WO2020102959A1 - 图像传感器及相关手持装置 - Google Patents

图像传感器及相关手持装置

Info

Publication number
WO2020102959A1
WO2020102959A1 PCT/CN2018/116317 CN2018116317W WO2020102959A1 WO 2020102959 A1 WO2020102959 A1 WO 2020102959A1 CN 2018116317 W CN2018116317 W CN 2018116317W WO 2020102959 A1 WO2020102959 A1 WO 2020102959A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
opening
sensor according
light collection
substrate
Prior art date
Application number
PCT/CN2018/116317
Other languages
English (en)
French (fr)
Inventor
赵维民
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880002300.XA priority Critical patent/CN109643723B/zh
Priority to PCT/CN2018/116317 priority patent/WO2020102959A1/zh
Priority to EP18919397.2A priority patent/EP3686932A4/en
Priority to US16/702,959 priority patent/US20200160026A1/en
Publication of WO2020102959A1 publication Critical patent/WO2020102959A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures

Definitions

  • the present invention relates to an image sensor, and in particular to an image sensor and related handheld device that can reduce optical crosstalk.
  • Semiconductor image sensors are used to sense light waves.
  • the image sensor generates interference signals between adjacent pixels, such as optical cross-talk, which deteriorates the performance of the image sensor.
  • components in the peripheral area of the image sensor need to remain optically dark. When components located in the surrounding area are exposed to light, their performance will also deteriorate and interference signals will be generated.
  • One of the objects of the present invention is to disclose an image sensor and related handheld devices to solve the above problems.
  • An embodiment of the present invention discloses an image sensor.
  • the image sensor includes: a substrate doped to have a first conductivity type, the substrate has a front surface and a back surface, and the back surface is opposite to the front surface
  • the other side of the light collection area is disposed in the substrate and adjacent to the front surface of the substrate, and is used to collect photo-generated charge carriers, wherein the light collection area is doped with the first
  • a second conductivity type with an opposite conductivity type and a mask, which is arranged above the substrate, the mask has an opening through which light waves can reach the light collection area and be converted into the photogenerated electricity Load carrier.
  • An embodiment of the present invention discloses a handheld device including: a display screen assembly; and an image sensor, including the above-mentioned image sensor, to obtain fingerprint information of the specific object.
  • the image sensor and the handheld device disclosed in the present application can improve the problem of optical crosstalk through the cover with the opening.
  • FIG. 1 is a cross-sectional view of an embodiment of an image sensor.
  • FIG. 2 is a partially enlarged view of the cross-sectional view of the image sensor of FIG. 1
  • FIG. 3 is a top view of the image sensor of FIG. 1.
  • FIG. 4 is a cross-sectional view of another embodiment of an image sensor.
  • FIG. 5 is a schematic diagram of an embodiment in which an image sensor is applied to a handheld device.
  • FIG. 6 is a cross-sectional view of an embodiment of the handheld device of FIG. 5.
  • first and second features are in direct contact with each other; and may also include additional components are formed between the first and second features, so that the first and second features may not have direct contact.
  • present disclosure may reuse component symbols and / or reference numerals in various embodiments. Such repeated use is based on the purpose of brevity and clarity, and does not itself represent the relationship between the different embodiments and / or configurations discussed.
  • spatially relative terms here such as “below”, “below”, “below”, “above”, “above”, and similar ones, may be for the convenience of illustration The relationship between a component or feature shown relative to another component or feature.
  • the meaning of these spatially relative words also covers a variety of different orientations in which the device is used or operated. The device may be placed in other orientations (eg, rotated 90 degrees or in other orientations), and these spatially relative description words should be interpreted accordingly.
  • the image sensor disclosed in this application can reduce the optical crosstalk.
  • the obtained fingerprint information of the finger can be more accurate, effectively improving the reliability of the fingerprint under the optical screen.
  • the embodiments and drawings illustrate the technical content of the image sensor and related handheld devices of the present application in detail.
  • FIG. 1 is a cross-sectional view of an embodiment of an image sensor.
  • the image sensor 100 in FIG. 1 only shows one pixel unit, but in application, the image sensor 100 may include multiple pixel units, which may extend along the X-axis direction and / or Y The axis direction extends to form a matrix of pixel cells.
  • the applications of the image sensor 100 are not limited. In the embodiments of FIGS. 5 and 6, the image sensor 100 is used for optical under-screen fingerprint sensing.
  • the image sensor 100 is a complementary metal oxide semiconductor transistor (CMOS) image sensor that is illuminated front (FSI).
  • the image sensor 100 includes a substrate 102, a metal stack 110, a filter 120, and a microlens 122.
  • the substrate 102 is doped to have the first conductivity type, for example, the substrate 102 may be a silicon substrate with P-type impurities (for example, boron), the substrate 102 has a front side and a back side, and the front side of the substrate 102 faces the microlens 122 is the side illuminated by the light wave, and the back side is the other side relative to the front side.
  • a dielectric layer 108 is further included between the metal stack 110 and the substrate 102.
  • the substrate 102 includes a light collection region 104 and an isolation structure 106.
  • the light collection region 104 is disposed in the substrate 102 and abuts the front surface of the substrate 102. In other words, the light collection region 104 goes from the front surface of the substrate 102 toward the substrate 102 The rear surface of the substrate extends, but does not extend to the rear surface of the substrate 102.
  • the light collection region 104 is used to convert the light waves received from the microlens 122 into photo-generated charge carriers.
  • the light collection region 104 is doped to have a second conductivity type opposite to the first conductivity type, for example, the light collection region 104 may be a silicon layer with N-type impurities (eg, arsenic; phosphorous). However, it should be understood that the conductivity types of all components can be exchanged so that the substrate 102 is N-type doped and the light collection region 104 is P-type doped.
  • the isolation structure 106 is disposed around the light collection area 104.
  • the isolation structure 106 may be a shallow trench isolation structure (STI, shallow isolation).
  • STI shallow trench isolation structure
  • the isolation structure 106 may enable adjacent pixels Units are isolated to reduce mutual interference.
  • the metal stack 110 includes a plurality of metal layers (such as 112 and 116) and a plurality of metal interlayer dielectric layers (such as 114 and 118), which are respectively disposed between the plurality of metal layers and respectively correspond to the plurality of metal layers
  • the plurality of inter-metal dielectric layers may include silicon oxide, silicon oxynitride, or a low dielectric constant material.
  • This embodiment uses the uppermost metal layer 116 of the plurality of metal layers in the metal stack 110 as a mask.
  • the metal layer 116 has an opening 124 and the interlayer dielectric layer 118 corresponding to the metal layer 116 extends to the opening 124 ⁇ ⁇ ⁇ ⁇ 124 ⁇ And fill the opening 124.
  • the light waves entering from the microlens 122 may reach the light collection region 104 through the opening 124 and be converted into the photo-generated charge carriers.
  • all metal layers under the metal layer 116 should be shielded from light waves as much as possible. For example, in a top view, all metal layers under the metal layer 116 do not overlap with the opening 124. In some embodiments, all metal layers under the metal layer 116 do not overlap with the light collection region 104 of the opening 124.
  • FIGS. 2 and 3 provide a further schematic diagram of the image sensor 100.
  • 2 is a partially enlarged view of the cross-sectional view of the image sensor 100 of FIG. 1;
  • FIG. 3 is a top view of the image sensor 100 of FIG. 2 and FIG. 3, it can be seen from a top view that the opening 124 and the light collection area 104 overlap, and by designing the position and diameter d2 of the opening 124, the opening 124 does not exceed the range of the light collection area 104, in other words, From a top view, the metal layer 116 acts as a mask, completely shielding all regions except a part of the light collection region 104, including shielding the isolation structure 106 between the pixel unit and the adjacent pixel unit. Since the metal layer 116 shields most of the light waves, only a part of the light waves are allowed to enter the light collection region 104 from the opening 124, thus preventing optical interference between adjacent pixel units.
  • the opening 124 is substantially circular, and the diameter d2 of the opening 124 is designed to cause a pinhole diffraction phenomenon, that is, when the light wave passes through the opening 124, a circularly symmetric diffraction pattern is formed, and the The central part of the diffraction pattern has a higher brightness than the surrounding parts other than the central part.
  • the center c of the opening 124 and the center of the light collection area 104 substantially overlap. Therefore, the center of the central portion of the diffraction pattern also substantially overlaps the center of the light collection area 104. In this way, energy can be concentrated at the center of the light collection area, improving the efficiency of photoelectric conversion.
  • the size of the opening 124 is determined according to the wavelength of the specific light wave.
  • the wavelength of the specific light wave is 526 nm to 606 nm
  • the diameter d2 of the opening 124 is about 2.36 to 3.45 times the wavelength of the specific light wave.
  • the size of the opening 124 is determined according to the size of the light collection region 104.
  • the ratio of the diameter d2 of the opening 124 to the width d3 of the light collection region 104 is approximately 1: 3.16 to 4.61.
  • the size of the opening 124 is determined according to the distance d1 between the light collection region 104 and the opening 124.
  • the ratio of the diameter d2 of the opening 124 to the distance d1 is approximately 1: 2.92.
  • the filter 120 is disposed between the metal stack 110 and the microlens 122.
  • the filter 120 can be designed to pass a specific light wave with a specific wavelength.
  • the size of the opening 124 needs to match the filter 120 Designed to optimize settings for specific light waves.
  • a metal layer other than the uppermost metal layer 116 in the metal stack 110 may be used as a mask.
  • FIG. 4 is a cross-sectional view of another embodiment of an image sensor. The difference between the image sensor 200 in FIG. 4 and the image sensor 100 in FIG. 1 is that the metal layer 216 under the uppermost metal layer 220 in the metal stack 210 is used as a mask.
  • the metal layer 216 may be a metal stack Any metal layer other than the uppermost metal layer 220 in the layer 210.
  • all metal layers above and below the metal layer 216 should be shielded from light waves as much as possible.
  • all metal layers above and below the metal layer 216 do not overlap with the opening 224.
  • all metal layers above and below metal layer 216 do not overlap with light collection region 104.
  • FIG. 5 is a schematic diagram of an embodiment in which an image sensor is applied to a handheld device.
  • the handheld device 500 includes a display screen assembly 400 and an image sensor 100/200.
  • the handheld device 500 can be used for optical under-screen fingerprint sensing to sense the fingerprint of a specific object.
  • the handheld device 500 may be any handheld electronic device such as a smart phone, personal digital assistant, handheld computer system, or tablet computer.
  • 6 is a cross-sectional view of an embodiment of the handheld device of FIG. 5.
  • the display screen assembly 400 includes a display panel 402 and a protective cover 404.
  • the protective cover 404 is disposed above the display panel 400, and the image sensor 100/200 is disposed below the display panel 400.
  • the display The panel 402 may be an organic electroluminescence display panel (OLED), but not limited thereto.
  • the handheld device 500 further includes other components, such as a battery 406, disposed under the image sensor 100/200.
  • the above embodiment uses one of the metal layers in the metal stack 110 as a cover, and allows part of the light wave to pass through the opening in the metal layer to reduce the optical crosstalk.
  • the image sensor is applied to the optical screen
  • the fingerprint sensing technology the ability to sense fingerprints can be improved without additional cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明公开了一种图像传感器及相关手持装置,所述图像传感器包括:衬底,被掺杂为具有第一导电类型,所述衬底具有正面和背面,所述背面为相对于所述正面的另一面;光收集区域,被配置在所述衬底中并邻接所述衬底的正面,并用于收集光生电荷载流子,其中,所述光收集区域被掺杂为具有与所述第一导电类型相反的第二导电类型;以及掩盖物,被配置在所述衬底的上方,所述掩盖物具有开口,光波可通过所述开口到达所述光收集区域并转化为所述光生电荷载流子。

Description

图像传感器及相关手持装置 技术领域
本发明涉及图像传感器,尤其涉及一种可減少光學串擾的图像传感器及相关手持装置。
背景技术
半导体图像传感器用于感测光波,图像传感器会产生相邻像素之间的干扰信号,例如光学串扰(optical cross-talk),使图像传感器的性能变差。此外,图像传感器周边区中的组件需保持光学上的黑暗(optically dark)。当位于周边区中的组件暴露在光中时,也会使其性能变差且会产生干扰信号。
当图像传感器应用在光学式屏下指纹感测技术时,光学串扰会影响感测指纹的能力,因此,需要进一步改良及创新以克服此问题。
发明内容
本发明的目的之一在于公开一种图像传感器及相关手持装置,来解决上述问题。
本发明的一实施例公开了一种图像传感器,所述图像传感器包括:衬底,被掺杂为具有第一导电类型,所述衬底具有正面和背面,所述背面为相对于所述正面的另一面;光收集区域,被配置在所述衬底中并邻接所述衬底的正面,并用于收集光生电荷载流子,其中,所述光收集区域被掺杂为具有与所述第一导电类型相反的第二导电类型;以及掩盖物,被配置在所述衬底的上方,所述掩盖物具有开口,光波可通过所述开口到达所述光收集区域并转化为所述光生电荷载流子。
本发明的一实施例公开了一种手持装置,所述手持装置包括:显示屏组件;以及图像传感器,包括上述的图像传感器,用以获得所述特定对象的指纹信息。
本申请所公开的图像传感器以及手持装置通过具有开口的掩盖物可改善光学串扰的问题。
附图说明
图1为图像传感器的一实施例的剖视图。
图2为图1的图像传感器的剖视图的局部放大图
图3为图1的图像传感器的俯视图。
图4为图像传感器的另一实施例的剖视图。
图5为图像传感器应用在手持装置的一实施例的示意图。
图6为图5的手持装置的一实施例的剖视图。
其中,附图标记说明如下:
100、200                          图像传感器
102                               衬底
104                               光收集区域
106                               隔离结构
108                               介电层
110、220                          金属叠层
112、116、212、216、220           金属层
114、118、214、218、222           金属层间介电层
124、224                          开口
120                               滤光片
122                               微透镜
d1、d2、d3                        距离
c                                圆心
400                              显示屏组件
500                              手持装置
402                              显示面板
404                              保护盖板
406                              电池
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本发明较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或 0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本发明所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
本申请所公开的图像传感器可减少光学串扰,当应用在光学式屏下指纹感测技术时,可使取得的手指指纹信息更加准确,有效提高光学式屏下指纹的可靠度,以下配合多个实施例及图式,详细说明本申请图像传感器及相关手持装置的技术内容。
首先请参阅图1所示,图1为图像传感器的一实施例的剖视图。应注意的是,图1中的图像传感器100仅绘示了一个像素单元,但在应用时,图像传感器100可包括多个像素单元,所述多个像素单元可延X轴方向和/或Y轴方向延伸以形成像素单元矩阵。图像传感器100可应用的场合不限,在图5及图6的实施例中,图像传感器100是用来进行光学式屏下指纹感测。
具体来说,在本实施例中,图像传感器100是正面被照射(FSI,front side illuminated)的互补式金属氧化物半导体晶体管(CMOS)图像传感器。图像传感器100包括衬底102、金属叠层110、滤光片120以及微透镜122。其中衬底102被掺杂为具有第一导电类型,例如衬底102可以是具有P型杂质(例如,硼)的硅衬底,衬底102具有正面和背面,衬底102的正面朝向微透镜122,即为被光波照射的一面,背面为相对于正面的另一面。在某些實施例中,在金属叠层110和衬底102之間另包括介电层108。
衬底102包括光收集区域104以及隔离结构106,光收集区域104 被配置在衬底102中并邻接衬底102的正面,换句话说,光收集区域104从衬底102的正面往衬底102的背面延伸,但并没有延伸至衬底102的背面。光收集区域104用于将从微透镜122收进的光波转换为光生电荷载流子。光收集区域104被掺杂为具有与所述第一导电类型相反的第二导电类型,例如光收集区域104可以是具有N型杂质(例如,砷;磷)的硅层。然而,应当理解,所有组件的导电类型可以被交换,从而使得衬底102是N型掺杂的,光收集区域104是P型掺杂的。
隔离结构106被配置在光收集区域104的周围,隔离结构106可以是浅槽隔离结构(STI,shallow trench isolation),当图像传感器100包括多个像素单元时,隔离结构106可以使相邻的像素单元隔离开以减少彼此的干扰。
金属叠层110包括多个金属层(例如112及116)以及多个金属层间介电层(例如114及118),分别被设置在所述多个金属层之间并分别对应所述多个金属层,所述多个金属层间介电层可包括氧化硅、氮氧化硅、或低介电常数材料。本实施例使用金属叠层110中的多个金属层中的最上层金属层116来作为掩盖物,金属层116具有开口124,,且对应金属层116的层间介电层118延伸至开口124并填满开口124。从微透镜122进入的光波可通过开口124到达光收集区域104并转换为所述光生电荷载流子。在金属叠层110中,金属层116下方的所有金属层应尽量避免屏蔽到光波的进入,例如以俯视图来看,金属层116下方的所有金属层不和开口124重迭。在某些實施例中,金属层116下方的所有金属层不和开口124光收集区域104重迭。
为了更深入的说明图像传感器100的结构,图2和图3提供了图像传感器100的更进一步的示意图。图2为图1的图像传感器100的剖视图的局部放大图;图3为图1的图像传感器100的俯视图。搭配图2和图3可知,从俯视图来看,开口124和光收集区域104重迭,且经由设计开口124的位置和直径d2,使开口124不超过光收集区域104的范围,换句话说,从俯视图来看,金属层116作为一个掩盖 物,完整的屏蔽了除了部分的光收集区域104之外的所有区域,包括屏蔽了像素单元和相邻像素单元之间的隔离结构106。由于金属层116屏蔽了大部分的光波,只容许部分的光波从开口124进入光收集区域104,因此可防止相邻像素单元之间的光学干扰。
在本实施例中,开口124实质上为圆形,且开口124的直径d2被设计造成针孔绕射的现象,也就是当光波经过开口124,会形成圆对称的绕射图样,且所述绕射图样的中心部分的亮度高于中心部分以外的周围部分。在本实施例中,开口124的圆心c和光收集区域104的中心实质上重迭,因此,所述绕射图样的中心部分的中心也会和光收集区域104的中心实质上重迭。这样一来,能量便可集中在光收集区域的中心处,提升光电转换的效率。
在某些实施例中,开口124的尺寸是依据特定光波的波长决定,举例来说,特定光波的波长为526nm至606nm,开口124的直径d2是特定光波的波长的约2.36至3.45倍。在某些实施例中,开口124的尺寸是依据光收集区域104的尺寸决定,举例来说,开口124的直径d2和光收集区域104的宽度d3的比例大约是1:3.16至4.61。在某些实施例中,开口124的尺寸是依据光收集区域104和开口124之间的距离d1决定,举例来说,开口124的直径d2和距离d1的比例大约是1:2.92。
滤光片120设置在金属叠层110以及微透镜122之间,滤光片120可设计让具有特定波长的特定光波通过,在某些实施例中,开口124的尺寸需搭配滤光片120来设计,以针对特定光波进行优化的设置。
在某些实施例中,可以使用金属叠层110中的最上层金属层116以外的金属层来作为掩盖物,例如图4为图像传感器的另一实施例的剖视图。图4中的图像传感器200和图1中的图像传感器100的差异在于使用金属叠层210中最上层金属层220下方的金属层216来作为掩盖物,举例来说,金属层216可以是金属叠层210中最上层金属层220以外的任何一层金属层。在金属叠层210中,金属层216上方和 下方的所有金属层应尽量避免屏蔽到光波的进入,例如以俯视图来看,金属层216上方和下方的所有金属层不和开口224重迭。在某些实施例中,金属层216上方和下方的所有金属层不和光收集区域104重迭。
图5为图像传感器应用在手持装置的一实施例的示意图。手持装置500包括显示屏组件400以及图像传感器100/200。手持装置500可用来进行光学式屏下指纹感测以感测特定对象的指纹。其中,手持装置500可为例如智能型手机、个人数字助理、手持式计算机系统或平板计算机等任何手持式电子装置。图6为图5的手持装置的一实施例的剖视图。依据图6,显示屏组件400包括显示面板402以及保护盖板404,保护盖板404设置在显示面板400的上方,图像传感器100/200设置在显示面板400的下方,在本实施例中,显示面板402可以是一种有机电激发光显示面板(OLED),但不以此为限。在某些实施例中,手持装置500进一步包括其他组件,例如电池406,设置在图像传感器100/200的下方。
以上实施例藉由利用金属叠层110中的其中之一金属层来当作掩盖物,并使部分的光波通过金属层上的开口来达到降低光学串扰的目的,当图像传感器应用在光学式屏下指纹感测技术时,可提升感测指纹的能力,且不需增加额外的成本。
上文的叙述简要地提出了本发明某些实施例之特征,而使得本发明所属技术领域具有通常知识者能够更全面地理解本揭示内容的多种态样。本发明所属技术领域具有通常知识者当可明了,其可轻易地利用本揭示内容作为基础,来设计或更动其他制程与结构,以实现与此处所述之实施方式相同的目的和/或达到相同的优点。本发明所属技术领域具有通常知识者应当明白,这些均等的实施方式仍属于本揭示内容之精神与范围,且其可进行各种变更、替代与更动,而不会悖离本揭示内容之精神与范围。

Claims (20)

  1. 一种图像传感器,其特征在于,包括:
    衬底,被掺杂为具有第一导电类型,所述衬底具有正面和背面,所述背面为相对于所述正面的另一面;
    光收集区域,被配置在所述衬底中并邻接所述衬底的正面,并用于收集光生电荷载流子,其中,所述光收集区域被掺杂为具有与所述第一导电类型相反的第二导电类型;以及
    掩盖物,被配置在所述衬底的上方,所述掩盖物具有开口,光波可通过所述开口到达所述光收集区域并转换为所述光生电荷载流子。
  2. 如权利要求1所述的图像传感器,其特征在于,所述掩盖物为金属。
  3. 如权利要求2所述的图像传感器,其特征在于,另包括多个金属层被配置在所述衬底的正面上方,以及所述掩盖物被配置在所述多个金属层的其中之一。
  4. 如权利要求3所述的图像传感器,其特征在于,所述掩盖物被配置在所述多个金属层中的最上层。
  5. 如权利要求3所述的图像传感器,其特征在于,另包括多个金属层间介电层,分别被设置在所述多个金属层之间并分别对应所述多个金属层,且对应所述掩盖物所配置于其中的金属层的层间介电层延伸至所述开口并填满所述开口。
  6. 如权利要求1所述的图像传感器,其特征在于,从俯视图来看,所述开口和所述光收集区域重迭且不超过所述光收集区域的范围。
  7. 如权利要求1所述的图像传感器,其特征在于,从俯视图来看,所述开口为圆形。
  8. 如权利要求7所述的图像传感器,其特征在于,从俯视图来看,所述开口的圆心和所述光收集区域的中心重迭。
  9. 如权利要求7所述的图像传感器,其特征在于,所述光波经过所述开口形成圆对称的绕射图样且中心部分的亮度高于中心部分以外的周围部分。
  10. 如权利要求7所述的图像传感器,其特征在于,所述开口的直径是依据所述光波的波长决定。
  11. 如权利要求7所述的图像传感器,其特征在于,所述开口的直径是依据所述光收集区域的尺寸决定。
  12. 如权利要求7所述的图像传感器,其特征在于,所述开口的直径是依据所述光收集区域和所述开口之间的距离决定。
  13. 如权利要求1所述的图像传感器,其特征在于,另包括微透镜,被配置在所述掩盖物上。
  14. 如权利要求13所述的图像传感器,其特征在于,另包括滤光片,被配置在所述掩盖物和所述微透镜之间。
  15. 如权利要求13所述的图像传感器,其特征在于,从俯视图来看,所述微透镜的圆心和所述开口重迭。
  16. 如权利要求1所述的图像传感器,其特征在于,另包括隔离结构,被配置在所述光收集区域的周围。
  17. 一种手持装置,用以感测一特定对象的指纹,其特征在于,包括:显示屏组件;以及
    如权利要求1-16任意一项所述的图像传感器,用以获得所述特定对象的指纹信息。
  18. 如权利要求17所述的手持装置,其特征在于,所述显示屏组件包括显示面板以及保护盖板。
  19. 如权利要求18所述的手持装置,其特征在于,所述显示面板具有第一侧和相对于所述第一侧的第二侧,所述保护盖板设置于所述显示面板的第二侧,且所述图像传感器设置于所述显示面板的第一侧,使所述显示面板位于所述图像传感器和所述保护盖板之 间。
  20. 如权利要求18所述的手持装置,其特征在于,所述显示面板是有机发光二极管显示屏。
PCT/CN2018/116317 2018-11-20 2018-11-20 图像传感器及相关手持装置 WO2020102959A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880002300.XA CN109643723B (zh) 2018-11-20 2018-11-20 图像传感器及相关手持装置
PCT/CN2018/116317 WO2020102959A1 (zh) 2018-11-20 2018-11-20 图像传感器及相关手持装置
EP18919397.2A EP3686932A4 (en) 2018-11-20 2018-11-20 IMAGE SENSOR AND ASSOCIATED PORTABLE DEVICE
US16/702,959 US20200160026A1 (en) 2018-11-20 2019-12-04 Image sensor and associated handheld device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116317 WO2020102959A1 (zh) 2018-11-20 2018-11-20 图像传感器及相关手持装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/702,959 Continuation US20200160026A1 (en) 2018-11-20 2019-12-04 Image sensor and associated handheld device

Publications (1)

Publication Number Publication Date
WO2020102959A1 true WO2020102959A1 (zh) 2020-05-28

Family

ID=66060247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116317 WO2020102959A1 (zh) 2018-11-20 2018-11-20 图像传感器及相关手持装置

Country Status (4)

Country Link
US (1) US20200160026A1 (zh)
EP (1) EP3686932A4 (zh)
CN (1) CN109643723B (zh)
WO (1) WO2020102959A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643381B (zh) * 2018-12-03 2023-03-10 京东方科技集团股份有限公司 集成光感检测显示设备及其制造方法
CN110741383B (zh) * 2019-06-14 2021-08-06 深圳市汇顶科技股份有限公司 光学指纹装置和电子设备
KR20210018680A (ko) * 2019-08-08 2021-02-18 삼성디스플레이 주식회사 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456683A (zh) * 2012-05-30 2013-12-18 三星电子株式会社 形成通孔结构、制造图像传感器和集成电路器件的方法
CN103855177A (zh) * 2014-03-11 2014-06-11 格科微电子(上海)有限公司 图像传感器
CN106373973A (zh) * 2016-11-24 2017-02-01 南通沃特光电科技有限公司 一种抗干扰图像传感器
CN108496180A (zh) * 2016-01-29 2018-09-04 辛纳普蒂克斯公司 在显示器下面的光学指纹传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067840A (ja) * 2008-09-11 2010-03-25 Fujifilm Corp 固体撮像素子及び撮像装置
KR102350605B1 (ko) * 2017-04-17 2022-01-14 삼성전자주식회사 이미지 센서

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456683A (zh) * 2012-05-30 2013-12-18 三星电子株式会社 形成通孔结构、制造图像传感器和集成电路器件的方法
CN103855177A (zh) * 2014-03-11 2014-06-11 格科微电子(上海)有限公司 图像传感器
CN108496180A (zh) * 2016-01-29 2018-09-04 辛纳普蒂克斯公司 在显示器下面的光学指纹传感器
CN106373973A (zh) * 2016-11-24 2017-02-01 南通沃特光电科技有限公司 一种抗干扰图像传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686932A4 *

Also Published As

Publication number Publication date
US20200160026A1 (en) 2020-05-21
EP3686932A4 (en) 2020-10-28
CN109643723A (zh) 2019-04-16
CN109643723B (zh) 2021-02-23
EP3686932A1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US11791356B2 (en) Image sensor device having a first lens and a second lens over the first lens
CN111741238B (zh) 光学扫描仪的光学传感器
US20240038804A1 (en) Image sensor device
US8183510B2 (en) Image sensor with buried self aligned focusing element
JP4741015B2 (ja) 撮像素子
CN110875340B (zh) 图像传感器
JP4538353B2 (ja) 光電変換膜積層型カラー固体撮像素子
US11322536B2 (en) Image sensor and method of fabricating the same
WO2020102959A1 (zh) 图像传感器及相关手持装置
CN109065555B (zh) 图像传感器及其制造方法
KR102427639B1 (ko) 이미지 센싱 소자
US20180190692A1 (en) Image sensor
US11670661B2 (en) Image sensor and method of fabricating same
JP2012238774A (ja) 撮像装置
US20140264298A1 (en) Image sensor and method of forming the same
TW202122981A (zh) 光學感測器、光學感測系統以及光學感測器的製造方法
US20090026512A1 (en) CMOS image sensor and method for manufacturing the same
KR20220031402A (ko) 전자 장치
US9391113B2 (en) Image-sensor device structure and method of manufacturing
CN111106189B (zh) 一种光电二极管及显示屏
US20150014806A1 (en) Image Sensor and Manufacturing Method Thereof
KR20130056485A (ko) 이미지 센서
JP2013016702A (ja) 固体撮像装置及びカメラモジュール
US10504964B2 (en) Image sensors and methods for manufacturing the same
US20230197746A1 (en) Image sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018919397

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 2018919397

Country of ref document: EP

Effective date: 20200102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE