WO2020103118A1 - Process for producing substituted anthraquinone - Google Patents

Process for producing substituted anthraquinone

Info

Publication number
WO2020103118A1
WO2020103118A1 PCT/CN2018/117112 CN2018117112W WO2020103118A1 WO 2020103118 A1 WO2020103118 A1 WO 2020103118A1 CN 2018117112 W CN2018117112 W CN 2018117112W WO 2020103118 A1 WO2020103118 A1 WO 2020103118A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
formula
substituted
solvent
Prior art date
Application number
PCT/CN2018/117112
Other languages
French (fr)
Inventor
Wen-juan ZHOU
Fangzheng SU
Stéphane STREIFF
Original Assignee
Solvay Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Sa filed Critical Solvay Sa
Priority to PCT/CN2018/117112 priority Critical patent/WO2020103118A1/en
Publication of WO2020103118A1 publication Critical patent/WO2020103118A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes

Definitions

  • the present disclosure relates to a process for producing substituted anthraquinone.
  • the present invention relates to a process for manufacturing a compound of formula (II) , said process comprising a step of reacting a compound of formula (I) in the presence of a zeolite catalyst and a solvent, wherein the solvent is a halogen substituted aromatic compound,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently H, halo, C 1 -C 12 alkyl, C 1 -C 12 alkyloxy, C 2 -C 12 alkenyl, C 2 -C 12 alkenyloxy, C 2 -C 12 alkynyl, C 2 -C 12 alkynyloxy, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyloxy, C 6 -C 10 aryl, C 6 -C 10 aryloxy, C 7 -C 10 aralkyl, C 7 -C 10 alkylaryl or C 4 -C 7 heteroaryl.
  • any particular upper concentration can be associated with any particular lower concentration.
  • alkyl means a saturated hydrocarbon radical, which may be straight, or branched, such as, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, t-butyl, pentyl, n-hexyl.
  • Alkyl preferably contains 1 to 20 carbon atoms, preferably 1-12, or 1-10 carbon atoms, preferably 1-8 carbon atoms, more preferably, 1-6 carbon atoms.
  • alkyloxy means alkyl-O-, wherein alkyl is as defined above.
  • alkenyl as a group or part of a group denotes an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched.
  • the group may contain a plurality of double bonds in the normal chain and the orientation about each is independently E or Z.
  • Exemplary alkenyl groups include, but are not limited to, ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl and nonenyl.
  • the group may be a terminal group or a bridging group.
  • alkynyl as a group or part of a group denotes an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched. The group may contain a plurality of triple bonds in the normal chain.
  • alkynyl groups include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like.
  • alkenyloxy means alkenyl-O-, wherein alkenyl is as defined above.
  • alkynyloxy means alkynyl-O-, wherein alkynyl is as defined above.
  • aryl refers to a monovalent aromatic hydrocarbon group, including bridged ring and/or fused ring systems, containing at least one aromatic ring. Examples of aryl groups include phenyl, naphthyl and the like.
  • arylalkyl or the term “aralkyl” refers to alkyl substituted with an aryl.
  • arylalkoxy refers to an alkoxy substituted with aryl.
  • cyclic group means a closed ring hydrocarbon group that is classified as an alicyclic group, aromatic group, or heterocyclic group.
  • alicyclic group means a cyclic hydrocarbon group having properties resembling those of aliphatic groups.
  • cycloalkyl as used herein means cycloalkyl groups containing from 3 to 20 carbon atoms, preferably 3 to 8 carbon atoms, for example cyclohexyl.
  • aromatic compound as used herein means a compound conforming to the Hückel rule, such as benzene, naphthalene and the like.
  • the aromatic compound may be further substituted by such as hydroxy, amino, C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 1 -C 20 alkyloxy, C 2 -C 20 alkenyloxy, or C 2 -C 20 alkynyloxy.
  • the aromatic compound may be further substituted by H, hydroxy, amino, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkyloxy, C 2 -C 6 alkenyloxy, or C 2 -C 6 alkynyloxy.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently H, halo, C 1 -C 6 alkyl, C 1 -C 6 alkyloxy, C 2 -C 6 alkenyl, C 2 -C 6 alkenyloxy, or C 3 -C 8 cycloalkyl.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently H, halo, C 1 -C 6 alkyl, or C 1 -C 6 alkyloxy.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 8 are independently H, halo, C 1 -C 6 alkyl, or C 1 -C 6 alkyloxy, and R 7 is C 1 -C 6 alkyl.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 8 are independently H, and R 7 is C 1 -C 6 alkyl.
  • the compound of formula (I) is 2- (4’-ethylbenzoyl) benzoic acid or 2- (4’-amylbenzoyl) benzoic acid.
  • the solvent is a halogen substituted aromatic compound.
  • halogen refers to F, Cl, Br, and I.
  • the halogen substituted to benzene compound is Cl or Br.
  • the solvent is a halogen substituted benzene compound, or a halogen substituted naphthalene compound, preferably chloro substituted benzene compound or bromo substituted benzene compound.
  • the solvent is benzene substituted by at least two halogen atoms and more preferably 2 to 4 halogen atoms.
  • examples of such solvent are benzene substituted by 2, 3 or 4 chlorine atoms or benzene substituted by 2, 3 or 4 bromine atoms.
  • the solvent may be selected from the group consisting of 1, 2-dichlorobenzene, 1, 2, 4-trichlorobenzene and 1, 2, 4, 5-tetrachlorobenzene.
  • the solvent may be used at an amount of 2 mL to 100 mL solvent per gram of the compound of formula (I) .
  • the zeolite catalyst is not particularly limited. All the zeolites having catalytic activity towards the reaction according to the present invention can be used. Notably, the zeolite catalyst can be MOR, BEA, MFI, FAU or FER framework. MOR, MFI, BEA, FAU and FER framework are all the framework type codes assigned by International Zeolite Association (IZA) structure commission, which is authorized by IUPAC.
  • IZA International Zeolite Association
  • the zeolite catalyst may be H-MOR, H-BEA, H-MFI, H-FAU or H-FER; it preferably is H-MOR or H-BEA.
  • the weight ratio of the compound of formula (I) to zeolite may be 10: 1 to 1: 1, preferably 5: 1 to 2: 1.
  • the process can be carried out in the presence of a zeolite catalyst, a solvent and a nucleophilic reagent.
  • the nucleophilic reagent can be a pyridine, substituted pyridine, pyrimidine and/or substituted pyrimidine.
  • Substituted pyridine or pyrimidine refers to pyridine or pyrimidine which is substituted by one or more C 1 -C 20 alkyl, preferably C 1 -C 10 alkyl, more preferably C 1 -C 6 alkyl.
  • the substituted pyridine or pyrimidine can be 2, 6-di-tert-butyl-4-methylpyridine, 2, 4, 6-tri-tert-butyl-pyridine or 2, 4, 6-tri-tert-butylpyrimidine.
  • the nucleophilic reagent can be a phosphine compound of formula PR 1 R 2 R 3 or an amine compound of formula NR 1 R 2 R 3 , wherein R 1 , R 2 an R 3 are independently selected from the group of H, C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 6 -C 20 aryl, C 7 -C 20 alkylaryl, and C 7- C 20 arylalkyl, preferably, H, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 6 -C 10 aryl, C 7 -C 10 alkylaryl, and C 7 -C 10 arylalkyl, more preferably, R 1 , R 2 an R 3 are independently selected from the group of C 1 -C 6 alkyl and phenyl.
  • R 1 , R 2 an R 3 are independently selected from the group
  • the nucleophilic reagent may be added in the amount of 0.1-100 mg per gram of the compound of formula (I) .
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 8 are independently H, and R 7 is C 1 -C 6 alkyl
  • the compound of formula (I) is reacted in the presence of a H-MOR or a H-BEA zeolite catalyst and a solvent at a temperature of 150-270 °C, wherein the solvent is a halogen substituted aromatic compound, preferably polychlorobenzene, even preferably 1, 2-dichlorobenzene, 1, 2, 4-trichlorobenzene and 1, 2, 4, 5-tetrachlorobenzene.
  • the above process is carried out in the presence of a nucleophilic reagent.
  • the nucleophilic reagent can be a pyridine, substituted pyridine, pyrimidine and/or substituted pyrimidine.
  • Substituted pyridine or pyrimidine refers to pyridine or pyrimidine which is substituted by one or more C 1 -C 20 alkyl, preferably C 1 -C 10 alkyl, more preferably C 1 -C 6 alkyl.
  • the substituted pyridine can be 2, 6-di-tert-butyl-4-methylpyridine or 2, 4, 6-tri-tert-butyl-pyridine.
  • the substituted pyrimidine can be or 2, 4, 6-tri-tert-butylpyrimidine.
  • the nucleophilic reagent can be a phosphine compound of formula PR 1 R 2 R 3 or an amine compound of formula NR 1 R 2 R 3 , wherein R 1 , R 2 an R 3 are independently selected from the group of H, C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 6 -C 20 aryl, C 7 -C 20 alkylaryl, C 7- C 20 arylalkyl, preferably, H, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 6 -C 10 aryl, C 7 -C 10 alkylaryl, C 7 -C 10 arylalkyl, more preferably, R 1 , R 2 an R 3 are independently selected from the group of C 1 -C 6 alkyl and phenyl.
  • R 1 , R 2 an R 3 are independently selected from the group of C
  • the process may be carried out at a temperature of 150-270 °C, preferably 160-260 °C, more preferably 180-240 °C.
  • the process may be carried out for 1-10 hours, preferably 2-8 hours, more preferably 4-5 hours.
  • halogen substituted aromatic compound such as polychlorobenzene
  • solvent with high boiling point can greatly enhance conversion of the substrate acid and selectivity of substituted anthraquinone, in comparison with the case of solvent-free conditions.
  • a halogen substituted aromatic compound such as polychlorobenzene can increase the selectivity of substituted anthraquinone at the same reaction temperature, in comparison with the solvents used in CN 107098802.
  • the reaction according to the present invention can achieve ideal selectivity at a lower temperature than CN 107098802. Thus, it is safer and more suitable for industrialization.
  • the zeolite catalyst such as H-BEA or H-MOR, exhibits good recyclability without any loss of activity and selectivity after regeneration.
  • the zeolite, such as H-BEA or H-MOR catalyst both show good activity and selectivity.
  • H-BEA (available from Clariant, HCZB 150)
  • H-MOR (available from Zeolyst, CBV21A)
  • ABOB 2- (4’-amylbenzoyl) benzoic acid which is a mixture of 2- (4’-sec-amylbenzoyl) benzoic acid and 2- (4’-tert-amylbenzoyl) benzoic acid
  • a desirable amount of catalyst, substrate, solvent (if any) and additives (if any) were added into a reactor.
  • the reactor was then placed in a preheated oil bath at a certain temperature for a certain period of time as described in the examples. If triphenylphosphine or triphenylamine was used as additive, desirable amount of catalyst, solvent and additives were mixed for a certain time before the addition of substrate.
  • a certain amount of tetrahydrofuran was added and liquid sample was collected after filtration of solid. The products were analyzed by a high performance liquid chromatography (Agilent 1260) .
  • Example 1 Cyclization of 2- (4’-ethylbenzoyl) benzoic acid (EBOB) to corresponding ethylanthraquinone (EQ) was investigated over H-BEA zeolite and H-MOR zeolite.
  • EBOB 2- (4’-ethylbenzoyl) benzoic acid
  • EQ ethylanthraquinone
  • H-BEA zeolite available from Clariant and labelled as HCZB150
  • H-MOR zeolite available from Zeolyst and labeled as CBV21A both showed good conversion of EBOB, high EQ selectivity and high EQ yield in cyclization of 2- (4’-ethylbenzoyl) benzoic acid to ethylanthraquinone in the presence of a polychlorobenzene as a solvent.
  • the EBOB conversion, EQ selectivity, and EQ yield are much higher than those of solvent-fee reaction conditions.
  • Example 2 Cyclization of EBOB into EQ without solvent or in different solvents.
  • Reaction conditions 1.5 g EBOB, 5 ml solvent, 0.5 g H-BEA catalyst, 180 °C, 5 h.
  • Example 3 Cyclization of 2- (4’-amylbenzoyl) benzoic acid (ABOB) into 2-amylanthraquinone (AQ) over H-BEA zeolite (HCZB150) using polychlorobenzenes as solvents.
  • ABOB 2- (4’-amylbenzoyl) benzoic acid
  • AQ 2-amylanthraquinone
  • HCZB150 H-BEA zeolite
  • Reaction conditions 0.5 g ABOB, 0.25g H-BEA, 5 ml 1, 2, 4-trichlorobenzene, 5 h.
  • Reaction conditions 0.5 g ABOB, 5 ml solvent, 0.25 g H-BEA catalyst, 215 °C, 5 h.
  • H-type BEA zeolite shows good performance for cyclization of 2- (4’-amylbenzoyl) benzoic acid to give amylanthraquinone by using trichlorobenzene as a solvent.
  • the product selectivity when trichlorobenzene is used as a solvent is much higher than that of solvent-fee reaction conditions or using other solvents such as ⁇ -Valerolactone, propylene carbonate, octanoic acid or diethyl phthalate.
  • solvent-fee reaction condition or using other solvents such as propylene carbonate or octanoic acid.
  • Example 5 Preparation of AQ from ABOB in the presence of H-BEA zeolite (HCZB150) and polychlorobenzenes at different temperatures.
  • Reaction conditions 0.5 g ABOB, 0.25 g HCZB-150, 5 ml solvent, 5 h.
  • Example 6 Recycle test: Catalyst was separated from reactant by centrifugation, washed 3 times with ethanol, dried at 80 °C under vacuum overnight and calcined at 600 °C for 3 h.
  • Example 7 Effect of an additive, 2, 6-Di-tert-butyl-4-methylpyridine in EBOB cyclization by using HCZB150 as a catalyst.
  • Reaction conditions 0.75 g EBOB, 0.25 g HCZB-150, 5 ml 1, 2, 4-trichlorobenzene, 2, 6-Di-tert-butyl-4-methylpyridine as additive (amount is calculated based on EBOB) , 5 h, 215 °C.
  • Example 8 Effect of different additives in ABOB cyclization by using HCZB150 as a catalyst.
  • Reaction conditions 5 g ABOB, 2.5 g HCZB-150, 50 ml 1, 2, 4-trichlorobenzene, 2, 4, 6-tri-tert-butyl-pyrimidine or triphenylphosphine as additives, 5 h, 215 °C.
  • catalyst was mixed with 1, 2, 4-trichlorobenzene and triphenylphosphine for 0.5 h at 215 °C. Then ABOB was added. After that, the reaction was run for 5 h. From the above results in Table 8, it can be seen that the use of a nucleophilic reagent triphenylphosphine or 2, 4, 6-tri-tert-butyl-pyrimidine as an additive also further improves the product selectively and yield.
  • Example 9 Effect of an additive, 2, 4, 6-tri-tert-butyl-pyrimidine at different HCZB150 catalyst loadings

Abstract

A process for manufacturing a compound of formula (II), said process comprising a step of reacting a compound of formula (I) in the presence of a zeolite catalyst and a solvent, (I), (II) wherein R1, R2, R3, R4, R5, R6, R7 and R8 are independently H, halo, C1-C12 alkyl, C1-C12 alkyloxy, C2-C12 alkenyl, C2-C12 alkenyloxy, C2-C12 alkynyl, C2-C12 alkynyloxy, C3-C8 cycloalkyl, C3-C8 cycloalkyloxy, C6-C10 aryl, C6-C10 aryloxy, C7-C10 aralkyl, C7-C10 alkylaryl or C4-C7 heteroaryl; and wherein the solvent is a halogen substituted aromatic compound.

Description

[Title established by the ISA under Rule 37.2] PROCESS FOR PRODUCING SUBSTITUTED ANTHRAQUINONE
TECHNCIAL FIELD
The present disclosure relates to a process for producing substituted anthraquinone.
BACKGROUND
Classic production of substituted anthraquinone is realized by using large excess of oleum that is associated with waste and safety problem. Zeolites, resin and carbon materials are reported to be able to transform 2- (4’-alkylbenzoyl) benzoic acid into corresponding alkylanthraquinone. However, solvent-free cyclization reaction often leads to low efficiency and selectivity.
Process for manufacturing alkyl-anthraquinones from 2- (4’-alkylbenzoyl) benzoic acid using zeolite catalysts is well known in the field. CN107098802 A describes conversion of 2- (4’-alkylbenzoyl) benzoic acid to alkyl-anthraquinone using a zeolite catalyst and biphenyl, isopropylbiphenyl, diisopropylbiphenyl, di-Me phthalate, di-Et phthalate or di-Pr phthalate as a solvent. However, the reactions in the examples are all performed at high temperature in order to achieve high yield of alkyl-anthraquinones.
Up to now, no prior art discloses a process for manufacturing alkyl-anthraquinones from 2- (4’-alkylbenzoyl) benzoic acid wherein a halogenated aromatic solvent is used during the conversion.
SUMMARY OF THE INVENTION
In one aspect, the present invention relates to a process for manufacturing a compound of formula (II) , said process comprising a step of reacting a compound of formula (I) in the presence of a zeolite catalyst and a solvent, wherein the solvent is a halogen substituted aromatic compound,
Figure PCTCN2018117112-appb-000001
and wherein R 1, R 2, R 3, R 4, R 5, R 6, R 7 and R 8 are independently H, halo, C 1-C 12 alkyl, C 1-C 12 alkyloxy, C 2-C 12 alkenyl, C 2-C 12 alkenyloxy, C 2-C 12 alkynyl, C 2-C 12 alkynyloxy, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkyloxy, C 6-C 10 aryl, C 6-C 10 aryloxy, C 7-C  10 aralkyl, C 7-C 10 alkylaryl or C 4-C 7 heteroaryl.
DEFINITIONS
For convenience, before further description of the present disclosure, certain terms employed in the specification, and examples are collected here. These definitions should be read in the light of the remainder of the disclosure and understood as by a person of skill in the art. The terms used herein have the meanings recognized and known to those of skill in the art, however, for convenience and completeness, particular terms and their meanings are set forth below.
The articles “a” , “an” and “the” are used to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article.
The term “and/or” includes the meanings “and” , “or” and also all the other possible combinations of the elements connected to this term. As disclosed herein, “and/or” means “and, or as an alternative” .
All ranges include endpoints unless otherwise indicated.
Throughout the description, including the claims, the term "comprising one" should be understood as being synonymous with the term "comprising at least one" , unless otherwise specified, and "between" should be understood as being inclusive of the limits.
It should be noted that in specifying any range of concentration, any particular upper concentration can be associated with any particular lower concentration.
It is specified that, in the continuation of the description, unless otherwise indicated, the values at the limits are included in the ranges of values which are given.
As used herein, the term "alkyl" means a saturated hydrocarbon radical, which may be straight, or branched, such as, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, t-butyl, pentyl, n-hexyl. Alkyl preferably contains 1 to 20 carbon atoms, preferably 1-12, or 1-10 carbon atoms, preferably 1-8 carbon atoms, more preferably, 1-6 carbon atoms.
As used herein, the term “alkyloxy” means alkyl-O-, wherein alkyl is as defined above.
As used herein, the term "alkenyl" as a group or part of a group denotes an  aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched. The group may contain a plurality of double bonds in the normal chain and the orientation about each is independently E or Z. Exemplary alkenyl groups include, but are not limited to, ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl and nonenyl. The group may be a terminal group or a bridging group.
As used herein, the term "alkynyl" as a group or part of a group denotes an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched. The group may contain a plurality of triple bonds in the normal chain. Exemplary alkynyl groups include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like.
As used herein, the term "alkenyloxy" means alkenyl-O-, wherein alkenyl is as defined above.
As used herein, the term "alkynyloxy" means alkynyl-O-, wherein alkynyl is as defined above.
As used herein, the term "aryl" refers to a monovalent aromatic hydrocarbon group, including bridged ring and/or fused ring systems, containing at least one aromatic ring. Examples of aryl groups include phenyl, naphthyl and the like. The term "arylalkyl" or the term "aralkyl" refers to alkyl substituted with an aryl. The term "arylalkoxy" refers to an alkoxy substituted with aryl.
As used herein, the term "cyclic group" means a closed ring hydrocarbon group that is classified as an alicyclic group, aromatic group, or heterocyclic group. The term "alicyclic group" means a cyclic hydrocarbon group having properties resembling those of aliphatic groups.
As used herein, the term "cycloalkyl" as used herein means cycloalkyl groups containing from 3 to 20 carbon atoms, preferably 3 to 8 carbon atoms, for example cyclohexyl.
As used herein, the term "aromatic compound" as used herein means a compound conforming to the Hückel rule, such as benzene, naphthalene and the like. The aromatic compound may be further substituted by such as hydroxy, amino, C 1-C 20 alkyl, C 2-C 20 alkenyl, C 2-C 20 alkynyl, C 1-C 20 alkyloxy, C 2-C 20 alkenyloxy, or C 2-C 20 alkynyloxy. Preferably, the aromatic compound may be further substituted by H, hydroxy, amino, C 1-C 6 alkyl, C 2-C 6 alkenyl, C 2-C 6 alkynyl, C 1-C 6 alkyloxy, C 2-C 6 alkenyloxy, or C 2-C 6 alkynyloxy.
As used herein, the terminology " (C n-C m) " in reference to an organic group, wherein n and m are each integers, indicates that the group may contain from n  carbon atoms to m carbon atoms per group.
DETAILED DESCRIPTION OF THE INVENTION
Preferably, R 1, R 2, R 3, R 4, R 5, R 6, R 7 and R 8 are independently H, halo, C 1-C 6 alkyl, C 1-C 6 alkyloxy, C 2-C 6 alkenyl, C 2-C 6 alkenyloxy, or C 3-C 8 cycloalkyl.
More preferably, R 1, R 2, R 3, R 4, R 5, R 6, R 7 and R 8 are independently H, halo, C 1-C 6 alkyl, or C 1-C 6 alkyloxy.
Even more preferably, R 1, R 2, R 3, R 4, R 5, R 6, and R 8 are independently H, halo, C 1-C 6 alkyl, or C 1-C 6 alkyloxy, and R 7 is C 1-C 6 alkyl.
Even more preferably, R 1, R 2, R 3, R 4, R 5, R 6, and R 8 are independently H, and R 7 is C 1-C 6 alkyl.
Most preferably, the compound of formula (I) is 2- (4’-ethylbenzoyl) benzoic acid or 2- (4’-amylbenzoyl) benzoic acid.
Solvent
As previously expressed, the solvent is a halogen substituted aromatic compound.
As used herein, the term "halogen" refers to F, Cl, Br, and I. Preferably, the halogen substituted to benzene compound is Cl or Br.
The solvent is a halogen substituted benzene compound, or a halogen substituted naphthalene compound, preferably chloro substituted benzene compound or bromo substituted benzene compound.
Preferably, the solvent is benzene substituted by at least two halogen atoms and more preferably 2 to 4 halogen atoms. Examples of such solvent are benzene substituted by 2, 3 or 4 chlorine atoms or benzene substituted by 2, 3 or 4 bromine atoms.
More preferably, the solvent may be selected from the group consisting of 1, 2-dichlorobenzene, 1, 2, 4-trichlorobenzene and 1, 2, 4, 5-tetrachlorobenzene.
The solvent may be used at an amount of 2 mL to 100 mL solvent per gram of the compound of formula (I) .
Zeolite catalyst
The zeolite catalyst is not particularly limited. All the zeolites having catalytic activity towards the reaction according to the present invention can be used. Notably, the zeolite catalyst can be MOR, BEA, MFI, FAU or FER framework. MOR, MFI, BEA, FAU and FER framework are all the framework type codes assigned by International Zeolite Association (IZA) structure commission, which is authorized by IUPAC.
The zeolite catalyst may be H-MOR, H-BEA, H-MFI, H-FAU or H-FER; it preferably is H-MOR or H-BEA.
Preferably, the weight ratio of the compound of formula (I) to zeolite may be 10: 1 to 1: 1, preferably 5: 1 to 2: 1.
Additive
The process can be carried out in the presence of a zeolite catalyst, a solvent and a nucleophilic reagent.
The nucleophilic reagent can be a pyridine, substituted pyridine, pyrimidine and/or substituted pyrimidine. Substituted pyridine or pyrimidine refers to pyridine or pyrimidine which is substituted by one or more C 1-C 20 alkyl, preferably C 1-C 10 alkyl, more preferably C 1-C 6 alkyl. For example, the substituted pyridine or pyrimidine can be 2, 6-di-tert-butyl-4-methylpyridine, 2, 4, 6-tri-tert-butyl-pyridine or 2, 4, 6-tri-tert-butylpyrimidine.
Alternatively, the nucleophilic reagent can be a phosphine compound of formula PR 1R 2R 3 or an amine compound of formula NR 1R 2R 3, wherein R 1, R 2 an R 3 are independently selected from the group of H, C 1-C 20 alkyl, C 2-C 20 alkenyl, C 2-C 20 alkynyl, C 6-C 20 aryl, C 7-C 20 alkylaryl, and C 7-C 20 arylalkyl, preferably, H, C 1-C 6 alkyl, C 2-C 6 alkenyl, C 2-C 6 alkynyl, C 6-C 10 aryl, C 7-C 10 alkylaryl, and C 7-C 10 arylalkyl, more preferably, R 1, R 2 an R 3 are independently selected from the group of C 1-C 6 alkyl and phenyl. Preferably phosphine compound of formula PR 1R 2R 3 is triphenylphosphine. Preferably amine compound of formula NR 1R 2R 3 is triphenylamine.
The nucleophilic reagent may be added in the amount of 0.1-100 mg per gram of the compound of formula (I) .
In some embodiments, R 1, R 2, R 3, R 4, R 5, R 6, and R 8 are independently H, and R 7 is C 1-C 6 alkyl, the compound of formula (I) is reacted in the presence of a H-MOR or a H-BEA zeolite catalyst and a solvent at a temperature of 150-270 ℃, wherein the solvent is a halogen substituted aromatic compound, preferably polychlorobenzene, even preferably 1, 2-dichlorobenzene, 1, 2, 4-trichlorobenzene and 1, 2, 4, 5-tetrachlorobenzene.
Preferably, the above process is carried out in the presence of a nucleophilic reagent.
The nucleophilic reagent can be a pyridine, substituted pyridine, pyrimidine and/or substituted pyrimidine. Substituted pyridine or pyrimidine refers to pyridine or pyrimidine which is substituted by one or more C 1-C 20 alkyl, preferably C 1-C 10 alkyl, more preferably C 1-C 6 alkyl. For example, the  substituted pyridine can be 2, 6-di-tert-butyl-4-methylpyridine or 2, 4, 6-tri-tert-butyl-pyridine. The substituted pyrimidine can be or 2, 4, 6-tri-tert-butylpyrimidine.
Alternatively, the nucleophilic reagent can be a phosphine compound of formula PR 1R 2R 3 or an amine compound of formula NR 1R 2R 3, wherein R 1, R 2 an R 3 are independently selected from the group of H, C 1-C 20 alkyl, C 2-C 20 alkenyl, C 2-C 20 alkynyl, C 6-C 20 aryl, C 7-C 20 alkylaryl, C 7-C 20 arylalkyl, preferably, H, C 1-C 6 alkyl, C 2-C 6 alkenyl, C 2-C 6 alkynyl, C 6-C 10 aryl, C 7-C 10 alkylaryl, C 7-C 10 arylalkyl, more preferably, R 1, R 2 an R 3 are independently selected from the group of C 1-C 6 alkyl and phenyl. Preferably phosphine compound of formula PR 1R 2R 3 is triphenylphosphine. Preferably amine compound of formula NR 1R 2R 3 is triphenylamine.
In every embodiment of the present application, the process may be carried out at a temperature of 150-270 ℃, preferably 160-260 ℃, more preferably 180-240 ℃.
In every embodiment of the present application, the process may be carried out for 1-10 hours, preferably 2-8 hours, more preferably 4-5 hours.
The use of a halogen substituted aromatic compound, such as polychlorobenzene, as solvent with high boiling point can greatly enhance conversion of the substrate acid and selectivity of substituted anthraquinone, in comparison with the case of solvent-free conditions.
It is also found that a halogen substituted aromatic compound, such as polychlorobenzene can increase the selectivity of substituted anthraquinone at the same reaction temperature, in comparison with the solvents used in CN 107098802. The reaction according to the present invention can achieve ideal selectivity at a lower temperature than CN 107098802. Thus, it is safer and more suitable for industrialization.
The zeolite catalyst, such as H-BEA or H-MOR, exhibits good recyclability without any loss of activity and selectivity after regeneration. The zeolite, such as H-BEA or H-MOR catalyst both show good activity and selectivity.
Examples
Some embodiments of the invention will now be described in the following Examples, wherein all parts and percentages are by weight unless otherwise specified.
Materials:
H-BEA (available from Clariant, HCZB 150)
H-MOR (available from Zeolyst, CBV21A)
Dichlorobenzene (available from J&K, 99%)
Trichlorobenzene (available from J&K, 98%)
Tetrachlorobenzene (available from J&K, 98%)
EBOB: 2- (4’-ethylbenzoyl) benzoic acid
EQ: 2-ethylanthraquinone
ABOB: 2- (4’-amylbenzoyl) benzoic acid which is a mixture of 2- (4’-sec-amylbenzoyl) benzoic acid and 2- (4’-tert-amylbenzoyl) benzoic acid
AQ: 2-sec-amylanthraquinone and 2-tert-amylanthraquinone
Procedures:
In a typical reaction, a desirable amount of catalyst, substrate, solvent (if any) and additives (if any) were added into a reactor. The reactor was then placed in a preheated oil bath at a certain temperature for a certain period of time as described in the examples. If triphenylphosphine or triphenylamine was used as additive, desirable amount of catalyst, solvent and additives were mixed for a certain time before the addition of substrate. After a certain reaction time, a certain amount of tetrahydrofuran was added and liquid sample was collected after filtration of solid. The products were analyzed by a high performance liquid chromatography (Agilent 1260) .
Example 1: Cyclization of 2- (4’-ethylbenzoyl) benzoic acid (EBOB) to corresponding ethylanthraquinone (EQ) was investigated over H-BEA zeolite and H-MOR zeolite.
Table 1
Figure PCTCN2018117112-appb-000002
1.5 g EBOB, 0.5 g catalyst, 5h, 5 ml solvent. In case of solvent-free conditions, 3 g EBOB and 1 g catalyst were added.
From the results in Table 1, it can be seen that H-BEA zeolite, available from Clariant and labelled as HCZB150, and H-MOR zeolite, available from Zeolyst and labeled as CBV21A both showed good conversion of EBOB, high EQ selectivity and high EQ yield in cyclization of 2- (4’-ethylbenzoyl) benzoic acid to ethylanthraquinone in the presence of a polychlorobenzene as a solvent. The EBOB conversion, EQ selectivity, and EQ yield are much higher than those of solvent-fee reaction conditions.
Example 2: Cyclization of EBOB into EQ without solvent or in different solvents.
Table 2
solvent EBOB conversion (%) EQ selectivity (%)
solvent-free 42 31
1, 2-dichlorobenzene 84 44
1, 2, 4-trichlorobenzene 76 41
glycol 0 0
diethylene glycol diethyl ether 0 0
1, 2-propanediol 12 0
dimethyl sulfoxide 0 0
benzonitrile 87 0
Reaction conditions: 1.5 g EBOB, 5 ml solvent, 0.5 g H-BEA catalyst, 180 ℃, 5 h.
From the above results in Table 2, it can be seen that when polychlorobenzene is used as a solvent, the substrate conversion and/or product selectivity are much higher than those using glycol, diethylene glycol diethyl ether, 1, 2-propanediol, dimethyl sulfoxide and benzonitrile as a solvent and those without a solvent. 
Example 3: Cyclization of 2- (4’-amylbenzoyl) benzoic acid (ABOB) into 2-amylanthraquinone (AQ) over H-BEA zeolite (HCZB150) using polychlorobenzenes as solvents. 
Table 3
Cyclization of ABOB over H-BEA by using 1, 2, 4-trichlorobenzene as solvent
Figure PCTCN2018117112-appb-000003
Reaction conditions: 0.5 g ABOB, 0.25g H-BEA, 5 ml 1, 2, 4-trichlorobenzene, 5 h.
From the above results in Table 3, it can be seen that when1, 2, 4-trichlorobenzene is used as a solvent, the substrate conversion, product selectivity and product selectivity are all increased with an increase of reaction temperature.
Example 4: Cyclization of ABOB into AQ without solvent or in different solvents
Table 4
solvent ABOB conversion (%) AQ selectivity (%)
solvent-free 55 35
trichlorobenzene 99 81
γ-Valerolactone 99 1
propylene carbonate 87 5
octanoic acid 45 41
diethyl phthalate 93 7.4
Reaction conditions: 0.5 g ABOB, 5 ml solvent, 0.25 g H-BEA catalyst, 215 ℃, 5 h.
From the above results in Table 4, it can be seen that H-type BEA zeolite shows good performance for cyclization of 2- (4’-amylbenzoyl) benzoic acid to give amylanthraquinone by using trichlorobenzene as a solvent. The product selectivity when trichlorobenzene is used as a solvent is much higher than that of solvent-fee reaction conditions or using other solvents such as γ-Valerolactone, propylene carbonate, octanoic acid or diethyl phthalate. When trichlorobenzene is used as a solvent, the substrate conversion is much higher than that of solvent-fee reaction condition or using other solvents such as propylene carbonate or octanoic acid. 
Example 5: Preparation of AQ from ABOB in the presence of H-BEA zeolite (HCZB150) and polychlorobenzenes at different temperatures.
Table 5
Figure PCTCN2018117112-appb-000004
Reaction conditions: 0.5 g ABOB, 0.25 g HCZB-150, 5 ml solvent, 5 h.
Example 6: Recycle test: Catalyst was separated from reactant by centrifugation, washed 3 times with ethanol, dried at 80 ℃ under vacuum overnight and calcined at 600 ℃ for 3 h.
Table 6
Figure PCTCN2018117112-appb-000005
Reaction conditions: 5 g ABOB, 2.5 g HCZB-150, 50 ml 1, 2, 4-trichlorobenzene, 5 h, 215 ℃.
From the above results in Table 6, it can be seen that even after been used for 10 cycles, the catalyst is still effective.
Example 7: Effect of an additive, 2, 6-Di-tert-butyl-4-methylpyridine in EBOB cyclization by using HCZB150 as a catalyst.
Table 7
Figure PCTCN2018117112-appb-000006
Reaction conditions: 0.75 g EBOB, 0.25 g HCZB-150, 5 ml 1, 2, 4-trichlorobenzene, 2, 6-Di-tert-butyl-4-methylpyridine as additive (amount is calculated based on EBOB) , 5 h, 215 ℃.
From the above results in Table 7, it can be seen that the use of a nucleophilic reagent 2, 6-Di-tert-butyl-4-methylpyridine as an additive further improves the product selectively and yield.
Example 8: Effect of different additives in ABOB cyclization by using HCZB150 as a catalyst.
Table 8
Figure PCTCN2018117112-appb-000007
Reaction conditions: 5 g ABOB, 2.5 g HCZB-150, 50 ml 1, 2, 4-trichlorobenzene, 2, 4, 6-tri-tert-butyl-pyrimidine or triphenylphosphine as additives, 5 h, 215 ℃.
In this example, catalyst was mixed with 1, 2, 4-trichlorobenzene and triphenylphosphine for 0.5 h at 215 ℃. Then ABOB was added. After that, the reaction was run for 5 h. From the above results in Table 8, it can be seen that the use of a nucleophilic reagent triphenylphosphine or 2, 4, 6-tri-tert-butyl-pyrimidine as an additive also further improves the product selectively and yield.
Example 9: Effect of an additive, 2, 4, 6-tri-tert-butyl-pyrimidine at different HCZB150 catalyst loadings
Table 9
Figure PCTCN2018117112-appb-000008
Reaction conditions: 0.5 g ABOB, 5 ml 1, 2, 4-trichlorobenzene, 2, 4, 6-tri-tert-butyl-pyrimidine/HCZB-150=0.05 (weight ratio) , 5 h, 215 ℃.
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims (17)

  1. A process for manufacturing a compound of formula (II) , said process comprising a step of reacting a compound of formula (I) in the presence of a zeolite catalyst and a solvent
    Figure PCTCN2018117112-appb-100001
    wherein R 1, R 2, R 3, R 4, R 5, R 6, R 7 and R 8 are independently H, halo, C 1-C 12 alkyl, C 1-C 12 alkyloxy, C 2-C 12 alkenyl, C 2-C 12 alkenyloxy, C 2-C 12 alkynyl, C 2-C 12 alkynyloxy, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkyloxy, C 6-C 10 aryl, C 6-C 10 aryloxy , C 7-C 10 aralkyl, C 7-C 10 alkylaryl or C 4-C 7 heteroaryl and wherein the solvent is a halogen substituted aromatic compound.
  2. The process of claim 1, wherein R 1, R 2, R 3, R 4, R 5, R 6, and R 8 are independently H, halo, C 1-C 6 alkyl, or C 1-C 6 alkyloxy, and R 7 is C 1-C 6 alkyl.
  3. The process of claim 2, wherein R 1, R 2, R 3, R 4, R 5, R 6, and R 8 are independently H, and R 7 is C 1-C 6 alkyl.
  4. The process of claim 3, wherein the compound of formula (I) is 2- (4’ -ethylbenzoyl) benzoic acid or 2- (4’ -amylbenzoyl) benzoic acid.
  5. The process of any of the preceding claims, wherein the halogen substituted aromatic solvent is a halogen substituted benzene compound or a halogen substituted naphthalene compound.
  6. The process of claim 5, wherein the halogen substituted aromatic solvent is benzene substituted by 2, 3 or 4 chlorine atoms or benzene substituted by 2, 3 or 4 bromine atoms.
  7. The process of claim 6, wherein the halogen substituted aromatic solvent is selected from the group consisting of 1, 2-dichlorobenzene, 1, 2, 4-trichlorobenzene and 1, 2, 4, 5-tetrachlorobenzene.
  8. The process of any of the preceding claims, wherein the zeolite catalyst is selected from the group consisting of H-MOR and H-BEA.
  9. The process of any of the preceding claims, wherein the weight ratio of the compound of formula (I) to zeolite is 10: 1 to 1: 1, preferably 5: 1 to 2: 1.
  10. The process of any of the preceding claims, wherein the process is carried out in the presence of a nucleophilic reagent.
  11. The process of claim 10, wherein the nucleophilic reagent is a pyridine, substituted pyridine, pyrimidine and/or substituted pyrimidine.
  12. The process of claim 11, wherein substituted pyridine or pyrimidine is pyridine or pyrimidine substituted by one or more C 1-C 20 alkyl.
  13. The process of claim 12, wherein substituted pyridine or pyrimidine is 2, 6-di-tert-butyl-4-methylpyridine, 2, 4, 6-tri-tert-butylpyridine, or 2, 4, 6-tri-tert-butylpyrimidine.
  14. The process of claim 10, wherein the nucleophilic reagent is a phosphine compound of formula PR 1R 2R 3 or an amine compound of formula NR 1R 2R 3, wherein R 1, R 2 an R 3 are independently selected from the group of H, C 1-C 20 alkyl, C 2-C 20 alkenyl, C 2-C 20 alkynyl, C 6-C 20 aryl, C 7-C 20 alkylaryl, and C 7-C 20 arylalkyl.
  15. The process of claim 14, wherein R 1, R 2 an R 3 in the phosphine compound of formula PR 1R 2R 3 or in the amine compound of formula NR 1R 2R 3 are independently selected from the group of C 1-C 6 alkyl and phenyl.
  16. The process of claim 15, wherein the phosphine compound of formula PR 1R 2R 3 is triphenylphosphine.
  17. The process of claim 1, wherein the zeolite is a H-MOR or a H-BEA zeolite, wherein the reaction temperature is 150-270 ℃, and wherein R 1, R 2, R 3, R 4, R 5, R 6, and R 8 are independently H, and R 7 is C 1-C 6 alkyl.
PCT/CN2018/117112 2018-11-23 2018-11-23 Process for producing substituted anthraquinone WO2020103118A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117112 WO2020103118A1 (en) 2018-11-23 2018-11-23 Process for producing substituted anthraquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117112 WO2020103118A1 (en) 2018-11-23 2018-11-23 Process for producing substituted anthraquinone

Publications (1)

Publication Number Publication Date
WO2020103118A1 true WO2020103118A1 (en) 2020-05-28

Family

ID=70773262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117112 WO2020103118A1 (en) 2018-11-23 2018-11-23 Process for producing substituted anthraquinone

Country Status (1)

Country Link
WO (1) WO2020103118A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022104763A1 (en) * 2020-11-23 2022-05-27 Solvay Sa Process for preparing 2-alkylanthraquinone
WO2023102759A1 (en) * 2021-12-08 2023-06-15 Solvay Sa A composition comprising 2-amylenyl-anthraquinones, preparation method and its use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304724A (en) * 1980-12-22 1981-12-08 The Dow Chemical Company Process for the manufacture of anthraquinone
CN103360230A (en) * 2012-04-06 2013-10-23 北京石油化工学院 Synthesis method of 2-ethylanthraquinone
CN103833534A (en) * 2014-03-25 2014-06-04 黑龙江大学 Method for catalytically preparing 2-ethyl anthraquinone by alkali desilicicated modified Hbeta molecular sieve
CN104588088A (en) * 2013-11-03 2015-05-06 中国石油化工股份有限公司 Catalyst used for preparing 2-alkylanthraquinone, and preparation method and application thereof
CN106040290A (en) * 2016-05-20 2016-10-26 大连理工大学 Composite modification method for HBeta catalyst for preparing 2-ethylanthraquinone and application of catalyst
CN106083550A (en) * 2016-07-21 2016-11-09 邯郸学院 A kind of synthetic method of 2 alkyl-anthraquinones
CN107098802A (en) * 2017-04-13 2017-08-29 大连理工大学 The 2 alkyl-anthraquinone preparation methods based on Beta zeolites
CN108299176A (en) * 2018-01-29 2018-07-20 北京化工大学 A method of using solid super-strong acid as catalyst preparation 2- alkyl-anthraquinones

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304724A (en) * 1980-12-22 1981-12-08 The Dow Chemical Company Process for the manufacture of anthraquinone
CN103360230A (en) * 2012-04-06 2013-10-23 北京石油化工学院 Synthesis method of 2-ethylanthraquinone
CN104588088A (en) * 2013-11-03 2015-05-06 中国石油化工股份有限公司 Catalyst used for preparing 2-alkylanthraquinone, and preparation method and application thereof
CN103833534A (en) * 2014-03-25 2014-06-04 黑龙江大学 Method for catalytically preparing 2-ethyl anthraquinone by alkali desilicicated modified Hbeta molecular sieve
CN106040290A (en) * 2016-05-20 2016-10-26 大连理工大学 Composite modification method for HBeta catalyst for preparing 2-ethylanthraquinone and application of catalyst
CN106083550A (en) * 2016-07-21 2016-11-09 邯郸学院 A kind of synthetic method of 2 alkyl-anthraquinones
CN107098802A (en) * 2017-04-13 2017-08-29 大连理工大学 The 2 alkyl-anthraquinone preparation methods based on Beta zeolites
CN108299176A (en) * 2018-01-29 2018-07-20 北京化工大学 A method of using solid super-strong acid as catalyst preparation 2- alkyl-anthraquinones

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, J.X. ET AL.: "Engineering the porosity and acidity of H-Beta zeolite by dealumination for the production of 2-ethylanthraquinone via 2-(40-ethylbenzoyl)benzoic acid dehydration.", RSC ADVANCES, vol. 8, no. 18, 8 March 2018 (2018-03-08), pages 9731 - 9740, XP055709778, ISSN: 2046-2069 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022104763A1 (en) * 2020-11-23 2022-05-27 Solvay Sa Process for preparing 2-alkylanthraquinone
WO2023102759A1 (en) * 2021-12-08 2023-06-15 Solvay Sa A composition comprising 2-amylenyl-anthraquinones, preparation method and its use thereof

Similar Documents

Publication Publication Date Title
EP0160144A2 (en) Alkylation of aromatic molecules using a silica-alumina catalyst derived from zeolite
CN103896740B (en) A kind of method producing cresol
CN102844115B (en) Alkylated reaction catalyst and employ the manufacture method of alkyl aromatic hydrocarbon compound of this catalyst
WO2020103118A1 (en) Process for producing substituted anthraquinone
CN109280179B (en) Covalent organic framework material, preparation method thereof and application thereof in hindered amine synthesis
DE102006001482A1 (en) Catalyst and process for producing a ketone using the same
US20180297018A1 (en) Catalyst Composition and Process for Preparing Olefin Oxides
CN103619810A (en) Process for the manufacture of dihalodiphenylsulfones
CN106588528A (en) Moving bed method for preparing paraxylene co-production low-carbon olefin through methyl alcohol and/or dimethyl ether
JPS6019724A (en) Manufacture of 1-butene from 2-butene-containing c4 hydrocarbon mixture
CN111100139A (en) Preparation method of dicyclopentadiene dioxide based on modified nano MgO supported heteropoly acid type catalyst
KR101359973B1 (en) Transalkylation Catalyst for Producing Mixed Xylene from Aromatic Compounds
CN1325455C (en) Combining method for preparing phenol from benzene under circulating by-product condition
US20040249226A1 (en) Selective para-xylene production via methylation of toluene with methanol in the presence of modified HZSM-5 catalyst
CN112679317A (en) Method for separating m-di- (2-hydroxyisopropyl) benzene and p-di- (2-hydroxyisopropyl) benzene
RU2354638C1 (en) Method of cyclic styrene dimers production
US3437711A (en) Process for producing isoprene from isobutylene and formaldehyde in one stage
EP0075203A1 (en) Process for the production of olefins from methanol-dimethyl ether
CN102643232A (en) Method for preparing caprolactam by beckmann rearrangement for cyclohexanone-oxime
CN113045375A (en) Method for preparing 2-pentylanthracene from diamyl anthracene through transalkylation
DE3700917A1 (en) METHOD FOR PRODUCING P-SUBSTITUTED O-BENZYLPHENOLS
CN1060833A (en) The production method of alkyl-substituted aromatic hydrocarbon
KR100870674B1 (en) Method of producing 1,5-Dimethyltetralin Using Dealuminated Zeolite Beta
WO2022104763A1 (en) Process for preparing 2-alkylanthraquinone
CN114539175A (en) Synthetic method of ultraviolet absorbent UV-384-2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941088

Country of ref document: EP

Kind code of ref document: A1