WO2020103689A1 - 一种多层堆叠式光纤载体、通信设备和装配方法 - Google Patents

一种多层堆叠式光纤载体、通信设备和装配方法

Info

Publication number
WO2020103689A1
WO2020103689A1 PCT/CN2019/115859 CN2019115859W WO2020103689A1 WO 2020103689 A1 WO2020103689 A1 WO 2020103689A1 CN 2019115859 W CN2019115859 W CN 2019115859W WO 2020103689 A1 WO2020103689 A1 WO 2020103689A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber carrier
carrier
optical
adjustment structure
Prior art date
Application number
PCT/CN2019/115859
Other languages
English (en)
French (fr)
Inventor
李刚
胡邦红
王�华
楚广虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811460631.6A external-priority patent/CN111221074B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020103689A1 publication Critical patent/WO2020103689A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables

Definitions

  • the present application relates to the technical field of optical communication, and in particular to a multilayer stacked optical fiber carrier, communication equipment, and assembly method.
  • the all-optical network can overcome the bottleneck limitation of the capacity of the electronic switch, can save a lot of network construction costs, and improve the flexibility and reliability of the network. Therefore, the all-optical network is the future development direction of broadband communication networks.
  • Optical switching is one of the key technologies of all-optical networks. Optical switching refers to directly switching the optical signal at the input end to any optical output end without any photoelectric conversion.
  • a large-capacity optical communication device includes an input fiber array 011, an output fiber array 012, an optical switch 02, and a control unit.
  • the optical switch how to include the input fiber array 011 or the output fiber array 012 It is a key technical point that dozens of hundreds of optical fibers are fixed to a preset position so that the optical path in the optical fiber is accurately aligned with the optical switch 02.
  • the currently used method is to process a corresponding number of holes 03 on a plate 04, and ensure that these holes 03 are Diameter accuracy and position accuracy, and then insert multiple fibers in the input fiber array 011 or the output fiber array 012 into the corresponding holes 03 to ensure the accuracy of the optical fiber and the optical path through the diameter and position size of the hole 03.
  • this requires a large number of ultra-precision holes 03 with a certain depth to be accurately processed on the same plate 04.
  • the processing method is limited, the efficiency is low, and the cost is high, and the optical fiber is easily penetrated by the hole 03 in the process of passing through the hole The edge of the fiber is scratched, which causes the performance index of the optical fiber to drop.
  • FIG. 3 and FIG. 4 are a multi-layer stacked optical fiber carrier in the prior art, including a plurality of optical fiber carriers 05, which are sequentially stacked from bottom to top, and each optical fiber carrier 05
  • the upper surface is provided with a row of optical fiber mounting grooves 06.
  • the optical fiber mounting grooves 06 are used to install optical fibers. In this way, the position accuracy between two adjacent optical fiber mounting grooves 06 and the dimensional accuracy of the optical fiber carrier 05 in the stacking direction can be controlled To ensure the accuracy of optical fiber and optical path.
  • the open optical fiber mounting groove 06 is used to replace the closed circular hole 03, which can reduce the processing difficulty, increase the fixed length of the optical fiber on the optical fiber carrier, ensure the verticality of the optical fiber, and install the optical fiber into the optical fiber installation Installed in the slot 06 to prevent the optical fiber from being scratched.
  • the optical fiber carrier 05 since the optical fiber carrier 05 inevitably has a certain processing error, there is a problem of tolerance accumulation when stacking multiple optical fiber carriers 05, so the dimensional accuracy of a single optical fiber carrier 05 along its stacking direction needs to be higher than that of the final multilayer stack The dimensional accuracy of the optical fiber carrier in the stacking direction is more than an order of magnitude higher.
  • the optical fiber carrier 05 When the size of a single optical fiber carrier 05 in its stacking direction is 1.0 ⁇ 0.01, that is, the optical fiber carrier 05 may have a limit size of 1.01, and a multi-layer stacked optical fiber formed by stacking 10 optical fiber carriers 05 The size of the carrier in the stacking direction may be 10.10, and the tolerance is 10 times lower than the accuracy of the single fiber carrier 05. If it is desired to control the accuracy after stacking to a level of ⁇ 0.01, the dimensional accuracy of a single optical fiber carrier 05 in the stacking direction needs to be improved by an order of magnitude. As a result, the processing of the optical fiber carrier 05 is difficult and the cost is high.
  • the embodiments of the present application provide a multilayer stacked optical fiber carrier, a communication device, and an assembly method, which can reduce the difficulty of processing the optical fiber carrier and reduce the processing cost of the optical fiber carrier.
  • an embodiment of the present application provides a multilayer stacked optical fiber carrier, including a plurality of optical fiber carrier modules, a plurality of the optical fiber carrier modules are sequentially stacked along a first direction, and each of the optical fiber carrier modules includes an optical fiber A carrier and an adjustment structure, wherein the optical fiber carrier is provided with an optical fiber mounting portion, and the adjustment structure is used to make the distance between the optical fiber mounting portions on the optical fiber carrier in the two adjacent optical fiber carrier modules in the first direction Equal to the target value; wherein, the first direction is any one direction, and the target value is two portions of light on the optical switch corresponding to the optical fiber mounting portions on the optical fiber carriers in the two adjacent optical fiber carrier modules, respectively The distance between the input port or the light output port.
  • each optical fiber carrier is correspondingly provided with an adjustment structure, and the optical fiber carrier and the corresponding adjustment structure constitute an optical fiber carrier module.
  • the distance between the optical fiber mounting parts on the optical fiber carriers in the adjacent two optical fiber carrier modules in the first direction is equal to a target value, and the target value is the optical fiber mounting parts on the optical fiber carrier and the optical fiber carriers in the two adjacent optical fiber carrier modules.
  • the two end surfaces of the optical fiber carrier along the first direction are a first surface and a second surface, respectively.
  • the first surfaces of the optical fiber carriers in the multiple optical fiber carrier modules face the same side, and the optical fiber mounting portion is provided on the optical fiber carrier
  • the optical fiber mounting groove on the first surface of the optical fiber mounting structure is arranged on the second surface of the optical fiber carrier.
  • the optical fiber mounting portion is an optical fiber mounting groove provided on the surface of the optical fiber carrier, the processing difficulty of the optical fiber mounting portion can be reduced, and the optical fiber can be installed in the optical fiber mounting groove by a buried installation method, so Can prevent the optical fiber from being scratched during installation;
  • the first surface of the optical fiber carrier in the multiple optical fiber carrier modules faces the same side, the optical fiber mounting portion is provided on the first surface of the optical fiber carrier, and the adjustment structure is provided on the optical fiber carrier On the second surface of the optical fiber carrier, therefore, only by adjusting the structure on the side of the second surface of the optical fiber carrier away from the first surface, the optical fiber mounting portion on the optical fiber carrier in two adjacent optical fiber carrier modules The distance in the first direction is equal to the target value, so the adjustment is less difficult, easy to operate, and easy to achieve.
  • the adjustment structure is fixed on the second surface of the optical fiber carrier through glue, threaded connectors, clamping members, and the like. In this way, the relative position between the adjustment structure and the optical fiber carrier can be fixed, and the adjustment structure can be prevented from moving on the second surface of the optical fiber carrier.
  • the adjustment structure only contacts the second surface of the fiber carrier, and the adjustment structure and the fiber carrier are not fixed. In this way, when assembling to form the optical fiber carrier module, it is only necessary to place the adjustment structure at a preset position on the second surface of the optical fiber carrier, which takes less time and has higher assembly efficiency.
  • the adjustment structure is an adjustment block.
  • selecting the appropriate size of the adjustment block can make the distance between the optical fiber mounting portions on the fiber carrier in the two adjacent fiber carrier modules in the first direction equal to the target value. Since the shape of the adjustment block is usually simple, it can be used The precision processing method processes the adjustment block, and the size of the adjustment block is smaller than that of the optical fiber carrier, so it is easier to ensure the processing accuracy of the adjustment block.
  • the shape of the adjustment block is a sphere, a cylinder, a cube, or a rectangular parallelepiped.
  • the shape of the adjustment block is simple and can be processed by high-precision machining methods to ensure the dimensional accuracy of the adjustment block.
  • the adjustment structure is a telescopic mechanism.
  • the telescopic mechanism can be expanded and contracted to an appropriate size to adjust the distance between the optical fiber mounting portions on the optical fiber carriers in the two adjacent optical fiber carrier modules in the first direction, so that the distance reaches the target value.
  • the telescopic mechanism is a linear ultrasonic motor.
  • the size of the linear ultrasonic motor can be made very small, and the linear ultrasonic motor can be expanded and contracted to an appropriate size under the drive of an electrical signal, so that the optical fiber mounting portion on the optical fiber carrier in the adjacent two optical fiber carrier modules The distance in the first direction is equal to the target value.
  • This structure is simple and easy to implement.
  • each optical fiber carrier module includes a plurality of adjustment structures that are sequentially arranged along a third direction that is perpendicular to the second direction and parallel to the second surface, wherein, The second direction is any direction parallel to the first surface.
  • supporting the optical fiber carrier through multiple adjustment structures at the same time can ensure the support stability of the optical fiber carrier, thereby ensuring the stacking stability of the multiple optical fiber carrier modules; on the other hand, using multiple adjustment structures respectively on the optical fiber
  • Multiple position adjustments on the second surface of the carrier can effectively compensate for the parallelism error between the first surface and the second surface of the fiber carrier.
  • optical fiber installation slots there are multiple optical fiber installation slots, and multiple optical fiber installation slots are arranged side by side.
  • one fiber carrier can carry multiple fibers at the same time, which can increase the capacity of the multi-layer stacked fiber carrier.
  • each optical fiber carrier module includes two adjustment structures, and the two adjustment structures are respectively disposed at two ends of the second surface along the third direction.
  • supporting the optical fiber carrier through two adjustment structures at the same time can ensure the support stability of the optical fiber carrier, thereby ensuring the stacking stability of multiple optical fiber carrier modules;
  • the two adjustment structures are used in The second surface of the optical fiber carrier is adjusted at both ends in the third direction, which can effectively compensate the parallelism error between the first surface and the second surface of the optical fiber carrier;
  • the number of adjustment structures included in the optical fiber carrier module is small
  • the composition of the optical fiber carrier module is simple, and the assembly difficulty is relatively low.
  • a limit groove is provided on the second surface of the optical fiber carrier corresponding to the position of the adjustment structure, and a part of the adjustment structure is located in the limit groove.
  • the fixing slot can be used to mark the fixed position of the adjustment structure on the optical fiber carrier, so that the adjustment structure can be more conveniently fixed when the adjustment structure is assembled.
  • the limiting groove is a rectangular groove, a V-shaped groove, or a U-shaped groove. This structure is simple and easy to process.
  • an embodiment of the present application provides a communication device, including multiple input optical fibers, multiple output optical fibers, a first multilayer stacked optical fiber carrier, a second multilayer stacked optical fiber carrier, and an optical switch, the first multiple The layer-stacked optical fiber carrier and the second multi-layer stacked optical fiber carrier are the multi-layer stacked optical fiber carrier as described in any one of the above technical solutions;
  • the optical switch is provided with an array of optical input ports and an array of optical output ports;
  • the input optical fibers are respectively installed in the optical fiber mounting portions on the plurality of optical fiber carriers in the first multilayer stacked optical fiber carrier, and the plurality of output optical fibers are respectively installed in the second multilayer stacked optical fiber carrier In the optical fiber mounting portion on each optical fiber carrier, both the first multilayer stacked optical fiber carrier and the second multilayer stacked optical fiber carrier are connected to the optical switch, and the first multilayer stacked optical fiber carrier
  • the optical fiber mounting portions on the multiple optical fiber carriers are respectively opposed to the multiple optical input ports in the optical input port array, and the optical
  • the communication device provided by the embodiments of the present application, because in this communication device, the first multi-layer stacked optical fiber carrier and the second multi-layer stacked optical fiber carrier are as described in any of the above technical solutions.
  • Multi-layer stacked optical fiber carrier so after fixing the multiple input optical fibers and the multiple output optical fibers through the first multilayer stacked optical fiber carrier and the second multilayer stacked optical fiber carrier, respectively, the optical path and the optical switch of the multiple input optical fibers can be made
  • the optical input port array on the optical fiber is aligned, and multiple output optical fibers are aligned with the optical output port array on the optical switch, thereby reducing the optical signal loss and ensuring the quality of optical communication, and for the optical fiber carrier in the multilayer stacked optical fiber carrier
  • an embodiment of the present application provides an assembling method for assembling a communication device.
  • the communication device includes a plurality of optical fiber carriers, and the optical fiber carrier is provided with an optical fiber mounting portion.
  • the assembling method includes: along each of the optical fiber carriers An adjustment structure is installed on at least one end face of the first direction to form a plurality of fiber carrier modules; the plurality of fiber carrier modules are sequentially stacked along the first direction to form a multi-layer stacked fiber carrier; wherein, the multiple In the layer-stacked optical fiber carrier, the distance between the optical fiber mounting portions on the optical fiber carrier in two adjacent optical fiber carrier modules in the first direction is equal to the target value.
  • the assembly method provided in the embodiments of the present application first installs an adjustment structure on at least one end face of each fiber carrier along the first direction to form a plurality of fiber carrier modules, and then sequentially stacks along the first direction Multiple optical fiber carrier modules to form a multilayer stacked optical fiber carrier, wherein the distance in the first direction between the optical fiber mounting portions on the optical fiber carriers in the adjacent two optical fiber carrier modules in the multilayer stacked optical fiber carrier is equal to the target value
  • the adjustment structure can ensure that The positional accuracy between each optical fiber mounting part enables the optical path in the optical fiber to be accurately aligned with the optical switch, and there is no high requirement on the dimensional accuracy of the optical fiber carrier, so the processing difficulty and processing cost of the optical fiber carrier can be reduced.
  • the two end surfaces of the optical fiber carrier along the first direction are a first surface and a second surface, respectively, and the optical fiber mounting portion is an optical fiber mounting groove provided on the first surface of the optical fiber carrier.
  • the installation of the adjustment structure on at least one end face of the carrier in the first direction includes: measuring the actual thickness of the optical fiber carrier in the first direction at a preset position on the second surface; and installing the adjustment structure with the preset thickness at the preset position To obtain a fiber carrier module whose thickness in the first direction at the preset position is equal to the target value; where the preset thickness is equal to the difference between the target value and the actual thickness; stacking multiple fiber carrier modules in sequence along the first direction includes: In the first direction, a plurality of optical fiber carrier modules are sequentially stacked, and the first surfaces of the optical fiber carriers in the plurality of optical fiber carrier modules face the same side.
  • the distance between the optical fiber mounting portions on the optical fiber carrier in the two adjacent optical fiber carrier modules can be equal to the target value, so the adjustment is less difficult, It is easy to operate and easy to realize; on the other hand, because the optical fiber mounting part is the optical fiber mounting groove provided on the first surface of the optical fiber carrier, it can reduce the processing difficulty of the optical fiber mounting part, and the optical fiber can be installed in the buried installation mode The optical fiber is installed in the groove, so that the optical fiber can be prevented from being scratched during installation.
  • the optical fiber installation groove extends along the second direction, and the second surface has a plurality of preset positions, and the plurality of preset positions are sequentially arranged along a third direction perpendicular to the second direction and parallel to the second surface, to measure the optical fiber
  • the actual thickness of the carrier in the first direction at the preset position on the second surface includes: measuring the actual thickness of the optical fiber carrier in the first direction at a plurality of preset positions on the second surface;
  • the structure is installed at a preset position to obtain an optical fiber carrier module whose thickness in the first direction at the preset position is equal to the target value includes: installing a plurality of adjustment structures having a preset thickness on a plurality of At the preset positions to obtain fiber carrier modules whose thicknesses in the first direction at the plurality of preset positions are all equal to the target value.
  • the adjustment structure is an adjustment block.
  • the method further includes: selecting an adjustment with a preset thickness according to the difference between the target value and the actual thickness Piece. This operation is simple and easy to realize, and because the shape of the adjustment block is usually simple, the adjustment block can be processed by a high-precision processing method, so the dimensional accuracy of the adjustment block can be ensured.
  • the adjustment structure is a telescopic mechanism.
  • the method further includes: driving the telescopic mechanism according to the difference between the target value and the actual thickness Stretching to obtain a stretching mechanism with a thickness in the direction of stretching that is a preset thickness. This operation is simple and easy to implement.
  • the method further includes: fixing the optical fiber in the optical fiber installation groove.
  • the optical fiber is buried in the optical fiber installation groove for installation, and the optical fiber can be prevented from being scratched during installation.
  • fixing the optical fiber in the optical fiber installation groove includes using glue to fix the optical fiber in the optical fiber installation groove.
  • the optical fiber can be effectively fixed to avoid displacement of the optical fiber in the process of sequentially stacking multiple optical fiber carrier modules.
  • Figure 1 is a schematic structural diagram of a large-capacity optical switch
  • FIG. 2 is a schematic structural diagram of an optical fiber carrier provided by the prior art
  • FIG. 3 is a front view of a multi-layer stacked optical fiber carrier provided by the prior art
  • FIG. 4 is a perspective view of a multi-layer stacked optical fiber carrier provided by the prior art
  • FIG. 5 is a front view of a multilayer stacked optical fiber carrier provided by an embodiment of the present application.
  • FIG. 6 is an exploded view of a multi-layer stacked optical fiber carrier provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of an optical fiber carrier in a multilayer stacked optical fiber carrier provided by an embodiment of the present application.
  • FIG. 10 is a relationship diagram between a preset thickness, a target value, and an actual thickness in an assembly method provided by an embodiment of this application.
  • some embodiments of the present application provide a multi-layer stacked optical fiber carrier, as shown in FIGS. 5 and 6, including a plurality of optical fiber carrier modules 1, and the plurality of optical fiber carrier modules 1 are sequentially stacked and arranged along the first direction X
  • Each optical fiber carrier module 1 includes an optical fiber carrier 11 and an adjustment structure 12, the optical fiber carrier 11 is provided with an optical fiber mounting portion 111, and the adjustment structure 12 is used to install optical fibers on the optical fiber carrier 11 in two adjacent optical fiber carrier modules 1
  • the distance between the sections 111 in the first direction X is equal to the target value H.
  • first direction X represents any direction, and the first direction X may represent horizontal left, horizontal right, vertical upward, inclined upward, and other directions, which are not specifically limited herein. In some embodiments, as shown in FIGS. 5 and 6, the first direction X represents vertical upward.
  • the target value H refers to the distance between the two portions of the optical input port or the optical output port corresponding to the optical fiber mounting portions 111 on the optical fiber carriers 11 of the two adjacent optical fiber carrier modules 1 respectively.
  • the target value H refers to the optical fiber installation on the optical switch and the optical fiber carrier 11 in the two adjacent optical fiber carrier modules 1 The distance between the two partial optical input ports corresponding to the part 111 respectively; when the multilayer stacked optical fiber carrier provided by the embodiment of the present application is used to carry the output optical fiber array, the target value H refers to the two adjacent optical switches The distance between the two partial light output ports corresponding to the optical fiber mounting portions 111 on the optical fiber carrier 11 in the optical fiber carrier module 1 respectively.
  • the adjustment structure 12 is used to make the distance between the optical fiber mounting portions 111 on the optical fiber carriers 11 in the two adjacent optical fiber carrier modules 1 along the first direction X equal to the target value H, that is, to ensure the installation on these
  • the optical fiber 100 in the optical fiber installation part 111 can be accurately aligned with the optical input port array or the optical output port array of the optical switch, thereby reducing optical signal loss and ensuring optical communication quality.
  • the distance between the optical fiber mounting parts 111 on the optical fiber carriers 11 in the two adjacent optical fiber carrier modules 1 along the first direction X also means: the optical fiber mounting parts 111 on the two adjacent optical fiber carriers 11 In the distance between the first direction X, the two adjacent optical fiber carriers 11 belong to the two adjacent optical fiber carrier modules 1 respectively.
  • Each optical fiber carrier 11 may be provided with an optical fiber mounting part 111 or a row of optical fiber mounting parts 111, and the row of optical fiber mounting parts 111 includes a plurality of optical fiber mounting parts 111, which is not specifically limited herein.
  • the multiple optical fiber mounting portions 111 on the multiple optical fiber carriers 11 may be aligned in the first direction X, or may be arranged staggered along the first direction X, adjacent two
  • the distance along the first direction X between the optical fiber mounting portions 111 on each of the optical fiber carriers 11 refers to the distance along the first direction X between two adjacent optical fiber mounting portions 111.
  • each fiber carrier 11 When each fiber carrier 11 is provided with a row of optical fiber mounting parts 111, the multiple rows of optical fiber mounting parts 111 on the plurality of optical fiber carriers 11 may be aligned in the first direction X, or may be arranged staggered along the first direction X, adjacent
  • the distance between the optical fiber mounting portions 111 on the two optical fiber carriers 11 in the first direction X refers to the distance between the adjacent two rows of optical fiber mounting portions 111 in the first direction X. In some embodiments, as shown in FIGS.
  • each optical fiber carrier 11 is provided with a row of optical fiber mounting parts 111, and multiple rows of optical fiber mounting parts 111 on multiple optical fiber carriers 11 are aligned along the first direction X,
  • the distance between the optical fiber mounting portions 111 on the two adjacent optical fiber carriers 11 in the first direction X refers to the distance between the adjacent two rows of optical fiber mounting portions 111 in the first direction X.
  • the optical fiber mounting portion 111 may be an optical fiber mounting groove provided on one end face of the optical fiber carrier 11 along the first direction X, or may be an optical fiber mounting hole provided on the middle portion of the optical fiber carrier 11 along the first direction X, which is not detailed here. limited.
  • the optical fiber mounting portion 111 is an optical fiber mounting groove provided on an end face of the optical fiber carrier 11 along the first direction X, so that the optical fiber can be installed by a buried installation method In the optical fiber installation part 111, the optical fiber is prevented from being scratched during the installation process, and at the same time, the difficulty of opening the optical fiber installation part 111 can be reduced.
  • the adjustment structure 12 In order to ensure that the adjustment structure 12 can make the distance between the optical fiber mounting portions 111 on the fiber carriers 11 in the two adjacent fiber carrier modules 1 along the first direction X equal to the target value, the adjustment structure 12 should be disposed on the fiber carrier 11 along the first At least one end surface in the direction X, so that the adjustment structure 12 can adjust the position of the optical fiber carrier 11 in the first direction X, so that the optical fiber mounting portions 111 on two adjacent optical fiber carriers 11 The distance in one direction X can reach the target value.
  • the adjustment structure 12 may be provided only on one end surface of the fiber carrier 11 along the first direction X, or may be provided on both end surfaces of the fiber carrier 11 along the first direction X, which is not specifically limited herein. In some embodiments, as shown in FIGS.
  • the adjustment structure 12 is only disposed on the end surface of the fiber carrier 11 along the first direction X, so that only one side of the fiber carrier 11 needs to be adjusted.
  • the distance between the optical fiber mounting portions 111 on the two adjacent optical fiber carriers 11 in the first direction X reaches the target value, so the adjustment is less difficult, the operation is convenient, and it is easy to implement.
  • each optical fiber carrier 11 is correspondingly provided with an adjustment structure 12, and the optical fiber carrier 11 and the corresponding adjustment structure 12 constitute an optical fiber carrier module 1, due to the adjustment
  • the structure 12 is used to make the distance between the optical fiber mounting parts 111 on the optical fiber carrier 11 in the two adjacent optical fiber carrier modules 1 along the first direction X equal to a target value, and the target value is on the optical switch and the two adjacent optical fibers
  • the position accuracy of the optical fiber enables the optical path in the optical fiber to be accurately aligned with the optical switch, and there is no high requirement for the dimensional accuracy of the optical fiber carrier 11 along the first direction X, so the processing difficulty and processing cost of the optical fiber carrier 11
  • the material of the optical fiber carrier 11 may be glass, silicon, metal, plastic, etc., which is not specifically limited herein.
  • the end surfaces of the optical fiber carrier 11 along the first direction X are a first surface a and a second surface b, respectively.
  • the optical fiber carriers in the plurality of optical fiber carrier modules 1 The first surface a of 11 faces the same side, the optical fiber mounting portion 111 is an optical fiber mounting groove provided on the first surface a of the optical fiber carrier 11, and the adjustment structure 12 is provided on the second surface b of the optical fiber carrier 11.
  • the optical fiber mounting portion 111 is an optical fiber mounting groove provided on the surface of the optical fiber carrier 11, the processing difficulty of the optical fiber mounting portion 111 can be reduced, and the optical fiber 100 can be mounted on the optical fiber mounting by the buried mounting method In the groove, the optical fiber can be prevented from being scratched during installation; on the other hand, since the first surface a of the optical fiber carrier 11 in the plurality of optical fiber carrier modules 1 faces the same side, the optical fiber mounting portion 111 is provided on the first On the surface a, the adjustment structure 12 is provided on the second surface b of the optical fiber carrier 11, therefore, only the adjustment structure 12 can be adjusted on the side of the second surface b of the optical fiber carrier 11 away from the first surface a to make the phase
  • the distance between the optical fiber mounting portions 111 on the optical fiber carrier 11 in the two adjacent optical fiber carrier modules 1 along the first direction X is equal to the target value, so the adjustment is less difficult, the operation is convenient, and it is easy to implement.
  • the adjustment structure 12 may be fixed on the second surface b of the optical fiber carrier 11 through glue, screw connections, clamping members, etc., so that the relative position between the adjustment structure 12 and the optical fiber carrier 11 can be fixed, The adjustment structure 12 is prevented from running on the second surface b of the optical fiber carrier 11.
  • two adjacent fiber carrier modules 1 can also be fixed together by glue, threaded connectors, clamping members, etc. to prevent the occurrence of two adjacent fiber carrier modules 1 Relative movement.
  • the adjustment structure 12 may only be in contact with the second surface b of the optical fiber carrier 11, and the adjustment structure 12 is not fixed between the optical fiber carrier 11, so that when assembling to form the optical fiber carrier module 1, only the adjustment The structure 12 can be placed at a predetermined position on the second surface b of the optical fiber carrier 11, so it takes less time and the assembly efficiency is higher.
  • two adjacent fiber carrier modules 1 may also be brought into contact, and the two adjacent fiber carrier modules 1 are not fixed between them. In this way, when assembling a plurality of optical fiber carrier modules 1 to form a multi-layer stacked optical fiber carrier, it is only necessary to sequentially stack a plurality of optical fiber carrier modules 1, so the time consumption is shorter and the stacking efficiency is higher.
  • the clamping device can be used
  • the multilayer stacked fiber carrier clamps the multilayer stacked fiber carrier at both ends in the first direction X to rely on friction between the adjustment structure 12 and the fiber carrier 11 and / or between two adjacent fiber carrier modules 1
  • the force enables the relative position between the adjustment structure 12 and the optical fiber carrier 11 and / or between two adjacent optical fiber carrier modules 1 to be fixed.
  • the structure of the clamping device is a common structure in the technical field of machinery, and there are many structural forms, such as a screw clamping mechanism, an eccentric clamping mechanism, an end cam clamping mechanism, etc., which are not specifically limited herein.
  • the adjustment structure 12 is an adjustment block.
  • selecting an appropriate size adjustment block can make the distance between the optical fiber mounting portions 111 on the optical fiber carrier 11 in the two adjacent optical fiber carrier modules 1 along the first direction X equal to the target value, because the shape of the adjustment block is usually simple, Therefore, the adjustment block can be processed by a high-precision processing method, and the size of the adjustment block is smaller than that of the optical fiber carrier 11, so it is easier to ensure the processing accuracy of the adjustment block.
  • the shape of the adjustment block is a sphere, a cylinder, a cube, or a rectangular parallelepiped.
  • the shape of the adjustment block is simple and can be processed by a high-precision processing method to ensure the dimensional accuracy of the adjustment block.
  • the material of the adjustment block may be glass, silicon, metal, plastic, etc., which is not specifically limited herein.
  • the processing method of the adjustment block may be cutting, grinding, etching, etc., which is not specifically limited herein.
  • the adjustment structure 12 is a telescopic mechanism.
  • the telescopic mechanism can be extended to an appropriate size to adjust the distance between the optical fiber mounting portions 111 on the optical fiber carriers 11 in the two adjacent optical fiber carrier modules 1 in the first direction, so that the distance reaches the target value.
  • the stretching mechanism may be an electrostrictive mechanism, a magnetostrictive mechanism, a thermostrictive mechanism, etc., which is not specifically limited herein.
  • the telescopic mechanism is a linear ultrasonic motor.
  • the size of the linear ultrasonic motor can be made very small, and the linear ultrasonic motor can be expanded and contracted to an appropriate size under the drive of an electric signal, so that the optical fiber mounting portion 111 on the optical fiber carrier 11 in the two adjacent optical fiber carrier modules 1
  • the distance between X in the first direction is equal to the target value.
  • each optical fiber carrier module 1 includes a plurality of adjustment structures 12 that are aligned with the second direction Y
  • the third direction Z that is perpendicular and parallel to the second surface b is sequentially arranged.
  • the structure 12 adjusts a plurality of positions on the second surface b of the fiber carrier 11 respectively, which can effectively compensate the parallelism error between the first surface a and the second surface b of the fiber carrier 11.
  • the second direction Y is any direction parallel to the first surface a.
  • the number of adjustment structures 12 included in each fiber carrier module 1 may be two, three, four, etc., which is not specifically limited herein.
  • FIG. 5, FIG. 6 and FIG. 7 there are multiple optical fiber installation slots, and the multiple optical fiber installation slots are arranged side by side. In this way, one optical fiber carrier 11 can simultaneously carry multiple optical fibers, which can increase the capacity of the multilayer stacked optical fiber carrier.
  • each fiber carrier module 1 includes two adjustment structures 12, which are respectively disposed at two ends of the second surface b along the third direction Z.
  • the two adjustment structures 12 support the fiber carrier 11 at the same time, so that the support stability of the fiber carrier 11 can be ensured, so that the stacking stability of a plurality of fiber carrier modules 1 can be guaranteed;
  • two The adjustment structure 12 is adjusted at both ends of the second surface b of the fiber carrier 11 along the third direction Z, which can effectively compensate the parallelism error between the first surface a and the second surface b of the fiber carrier 11;
  • the number of adjustment structures 12 included in the optical fiber carrier module 1 is small, the composition of the optical fiber carrier module 1 is simple, and the assembly difficulty is low.
  • a limiting groove 112 is provided on the second surface b of the optical fiber carrier 11 corresponding to the position of the adjustment structure. As shown in FIG. 5, a part of the adjustment structure 12 is located in the limiting groove 112 .
  • the fixing groove 112 can be used to mark the fixed position of the adjustment structure 12 on the optical fiber carrier 11, so that when the adjustment structure 12 is assembled, it can be more Conveniently fix the adjustment structure 12 to the preset position on the optical fiber carrier 11; in the second aspect, when the adjustment structure 12 is not fixed on the optical fiber carrier 11, but only placed on the optical fiber carrier 11, it can pass through the limiting groove 112 Limit the position of the adjustment structure 12 to avoid the adjustment structure 12 moving on the second surface b of the optical fiber carrier 11; in the third aspect, a part of the adjustment structure 12 is sunk into the limit groove 112 and can be adjusted to a certain extent The size of the structure 12 is to avoid adjusting the size of the structure 12 to be too small to increase the difficulty of processing.
  • the limiting groove 112 is a rectangular groove, a V-shaped groove, or a U-shaped groove.
  • This structure is simple and easy to process.
  • the rectangular groove, V-shaped groove or U-shaped groove refers to a groove with a rectangular cross-sectional shape, V-shaped or U-shaped groove.
  • some embodiments of the present application further provide a communication device, the communication device includes a plurality of input optical fibers, a plurality of output optical fibers, a first multilayer stacked optical fiber carrier, a second multilayer stacked optical fiber carrier, and an optical switch ,
  • the first multi-layer stacked optical fiber carrier and the second multi-layer stacked optical fiber carrier are multi-layer stacked optical fiber carriers as described in any of the above embodiments;
  • the optical switch is provided with an array of optical input ports And an array of light output ports; a plurality of the input optical fibers are respectively installed in the optical fiber mounting portions on the plurality of optical fiber carriers in the first multilayer stacked optical fiber carrier, and a plurality of the output optical fibers are respectively installed on the second multilayer In the optical fiber mounting portion on the multiple optical fiber carriers in the stacked optical fiber carrier, the first multilayer stacked optical fiber carrier and the second multilayer stacked optical fiber carrier are both connected to the optical switch, and the first multiple The optical fiber mounting portions on the multiple optical fiber carriers in the layer-stacked
  • the communication device provided by the embodiments of the present application, because in this communication device, the first multi-layer stacked optical fiber carrier and the second multi-layer stacked optical fiber carrier are as described in any of the above technical solutions.
  • Multi-layer stacked optical fiber carrier so after fixing the multiple input optical fibers and the multiple output optical fibers through the first multilayer stacked optical fiber carrier and the second multilayer stacked optical fiber carrier, respectively, the optical path and the optical switch of the multiple input optical fibers can be made
  • the optical input port array on the optical fiber is aligned, and multiple output optical fibers are aligned with the optical output port array on the optical switch, thereby reducing the optical signal loss and ensuring the quality of optical communication, and for the optical fiber carrier in the multilayer stacked optical fiber carrier
  • some embodiments of the present application provide an assembling method for assembling a communication device.
  • the communication device includes a plurality of optical fiber carriers 11, and the optical fiber carrier 11 is provided with an optical fiber mounting portion 111, as shown in FIGS. 5, 6 and 8 As shown, the assembly method includes:
  • the assembly method provided in the embodiments of the present application first installs an adjustment structure 12 on at least one end face of the fiber carrier 11 along the first direction X to form a plurality of fiber carrier modules 1, and then along the first direction X sequentially stacks a plurality of optical fiber carrier modules 1 to form the multilayer stacked optical fiber carrier, wherein, between the optical fiber mounting portions 111 on the optical fiber carriers 11 in two adjacent optical fiber carrier modules 1 in the multilayer stacked optical fiber carrier The distance in the first direction X is equal to the target value H.
  • the distance between the optical fiber mounting portions 111 on the fiber carriers 11 in the two adjacent fiber carrier modules 1 along the first direction X is equal to the target value Therefore, by adjusting the structure 12, the position accuracy of each optical fiber mounting portion 111 in the first direction X can be ensured, so that the optical path in the optical fiber can be accurately aligned with the optical switch, and the dimensional accuracy of the optical fiber carrier 11 in the first direction X There is no high requirement, so the processing difficulty and processing cost of the optical fiber carrier 11 can be reduced.
  • the end surfaces of the optical fiber carrier 11 along the first direction are respectively a first surface a and a second surface b, and the optical fiber mounting portion 111 is the first provided on the optical fiber carrier 11
  • the optical fiber installation groove on surface a, S100 includes:
  • the preset thickness h2 is equal to the difference between the target value H and the actual thickness h1;
  • S200 includes: sequentially stacking a plurality of optical fiber carrier modules 1 along the first direction, and making the first surface a of the optical fiber carriers 11 in the plurality of optical fiber carrier modules 1 face the same side.
  • the optical fiber mounting portion 111 on the optical fiber carrier 11 in the two adjacent optical fiber carrier modules 1 can be moved along the first direction
  • the distance of X is equal to the target value H, so it is difficult to adjust, easy to operate, and easy to realize;
  • the optical fiber mounting portion 111 is an optical fiber mounting groove provided on the first surface a of the optical fiber carrier 11, the optical fiber can be reduced
  • the processing of the installation portion 111 is difficult, and the optical fiber can be installed in the optical fiber installation groove by a buried installation method, so the optical fiber can be prevented from being scratched during installation.
  • the optical fiber installation groove extends along the second direction Y
  • the second surface b has a plurality of preset positions that are perpendicular to the second direction Y and are The third direction Z parallel to the surface b is sequentially arranged
  • S101 includes:
  • S102 includes:
  • a plurality of adjustment structures 12 having a preset thickness h2 are respectively installed at a plurality of the preset positions to obtain optical fiber carrier modules 1 whose thicknesses in the first direction X at the plurality of preset positions are all equal to the target value H .
  • a plurality of adjustment structures 12 are respectively adjusted at a plurality of positions on the second surface b of the fiber carrier 11 to effectively compensate the parallelism error between the first surface a and the second surface b of the fiber carrier 11.
  • the adjustment structure 12 is an adjustment block. Before S102, it further includes: selecting an adjustment block having a preset thickness h2 according to the difference between the target value H and the actual thickness h1. This operation is simple and easy to realize, and because the shape of the adjustment block is usually simple, the adjustment block can be processed by a high-precision processing method, so the dimensional accuracy of the adjustment block can be ensured.
  • the adjustment structure 12 is a telescopic mechanism.
  • the method further includes: according to the difference between the target value H and the actual thickness h1, driving the telescopic mechanism to expand and contract to obtain a thickness along the direction of stretching A telescopic mechanism of thickness h2 is provided. This operation is simple and easy to implement.
  • the method before S200, further includes: fixing the optical fiber in the optical fiber installation groove. In this way, the optical fiber is buried in the optical fiber installation groove for installation, and the optical fiber can be prevented from being scratched during installation.
  • fixing the optical fiber in the optical fiber installation groove includes using glue to fix the optical fiber in the optical fiber installation groove.
  • the optical fiber can be effectively fixed to avoid displacement of the optical fiber in the process of sequentially stacking multiple optical fiber carrier modules.

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例提供一种多层堆叠式光纤载体、通信设备和装配方法,涉及光通信技术领域,能够降低光纤载体的加工难度和加工成本。该多层堆叠式光纤载体包括多个光纤载体模块,多个所述光纤载体模块沿第一方向依次堆叠设置,每个所述光纤载体模块均包括光纤载体和调整结构,所述光纤载体上设有光纤安装部,所述调整结构用于使相邻两个所述光纤载体模块中所述光纤载体上的光纤安装部之间沿第一方向的距离等于目标值。本申请实施例提供的多层堆叠式光纤载体用于通信设备。

Description

一种多层堆叠式光纤载体、通信设备和装配方法
相关申请的交叉引用
本申请要求在2018年11月23日提交中国国家知识产权局、申请号为201811408095.5、申请名称为“一种多层堆叠式光纤载体、通信设备和装配方法”的中国专利申请的优先权,并要求在2018年12月1日提交中国国家知识产权局、申请号为201811460631.6、申请名称为“一种多层堆叠式光纤载体、通信设备和装配方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种多层堆叠式光纤载体、通信设备和装配方法。
背景技术
在现代通信网中,全光网可以克服电子交换在容量上的瓶颈限制,可以大量节省建网成本,提高网络的灵活性和可靠性,因此全光网是未来宽带通信网的发展方向。光交换是全光网络的关键技术之一,光交换是指不经过任何光电转换,将输入端的光信号直接交换到任意的光输出端。
如图1所示,大容量的光通信设备包括输入光纤阵列011、输出光纤阵列012、光交换机02和控制单元等结构,在该光交换机中,如何将输入光纤阵列011或输出光纤阵列012包括的几十上百根光纤固定到预设位置以使光纤中的光路准确对准光交换机02是一个关键技术点。
为了将输入光纤阵列011或输出光纤阵列012中的光纤准确对准光交换机02,如图2所示,目前使用的方法是在一块板04上加工相应数量的孔03,并保证这些孔03的直径精度和位置精度,然后将输入光纤阵列011或输出光纤阵列012中的多个光纤插入相应的孔03中,以通过孔03的直径和位置尺寸来确保光纤及光路的准确。但是,这样就需要将大量超高精度且具有一定深度的孔03准确地加工到同一块板04上,加工方式有限、效率低、成本高,且光纤在穿过孔的过程中容易被孔03的边缘划伤,从而造成光纤的性能指标下降。
为了避免上述问题,图3和图4为现有技术中的一种多层堆叠式光纤载体,包括多个光纤载体05,该多个光纤载体05由下至上依次堆叠,每个光纤载体05的上表面均设有一排光纤安装槽06,该光纤安装槽06用于安装光纤,这样,可以通过控制相邻两个光纤安装槽06之间的位置精度以及光纤载体05沿堆叠方向上的尺寸精度来确保光纤及光路的准确。在本技术方案中,采用开放式的光纤安装槽06替代上述封闭式的圆孔03,能够降低加工难度,增加光纤在光纤载体上的固定长度,保证光纤的垂直度,同时光纤埋入光纤安装槽06内以实现安装,能够避免光纤被划伤。但是,由于光纤载体05不可避免地会存在一定的加工误差,堆叠多个光纤载体05时会存在公差累积的问题,因此单个光纤载体05沿其堆叠方向上的尺寸精度需要比最终的多层堆叠式光纤载体沿堆叠方向上的尺寸精度高一个数量级以上。如下例所示:当单个光纤载体05沿其堆叠方向上的尺寸为1.0±0.01时,即该光纤载体05可能具有的极限尺寸为1.01,堆叠10个光纤载体05所形成的多层堆叠式光纤载体沿堆叠方向上的尺寸可能为10.10,公差比单个光纤载体05的精度降低了 10倍。如果希望将堆叠后的精度控制在±0.01的水平,那么单个光纤载体05沿堆叠方向上的尺寸精度就需要提高一个数量级。由此造成了光纤载体05加工困难,成本高昂。
发明内容
本申请的实施例提供一种多层堆叠式光纤载体、通信设备和装配方法,能够降低光纤载体的加工难度,减小光纤载体的加工成本。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供一种多层堆叠式光纤载体,包括多个光纤载体模块,多个所述光纤载体模块沿第一方向依次堆叠设置,每个所述光纤载体模块均包括光纤载体和调整结构,所述光纤载体上设有光纤安装部,所述调整结构用于使相邻两个所述光纤载体模块中所述光纤载体上的光纤安装部之间沿第一方向的距离等于目标值;其中,所述第一方向为任意一个方向,所述目标值为光交换机上与所述相邻两个光纤载体模块中所述光纤载体上的光纤安装部分别对应的两部分光输入口或光输出口之间的距离。
与现有技术相比,本申请实施例提供的多层堆叠式光纤载体,每个光纤载体对应设有调整结构,光纤载体和对应的调整结构组成光纤载体模块,由于该调整结构用于使相邻两个光纤载体模块中光纤载体上的光纤安装部之间沿第一方向的距离等于目标值,该目标值为光交换机上与该相邻两个光纤载体模块中光纤载体上的光纤安装部分别对应的两部分光输入口或光输出口之间的距离,因此通过调整结构能够保证各个光纤安装部之间的位置精度,使光纤中的光路能够准确对准光交换机,而对光纤载体的尺寸精度并无较高要求,因此能够降低光纤载体的加工难度和加工成本。
可选的,光纤载体沿所述第一方向的两端端面分别为第一表面和第二表面,多个光纤载体模块中光纤载体的第一表面朝向同一侧,光纤安装部为设置于光纤载体的第一表面上的光纤安装槽,调整结构设置于光纤载体的第二表面上。这样,一方面,由于光纤安装部为设置于光纤载体的表面上的光纤安装槽,因此能够降低光纤安装部的加工难度,且光纤可以采用埋入式安装方式安装于该光纤安装槽内,因此能够避免光纤在安装时被划伤;另一方面,由于多个光纤载体模块中光纤载体的第一表面朝向同一侧,光纤安装部设置于光纤载体的第一表面上,调整结构设置于光纤载体的第二表面上,因此,仅通过调整结构在光纤载体的第二表面远离第一表面的一侧进行调整,即可使相邻两个光纤载体模块中光纤载体上的光纤安装部之间沿第一方向的距离等于目标值,因此调整难度较低,操作方便,容易实现。
可选的,调整结构通过胶水、螺纹连接件、卡接件等固定于光纤载体的第二表面上。这样,能够固定调整结构与光纤载体之间的相对位置,防止调整结构在光纤载体的第二表面上窜动。
可选的,调整结构仅与光纤载体的第二表面接触,调整结构与光纤载体之间不固定。这样,在装配形成光纤载体模块时,只需将调整结构放置于光纤载体的第二表面上的预设位置即可,耗时较短,装配效率较高。
可选的,调整结构为调整块。通过计算,选择合适尺寸的调整块可以使相邻两个光纤载体模块中光纤载体上的光纤安装部之间沿第一方向的距离等于目标值,由于调整块的形状通常简单,因此能够采用高精密加工方法加工该调整块,且相比于光纤载体,调整块的尺寸较小,因此更易于保证调整块的加工精度。
可选的,调整块的形状为球体、圆柱体、正方体或者长方体,此时,调整块的形状简 单,能够采用高精密加工方法加工,以保证调整块的尺寸精度。
可选的,调整结构为伸缩机构。这样,可通过伸缩机构伸缩至合适的尺寸,以调整相邻两个光纤载体模块中光纤载体上的光纤安装部之间沿第一方向的距离,使得该距离达到目标值。
可选的,伸缩机构为直线型超声波电动机。直线型超声波电动机的尺寸可以制作得非常小,且该直线型超声波电动机能够在电信号的驱动下伸缩至合适尺寸,以使相邻两个光纤载体模块中光纤载体上的光纤安装部之间沿第一方向的距离等于目标值。此结构简单,容易实现。
可选的,光纤安装槽沿第二方向延伸,每个光纤载体模块包括多个调整结构,该多个调整结构沿与第二方向垂直并与第二表面平行的第三方向依次排列,其中,第二方向为与第一表面平行的任意一个方向。这样,一方面,通过多个调整结构同时支撑光纤载体,能够保证对光纤载体的支撑稳定性,从而能够保证多个光纤载体模块的堆叠稳定性;另一方面,采用多个调整结构分别在光纤载体的第二表面上的多个位置调整,能够有效补偿光纤载体的第一表面与第二表面之间的平行度误差。
可选的,光纤安装槽为多个,多个光纤安装槽并排设置。这样,一个光纤载体可以同时承载多个光纤,能够提高多层堆叠式光纤载体的容量。
可选的,每个光纤载体模块包括两个调整结构,两个调整结构分别设置于第二表面沿第三方向上的两端。这样,第一方面,通过两个调整结构同时支撑光纤载体,能够保证对光纤载体的支撑稳定性,从而能够保证多个光纤载体模块的堆叠稳定性;第二方面,采用两个调整结构分别在光纤载体的第二表面沿第三方向的两端调整,能够有效补偿光纤载体的第一表面与第二表面之间的平行度误差;第三方面,光纤载体模块包括的调整结构的数量较少,光纤载体模块的组成简单,装配难度较低。
可选的,光纤载体的第二表面上对应调整结构的位置设有限位槽,调整结构的一部分位于该限位槽内。这样,第一方面,当调整结构固定于光纤载体上时,可以通过该限位槽标记调整结构在光纤载体上的固定位置,以便于在装配调整结构时,能够更为方便地将调整结构固定于光纤载体上的预设位置;第二方面,当调整结构不固定于光纤载体上,而仅是放置于光纤载体上时,可以通过限位槽限制调整结构的位置,避免调整结构在光纤载体的第二表面上窜动;第三方面,调整结构的一部分沉入限位槽内设置,能够在一定程度上增大调整结构的尺寸,避免调整结构的尺寸过小而使其加工难度增大。
可选的,限位槽为矩形槽、V型槽或者U型槽。此结构简单,容易加工。
第二方面,本申请实施例提供一种通信设备,包括多根输入光纤、多根输出光纤、第一多层堆叠式光纤载体、第二多层堆叠式光纤载体和光交换机,所述第一多层堆叠式光纤载体和所述第二多层堆叠式光纤载体均为如上任一技术方案所述的多层堆叠式光纤载体;所述光交换机上设有光输入口阵列和光输出口阵列;多根所述输入光纤分别安装于所述第一多层堆叠式光纤载体中多个光纤载体上的光纤安装部内,多根所述输出光纤分别安装于所述第二多层堆叠式光纤载体中多个光纤载体上的光纤安装部内,所述第一多层堆叠式光纤载体和所述第二多层堆叠式光纤载体均与所述光交换机连接,且所述第一多层堆叠式光纤载体中多个光纤载体上的光纤安装部分别与所述光输入口阵列中的多个光输入口相对,所述第二多层堆叠式光纤载体中多个光纤载体上的光纤安装部分别与所述光输出口阵列中的多个光输出口相对。
与现有技术相比,本申请实施例提供的通信设备,由于该通信设备中,第一多层堆叠式光纤载体和第二多层堆叠式光纤载体均为如上任一技术方案所述的多层堆叠式光纤载体,因此通过该第一多层堆叠式光纤载体和第二多层堆叠式光纤载体分别固定多根输入光纤和多根输出光纤后,能够使多根输入光纤的光路与光交换机上的光输入口阵列对准,多根输出光纤与光交换机上的光输出口阵列对准,从而降低了光信号损失,保证了光通信质量,且对多层堆叠式光纤载体内的光纤载体的尺寸精度并无较高要求,因此能够降低光纤载体的加工难度和加工成本。
第三方面,本申请实施例提供一种装配方法,用于装配通信设备,通信设备包括多个光纤载体,光纤载体上设有光纤安装部,该装配方法包括:在每个所述光纤载体沿第一方向的至少一端端面上安装调整结构,以形成多个光纤载体模块;沿所述第一方向依次堆叠所述多个光纤载体模块,以形成多层堆叠式光纤载体;其中,所述多层堆叠式光纤载体中相邻两个所述光纤载体模块内所述光纤载体上的光纤安装部之间沿第一方向的距离等于目标值。
与现有技术相比,本申请实施例提供的装配方法,首先在每个光纤载体沿第一方向的至少一端端面上安装调整结构,以形成多个光纤载体模块,然后沿第一方向依次堆叠多个光纤载体模块,以形成多层堆叠式光纤载体,其中,多层堆叠式光纤载体中相邻两个光纤载体模块内光纤载体上的光纤安装部之间沿第一方向的距离等于目标值,这样,通过增设了调整结构,使得相邻多层堆叠式光纤载体中两个光纤载体模块内光纤载体上的光纤安装部之间沿第一方向的距离等于目标值,因此通过调整结构能够保证各个光纤安装部之间的位置精度,使光纤中的光路能够准确对准光交换机,而对光纤载体的尺寸精度并无较高要求,因此能够降低光纤载体的加工难度和加工成本。
可选的,光纤载体沿所述第一方向的两端端面分别为第一表面和第二表面,光纤安装部为设置于光纤载体的第一表面上的光纤安装槽,在每个所述光纤载体沿第一方向的至少一端端面上安装调整结构包括:测量光纤载体在第二表面上的预设位置处沿第一方向的实际厚度;将具有预设厚度的调整结构安装于预设位置处,以获得在预设位置处沿第一方向的厚度等于目标值的光纤载体模块;其中,预设厚度等于目标值与实际厚度之差;沿第一方向依次堆叠多个光纤载体模块包括:沿第一方向依次堆叠多个光纤载体模块,并使多个光纤载体模块中光纤载体的第一表面朝向同一侧。这样,一方面,仅通过在光纤载体的第二表面设置调整结构,即可使相邻两个光纤载体模块中光纤载体上的光纤安装部之间的距离等于目标值,因此调整难度较低,操作方便,容易实现;另一方面,由于光纤安装部为设置于光纤载体的第一表面上的光纤安装槽,因此能够降低光纤安装部的加工难度,且光纤可以采用埋入式安装方式安装于该光纤安装槽内,因此能够避免光纤在安装时被划伤。
可选的,光纤安装槽沿第二方向延伸,第二表面上具有多个预设位置,多个预设位置沿与第二方向垂直并与第二表面平行的第三方向依次排列,测量光纤载体在第二表面上的预设位置处沿第一方向的实际厚度包括:测量光纤载体在第二表面上的多个预设位置处沿第一方向的实际厚度;将具有预设厚度的调整结构安装于预设位置处,以获得在预设位置处沿所述第一方向的厚度等于所述目标值的光纤载体模块包括:将多个具有预设厚度的调整结构分别安装于多个所述预设位置处,以获得在多个预设位置处沿第一方向的厚度均等于目标值的光纤载体模块。这样,一方面,通过多个调整结构同时支撑光纤载体,能够保证对光纤载体的支撑稳定性,从而能够保证多个光纤载体模块的堆叠稳定性;另一方面, 采用多个调整结构分别在光纤载体的第二表面上的多个位置调整,能够有效补偿光纤载体的第一表面与第二表面之间的平行度误差。
可选的,调整结构为调整块,在将具有预设厚度的调整结构安装于所述预设位置处之前,还包括:根据目标值与实际厚度之间的差异,选择具有预设厚度的调整块。此操作简单,容易实现,且由于调整块的形状通常简单,能够采用高精密加工方法加工该调整块,因此能够保证调整块的尺寸精度。
可选的,调整结构为伸缩机构,在将具有预设厚度的调整结构安装于所述预设位置处之前,还包括:根据目标值与所述实际厚度之间的差异,驱动所述伸缩机构伸缩,以获得沿其伸缩方向的厚度为预设厚度的伸缩机构。此操作简单,容易实现。
可选的,在沿第一方向依次堆叠多个所述光纤载体模块之前,还包括:将光纤固定于所述光纤安装槽内。这样,光纤埋入光纤安装槽内进行安装,能够避免光纤在安装时被划伤。
可选的,将光纤固定于光纤安装槽内包括:采用胶水将光纤固定于光纤安装槽内。这样,能够有效固定光纤,避免在依次堆叠多个光纤载体模块的过程中,光纤产生移位。
附图说明
图1为大容量的光交换机的一种结构示意图;
图2为现有技术提供的一种光纤载体的结构示意图;
图3为现有技术提供的一种多层堆叠式光纤载体的主视图;
图4为现有技术提供的一种多层堆叠式光纤载体的立体图;
图5为本申请实施例提供的多层堆叠式光纤载体的主视图;
图6为本申请实施例提供的多层堆叠式光纤载体的爆炸图;
图7为本申请实施例提供的多层堆叠式光纤载体中光纤载体的结构示意图;
图8为本申请实施例提供的装配方法的一种流程图;
图9为本申请实施例提供的装配方法的另一种流程图;
图10为本申请实施例提供的装配方法中预设厚度、目标值和实际厚度之间的关系图。
具体实施方式
第一方面,本申请一些实施例提供一种多层堆叠式光纤载体,如图5和图6所示,包括多个光纤载体模块1,多个光纤载体模块1沿第一方向X依次堆叠设置,每个光纤载体模块1均包括光纤载体11和调整结构12,光纤载体11上设有光纤安装部111,调整结构12用于使相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值H。
需要说明的是,第一方向X表示任意一个方向,该第一方向X可以表示水平向左、水平向右、竖直向上、倾斜向上等方向,在此不做具体限定。在一些实施例中,如图5和图6所示,第一方向X表示竖直向上。
需要说明的是,目标值H是指光交换机上与相邻两个光纤载体模块1中光纤载体11上的光纤安装部111分别对应的两部分光输入口或光输出口之间的距离。具体的,当本申请实施例提供的多层堆叠式光纤载体用于承载输入光纤阵列时,则目标值H是指光交换机上与相邻两个光纤载体模块1中光纤载体11上的光纤安装部111分别对应的两部分光输入口之间的距离;当本申请实施例提供的多层堆叠式光纤载体用于承载输出光纤阵列时,则 目标值H是指光交换机上与相邻两个光纤载体模块1中光纤载体11上的光纤安装部111分别对应的两部分光输出口之间的距离。这样一来,调整结构12用于使相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值H,也即,能够保证安装于这些光纤安装部111中的光纤100能够准确对准光交换机的光输入口阵列或者光输出口阵列,从而降低了光信号损失,保证了光通信质量。
需要说明的是,相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离也即是指:相邻两个光纤载体11上的光纤安装部111之间沿第一方向X的距离,该相邻两个光纤载体11分别属于相邻的两个光纤载体模块1。其中,每个光纤载体11上可以设置一个光纤安装部111,也可以设置一排光纤安装部111,该一排光纤安装部111包括多个光纤安装部111,在此不做具体限定。当每个光纤载体11上设置一个光纤安装部111时,多个光纤载体11上的多个光纤安装部111可以沿第一方向X对齐排列,也可以沿第一方向X错位排列,相邻两个光纤载体11上的光纤安装部111之间沿第一方向X的距离是指:相邻两个光纤安装部111之间沿第一方向X的距离。当每个光纤载体11上设置一排光纤安装部111时,多个光纤载体11上的多排光纤安装部111可以沿第一方向X对齐排列,也可以沿第一方向X错位排列,相邻两个光纤载体11上的光纤安装部111之间沿第一方向X的距离是指相邻两排光纤安装部111之间沿第一方向X的距离。在一些实施例中,如图5和图6所示,每个光纤载体11上设置一排光纤安装部111,多个光纤载体11上的多排光纤安装部111沿第一方向X对齐排列,相邻两个光纤载体11上的光纤安装部111之间沿第一方向X的距离是指相邻两排光纤安装部111之间沿第一方向X的距离。
光纤安装部111可以为设置于光纤载体11沿第一方向X的一端端面上的光纤安装槽,也可以为设置于光纤载体11沿第一方向X的中部的光纤安装孔,在此不做具体限定。在一些实施例中,如图5和图6所示,光纤安装部111为设置于光纤载体11沿第一方向X的一端端面上的光纤安装槽,这样,光纤可以采用埋入式安装方式安装于光纤安装部111内,避免光纤在安装过程中被划伤,同时可以降低光纤安装部111的开设难度。
为了保证调整结构12能够使相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值,调整结构12应设置于光纤载体11沿第一方向X的至少一端端面上,以使调整结构12能够对光纤载体11在第一方向X上的位置起到调整作用,从而使相邻两个光纤载体11上的光纤安装部111之间沿第一方向X的距离能够达到目标值。调整结构12可以仅设置于光纤载体11沿第一方向X的一端端面上,也可以设置于光纤载体11沿第一方向X的两端端面上,在此不做具体限定。在一些实施例中,如图5和图6所示,调整结构12仅设置于光纤载体11沿第一方向X的一端端面上,这样,只需在光纤载体11的一侧进行调整,即可使相邻两个光纤载体11上的光纤安装部111之间沿第一方向X的距离达到目标值,因此调整难度较低,操作方便,容易实现。
与现有技术相比,本申请实施例提供的多层堆叠式光纤载体,每个光纤载体11对应设有调整结构12,光纤载体11和对应的调整结构12组成光纤载体模块1,由于该调整结构12用于使相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值,该目标值为光交换机上与该相邻两个光纤载体模块1中光纤载体11上的光纤安装部111分别对应的两部分光输入口或光输出口之间的距离,因此通过调整结构12能够保证各个光纤安装部111之间在第一方向X上的位置精度,使光纤中的光路能 够准确对准光交换机,而对光纤载体11沿第一方向X的尺寸精度并无较高要求,因此能够降低光纤载体11的加工难度和加工成本。
光纤载体11的材料可以为玻璃、硅、金属、塑料等材料,在此不做具体限定。
在一些实施例中,如图5和图6所示,光纤载体11沿所述第一方向X的两端端面分别为第一表面a和第二表面b,多个光纤载体模块1中光纤载体11的第一表面a朝向同一侧,光纤安装部111为设置于光纤载体11的第一表面a上的光纤安装槽,调整结构12设置于光纤载体11的第二表面b上。这样,一方面,由于光纤安装部111为设置于光纤载体11的表面上的光纤安装槽,因此能够降低光纤安装部111的加工难度,且光纤100可以采用埋入式安装方式安装于该光纤安装槽内,因此能够避免光纤在安装时被划伤;另一方面,由于多个光纤载体模块1中光纤载体11的第一表面a朝向同一侧,光纤安装部111设置于光纤载体11的第一表面a上,调整结构12设置于光纤载体11的第二表面b上,因此,仅通过调整结构12在光纤载体11的第二表面b远离第一表面a的一侧进行调整,即可使相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值,因此调整难度较低,操作方便,容易实现。
在一些实施例中,调整结构12可以通过胶水、螺纹连接件、卡接件等固定于光纤载体11的第二表面b上,这样,能够固定调整结构12与光纤载体11之间的相对位置,防止调整结构12在光纤载体11的第二表面b上窜动。同理的,在一些实施例中,相邻两个光纤载体模块1之间也可以通过胶水、螺纹连接件、卡接件等固定在一起,以防止相邻两个光纤载体模块1之间产生相对移动。
在另外一些实施例中,调整结构12可以仅与光纤载体11的第二表面b接触,调整结构12与光纤载体11之间不固定,这样,在装配形成光纤载体模块1时,只需将调整结构12放置于光纤载体11的第二表面b上的预设位置即可,因此耗时较短,装配效率较高。同理的,在一些实施例中,在依次堆叠多个光纤载体模块1时,也可以使相邻两个光纤载体模块1接触,该相邻的两个光纤载体模块1之间并未固定,这样,在装配多个光纤载体模块1以形成多层堆叠式光纤载体时,只需依次堆叠放置多个光纤载体模块1即可,因此耗时较短,堆叠效率较高。
需要说明的是,当调整结构12与光纤载体11之间和/或相邻两个光纤载体模块1之间未固定时,在完成多层堆叠式光纤载体的装配之后,可以采用夹紧装置由多层堆叠式光纤载体沿第一方向X的两端夹紧该多层堆叠式光纤载体,以依靠调整结构12与光纤载体11之间和/或相邻两个光纤载体模块1之间的摩擦力实现调整结构12与光纤载体11之间和/或相邻两个光纤载体模块1之间的相对位置固定。
其中,夹紧装置的结构为机械技术领域中的常用结构,且其结构形式有多种,比如螺旋夹紧机构、偏心夹紧机构、端面凸轮夹紧机构等等,在此不做具体限定。
在一些实施例中,如图5和图6所示,调整结构12为调整块。通过计算,选择合适尺寸的调整块可以使相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值,由于调整块的形状通常简单,因此能够采用高精密加工方法加工该调整块,且相比于光纤载体11,调整块的尺寸较小,因此更易于保证调整块的加工精度。
可选的,调整块的形状为球体、圆柱体、正方体或者长方体,此时,调整块的形状简单,能够采用高精密加工方法加工,以保证调整块的尺寸精度。
可选的,调整块的材料可以为玻璃、硅、金属、塑料等材料,在此不做具体限定。且调整块的加工方式可以为切削、磨削、蚀刻等,在此不做具体限定。
在另外一些实施例中,调整结构12为伸缩机构。这样,可通过伸缩机构伸缩至合适的尺寸,以调整相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向的距离,使得该距离达到目标值。
伸缩机构可以为电致伸缩机构、磁致伸缩机构、热致伸缩机构等等,在此不做具体限定。
在一些实施例中,伸缩机构为直线型超声波电动机。直线型超声波电动机的尺寸可以制作得非常小,且该直线型超声波电动机能够在电信号的驱动下伸缩至合适尺寸,以使相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值。此结构简单,容易实现。
在一些实施例中,如图5和图6所示,光纤安装槽沿第二方向Y延伸,每个光纤载体模块1包括多个调整结构12,该多个调整结构12沿与第二方向Y垂直并与第二表面b平行的第三方向Z依次排列。这样,一方面,通过多个调整结构12同时支撑光纤载体11,能够保证对光纤载体11的支撑稳定性,从而能够保证多个光纤载体模块1的堆叠稳定性;另一方面,采用多个调整结构12分别在光纤载体11的第二表面b上的多个位置调整,能够有效补偿光纤载体11的第一表面a与第二表面b之间的平行度误差。
在上述实施例中,需要说明的是,第二方向Y为与第一表面a平行的任意一个方向。
每个光纤载体模块1包括的调整结构12的数量可以为两个、三个、四个等等,在此不做具体限定。
在一些实施例中,如图5、图6和图7所示,光纤安装槽为多个,多个光纤安装槽并排设置。这样,一个光纤载体11可以同时承载多个光纤,能够提高多层堆叠式光纤载体的容量。
在一些实施例中,如图5和图6所示,每个光纤载体模块1包括两个调整结构12,两个调整结构12分别设置于第二表面b沿第三方向Z上的两端。这样,第一方面,通过两个调整结构12同时支撑光纤载体11,能够保证对光纤载体11的支撑稳定性,从而能够保证多个光纤载体模块1的堆叠稳定性;第二方面,采用两个调整结构12分别在光纤载体11的第二表面b沿第三方向Z的两端调整,能够有效补偿光纤载体11的第一表面a与第二表面b之间的平行度误差;第三方面,光纤载体模块1包括的调整结构12的数量较少,光纤载体模块1的组成简单,装配难度较低。
在一些实施例中,如图7所示,光纤载体11的第二表面b上对应调整结构的位置设有限位槽112,如图5所示,调整结构12的一部分位于该限位槽112内。这样,第一方面,当调整结构12固定于光纤载体11上时,可以通过该限位槽112标记调整结构12在光纤载体11上的固定位置,以便于在装配调整结构12时,能够更为方便地将调整结构12固定于光纤载体11上的预设位置;第二方面,当调整结构12不固定于光纤载体11上,而仅是放置于光纤载体11上时,可以通过限位槽112限制调整结构12的位置,避免调整结构12在光纤载体11的第二表面b上窜动;第三方面,调整结构12的一部分沉入限位槽112内设置,能够在一定程度上增大调整结构12的尺寸,避免调整结构12的尺寸过小而使其加工难度增大。
可选的,限位槽112为矩形槽、V型槽或者U型槽,此结构简单,容易加工。其中, 矩形槽、V型槽或者U型槽是指截面形状为矩形、V形或者U形的槽。
第二方面,本申请一些实施例还提供了一种通信设备,该通信设备包括多根输入光纤、多根输出光纤、第一多层堆叠式光纤载体、第二多层堆叠式光纤载体和光交换机,所述第一多层堆叠式光纤载体和所述第二多层堆叠式光纤载体均为如上任一实施例所述的多层堆叠式光纤载体;所述光交换机上设有光输入口阵列和光输出口阵列;多根所述输入光纤分别安装于所述第一多层堆叠式光纤载体中多个光纤载体上的光纤安装部内,多根所述输出光纤分别安装于所述第二多层堆叠式光纤载体中多个光纤载体上的光纤安装部内,所述第一多层堆叠式光纤载体和所述第二多层堆叠式光纤载体均与所述光交换机连接,且所述第一多层堆叠式光纤载体中多个光纤载体上的光纤安装部分别与所述光输入口阵列中的多个光输入口相对,所述第二多层堆叠式光纤载体中多个光纤载体上的光纤安装部分别与所述光输出口阵列中的多个光输出口相对。
与现有技术相比,本申请实施例提供的通信设备,由于该通信设备中,第一多层堆叠式光纤载体和第二多层堆叠式光纤载体均为如上任一技术方案所述的多层堆叠式光纤载体,因此通过该第一多层堆叠式光纤载体和第二多层堆叠式光纤载体分别固定多根输入光纤和多根输出光纤后,能够使多根输入光纤的光路与光交换机上的光输入口阵列对准,多根输出光纤与光交换机上的光输出口阵列对准,从而降低了光信号损失,保证了光通信质量,且对多层堆叠式光纤载体内的光纤载体的尺寸精度并无较高要求,因此能够降低光纤载体的加工难度和加工成本。
第三方面,本申请一些实施例提供一种装配方法,用于装配通信设备,通信设备包括多个光纤载体11,光纤载体11上设有光纤安装部111,如图5、图6和图8所示,该装配方法包括:
S100、在光纤载体11沿第一方向X的至少一端端面上安装调整结构12,以形成多个光纤载体模块1;
S200、沿第一方向X依次堆叠多个光纤载体模块1,以形成该多层堆叠式光纤载体;其中,多层堆叠式光纤载体中相邻两个光纤载体模块1内光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值H。
与现有技术相比,本申请实施例提供的装配方法,首先在光纤载体11沿第一方向X的至少一端端面上安装调整结构12,以形成多个光纤载体模块1,然后沿第一方向X依次堆叠多个光纤载体模块1,以形成该多层堆叠式光纤载体,其中,多层堆叠式光纤载体中相邻两个光纤载体模块1内光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值H,这样,通过增设了调整结构,使得相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值,因此通过调整结构12能够保证各个光纤安装部111之间在第一方向X上的位置精度,使光纤中的光路能够准确对准光交换机,而对光纤载体11沿第一方向X的尺寸精度并无较高要求,因此能够降低光纤载体11的加工难度和加工成本。
在一些实施例中,如图7所示,光纤载体11沿所述第一方向的两端端面分别为第一表面a和第二表面b,光纤安装部111为设置于光纤载体11的第一表面a上的光纤安装槽,如图9和图10所示,S100包括:
S101、测量光纤载体11在第二表面b上的预设位置处沿第一方向的实际厚度h1;
S102、将具有预设厚度h2的调整结构12安装于预设位置处,以获得在预设位置处沿 第一方向的厚度等于目标值H的光纤载体模块1;
其中,预设厚度h2等于目标值H与实际厚度h1之差;
S200包括:沿第一方向依次堆叠多个光纤载体模块1,并使多个光纤载体模块1中光纤载体11的第一表面a朝向同一侧。
这样一来,一方面,仅通过在光纤载体11的第二表面b设置调整结构12,即可使相邻两个光纤载体模块1中光纤载体11上的光纤安装部111之间沿第一方向X的距离等于目标值H,因此调整难度较低,操作方便,容易实现;另一方面,由于光纤安装部111为设置于光纤载体11的第一表面a上的光纤安装槽,因此能够降低光纤安装部111的加工难度,且光纤可以采用埋入式安装方式安装于该光纤安装槽内,因此能够避免光纤在安装时被划伤。
在一些实施例中,如图6所示,光纤安装槽沿第二方向Y延伸,第二表面b上具有多个预设位置,多个预设位置沿与第二方向Y垂直并与第二表面b平行的第三方向Z依次排列,S101包括:
测量光纤载体11在第二表面b上的多个预设位置处沿第一方向X的实际厚度h1;
S102包括:
将多个具有预设厚度h2的调整结构12分别安装于多个所述预设位置处,以获得在多个预设位置处沿第一方向X的厚度均等于目标值H的光纤载体模块1。
这样一来,一方面,通过多个调整结构12同时支撑光纤载体11,能够保证对光纤载体11的支撑稳定性,从而能够保证多个光纤载体模块1的堆叠稳定性;另一方面,采用多个调整结构12分别在光纤载体11的第二表面b上的多个位置调整,能够有效补偿光纤载体11的第一表面a与第二表面b之间的平行度误差。
在一些实施例中,调整结构12为调整块,在S102之前,还包括:根据目标值H与实际厚度h1之间的差异,选择具有预设厚度h2的调整块。此操作简单,容易实现,且由于调整块的形状通常简单,能够采用高精密加工方法加工该调整块,因此能够保证调整块的尺寸精度。
在一些实施例中,调整结构12为伸缩机构,在S102之前,还包括:根据目标值H与所述实际厚度h1之间的差异,驱动伸缩机构伸缩,以获得沿其伸缩方向的厚度为预设厚度h2的伸缩机构。此操作简单,容易实现。
在一些实施例中,在S200之前,还包括:将光纤固定于所述光纤安装槽内。这样,光纤埋入光纤安装槽内进行安装,能够避免光纤在安装时被划伤。
可选的,将光纤固定于光纤安装槽内包括:采用胶水将光纤固定于光纤安装槽内。这样,能够有效固定光纤,避免在依次堆叠多个光纤载体模块的过程中,光纤产生移位。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种多层堆叠式光纤载体,其特征在于,包括多个光纤载体模块,多个所述光纤载体模块沿第一方向依次堆叠设置,每个所述光纤载体模块均包括光纤载体和调整结构,所述光纤载体上设有光纤安装部,所述调整结构用于使相邻两个所述光纤载体模块中所述光纤载体上的光纤安装部之间沿第一方向的距离等于目标值;
    其中,所述第一方向为任意一个方向,所述目标值为光交换机上与所述相邻两个光纤载体模块中所述光纤载体上的光纤安装部分别对应的两部分光输入口或光输出口之间的距离。
  2. 根据权利要求1所述的多层堆叠式光纤载体,其特征在于,所述光纤载体沿所述第一方向的两端端面分别为第一表面和第二表面,多个所述光纤载体模块中所述光纤载体的第一表面朝向同一侧,所述光纤安装部为设置于所述光纤载体的第一表面上的光纤安装槽,所述调整结构设置于所述光纤载体的第二表面上。
  3. 根据权利要求1或2所述的多层堆叠式光纤载体,其特征在于,所述调整结构为调整块。
  4. 根据权利要求3所述的多层堆叠式光纤载体,其特征在于,所述调整块的形状为球体、圆柱体、正方体或者长方体。
  5. 根据权利要求1或2所述的多层堆叠式光纤载体,其特征在于,所述调整结构为伸缩机构。
  6. 根据权利要求5所述的多层堆叠式光纤载体,其特征在于,所述伸缩机构为直线型超声波电动机。
  7. 根据权利要求2~6中任一项所述的多层堆叠式光纤载体,其特征在于,所述光纤安装槽沿第二方向延伸,每个所述光纤载体模块包括多个所述调整结构,多个所述调整结构沿与所述第二方向垂直并与所述第二表面平行的第三方向依次排列;
    其中,所述第二方向为与所述第一表面平行的任意一个方向。
  8. 根据权利要求7所述的多层堆叠式光纤载体,其特征在于,每个所述光纤载体模块包括两个所述调整结构,两个所述调整结构分别设置于所述第二表面沿所述第三方向上的两端。
  9. 根据权利要求2~8中任一项所述的多层堆叠式光纤载体,其特征在于,所述光纤载体的第二表面上对应所述调整结构的位置设有限位槽,所述调整结构的一部分位于所述限位槽内。
  10. 根据权利要求9所述的多层堆叠式光纤载体,其特征在于,所述限位槽为矩形槽、V型槽或者U型槽。
  11. 一种通信设备,其特征在于,包括多根输入光纤、多根输出光纤、第一多层堆叠式光纤载体、第二多层堆叠式光纤载体和光交换机,所述第一多层堆叠式光纤载体和所述第二多层堆叠式光纤载体均为权利要求1~10中任一项所述的多层堆叠式光纤载体;
    所述光交换机上设有光输入口阵列和光输出口阵列;
    多根所述输入光纤分别安装于所述第一多层堆叠式光纤载体中多个光纤载体上的光纤安装部内,多根所述输出光纤分别安装于所述第二多层堆叠式光纤载体中多个光纤载体上的光纤安装部内,所述第一多层堆叠式光纤载体和所述第二多层堆叠式光纤载体均与所述光交换机连接,且所述第一多层堆叠式光纤载体中多个光纤载体上的光纤安装部分别与 所述光输入口阵列中的多个光输入口相对,所述第二多层堆叠式光纤载体中多个光纤载体上的光纤安装部分别与所述光输出口阵列中的多个光输出口相对。
  12. 一种装配方法,用于装配通信设备,所述通信设备包括多个光纤载体,所述光纤载体上设有光纤安装部,其特征在于,所述装配方法包括:
    在每个所述光纤载体沿第一方向的至少一端端面上安装调整结构,以形成多个光纤载体模块;
    沿所述第一方向依次堆叠所述多个光纤载体模块,以形成多层堆叠式光纤载体;
    其中,所述多层堆叠式光纤载体中相邻两个所述光纤载体模块内所述光纤载体上的光纤安装部之间沿第一方向的距离等于目标值。
  13. 根据权利要求12所述的装配方法,其特征在于,所述光纤载体沿所述第一方向的两端端面分别为第一表面和第二表面,所述光纤安装部为设置于所述光纤载体的第一表面上的光纤安装槽,所述在每个所述光纤载体沿第一方向的至少一端端面上安装调整结构包括:
    测量所述光纤载体在第二表面上的预设位置处沿第一方向的实际厚度;
    将具有预设厚度的调整结构安装于所述预设位置处,以获得在预设位置处沿所述第一方向的厚度等于所述目标值的光纤载体模块;
    其中,所述预设厚度等于所述目标值与所述实际厚度之差;
    所述沿所述第一方向依次堆叠所述多个光纤载体模块包括:
    沿所述第一方向依次堆叠所述多个光纤载体模块,并使多个所述光纤载体模块中光纤载体的第一表面朝向同一侧。
  14. 根据权利要求13所述的装配方法,其特征在于,所述调整结构为调整块,在所述将具有预设厚度的调整结构安装于所述预设位置处之前,还包括:
    根据目标值与所述实际厚度之间的差异,选择具有预设厚度的调整块。
  15. 根据权利要求13所述的装配方法,其特征在于,所述调整结构为伸缩机构,在所述将具有预设厚度的调整结构安装于所述预设位置处之前,还包括:
    根据目标值与所述实际厚度之间的差异,驱动所述伸缩机构进行伸缩,以获得沿其伸缩方向的厚度为预设厚度的伸缩机构。
  16. 根据权利要求13~15中任一项所述的装配方法,其特征在于,在所述沿所述第一方向依次堆叠所述多个光纤载体模块之前,还包括:
    将光纤固定于所述光纤安装槽内。
PCT/CN2019/115859 2018-11-23 2019-11-06 一种多层堆叠式光纤载体、通信设备和装配方法 WO2020103689A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811408095 2018-11-23
CN201811408095.5 2018-11-23
CN201811460631.6A CN111221074B (zh) 2018-11-23 2018-12-01 一种多层堆叠式光纤载体、通信设备和装配方法
CN201811460631.6 2018-12-01

Publications (1)

Publication Number Publication Date
WO2020103689A1 true WO2020103689A1 (zh) 2020-05-28

Family

ID=70774550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115859 WO2020103689A1 (zh) 2018-11-23 2019-11-06 一种多层堆叠式光纤载体、通信设备和装配方法

Country Status (1)

Country Link
WO (1) WO2020103689A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030012544A1 (en) * 2001-07-12 2003-01-16 Ngk Insulators, Ltd. Two-dimensional optical element array and two-dimensional waveguide apparatus
US20030123792A1 (en) * 2001-12-21 2003-07-03 Ngk Insulators, Ltd. Two-dimensional optical element array, two dimensional waveguide apparatus and methods for manufacturing the same
US20040071431A1 (en) * 2001-03-12 2004-04-15 Denis Trouchet Guide for passing optical fibers and receiving housing for optical components fitted with one such guide
CN103959119A (zh) * 2011-12-09 2014-07-30 惠普发展公司,有限责任合伙企业 光学连接

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040071431A1 (en) * 2001-03-12 2004-04-15 Denis Trouchet Guide for passing optical fibers and receiving housing for optical components fitted with one such guide
US20030012544A1 (en) * 2001-07-12 2003-01-16 Ngk Insulators, Ltd. Two-dimensional optical element array and two-dimensional waveguide apparatus
US20030123792A1 (en) * 2001-12-21 2003-07-03 Ngk Insulators, Ltd. Two-dimensional optical element array, two dimensional waveguide apparatus and methods for manufacturing the same
CN103959119A (zh) * 2011-12-09 2014-07-30 惠普发展公司,有限责任合伙企业 光学连接

Similar Documents

Publication Publication Date Title
US8498069B2 (en) Voice coil motor
US5044711A (en) Optical-fiber aligning member and method of forming the member
CN110741294A (zh) 光波导芯片的连接结构
KR20010102533A (ko) 캔틸레버형 마이크로구조 장치 및 그 제조 방법
CN111221074B (zh) 一种多层堆叠式光纤载体、通信设备和装配方法
US7606454B2 (en) Optical fiber array, optical component and optical switch using the optical fiber array
WO2016137954A1 (en) Optically coupling waveguides
WO2015010468A1 (zh) 光开关和光开关阵列
WO2020103689A1 (zh) 一种多层堆叠式光纤载体、通信设备和装配方法
WO2018048534A1 (en) Bending type optical module and method of manufacturing the same
US20020131752A1 (en) Multiple fiber chip clamp
KR20200109493A (ko) 반도체 칩을 전사하는 전사 장치 및 방법
WO2013045498A1 (en) Optical system with alignment adjusting means
US6859579B2 (en) Optical switcher used for broadcast station
US20220382002A1 (en) An apparatus arranged for aligning an optical component with an on-chip port as well as a corresponding system and method
US20050069261A1 (en) Optical semiconductor device and method of manufacturing same
US9122028B2 (en) High-precision passive alignment of optical components with optical waveguides using a common adapter
CN108575054B (zh) 用于制造光感模块的治具、方法及电路板的制造方法
US6931171B2 (en) Micromirror actuator and manufacturing method thereof
JP2776660B2 (ja) 光ファイバの調心装置
JP2001174725A (ja) メカニカル光スイッチ
JP2006094657A (ja) 静電アクチュエータおよび撮像装置
KR102324629B1 (ko) 로봇 암 정렬 장치 및 이를 구비하는 반도체 제조 장치
US20230386752A1 (en) Trench capacitors
US6208786B1 (en) Method of manufacturing arrays of monomode fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886680

Country of ref document: EP

Kind code of ref document: A1