WO2020103117A1 - 基于直连链路的传输方法及装置 - Google Patents

基于直连链路的传输方法及装置

Info

Publication number
WO2020103117A1
WO2020103117A1 PCT/CN2018/117111 CN2018117111W WO2020103117A1 WO 2020103117 A1 WO2020103117 A1 WO 2020103117A1 CN 2018117111 W CN2018117111 W CN 2018117111W WO 2020103117 A1 WO2020103117 A1 WO 2020103117A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
time
reference signal
target data
demodulation reference
Prior art date
Application number
PCT/CN2018/117111
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/117111 priority Critical patent/WO2020103117A1/zh
Priority to CN201880002597.XA priority patent/CN109644115B/zh
Priority to EP18940709.1A priority patent/EP3886521A4/en
Priority to US17/295,013 priority patent/US20220015080A1/en
Publication of WO2020103117A1 publication Critical patent/WO2020103117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present disclosure relates to the field of communications, and in particular to a transmission method and device based on a direct link.
  • the DMRS Demodulation Reference Signal
  • the control channel and the data channel are transmitted in the same time unit, such as a time slot
  • the DMRS of the two needs to be transmitted in their respective channels, as shown in Figure 1, which is the PDCCH (Physical Downlink in the NR system) Control (Channel, physical downlink control channel) and PDSCH (Physical Downlink Shared Channel, physical downlink shared channel) in the same slot transmission example.
  • PDCCH Physical Downlink in the NR system
  • Control Channel, physical downlink control channel
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the control channel format of the direct connection communication is relatively simple.
  • LTE V2x Vehicle to Everything, vehicle wireless communication technology
  • only one direct link control information format is defined, and in order to reduce the impact of Half duplex (half-duplex) on V2x communication performance, LTE V2x
  • the directly connected control channel and the directly connected data channel are always transmitted in the form of FDM (Frequency-division multiplexing) in the same time unit, as shown in Figure 2.
  • embodiments of the present disclosure provide a transmission method and device based on a direct link.
  • a direct link-based transmission method is provided, the method is used at a sending end, and the method includes:
  • the target data is data to be transmitted associated with the control information
  • Adopt time division multiplexing to map the control information, the target data and the demodulation reference signal on the current time unit
  • the control information, the target data and the demodulation reference signal are sent to the receiving end through the time unit.
  • the time symbol where the control information is located does not include the demodulation reference signal
  • time division multiplexing to map the control information, the target data and the demodulation reference signal on the current time unit includes:
  • the control information, the target data and the demodulation reference signal are mapped on different time symbols in the current time unit, wherein the demodulation reference signal is mapped on the time On at least one first target time symbol of the unit; the first target time symbol is a time symbol located between the time symbol mapped by the control information and the time symbol mapped by the target data.
  • the time symbol where the control information is located includes the demodulation reference signal
  • time division multiplexing to map the control information, the target data and the demodulation reference signal on the current time unit includes:
  • control information and the target data are mapped on different time symbols in the time unit.
  • the time-division multiplexing is used to map the control information, the target data and the demodulation reference signal on the current time unit, further including:
  • the demodulation reference signal on at least one second target time symbol within the time unit; the second target time symbol is a time symbol located between any two time symbols mapped by the target data .
  • the time symbol where the control information is located does not include the demodulation reference signal
  • time division multiplexing to map the control information, the target data and the demodulation reference signal on the current time unit includes:
  • the fourth target time symbol is a time symbol located before the third target time symbol in the time unit
  • the first Five target time symbols are time symbols located after the third target time symbol in the time unit
  • the sixth target time symbol is a time symbol after the fifth target time symbol and / or is located before the fourth target time symbol Time symbol.
  • the method before sending the control information, the target data, and the demodulation reference signal to the receiving end through the time unit, the method further includes:
  • part of the target data is mapped onto the time symbol where the demodulation reference signal is located.
  • the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide;
  • the frequency domain resources occupied by the control information and all the frequency domain resources occupied by the target data coincide.
  • the method further includes:
  • part of the target data is mapped on the time symbol where the control information is located.
  • the sending the control information, the target data and the demodulation reference signal to the receiving end through the time unit includes:
  • the control information, the target data and the demodulation reference signal are sent to the receiving end through the time unit.
  • a direct link-based transmission method is provided.
  • the method is used at a receiving end.
  • the method includes:
  • the control information and the target data are demodulated from the time unit, respectively.
  • a transmission device based on a direct link The device is used at a sending end.
  • the device includes:
  • the demodulation reference signal configuration module is configured to configure a common demodulation reference signal for control information and target data; the target data is data to be transmitted associated with the control information;
  • the first mapping module is configured to use time division multiplexing to map the control information, the target data, and the demodulation reference signal on the current time unit;
  • the sending module is configured to send the control information, the target data and the demodulation reference signal to the receiving end through the time unit.
  • the time symbol where the control information is located does not include the demodulation reference signal
  • the first mapping module includes:
  • the first mapping submodule is configured to use time division multiplexing to map the control information, the target data and the demodulation reference signal to different time symbols in the current time unit, wherein The demodulation reference signal is mapped on at least one first target time symbol of the time unit; the first target time symbol is located between the time symbol mapped by the control information and the time symbol mapped by the target data Time symbol.
  • the time symbol where the control information is located includes the demodulation reference signal
  • the first mapping module includes:
  • the second mapping submodule is configured to use time division multiplexing to map the control information and the target data on different time symbols in the time unit.
  • the first mapping module further includes:
  • a third mapping sub-module configured to map the demodulation reference signal on at least one second target time symbol within the time unit; the second target time symbol is located on any of the target data mapped Time symbol between two time symbols.
  • the time symbol where the control information is located does not include the demodulation reference signal
  • the first mapping module includes:
  • a fourth mapping sub-module configured to map the demodulation reference signal on at least one third target time symbol on the time unit
  • a fifth mapping submodule configured to map the control information on the fourth target time symbol and the fifth target time symbol at the same time; the fourth target time symbol is located in the third target time in the time unit A time symbol before the symbol, and the fifth target time symbol is a time symbol located after the third target time symbol in the time unit;
  • a sixth mapping sub-module configured to map the target data on at least one sixth target time symbol; the sixth target time symbol is a time symbol after the fifth target time symbol and / or is located in The time symbol before the fourth target time symbol.
  • the device further includes:
  • the second mapping module is configured to use frequency division multiplexing to map part of the target data to the time symbol where the demodulation reference signal is located.
  • the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide;
  • the frequency domain resources occupied by the control information and all the frequency domain resources occupied by the target data coincide.
  • the device further includes:
  • the third mapping module is configured to, if the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide, use frequency division multiplexing to divide part of the data in the target data It is mapped on the time symbol where the control information is located.
  • the sending module includes:
  • the sending submodule is configured to use the same precoding matrix and sending beam to send the control information, the target data, and the demodulation reference signal to the receiving end through the time unit.
  • a transmission device based on a direct link The device is used at a receiving end.
  • the device includes:
  • the receiving module is configured to receive control information, target data and demodulation reference signal sent by the sending end through a time unit; wherein, the target data is data associated with the control information, and the demodulation reference signal is control information A demodulation reference signal shared with the target data, the control information, the target data and the demodulation reference signal are mapped on the time unit in a time division multiplexing manner;
  • the demodulation module is configured to demodulate the control information and the target data from the time unit respectively according to the demodulation reference signal.
  • a computer-readable storage medium that stores a computer program, and the computer program is used to execute the direct link-based transmission method described in the first aspect above .
  • a computer-readable storage medium storing a computer program, the computer program being used to execute the direct link-based transmission method described in the second aspect above .
  • a transmission device based on a direct link is provided.
  • the transmission device is used at a transmitting end and includes:
  • Memory for storing processor executable instructions
  • the processor is configured to:
  • the target data is data to be transmitted associated with the control information
  • Adopt time division multiplexing to map the control information, the target data and the demodulation reference signal on the current time unit
  • the control information, the target data and the demodulation reference signal are sent to the receiving end through the time unit.
  • a transmission device based on a direct link The device is used at a receiving end and includes:
  • Memory for storing processor executable instructions
  • the processor is configured to:
  • the control information and the target data are demodulated from the time unit, respectively.
  • the sending end may configure a common demodulation reference signal for the control information and target data to be transmitted, thereby reducing the overhead of the demodulation reference signal and improving the spectrum utilization rate.
  • the sending end may use time division multiplexing to map the control information, the target data, and the demodulation reference signal on the current time unit, and use the time unit to map the control information, the The target data and the demodulation reference signal are sent to the receiving end. It realizes the purpose of transmitting control information, target data and demodulation reference signals based on time division multiplexing in a directly connected communication system.
  • the demodulation reference signal may be mapped to the time unit in a time division multiplexing manner.
  • the first target time symbol is a time symbol located between the time symbol mapped by the control information and the time symbol mapped by the target data.
  • the time symbol where the control information is located may also include the demodulation reference signal, and accordingly, the control information and the target data may be time-multiplexed. Map on different time symbols in the time unit. Further optionally, the sending end may also map the demodulation reference signal on at least one second target time symbol in the time unit; the second target time symbol is located on the target data mapped The time symbol between any two time symbols.
  • the demodulation reference signal is included in the time symbol where the control information is located, the purpose of transmitting control information, target data, and demodulation reference signal based on time division multiplexing is achieved.
  • the demodulation reference signal may be mapped to at least one third target on the time unit
  • the control information is simultaneously mapped on the fourth target time symbol and the fifth target time symbol. That is, the control information is mapped on the time symbols before and after the third target time symbol.
  • the target data is mapped on a sixth target time symbol after at least one fifth target time symbol or before the fourth target time symbol.
  • the sending end may also use frequency division multiplexing to map part of the target data to the time symbol where the demodulation reference signal is located, thereby saving transmission resources.
  • time-division multiplexing and frequency-division multiplexing can be used in direct connection communication to transmit control information, target data and demodulation reference signals to further meet the different business requirements of V2x.
  • the frequency domain resources occupied by the control information overlap with part of the frequency domain resources occupied by the target data, or the frequency domain resources occupied by the control information It coincides with all frequency domain resources occupied by the target data.
  • the sending end may also map part of the target data to where the control information is located On the time symbol.
  • time-division multiplexing and frequency-division multiplexing are used simultaneously to transmit control information, target data, and demodulation reference signals to further meet the different business requirements of V2x.
  • the sending end may use the same precoding matrix and sending beam, and send the control information, the target data, and the demodulation reference signal to the receiving end through the time unit, thereby saving transmission resources .
  • the receiving end may receive control information, target data, and demodulation reference signals sent by the sending end through time units; wherein, the target data is data associated with the control information, and the demodulation reference signal It is a demodulation reference signal shared by control information and the target data.
  • the control information, the target data and the demodulation reference signal are mapped on the time unit in a time division multiplexing manner.
  • the receiving end demodulates the control information and the target data from the time unit, respectively. It realizes the purpose of transmitting control information, target data and demodulation reference signals based on time division multiplexing in a directly connected communication system.
  • Fig. 1 is a schematic diagram of a transmission scenario based on a direct link in the related art according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram of another transmission scenario based on a direct link in the related art according to an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of a transmission method based on a direct link according to an exemplary embodiment.
  • Figs. 4A to 4D are schematic diagrams of a transmission scenario based on a direct link according to an exemplary embodiment.
  • Fig. 5 is a flowchart of another transmission method based on a direct link according to an exemplary embodiment.
  • Figs. 6A to 6E are schematic diagrams of transmission scenarios based on a direct link according to an exemplary embodiment.
  • Fig. 7 is a flow chart of another transmission method based on a direct link according to an exemplary embodiment.
  • Figs. 8A to 8E are schematic diagrams of transmission scenarios based on a direct link according to an exemplary embodiment.
  • Fig. 9 is a flowchart of another transmission method based on a direct link according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram of a transmission scenario based on a direct link according to an exemplary embodiment.
  • Fig. 11 is a flowchart of another transmission method based on a direct link according to an exemplary embodiment.
  • Fig. 12A to 12B are schematic diagrams of transmission scenarios based on a direct link according to an exemplary embodiment.
  • Fig. 13 is a flowchart of another transmission method based on a direct link according to an exemplary embodiment.
  • Fig. 14 is a flow chart showing another transmission method based on a direct link according to an exemplary embodiment.
  • Fig. 15 is a flow chart showing another direct link-based transmission method according to an exemplary embodiment.
  • Fig. 16 is a flow chart showing another direct link-based transmission method according to an exemplary embodiment.
  • Fig. 17 is a flow chart showing another direct link-based transmission method according to an exemplary embodiment.
  • Fig. 18 is a block diagram of a transmission device based on a direct link according to an exemplary embodiment.
  • Fig. 19 is a block diagram of another transmission device based on a direct link according to an exemplary embodiment.
  • Fig. 20A to Fig. 20B are block diagrams of a transmission device based on a direct link according to an exemplary embodiment.
  • Fig. 21 is a block diagram of another transmission device based on a direct link according to an exemplary embodiment.
  • Fig. 22 is a block diagram of another transmission device based on a direct link according to an exemplary embodiment.
  • Fig. 23 is a block diagram of another transmission device based on a direct link according to an exemplary embodiment.
  • Fig. 24 is a block diagram of another transmission device based on a direct link according to an exemplary embodiment.
  • Fig. 25 is a block diagram of another transmission device based on a direct link according to an exemplary embodiment.
  • Fig. 26 is a block diagram of a transmission device based on a direct link according to an exemplary embodiment of the present disclosure.
  • Fig. 27 discloses a block diagram of another transmission device based on a direct link according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in this disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to a determination”.
  • the involved time unit may be a subframe or a slot
  • the involved time symbol may be an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • FIG. 3 is a flowchart of a transmission method based on a direct link according to an exemplary embodiment, and may include the following steps:
  • a common demodulation reference signal is configured for control information and target data; the target data is data to be transmitted associated with the control information;
  • step 102 the control information, the target data, and the demodulation reference signal are mapped on the current time unit using time division multiplexing;
  • step 103 the control information, the target data, and the demodulation reference signal are sent to the receiving end through the time unit.
  • step 101 in the embodiment of the present disclosure, in the direct connection communication, since the address of the receiving end of the control information and data is the same, in order to reduce the overhead of the demodulation reference signal and improve the spectrum utilization, the control information and target data Common demodulation reference signal.
  • any of the following methods may be adopted in a time division multiplexing manner to map the control information, the target data, and the demodulation reference signal on the current time unit.
  • the time symbol where the control information is located does not include the demodulation reference signal, and the demodulation reference signal is mapped on the first target time symbol in the time unit.
  • Step 102 may include the following steps:
  • the control information, the target data and the demodulation reference signal are mapped to different time symbols in the current time unit, wherein the demodulation The reference signal is mapped on at least one first target time symbol of the time unit; the first target time symbol is the time between the time symbol mapped by the control information and the time symbol mapped by the target data symbol.
  • mapping of the control information, the target data, and the demodulation reference signal may be as shown in FIG. 4A or FIG. 4B.
  • the order of mapping the control information and the target data is not limited.
  • the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide, or the frequency domain resources occupied by the control information and the target The full frequency domain resources occupied by the data coincide.
  • the frequency domain resources occupied by the control information overlap with part of the frequency domain resources occupied by the target data, it may be as shown in FIG. 4C or FIG. 4D. If the frequency domain resources occupied by the control information and all the frequency domain resources occupied by the target data coincide, it may be as shown in FIG. 4A or FIG. 4B.
  • the time symbol where the control information is located includes the demodulation reference signal, and the control information and the target data are mapped to different time symbols in the time unit by using time division multiplexing Above, and it is also necessary to map the demodulation reference signal on at least one second target time symbol within the time unit.
  • Step 102 may include the following steps:
  • steps 102-21 using time division multiplexing, the control information and the target data are mapped on different time symbols in the time unit;
  • a time symbol mapped by the control information and a time symbol mapped by the target data may be adjacent to each other.
  • the time symbol where the control information is located includes the demodulation reference signal.
  • the order of mapping the control information and the target data is not limited.
  • FIG. 5 is a flowchart of another direct link-based transmission method shown according to the embodiment shown in FIG. 3.
  • step 102 may also include include:
  • the demodulation reference signal is mapped on at least one second target time symbol in the time unit; the second target time symbol is located in any two of the target data mapped Time symbol between time symbols.
  • a second target time symbol may be inserted every 2-3 time symbols in the time symbols mapped by the target data to demodulate
  • the reference signal is mapped on the second target time symbol, for example, as shown in FIG. 6C or 6D.
  • a second target time symbol may be inserted into the time symbol mapped to the target data with a longer interval, thereby reducing the overhead of demodulating the reference signal.
  • the above steps 102-22 can be omitted without The demodulation reference signal is mapped again on the two target time symbols, saving the overhead of demodulation reference signal.
  • the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide, or the frequency domain resources occupied by the control information and the target data
  • the occupied resources in the entire frequency domain coincide.
  • the frequency domain resources occupied by the control information overlap with part of the frequency domain resources occupied by the target data, it may be as shown in FIG. 6E. If the frequency domain resources occupied by the control information and all the frequency domain resources occupied by the target data coincide, it may be as shown in FIG. 6C or FIG. 6D.
  • the time symbol where the control information is located does not include the demodulation reference signal
  • the demodulation reference signal is mapped on the third target time symbol in the time unit
  • the control information is mapped on the third target
  • FIG. 7 is a flowchart of another direct link-based transmission method according to the embodiment shown in FIG. 3.
  • Step 102 may include the following steps:
  • the demodulation reference signal is mapped on at least one third target time symbol on the time unit;
  • the demodulation reference signal is first mapped onto the time symbol 2 on the time unit, for example, as shown in FIG. 8A.
  • control information is simultaneously mapped on the fourth target time symbol and the fifth target time symbol;
  • control information may be mapped on the fourth target time symbol before the third target time symbol and the fifth target time symbol after the third target time symbol, such as time symbol 1 and time symbol 3 shown in FIG. 8B on.
  • steps 102-33 map the target data on at least one sixth target time symbol
  • the sending end may further map the target data on at least one sixth target time symbol after the fifth target time symbol, for example, as shown in FIG. 8C, or map the target data on the On at least one sixth target time symbol before the fourth target time symbol, for example, as shown in FIG. 8D.
  • the sending end may also map the target data to at least one sixth target time symbol after the fifth target time symbol and before the fourth target time symbol.
  • the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide, or the frequency domain resources occupied by the control information and the target data occupy The resources in the entire frequency domain coincide.
  • the frequency domain resources occupied by the control information overlap with part of the frequency domain resources occupied by the target data, it may be as shown in FIG. 8E. If the frequency domain resources occupied by the control information and all the frequency domain resources occupied by the target data coincide, it may be as shown in FIG. 8C or 8D.
  • the sending end may directly use the same precoding matrix and sending beam according to the related art, and send the control information, the target data, and the demodulation reference signal to the receiving end through the time unit.
  • the resource units in the time symbols mapped by the demodulation reference signal may not all need to be used to carry the demodulation reference signal, so optionally, refer to FIG. 9, which is shown in FIG. 3
  • the embodiment shows a flowchart of another direct link-based transmission method. Before performing step 103, the foregoing method may further include the following steps:
  • step 104 using frequency division multiplexing, a part of the target data is mapped on the time symbol where the demodulation reference signal is located.
  • part of the resource units in the time symbol mapped by the demodulation reference signal may be allocated to the target data and carry part of the data in the target data, as shown in FIG. 10 for example.
  • the sending end may also use frequency division multiplexing to map part of the target data to the time symbol where the demodulation reference signal is located to save transmission resources.
  • time-division multiplexing and frequency-division multiplexing can be used in direct connection communication to transmit control information, target data and demodulation reference signals to further meet the different business requirements of V2x.
  • FIG. 11 is a flowchart of another direct link-based transmission method according to the embodiment shown in FIG. 3. Before performing step 103, the above method may further include the following steps:
  • step 105 part of the target data is mapped on the time symbol where the control information is located.
  • the idle resource unit on the time symbol where the control information is located can be allocated to the target data to carry part of the target data, for example, as shown in FIG. 12A. If the time symbol where the control information is located includes a demodulation reference signal, part of the data in the target data may be mapped on an idle resource unit, for example, as shown in FIG. 12B.
  • the frequency domain resources occupied by the control information and at least part of the frequency domain resources occupied by the target data coincide.
  • the sending end may also map part of the target data to where the control information is located On the time symbol.
  • time-division multiplexing and frequency-division multiplexing are used simultaneously to transmit control information, target data, and demodulation reference signals to further meet the different business requirements of V2x.
  • FIG. 13 is a flowchart of another direct link-based transmission method according to an exemplary embodiment, and may include the following steps:
  • step 201 receive control information, target data, and demodulation reference signals sent by a sending end through a time unit;
  • the target data is data associated with the control information
  • the demodulation reference signal is a demodulation reference signal shared by the control information and the target data, the control information, the target data and the The demodulation reference signal is mapped on the time unit in a time division multiplexing manner
  • step 202 the control information and the target data are demodulated from the time unit according to the demodulation reference signal, respectively.
  • the receiving end can directly receive the control information, target data and demodulation reference signal sent by the sending end through the time unit.
  • the receiving end may also use different ways to demodulate the control information and the time information from the time unit according to the different demodulation reference signals used by the sending end.
  • the target data may also be used.
  • FIG. 14 is a flowchart of another direct link-based transmission method according to the embodiment shown in FIG. 13, and step 202 may include the following steps:
  • steps 202-11 demodulate the control on the time symbol before or after the first target time symbol in the time unit information;
  • the sending end uses the first way to map the control information, target data and demodulation reference signal on the time unit, as shown in FIG. 4A.
  • the receiving end may directly demodulate the control information on time symbol 1 and time symbol 2 according to the demodulation reference signal on time symbol 3 according to the prior art.
  • the receiving end may directly demodulate the control information on the time symbol 11 and the time symbol 12 according to the demodulation reference signal on the time symbol 10 in FIG. 4B.
  • steps 202-12 according to the demodulation reference signal on the first target time symbol, demodulate the target on the time symbol after or before the first target time symbol in the time unit data.
  • the receiving end may directly demodulate the target data on time symbol 4 to time symbol 12 according to the demodulation reference signal on time symbol 3 in FIG. 4A according to the prior art.
  • the target data on time symbol 1 to time symbol 9 are directly demodulated.
  • step 202 may include the following steps:
  • steps 202-21 demodulate the control information according to the demodulation reference signal included in the time symbol mapped by the control information
  • the receiving end demodulates the control information according to the prior art according to the demodulation reference signal in the time symbol where the control information is located, that is, the receiving end according to the demodulation reference signal in time symbol 1 and time symbol 2 in FIG. To demodulate the control information in time symbol 1 and time symbol 2.
  • the receiving end demodulates the control information in the time symbol 11 and the time symbol 12 according to the demodulation reference signals in the time symbol 11 and the time symbol 12 in FIG. 6B.
  • steps 202-22 demodulate the data on the seventh target time symbol in the time unit;
  • the seventh target The time symbol is a time symbol located between the time symbol mapped by the control information and the first third target time symbol;
  • the sending end also maps the demodulation reference signal on at least one second target time symbol in the time unit. Accordingly, in this step, the receiving end can demodulate the data in time symbol 3 and time symbol 4 according to the demodulation reference signals in time symbol 1 and time symbol 2 in FIG. 6C.
  • the receiving end demodulates the data in time symbol 6 to time symbol 10 according to the demodulation reference signals in time symbol 11 and time symbol 12 in FIG. 6D.
  • steps 202-23 according to the demodulation reference signal mapped on at least one of the third target time symbols, demodulate the target data except the data mapped onto the seventh target time symbol All data.
  • the receiving end demodulates the data in time symbol 6 to time symbol 12 according to the demodulation reference signal in time symbol 5 in FIG. 6C.
  • the above steps 202-22 and 202-23 may be simplified as according to the demodulation reference signal, directly according to the correlation Technology to demodulate all target data.
  • FIG. 16 is a flowchart of another direct link-based transmission method according to the embodiment shown in FIG. 13, and step 202 may include the following steps:
  • steps 202-31 demodulate the control information on the fourth target time symbol and the fifth target time symbol in the time unit;
  • the receiving end may demodulate the control information in time symbol 1 or time symbol 3 according to the demodulation reference signal in time symbol 2 in FIG. 8C according to the prior art.
  • the receiving end may demodulate the control information on the time symbol 10 and the time symbol 12 according to the demodulation reference signal on the time symbol 11 in FIG. 8D.
  • steps 202-32 demodulate the target data located on at least one sixth target time symbol in the time unit;
  • the receiving end may demodulate the target data in time symbol 4 to time symbol 12 according to the demodulation reference signal in time symbol 2 in FIG. 8C according to the prior art.
  • the receiving end may demodulate the target data in time symbol 1 to time symbol 9 according to the demodulation reference signal in time symbol 11 in FIG. 8D according to the prior art.
  • the transmitting end also uses frequency division multiplexing at the same time and maps part of the target data to the time symbol where the demodulation reference signal is located
  • the receiving end can The reference signal is used to demodulate the part of the target data that is mapped on the time symbol where the demodulation reference signal is located.
  • the transmitting end also adopts frequency division multiplexing
  • part of the target data is mapped on the time symbol where the control information is located.
  • the receiving end may also demodulate the part of the target data that is mapped on the time symbol where the control information is located by demodulating the reference signal in the above manner.
  • the transmitting end uses the time division multiplexing and frequency division multiplexing at the same time, through the common demodulation reference signal, the control information and the target data are correctly demodulated from the time unit, further Meet the different business needs of V2x.
  • FIG. 17 is a flowchart of another direct link-based transmission method according to an exemplary embodiment, and may include the following steps:
  • step 301 the sending end configures a common demodulation reference signal for control information and target data
  • the target data is data to be sent associated with the control information.
  • step 302 the transmitting end maps the control information, the target data, and the demodulation reference signal to the current time unit by using time division multiplexing.
  • the sending end may use any of the above time division multiplexing methods to map the control information, the target data, and the demodulation reference signal on the current time unit.
  • step 303 the transmitting end uses frequency division multiplexing to map part of the target data to the time symbol where the demodulation reference signal is located.
  • step 304 the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide, and the transmitting end uses frequency division multiplexing to map part of the target data to The time symbol where the control information is located.
  • step 305 the sending end sends the control information, the target data, and the demodulation reference signal to the receiving end through the time unit.
  • step 306 the receiving end demodulates the control information and the target data from the time unit respectively according to the demodulation reference signal.
  • the sending end may configure a common demodulation reference signal for the control information and target data to be transmitted, thereby reducing the overhead of the demodulation reference signal and improving the spectrum utilization rate.
  • the sending end may use a combination of time division multiplexing and frequency division multiplexing to map the control information, the target data, and the demodulation reference signal on the current time unit, and use the time unit to map all The control information, the target data and the demodulation reference signal are sent to the receiving end with high availability.
  • the present disclosure also provides an embodiment of an application function implementation apparatus, and corresponding transmitting and receiving ends.
  • FIG. 18 is a block diagram of a transmission device based on a direct link according to an exemplary embodiment.
  • the device is used at a sending end.
  • the device includes:
  • the demodulation reference signal configuration module 410 is configured to configure a common demodulation reference signal for control information and target data; the target data is data to be transmitted associated with the control information;
  • the first mapping module 420 is configured to use time division multiplexing to map the control information, the target data, and the demodulation reference signal on the current time unit;
  • the sending module 430 is configured to send the control information, the target data, and the demodulation reference signal to the receiving end through the time unit.
  • the time symbol where the control information is located does not include the demodulation reference signal
  • FIG. 19 is a block diagram of another direct link-based transmission apparatus shown on the basis of the embodiment shown in FIG. 18.
  • the first mapping module 420 includes:
  • the first mapping sub-module 421 is configured to use time division multiplexing to map the control information, the target data and the demodulation reference signal to different time symbols in the current time unit, where The demodulation reference signal is mapped on at least one first target time symbol of the time unit; the first target time symbol is located between the time symbol mapped by the control information and the time symbol mapped by the target data Time symbol.
  • the time symbol where the control information is located includes the demodulation reference signal
  • FIG. 20A is a block diagram of another direct link-based transmission apparatus shown on the basis of the embodiment shown in FIG. 18.
  • the first mapping module 420 includes:
  • the second mapping submodule 422 is configured to use time division multiplexing to map the control information and the target data to different time symbols in the time unit.
  • FIG. 20B is a block diagram of another direct link-based transmission apparatus shown on the basis of the embodiment shown in FIG. 20A.
  • the first mapping module 420 further includes:
  • the third mapping submodule 423 is configured to map the demodulation reference signal on at least one second target time symbol in the time unit; the second target time symbol is located on the target data mapped The time symbol between any two time symbols.
  • the time symbol where the control information is located does not include the demodulation reference signal
  • FIG. 21 is a block diagram of another direct link-based transmission apparatus shown on the basis of the embodiment shown in FIG. 18.
  • the first mapping module 420 includes:
  • the fourth mapping sub-module 424 is configured to map the demodulation reference signal on at least one third target time symbol on the time unit;
  • the fifth mapping submodule 425 is configured to simultaneously map the control information on the fourth target time symbol and the fifth target time symbol; the fourth target time symbol is located in the third target in the time unit A time symbol before the time symbol, the fifth target time symbol is a time symbol located after the third target time symbol in the time unit;
  • the sixth mapping sub-module 426 is configured to map the target data on at least one sixth target time symbol; the sixth target time symbol is a time symbol and / or after the fifth target time symbol The time symbol before the fourth target time symbol.
  • FIG. 22 is a block diagram of another direct link-based transmission apparatus shown on the basis of the embodiment shown in FIG. 18, and the apparatus further includes:
  • the second mapping module 440 is configured to use frequency division multiplexing to map part of the target data to the time symbol where the demodulation reference signal is located.
  • the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide;
  • the frequency domain resources occupied by the control information and all the frequency domain resources occupied by the target data coincide.
  • FIG. 23 is a block diagram of another transmission device based on a direct link shown on the basis of the embodiment shown in FIG. 18, and the device further includes:
  • the third mapping module 450 is configured to, if the frequency domain resources occupied by the control information and part of the frequency domain resources occupied by the target data coincide, use frequency division multiplexing to divide part of the target data The data is mapped on the time symbol where the control information is located.
  • FIG. 24 is a block diagram of another direct link-based transmission apparatus shown on the basis of the embodiment shown in FIG. 18.
  • the sending module 430 includes:
  • the sending submodule 431 is configured to use the same precoding matrix and sending beam to send the control information, the target data, and the demodulation reference signal to the receiving end through the time unit.
  • FIG. 25 is a block diagram of a transmission device based on a direct link according to an exemplary embodiment.
  • the device is used at a receiving end.
  • the device includes:
  • the receiving module 510 is configured to receive control information, target data and demodulation reference signal sent by the sending end through a time unit; wherein, the target data is data associated with the control information, and the demodulation reference signal is control Demodulation reference signal common to the information and the target data, the control information, the target data and the demodulation reference signal are mapped on the time unit in a time division multiplexing manner;
  • the demodulation module 520 is configured to demodulate the control information and the target data from the time unit respectively according to the demodulation reference signal.
  • the device embodiment since it basically corresponds to the method embodiment, it is sufficient to refer to the description of the method embodiment for relevant parts.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in a Place, or can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the disclosed solutions. Those of ordinary skill in the art can understand and implement without paying creative labor.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program, and the computer program is used to execute any of the above-mentioned direct link-based transmission methods for the sending end .
  • the present disclosure also provides a computer-readable storage medium that stores a computer program, and the computer program is used to execute any of the above-described direct link-based transmission methods for the receiving end .
  • the present disclosure also provides a transmission device based on a direct link, and the device is used at the sending end and includes:
  • Memory for storing processor executable instructions
  • the processor is configured to:
  • the target data is data to be transmitted associated with the control information
  • Adopt time division multiplexing to map the control information, the target data and the demodulation reference signal on the current time unit
  • the control information, the target data and the demodulation reference signal are sent to the receiving end through the time unit.
  • FIG. 26 is a schematic structural diagram of a transmission device 2600 based on a direct link according to an exemplary embodiment.
  • the apparatus 2600 may be provided as a sending end device.
  • the device 2600 includes a processing component 2622, a wireless transmission / reception component 2624, an antenna component 2626, and a signal processing part unique to a wireless interface.
  • the processing component 2622 may further include one or more processors.
  • One of the processors in the processing component 2622 may be configured to perform any of the above-mentioned direct-link-based transmission methods for the transmitting end.
  • the present disclosure also provides a transmission device based on a direct link, which is used at the receiving end and includes:
  • Memory for storing processor executable instructions
  • the processor is configured to:
  • the control information and the target data are demodulated from the time unit, respectively.
  • FIG. 27 is a schematic structural diagram of a transmission device 2700 based on a direct link according to an exemplary embodiment.
  • the apparatus 2700 may be provided as a receiving end device.
  • the device 2700 includes a processing component 2722, a wireless transmission / reception component 2724, an antenna component 2726, and a signal processing part unique to a wireless interface.
  • the processing component 2722 may further include one or more processors.
  • One of the processors in the processing component 2722 may be configured to perform any of the above-mentioned direct link-based transmission methods for the receiving end.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种基于直连链路的传输方法及装置,其中,所述方法包括:为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。本公开降低了解调参考信号的开销,提高了频谱利用率。实现了在直连通信系统中,基于时分复用的方式传输控制信息、目标数据和解调参考信号的目的。

Description

基于直连链路的传输方法及装置 技术领域
本公开涉及通信领域,尤其涉及基于直连链路的传输方法及装置。
背景技术
在NR(New Radio,新空口)的Rel 15(版本15)中,传输控制信息的控制信道和传输数据的数据信道各自对应的DMRS(Demodulation Reference Signal,解调参考信号)是分别配置的。当控制信道和数据信道在同一个时间单元,例如时隙slot里传输时,两者的DMRS需要分别在各自的信道里进行传输,如图1所示,图1是NR系统中PDCCH(Physical Downlink Control Channel,物理下行控制信道)和PDSCH(Physical Downlink Shared Channel,物理下行共享信道)在同一slot内传输的示例。
与NR系统的上行或下行通信相比,直连通信控制信道格式相对简单。例如在LTE V2x(Vehicle to Everything,车用无线通信技术)中,只定义了一种直连链路的控制信息格式,而且为了减少Half duplex(半双工)对于V2x通信性能的影响,LTE V2x直连控制信道和直连数据信道总是在同一个时间单元内,以FDM(Frequency-division multiplexing,频分复用)的形式进行传输,如图2所示。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种基于直连链路的传输方法及装置。
根据本公开实施例的第一方面,提供一种基于直连链路的传输方法,所述方法用于发送端,所述方法包括:
为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
可选地,所述控制信息所在的时间符号中不包括所述解调参考信号;
所述采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,包括:
采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元内不同的时间符号上,其中,所述解调参考信号映射在所述时间单元的至少一个第一目标时间符号上;所述第一目标时间符号是位于所述控制信息所映射的时间符号和所述目标数据所映射的时间符号之间的时间符号。
可选地,所述控制信息所在的时间符号中包括所述解调参考信号;
所述采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,包括:
采用时分复用的方式,将所述控制信息和所述目标数据映射在所述时间单元内不同的时间符号上。
可选地,所述采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,还包括:
将所述解调参考信号映射在所述时间单元内的至少一个第二目标时间符号上;所述第二目标时间符号是位于所述目标数据所映射的任意两个时间符号之间的时间符号。
可选地,所述控制信息所在的时间符号中不包括所述解调参考信号;
所述采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,包括:
将所述解调参考信号映射在所述时间单元上的至少一个第三目标时间符号上;
将所述控制信息同时映射在第四目标时间符号和第五目标时间符号上;所述第四目标时间符号是所述时间单元内位于所述第三目标时间符号之前的时间符号,所述第五目标时间符号是所述时间单元内位于所述第三目标时间符号之后的时间符号;
将所述目标数据映射在至少一个第六目标时间符号上;所述第六目标时间符号是位于所述第五目标时间符号之后的时间符号和/或是位于所述第四目标时间符号之前的时间符号。
可选地,所述通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端之前,所述方法还包括:
采用频分复用的方式,将所述目标数据中的部分数据映射在所述解调参考信号所在的时间符号上。
可选地,所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合;或
所述控制信息所占用的频域资源和所述目标数据所占用的全部频域资源重合。
可选地,如果所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,则所述通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端之前,所述方法还包括:
采用频分复用的方式,将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。
可选地,所述通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端,包括:
采用相同的预编码矩阵和发送波束,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
根据本公开实施例的第二方面,提供一种基于直连链路的传输方法,所述方法用于接收端,所述方法包括:
接收发送端通过时间单元发送的控制信息、目标数据和解调参考信 号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
根据本公开实施例的第三方面,提供一种基于直连链路的传输装置,所述装置用于发送端,所述装置包括:
解调参考信号配置模块,被配置为为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
第一映射模块,被配置为采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
发送模块,被配置为通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
可选地,所述控制信息所在的时间符号中不包括所述解调参考信号;
所述第一映射模块包括:
第一映射子模块,被配置为采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元内不同的时间符号上,其中,所述解调参考信号映射在所述时间单元的至少一个第一目标时间符号上;所述第一目标时间符号是位于所述控制信息所映射的时间符号和所述目标数据所映射的时间符号之间的时间符号。
可选地,所述控制信息所在的时间符号中包括所述解调参考信号;
所述第一映射模块包括:
第二映射子模块,被配置为采用时分复用的方式,将所述控制信息和所述目标数据映射在所述时间单元内不同的时间符号上。
可选地,所述第一映射模块还包括:
第三映射子模块,被配置为将所述解调参考信号映射在所述时间单 元内的至少一个第二目标时间符号上;所述第二目标时间符号是位于所述目标数据所映射的任意两个时间符号之间的时间符号。
可选地,所述控制信息所在的时间符号中不包括所述解调参考信号;
所述第一映射模块包括:
第四映射子模块,被配置为将所述解调参考信号映射在所述时间单元上的至少一个第三目标时间符号上;
第五映射子模块,被配置为将所述控制信息同时映射在第四目标时间符号和第五目标时间符号上;所述第四目标时间符号是所述时间单元内位于所述第三目标时间符号之前的时间符号,所述第五目标时间符号是所述时间单元内位于所述第三目标时间符号之后的时间符号;
第六映射子模块,被配置为将所述目标数据映射在至少一个第六目标时间符号上;所述第六目标时间符号是位于所述第五目标时间符号之后的时间符号和/或是位于所述第四目标时间符号之前的时间符号。
可选地,所述装置还包括:
第二映射模块,被配置为采用频分复用的方式,将所述目标数据中的部分数据映射在所述解调参考信号所在的时间符号上。
可选地,所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合;或
所述控制信息所占用的频域资源和所述目标数据所占用的全部频域资源重合。
可选地,则所述装置还包括:
第三映射模块,被配置为如果所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,采用频分复用的方式,将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。
可选地,所述发送模块包括:
发送子模块,被配置为采用相同的预编码矩阵和发送波束,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接 收端。
根据本公开实施例的第四方面,提供一种基于直连链路的传输装置,所述装置用于接收端,所述装置包括:
接收模块,被配置为接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
解调模块,被配置为根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第一方面所述的基于直连链路的传输方法。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第二方面所述的基于直连链路的传输方法。
根据本公开实施例的第七方面,提供一种基于直连链路的传输装置,所述装置用于发送端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
根据本公开实施例的第八方面,提供一种基于直连链路的传输装置,所述装置用于接收端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,发送端可以为要传输的控制信息和目标数据配置共用的解调参考信号,从而降低解调参考信号的开销,提高频谱利用率。另外,发送端可以采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。实现了在直连通信系统中,基于时分复用的方式传输控制信息、目标数据和解调参考信号的目的。
本公开实施例中,可选地,所述控制信息所在的时间符号中不包括所述解调参考信号,那么可以采用时分复用的方式,将解调参考信号映射在所述时间单元内的第一目标时间符号上。所述第一目标时间符号是位于所述控制信息所映射的时间符号和所述目标数据所映射的时间符号之间的时间符号。上述过程中,在所述控制信息所在的时间符号中不包括所述解调参考信号时,实现了基于时分复用的方式传输控制信息、目标数据和解调参考信号的目的,可用性高。
本公开实施例中,可选地,所述控制信息所在的时间符号中也可以包括所述解调参考信号,相应地,可以采用时分复用的方式,将所述控制信息和所述目标数据映射在所述时间单元内不同的时间符号上。进一步地可选地,发送端还可以将所述解调参考信号映射在所述时间单元内的至少一个第二目标时间符号上;所述第二目标时间符号是位于所述目标数据所映射的任意两个时间符号之间的时间符号。在所述控制信息所在的时间符号中包括所述解调参考信号时,实现了基于时分复用的方式传输控制信息、目标数据和解调参考信号的目的。
本公开实施例中,可选地,所述控制信息所在的时间符号中不包括所述解调参考信号,那么可以将所述解调参考信号映射在所述时间单元上的至少一个第三目标时间符号上,再将所述控制信息同时映射在第四目标时间符号和第五目标时间符号上。即将控制信息映射在第三目标时间符号之前和之后的时间符号上。进一步地,将所述目标数据映射在至少一个第五目标时间符号之后或所述第四目标时间符号之前的第六目标时间符号上。在所述控制信息所在的时间符号中不包括所述解调参考信号时,实现了基于时分复用的方式传输控制信息、目标数据和解调参考信号的目的,可用性高。
本公开实施例中,发送端还可以采用频分复用的方式,将目标数据中的部分数据映射在所述解调参考信号所在的时间符号上,节省传输资源。通过上述过程,可以在直连通信中,同时采用时分复用和频分复用的方式,来传输控制信息、目标数据和解调参考信号,进一步满足V2x不同的业务需求。
本公开实施例中,在采用时分复用的方式时,所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,或者所述控制信息所占用的频域资源和所述目标数据所占用的全部频域资源重合。可选地,如果所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,则发送端还可以将所述目标数据中的部分数据映射在所述控制信 息所在的时间符号上。同样在直连通信中,同时采用时分复用和频分复用的方式,来传输控制信息、目标数据和解调参考信号,进一步满足V2x不同的业务需求。
本公开实施例中,发送端可以采用相同的预编码矩阵和发送波束,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端,节省了传输资源。
本公开实施例中,接收端可以接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上。进一步地,接收端会根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。实现了在直连通信系统中,基于时分复用的方式传输控制信息、目标数据和解调参考信号的目的。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的相关技术中一种基于直连链路的传输场景示意图。
图2是根据一示例性实施例示出的相关技术中另一种基于直连链路的传输场景示意图。
图3是根据一示例性实施例示出的一种基于直连链路的传输方法流程示意图。
图4A至4D是根据一示例性实施例示出的基于直连链路的传输场景 示意图。
图5是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图6A至6E是根据一示例性实施例示出的基于直连链路的传输场景示意图。
图7是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图8A至8E是根据一示例性实施例示出的基于直连链路的传输场景示意图。
图9是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图10是根据一示例性实施例示出的一种基于直连链路的传输场景示意图。
图11是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图12A至12B是根据一示例性实施例示出的基于直连链路的传输场景示意图。
图13是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图14是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图15是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图16是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图17是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图。
图18是根据一示例性实施例示出的一种基于直连链路的传输装置框图。
图19是根据一示例性实施例示出的另一种基于直连链路的传输装置框图。
图20A至图20B是根据一示例性实施例示出的基于直连链路的传输装置框图。
图21根据一示例性实施例示出的另一种基于直连链路的传输装置框图。
图22根据一示例性实施例示出的另一种基于直连链路的传输装置框图。
图23根据一示例性实施例示出的另一种基于直连链路的传输装置框图。
图24据一示例性实施例示出的另一种基于直连链路的传输装置框图。
图25根据一示例性实施例示出的另一种基于直连链路的传输装置框图。
图26本公开根据一示例性实施例示出的一种基于直连链路的传输装置框图。
图27公开根据一示例性实施例示出的另一种基于直连链路的传输装置框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在本公开实施例中,所涉及到的时间单元可以以子帧或时隙为单元,所涉及到的时间符号可以为OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
下面先从发送端一侧介绍一下本公开实施例提供的基于直连链路的传输方法。
本公开实施例提供了一种基于直连链路的传输方法,可以用于发送端。参照图3所示,图3是根据一示例性实施例示出的一种基于直连链路的传输方法流程图,可以包括以下步骤:
在步骤101中,为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
在步骤102中,采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
在步骤103中,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
上述实施例中,实现了在直连通信系统中,基于时分复用的方式传输控制信息、目标数据和解调参考信号的目的。
针对上述步骤101,本公开实施例中,在直连通信中,由于控制信息和数据的接收端地址相同,为了降低解调参考信号的开销,提高频谱利用率,可以为控制信息和目标数据配置共用的解调参考信号。
针对上述步骤102,可以采用以下方式中的任意一种采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上。
第一种方式,控制信息所在的时间符号中不包括所述解调参考信号,将所述解调参考信号映射在所述时间单元内的第一目标时间符号上。
步骤102可以包括以下步骤:
在步骤102-11中,采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元内不同的时间符号上,其中,所述解调参考信号映射在所述时间单元的至少一个第一目标时间符号上;所述第一目标时间符号是位于所述控制信息所映射的时间符号和所述目标数据所映射的时间符号之间的时间符号。
本步骤中,可选地,所述控制信息、所述目标数据和所述解调参考信号的映射可以如图4A或图4B所示。本公开实施例中,对所述控制信息和所述目标数据进行映射时的先后顺序不做限定。
在此种方式中,应当注意地是,所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,或者所述控制信息所占用的频域资源和所述目标数据所占用的全频域资源重合。
其中,如果控制信息占用的频域资源和所述目标数据所占用的部分频域资源重合,则可以如图4C或图4D所示。如果控制信息占用的频域资源和所述目标数据所占用的全部频域资源重合,则可以如图4A或图4B所示。
第二种方式,所述控制信息所在的时间符号中包括所述解调参考信号,采用时分复用的方式,将所述控制信息和所述目标数据映射在所述时间单元内不同的时间符号上,且还需要将所述解调参考信号映射在所述时 间单元内的至少一个第二目标时间符号上。
步骤102可以包括以下步骤:
在步骤102-21中,采用时分复用的方式,将所述控制信息和所述目标数据映射在所述时间单元内不同的时间符号上;
本步骤中,可选地,在将控制信息和目标数据映射在不同的时间符号上时,可以让控制信息所映射的一个时间符号和所述目标数据所映射的一个时间符号相邻。例如图6A或图6B所示。其中,所述控制信息所在的时间符号中包括所述解调参考信号。
本公开实施例中,对所述控制信息和所述目标数据进行映射时的先后顺序不做限定。
可选地,参照5所示,图5是根据图3所示的实施例示出的另一种基于直连链路的传输方法流程图,步骤102除了包括上述步骤102-21之外,还可以包括:
在步骤102-22中,将所述解调参考信号映射在所述时间单元内的至少一个第二目标时间符号上;所述第二目标时间符号是位于所述目标数据所映射的任意两个时间符号之间的时间符号。
本公开实施例中,如果在信道时域变化比较快的情况下,可以在所述目标数据所映射的时间符号中,每隔2-3个时间符号插入一个第二目标时间符号,将解调参考信号映射在所述第二目标时间符号上,例如图6C或图6D所示。
如果在信道时域变化比较慢的情况下,可以在所述目标数据所映射的时间符号中,间隔更长的时域符号插入第二目标时间符号,从而降低解调参考信号的开销。
在上述实施例中,可选地,如果可以使用控制信息所映射的时间符号中的解调参考信号来解调时间单元内的所有目标数据的话,则可以省略上述步骤102-22,无需在第二目标时间符号上再次映射解调参考信号了,节省解调参考信号的开销。
同样应当注意地是,此种方式中所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,或者所述控制信息所占用的频域资源和所述目标数据所占用的全频域资源重合。
其中,如果控制信息占用的频域资源和所述目标数据所占用的部分频域资源重合,则可以如图6E所示。如果控制信息占用的频域资源和所述目标数据所占用的全部频域资源重合,则可以如图6C或图6D所示。
第三种方式,控制信息所在的时间符号中不包括所述解调参考信号,将所述解调参考信号映射在所述时间单元内的第三目标时间符号上,控制信息映射在第三目标时间符号之前的第四目标时间符号和第三目标时间符号之后的第五目标时间符号上,将目标数据映射在至少一个位于所述第五目标时间符号之后和/或所述第四目标时间符号之前的第六目标时间符号上。
参照7所示,图7是根据图3所示的实施例示出的另一种基于直连链路的传输方法流程图,步骤102可以包括以下步骤:
在步骤102-31中,将所述解调参考信号映射在所述时间单元上的至少一个第三目标时间符号上;
本步骤中,先将解调参考信号映射在所述时间单元上的时间符号2上,例如图8A所示。
在步骤102-32中,将所述控制信息同时映射在第四目标时间符号和第五目标时间符号上;
本步骤中,可以将控制信息映射在第三目标时间符号之前的第四目标时间符号和第三目标时间符号之后的第五目标时间符号上,例如图8B所示的时间符号1和时间符号3上。
在步骤102-33中,将所述目标数据映射在至少一个第六目标时间符号上;
本步骤中,发送端可以进一步地,将目标数据映射在位于所述第五目标时间符号之后的至少一个第六目标时间符号上,例如图8C所示,或 者将所述目标数据映射在位于所述第四目标时间符号之前的至少一个第六目标时间符号上,例如图8D所示。
当然,可选地,发送端也可以将目标数据映射在位于所述第五目标时间符号之后和所述第四目标时间符号之前的至少一个第六目标时间符号上。
同样地,此种方式中所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,或者所述控制信息所占用的频域资源和所述目标数据所占用的全频域资源重合。
其中,如果控制信息占用的频域资源和所述目标数据所占用的部分频域资源重合,则可以如图8E所示。如果控制信息占用的频域资源和所述目标数据所占用的全部频域资源重合,则可以如图8C或8D所示。
上述三种方式均可以实现采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上的目的,发送端可以采用任意一种方式进行映射。
针对上述步骤103,发送端可以直接按照相关技术采用相同的预编码矩阵和发送波束,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
在一实施例中,解调参考信号所映射的时间符号中的资源单元可能无需全部用于承载解调参考信号,则可选地,参照图9所示,图9是根据图3所示的实施例示出的另一种基于直连链路的传输方法流程图,在执行步骤103之前,上述方法还可以包括以下步骤:
在步骤104中,采用频分复用的方式,将所述目标数据中的部分数据映射在所述解调参考信号所在的时间符号上。
本步骤中,可以将解调参考信号所映射的时间符号中的部分资源单元分配给目标数据,承载目标数据中的部分数据,例如图10所示。
上述实施例中,发送端还可以采用频分复用的方式,将目标数据中的部分数据映射在所述解调参考信号所在的时间符号上,节省传输资源。 通过上述过程,可以在直连通信中,同时采用时分复用和频分复用的方式,来传输控制信息、目标数据和解调参考信号,进一步满足V2x不同的业务需求。
在一实施例中,由于所述控制信息所占用的频域资源和所述目标数据所占用的至少部分频域资源重合。如果所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,则控制信息所映射的时间符号上有部分资源单元空闲,在本公开实施例中,可选地,参照图11所示,图11是根据图3所示的实施例示出的另一种基于直连链路的传输方法流程图,在执行步骤103之前,上述方法还可以包括以下步骤:
在步骤105中,将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。
本步骤中,可以将控制信息所在的时间符号上的空闲的资源单元用分配给目标数据,承载目标数据中的部分数据,例如图12A所示。如果控制信息所在的时间符号中包括解调参考信号,则目标数据中的部分数据可以映射在空闲的资源单元上,例如图12B所示。
上述实施例中,在采用时分复用的方式时,所述控制信息所占用的频域资源和所述目标数据所占用的至少部分频域资源重合。可选地,如果所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,则发送端还可以将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。同样在直连通信中,同时采用时分复用和频分复用的方式,来传输控制信息、目标数据和解调参考信号,进一步满足V2x不同的业务需求。
下面再从接收端一侧说明本公开实施例提供的基于直连链路的传输方法。
本公开实施例提供了另一种基于直连链路的传输方法,可以用于车辆网中的接收端。参照图13所示,图13是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图,可以包括以下步骤:
在步骤201中,接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;
其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
在步骤202中,根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
上述实施例中,实现了在直连通信系统中,基于时分复用的方式传输控制信息、目标数据和解调参考信号的目的。
针对上述步骤201,接收端可以直接接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号。
针对上述步骤202,接收端针对发送端所采用的不同的时分复用方式,也可以采用不同的方式根据所述解调参考信号,来分别从所述时间单元中解调出所述控制信息和所述目标数据。
第一种方式,所述控制信息所映射的时间符号中不包括所述解调参考信号,且所述解调参考信号映射在所述时间单元内的第一目标时间符号上时,可选地,参照14所示,图14是根据图13所示的实施例示出的另一种基于直连链路的传输方法流程图,步骤202可以包括以下步骤:
在步骤202-11中,根据所述第一目标时间符号上的所述解调参考信号,解调所述时间单元内位于所述第一目标时间符号之前或之后的时间符号上的所述控制信息;
本公开实施例中,发送端采用第一种方式将控制信息、目标数据和解调参考信号映射在所述时间单元上,如图4A所示。
本步骤中,接收端可以按照现有技术,根据时间符号3上的所述解调参考信号,直接解调出时间符号1和时间符号2上的所述控制信息。
或者接收端可以根据图4B时间符号10上的所述解调参考信号,直 接解调出时间符号11和时间符号12上的所述控制信息。
在步骤202-12中,根据所述第一目标时间符号上的所述解调参考信号,解调所述时间单元内位于所述第一目标时间符号之后或之前的时间符号上的所述目标数据。
本步骤中,接收端可以按照现有技术,根据图4A中时间符号3上的所述解调参考信号,直接解调出时间符号4至时间符号12上的所述目标数据。
或者根据图4B中时间符号10上的所述解调参考信号,直接解调出时间符号1至时间符号9上的所述目标数据。
第二种方式,所述控制信息所映射的时间符号中包括所述解调参考信号,且所述解调参考信号还映射在所述时间单元上的至少一个第三目标时间符号上时,可选地,参照图15所示,图15是根据图13所示的实施例示出的另一种基于直连链路的传输方法流程图,步骤202可以包括以下步骤:
在步骤202-21中,根据所述控制信息所映射的时间符号中所包括的所述解调参考信号,解调所述控制信息;
本步骤中,接收端根据控制信息所在的时间符号中的解调参考信号,来按照现有技术解调控制信息,即接收端根据图6A中时间符号1和时间符号2中的解调参考信号来解调时间符号1和时间符号2中的控制信息。
或者接收端根据图6B中时间符号11和时间符号12中的解调参考信号来解调时间符号11和时间符号12中的控制信息。
在步骤202-22中,根据所述控制信息所映射的时间符号中所包括的所述解调参考信号,解调所述时间单元中位于第七目标时间符号上的数据;所述第七目标时间符号是位于所述控制信息所映射的时间符号和第一个所述第三目标时间符号之间的时间符号;
本公开实施例中,发送端还将所述解调参考信号映射在所述时间单元内的至少一个第二目标时间符号上。相应地,本步骤中,接收端可以根 据图6C中时间符号1和时间符号2中的解调参考信号来解调时间符号3和时间符号4中的数据。
或者接收端根据图6D中时间符号11和时间符号12中的解调参考信号来解调时间符号6至时间符号10中的数据。
在步骤202-23中,根据映射在至少一个所述第三目标时间符号上的所述解调参考信号,解调所述目标数据中除了映射到所述第七目标时间符号上的数据之外的所有数据。
本步骤中,接收端根据图6C中时间符号5中的解调参考信号来解调时间符号6至时间符号12中的数据。
或者根据图6D中时间符号5中的解调参考信号来解调时间符号1至时间符号4中的数据。
在本公开实施例中,如果解调参考信号仅映射在所述控制信息所在的时间符号上,则上述步骤202-22和步骤202-23可以简化为根据所述解调参考信号,直接按照相关技术解调所有的目标数据。
第三种方式,所述控制信息所在的时间符号中不包括所述解调参考信号,且所述解调参考信号映射在所述时间单元内的第三目标时间符号上时,可选地,参照16所示,图16是根据图13所示的实施例示出的另一种基于直连链路的传输方法流程图,步骤202可以包括以下步骤:
在步骤202-31中,根据所述第三目标时间符号上的所述解调参考信号,解调所述时间单元内位于第四目标时间符号和第五目标时间符号上的所述控制信息;
本步骤中,接收端可以按照现有技术,根据图8C中时间符号2中的解调参考信号来解调时间符号1或时间符号3中的控制信息。
或者接收端可以根据图8D中时间符号11上的解调参考信号解调时间符号10和时间符号12上的控制信息。
在步骤202-32中,根据所述第三目标时间符号上的所述解调参考信号,解调所述时间单元内位于至少一个第六目标时间符号上的所述目标数 据;
本步骤中,接收端可以按照现有技术,根据图8C中时间符号2中的解调参考信号,来解调时间符号4至时间符号12中的目标数据。
或者接收端可以按照现有技术,根据图8D中时间符号11中的解调参考信号,来解调时间符号1至时间符号9中的目标数据。
在一实施例中,如果发送端还同时采用了频分复用的方式,将所述目标数据中的部分数据映射在所述解调参考信号所在的时间符号上,则接收端可以通过解调参考信号,来解调所述目标数据中映射在所述解调参考信号所在的时间符号上的那部分数据。
在一实施例中,如果发送端还采用频分复用的方式,将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。相应地,接收端也可以相应地按照上述方式通过解调参考信号,来解调出所述目标数据中映射在所述控制信息所在的时间符号上的那部分数据。
上述实施例中,接收端可以在发送端同时采用时分复用和频分复用的方式时,通过共用的解调参考信号,从所述时间单元中正确解调出控制信息和目标数据,进一步满足了V2x不同的业务需求。
在一实施例中,参照图17所示,图17是根据一示例性实施例示出的另一种基于直连链路的传输方法流程图,可以包括以下步骤:
在步骤301中,发送端为控制信息和目标数据配置共用的解调参考信号;
其中,所述目标数据是与所述控制信息关联的待发送数据。
在步骤302中,发送端采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上。
可选地,发送端可以采用上述任一种时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上。
在步骤303中,发送端采用频分复用的方式,将所述目标数据中的部分数据映射在所述解调参考信号所在的时间符号上。
在步骤304中,所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,发送端采用频分复用的方式,将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。
在步骤305中,发送端通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
在步骤306中,接收端根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
上述实施例中,发送端可以为要传输的控制信息和目标数据配置共用的解调参考信号,从而降低解调参考信号的开销,提高频谱利用率。另外,发送端可以采用时分复用和频分复用结合的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端,可用性高。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置、及相应的发送端和接收端的实施例。
参照图18,图18是根据一示例性实施例示出的一种基于直连链路的传输装置框图,所述装置用于发送端,所述装置包括:
解调参考信号配置模块410,被配置为为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
第一映射模块420,被配置为采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
发送模块430,被配置为通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
可选地,所述控制信息所在的时间符号中不包括所述解调参考信号;
参照图19,图19是根据图18所示实施例的基础上示出的另一种基于直连链路的传输装置框图,所述第一映射模块420包括:
第一映射子模块421,被配置为采用时分复用的方式,将所述控制 信息、所述目标数据和所述解调参考信号映射在当前的时间单元内不同的时间符号上,其中,所述解调参考信号映射在所述时间单元的至少一个第一目标时间符号上;所述第一目标时间符号是位于所述控制信息所映射的时间符号和所述目标数据所映射的时间符号之间的时间符号。
可选地,所述控制信息所在的时间符号中包括所述解调参考信号;
参照图20A,图20A是根据图18所示实施例的基础上示出的另一种基于直连链路的传输装置框图,所述第一映射模块420包括:
第二映射子模块422,被配置为采用时分复用的方式,将所述控制信息和所述目标数据映射在所述时间单元内不同的时间符号上。
参照图20B,图20B是根据图20A所示实施例的基础上示出的另一种基于直连链路的传输装置框图,所述第一映射模块420还包括:
第三映射子模块423,被配置为将所述解调参考信号映射在所述时间单元内的至少一个第二目标时间符号上;所述第二目标时间符号是位于所述目标数据所映射的任意两个时间符号之间的时间符号。
可选地,所述控制信息所在的时间符号中不包括所述解调参考信号;
参照图21,图21是根据图18所示实施例的基础上示出的另一种基于直连链路的传输装置框图,所述第一映射模块420包括:
第四映射子模块424,被配置为将所述解调参考信号映射在所述时间单元上的至少一个第三目标时间符号上;
第五映射子模块425,被配置为将所述控制信息同时映射在第四目标时间符号和第五目标时间符号上;所述第四目标时间符号是所述时间单元内位于所述第三目标时间符号之前的时间符号,所述第五目标时间符号是所述时间单元内位于所述第三目标时间符号之后的时间符号;
第六映射子模块426,被配置为将所述目标数据映射在至少一个第六目标时间符号上;所述第六目标时间符号是位于所述第五目标时间符号之后的时间符号和/或是位于所述第四目标时间符号之前的时间符号。
参照图22,图22是根据图18所示实施例的基础上示出的另一种基 于直连链路的传输装置框图,所述装置还包括:
第二映射模块440,被配置为采用频分复用的方式,将所述目标数据中的部分数据映射在所述解调参考信号所在的时间符号上。
可选地,所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合;或
所述控制信息所占用的频域资源和所述目标数据所占用的全部频域资源重合。
参照图23,图23是根据图18所示实施例的基础上示出的另一种基于直连链路的传输装置框图,则所述装置还包括:
第三映射模块450,被配置为如果所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,采用频分复用的方式,将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。
参照图24,图24是根据图18所示实施例的基础上示出的另一种基于直连链路的传输装置框图,所述发送模块430包括:
发送子模块431,被配置为采用相同的预编码矩阵和发送波束,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
参照图25,图25是根据一示例性实施例示出的一种基于直连链路的传输装置框图,所述装置用于接收端,所述装置包括:
接收模块510,被配置为接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
解调模块520,被配置为根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之 处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于发送端任一所述的基于直连链路的传输方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于接收端任一所述的基于直连链路的传输方法。
相应地,本公开还提供了一种基于直连链路的传输装置,所述装置用于发送端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
如图26所示,图26是根据一示例性实施例示出的一种基于直连链路的传输装置2600的一结构示意图。装置2600可以被提供为一发送端设备。参照图26,装置2600包括处理组件2622、无线发射/接收组件2624、天线组件2626、以及无线接口特有的信号处理部分,处理组件2622可进 一步包括一个或多个处理器。
处理组件2622中的其中一个处理器可以被配置为用于执行上述任一所述的用于发送端的基于直连链路的传输方法。
相应地,本公开还提供了一种基于直连链路的传输装置,所述装置用于接收端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
如图27所示,图27是根据一示例性实施例示出的一种基于直连链路的传输装置2700的一结构示意图。装置2700可以被提供为一接收端设备。参照图27,装置2700包括处理组件2722、无线发射/接收组件2724、天线组件2726、以及无线接口特有的信号处理部分,处理组件2722可进一步包括一个或多个处理器。
处理组件2722中的其中一个处理器可以被配置为用于执行上述任一所述的用于接收端的基于直连链路的传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求 指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种基于直连链路的传输方法,其特征在于,所述方法用于发送端,所述方法包括:
    为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
    采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
    通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
  2. 根据权利要求1所述的方法,其特征在于,所述控制信息所在的时间符号中不包括所述解调参考信号;
    所述采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,包括:
    采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元内不同的时间符号上,其中,所述解调参考信号映射在所述时间单元的至少一个第一目标时间符号上;所述第一目标时间符号是位于所述控制信息所映射的时间符号和所述目标数据所映射的时间符号之间的时间符号。
  3. 根据权利要求1所述的方法,其特征在于,所述控制信息所在的时间符号中包括所述解调参考信号;
    所述采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,包括:
    采用时分复用的方式,将所述控制信息和所述目标数据映射在所述时间单元内不同的时间符号上。
  4. 根据权利要求3所述的方法,其特征在于,所述采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时 间单元上,还包括:
    将所述解调参考信号映射在所述时间单元内的至少一个第二目标时间符号上;所述第二目标时间符号是位于所述目标数据所映射的任意两个时间符号之间的时间符号。
  5. 根据权利要求1所述的方法,其特征在于,所述控制信息所在的时间符号中不包括所述解调参考信号;
    所述采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上,包括:
    将所述解调参考信号映射在所述时间单元上的至少一个第三目标时间符号上;
    将所述控制信息同时映射在第四目标时间符号和第五目标时间符号上;所述第四目标时间符号是所述时间单元内位于所述第三目标时间符号之前的时间符号,所述第五目标时间符号是所述时间单元内位于所述第三目标时间符号之后的时间符号;
    将所述目标数据映射在至少一个第六目标时间符号上;所述第六目标时间符号是位于所述第五目标时间符号之后的时间符号和/或是位于所述第四目标时间符号之前的时间符号。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端之前,所述方法还包括:
    采用频分复用的方式,将所述目标数据中的部分数据映射在所述解调参考信号所在的时间符号上。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合;或
    所述控制信息所占用的频域资源和所述目标数据所占用的全部频域资源重合。
  8. 根据权利要求7所述的方法,其特征在于,如果所述控制信息所占 用的频域资源和所述目标数据所占用的部分频域资源重合,则所述通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端之前,所述方法还包括:
    采用频分复用的方式,将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。
  9. 根据权利要求1所述的方法,其特征在于,所述通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端,包括:
    采用相同的预编码矩阵和发送波束,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
  10. 一种基于直连链路的传输方法,其特征在于,所述方法用于接收端,所述方法包括:
    接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
    根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
  11. 一种基于直连链路的传输装置,其特征在于,所述装置用于发送端,所述装置包括:
    解调参考信号配置模块,被配置为为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
    第一映射模块,被配置为采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
    发送模块,被配置为通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
  12. 根据权利要求11所述的装置,其特征在于,所述控制信息所在的时间符号中不包括所述解调参考信号;
    所述第一映射模块包括:
    第一映射子模块,被配置为采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元内不同的时间符号上,其中,所述解调参考信号映射在所述时间单元的至少一个第一目标时间符号上;所述第一目标时间符号是位于所述控制信息所映射的时间符号和所述目标数据所映射的时间符号之间的时间符号。
  13. 根据权利要求11所述的装置,其特征在于,所述控制信息所在的时间符号中包括所述解调参考信号;
    所述第一映射模块包括:
    第二映射子模块,被配置为采用时分复用的方式,将所述控制信息和所述目标数据映射在所述时间单元内不同的时间符号上。
  14. 根据权利要求13所述的装置,其特征在于,所述第一映射模块还包括:
    第三映射子模块,被配置为将所述解调参考信号映射在所述时间单元内的至少一个第二目标时间符号上;所述第二目标时间符号是位于所述目标数据所映射的任意两个时间符号之间的时间符号。
  15. 根据权利要求11所述的装置,其特征在于,所述控制信息所在的时间符号中不包括所述解调参考信号;
    所述第一映射模块包括:
    第四映射子模块,被配置为将所述解调参考信号映射在所述时间单元上的至少一个第三目标时间符号上;
    第五映射子模块,被配置为将所述控制信息同时映射在第四目标时间符号和第五目标时间符号上;所述第四目标时间符号是所述时间单元内位于所述第三目标时间符号之前的时间符号,所述第五目标时间符号是所述时间单元内位于所述第三目标时间符号之后的时间符号;
    第六映射子模块,被配置为将所述目标数据映射在至少一个第六目标时间符号上;所述第六目标时间符号是位于所述第五目标时间符号之后的 时间符号和/或是位于所述第四目标时间符号之前的时间符号。
  16. 根据权利要求11-15任一项所述的装置,其特征在于,所述装置还包括:
    第二映射模块,被配置为采用频分复用的方式,将所述目标数据中的部分数据映射在所述解调参考信号所在的时间符号上。
  17. 根据权利要求11-15任一项所述的装置,其特征在于,所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合;或
    所述控制信息所占用的频域资源和所述目标数据所占用的全部频域资源重合。
  18. 根据权利要求17所述的装置,其特征在于,则所述装置还包括:
    第三映射模块,被配置为如果所述控制信息所占用的频域资源和所述目标数据所占用的部分频域资源重合,采用频分复用的方式,将所述目标数据中的部分数据映射在所述控制信息所在的时间符号上。
  19. 根据权利要求11所述的装置,其特征在于,所述发送模块包括:
    发送子模块,被配置为采用相同的预编码矩阵和发送波束,通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
  20. 一种基于直连链路的传输装置,其特征在于,所述装置用于接收端,所述装置包括:
    接收模块,被配置为接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
    解调模块,被配置为根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
  21. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计 算机程序,所述计算机程序用于执行上述权利要求1-9任一所述的基于直连链路的传输方法。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求10所述的基于直连链路的传输方法。
  23. 一种基于直连链路的传输装置,其特征在于,所述装置用于发送端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    为控制信息和目标数据配置共用的解调参考信号;所述目标数据是与所述控制信息关联的待发送数据;
    采用时分复用的方式,将所述控制信息、所述目标数据和所述解调参考信号映射在当前的时间单元上;
    通过所述时间单元将所述控制信息、所述目标数据和所述解调参考信号发送给接收端。
  24. 一种基于直连链路的传输装置,其特征在于,所述装置用于接收端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收发送端通过时间单元发送的控制信息、目标数据和解调参考信号;其中,所述目标数据是与所述控制信息关联的数据,所述解调参考信号是控制信息和所述目标数据所共用的解调参考信号,所述控制信息、所述目标数据和所述解调参考信号采用时分复用的方式映射在所述时间单元上;
    根据所述解调参考信号,分别从所述时间单元中解调出所述控制信息和所述目标数据。
PCT/CN2018/117111 2018-11-23 2018-11-23 基于直连链路的传输方法及装置 WO2020103117A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/117111 WO2020103117A1 (zh) 2018-11-23 2018-11-23 基于直连链路的传输方法及装置
CN201880002597.XA CN109644115B (zh) 2018-11-23 2018-11-23 基于直连链路的传输方法及装置
EP18940709.1A EP3886521A4 (en) 2018-11-23 2018-11-23 DIRECT LINK BASED TRANSMISSION METHOD AND DEVICE
US17/295,013 US20220015080A1 (en) 2018-11-23 2018-11-23 Direct link-based transmission method and apapratus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117111 WO2020103117A1 (zh) 2018-11-23 2018-11-23 基于直连链路的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2020103117A1 true WO2020103117A1 (zh) 2020-05-28

Family

ID=66060198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117111 WO2020103117A1 (zh) 2018-11-23 2018-11-23 基于直连链路的传输方法及装置

Country Status (4)

Country Link
US (1) US20220015080A1 (zh)
EP (1) EP3886521A4 (zh)
CN (1) CN109644115B (zh)
WO (1) WO2020103117A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115606138A (zh) * 2021-04-28 2023-01-13 北京小米移动软件有限公司(Cn) 一种直连测距的资源复用方法及其装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280876A1 (en) * 2012-11-13 2015-10-01 Lg Electronics Inc. Method and apparatus for transmitting data, and method and apparatus for transmitting data
CN107431963A (zh) * 2015-04-15 2017-12-01 高通股份有限公司 使用多个传输时间区间的协调式无线通信
CN107889263A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种信号传输方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2724744C (en) * 2008-06-11 2014-02-04 Nokia Siemens Networks Oy Local area optimized uplink control channel
US10973018B2 (en) * 2015-11-23 2021-04-06 Qualcomm Incorporated Wireless resource blocks with integrated control and data
CN106937388B (zh) * 2015-12-31 2022-01-25 上海诺基亚贝尔股份有限公司 用于配置子帧的方法和装置
EP3443701B1 (en) * 2016-04-12 2019-12-25 Telefonaktiebolaget LM Ericsson (publ) Method and an apparatus for reference signal mapping for sidelink communications
EP3247067B1 (en) * 2016-05-20 2019-07-10 HTC Corporation Device and method for sharing downlink demodulation reference signals
WO2018027982A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 发送参考信号的方法和装置及接收参考信号的方法和装置
JP2020010072A (ja) * 2016-11-02 2020-01-16 シャープ株式会社 基地局装置、端末装置および通信方法
US10321386B2 (en) * 2017-01-06 2019-06-11 At&T Intellectual Property I, L.P. Facilitating an enhanced two-stage downlink control channel in a wireless communication system
CN109150387B (zh) * 2017-06-16 2023-04-28 华为技术有限公司 发送参考信号的方法、接收参考信号的方法和通信装置
US11071098B2 (en) * 2017-11-17 2021-07-20 Qualcomm Incorporated Techniques to jointly configure demodulation reference signals
US10673588B2 (en) * 2018-05-14 2020-06-02 At&T Intellectual Property I, L.P. Shared demodulation reference signal design for control channels in 5G or other next generation networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280876A1 (en) * 2012-11-13 2015-10-01 Lg Electronics Inc. Method and apparatus for transmitting data, and method and apparatus for transmitting data
CN107431963A (zh) * 2015-04-15 2017-12-01 高通股份有限公司 使用多个传输时间区间的协调式无线通信
CN107889263A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种信号传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3886521A4 *

Also Published As

Publication number Publication date
EP3886521A1 (en) 2021-09-29
US20220015080A1 (en) 2022-01-13
EP3886521A4 (en) 2021-12-15
CN109644115B (zh) 2021-12-03
CN109644115A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN102256358B (zh) 一种数据传输和接收方法、装置及系统
TWI771343B (zh) 信息發送方法、信息接收方法、裝置及系統
WO2016119240A1 (zh) 一种非正交多址接入传输方法、基站及ue
CN114600413A (zh) 无线通信系统中用于发送控制消息的方法和装置
WO2018090327A1 (zh) 传输参考信号的方法和通信设备
JP2022174214A (ja) マルチコードワード伝送方法及び装置
WO2015196523A1 (zh) 资源指示的处理方法、处理装置、接入点和站点
WO2017031625A1 (zh) 解调参考信号的传输方法、装置以及通信系统
WO2018188120A1 (zh) 非授权上行传输方法和装置
JP7119097B2 (ja) Bwpの周波数ホッピング設定方法及びネットワーク装置、端末
CN111867038B (zh) 一种通信方法及装置
WO2021160010A1 (zh) 数据传输方法、装置、设备和存储介质
WO2018177022A1 (zh) 一种预编码颗粒度的确定方法和装置
CN109644431A (zh) 上行信息传输方法、装置及系统
WO2020030254A1 (en) Joint channel estimation
US11229030B2 (en) Method for transmitting uplink signal, terminal and network device
JP2020528683A5 (zh)
WO2020029949A1 (zh) 时域资源配置方法
WO2019007184A1 (zh) 一种数据传输方法及设备
CN108513728B (zh) 系统信息发送方法、系统信息接收方法及装置
WO2020103117A1 (zh) 基于直连链路的传输方法及装置
WO2021088917A1 (zh) 参考信号的位置确定方法、装置、通信节点和存储介质
WO2016169479A1 (zh) 一种数据传输方法及设备
WO2021012174A1 (zh) 直连通信方法及装置
EP2366257B1 (en) Methods and systems for fast network entry and re-entry in multiple access networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018940709

Country of ref document: EP

Effective date: 20210623