WO2020102920A1 - Método para construcción de sistema de protección solar para fachadas de edificios - Google Patents

Método para construcción de sistema de protección solar para fachadas de edificios

Info

Publication number
WO2020102920A1
WO2020102920A1 PCT/CL2018/050113 CL2018050113W WO2020102920A1 WO 2020102920 A1 WO2020102920 A1 WO 2020102920A1 CL 2018050113 W CL2018050113 W CL 2018050113W WO 2020102920 A1 WO2020102920 A1 WO 2020102920A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
variety
protection element
performance parameter
solar
Prior art date
Application number
PCT/CL2018/050113
Other languages
English (en)
French (fr)
Inventor
Claudio Marcelo VÁSQUEZ ZALDÍVAR
Renato Rodolfo D’ALENCON CASTRILLÓN
Maria MOLINOS SENANTE
Juan Eduardo OJEDA VALENZUELA
Pedro Pablo DE LA BARRA LUEGMAYER
Gracián FIGUEROA SEPÚLVEDA
Original Assignee
Pontificia Universidad Católica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile filed Critical Pontificia Universidad Católica De Chile
Priority to PCT/CL2018/050113 priority Critical patent/WO2020102920A1/es
Publication of WO2020102920A1 publication Critical patent/WO2020102920A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled

Definitions

  • the present invention relates to the construction industry, in particular to the design, manufacture and construction of sunscreens for building facades.
  • the present invention relates to the tools of professionals in the design of efficient solar protection solutions for facades in the early stages of an architectural project and in the development of solutions for problems of public interest such as offices, meeting rooms classes, hospital rooms, etc.
  • design in the construction of buildings is known by means of computational models such as, for example, the design method for buildings disclosed in patent document US2013 / 097949A1 that allows an ecological construction, minimizing the loss of materials.
  • the method allows determining appropriate positions for windows, doors, balconies, entrances or the like considering the interior lighting and ventilation of the space, by defining upper and lower margins on exterior members of the building and minimizing costs, given the use of panels as exterior members. .
  • patent document US6438922B1 discloses a design method for a modular construction system from an original structure provided in construction documents, such as paper plans that are scanned or digital CAD models.
  • the method allows analyzing and identifying dimensional or drawing discrepancies and conflicts with building regulations. Also, the method allows the construction of original structure designs from available modules.
  • the evaluation of the performance of façade systems through computational models is a frequent method in the development of architectural projects with facades of a certain complexity.
  • Radiance® suite of programs used to evaluate the lighting design resulting from the facade system and the Energy Plus software and the multiple software packages based on it, such as Design Builder® it is possible to evaluate its energy performance.
  • these computer programs require information that most of the time is incorporated based on reductive assumptions, such as for the properties of the materials, the occupation of the space, the air conditioning system, etc., typical of digital modeling and they are carried out in late design stages.
  • laboratory tests are seldom carried out and when this occurs, partial aspects such as material properties, infiltrations, wind resistance or constructional aspects for manufacturing are studied.
  • a method of constructing a solar protection system for facades is necessary, which, at an early stage of its architectural design, allows improving the predictions of the energy, thermal, visual and light performance of facades and its solar protection systems in buildings, with a better precision and evaluation.
  • the present invention is based on the characterization of the solar, thermal, visual and light performance of solar protection systems and solutions for building facades.
  • the present invention provides a method oriented to the design, manufacture and construction of a solar protection system for a building façade, including a prototyping stage to scale that allows adjusting and specifying the parameterization and physical attributes in a digital analysis, and use a statistical ordering of a set of proposed solutions.
  • the present invention aims to establish what are the geometric and material qualities that the components of a sun protection system must possess to obtain a good performance in terms of light transmission and solar radiation according to local meteorological and climatic conditions and which allow to control solar radiation, natural lighting and visibility indiscriminately and intelligently.
  • the present invention provides a solar protection system for the façade that has fixed and / or mobile sun protection elements to apply in buildings considering the particular conditions of each point on the façade, using a method specifically developed to respond to the great variability In geometry and possible movements of these elements, the method of the present invention is capable of rapidly iterating a large amount of data and adapting the elements of solar protection by means of tests and according to the variability of the elements studied.
  • the present invention aims to provide a method of building a solar protection system for façade, also called Variable Facade (FV), to respond to interior and exterior conditions, as part of the building envelope.
  • PV Variable Facade
  • the development of a PV consists of determining the ideal solution to respond to the functional requirements of the interior space based on the exterior conditions of the building site, such as the weather, obstructions, orientation, etc.
  • the present invention allows a reliable estimation of the performance of facade systems with multiple iterations and at low cost.
  • the present invention optimizes the construction processes for producers of façade systems, elements and components of solar protection systems on facades, by adjusting the requirements of these products to the conditions of use through tests that complement the modeling. in early design stages. Also, the present invention allows to take better design options and technical specifications when solving the problems of particular cases, saving investment costs by obtaining optimized solutions.
  • the present invention offers design solutions for these solar protection systems on building facades that allow better performance, greater comfort, less energy consumption, less expense and maintenance time in inhabited spaces.
  • the collection and management of data to: accumulate information, evaluate the facade and control the response of the facade system to the changing conditions of the climate and the environment.
  • the present invention relates to a method for producing a building facade solar protection system comprising the following stages, in a first modeling period (100) a) defining and parameterizing a facade system with an initial geometry for at least a solar protection element of said facade system with modifiable variables and then generating a variety of geometries for said element; b) model said variety of geometries arranged between an interior and exterior space, and calculate a performance parameter of each geometry in the produced model c) order statistically in a database of said variety of geometries; in a second laboratory period (200): d) generate scale prototypes of said selected set of said variety of geometries of solar protection element; e) measure the performance parameter of the prototypes through a data collection and observation laboratory; in a third calibration and analysis period (300): f) replace at least the previously calculated performance parameter of said variety of geometries by numerical modeling of step b) in said database with the parameter measured in said laboratory of step e) and calibrating the model to obtain said measured parameter by
  • Figure 1 illustrates a flow chart of the steps of the method according to the present invention.
  • Figures 2a to 2c illustrate an array of a variety of sunscreen element geometries according to the method of the present invention.
  • Figures 3a to 3c illustrate another set of a variety of sunscreen element geometries according to the method of the present invention.
  • Figures 4a to 4c illustrate yet another set of a variety of sunscreen element geometries according to the method of the present invention.
  • Figures 5a to 5d, 6a to 6d, 7a to 7c, 8a to 8d and 9a to 9d illustrate results obtained from an example of the method according to the present invention.
  • Figure 10 illustrates an exploded and perspective view of a laboratory according to the present invention.
  • Figure 11 illustrates a comparative graph of the average deviation of data for a solar protection, according to a computational model (A), a prototype measured in the laboratory (B) and a calibrated model according to the present invention (C).
  • the present invention relates to a method for producing a solar protection system on a building facade that comprises the following stages, in a first modeling period (100):
  • a) define and parameterize a facade system with an initial geometry for at least one solar protection element of said facade system with modifiable variables and then generate a variety of geometries for said element;
  • said performance parameter is the transparency of each geometry according to the obstructions that it produces to a system of linkage of points of view arranged randomly both in the interior space and in the exterior, where said transparency it is in percentage, where 0% is completely opaque and 100% is completely transparent.
  • said performance parameter is energy consumption or light performance.
  • step d) prototypes are generated at a scale of 1: 2 to 1: 10, preferably 1: 5, of said set selected from said variety of geometries of solar protection element.
  • the definition of the façade system can be chosen, after obtaining the variety of geometries ordered according to the performance parameter measured in said laboratory in step g), then iterating after this step g) directly to step a) to propose a new definition of the façade system and the method is followed as previously described.
  • said solar protection element of said solar protection system is a fixed component.
  • said component is a fixed lattice slat with a set of horizontal, vertical fixed slats, or a combination of both, where its spacing and width can be parameterized to generate a variety of sun protection element geometries.
  • said component is a fixed diamond of a lattice with a set of fixed diamonds.
  • said solar protection element is a mobile slat of a lattice of horizontal, vertical mobile slats, or a combination of both, where the slats can vary their inclination and also have a torsion movement, this movement is defined as a torsion variable (TOR) for its parameterization and evaluation, generating a variety of geometries of solar protection element.
  • TOR torsion variable
  • said sunscreen element is a screen formed by a set of elements in the form of a rhomboid with cut and mobile corners, each element of said set of elements can rotate in Taking two orthogonal axes, this movement is defined as an overlapping variable (SOB) for its parameterization and evaluation, generating a variety of geometries of the sun protection element.
  • SOB overlapping variable
  • said solar protection element is a screen formed by a set of substantially square mobile panels, where said panels can be moved together to form lattices with horizontal slats or vertical slats of different widths, this movement is defined as a transformation variable (TRA) for its parameterization and evaluation, generating a variety of geometries of solar protection element.
  • TRA transformation variable
  • step a) when parameterizing said solar protection element with modifiable variables variables associated with the geometry or materiality of the solar protection element are used. Furthermore, these variables can be chosen according to the manufacturing processes, design requirements or the criteria considered pertinent, so that there is an appreciable difference between the possible options to avoid redundant or irrelevant results.
  • the width and spacing of the sunscreen components are defined as modifiable variable.
  • materiality indices such as refractive index, illuminance, radiation, color, as well as other variables such as inclination, radius of curvature of the sun protection element and external view as variables.
  • the exterior view is understood as a geographical orientation of the façade, such as North, North East, East, South East, South, South West, West and North West.
  • the geometry or geometries that maximize the chosen light performance parameters such as energy demand using numerical modeling software.
  • the movement of said sun protection element is parameterized for a movement strategy using, for example, as a geometric variable, the position, inclination and / or orientation of the components that form said protection element.
  • solar generating a variety of geometries of solar protection element.
  • said movement strategy of said solar protection element consists of an open-loop control system, the objective of which is to avoid excess solar gain through the facade.
  • said movement strategy of said solar protection element is governed by interior lighting.
  • a simulation model is generated that allows calculating the illuminance inside a space with the mobile sun protection element; where it is iteratively calculated when moving the sun protection element. This calculation is repeated a maximum number of times or until the ideal situation is reached. For example, a maximum number of iterations is 25.
  • a range of valid positions is defined according to visibility: to the total universe of possible positions of each element of solar protection, a visibility criterion is applied that sets a minimum value of visibility allowed in the interior space. The algorithm reduces the range of positions that meet the visibility criteria.
  • a range of movement is defined according to radiation: to the positions of the range deduced by visibility an admissible radiation criterion is applied that varies according to a maximum external radiation that is established as a limit.
  • a range of motion is chosen that meets the allowable radiation criteria. Additionally, this criterion may be different for different periods such as morning and afternoon. A new range of positions lower than the previous range is obtained again.
  • the following models can be used to analyze and model the performance of the sun protection element and its variables: a model of solar radiation (MI); a natural lighting model (M2); a visibility model (M3) and a demands model (M4) for an interior space, for example a steerable enclosure 6 meters deep, 4m wide and 3.5m high.
  • MI model of solar radiation
  • M2 natural lighting model
  • M3 visibility model
  • M4 demands model
  • the visibility model (M3) allows the visibility parameters to be established based on a conical analysis of the geometry of the façade and the interior space it closes. The analysis is based on a random selection of interior points that are analyzed as foci from which we also look at random points on the outside. Each interior spotlight looks at the same number of exterior points, however, the facade blocks different amounts of points depending on the position. This allows analyzing the total proportion of visible points from the inside and the way in which these visible points are distributed in the plant. The analysis results from the combination of both factors.
  • a temporal regime is defined by selecting days that allow simulating this performance parameter of the sunscreen element with the highest possible sensitivity since long-term averages normally flatten the information and do not allow to correctly understand the phenomena that occur, for example 12 characteristic days of the year are used (sunny, partial and cloudy in each season).
  • the models are developed in 3d modeling software (Rhinoceros) and analyzed in other softwares specialized in radiant analysis (Radiance) and thermal analysis (Energy plus).
  • results obtained from the modeling and simulation are collected in a database that allows a comparative analysis to be made based on the solar, light, visual and energy performance indices.
  • the results are submitted to an ordering process to evaluate different scenarios.
  • step h) the performance parameter is measured in a data collection and observation laboratory that considers radiation, temperature and natural light measurements that are collected in databases to calculate the indicators. performance.
  • step f) of the method of the present invention the measurements obtained are used as a reference that must be homologated in the models to calculate the performance parameter.
  • the model is calibrated in two stages:
  • Laboratory calibration consists of modeling the laboratory and its environment considering the optical properties of the prototype materials, based on their measurement using a colorimeter and glossmeter. Calibration consists of ensuring that the measurements made in the laboratory with the prototype are reasonably similar to those obtained by the model using a weather file built from the weather station measurements. Calibration consists of adjusting the properties of the materials in the model until reaching the measured results.
  • - Calibration of the solar protection it consists of the calibration of the prototype measurements, using as a base the already calibrated laboratory model. Differences between laboratory and model measurements are attributed to sun protection, therefore their properties are also measured and adjusted in the calibration process.
  • the calibrated model allows to extract the optical properties of the solar protection to take them to another model where the performance parameter of the protection in dynamic regime is evaluated.
  • Performance modeling considers the MI, M2, M3 and M4 models described above for an annual simulation considering 12 characteristic days of the year (sunny, partial and cloudy in each season). Additionally, the interior space or enclosure is defined as a building with different orientations.
  • said variety of sun protection geometries can be ordered based on a composite index (Icomp) that represents the solar, visual and light performance at a unique value for each geometry. Additionally, a specific weight can be assigned to each component of the composite index, that is, the solar, visual and light performance.
  • said data collection and observation laboratory consists of instrumentation and data transmission means to empirically measure the performance parameter, further including a meteorological station, a plurality of collection cameras data and means of control and movement of the sun protection elements during the measurement of the performance parameter.
  • said laboratory according to the present invention comprises:
  • said container (22) comprises displacement means (28), such as wheels under its lower face;
  • said front face and back face are emptied or substantially transparent, allowing light to pass through the container (20);
  • a data center that is, a computer with at least one processor, at least one associated memory, wired and wireless communication means and data acquisition means connected to said thermometer (27), to said plurality of luxometers (24 ), said at least one radiometer (25) and said external thermometer (26).
  • UDI Useful Daylight Illumination
  • UDI NORM Normalized Useful Daylight Illuminance
  • HRG Exposure Gain
  • ELM Demand
  • ICV Visual Quality Index
  • Icom Composite Indicator
  • GRAS SHOPPER Rhinoceros, Radiance, DIVA, DAYSIM, Energy plus, ARCHSIM
  • the work consisted in the construction of models, prototypes and their calibrations to consider and correct the optical properties of the solar protections in the simulation models. With this result, a model was then built that allowed an analysis capable of comparing performance according to orientation and season of the year.
  • Table 1 performance indicators for three types of sun protection with moving elements.
  • N NORTH
  • O Oriente
  • So Sur Oriente
  • S Sur
  • Sp Poniente Sur
  • P
  • Figures 5a to 5d, 6a to 6d, 7a to 7c, 8a to 8d and 9a to 9d illustrate the results obtained in Table 1 comparing the various sets of variety of geometries SOB, TOR, TRA and a REF control sample.
  • figures 5a, 5b, 5c, and 5d show in an annual summary, depending on the different orientations, the performance indices used in the example of the present invention, of movement iMov, UDI and UDI NORM lighting performance between orientations with variations not exceeding 10% and improving the performance of the UDI Indicator in an appreciable way, by 15 to 20% in relation to the control sample.
  • FIGS. 6a, 6b, 6c and 6d illustrate the component of normalized solar radiation gain (in%), separated from the energy demand of the complete system, with the movement of the three variability principles: Torsion (TOR), Transformation (TRA ), and Overlap (SOB), plus the control sample.
  • TOR Torsion
  • TRA Transformation
  • SOB Overlap
  • Figures 6a, 6b, 6c and 6d show a considerable reduction in annualized solar gains, in the Overlap prototypes (SOB) from 0.1 to 0.3; Torsion (TOR) between 0.15 and 0.35; and Transformation (TRA) between 0.15 and 0.35 a in the control sample that range between 0.2 and 0.6.
  • SOB Overlap prototypes
  • TOR Torsion
  • TRA Transformation
  • the following figures 7a, 7b and 7c show the reduction of the Demands in the three principles of variability of Torsion (TOR), Transformation (TRA), and Overlap (SOB), in relation to the Demand of the control sample ( DEM REF).
  • TOR Torsion
  • TRA Transformation
  • SOB Overlap
  • DEM REF Demand of the control sample
  • Figures 8a, 8b, 8c and 8d illustrate an indicator called the Visual Quality Index [ICV] and the Illumination [UDI] and Visibility [Vis] indicators to maintain a balance between the Visibility and Radiation indicators.
  • ICV Visual Quality Index
  • UMI Illumination
  • Vis Visibility
  • the ICV results for the variable (SOB) are clearly similar to the UDI and Vis, and can be considered practically a sum of the previous ones.
  • the results for the variable (TOR) show how the homogeneity in the Visibility performance predominates in the consolidated ICV, similar to the first in homogeneity, although it practically doubles it in values.
  • the variable (TRA) presents a greater dispersion, although the even greater trend towards the east is also recognizable, both in the partial and consolidated indicators.
  • Torsion variable presents with a Visual Quality Index (ICV) close to 100% in all orientations, and a normalized UDI between 60 and 90%;
  • the comparative results of figure 11 are presented, where the average deviation of data obtained in terms of light performance measured in Lux can be compared, for solar protection, according to a computational model (A), a prototype measured in laboratory (B) and a calibrated model according to the present invention (C).
  • the calibrated model according to the present invention (C) maintains a low average deviation throughout the time range compared to the average deviation of the computational model (A) and a prototype measured in the laboratory (B), whose mean deviations increase from 14:00, which implies that the model calibrated according to the present invention (C) provides greater precision, greater reliability and prediction stability than computational models (A) as those of the prior art and of laboratory prototypes (B). This allows for better design decisions and a more reliable and better results production method for sun protection system.

Abstract

La presente invención se relaciona con un método para producir un sistema de protección solar en fachada de edificio que comprende las siguientes etapas, en un primer periodo de modelamiento (100) a) definir y parametrizar un sistema de fachada con una geometría inicial para al menos un elemento de protección solar con variable modificables y luego generar una variedad de geometrías para dicho elemento; b) modelar dicha variedad de geometrías dispuestas entre un espacio interior y el exterior, y calcular un parámetro de desempeño de cada geometría en el modelo producido c) ordenar estadísticamente en una base de datos dicha variedad de geometrías; en un segundo periodo de laboratorio (200): d) generar prototipos a escala de dicho conjunto seleccionado de dicha variedad de geometrías de elemento de protección solar; e) medir el parámetro de desempeño de los prototipos mediante un laboratorio de recolección de datos y observación; en un tercer periodo de calibración y análisis (300): f) reemplazar al menos el parámetro de desempeño antes calculado de dicha variedad de geometrías mediante el modelamiento numérico de la etapa b) en dicha base de datos con el parámetro medido en dicho laboratorio de la etapa e) y calibrar el modelo para obtener dicho parámetro medido al calcular el parámetro de desempeño en dicho modelo calibrado; g) ordenar nuevamente dicha variedad de geometrías con el parámetro de desempeño calculado en dicho modelo calibrado; h) seleccionar un nuevo conjunto de dicha variedad de geometrías con dicho nuevo ordenamiento; y en un cuarto periodo de producción (400): i) seleccionar un elemento de protección solar de dicho nuevo conjunto ordenado y configurar dicho sistema de protección solar con dicho al menos un elemento de protección solar; y j) producir dicho sistema de protección solar configurado.

Description

MÉTODO PARA CONSTRUCCIÓN DE SISTEMA DE PROTECCIÓN SOLAR PARA
FACHADAS DE EDIFICIOS
MEMORIA DESCRIPTIVA
CAMPO DE APLICACIÓN
La presente invención se relaciona con la industria de la construcción, en particular con el diseño, la fabricación y construcción de protecciones solares para fachadas de edificios. Así, la presente invención se relaciona con las herramientas de los profesionales en el diseño de soluciones de protecciones solares para fachada eficientes en etapas tempranas de proyecto de arquitectura y en el desarrollo de soluciones para problemas de interés público como, por ejemplo oficinas, salas de clases, habitaciones de hospital, etc.
ANTECEDENTES
En la actualidad, se conoce el diseño en la construcción de edificios mediante modelos computaci onales como, por ejemplo, el método de diseño para edificios divulgado en el documento de patente US2013/097949A1 que permite una construcción ecológica, minimizando la pérdida de materiales. El método permite determinar posiciones apropiadas para ventanas, puertas, balcones, entradas o similares considerando la iluminación interior y la ventilación del espacio, al definir márgenes superiores e inferiores en miembros exteriores del edificio y minimizando los costos, dado el uso de paneles como miembros exteriores.
También se conoce el documento de patente US6438922B1 que divulga un método de diseño para un sistema modular de construcción a partir de una estructura original provista en documentos de construcción, tales como planos en papel que son escaneados o modelos digitales CAD. El método permite analizar e identificar discrepancias dimensionales o de dibujo y conflictos con normas de construcción. También, el método permite la construcción de diseños de estructuras originales a partir de módulos disponibles.
También es sabida la relevancia que tiene el diseño arquitectónico en el desempeño de los edificios, especialmente en las primeras etapas de diseño, cuando se toman las decisiones más generales respecto a la forma a construir, como su tamaño, orientación o tipo de fachada.
Por otra parte, la evaluación del desempeño de sistemas de fachadas a través de modelos computacionales es un método frecuente en el desarrollo de proyectos arquitectónicos con fachadas de cierta complejidad. Por ejemplo, mediante la suite de programas Radiance® usada para evaluar el diseño de la iluminación resultante del sistema de fachada y el software Energy Plus y los múltiples paquetes de software basados en éste, como Design Builder®, es posible evaluar su desempeño energético. Sin embargo, estos programas computacionales requieren información que la mayoría de las veces se incorpora en base a supuestos reductivos, tales como para las propiedades de los materiales, la ocupación del espacio, el sistema de climatización, etc., propios de la modelación digital y se realizan en etapas tardías del diseño. Por otra parte, pocas veces se realizan ensayos de laboratorio y cuando esto ocurre, se estudian aspectos parciales como las propiedades de los materiales, las infiltraciones, la resistencia al viento o los aspectos constructivos para la fabricación.
En efecto, existe un déficit de información y de confiabilidad en el proceso de diseño de fachadas complejas, cuya evaluación en la práctica industrial y profesional está básicamente limitada a la experiencia de los profesionales que intervienen en el diseño y fabricación, pero que no cuentan con un método fiable y capaz de predecir de manera integrada los problemas que enfrentan en este tipo de diseños, dando cuenta de su complejidad, en cuanto a la variabilidad de las condiciones que enfrenta y a la multiplicidad de parámetros de evaluación necesarios a considerar. Por una parte, los catálogos de la industria proveedora de materiales, componentes y sistemas constructivos son de índole general y difíciles de aplicar a las especificidades de cada proyecto. Por otra parte, los modelos digitales están diseñados para abordar parámetros o aspectos específicos del edificio (térmico, acústico, mecánico, etc.) y no permiten integrarlos. Además, los ensayos están limitados al estudio académico o al cumplimiento específico de normas y finalmente los prototipos industriales suelen servir para ensayos productivo- constructivos sin considerar el desempeño de las soluciones en la obra una vez construidas y en uso.
PROBLEMA TÉCNICO
Es necesario un método de construcción de sistema de protección solar para fachada que, en una fase temprana de su diseño arquitectónico, permita mejorar las predicciones del desempeño energético, térmico, visual y lumínico de fachadas y sus sistemas de protección solar en edificios, con una mejor precisión y evaluación.
SOLUCIÓN TÉCNICA
La presente invención se basa en la caracterización del desempeño solar, térmico, visual y lumínico de sistemas y soluciones de protecciones solares de fachada de edificios.
La presente invención provee un método orientado al diseño, la fabricación y la construcción de un sistema de protección solar para una fachada de edificio, incluyendo una etapa de prototipado a escala que permite ajustar y precisar la parametrización y los atributos físicos en un análisis digital, y utilizar un ordenamiento estadístico de un conjunto de soluciones propuestas.
La presente invención plantea establecer cuáles son las cualidades geométricas y de materiales que los componentes de un sistema de protección solar deben poseer para obtener un buen desempeño en cuanto a transmisión lumínica y de radiación solar según las condiciones meteorológicas y climáticas locales y que permiten controlar la radiación solar, la iluminación natural y la visibilidad de forma indistinta e inteligente.
La presente invención provee un sistema de protección solar para fachada que cuenta con elementos de protección solar fijos y/o móviles para aplicar en edificios considerando las condiciones particulares de cada punto de la fachada, mediante un método desarrollado específicamente para dar respuesta a la gran variabilidad en geometría y movimientos posibles de estos elementos, el método de la presente invención es capaz de iterar rápidamente una gran cantidad de datos y adaptar los elementos de protección solar mediante ensayos y de acuerdo a la variabilidad de los elementos estudiados.
VENTAJAS DE LA PRESENTE INVENCIÓN
La presente invención tiene por objetivo proveer un método de construcción de un sistema de protección solar para fachada, también llamado Fachada Variable (FV), para responder a las condiciones interiores y exteriores, como parte de la envolvente de un edificio. Así, el desarrollo de una FV consiste en determinar la solución idónea para responder a los requerimientos funcionales del espacio interior a partir de las condiciones exteriores del emplazamiento del edificio, tales como el clima, obstrucciones, la orientación, etc.
La presente invención permite una estimación fiable del desempeño de sistemas de fachada con múltiples iteraciones y de bajo costo.
Así, la presente invención permite optimizar los procesos de construcción para los productores de sistemas de fachadas, elementos y componentes de sistemas de protección solar en fachadas, al ajustar los requerimientos de estos productos a las condiciones de uso a través de ensayos que complementan las modelaciones en etapas temprana de diseño. También, la presente invención permite tomar mejores opciones de diseño y especificaciones técnicas al resolver los problemas de casos particulares, ahorrando costos de inversión al obtener soluciones optimizadas.
Además, la presente invención ofrece soluciones de diseño de estos sistemas de protección solar en fachadas de edificio que permiten mejores prestaciones, mayor confort, menor consumo energético, menor gasto y tiempo de mantenimiento en los espacios habitados.
En efecto, la presente invención permite:
un rápido ciclo de iteración en el diseño gracias al uso de prototipos a escala, lo que facilita la corrección de alternativas sin grandes costos o gastos de tiempo;
la integración de variables (radiación solar, iluminación y visibilidad) al poder desarrollar mediciones simultáneas de soluciones alternativas o de una misma solución testeada bajo varios parámetros; y
la captación y manejo de datos para: acumular información, evaluar la fachada y controlar la respuesta del sistema de fachada a las condiciones cambiantes del clima y el medio.
RESUMEN
La presente invención se relaciona con un método para producir un sistema de protección solar en fachada de edificio que comprende las siguientes etapas, en un primer periodo de modelamiento (100) a) definir y parametrizar un sistema de fachada con una geometría inicial para al menos un elemento de protección solar de dicho sistema de fachada con variable modificables y luego generar una variedad de geometrías para dicho elemento; b) modelar dicha variedad de geometrías dispuestas entre un espacio interior y el exterior, y calcular un parámetro de desempeño de cada geometría en el modelo producido c) ordenar estadísticamente en una base de datos dicha variedad de geometrías; en un segundo periodo de laboratorio (200): d) generar prototipos a escala de dicho conjunto seleccionado de dicha variedad de geometrías de elemento de protección solar; e) medir el parámetro de desempeño de los prototipos mediante un laboratorio de recolección de datos y observación; en un tercer periodo de calibración y análisis (300): f) reemplazar al menos el parámetro de desempeño antes calculado de dicha variedad de geometrías mediante el modelamiento numérico de la etapa b) en dicha base de datos con el parámetro medido en dicho laboratorio de la etapa e) y calibrar el modelo para obtener dicho parámetro medido al calcular el parámetro de desempeño en dicho modelo calibrado; g) ordenar nuevamente dicha variedad de geometrías con el parámetro de desempeño calculado en dicho modelo calibrado; h) seleccionar un nuevo conjunto de dicha variedad de geometrías con dicho nuevo ordenamiento; y en un cuarto periodo de producción (400): i) seleccionar un elemento de protección solar de dicho nuevo conjunto ordenado y configurar dicho sistema de protección solar con dicho al menos un elemento de protección solar; y j) producir dicho sistema de protección solar configurado.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 ilustra un diagrama de flujo de las etapas del método de acuerdo a la presente invención.
La figura 2a a 2c ilustran un conjunto de una variedad de geometrías de elemento de protección solar de acuerdo al método de la presente invención.
La figura 3a a 3c ilustran otro conjunto de una variedad de geometrías de elemento de protección solar de acuerdo al método de la presente invención.
La figura 4a a 4c ilustran otro conjunto más de una variedad de geometrías de elemento de protección solar de acuerdo al método de la presente invención. Las figuras 5a a 5d, 6a a 6d, 7a a 7c, 8a a 8d y 9a a 9d ilustran resultados obtenidos de un ejemplo del método de acuerdo a la presente invención.
La figura 10 ilustra una vista explosionada y en perspectiva de un laboratorio de acuerdo a la presente invención.
La figura 11 ilustra una gráfico comparativo de la desviación promedio de datos para una protección solar, según un modelo computacional (A), un prototipo medido en laboratorio (B) y un modelo calibrado de acuerdo a la presente invención (C).
DESCRIPCIÓN DETALLADA
Como puede observarse esquemáticamente en la figura 1, la presente invención se relaciona con un método para producir un sistema de protección solar en fachada de edificio que comprende las siguientes etapas, en un primer periodo de modelamiento (100):
a) definir y parametrizar un sistema de fachada con una geometría inicial para al menos un elemento de protección solar de dicho sistema de fachada con variable modificables y luego generar una variedad de geometrías para dicho elemento;
b) modelar dicha variedad de geometrías dispuestas entre un espacio interior y el exterior, y calcular un parámetro de desempeño de cada geometría en el modelo producido;
c) ordenar estadísticamente en una base de datos dicha variedad de geometrías;
en un segundo periodo de laboratorio (200):
d) generar prototipos a escala de dicho conjunto seleccionado de dicha variedad de geometrías de elemento de protección solar;
e) medir el parámetro de desempeño de los prototipos mediante un laboratorio de recolección de datos y observación;
en un tercer periodo de calibración y análisis (300): f) reemplazar al menos el parámetro de desempeño antes calculado de dicha variedad de geometrías mediante el modelamiento numérico de la etapa b) en dicha base de datos con el parámetro medido en dicho laboratorio de la etapa e) y calibrar el modelo para obtener dicho parámetro medido al calcular el parámetro de desempeño en dicho modelo calibrado;
g) ordenar nuevamente dicha variedad de geometrías con el parámetro de desempeño calculado en dicho modelo calibrado;
h) seleccionar un nuevo conjunto de dicha variedad de geometrías con dicho nuevo ordenamiento; y
en un cuarto periodo de producción (400):
i) seleccionar un elemento de protección solar de dicho nuevo conjunto ordenado y configurar dicho sistema de protección solar con dicho al menos un elemento de protección solar; y
j) producir dicho sistema de protección solar configurado. De acuerdo a una forma de la invención, dicho parámetro de desempeño es la transparencia de cada geometría según las obstrucciones que ella produce a un sistema de vinculación de puntos de visión dispuestos aleatoriamente tanto en el espacio interior como en el exterior, en donde dicha transparencia está en porcentaje, en donde 0% es completamente opaco y 100% es completamente transparente.
De acuerdo a otra forma de la invención, dicho parámetro de desempeño es el consumo energético o desempeño lumínico.
De acuerdo a una forma preferida de la invención, en la etapa d) se genera prototipos a escala de 1 :2 a 1 : 10, preferentemente 1 :5, de dicho conjunto seleccionado de dicha variedad de geometrías de elemento de protección solar. De acuerdo a una forma preferida de la invención, se puede eligir realizar una modificación en la geometría de la protección solar luego de obtener la variedad de geometrías ordenadas en función del parámetro de desempeño medido en dicho laboratorio de la etapa g), luego se itera después de esta etapa g) directamente a la etapa d) para generar un prototipo de dicha geometría modificada y se sigue el método como se ha descrito anteriormente.
De acuerdo a una forma preferida de la invención, se puede eligir la definición del sistema de fachada, luego de obtener la variedad de geometrías ordenadas en función del parámetro de desempeño medido en dicho laboratorio de la etapa g), luego se itera después de esta etapa g) directamente a la etapa a) para plantear una nueva definición del sistema de fachada y se sigue el método como se ha descrito anteriormente.
De acuerdo a una forma de la invención, dicho elemento de protección solar de dicho sistema de protección solar es un componente fijo. Por ejemplo, dicho componente es una lama fija de una celosía con un conjunto de lamas fijas horizontales, verticales, o una combinación de ambas, en donde se puede parametrizar su espaciamiento y su ancho para generar una variedad de geometrías de elemento de protección solar. También, dicho componente es un rombo fijo de una celosía con un conjunto de rombos fijos.
De acuerdo a otra forma ejemplar de la invención y como puede observarse en las figuras 2a, 2b y 2c, dicho elemento de protección solar es una lama móvil de una celosía de lamas móviles horizontales, verticales, o una combinación de ambas, en donde las lamas pueden variar su inclinación y también tener un movimiento de torsión, este movimiento es definido como variable de torsión (TOR) para su parametrización y evaluación, generando una variedad de geometrías de elemento de protección solar.
En otro ejemplo y como puede observarse en las figuras 3a, 3b y 3c, dicho elemento de protección solar es una pantalla formada por un conjunto de elementos en forma de romboide de esquinas recortadas y móviles, cada elemento de dicho conjunto de elementos pueden girar en tomo a dos ejes ortogonales, este movimiento es definido como variable de sobreposición (SOB) para su parametrización y evaluación, generando una variedad de geometrías de elemento de protección solar.
En aún otro ejemplo y como puede observarse en las figuras 4a, 4b y 4c, dicho elemento de protección solar es un una pantalla formada por un conjunto de paneles móviles sustancialmente cuadrados, en donde dichos paneles pueden moverse en conjunto para formar celosías con lamas horizontales o lamas verticales de diferentes anchos, este movimiento es definido como variable de transformación (TRA) para su parametrización y evaluación, generando una variedad de geometrías de elemento de protección solar.
De acuerdo a una forma adicional de la invención, en la etapa a) al parametrizar dicho elemento de protección solar con variables modificables, se utilizan variables asociadas a la geometría o a la materialidad del elemento de protección solar. Además, dichas variables pueden ser elegidas según los procesos de fabricación, los requerimientos de diseño o el criterio que se considere pertinente, de manera que exista una diferencia apreciable entre las posibles opciones para evitar resultados redundantes o irrelevantes.
Por ejemplo, se definen como variable modificable, el ancho y el espaciamiento de los componentes de la protección solar.
Adicionalmente, es posible incorporar como variables a índices propios a la materialidad como el índice de refracción, la iluminancia, la radiación, el color, así como otras variables como la inclinación, el radio de curvatura del elemento de protección solar y la vista al exterior, en donde se entiende por vista al exterior una orientación geográfica de la fachada, como Norte, Norte oriente, Oriente, Sur oriente, Sur, Sur poniente, Poniente y Norte poniente.
De acuerdo a un aspecto preferido de la invención, luego de generar una variedad de geometrías para dicho elemento de protección solar, se selecciona de dicha variedad de geometrías, la o las geometrías que maximizan los parámetros de desempeño lumínico elegidos como, por ejemplo, la demanda energética mediante un software de modelación numérica.
De acuerdo a una forma preferida de la invención, se parametriza el movimiento de dicho elemento de protección solar para una estrategia de movimiento utilizando por ejemplo, como variable geométrica, la posición, inclinación y/u orientación de los componentes que forman dicho elemento de protección solar, generando una variedad de geometrías de elemento de protección solar.
De acuerdo a un aspecto preferido de la invención, dicha estrategia de movimiento de dicho elemento de protección solar, consiste en un sistema de control de lazo abierto, cuyo objetivo es evitar el exceso de ganancia solar a través de la fachada.
De acuerdo a un aspecto preferido de la invención, dicha estrategia de movimiento de dicho elemento de protección solar se rige por la iluminación interior.
Para definir dicha estrategia de movimiento, se genera un modelo de simulación que permite calcular la iluminancia al interior de un espacio con el elemento de protección solar móvil; en donde se calcula de manera iterativa al mover el elemento de protección solar. Este cálculo se repite un número máximo de veces o hasta que se llegue a la situación ideal. Por ejemplo, un número máximo de iteraciones es 25.
Se utiliza el siguiente algoritmo de control de movimiento de los elementos de las protecciones solares:
- Se define un rango de posiciones válidas según visibilidad: al universo total de posiciones posibles de cada elemento de protección solar, se aplica un criterio de visibilidad que fija un valor de visibilidad mínimo admitido en el espacio interior. El algoritmo reduce el rango de posiciones que cumplen con el criterio de visibilidad.
- Luego se define un rango de movimiento según radiación: a las posiciones del rango deducido por visibilidad se les aplica un criterio de radiación admisible que varía según una máxima radiación exterior que se establezca como límite. Se elige un rango de movimiento que cumpla con el criterio de radiación admisible. Adicionalmente, este criterio puede ser distinto para periodos distintos como la mañana y tarde. Se obtiene nuevamente un nuevo rango de posiciones inferior al rango previo.
Se reitera este algoritmo para cada elemento de la protección solar y sus posibles posiciones, cuando se cumplen los dos criteros para todos los elementos de la protección solar, se mantiene dicha posición por 60 minutos y luego se reitera el algoritmo para controlar el movimiento de los elementos de protección solar. De acuerdo a un aspecto preferido de la invención, para analizar y modelar el desempeño del elemento de protección solar y sus variables se puede utilizar los modelos siguientes: un modelo de radiación solar (MI); un modelo de iluminación natural (M2); un modelo de visibilidad (M3) y un modelo de demandas (M4) para un espacio interior, por ejemplo un recinto orientable de 6 metros de profundidad, 4m de ancho y 3,5m de altura. Los modelos MI, M2 y M4 corresponden a modelos de análisis dinámico y el modelo M3 corresponde a un análisis cónico de la relación entre el interior y el exterior evitando los puntos ciegos que genera la geometría de la fachada, estos incorporan mediciones anuales.
El modelo de visibilidad (M3) permite establecer los parámetros de visibilidad en base a un análisis cónico de la geometría de la fachada y del espacio interior que cierra. El análisis se basa en una selección aleatoria de puntos interiores que se analizan como focos desde los cuales se mira a puntos también aleatorios en el exterior. Cada foco interior mira a la misma cantidad de puntos exteriores, sin embargo, la fachada bloquea distintas cantidades de puntos según la posición. Esto permite analizar la proporción total de puntos visibles desde el interior y la manera como se distribuyen estos puntos visibles en la planta. El análisis resulta de la combinación de ambos factores. De acuerdo a un aspecto preferido de la invención, para modelar el parámetro de desempeño, se define un régimen temporal seleccionando días que permitan simular este parámetro de desempeño del elemento de protección solar con la mayor sensibilidad posible ya que normalmente los promedios de periodos extensos aplanan la información y no permiten comprender correctamente los fenónenos que ocurren, por ejemplo se utilizan 12 días característicos del año (soleado, parcial y nublado en cada estación). Por ejemplo, los modelos son desarrollados en un software de modelación 3d (Rhinoceros) y analizados en otros softwares especializados en análisis radiantes (Radiance) y en análisis térmicos (Energy plus).
Los resultados obtenidos de la modelación y simulación son recogidos en una base de datos que permite hacer un análisis comparativos en baso a los índices de desempeño solar, lumínico, visual y energético. Los resultados son sometidos a un proceso de ordenamiento para evaluar diferentes escenarios.
De acuerdo a un aspecto de la invención, en la epata h) se miden el parámetro de desempeño en un laboratorio de recolección de datos y observación que considera mediciones de radiación, temperatura y luz natural que se recogen en bases de datos para calcular los indicadores de desempeño.
De acuerdo a un aspecto preferido de la invención, en la etapa f) del método de la presente invención, las mediciones obtenidas son utilizadas como referencia que deben ser homologada en los modelos para calcular el parámetro de desempeño. Para lo cual se procede a la calibración del modelo en dos etapas:
- Calibración del laboratorio: consiste en la modelación del laboratorio y de su entorno considerando las propiedades ópticas de los materiales del prototipo, a partir de su medición utilizando un colorímetro y un brillómetro. La calibración consiste en lograr que las mediciones hechas en el laboratorio con el prototipo sean razonablemente similares a las obtenidas por el modelo utilizando un archivo de clima construido con las mediciones de estación meteorológica. La calibración consiste en ajustar las propiedades de los materiales en el modelo hasta llegar a los resultados medidos.
- Calibración de la protección solar: consiste en la calibración de las mediciones de prototipo, utilizando como base el modelo del laboratorio ya calibrado. Las diferencias entre las mediciones del laboratorio y el modelo son atribuidas a la protección solar, por lo tanto, sus propiedades también son medidas y ajustadas en el proceso de calibración. El modelo calibrado permite extraer las propiedades ópticas de la protección solar para llevarlas a otro modelo donde se evalúe el parámetro de desempeño de la protección en régimen dinámico.
La modelación de desempeño considera los modelos MI, M2, M3 y M4 descritos anteriormente para una simulación anual considerando 12 días característicos del año (soleado, parcial y nublado en cada estación). Adicionalmente, se define el espacio interior o recinto com un edificio con distintas orientaciones.
De acuerdo a un aspecto preferido de la invención, se puede ordenar dicha variedad de geometrías de protección solar en base a un índice compuesto (Icomp) que representa el desempeño solar, visual y lumínico en un valor único para cada geometría. Adicionalmente, se puede asignar una ponderación específica a cada componente del índice compuesto, es decir el desempeño solar, visual y lumínico. De acuerdo a una forma preferida de la invención, dicho laboratorio de recolección de datos y observación, consta de instrumentación y de medios de transmisión de datos para medir empíricamente el parámetro de desempeño, incluyendo además una estación meteorológica, una pluralidad de cámaras de recolección de datos y medios de control y movimiento de los elementos de protección solar durante la medición del parámetro de desempeño. En particular y como puede apreciarse en la figura 10, dicho laboratorio de acuerdo a la presente invención comprende:
un contenedor (22) con una pared sustancialmente transparente (21), las otras paredes de dicho contenedor pueden ser por ejemplo de poliuretano expandido y contenedor una abertura desde donde se conecta una tubería de ventilación (29) y comprende un termómetro (27), una pluralidad de luxómetros (24), por ejemplo seis, al menos un radiómetro (25), de preferencia, dos radiómetros adosados a la cara transparente (21);
dicho contenedor (22) comprende medios de desplazamiento (28), como por ejemplo ruedas bajo su cara inferior;
un protector solar adosado (20), en su cara posterior, a la cara translúcida con una forma ahusada y una cara frontal dimensionada para un elemento de protección solar (10) de dicho sistema de fachada definido en la etapa a) del método de acuerdo a la presente invención, dicha cara frontal y cara posterior son vaciadas o sustancialmente transparente, permitiendo el paso de la luz dentro del contendor (20);
dicho elemento de protección solar (10) y un termómetro externo (26) dispuesto delante de dicho elemento de protección solar (10) fuera del contenedor (10); y
un data center (23), es decir un computador con al menos un procesador, al menos una memoria asociada, medios de comunicación alámbricos e inalámbricos y medios de adquisición de datos conectados a dicho termómetro (27), a dicha pluralidad de luxómetros (24), dicho al menos un radiométro (25) y dicho termómetro externo (26).
A continuación se presentan los resultados anualizados de las protecciones solares estudiadas y modeladas de acuerdo a la presente invención, según las condiciones de confort térmico y en las demandas de energía para los conjunto de dicha variedad de geometrías antes mencionados: Torsión (TOR), Transformación (TRA), y Sobreposición (SOB). Así se extrapolan los resultados obtenidos en laboratorio a través de un modelo calibrado que permite analizar el parámetro de desempeño de las protecciones solares con los algoritmos de control de movimiento antes citados y en distintos escenarios. Se utilizaron como parámetros de desempeño lumínico a los siguientes indicadores: Iluminación de luz de día útil (Useful Dailight Illuminance - UDI), % ; Iluminación de luz de día útil Normalizada (Useful Dailight Illuminance Normalizado - UDI NORM), %; Ganancia por Radiación Normalizado (Heat Gain), W/m2; Demanda (DEM), kWh/m2; índice de Calidad Visual (ICV), %; Visibilidad (Vis), %; Movimiento (Imov), 0-1; Indicador Compuesto (Icom), %, que son obtenidos mediante los programas computaciones de cálculo, modelación 3d, de análisis radiantes y en análisis térmicos (GRAS SHOPPER, Rhinoceros, Radiance, DIVA, DAYSIM, Energy plus, ARCHSIM).
El trabajo consisitió en la construcción de modelos, prototipos y sus calibraciones para considerar y corregir las propiedades ópticas de las protecciones solares en los modelos de simulación. Con este resultado luego se construyó un modelo que permitió llevar un análisis capaz de comparar el desempeño según la orientación y estación del año.
Debido a la complejidad de los resultados que consideran las múltiples opciones de posición de los elementos de protección solar (225 posiciones, 8 horas laborales, 8 orientaciones y tres prototipos) el trabajo de anualización se desarrolló para 9 días característicos representativos de las estaciones del año.
Se obtienen los que permite optimizar las condiciones de confort térmico y visual del espacio interior según distintos tipos de protección solar, orientación, con un movimiento óptimo. Como se ha indicado, la simulación permite conocer su desempeño, más allá de las condiciones específicas de los ensayos, en diversas orientaciones y en diversos períodos de tiempo para los tres principios estudiados, con lo que es posible establecer una caracterización del desempeño específico de cada protección solar según su orientación y período. Se presentan los resultados generales para los conjuntos de variedad de geometrías con variables de movimiento Torsión (TOR), Transformación (TRA), y Sobreposición (SOB) en la Tabla 1 con los indicadores indicados anteriormente.
Tabla 1 : indicadores de desempeño para tres tipos de protección solar con elementos móviles.
Figure imgf000019_0001
Figure imgf000020_0002
N: NORTE,
Figure imgf000020_0001
O: Oriente, So: Sur oriente, S: Sur, Sp: Sur poniente, P:
Poniente y Np: Norte poniente.
Las figuras 5a a 5d, 6a a 6d, 7a a 7c, 8a a 8d y 9a a 9d se ilustran los resultados obtenidos en la tabla 1 comparando los distintos conjuntos de variedad de geometrías SOB, TOR, TRA y una muestra de control REF. Así, las figuras 5a, 5b, 5c, y 5d muestran en un resumen anual, en función de las distintas orientaciones, los índices de desempeño utilizado en el ejemplo de la presente invención, de movimiento iMov, UDI y UDI NORM el desempeño de iluminación entre orientaciones con variaciones no superiores a un 10% y mejorar el desempeño del Indicador UDI de manera apreciable, en un 15 a 20% en relación con la muestra de control.
Mientras la muestra de control (REF) consigue un UDI entre 30 y 40%, a protección SOB consigue entre un 40 y 50%, la protección entre un 40 y un 60% y la protección TOR entre un 45 y un 65%. Es notorio que en las orientaciones intermedias (NE-NO-SP-SO) de TOR and TRA existe una diferencia en el desempeño en relación a las orientaciones N-S-O-P, en tanto que el principio de Sobre-posición (SOB) mantiene un nivel comparable en todas las orientaciones, incluidas las intermedias. Al mismo tiempo, se puede apreciar un potencial general de mejoramiento aún por desarrollar el desempeño de Iluminación al comparar UDI y UDI Normalizado que en general presentan una diferencia en torno al 5%.
Las figuras 6a, 6b, 6c y 6d ilustran la componente de ganancia por radiación solar normalizada (en %), separada de la demanda energética del sistema completo, con el movimiento de los tres principios de variabilidad: Torsión (TOR), Transformación (TRA), y Sobreposición (SOB), más la muestra de control.
El objetivo de considerar la radiación solar por separado del resto del sistema de intercambios de calor es establecer claramente la variación relativa de cada principio de variabilidad en la fachada misma. El impacto en el total se refleja en el análisis de la demanda más adelante.
En las figuras 6a, 6b, 6c y 6d se aprecia una reducción considerable de las ganancias solares anualizadas, en los prototipos de Sobreposición (SOB) de 0,1 a 0,3; de Torsión (TOR) entre 0,15 y 0,35; y de Transformación (TRA) entre 0,15 y 0,35 a en la muestra de control que oscilan entre 0,2 y 0,6.
En las siguientes figuras 7a, 7b y 7c se aprecia la reducción de las Demandas en los tres principios de variabilidad de Torsión (TOR), Transformación (TRA), y Sobreposición (SOB), en relación con la Demanda de la muestra de control (DEM REF). Las variaciones en los tres casos son del mismo orden, con la notoria excepción de la orientación Sur en todos los casos.
Se puede decir entonces que desde el punto de vista de las Demandas, las tres variables (TOR, TRA y SOB) tienen un impacto claro al reducir las demandas, al mismo tiempo que no se aprecian diferencias relevantes entre las soluciones propuestas entre estas tres variables (TOR, TRA y SOB).
Las figuras 8a, 8b, 8c y 8d ilustran un indicador denominado Indice de Calidad Visual [ICV] y los indicadores de Iluminación [UDI] y de Visibilidad [Vis] para mantener un equilibrio entre los indicadores de Visibilidad y Radiación.
Los resultados de ICV para la variable (SOB) son claramente semejantes a los UDI y Vis, y se pueden considerar prácticamente una suma de los anteriores. Los resultados para la variable (TOR) muestran cómo la homogeneidad en el desempeño por Visibilidad predomina en el ICV consolidado, semejante al primero en homogeneidad, si bien prácticamente lo duplica en valores. Finalmente, la variable (TRA) presenta una mayor dispersión, aunque es también reconocible la tendencia aún mayor desempeño hacia el oriente, tanto en los indicadores parciales como en el consolidado.
Todos estos desempeños, además, son apreciablemente superiores a los de la muestra de control, que también presenta la consistencia mencionada entre los indicadores parciales UDI y Vis y el consolidado ICV. En las figuras 9a, 9b, 9c y 9d se aprecian claramente las siguientes observaciones:
- la variable Torsión (TOR) presenta con un índice de Calidad Visual (ICV) cercano al 100% en todas las orientaciones, y un UDI normalizado entre 60 y 90%;
- la variable Transformación (TRA) presenta un ICV entre 50 y 100% con una clara tendencia a un mejor desempeño en las orientaciones al Este, y un UDI normalizado entre 70 y 100% con una tendencia algo menor al Oriente también; y
- la variable Sobreposición (SOB) con un índice de Calidad Visual (ICV) cercano al entre el 80 y el 100% en todas las orientaciones, y un UDI normalizado muy homogéneo entre 50 y 60%.
Finalmente, se presentan los resultados comparativos de la figura 11, en donde en se puede comparar la desviación promedio de datos obtenidos en cuanto a un desempeño lumínico medido en Lux, para una protección solar, según un modelo computacional (A), un prototipo medido en laboratorio (B) y un modelo calibrado de acuerdo a la presente invención (C). Como se puede observar, el modelo calibrado de acuerdo a la presente invención (C) mantiene una baja desviación promedio en todo el rango de tiempo comparado con la desviación promedio del modelo computacional (A) y un prototipo medido en laboratorio (B), cuyas desviaciones promedios aumentan a partir de las 14:00, lo que implica que el modelo calibrado de acuerdo a la presente invención (C) entrega una mayor precisión, mayor confiabilidad y estabilidad de predicciones que los modelos computaciones (A) como aquellos del arte previo y de prototipos de laboratorios (B). Esto permite mejores decisiones de diseño y un método de producción para sistema de protecciones solares más confiable y de mejores resultados.

Claims

REIVINDICACIONES
1.- Método para producir un sistema de protección solar en fachada de edificio, CARACTERIZADO porque comprende las siguientes etapas, en un primer periodo de modelamiento (100):
a) definir y parametrizar un sistema de fachada con una geometría inicial para al menos un elemento de protección solar de dicho sistema de fachada con variable modificables y luego generar una variedad de geometrías para dicho elemento;
b) modelar dicha variedad de geometrías dispuestas entre un espacio interior y el exterior, y calcular un parámetro de desempeño de cada geometría en el modelo producido;
c) ordenar estadísticamente en una base de datos dicha variedad de geometrías;
en un segundo periodo de laboratorio (200):
d) generar prototipos a escala de dicho conjunto seleccionado de dicha variedad de geometrías de elemento de protección solar;
e) medir el parámetro de desempeño de los prototipos mediante un laboratorio de recolección de datos y observación;
en un tercer periodo de calibración y análisis (300):
f) reemplazar al menos el parámetro de desempeño antes calculado de dicha variedad de geometrías mediante el modelamiento numérico de la etapa b) en dicha base de datos con el parámetro medido en dicho laboratorio de la etapa e) y calibrar el modelo para obtener dicho parámetro medido al calcular el parámetro de desempeño en dicho modelo calibrado;
g) ordenar nuevamente dicha variedad de geometrías con el parámetro de desempeño calculado en dicho modelo calibrado;
h) seleccionar un nuevo conjunto de dicha variedad de geometrías con dicho nuevo ordenamiento; y
1 en un cuarto periodo de producción (400):
i) seleccionar un elemento de protección solar de dicho nuevo conjunto ordenado y configurar dicho sistema de protección solar con dicho al menos un elemento de protección solar; y
j) producir dicho sistema de protección solar configurado.
2.- Método de acuerdo a la reivindicación 1, CARACTERIZADO porque dicho parámetro de desempeño es la transparencia de cada geometría según las obstrucciones que ella produce a un sistema de vinculación de puntos de visión dispuestos aleatoriamente tanto en el espacio interior como en el exterior, en donde dicha transparencia está en porcentaje, en donde 0% es completamente opaco y 100% es completamente transparente
3.- Método de acuerdo a la reivindicación 1, CARACTERIZADO porque dicho parámetro de desempeño es el consumo energético o desempeño lumínico.
4 Método de acuerdo a la reivindicación 1, CARACTERIZADO porque en la etapa d) se genera prototipos a escala de 1 :2 a 1 : 10 de dicho conjunto seleccionado de dicha variedad de geometrías de elemento de protección solar.
5.- Método de acuerdo a la reivindicación 1, CARACTERIZADO porque dicho elemento de protección solar de dicho sistema de protección solar es un componente fijo.
6.- Método de acuerdo a la reivindicación 1, CARACTERIZADO porque en la etapa a) al parametrizar dicho elemento de protección solar con variables modificables, se utilizan variables asociadas a la geometría o a la materialidad del elemento de protección solar.
2
7.- Método de acuerdo a la reivindicación 6, CARACTERIZADO porque se definen como variable modificable, el ancho, el espaciamiento de los componentes de la protección solar, la inclinación y el radio de curvatura del elemento de protección solar y la vista al exterior, en donde se entiende por vista al exterior una orientación geográfica de la fachada.
8.- Método de acuerdo a la reivindicación 6, CARACTERIZADO porque dichas variables modificables corresponden al índice de refracción, la iluminancia, la radiación y el color del elemento de protección solar.
9 Método de acuerdo a la reivindicación 1, CARACTERIZADO porque en la etapa a) se parametriza el movimiento de dicho elemento de protección solar para una estrategia de movimiento, generando una variedad de geometrías de elemento de protección solar.
10.- Método de acuerdo a la reivindicación 9, CARACTERIZADO porque dicha estrategia de movimiento de dicho elemento de protección solar, consiste en un sistema de control de lazo abierto, cuyo objetivo es evitar el exceso de ganancia solar a través de la fachada.
11.- Método de acuerdo a la reivindicación 10, CARACTERIZADO porque dicha estrategia de movimiento de dicho elemento de protección solar se rige por la iluminación interior, en donde para definir dicha estrategia de movimiento, se genera un modelo de simulación que permite calcular la iluminancia al interior de un espacio con el elemento de protección solar móvil; en donde se calcula de manera iterativa al mover el elemento de protección solar
3
12.- Método de acuerdo a la reivindicación 1, CARACTERIZADO porque en la etapa b) y f) para modelar el desempeño del elemento de protección solar y sus variables se utilizan uno o varios de los modelos siguientes: un modelo de radiación solar (MI); un modelo de iluminación natural (M2); un modelo de visibilidad (M3) y un modelo de demandas (M4).
13.- Método de acuerdo a la reivindicación 12, CARACTERIZADO porque dichos modelos de radiación solar, de iluminación natural y de demandas (MI, M2 y M4) corresponden a modelos de análisis dinámico y dicho modelo de visibilidad (M3) corresponde a un análisis cónico de la relación entre el interior y el exterior evitando puntos ciegos que genera la geometría de la fachada, incorporando mediciones anuales.
14.- Método de acuerdo a la reivindicación 1, CARACTERIZADO porque en la etapa b) y f) para modelar el parámetro de desempeño, se define un régimen temporal seleccionando días característicos del año.
15.- Método de acuerdo a la reivindicación 1, CARACTERIZADO porque en la etapa f) las mediciones obtenidas son utilizadas como referencia que deben ser homologada en los modelos para calcular el parámetro de desempeño, en donde se procede a la calibración del modelo en dos etapas:
i) una primera etapa de calibración del laboratorio que consiste en la modelación de dicho laboratorio y de su entorno considerando las propiedades ópticas de los materiales del prototipo y en lograr que las mediciones hechas en el laboratorio con el prototipo sean sustancialmente similares a aquellas obtenidas por el modelo utilizando un archivo de clima construido con las mediciones de estación meteorológica, ajustando las propiedades de los materiales en el modelo hasta llegar a los resultados del parámetro de desempeño medido; y
4 ii) una segunda etapa de calibración de la protección solar, utilizando como base el modelo de laboratorio ya calibrado en donde las propiedades de la protección solar también son medidas y ajustadas, en donde el modelo de laboratorio calibrado permite extraer las propiedades ópticas de la protección solar para llevarlas a otro modelo donde se evalúe el parámetro de desempeño de la protección en régimen dinámico.
5
PCT/CL2018/050113 2018-11-20 2018-11-20 Método para construcción de sistema de protección solar para fachadas de edificios WO2020102920A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/050113 WO2020102920A1 (es) 2018-11-20 2018-11-20 Método para construcción de sistema de protección solar para fachadas de edificios

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/050113 WO2020102920A1 (es) 2018-11-20 2018-11-20 Método para construcción de sistema de protección solar para fachadas de edificios

Publications (1)

Publication Number Publication Date
WO2020102920A1 true WO2020102920A1 (es) 2020-05-28

Family

ID=70773440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050113 WO2020102920A1 (es) 2018-11-20 2018-11-20 Método para construcción de sistema de protección solar para fachadas de edificios

Country Status (1)

Country Link
WO (1) WO2020102920A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370490A (zh) * 2010-12-16 2013-10-23 施耐德电器工业公司 用于关闭至少一个窗口的装置的个别化且自动化的控制的方法,用于实施所述方法的控制组件,以及用于所述组件的参数设定工具
US8786236B2 (en) * 2008-09-25 2014-07-22 Lutron Electronics Co., Inc. Method of automatically controlling a motorized window treatment while minimizing occupant distractions
US20170363897A1 (en) * 2014-10-14 2017-12-21 Signum Bildtechnik GmbH Device and method for reducing the dazzle effect in a room of a building
US20180216399A1 (en) * 2017-07-07 2018-08-02 Seyed Amir Tabadkani Smart transformable shading system with adaptability to climate change

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8786236B2 (en) * 2008-09-25 2014-07-22 Lutron Electronics Co., Inc. Method of automatically controlling a motorized window treatment while minimizing occupant distractions
CN103370490A (zh) * 2010-12-16 2013-10-23 施耐德电器工业公司 用于关闭至少一个窗口的装置的个别化且自动化的控制的方法,用于实施所述方法的控制组件,以及用于所述组件的参数设定工具
US20170363897A1 (en) * 2014-10-14 2017-12-21 Signum Bildtechnik GmbH Device and method for reducing the dazzle effect in a room of a building
US20180216399A1 (en) * 2017-07-07 2018-08-02 Seyed Amir Tabadkani Smart transformable shading system with adaptability to climate change

Similar Documents

Publication Publication Date Title
Kim et al. Comparative investigation on building energy performance of double skin façade (DSF) with interior or exterior slat blinds
Echenagucia et al. The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis
Bahdad et al. Optimization of daylight performance based on controllable light-shelf parameters using genetic algorithms in the tropical climate of Malaysia
Freewan et al. Optimizing performance of the lightshelf by modifying ceiling geometry in highly luminous climates
Zarrella et al. Analysis and application of a lumped-capacitance model for urban building energy modelling
Kabre WINSHADE: A computer design tool for solar control
Taveres-Cachat et al. Co-simulation and validation of the performance of a highly flexible parametric model of an external shading system
Perez et al. Thermal building modeling adapted to district energy simulation
Sanguinetti et al. Real-time design feedback: coupling performance-knowledge with design iteration for decision-making
WO2020102920A1 (es) Método para construcción de sistema de protección solar para fachadas de edificios
Tzempelikos et al. Integrated Design of Perimeter Zones with Glass Facades.
Wall et al. Solar protection in buildings
Gadelhak et al. Optimization of office building facade to enhance daylighting, thermal comfort and energy use intensity
Omidfar Performance evaluation of complex facades using various shading systems with ornamental patterns
Petersen et al. Thermal Performance Simulation of Complex Fenestration Systems in the Early Design Stage
Simon et al. Downscaling climate models: Running nested simulations in the microclimate model ENVI-MET
Sun Glazing system with transparent insulation material for building energy saving and daylight comfort
Winn Inter-scalar multivariable decision making framework for the architectural envelope
Kohler Simulation of complex glazing products; from optical data measurements to model based predictive controls
Tablada et al. Simulation algorithm for the integration of solar and farming systems on tropical façades
Chan et al. A Simulation and Experimental Study of the Impact of Passive and Active Façade Systems on the Energy performance of Building Perimeter Zones.
Pilechiha et al. Simulation assisted design exploration to evaluate view and energy performance of window shading
Veynandt et al. Complex glass facade modelling for Model Predictive Control of thermal loads: impact of the solar load identification on the state-space model accuracy
Stazi et al. Comparison between monitoring and simulating. An important step forward for model reliability
De Michele Assessment of detailed thermal models for complex fenestration systems (CFS) and development of an effective control strategy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940630

Country of ref document: EP

Kind code of ref document: A1