扩展的GBR或所述扩展的MBR发送至主接入设备,所述扩展的GBR或所述扩展的MBR用于对所述NR技术对应的网络中的所述承载进行QoS控制。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,在所述指示信息用于指示所述承载使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,所述第一QoS参数包括非扩展的APN-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。
  7. 根据权利要求6所述的方法,其特征在于,所述分组数据网关发送所述第一QoS参数,所述第一QoS参数用于对所述RAT对应的网络中的所述承载进行QoS控制,包括:
    在所述第一QoS参数包括所述非扩展的APN-AMBR的情况下,所述分组数据网关将所述非扩展的APN-AMBR发送至移动管理网元,所述非扩展的APN-AMBR用于确定非扩展的UE-AMBR,所述非扩展的UE-AMBR用于对所述E-UTRAN技术对应的网络中的所述承载进行QoS控制;
    或者,在所述第一QoS参数包括所述非扩展的GBR或所述非扩展的MBR的情况下,所述分组数据网关将所述非扩展的GBR或所述非扩展的MBR发送至主接入设备,所述非扩展的GBR或所述非扩展的MBR用于对所述E-UTRAN技术对应的网络中的所述承载进行QoS控制。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述承载使用的RAT为:所述承载将使用的RAT或所述承载后续使用的RAT。
  9. 一种服务质量QoS控制的方法,其特征在于,所述方法包括:
    主接入设备发送指示信息和承载的标识,所述指示信息用于指示所述承载使用的无线接入技术RAT;
    所述主接入设备接收与所述RAT对应的所述承载的第二QoS参数;
    所述主接入设备根据所述第二QoS参数,对所述RAT对应的网络中的所述承载进行QoS控制。
  10. 根据权利要求9所述的方法,其特征在于,在所述指示信息用于指示所述承载使用的RAT为新空口NR技术的情况下,所述第二QoS参数包括扩展的用户设备最大聚合比特率UE-AMBR、扩展的保证比特率GBR或者扩展的最大比特率MBR中的至少一个。
  11. 根据权利要求10所述的方法,其特征在于,所述主接入设备接收与所述RAT对应的所述承载的第二QoS参数,包括:
    在所述第二QoS参数包括所述扩展的UE-AMBR的情况下,所述主接入设备接收来自移动管理网元的所述扩展的UE-AMBR,其中,所述扩展的UE-AMBR是根据来自策略控制网元的扩展的接入点粒度最大聚合比特率APN-AMBR确定的,所述扩展的UE-AMBR用于对所述NR技术对应的网络中的所述承载进行QoS控制;
    或者,在所述第二QoS参数包括所述扩展的GBR或所述扩展的MBR的情况下,所述主接入设备接收来自策略控制网元的所述扩展的GBR或所述扩展的MBR,所述扩展的GBR或所述扩展的MBR用于对所述NR技术对应的网络中的所述承载进行QoS控制。
  12. 根据权利要求9所述的方法,其特征在于,在所述指示信息用于指示所述承载使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,所述第二QoS参数包括非扩展的UE-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。
  13. 根据权利要求12所述的方法,其特征在于,所述主接入设备接收与所述RAT对应的所述承载的第二QoS参数,包括:
    在所述第二QoS参数包括所述非扩展的UE-AMBR的情况下,所述主接入设备接收来自移动管理网元的所述非扩展的UE-AMBR,其中,所述非扩展的UE-AMBR是根据来自策略控制网元的非扩展的APN-AMBR确定的,所述非扩展的UE-AMBR用 于对所述E-UTRAN技术对应的网络中的所述承载进行QoS控制;
    或者,在所述第二QoS参数包括所述非扩展的GBR或所述非扩展的MBR的情况下,所述主接入设备接收来自所述策略控制网元的所述非扩展的GBR或所述非扩展的MBR,所述非扩展的GBR或所述非扩展的MBR用于对所述E-UTRAN技术对应的网络中的所述承载进行QoS控制。
  14. 一种服务质量QoS控制的方法,其特征在于,所述方法包括:
    会话管理网元接收指示信息和QoS流的标识,所述指示信息用于指示所述QoS流使用的无线接入技术RAT;
    所述会话管理网元根据所述指示信息和所述QoS流的标识,获取与所述RAT对应的所述QoS流的QoS参数;
    所述会话管理网元发送所述QoS参数,所述QoS参数用于对所述RAT对应的网络中的所述QoS流进行QoS控制。
  15. 根据权利要求14所述的方法,其特征在于,所述会话管理网元根据所述指示信息和所述QoS流的标识,获取与所述RAT对应的所述QoS流的QoS参数,包括:
    所述会话管理网元根据所述指示信息和所述QoS流的标识,分配与所述RAT对应的所述QoS流的QoS参数。
  16. 根据权利要求14所述的方法,其特征在于,所述会话管理网元根据所述指示信息和所述QoS流的标识,获取与所述RAT对应的所述QoS流的QoS参数,包括:
    所述会话管理网元向策略控制网元发送所述指示信息和所述QoS流的标识;
    所述会话管理网元接收来自所述策略控制网元的与所述RAT对应的所述QoS流的QoS参数。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,在所述指示信息用于指示所述QoS流使用的RAT为新空口NR技术的情况下,所述QoS参数包括与所述NR技术对应的第一会话最大聚合比特率session-AMBR、第一保证比特率GBR或者第一最大比特率MBR中的至少一个;
    或者,在所述指示信息用于指示所述QoS流使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,所述QoS参数包括与所述E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的至少一个。
  18. 根据权利要求17所述的方法,其特征在于,所述第二session-AMBR是由所述第一session-AMBR映射得到的;或者,所述第二GBR是由所述第一GBR映射得到的;或者,所述第二MBR是由所述第一MBR映射得到的。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,所述QoS流使用的RAT为:所述QoS流将使用的RAT或所述QoS流后续使用的RAT。
  20. 一种服务质量QoS控制的方法,其特征在于,所述方法包括:
    主接入设备发送指示信息和QoS流的标识,所述指示信息用于指示所述QoS流使用的无线接入技术RAT;
    所述主接入设备接收与所述RAT对应的所述QoS流的QoS参数;
    所述主接入设备根据所述QoS参数,对所述RAT对应的网络中的所述QoS流进行QoS控制。
  21. 根据权利要求20所述的方法,其特征在于,在所述指示信息用于指示所述QoS流使用的RAT为新空口NR技术的情况下,所述QoS参数包括与所述NR技术对应的第一会话最大聚合比特率session-AMBR、第一保证比特率GBR或者第一最大比特率MBR中的至少一个。
  22. 根据权利要求21所述的方法,其特征在于,所述主接入设备根据所述QoS参数,对所述RAT对应的网络中的所述QoS流进行QoS控制,包括:
    在所述QoS参数包括所述第一session-AMBR的情况下,所述主接入设备根据所述第一session-AMBR,确定第一用户设备最大聚合比特率UE-AMBR;所述主接入设备根据所述第一UE-AMBR,对所述NR技术对应的网络中的所述QoS流进行QoS控制。
  23. 根据权利要求20所述的方法,其特征在于,在所述指示信息用于指示所述QoS流使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,所述QoS参数包括与所述E-UTRAN技术对应的第二session-AMBR、第二GBR或者第二MBR中的至少一个。
  24. 根据权利要求23所述的方法,其特征在于,所述主接入设备根据所述QoS参数,对所述RAT对应的网络中的所述QoS流进行QoS控制,包括:
    在所述QoS参数包括所述第二session-AMBR的情况下,所述主接入设备根据所述第二session-AMBR,确定第二UE-AMBR;所述主接入设备根据所述第二UE-AMBR,对所述E-UTRAN技术对应的网络中的所述QoS流进行QoS控制。
  25. 一种分组数据网关,其特征在于,所述分组数据网关包括:收发模块和处理模块;
    所述收发模块,用于接收指示信息和承载的标识,所述指示信息用于指示所述承载使用的无线接入技术RAT;
    所述处理模块,用于根据所述指示信息和所述承载的标识,获取与所述RAT对应的所述承载的第一QoS参数;
    所述收发模块,还用于发送所述第一QoS参数,所述第一QoS参数用于对所述RAT对应的网络中的所述承载进行QoS控制。
  26. 根据权利要求25所述的分组数据网关,其特征在于,在所述指示信息用于指示所述承载使用的RAT为新空口NR技术的情况下,所述第一QoS参数包括扩展的接入点粒度最大聚合比特率APN-AMBR、扩展的保证比特率GBR或者扩展的最大比特率MBR中的至少一个。
  27. 根据权利要求26所述的分组数据网关,其特征在于,所述收发模块用于发送所述第一QoS参数,所述第一QoS参数用于对所述RAT对应的网络中的所述承载进行QoS控制,包括:
    用于在所述第一QoS参数包括所述扩展的APN-AMBR的情况下,将所述扩展的APN-AMBR发送至移动管理网元,所述扩展的APN-AMBR用于确定扩展的用户设备最大聚合比特率UE-AMBR,所述扩展的UE-AMBR用于对所述NR技术对应的网络中的所述承载进行QoS控制;
    或者,用于在所述第一QoS参数包括所述扩展的GBR或所述扩展的MBR的情况 下,将所述扩展的GBR或所述扩展的MBR发送至主接入设备,所述扩展的GBR或所述扩展的MBR用于对所述NR技术对应的网络中的所述承载进行QoS控制。
  28. 根据权利要求25所述的分组数据网关,其特征在于,在所述指示信息用于指示所述承载使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,所述第一QoS参数包括非扩展的APN-AMBR、非扩展的GBR或者非扩展MBR中的至少一个。
  29. 根据权利要求28所述的分组数据网关,其特征在于,所述收发模块用于发送所述第一QoS参数,所述第一QoS参数用于对所述RAT对应的网络中的所述承载进行QoS控制,包括:
    用于在所述第一QoS参数包括所述非扩展的APN-AMBR的情况下,将所述非扩展的APN-AMBR发送至移动管理网元,所述非扩展的APN-AMBR用于确定非扩展的UE-AMBR,所述非扩展的UE-AMBR用于对所述E-UTRAN技术对应的网络中的所述承载进行QoS控制;
    或者,用于在所述第一QoS参数包括所述非扩展的GBR或所述非扩展的MBR的情况下,将所述非扩展的GBR或所述非扩展的MBR发送至主接入设备,所述非扩展的GBR或所述非扩展的MBR用于对所述E-UTRAN技术对应的网络中的所述承载进行QoS控制。
  30. 一种主接入设备,其特征在于,所述主接入设备包括:收发模块和处理模块;
    所述收发模块,用于发送指示信息和承载的标识,所述指示信息用于指示所述承载使用的无线接入技术RAT;
    所述收发模块,还用于接收与所述RAT对应的所述承载的第二QoS参数;
    所述处理模块,用于根据所述第二QoS参数,对所述RAT对应的网络中的所述承载进行QoS控制。
  31. 根据权利要求30所述的主接入设备,其特征在于,在所述指示信息用于指示所述承载使用的RAT为新空口NR技术的情况下,所述第二QoS参数包括扩展的用户设备最大聚合比特率UE-AMBR、扩展的保证比特率GBR或者扩展的最大比特率MBR中的至少一个。
  32. 根据权利要求31所述的主接入设备,其特征在于,所述收发模块用于接收与所述RAT对应的所述承载的第二QoS参数,包括:
    用于在所述第二QoS参数包括所述扩展的UE-AMBR的情况下,接收来自移动管理网元的所述扩展的UE-AMBR,其中,所述扩展的UE-AMBR是根据来自策略控制网元的扩展的接入点粒度最大聚合比特率APN-AMBR确定的,所述扩展的UE-AMBR用于对所述NR技术对应的网络中的所述承载进行QoS控制;
    或者,用于在所述第二QoS参数包括所述扩展的GBR或所述扩展的MBR的情况下,接收来自策略控制网元的所述扩展的GBR或所述扩展的MBR,所述扩展的GBR或所述扩展的MBR用于对所述NR技术对应的网络中的所述承载进行QoS控制。
  33. 根据权利要求30所述的主接入设备,其特征在于,在所述指示信息用于指示所述承载使用的RAT为演进的通用移动通信系统陆地无线接入网E-UTRAN技术的情况下,所述第二QoS参数包括非扩展的UE-AMBR、非扩展的GBR或者非扩展MBR 中的至少一个。
  34. 根据权利要求33所述的主接入设备,其特征在于,所述收发模块用于接收与所述RAT对应的所述承载的第二QoS参数,包括:
    用于在所述第二QoS参数包括所述非扩展的UE-AMBR的情况下,接收来自移动管理网元的所述非扩展的UE-AMBR,其中,所述非扩展的UE-AMBR是根据来自所述策略控制网元的非扩展的APN-AMBR确定的,所述非扩展的UE-AMBR用于对所述E-UTRAN技术对应的网络中的所述承载进行QoS控制;
    或者,用于在所述第二QoS参数包括所述非扩展的GBR或所述非扩展的MBR的情况下,接收来自策略控制网元的所述非扩展的GBR或所述非扩展的MBR,所述非扩展的GBR或所述非扩展的MBR用于对所述E-UTRAN技术对应的网络中的所述承载进行QoS控制。
  35. 一种会话管理网元,其特征在于,所述会话管理网元包括:收发模块和处理模块;
    所述收发模块,用于接收指示信息和QoS流的标识,所述指示信息用于指示所述QoS流使用的无线接入技术RAT;
    所述处理模块,用于根据所述指示信息和所述QoS流的标识,获取与所述RAT对应的所述QoS流的QoS参数;
    所述收发模块,还用于发送所述QoS参数,所述QoS参数用于对所述RAT对应的网络中的所述QoS流进行QoS控制。
  36. 一种主接入设备,其特征在于,所述主接入设备包括:收发模块和处理模块;
    所述收发模块,用于发送指示信息和QoS流的标识,所述指示信息用于指示所述QoS流使用的无线接入技术RAT;
    所述收发模块,还用于接收与所述RAT对应的所述QoS流的QoS参数;
    所述处理模块,用于根据所述QoS参数,对所述RAT对应的网络中的所述QoS流进行QoS控制。
  37. 一种通信系统,其特征在于,所述通信系统包括主接入设备、移动管理网元和分组数据网关;
    所述主接入设备,用于向所述移动管理网元发送指示信息和承载的标识;所述指示信息用于指示承载使用的无线接入技术RAT;
    所述移动管理网元,用于接收来自所述主接入设备的所述指示信息和所述承载的标识,并将所述指示信息和所述承载的标识发送至所述分组数据网关;
    所述分组数据网关,用于接收来自所述移动管理网元的所述指示信息和所述承载的标识,并根据所述指示信息和所述承载的标识,获取与所述RAT对应的所述承载的第一QoS参数之后,将所述第一QoS参数发送至所述移动管理网元;
    所述移动管理网元,用于接收来自所述分组数据网关的第一QoS参数,并向所述主接入设备发送第二QoS参数;其中,所述第二QoS参数与所述第一QoS参数相同,或者所述第二QoS参数是根据所述第一QoS参数获得的;
    所述主接入设备,用于接收来自所述移动管理网元的所述第二QoS参数,其中,所述第二QoS参数用于对所述RAT对应的网络中的所述承载进行QoS控制。
  38. 一种通信系统,其特征在于,所述通信系统包括主接入设备和会话管理网元;
    所述主接入设备,用于将指示信息和QoS流的标识发送至会话管理网元;所述指示信息用于指示QoS流使用的无线接入技术RAT;
    所述会话管理网元,用于接收来自所述主接入设备的所述指示信息和所述QoS流的标识,并根据所述指示信息和所述QoS流的标识,获取与所述RAT对应的所述QoS流的QoS参数之后,将所述QoS参数发送至所述主接入设备;
    所述主接入设备,用于接收来自所述会话管理网元的所述QoS参数,其中,所述QoS参数用于对所述RAT对应的网络中的所述QoS流进行QoS控制。
  39. 一种通信装置,其特征在于,包括:处理器和存储器;所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求1-8任一项,或9-13,或14-19,或20-24任一项所述的服务质量QoS控制的方法。
  40. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以执行如权利要求1-8任一项,或9-13,或14-19,或20-24任一项所述的服务质量QoS控制的方法。
  41. 一种处理器,其特征在于,用于执行如权利要求1-8任一项,或9-13,或14-19,或20-24任一项所述的服务质量QoS控制的方法。
  42. 一种芯片系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,使得安装有所述芯片系统的设备执行如权利要求1-8任一项,或9-13,或14-19,或20-24任一项所述的服务质量QoS控制的方法。
  43. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1-8任一项,或9-13,或14-19,或20-24任一项所述的服务质量QoS控制的方法。
  44. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1-8任一项,或9-13,或14-19,或20-24任一项所述的服务质量QoS控制的方法。
  45. 一种装置,其特征在于,所述装置用来执行如权利要求1-8任一项,或9-13,或14-19,或20-24任一项所述的服务质量QoS控制的方法。
PCT/CN2019/117189 2018-11-19 2019-11-11 服务质量控制的方法、设备及系统 WO2020103719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811379022.8A CN111200625B (zh) 2018-11-19 2018-11-19 服务质量控制的方法、设备及系统
CN201811379022.8 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020103719A1 true WO2020103719A1 (zh) 2020-05-28

Family

ID=70747399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117189 WO2020103719A1 (zh) 2018-11-19 2019-11-11 服务质量控制的方法、设备及系统

Country Status (2)

Country Link
CN (1) CN111200625B (zh)
WO (1) WO2020103719A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281519A (zh) * 2010-06-12 2011-12-14 中兴通讯股份有限公司 一种承载修改方法及系统
CN102685714A (zh) * 2011-03-18 2012-09-19 中兴通讯股份有限公司 一种支持双模双待终端同时通信的方法和系统
CN108282832A (zh) * 2017-01-06 2018-07-13 北京三星通信技术研究有限公司 无线接入网切换方法、基站和基站的通信方法
WO2018130968A1 (en) * 2017-01-11 2018-07-19 Telefonaktiebolaget Lm Ericsson (Publ) 5g qos flow to radio bearer remapping

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8976663B2 (en) * 2012-04-05 2015-03-10 Telefonaktiebolaget L M Ericsson (Publ) QCI based offloading
CN106559920B (zh) * 2015-09-30 2022-09-09 北京三星通信技术研究有限公司 双连接架构下支持sipto或lipa承载释放的方法和设备
CN108207013A (zh) * 2016-12-19 2018-06-26 中兴通讯股份有限公司 一种跨RAT位置区更新QoS重协商的实现方法及装置
CN110493849B (zh) * 2016-12-30 2020-11-10 华为技术有限公司 一种双连接方法、接入网设备和计算机可读存储介质
CN108632917B (zh) * 2017-03-21 2019-08-30 电信科学技术研究院 一种承载映射方法、接入网实体以及smf

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281519A (zh) * 2010-06-12 2011-12-14 中兴通讯股份有限公司 一种承载修改方法及系统
CN102685714A (zh) * 2011-03-18 2012-09-19 中兴通讯股份有限公司 一种支持双模双待终端同时通信的方法和系统
CN108282832A (zh) * 2017-01-06 2018-07-13 北京三星通信技术研究有限公司 无线接入网切换方法、基站和基站的通信方法
WO2018130968A1 (en) * 2017-01-11 2018-07-19 Telefonaktiebolaget Lm Ericsson (Publ) 5g qos flow to radio bearer remapping

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "[TP for BL CR 37.340] Introduction of Data Volume Reporting for MR-DC", 3GPP TSG-RAN WG3 MEETING #102 R3-186789, 3 November 2018 (2018-11-03), XP051482903 *

Also Published As

Publication number Publication date
CN111200625B (zh) 2021-07-09
CN111200625A (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
EP3641396B1 (en) Session management method, method for interworking between heterogeneous systems, and network device
US11432366B2 (en) Session management method, device, and system
CN111865623B (zh) 计费规则绑定的方法、设备及系统
US11432297B2 (en) Method for improving service reliability, device, and system
US20200374765A1 (en) Handover Method and Apparatus
CN112312500A (zh) 会话建立方法、设备及系统
CN110049517A (zh) QoS流的控制方法和装置
CN110972224B (zh) 一种通信方法、装置及系统
JP7478267B2 (ja) 課金方法、装置、及びシステム
EP3930378A1 (en) Communication method, device and system
US20220295355A1 (en) Inter-network interworking method, apparatus, and system
WO2019154160A1 (zh) 一种通信方法及装置
US11943820B2 (en) Wi-fi access prioritization and call admission control
WO2020001319A1 (zh) 动态组网方法、设备及系统
EP4185011A1 (en) Relay communication method, and communication apparatus
WO2020103719A1 (zh) 服务质量控制的方法、设备及系统
CN110999349B (zh) 处理无锚移动网络中的移动设备管理
WO2021233063A1 (zh) 用于策略控制的方法和装置
CN110856273B (zh) 会话管理方法、设备及系统
WO2023185286A1 (zh) 一种通信方法及装置
CN114287149A (zh) Ambr的控制方法、设备及系统
EP4054234A1 (en) Uplink pdr generation method, apparatus and system
WO2019210779A1 (zh) 切换方法、设备及系统
WO2021046746A1 (zh) 上报会话管理信息的方法、设备及系统
CN110831086A (zh) 指示信息的发送方法、装置及系统、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888052

Country of ref document: EP

Kind code of ref document: A1