WO2020101432A1 - Biomarker for predicting onset of hereditary ovarian cancer and use thereof - Google Patents

Biomarker for predicting onset of hereditary ovarian cancer and use thereof Download PDF

Info

Publication number
WO2020101432A1
WO2020101432A1 PCT/KR2019/015660 KR2019015660W WO2020101432A1 WO 2020101432 A1 WO2020101432 A1 WO 2020101432A1 KR 2019015660 W KR2019015660 W KR 2019015660W WO 2020101432 A1 WO2020101432 A1 WO 2020101432A1
Authority
WO
WIPO (PCT)
Prior art keywords
ovarian cancer
protein
gene
group
brca
Prior art date
Application number
PCT/KR2019/015660
Other languages
French (fr)
Korean (ko)
Inventor
최윤진
호정윤
김경곤
허수영
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190146229A external-priority patent/KR102368717B1/en
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Priority to CN201980088377.8A priority Critical patent/CN113286898A/en
Publication of WO2020101432A1 publication Critical patent/WO2020101432A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a biomarker for predicting the development of hereditary ovarian cancer, and more specifically, a marker composition for predicting the development of hereditary ovarian cancer, a composition for predicting the development of hereditary ovarian cancer, and a kit for predicting the development, and hereditary ovarian cancer It relates to a method of predicting the outbreak of.
  • Ovarian cancer is a cancer that is the cause and death of teenagers in domestic women. More than 60% of ovarian cancer patients are diagnosed after the cancer has spread, and the 5-year survival rate is less than 30%. The symptoms of ovarian cancer are not clear, and it is ambiguous to recognize abdominal distension, indigestion, diarrhea, and constipation as symptoms of ovarian cancer. Also, most importantly, there is no effective method to detect ovarian cancer early. Thus, effective means for the prevention and early detection of ovarian cancer are important medical needs that have not yet been met.
  • BRCA1 gene is located on chromosome 17 and was first validated as a gene that increases the risk of developing breast and ovarian cancer, and BRCA2 is also reported to increase the risk of developing the carcinoma following BRCA1.
  • the probability of developing ovarian cancer in people with the BRCA1 mutation reaches 44% before the age of 70, and the mutated BRCA gene may be inherited from the mother as well as from the father.
  • RANKL / RANK inhibitor may serve as a preventive drug for breast cancer in BRCA-positive subjects. Based on this, it is considered that it is necessary to develop a biomarker capable of predicting this even in hereditary ovarian cancer, and further develop a therapeutic agent for hereditary ovarian cancer using a target inhibitor of a selective biomarker as a treatment method other than preventive ovarian resection.
  • the present inventors predicted whether or not the onset of hereditary ovarian cancer accompanied by a BRCA gene mutation, and further tried to present a target for the development of a therapeutic agent for the disease, as a result, the BRCA mutation compared to a normal person with a BRCA mutation
  • the present invention was completed by discovering 11 types of markers whose expression was significantly changed in patients with ovarian cancer, and verifying their effectiveness.
  • an object of the present invention is to provide a marker composition for predicting the development of hereditary ovarian cancer.
  • Another object of the present invention is to provide a composition for predicting the development of hereditary ovarian cancer and a kit for predicting the development of hereditary ovarian cancer comprising the composition.
  • Another object of the present invention is to provide an information providing method for predicting the development of hereditary ovarian cancer.
  • the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth growth) factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323 , NM_001323518, NM_006744), SPARC (secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A
  • the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264 , NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein) acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624),
  • the hereditary ovarian cancer may be accompanied by mutation of the BRCA1 or BRCA2 gene.
  • the agent measuring the mRNA level of the gene may be a sense and antisense primer, or a probe that complementarily binds to the mRNA of the gene.
  • the agent measuring the protein level may be an antibody that specifically binds to a protein encoded by the gene.
  • the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding) in biological samples derived from a subject protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323517, NM_001323517, NM_001323517, NM_001323517 ), SPARC (secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_00130
  • the subject may carry a mutation of the BRCA1 or BRCA2 gene.
  • hereditary ovarian cancer develops It can be expected to do.
  • the mRNA of one or more genes selected from the group consisting of ALDOA, CDH2, LTBP1, MRC1, PPBP, SPARC and THBS1 or the protein level encoded by the gene is increased compared to a healthy normal control group. If present, it can be predicted that hereditary ovarian cancer will develop.
  • the mRNA expression level is in situ hybridization, polymerase chain reaction (PCR), reverse transcriptase chain reaction (RT-PCR), real-time polymerase chain reaction ( Real-time PCR), RNase protection assay (RNase protection assay; RPA), microarray (microarray) and Northern blotting (northern blotting) can be measured by one or more methods selected from the group consisting of.
  • the expression level of the protein is Western blotting, radioimmunoassay (RIA), radioimmunodiffusion, enzyme immunoassay (ELISA), immunoprecipitation (One or more methods selected from the group consisting of immunoprecipitation, flow cytometry, immunofluorescence, ouchterlony, complement fixation assay, and protein chip. It can be measured through.
  • RIA radioimmunoassay
  • ELISA enzyme immunoassay
  • immunoprecipitation One or more methods selected from the group consisting of immunoprecipitation, flow cytometry, immunofluorescence, ouchterlony, complement fixation assay, and protein chip. It can be measured through.
  • 11 types of biomarkers capable of predicting the development of hereditary ovarian cancer in a subject who has a BRCA gene mutation can be predicted early, and the BRCA mutation is measured by measuring the mRNA or protein level of the biomarker gene according to the present invention. It can be predicted early whether or not the onset of hereditary ovarian cancer is accompanied, it can be usefully used to develop a therapeutic agent for hereditary ovarian cancer by targeting the biomarker.
  • 1A is an experimental scenario for discovering proteins whose expression is specifically changed in a BRCA gene mutant positive (BRCA +) ovarian cancer patient, in order to derive a candidate marker protein for predicting the development of hereditary ovarian cancer accompanied by a mutation in the BRCA gene. It is shown as a picture.
  • Figure 1b is a result of analyzing the differentially expressed protein with a volcano plot using plasma samples obtained from normal and ovarian cancer patients who are positive for BRCA mutations.
  • FIG. 1C shows the analysis of the functions of the proteins in the analysis of FIG. 1B through the network analysis of 19 proteins with reduced expression and 61 proteins with increased expression in the ovarian cancer patient.
  • Figure 1d is a BRCA mutation positive normal group (BRCA + subjects: HC), normal group (HC), BRCA mutation positive ovarian cancer patients (BRCA + subjects: OC), ovarian cancer patients (OC) significantly increased the number of proteins in each group The results are shown by comparing.
  • Figure 1e is a comparative analysis of the proteins identified in the four groups of Figure 1d, the results are shown in a van diagram, from which a specific expression of reduced or increased BRCA mutant-positive ovarian cancer patients only 24 kinds of proteins were derived Is the result.
  • Figure 2a is a group of nine proteins specifically reduced expression in patients with BRCA mutation-positive ovarian cancer, SERPINA5 and IGFBP5 for each of 4 groups (BRCA mutant negative normal group (HN), BRCA mutant positive normal group (HP) , BRCA mutation negative ovarian cancer patient group (ON), and BRCA mutation positive ovarian cancer patient group (OP) is the result of analyzing the statistical significance of the difference in protein expression level.
  • BRCA mutant negative normal group HN
  • HP BRCA mutant positive normal group
  • ON BRCA mutation negative ovarian cancer patient group
  • OP BRCA mutation positive ovarian cancer patient group
  • FIG. 2b analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups in F2 and TFRC among the nine proteins whose expression was specifically decreased in BRCA mutant-positive ovarian cancer patients. Is the result.
  • Figure 2c analyzed the presence or absence of statistical significance for the difference in protein expression level between the same four groups in SELL and APOC3 among the nine proteins whose expression was specifically reduced in BRCA mutant-positive ovarian cancer patients. Is the result.
  • FIG. 2D analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in FIG. 2A for each of SERPINF2 and SERPINC1 among nine proteins whose expression is specifically decreased in patients with BRCA mutant positive ovarian cancer. Is the result.
  • Figure 2e is a result of analyzing the presence or absence of statistical significance for the difference in protein expression level between the same four groups in FIG. 2a for RBP4 among nine proteins whose expression is specifically decreased in patients with BRCA mutant positive ovarian cancer.
  • Figure 3a is a group of 15 proteins specifically increased expression in patients with BRCA mutation-positive ovarian cancer, 4 groups for each of VNN1 and PPBP (BRCA mutation-negative normal group (HN), BRCA mutation-positive normal group (HP) , BRCA mutation negative ovarian cancer patient group (ON), and BRCA mutation positive ovarian cancer patient group (OP) is the result of analyzing the statistical significance of the difference in protein expression level.
  • HN BRCA mutation-negative normal group
  • HP BRCA mutation-positive normal group
  • ON BRCA mutation negative ovarian cancer patient group
  • OP BRCA mutation positive ovarian cancer patient group
  • Figure 3b analyzed the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in Figure 3a for ALDOA and VWF among 15 types of proteins specifically increased expression in patients with BRCA mutant-positive ovarian cancer. Is the result.
  • FIG. 3c analyzes the presence or absence of statistical significance for differences in protein expression levels between the same four groups as in FIG. 3a for SERPINE1 and GPI, respectively, among 15 types of proteins specifically increased in BRCA mutant-positive ovarian cancer patients. Is the result.
  • FIG. 3D analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in FIG. 3A for each of the 15 proteins specifically expressed in BRCA mutant-positive ovarian cancer patients with increased expression of PSAP and HEXB. Is the result.
  • FIG. 3e analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in FIG. 3a for each of THBS1 and SPARC among 15 proteins specifically increased in BRCA mutant positive ovarian cancer patients. Is the result.
  • Figure 3f analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in Figure 3a for each of CDH2 and MRC1 among 15 proteins specifically increased in BRCA mutant-positive ovarian cancer patients. Is the result.
  • Figure 3g analyzed the presence or absence of statistical significance for differences in protein expression levels between the same four groups as in Figure 3a for HSPA4 and RELN, respectively, among 15 proteins specifically expressed in BRCA mutant positive ovarian cancer patients. Is the result.
  • Figure 3h is a result of analyzing the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in Figure 3a for LTBP1 among 15 proteins specifically increased expression in BRCA mutant positive ovarian cancer patients.
  • FIG. 4A shows an analysis of ROC curves and AUC values to investigate the accuracy of SERPINA5 (Uniprot ID: P5154) and IGFBP5 (P24593) among 9 proteins with specific expression reduction in BRCA mutant positive ovarian cancer patients. It is the result that is drawn and shown.
  • Figure 4b is a BRCA mutant-positive ovarian cancer patients specifically expressed in the reduced expression of the F2 (P00734) and TFRC (P02786) of the nine proteins, ROC curve analysis was performed to investigate the accuracy and derive the AUC value Is the result.
  • Figure 4c is a BRCA mutant-positive ovarian cancer patients in the nine specifically reduced expression of the protein SELL (P14151.2) and APOC3 (P02656) ROC curve analysis to investigate the accuracy and derive the AUC value The results are shown.
  • Figure 4d is a BRCA mutant-positive ovarian cancer patients specifically expressed in the nine proteins with reduced expression of SELL (P08697) and APOC3 (P01008), respectively, to investigate the accuracy of the ROC curve analysis and deriving the AUC value Is the result.
  • Figure 4e is a result of performing a ROC curve analysis and deriving the AUC value to investigate the accuracy of RBP4 (P02753) among nine proteins whose expression is specifically decreased in patients with BRCA mutant positive ovarian cancer.
  • Figure 5a is a BRCA mutant-positive ovarian cancer patients in the expression of 15 specifically increased protein VNN1 (Uniprot ID: O95497) and PPBP (P02775) to investigate the accuracy of each of the ROC curve analysis to perform AUC value This is the result.
  • Figure 5b is a BRCA mutant-positive ovarian cancer patients to express the AUC value by performing an ROC curve analysis to investigate the accuracy of each of the ALDOA (P04075.2) and VWF (P04275) among 15 proteins specifically increased expression One result.
  • Figure 5c is a BRCA mutant-positive ovarian cancer patients to express the AUC value by performing an ROC curve analysis to investigate the accuracy of SERPINE1 (P05121) and GPI (P06744.2) among 15 types of proteins specifically increased expression One result.
  • Figure 5d is a BRCA mutant-positive ovarian cancer patients to express the AUC value by performing an ROC curve analysis to investigate the accuracy of each of the PSAP (P07602.3) and HEXB (P07686) of 15 proteins specifically increased expression One result.
  • Figure 5e is a result of deriving the AUC value by performing an ROC curve analysis to investigate the accuracy of each of the THBS1 (P07996) and SPARC (P09486) among 15 types of proteins specifically increased expression in BRCA mutant positive ovarian cancer patients to be.
  • Figure 5f is a result of deriving the AUC value by performing an analysis of the ROC curve to investigate the accuracy of each of the CDH2 (P19022) and MRC1 (P22897) among 15 proteins specifically increased expression in BRCA mutant positive ovarian cancer patients to be.
  • Figure 5g is a result of deriving the AUC value by performing an ROC curve analysis to investigate the accuracy of each of HSPA4 (P34932) and RELN (P78509) among 15 proteins specifically increased expression in BRCA mutant positive ovarian cancer patients to be.
  • Figure 5h is a result of deriving the AUC value by performing an analysis of the ROC curve to investigate the accuracy of LTBP1 (Q14766.4) among 15 kinds of proteins specifically increased expression in BRCA mutant positive ovarian cancer patients.
  • Figure 6 shows a schematic diagram for 2 fold cross validation to verify the validity of the 24 marker candidates.
  • the present inventors predicted hereditary ovarian cancer with a BRCA gene mutation in advance and furthermore, tried to present a target for the development of a therapeutic agent for the disease, and as a result, expressed in patients with ovarian cancer with a BRCA mutation compared to a normal person with a BRCA mutation
  • the present invention was completed by excavating the 11 kinds of markers that have changed significantly and verifying their effectiveness.
  • the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264 , NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein) acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624),
  • the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264 , NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein) acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624),
  • the present invention provides a kit for predicting the development of hereditary ovarian cancer comprising the composition.
  • the present inventors discovered 11 types of biomarkers capable of predicting the onset of hereditary ovarian cancer through specific examples and verified their effectiveness.
  • plasma samples of the BRCA mutant-positive normal group and the BRCA-mutant-positive ovarian cancer patient group were significantly reduced in 19 ovarian cancer patients and 61 increased in expression compared to the normal group.
  • Proteins were identified, and among the proteins, the expressions were significantly changed in the BRCA mutant-positive ovarian cancer patient group, except for those that overlap with the proteins with increased expression in the entire normal group and the ovarian cancer patient group, respectively, which are not related to the BRCA mutation.
  • Species marker candidate proteins were derived (see Example 2).
  • BRCA-negative normal group HN
  • BRCA-positive normal group HP
  • BRCA-negative ovarian cancer patient group ON
  • BRCA-positive group BRCA-negative ovarian cancer patient group
  • the term “hereditary ovarian cancer” refers to an ovarian cancer that develops due to a mutation gene or a gene defect inherited from at least one of the parents.
  • the genetic ovarian cancer is a mutation of the BRCA1 or BRCA2 gene It may be accompanied by, it does not necessarily mean that ovarian cancer is caused by mutation of the gene.
  • the term “prediction” is used to determine whether a specific individual is likely to develop hereditary ovarian cancer, is relatively likely to develop hereditary ovarian cancer, or whether hereditary ovarian cancer has already developed. Speak.
  • the method of the present invention can be used to predict an individual with a high risk of developing hereditary ovarian cancer in an individual who has a BRCA gene mutation and to prevent or delay the onset of the disease through special and appropriate management.
  • the agent for measuring the mRNA level of the gene may be sense and antisense primers or probes that complementarily bind to the mRNA of the gene.
  • primer used in the present invention is a short gene sequence serving as a starting point for DNA synthesis, and means an oligonucleotide synthesized for the purpose of diagnosis, DNA sequencing, and the like.
  • the primers can be generally synthesized to a length of 15 to 30 base pairs, but may vary depending on the purpose of use, and can be modified by methylation, capping, or the like by a known method.
  • probe refers to a nucleic acid capable of specifically binding to mRNAs of several bases to hundreds of bases in length produced through enzymatic chemical separation or synthesis. The presence or absence of mRNA can be confirmed by labeling radioactive isotopes, enzymes, or phosphors, and can be designed and modified in a known manner.
  • the agent for measuring the protein level may be an antibody that specifically binds to a protein encoded by a gene, but is not limited thereto.
  • the term “antibody” includes immunoglobulin molecules that are immunologically reactive with a specific antigen, and includes both monoclonal and polyclonal antibodies.
  • the antibodies include forms produced by genetic engineering such as chimeric antibodies (eg, humanized murine antibodies) and heterologous antibodies (eg, bispecific antibodies).
  • the anti-cancer agent reactivity prediction kit of the present invention may be composed of one or more other component compositions, solutions, or devices suitable for analytical methods.
  • the present invention is an ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming) growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_
  • method for providing information for predicting the development of hereditary ovarian cancer used in the present invention provides objective basic information necessary to predict whether or not the development of hereditary ovarian cancer is a preliminary step for predicting the onset of disease, and the clinical judgment of a doctor Or findings are excluded.
  • the subject may have a BRCA1 or BRCA2 gene mutation.
  • the mRNA level of one or more genes selected from the group consisting of RBP4, SERPINA5, SERPINC1 and SERPINF2 or the protein level encoded by the gene is reduced compared to a healthy normal control group, it is predicted that hereditary ovarian cancer will develop. Can be.
  • the mRNA level of one or more genes selected from the group consisting of ALDOA, CDH2, LTBP1, MRC1, PPBP, SPARC and THBS1 or the protein level encoded by the gene is increased compared to a healthy normal control group, hereditary ovaries It can be predicted that cancer will develop.
  • the biological sample derived from the patient may include whole blood, blood, saliva, tissue, cells, sputum, cerebrospinal fluid, and urine, but is not limited thereto.
  • the expression level of the mRNA is a polymerase chain reaction (PCR), reverse transcriptase chain reaction (RT-PCR), real-time polymerase chain reaction (Real-time PCR), RNase protection assay (RNase) by conventional methods known in the art.
  • protection assay (RPA) protection assay
  • microarray microarray
  • Northern blotting orthern blotting
  • the protein expression level is Western blotting, radioimmunoassay (RIA), radioimmunodiffusion, enzymatic immunoassay (ELISA), immunoprecipitation, by conventional methods known in the art. , Through flow cytometry, immunofluorescence, ouchterlony, complement fixation assay, and protein chip. It can be measured, but is not limited thereto.
  • Plasma samples in this example were processed after obtaining the appropriate consent and approval from the Clinical Trial Review Committee of the Seoul St. Mary's Hospital, Catholic University College of Medicine. Plasma samples were obtained from 20 ovarian cancer patients before surgery and 20 healthy normal groups. Plasma samples derived from patients with ovarian cancer were provided by Seoul St. Mary's Hospital and Korean Gynecologic Cancer Bank (KGCB), and healthy normal control-derived plasma samples were obtained from subjects undergoing medical examination at Seoul St. Mary's Hospital in the case of BRCA mutant negative subjects. In the case of positive subjects, they were obtained from those who agreed to visit Seoul St. Mary's Hospital and consent to blood collection. All samples were frozen with liquid nitrogen and stored at -80 ° C until use.
  • KGCB Korean Gynecologic Cancer Bank
  • Plasma samples obtained from 20 normal groups (10 BRCA1 / 2 gene mutations, 10 non-variables) and 20 ovarian cancer patients (10 BRCA1 / 2 gene mutations, 10 non-variables) were pretreated according to the following procedure.
  • 14 proteins albumin, immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM), alpha1-antitrypsin ( ⁇ 1) present in high concentration using 40 ⁇ l of the plasma sample) -antitrypsin
  • alpha1-acid glycoprotein apolipoprotein A1, apolipoprotein A2, complement C3, transferrin
  • alpha2-macroglobulin ⁇ 2-marcoglobulin
  • haptoglobin haptoglobin
  • fibrinogen fibrinogen
  • transthyretin transthyretin
  • the mixture was filled with a digestion buffer, and plasma protein and Lys-C / trypsin mixed enzyme (promega) were added at a mass ratio of 25: 1, and reacted at 37 ° C for 16 hours.
  • plasma protein and Lys-C / trypsin mixed enzyme promega
  • Nano LC-Q-Exactive plus mass spectrometry performed in Example 1-2 was performed according to the following method.
  • the six proteins include thyroxine-binding globulin (TBG), complement factor I (CFI), complement component C6 (C6), and plastin-2 (PLS2), Complement C2 (C2), Complement factor H (CFH).
  • TCG thyroxine-binding globulin
  • CFI complement factor I
  • C6 complement component C6
  • PLS2 plastin-2
  • C2 Complement C2
  • CCFH Complement factor H
  • the LFQ value for the representative peptide of the 6 proteins was divided by the median value of the LFQ value of each peptide from the raw value of plasma from 40 subjects, and the median value of 6 peptides per sample was defined as the final normalization factor.
  • the LFQ value of other proteins was divided by the final normalization factor.
  • P values were obtained through Mann-whitney test using normalized values during statistical analysis. Quantitative differences between the two groups were obtained with a P value less than 0.05 / 374 through Bonferonni correction by post-test. More than twice, I discovered protein.
  • Example 2 Identification of candidate proteins whose expression is specifically changed in patients with hereditary ovarian cancer
  • the present inventors discover proteins differentially expressed in plasma samples according to two scenarios as shown in FIG. 1A and comprehensively analyze them.
  • the purpose of this study was to derive markers whose expression changes specifically in patients with hereditary ovarian cancer accompanied by mutations in the BRCA gene.
  • the plasma samples obtained from normal and ovarian cancer patients who are BRCA mutant positive are analyzed through the methods described in Examples 1-2 and 1-3, and statistical analysis criteria of Examples 1-4 are used.
  • the differentially expressed protein was analyzed by volcano plot. As a result, as shown in FIG. 1B, 19 types of proteins with significantly decreased expression were found in patients with BRCA mutant-positive ovarian cancer, and 61 types of proteins with increased expression were found.
  • the protein was classified based on the function of the protein through network analysis of the protein with reduced expression and the protein with increased expression, respectively.
  • Fig. 1c it was confirmed that 19 types of proteins with decreased expression in BRCA-positive ovarian cancer patients are involved in regulating the catabolic process of triglycerides, acute-phase reactions, and blood clotting fibrin thrombus, 61 proteins with increased expression in benign ovarian cancer patients are typically hydrogen peroxide metabolism, NADH metabolism, interleukin-8 production regulation and interleukin-12 mediated signaling pathway, regulation of cell death by oxidative stress, platelet aggregation And positive regulation by the host of the viral process.
  • the subjects were all normal and ovarian cancer patients regardless of whether the BRCA gene was mutated or not, and differentially expressed in plasma samples derived from all normal and ovarian cancer patients in a similar manner to Example 2-1. Protein was derived. As a result, it was confirmed that 13 kinds of proteins were significantly increased in the normal group and 48 kinds of proteins were significantly increased in the ovarian cancer patient group.
  • 1D shows the number of proteins with increased expression in each group of the BRCA mutant positive normal group (BRCA + subjects: HC), the normal group (HC), the BRCA mutant positive ovarian cancer patient group (BRCA + subjects: OC), and the ovarian cancer patient group (OC).
  • FIG. 1E a common protein among proteins with increased expression in each group and a protein with increased expression in each group are distinguished by a van diagram. As a result, 10 proteins are common among the proteins with increased expression in the BRCA mutant-positive normal group and the whole normal group, and 46 of the proteins with increased expression in the BRCA mutant-positive ovarian cancer patients and the whole ovarian cancer patients are common. I could see that.
  • Example 3 Analysis of the presence or absence of statistical significance of proteins with specific expression changes in patients with hereditary ovarian cancer
  • the present inventors are four groups (BRCA negative normal group (HN), BRCA positive normal group (HP)) for each of the 24 kinds of proteins whose expression is specifically changed in the BRCA mutant positive ovarian cancer patients derived through Example 2 above. , The analysis of the statistical significance of protein expression difference between BRCA-negative ovarian cancer patient group (ON) and BRCA-positive ovarian cancer patient group (OP) was analyzed.
  • results for 9 proteins with decreased expression in patients with ovarian cancer with BRCA mutations are shown in FIGS. 2A to 2E, and results for 15 proteins with increased expression are shown in FIGS. 3A to 3H.
  • Table 3 summarizes the average expression level and standard deviation of 24 proteins in the normal group with a positive BRCA mutation and the group with ovarian cancer with a positive BRCA mutation.
  • the present inventors tried to analyze the sensitivity and specificity to determine the accuracy of 24 markers whose expression was significantly changed in the BRCA mutant-positive ovarian cancer patient group, for which ROC curve analysis was performed. Did. Sensitivity and specificity were evaluated by calculating the area under the ROC curve (AUC).
  • FIGS. 4A to 4E and Table 4 Results for nine proteins with decreased expression in patients with ovarian cancer with BRCA mutations are shown in FIGS. 4A to 4E and Table 4, and results for 15 proteins with increased expression are shown in FIGS. 5A to 5H and It is shown in Table 5.
  • the present inventors tried to verify the effectiveness as a specific biomarker capable of predicting the development of hereditary ovarian cancer against 24 markers whose expression was significantly changed in the group of 24 BRCA mutant positive ovarian cancer patients. To this end, 2 fold cross validations were repeated 50 times for each of the 24 types of proteins, and FIG. 6 shows a schematic diagram of the verification process.
  • biomarkers having specific expression changes in ovarian cancer patients with mutations in the BRCA gene were identified and their effectiveness was verified.
  • the above 11 types were obtained from subjects with mutations in the BRCA gene clinically.
  • the biomarker is a hereditary ovarian cancer accompanied by a BRCA gene mutation. It may be usefully used as a target molecule in developing a targeted therapeutic agent for.

Abstract

The present invention relates to a biomarker for predicting the onset of hereditary ovarian cancer and a use thereof and, more particularly, to a marker composition for predicting the onset of hereditary ovarian cancer, a composition and kit for predicting the onset of hereditary ovarian cancer, and a method for providing information for predicting the onset of hereditary ovarian cancer. By measuring the mRNA or protein level of a biomarker gene according to the present invention, the onset of hereditary ovarian cancer accompanied by BRCA mutations can be predicted early, and the biomarker can be effectively used as a target for developing a therapeutic agent for hereditary ovarian cancer.

Description

유전성 난소암 발병 예측용 바이오마커 및 이의 용도Biomarker for predicting the development of hereditary ovarian cancer and use thereof
본 발명은 유전성 난소암 발병 예측용 바이오마커 및 이의 용도에 관한 것으로, 보다 구체적으로는 유전성 난소암의 발병 예측용 마커 조성물, 유전성 난소암의 발병 예측용 조성물 및 발병 예측용 키트, 및 유전성 난소암의 발병 예측방법에 관한 것이다. The present invention relates to a biomarker for predicting the development of hereditary ovarian cancer, and more specifically, a marker composition for predicting the development of hereditary ovarian cancer, a composition for predicting the development of hereditary ovarian cancer, and a kit for predicting the development, and hereditary ovarian cancer It relates to a method of predicting the outbreak of.
난소암은 국내여성 10대 발생 및 사망 원인인 암으로, 난소암 환자의 60% 이상이 암이 전이된 후 진단되며 이때의 5년 생존률은 30% 미만이다. 난소암은 그 증상이 뚜렷하지 않고, 복부팽만, 소화불량, 설사, 변비 등을 난소암의 증상으로 인식하기에는 애매하다. 또한 가장 중요한 것은 난소암을 조기에 발견할 수 있는 효과적인 검사법이 없다는 것이다. 이에, 난소암의 예방 및 조기 발견에 대한 효과적인 수단은 아직 충족되지 않은 중요한 의학적 요구이다. Ovarian cancer is a cancer that is the cause and death of teenagers in domestic women. More than 60% of ovarian cancer patients are diagnosed after the cancer has spread, and the 5-year survival rate is less than 30%. The symptoms of ovarian cancer are not clear, and it is ambiguous to recognize abdominal distension, indigestion, diarrhea, and constipation as symptoms of ovarian cancer. Also, most importantly, there is no effective method to detect ovarian cancer early. Thus, effective means for the prevention and early detection of ovarian cancer are important medical needs that have not yet been met.
난소암 중 가장 흔한 유형인 고도장액성난소암(high grade serous ovarian cancer)의 경우 약 25%가 BRCA1 유전자와 연관되어 있다고 알려져 있다. BRCA1 유전자는 염색체 17번에 위치하며 최초로 유방암 및 난소암의 발병 위험성을 증가시키는 유전자로 검증되었으며, BRCA2 역시 BRCA1에 이어 상기 암종들의 발병 위험성을 증가시킨다고 보고되어 있다. BRCA1 돌연변이를 가진 사람의 난소암 발병 확률은 70세 이전에 44%에 이르며, 돌연변이가 일어난 BRCA 유전자는 모계뿐만 아니라 부계로부터 유전될 수도 있다. 대략 난소암의 10%가 BRCA1 및 BRCA2 유전자의 돌연변이와 관련이 있는 것으로 알려져 있으며, 이 두 유전자 중에 돌연변이가 있을 경우, 난소암 발병률이 정상인에 비해 10배 이상 증가되며, 난소암의 재발률도 증가된다. 또한, 한국 난소암 환자 중 BRCA1(23.8%) 과 BRCA2(25.7%) 에서 가족력과 상관없이 BRCA 돌연변이가 동반된다고 보고되어 있다(Choi et al. JGO. 2016). About 25% of the most common types of ovarian cancer, high grade serous ovarian cancer, are associated with the BRCA1 gene. The BRCA1 gene is located on chromosome 17 and was first validated as a gene that increases the risk of developing breast and ovarian cancer, and BRCA2 is also reported to increase the risk of developing the carcinoma following BRCA1. The probability of developing ovarian cancer in people with the BRCA1 mutation reaches 44% before the age of 70, and the mutated BRCA gene may be inherited from the mother as well as from the father. It is known that approximately 10% of ovarian cancers are related to mutations in the BRCA1 and BRCA2 genes, and if there are mutations in these two genes, the incidence of ovarian cancer is increased by 10 times or more compared to normal people, and the recurrence rate of ovarian cancer is also increased. . In addition, among Korean ovarian cancer patients, BRCA1 (23.8%) and BRCA2 (25.7%) are reported to be accompanied by BRCA mutations regardless of family history (Choi et al. JGO. 2016).
그러나 BRCA 돌연변이에 의한 이러한 영향에도 불구하고, 이에 의해 발병하는 난소암을 예방하기 위한 방법은 현재까지 예방적 양측 난소 절제술(risk-reducing salpingo-oophoerctomy; RRSO)만이 있으며, 이외의 방법은 아직까지 확립되어 있지 않다. 가임기 여성에게서 “예방적 양측난소 절제술”은 조기폐경을 야기하여 삶의 질 저하를 유발하며, 또한 국내 고령산모(출산 > 35세) 비율이 1999년 11%에서 2009년 28.6%으로 10년 사이 17.6%가 증가하여 BRCA1 보인자 중 적절한 시기에 RRSO가 시행 가능한 대상이 줄어들고 있다. 이에, 예방적 난소 절제술 (RRSO) 이외의 난소암의 발병을 미리 예측하여 예방할 수 있는 방법의 개발이 절실한 상황이다. However, despite this effect by the BRCA mutation, there is currently only a method for preventing ovarian cancer caused by preventive bilateral ovarian resection (risk-reducing salpingo-oophoerctomy; RRSO), and other methods have not yet been established. It is not. In women of childbearing age, “prophylactic bilateral ovarian resection” causes premature menopause, leading to a decline in quality of life, and the proportion of elderly women (birth> 35 years old) in Korea ranged from 11% in 1999 to 28.6% in 2009, 17.6% in 10 years. Is increasing, and among the carriers of BRCA1, there are fewer targets for RRSO to be implemented at an appropriate time. Accordingly, there is an urgent need to develop a method capable of preventing and preventing the development of ovarian cancer other than preventive ovarian resection (RRSO).
최근 유방암과 BRCA 유전자 관련 연구에서 BRCA 양성 대상자에게 RANKL/RANK 저해제(e.g. denosumab)가 유방암의 예방적 약물로서 역할을 할 수 있을 것으로 제시된바 있다. 이를 바탕으로 하여, 유전성 난소암에서도 이를 미리 예측할 수 있는 바이오마커를 발굴하고 더 나아가 예방적 난소 절제술 이외의 치료법으로써 선별적 바이오마커의 표적 저해제를 이용한 유전성 난소암 치료제 개발이 필요하다고 판단된다.In a recent study related to breast cancer and BRCA genes, it was suggested that RANKL / RANK inhibitor (e.g. denosumab) may serve as a preventive drug for breast cancer in BRCA-positive subjects. Based on this, it is considered that it is necessary to develop a biomarker capable of predicting this even in hereditary ovarian cancer, and further develop a therapeutic agent for hereditary ovarian cancer using a target inhibitor of a selective biomarker as a treatment method other than preventive ovarian resection.
전술한 바와 같이 본 발명자들은 BRCA 유전자 돌연변이가 동반된 유전성 난소암의 발병여부를 미리 예측하고 더 나아가 상기 질환의 치료제 개발을 위한 표적을 제시하기 위해 연구 노력한 결과, BRCA 돌연변이를 갖는 정상인에 비해 BRCA 돌연변이를 갖는 난소암 환자에서 발현이 유의하게 변화한 11종의 마커를 발굴하고 이의 유효성을 검증함으로써 본 발명을 완성하였다. As described above, the present inventors predicted whether or not the onset of hereditary ovarian cancer accompanied by a BRCA gene mutation, and further tried to present a target for the development of a therapeutic agent for the disease, as a result, the BRCA mutation compared to a normal person with a BRCA mutation The present invention was completed by discovering 11 types of markers whose expression was significantly changed in patients with ovarian cancer, and verifying their effectiveness.
이에, 본 발명은 유전성 난소암의 발병 예측용 마커 조성물을 제공하는 것을 목적으로 한다. Accordingly, an object of the present invention is to provide a marker composition for predicting the development of hereditary ovarian cancer.
또한, 본 발명은 유전성 난소암의 발병 예측용 조성물 및 상기 조성물을 포함하는 유전성 난소암의 발병 예측용 키트를 제공하는 것을 다른 목적으로 한다. Another object of the present invention is to provide a composition for predicting the development of hereditary ovarian cancer and a kit for predicting the development of hereditary ovarian cancer comprising the composition.
또한, 본 발명은 유전성 난소암의 발병 예측을 위한 정보제공방법을 제공하는 것을 또 다른 목적으로 한다. In addition, another object of the present invention is to provide an information providing method for predicting the development of hereditary ovarian cancer.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 상기 유전자가 암호화하는 단백질을 포함하는, 유전성 난소암의 발병 예측용 마커 조성물을 제공한다. In order to achieve the object of the present invention as described above, the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth growth) factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323 , NM_001323518, NM_006744), SPARC (secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_001365052) SE F member 2; NM_000934, NM_001165920, NM_001165921), and THBS1 (Thrombospondin 1; NM_003246) at least one gene selected from the group or a protein encoding the gene, providing a marker composition for predicting the development of hereditary ovarian cancer do.
또한, 본 발명은 ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 유전성 난소암의 발병 예측용 조성물 및 상기 조성물을 포함하는 유전성 난소암의 발병 예측용 키트를 제공한다. In addition, the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264 , NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein) acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_001365052), SERPINF2 (serpin family F member 2; NM_000920, NM_000934, NM_000934, NM_000934, NM_000934, NM_000920 And a preparation for measuring the level of mRNA of one or more genes selected from the group consisting of THBS1 (Thrombospondin 1; NM_003246) or a protein encoded by the gene, and a composition for predicting the development of hereditary ovarian cancer, and the composition A kit for predicting the development of hereditary ovarian cancer is provided.
본 발명의 일구현예로, 상기 유전성 난소암은 BRCA1 또는 BRCA2 유전자의 돌연변이를 동반하는 것일 수 있다. In one embodiment of the present invention, the hereditary ovarian cancer may be accompanied by mutation of the BRCA1 or BRCA2 gene.
본 발명의 다른 구현예로, 상기 유전자의 mRNA 수준을 측정하는 제제는 유전자의 mRNA에 상보적으로 결합하는 센스 및 안티센스 프라이머, 또는 프로브일 수 있다. In another embodiment of the present invention, the agent measuring the mRNA level of the gene may be a sense and antisense primer, or a probe that complementarily binds to the mRNA of the gene.
본 발명의 또 다른 구현예로, 상기 단백질 수준을 측정하는 제제는 상기 유전자가 암호화하는 단백질에 특이적으로 결합하는 항체일 수 있다. In another embodiment of the present invention, the agent measuring the protein level may be an antibody that specifically binds to a protein encoded by the gene.
또한, 본 발명은 피검자 유래의 생물학적 시료에서 ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 포함하는, 유전성 난소암의 발병 예측을 위한 정보제공방법을 제공한다. In addition, the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding) in biological samples derived from a subject protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323517, NM_001323517, NM_001323517 ), SPARC (secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_001365052), SERPINF2 (serpin family F member 2; NM_000934, NM_001165920, NM_001165921), and THBS1 (Thrombospondin 1; NM_003246), one or more genes selected from the group consisting of measuring the level of protein or the protein encoding the gene, for predicting the development of hereditary ovarian cancer Provides information provision method.
본 발명의 일구현예로, 상기 피검자는 BRCA1 또는 BRCA2 유전자의 돌연변이를 보유할 수 있다. In one embodiment of the present invention, the subject may carry a mutation of the BRCA1 or BRCA2 gene.
본 발명의 다른 구현예로, 상기 RBP4, SERPINA5, SERPINC1 및 SERPINF2로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준이 건강한 정상대조군에 비하여 감소되어 있는 경우 유전성 난소암이 발병할 것으로 예측할 수 있다. In another embodiment of the present invention, when the mRNA level of one or more genes selected from the group consisting of RBP4, SERPINA5, SERPINC1 and SERPINF2 or the protein level encoded by the gene is reduced compared to a healthy normal control group, hereditary ovarian cancer develops It can be expected to do.
본 발명의 또 다른 구현예로, 상기 ALDOA, CDH2, LTBP1, MRC1, PPBP, SPARC 및 THBS1으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준이 건강한 정상대조군에 비하여 증가되어 있는 경우 유전성 난소암이 발병할 것으로 예측할 수 있다. In another embodiment of the present invention, the mRNA of one or more genes selected from the group consisting of ALDOA, CDH2, LTBP1, MRC1, PPBP, SPARC and THBS1 or the protein level encoded by the gene is increased compared to a healthy normal control group. If present, it can be predicted that hereditary ovarian cancer will develop.
본 발명의 또 다른 구현예로, 상기 mRNA의 발현수준은 in situ 교잡법(in situ hybridization), 중합효소연쇄반응(PCR), 역전사 중합효소연쇄반응(RT-PCR), 실시간 중합효소연쇄반응(Real-time PCR), RNase 보호 분석법(RNase protection assay; RPA), 마이크로어레이(microarray) 및 노던 블롯팅(northern blotting)으로 이루어진 군으로부터 선택되는 1종 이상의 방법을 통해 측정될 수 있다. In another embodiment of the present invention, the mRNA expression level is in situ hybridization, polymerase chain reaction (PCR), reverse transcriptase chain reaction (RT-PCR), real-time polymerase chain reaction ( Real-time PCR), RNase protection assay (RNase protection assay; RPA), microarray (microarray) and Northern blotting (northern blotting) can be measured by one or more methods selected from the group consisting of.
본 발명의 또 다른 구현예로, 상기 단백질의 발현수준은 웨스턴 블롯팅(western blotting), 방사선면역분석법(radioimmunoassay; RIA), 방사 면역 확산법(radioimmunodiffusion), 효소면역분석법(ELISA), 면역침강법(immunoprecipitation), 유세포분석법(flow cytometry), 면역형광염색법(immunofluorescence), 오우크테로니(ouchterlony), 보체 고정 분석법(complement fixation assay) 및 단백질 칩(protein chip)으로 이루어진 군으로부터 선택되는 1종 이상의 방법을 통해 측정될 수 있다. In another embodiment of the present invention, the expression level of the protein is Western blotting, radioimmunoassay (RIA), radioimmunodiffusion, enzyme immunoassay (ELISA), immunoprecipitation ( One or more methods selected from the group consisting of immunoprecipitation, flow cytometry, immunofluorescence, ouchterlony, complement fixation assay, and protein chip. It can be measured through.
본 발명에서는 BRCA 유전자 돌연변이를 가지고 있는 대상자에서 유전성 난소암의 발병여부를 조기에 예측할 수 있는 11종의 바이오마커를 발굴하였는바, 본 발명에 따른 바이오마커 유전자의 mRNA 또는 단백질 수준을 측정함으로써 BRCA 돌연변이를 동반하는 유전성 난소암의 발병여부를 조기에 예측할 수 있으며, 상기 바이오마커를 표적으로 하여 유전성 난소암 치료제를 개발하는데 유용하게 이용될 수 있다. In the present invention, 11 types of biomarkers capable of predicting the development of hereditary ovarian cancer in a subject who has a BRCA gene mutation can be predicted early, and the BRCA mutation is measured by measuring the mRNA or protein level of the biomarker gene according to the present invention. It can be predicted early whether or not the onset of hereditary ovarian cancer is accompanied, it can be usefully used to develop a therapeutic agent for hereditary ovarian cancer by targeting the biomarker.
도 1a는 BRCA 유전자의 돌연변이를 동반하는 유전성 난소암의 발병 예측용 후보 마커 단백질을 도출하기 위해, BRCA 유전자 돌연변이 양성(BRCA+) 난소암 환자에서 특이적으로 발현이 변화된 단백질들을 발굴하기 위한 실험 시나리오를 그림으로 도시한 것이다.1A is an experimental scenario for discovering proteins whose expression is specifically changed in a BRCA gene mutant positive (BRCA +) ovarian cancer patient, in order to derive a candidate marker protein for predicting the development of hereditary ovarian cancer accompanied by a mutation in the BRCA gene. It is shown as a picture.
도 1b는 BRCA 돌연변이 양성인 정상군 및 난소암 환자들로부터 얻은 혈장 시료를 이용하여 차등적으로 발현되는 단백질을 volcano plot으로 분석한 결과이다.Figure 1b is a result of analyzing the differentially expressed protein with a volcano plot using plasma samples obtained from normal and ovarian cancer patients who are positive for BRCA mutations.
도 1c는 도 1b의 분석결과 상기 난소암 환자에서 발현이 감소한 단백질 19종 및 발현이 증가한 단백질 61종에 대하여 네트워크 분석을 통해 해당 단백질들의 기능을 분석하여 나타낸 것이다.FIG. 1C shows the analysis of the functions of the proteins in the analysis of FIG. 1B through the network analysis of 19 proteins with reduced expression and 61 proteins with increased expression in the ovarian cancer patient.
도 1d는 BRCA 돌연변이 양성 정상군(BRCA+ subjects: HC), 정상군(HC), BRCA 돌연변이 양성 난소암 환자(BRCA+ subjects: OC), 난소암 환자(OC) 각 군에서 발현이 유의하게 증가한 단백질 수를 비교하여 나타낸 결과이다.Figure 1d is a BRCA mutation positive normal group (BRCA + subjects: HC), normal group (HC), BRCA mutation positive ovarian cancer patients (BRCA + subjects: OC), ovarian cancer patients (OC) significantly increased the number of proteins in each group The results are shown by comparing.
도 1e는 도 1d의 상기 4개 군에서 확인된 단백질들을 비교분석한 후 결과를 밴다이어그램으로 나타내고, 이로부터 BRCA 돌연변이 양성 난소암 환자군에서만 특이적으로 발현이 감소 또는 증가한 24종의 단백질을 도출한 결과이다. Figure 1e is a comparative analysis of the proteins identified in the four groups of Figure 1d, the results are shown in a van diagram, from which a specific expression of reduced or increased BRCA mutant-positive ovarian cancer patients only 24 kinds of proteins were derived Is the result.
도 2a는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 SERPINA5 및 IGFBP5 각각에 대하여 4개 군(BRCA 돌연변이 음성인 정상군(HN), BRCA 돌연변이 양성인 정상군(HP), BRCA 돌연변이 음성인 난소암 환자군(ON), 및 BRCA 돌연변이 양성인 난소암 환자군(OP)) 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.Figure 2a is a group of nine proteins specifically reduced expression in patients with BRCA mutation-positive ovarian cancer, SERPINA5 and IGFBP5 for each of 4 groups (BRCA mutant negative normal group (HN), BRCA mutant positive normal group (HP) , BRCA mutation negative ovarian cancer patient group (ON), and BRCA mutation positive ovarian cancer patient group (OP) is the result of analyzing the statistical significance of the difference in protein expression level.
도 2b는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 F2 및 TFRC 각각에 대하여 상기 도 2a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.FIG. 2b analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups in F2 and TFRC among the nine proteins whose expression was specifically decreased in BRCA mutant-positive ovarian cancer patients. Is the result.
도 2c는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 SELL 및 APOC3 각각에 대하여 상기 도 2a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.Figure 2c analyzed the presence or absence of statistical significance for the difference in protein expression level between the same four groups in SELL and APOC3 among the nine proteins whose expression was specifically reduced in BRCA mutant-positive ovarian cancer patients. Is the result.
도 2d는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 SERPINF2 및 SERPINC1 각각에 대하여 상기 도 2a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.FIG. 2D analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in FIG. 2A for each of SERPINF2 and SERPINC1 among nine proteins whose expression is specifically decreased in patients with BRCA mutant positive ovarian cancer. Is the result.
도 2e는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 RBP4에 대하여 상기 도 2a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.Figure 2e is a result of analyzing the presence or absence of statistical significance for the difference in protein expression level between the same four groups in FIG. 2a for RBP4 among nine proteins whose expression is specifically decreased in patients with BRCA mutant positive ovarian cancer.
도 3a는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 VNN1 및 PPBP 각각에 대하여 4개 군(BRCA 돌연변이 음성인 정상군(HN), BRCA 돌연변이 양성인 정상군(HP), BRCA 돌연변이 음성인 난소암 환자군(ON), 및 BRCA 돌연변이 양성인 난소암 환자군(OP)) 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.Figure 3a is a group of 15 proteins specifically increased expression in patients with BRCA mutation-positive ovarian cancer, 4 groups for each of VNN1 and PPBP (BRCA mutation-negative normal group (HN), BRCA mutation-positive normal group (HP) , BRCA mutation negative ovarian cancer patient group (ON), and BRCA mutation positive ovarian cancer patient group (OP) is the result of analyzing the statistical significance of the difference in protein expression level.
도 3b는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 ALDOA 및 VWF 각각에 대하여 상기 도 3a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.Figure 3b analyzed the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in Figure 3a for ALDOA and VWF among 15 types of proteins specifically increased expression in patients with BRCA mutant-positive ovarian cancer. Is the result.
도 3c는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 SERPINE1 및 GPI 각각에 대하여 상기 도 3a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.FIG. 3c analyzes the presence or absence of statistical significance for differences in protein expression levels between the same four groups as in FIG. 3a for SERPINE1 and GPI, respectively, among 15 types of proteins specifically increased in BRCA mutant-positive ovarian cancer patients. Is the result.
도 3d는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 PSAP 및 HEXB 각각에 대하여 상기 도 3a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.FIG. 3D analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in FIG. 3A for each of the 15 proteins specifically expressed in BRCA mutant-positive ovarian cancer patients with increased expression of PSAP and HEXB. Is the result.
도 3e는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 THBS1 및 SPARC 각각에 대하여 상기 도 3a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.FIG. 3e analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in FIG. 3a for each of THBS1 and SPARC among 15 proteins specifically increased in BRCA mutant positive ovarian cancer patients. Is the result.
도 3f는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 CDH2 및 MRC1 각각에 대하여 상기 도 3a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.Figure 3f analyzes the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in Figure 3a for each of CDH2 and MRC1 among 15 proteins specifically increased in BRCA mutant-positive ovarian cancer patients. Is the result.
도 3g는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 HSPA4 및 RELN 각각에 대하여 상기 도 3a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.Figure 3g analyzed the presence or absence of statistical significance for differences in protein expression levels between the same four groups as in Figure 3a for HSPA4 and RELN, respectively, among 15 proteins specifically expressed in BRCA mutant positive ovarian cancer patients. Is the result.
도 3h는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 LTBP1에 대하여 상기 도 3a에서와 동일한 4개 군 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석한 결과이다.Figure 3h is a result of analyzing the presence or absence of statistical significance for the difference in protein expression level between the same four groups as in Figure 3a for LTBP1 among 15 proteins specifically increased expression in BRCA mutant positive ovarian cancer patients.
도 4a는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 SERPINA5(Uniprot ID: P5154) 및 IGFBP5(P24593) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하고 AUC 값을 도출하여 나타낸 결과이다.FIG. 4A shows an analysis of ROC curves and AUC values to investigate the accuracy of SERPINA5 (Uniprot ID: P5154) and IGFBP5 (P24593) among 9 proteins with specific expression reduction in BRCA mutant positive ovarian cancer patients. It is the result that is drawn and shown.
도 4b는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 F2(P00734) 및 TFRC(P02786) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하고 AUC 값을 도출하여 나타낸 결과이다.Figure 4b is a BRCA mutant-positive ovarian cancer patients specifically expressed in the reduced expression of the F2 (P00734) and TFRC (P02786) of the nine proteins, ROC curve analysis was performed to investigate the accuracy and derive the AUC value Is the result.
도 4c는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 SELL(P14151.2) 및 APOC3(P02656) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하고 AUC 값을 도출하여 나타낸 결과이다.Figure 4c is a BRCA mutant-positive ovarian cancer patients in the nine specifically reduced expression of the protein SELL (P14151.2) and APOC3 (P02656) ROC curve analysis to investigate the accuracy and derive the AUC value The results are shown.
도 4d는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 SELL(P08697) 및 APOC3(P01008) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하고 AUC 값을 도출하여 나타낸 결과이다.Figure 4d is a BRCA mutant-positive ovarian cancer patients specifically expressed in the nine proteins with reduced expression of SELL (P08697) and APOC3 (P01008), respectively, to investigate the accuracy of the ROC curve analysis and deriving the AUC value Is the result.
도 4e는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 감소된 9종의 단백질 중에서 RBP4(P02753)의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하고 AUC 값을 도출하여 나타낸 결과이다.Figure 4e is a result of performing a ROC curve analysis and deriving the AUC value to investigate the accuracy of RBP4 (P02753) among nine proteins whose expression is specifically decreased in patients with BRCA mutant positive ovarian cancer.
도 5a는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 VNN1(Uniprot ID: O95497) 및 PPBP(P02775) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하여 AUC 값을 도출한 결과이다.Figure 5a is a BRCA mutant-positive ovarian cancer patients in the expression of 15 specifically increased protein VNN1 (Uniprot ID: O95497) and PPBP (P02775) to investigate the accuracy of each of the ROC curve analysis to perform AUC value This is the result.
도 5b는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 ALDOA(P04075.2) 및 VWF(P04275) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하여 AUC 값을 도출한 결과이다.Figure 5b is a BRCA mutant-positive ovarian cancer patients to express the AUC value by performing an ROC curve analysis to investigate the accuracy of each of the ALDOA (P04075.2) and VWF (P04275) among 15 proteins specifically increased expression One result.
도 5c는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 SERPINE1(P05121) 및 GPI(P06744.2) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하여 AUC 값을 도출한 결과이다.Figure 5c is a BRCA mutant-positive ovarian cancer patients to express the AUC value by performing an ROC curve analysis to investigate the accuracy of SERPINE1 (P05121) and GPI (P06744.2) among 15 types of proteins specifically increased expression One result.
도 5d는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 PSAP(P07602.3) 및 HEXB(P07686) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하여 AUC 값을 도출한 결과이다.Figure 5d is a BRCA mutant-positive ovarian cancer patients to express the AUC value by performing an ROC curve analysis to investigate the accuracy of each of the PSAP (P07602.3) and HEXB (P07686) of 15 proteins specifically increased expression One result.
도 5e는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 THBS1(P07996) 및 SPARC(P09486) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하여 AUC 값을 도출한 결과이다.Figure 5e is a result of deriving the AUC value by performing an ROC curve analysis to investigate the accuracy of each of the THBS1 (P07996) and SPARC (P09486) among 15 types of proteins specifically increased expression in BRCA mutant positive ovarian cancer patients to be.
도 5f는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 CDH2(P19022) 및 MRC1(P22897) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하여 AUC 값을 도출한 결과이다.Figure 5f is a result of deriving the AUC value by performing an analysis of the ROC curve to investigate the accuracy of each of the CDH2 (P19022) and MRC1 (P22897) among 15 proteins specifically increased expression in BRCA mutant positive ovarian cancer patients to be.
도 5g는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 HSPA4(P34932) 및 RELN(P78509) 각각의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하여 AUC 값을 도출한 결과이다.Figure 5g is a result of deriving the AUC value by performing an ROC curve analysis to investigate the accuracy of each of HSPA4 (P34932) and RELN (P78509) among 15 proteins specifically increased expression in BRCA mutant positive ovarian cancer patients to be.
도 5h는 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 증가된 15종의 단백질 중에서 LTBP1(Q14766.4)의 정확도를 조사하기 위해 ROC 곡선 분석을 실시하여 AUC 값을 도출한 결과이다.Figure 5h is a result of deriving the AUC value by performing an analysis of the ROC curve to investigate the accuracy of LTBP1 (Q14766.4) among 15 kinds of proteins specifically increased expression in BRCA mutant positive ovarian cancer patients.
도 6은 상기 24종 마커 후보군의 유효성을 검증하기 위한 2 fold cross validation에 대한 모식도를 나타낸 것이다.Figure 6 shows a schematic diagram for 2 fold cross validation to verify the validity of the 24 marker candidates.
본 발명자들은 BRCA 유전자 돌연변이를 동반하는 유전성 난소암을 미리 예측하고 더 나아가 상기 질환의 치료제 개발을 위한 표적을 제시하기 위해 연구 노력한 결과, BRCA 돌연변이를 갖는 정상인에 비해 BRCA 돌연변이를 갖는 난소암 환자에서 발현이 유의하게 변화한 11종의 마커를 발굴하고 이의 유효성을 검증함으로써 본 발명을 완성하였다. The present inventors predicted hereditary ovarian cancer with a BRCA gene mutation in advance and furthermore, tried to present a target for the development of a therapeutic agent for the disease, and as a result, expressed in patients with ovarian cancer with a BRCA mutation compared to a normal person with a BRCA mutation The present invention was completed by excavating the 11 kinds of markers that have changed significantly and verifying their effectiveness.
이에, 본 발명은 ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 상기 유전자가 암호화하는 단백질을 포함하는, 유전성 난소암의 발병 예측용 마커 조성물을 제공한다.Accordingly, the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264 , NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein) acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_001365052), SERPINF2 (serpin family F member 2; NM_000920, NM_000934, NM_000934, NM_000934, NM_000934, NM_000920 And, THBS1 (Thrombospondin 1; NM_003246) provides a marker composition for predicting the development of hereditary ovarian cancer, comprising at least one gene selected from the group consisting of or a protein encoded by the gene.
또한, 본 발명은 ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 유전성 난소암의 발병 예측용 조성물을 제공한다. In addition, the present invention is ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264 , NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein) acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_001365052), SERPINF2 (serpin family F member 2; NM_000920, NM_000934, NM_000934, NM_000934, NM_000934, NM_000920 And, THBS1 (Thrombospondin 1; NM_003246) comprising at least one gene selected from the group consisting of mRNA or an agent that measures the level of the protein encoding the gene, provides a composition for predicting the development of hereditary ovarian cancer.
또한, 본 발명은 상기 조성물을 포함하는 유전성 난소암의 발병 예측용 키트를 제공한다. In addition, the present invention provides a kit for predicting the development of hereditary ovarian cancer comprising the composition.
본 발명자들은 구체적인 실시예를 통해 유전성 난소암의 발병 여부를 예측할 수 있는 11종의 바이오마커를 발굴하고 그 유효성을 검증하였다. The present inventors discovered 11 types of biomarkers capable of predicting the onset of hereditary ovarian cancer through specific examples and verified their effectiveness.
본 발명의 일실시예에서는, BRCA 돌연변이 양성 정상군과 BRCA 돌연변이 양성 난소암 환자군의 혈장 시료를 이용해 상기 정상군에 비해 난소암 환자군에서 유의하게 발현이 감소된 19종 및 발현이 증가된 61종의 단백질을 확인하였고, 상기 단백질 중에서 각각 BRCA 변이에 관계없는 전체 정상군 및 난소암 환자군에서 발현이 증가된 단백질과 중복되는 것들을 제외하여, BRCA 돌연변이 양성 난소암 환자군에서 특이적으로 발현이 유의하게 변화된 24종의 마커 후보군 단백질들을 도출하였다(실시예 2 참조).In one embodiment of the present invention, plasma samples of the BRCA mutant-positive normal group and the BRCA-mutant-positive ovarian cancer patient group were significantly reduced in 19 ovarian cancer patients and 61 increased in expression compared to the normal group. Proteins were identified, and among the proteins, the expressions were significantly changed in the BRCA mutant-positive ovarian cancer patient group, except for those that overlap with the proteins with increased expression in the entire normal group and the ovarian cancer patient group, respectively, which are not related to the BRCA mutation. Species marker candidate proteins were derived (see Example 2).
본 발명의 다른 실시예에서는, 상기 24종의 각 단백질에 대하여 4개 군(BRCA 음성인 정상군(HN), BRCA 양성인 정상군(HP), BRCA 음성인 난소암 환자군(ON), 및 BRCA 양성인 난소암 환자군(OP)) 간의 단백질 발현 수준 차이에 대한 통계적 유의성 유무를 분석하였고, 24종 단백질 모두 BRCA 양성인 정상군(HP)과 난소암 환자군(OP) 사이에 통계적 유의성이 있는 것을 확인하였다(실시예 3 참조). In another embodiment of the present invention, for each of the 24 types of proteins, 4 groups (BRCA-negative normal group (HN), BRCA-positive normal group (HP), BRCA-negative ovarian cancer patient group (ON), and BRCA-positive group) Statistical significance was analyzed for differences in protein expression levels between ovarian cancer patient groups (OP), and it was confirmed that all 24 proteins had statistical significance between the BRCA positive normal group (HP) and the ovarian cancer patient group (OP). See example 3).
본 발명의 또 다른 실시예에서는, 상기 24종의 각 단백질에 대하여 정확도를 조사하기 위해 ROC 커브 분석을 실시하고 AUC 값을 도출하여 민감도 및 특이도를 확인하였다(실시예 4 참조).In another embodiment of the present invention, in order to investigate the accuracy of each of the 24 types of proteins, ROC curve analysis was performed and AUC values were derived to confirm sensitivity and specificity (see Example 4).
본 발명의 또 다른 실시예에서는, 2 fold cross validation을 50회 반복하여 상기 24종의 단백질에 대한 마커로써의 유효성을 검증하였으며, 다양한 결과를 종합하여 최종 11종의 바이오마커를 도출하였다(실시예 5 참조).In another embodiment of the present invention, 2 fold cross validation was repeated 50 times to verify the effectiveness as a marker for the 24 proteins, and various results were synthesized to derive the final 11 biomarkers (Examples) 5).
본 발명에서 사용되는 용어, “유전성 난소암”은 부모중 적어도 한쪽으로부터 물려받은 돌연변이 유전자 또는 유전자의 결함으로 인해 발병하는 난소암을 의미하며, 본 발명에 있어서 유전성 난소암은 BRCA1 또는 BRCA2 유전자의 돌연변이를 동반하는 것일 수 있으며, 반드시 상기 유전자의 돌연변이에 의해 난소암이 유발되는 것을 의미하지는 않는다. As used in the present invention, the term “hereditary ovarian cancer” refers to an ovarian cancer that develops due to a mutation gene or a gene defect inherited from at least one of the parents. In the present invention, the genetic ovarian cancer is a mutation of the BRCA1 or BRCA2 gene It may be accompanied by, it does not necessarily mean that ovarian cancer is caused by mutation of the gene.
본 발명에서 사용되는 용어, “예측”이란 특정 개인에 대하여 유전성 난소암이 발병할 가능성이 있는지, 유전성 난소암이 발병할 가능성이 상대적으로 높은지, 또는 유전성 난소암이 이미 발병하였는지 여부를 판별하는 것을 말한다. 본 발명의 방법은 BRCA 유전자 돌연변이를 가지고 있는 개인을 대상으로 유전성 난소암 발병 위험도가 높은 개인으로 예측하고 이들에 대하여 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다.As used in the present invention, the term “prediction” is used to determine whether a specific individual is likely to develop hereditary ovarian cancer, is relatively likely to develop hereditary ovarian cancer, or whether hereditary ovarian cancer has already developed. Speak. The method of the present invention can be used to predict an individual with a high risk of developing hereditary ovarian cancer in an individual who has a BRCA gene mutation and to prevent or delay the onset of the disease through special and appropriate management.
본 발명에 있어서, 상기 유전자의 mRNA 수준을 측정하는 제제는 유전자의 mRNA에 상보적으로 결합하는 센스 및 안티센스 프라이머, 또는 프로브일 수 있다.In the present invention, the agent for measuring the mRNA level of the gene may be sense and antisense primers or probes that complementarily bind to the mRNA of the gene.
본 발명에서 사용되는 용어, “프라이머(primer)”란 DNA 합성의 기시점이 되는 짧은 유전자 서열로써, 진단, DNA 시퀀싱 등에 이용할 목적으로 합성된 올리고뉴클레오티드를 의미한다. 상기 프라이머들은 통상적으로 15 내지 30 염기쌍의 길이로 합성하여 사용할 수 있으나, 사용 목적에 따라 달라질 수 있으며, 공지된 방법으로 메틸화, 캡화 등으로 변형시킬 수 있다.The term “primer” used in the present invention is a short gene sequence serving as a starting point for DNA synthesis, and means an oligonucleotide synthesized for the purpose of diagnosis, DNA sequencing, and the like. The primers can be generally synthesized to a length of 15 to 30 base pairs, but may vary depending on the purpose of use, and can be modified by methylation, capping, or the like by a known method.
본 발명에서 사용되는 용어, “프로브(probe)”란 효소 화학적인 분리정제 또는 합성과정을 거쳐 제작된 수 염기 내지 수백 염기길이의 mRNA와 특이적으로 결합할 수 있는 핵산을 의미한다. 방사성 동위원소, 효소, 또는 형광체 등을 표지하여 mRNA의 존재 유무를 확인할 수 있으며, 공지된 방법으로 디자인하고 변형시켜 사용할 수 있다.As used in the present invention, the term "probe (probe)" refers to a nucleic acid capable of specifically binding to mRNAs of several bases to hundreds of bases in length produced through enzymatic chemical separation or synthesis. The presence or absence of mRNA can be confirmed by labeling radioactive isotopes, enzymes, or phosphors, and can be designed and modified in a known manner.
상기 단백질 수준을 측정하는 제제는 유전자가 암호화하는 단백질에 특이적으로 결합하는 항체일 수 있으나, 이에 제한되는 것은 아니다. The agent for measuring the protein level may be an antibody that specifically binds to a protein encoded by a gene, but is not limited thereto.
본 발명에서 사용되는 용어, “항체”는 면역학적으로 특정 항원과 반응성을 갖는 면역글로불린 분자를 포함하며, 단클론(monoclonal) 항체 및 다클론(polyclonal) 항체를 모두 포함한다. 또한, 상기 항체는 키메라성 항체(예를 들면, 인간화 뮤린 항체) 및 이종결합항체(예를 들면, 양특이성 항체)와 같은 유전공학에 의해 생산된 형태를 포함한다. As used in the present invention, the term “antibody” includes immunoglobulin molecules that are immunologically reactive with a specific antigen, and includes both monoclonal and polyclonal antibodies. In addition, the antibodies include forms produced by genetic engineering such as chimeric antibodies (eg, humanized murine antibodies) and heterologous antibodies (eg, bispecific antibodies).
본 발명의 항암제 반응성 예측용 키트는 분석 방법에 적합한 한 종류 또는 그 이상의 다른 구성성분 조성물, 용액 또는 장치로 구성될 수 있다.The anti-cancer agent reactivity prediction kit of the present invention may be composed of one or more other component compositions, solutions, or devices suitable for analytical methods.
본 발명의 다른 양태로서, 본 발명은 피검자 유래의 생물학적 시료에서 ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 포함하는, 유전성 난소암의 발병 예측을 위한 정보제공방법을 제공한다. In another aspect of the present invention, the present invention is an ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming) growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_0042 family F member 2; NM_000934, NM_001165920, NM_001165921), and THBS1 (Thrombospondin 1; NM_003246) selected from the group consisting of mRNA of one or more genes or measuring the level of protein encoded by the gene, hereditary ovarian cancer Provides information providing method for predicting the outbreak.
본 발명에서 사용되는 용어 “유전성 난소암 발병 예측을 위한 정보제공방법”은 발병 예측을 위한 예비적 단계로써 유전성 난소암의 발병 여부를 예측하기 위하여 필요한 객관적인 기초정보를 제공하는 것이며 의사의 임상학적 판단 또는 소견은 제외된다.The term “method for providing information for predicting the development of hereditary ovarian cancer” used in the present invention provides objective basic information necessary to predict whether or not the development of hereditary ovarian cancer is a preliminary step for predicting the onset of disease, and the clinical judgment of a doctor Or findings are excluded.
본 발명의 일구현예로, 상기 피검자는 BRCA1 또는 BRCA2 유전자 돌연변이 보유할 수 있다. In one embodiment of the present invention, the subject may have a BRCA1 or BRCA2 gene mutation.
본 발명에 있어서, 상기 RBP4, SERPINA5, SERPINC1 및 SERPINF2로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준이 건강한 정상대조군에 비하여 감소되어 있는 경우 유전성 난소암이 발병할 것으로 예측할 수 있다. In the present invention, if the mRNA level of one or more genes selected from the group consisting of RBP4, SERPINA5, SERPINC1 and SERPINF2 or the protein level encoded by the gene is reduced compared to a healthy normal control group, it is predicted that hereditary ovarian cancer will develop. Can be.
본 발명에 있어서, 상기 ALDOA, CDH2, LTBP1, MRC1, PPBP, SPARC 및 THBS1으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준이 건강한 정상대조군에 비하여 증가되어 있는 경우 유전성 난소암이 발병할 것으로 예측할 수 있다. In the present invention, when the mRNA level of one or more genes selected from the group consisting of ALDOA, CDH2, LTBP1, MRC1, PPBP, SPARC and THBS1 or the protein level encoded by the gene is increased compared to a healthy normal control group, hereditary ovaries It can be predicted that cancer will develop.
상기 환자 유래의 생물학적 시료는 전혈, 혈액, 타액, 조직, 세포, 객담, 뇌척수액 및 뇨 등을 포함할 수 있으나, 이것으로 제한되는 것은 아니다. The biological sample derived from the patient may include whole blood, blood, saliva, tissue, cells, sputum, cerebrospinal fluid, and urine, but is not limited thereto.
상기 mRNA의 발현수준은 당업계에 알려진 통상적인 방법으로 중합효소연쇄반응(PCR), 역전사 중합효소연쇄반응(RT-PCR), 실시간 중합효소연쇄반응(Real-time PCR), RNase 보호 분석법(RNase protection assay; RPA), 마이크로어레이(microarray) 및 노던 블롯팅(northern blotting)으로 이루어진 군으로부터 선택되는 1종 이상의 방법을 통해 측정될 수 있으나, 이에 제한되지 않는다.The expression level of the mRNA is a polymerase chain reaction (PCR), reverse transcriptase chain reaction (RT-PCR), real-time polymerase chain reaction (Real-time PCR), RNase protection assay (RNase) by conventional methods known in the art. protection assay (RPA), microarray (microarray) and Northern blotting (northern blotting) may be measured through one or more methods selected from the group consisting of, but is not limited to.
상기 단백질 발현수준은 당업계에 알려진 통상적인 방법으로 웨스턴 블롯팅(western blotting), 방사선면역분석법(radioimmunoassay; RIA), 방사 면역 확산법(radioimmunodiffusion), 효소면역분석법(ELISA), 면역침강법(immunoprecipitation), 유세포분석법(flow cytometry), 면역형광염색법(immunofluorescence), 오우크테로니(ouchterlony), 보체 고정 분석법(complement fixation assay) 및 단백질 칩(protein chip)으로 이루어진 군으로부터 선택되는 1종 이상의 방법을 통해 측정될 수 있으나, 이에 제한되지 않는다.The protein expression level is Western blotting, radioimmunoassay (RIA), radioimmunodiffusion, enzymatic immunoassay (ELISA), immunoprecipitation, by conventional methods known in the art. , Through flow cytometry, immunofluorescence, ouchterlony, complement fixation assay, and protein chip. It can be measured, but is not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments are provided to help understanding of the present invention. However, the following examples are only provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
[실시예][Example]
실시예 1. 실험방법Example 1. Experimental method
1-1. 피험자 모집 및 시료 확보1-1. Recruiting subjects and securing samples
본 실시예의 모든 표본은 가톨릭대학교 의과대학 서울성모병원 임상시험 심사위원회의 적절한 동의와 승인을 받은 후 진행하였다. 혈장 시료는 수술 전인 20명의 난소암 환자 및 20명의 건강한 정상군으로부터 확보하였다. 난소암 환자유래 혈장 시료는 서울성모병원과 KGCB(Korean Gynecologic Cancer Bank)에서 제공받았고, 건강한 정상대조군유래 혈장 시료는 BRCA 돌연변이 음성 대상자의 경우 서울성모병원에서 건강검진을 받은 대상자들로부터 얻었고, BRCA 돌연변이 양성 대상자의 경우에는 서울성모병원을 방문하여 혈액 채취에 동의한 대상자들로부터 얻었다. 모든 시료는 액체 질소로 동결시키고 사용 전까지 -80℃에서 보관하였다.All samples in this example were processed after obtaining the appropriate consent and approval from the Clinical Trial Review Committee of the Seoul St. Mary's Hospital, Catholic University College of Medicine. Plasma samples were obtained from 20 ovarian cancer patients before surgery and 20 healthy normal groups. Plasma samples derived from patients with ovarian cancer were provided by Seoul St. Mary's Hospital and Korean Gynecologic Cancer Bank (KGCB), and healthy normal control-derived plasma samples were obtained from subjects undergoing medical examination at Seoul St. Mary's Hospital in the case of BRCA mutant negative subjects. In the case of positive subjects, they were obtained from those who agreed to visit Seoul St. Mary's Hospital and consent to blood collection. All samples were frozen with liquid nitrogen and stored at -80 ° C until use.
1-2. 혈장 시료의 전처리 1-2. Preparation of plasma samples
정상군 20명(BRCA1/2 유전자 돌연변이 10명, 비변이 10명) 및 난소암 환자 20명(BRCA1/2 유전자 돌연변이 10명, 비변이 10명)으로부터 얻은 혈장 시료를 하기와 같은 과정에 따라 전처리하였다. 보다 구체적으로, 상기 혈장 시료 40 ㎕를 이용하여 고농도로 존재하는 14개의 단백질(알부민, 면역글로불린A(IgA), 면역글로불린G(IgG), 면역글로불린M(IgM), 알파1-항트립신(α1-antitrypsin), 알파1-산 당단백질(α1-acid glycoprotein), 아포지단백 A1(apolipoprotein A1), 아포지단백 A2(apolipoprotein A2), 보체 C3(complement C3), 트랜스페린(transferrin), 알파2-마크로글로불린(α2-marcoglobulin), 합토글로빈(haptoglobin), 피브리노겐(fibrinogen), 트랜스타이레틴(transthyretin))이 제거된 HPLC MARS14(Multiple Affinity Removal System 14, agilent 사) 컬럼 내로 주입하였다. 다음으로, 저농도 혈장 단백질을 동결건조시킨 후 5% SDS, 50 mM의 1M 트라이에틸암모니움 바이카보네이트 (Triethylammonium bicarbonate)로 재흡수하고 20 mM이 되도록 디티오트레이톨 (Dithiothreitol)을 첨가하고 95℃에서 10분 동안 반응시켜 이황화결합을 환원시켰다. 이후, 알킬화를 위해 40 mM이 되도록 아이오도아세트아미드(iodoacetamide)를 가하여 암 조건하에 실온에서 30분 동안 반응시키고, 이를 S-trap filter(S-TRAPTM, Protifi사)를 이용하여 용해 완충액(lysis buffer) 및 용액을 필터(filter) 밖으로 내보내고 단백질만 필터 안에 가둔 후 원심분리하여 세척하였다. 이어서 분해 완충액(digestion buffer)으로 채우고 혈장 단백질과 Lys-C/트립신 혼합 효소(promega)가 질량 비율이 25:1이 되도록 넣은 후 37℃에서 16시간 동안 반응시켰다. 다음으로, 건조된 시료에 100 ㎕의 0.1% 포름산(Formic acid)을 녹인 후 5 ㎕를 취하여 LC-MS/MS 분석에 사용하였다. Plasma samples obtained from 20 normal groups (10 BRCA1 / 2 gene mutations, 10 non-variables) and 20 ovarian cancer patients (10 BRCA1 / 2 gene mutations, 10 non-variables) were pretreated according to the following procedure. Did. More specifically, 14 proteins (albumin, immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM), alpha1-antitrypsin (α1) present in high concentration using 40 μl of the plasma sample) -antitrypsin), alpha1-acid glycoprotein, apolipoprotein A1, apolipoprotein A2, complement C3, transferrin, alpha2-macroglobulin (α2-marcoglobulin), haptoglobin (haptoglobin), fibrinogen (fibrinogen), transthyretin (transthyretin) was removed into the HPLC MARS14 (Multiple Affinity Removal System 14, agilent, Inc.) column was injected. Next, after lyophilizing the low concentration plasma protein, reabsorbed with 5% SDS, 50 mM of 1M triethylammonium bicarbonate, dithiothreitol was added to make 20 mM, and at 95 ° C. It was reacted for 10 minutes to reduce disulfide bonds. Thereafter, iodoacetamide was added to be 40 mM for alkylation, and the mixture was reacted for 30 minutes at room temperature under dark conditions, and this was dissolved in a lysis buffer using an S-trap filter (S-TRAPTM, Protifi). ) And the solution was passed out of the filter, the protein was confined in the filter, and then centrifuged to wash. Subsequently, the mixture was filled with a digestion buffer, and plasma protein and Lys-C / trypsin mixed enzyme (promega) were added at a mass ratio of 25: 1, and reacted at 37 ° C for 16 hours. Next, after dissolving 100 μl of 0.1% formic acid in the dried sample, 5 μl was taken and used for LC-MS / MS analysis.
1-3. LC-MS/MS 분석1-3. LC-MS / MS analysis
상기 실시예 1-2에서 수행한 Nano LC-Q-Exactive plus 질량 분석(mass spectrometry)은 하기 방법에 따라 진행되었다. Nano LC-Q-Exactive plus mass spectrometry performed in Example 1-2 was performed according to the following method.
i) 먼저 50 cm C18 capillary column(OD 360μm, ID 75μm)으로 200분 동안 분획하고; ii) 150분 동안 구배(gradient)(5~45% 아세토니트릴(acetonitrile) 및 0.1% 포름산 용액)로 분획하고; iii) 상위 20 intensity precursor에 대해 DDA(data dependent acquisition) 모드로 데이터를 수집한 후; iv) 수집된 데이터는 Proteome discoverer 2.2 프로그램을 이용해 인간 SWISSPROT 서열 데이터베이스와 비교하며 펩타이드 및 단백질을 동정하였고, 동정된 펩타이드의 MS1 피크 강도를 이용하여 단백질의 LFQ(Lable-Free Quantification)값을 간결성(parsimony: 최소 데이터를 이용한 최대 정보) 방법으로 정량한 결과를 통해 바이오마커를 발굴하는 분석을 하였다.i) first fractionated with 50 cm C18 capillary column (OD 360 μm, ID 75 μm) for 200 min; ii) fractionated for 150 minutes with a gradient (5 ~ 45% acetonitrile and 0.1% formic acid solution); iii) after collecting data in DDA (data dependent acquisition) mode for the top 20 intensity precursors; iv) The collected data was compared with the human SWISSPROT sequence database using the Proteome discoverer 2.2 program to identify peptides and proteins, and the LFQ (Lable-Free Quantification) value of the proteins was parsimony using the MS1 peak intensity of the identified peptides. : Maximum information using minimum data) was analyzed to discover biomarkers through quantitative results.
1-4. 데이터 분석1-4. Data analysis
혈장 시료 중 표적 단백질의 양을 비교하기 위하여, 내인성(endogenouse)의 혈장 단백질 중 군 간의 차이를 보이지 않고 보정 가능한 정규화 인자(normalization factor)로 새로운 6개의 혈장 단백질을 찾았다. 상기 6개 단백질은 티록신결합글로불린(Thyroxine-binding globulin; TBG), 보체 요소 I(Complement factor I; CFI), 보체 C6(Complement component C6; C6), 플라스틴-2(Plastin-2; PLS2), 보체 C2(Complement C2; C2), 보체 요소 H(Complement factor H; CFH)이다. 상기 6개 단백질의 대표 펩타이드에 대한 LFQ값을 총 40명의 피험자 유래 혈장 중 raw 값에서 각 펩타이드의 LFQ 값의 중앙값으로 나눈 후, 각 시료 당 6개의 펩타이드에서 중앙값을 구한 것을 최종 정규화 인자로 정의하고 다른 단백질의 LFQ 값을 최종 정규화 인자로 나누어 주었다.In order to compare the amount of the target protein in the plasma sample, six new plasma proteins were found as a correctable normalization factor without showing differences between groups among endogenouse plasma proteins. The six proteins include thyroxine-binding globulin (TBG), complement factor I (CFI), complement component C6 (C6), and plastin-2 (PLS2), Complement C2 (C2), Complement factor H (CFH). The LFQ value for the representative peptide of the 6 proteins was divided by the median value of the LFQ value of each peptide from the raw value of plasma from 40 subjects, and the median value of 6 peptides per sample was defined as the final normalization factor. The LFQ value of other proteins was divided by the final normalization factor.
통계분석 시 정규화된 값을 이용하여 Mann-whitney test를 통해서 P값을 구했고, 여기에 사후 검정으로 본페로니(Bonferonni) 보정을 통해서 0.05/374 보다 작은 P값을 가지면서 두 그룹간의 정량 차이가 2배 이상 나는 단백질을 발굴하였다. P values were obtained through Mann-whitney test using normalized values during statistical analysis. Quantitative differences between the two groups were obtained with a P value less than 0.05 / 374 through Bonferonni correction by post-test. More than twice, I discovered protein.
실시예 2. 유전성 난소암 환자에서 특이적으로 발현이 변화된 후보 단백질 발굴Example 2. Identification of candidate proteins whose expression is specifically changed in patients with hereditary ovarian cancer
본 발명자들은 유전성 난소암의 발병여부를 예측할 수 있는 바이오마커를 발굴하기 위하여, 도 1a에 도시한 바와 같이 두 가지 시나리오에 따라 각각 혈장 시료에서 차등적으로 발현되는 단백질을 발굴하고 이를 종합적으로 분석하여 BRCA 유전자의 돌연변이가 동반된 유전성 난소암 환자에서 특이적으로 발현이 변화하는 마커를 도출하고자 하였다. In order to discover biomarkers capable of predicting the development of hereditary ovarian cancer, the present inventors discover proteins differentially expressed in plasma samples according to two scenarios as shown in FIG. 1A and comprehensively analyze them. The purpose of this study was to derive markers whose expression changes specifically in patients with hereditary ovarian cancer accompanied by mutations in the BRCA gene.
2-1. BRCA 돌연변이 양성 피험자 간에 차등적으로 발현된 단백질 확인 (Scenario I)2-1. Identification of differentially expressed proteins among BRCA mutant positive subjects (Scenario I)
먼저, BRCA 돌연변이 양성(BRCA+)인 정상군 및 난소암 환자들로부터 얻은 혈장 시료를 이용하여 상기 실시예 1-2 및 1-3에 기재된 방법을 통해 분석하고, 실시예 1-4의 통계분석 기준에 따라 차등적으로 발현되는 단백질을 volcano plot으로 분석하였다. 그 결과, 도 1b에 나타낸 바와 같이 BRCA 돌연변이 양성 난소암 환자에서 유의적으로 발현이 감소한 단백질 19종이 발견되었고, 발현이 증가한 단백질 61종이 발견되었다. First, the plasma samples obtained from normal and ovarian cancer patients who are BRCA mutant positive (BRCA +) are analyzed through the methods described in Examples 1-2 and 1-3, and statistical analysis criteria of Examples 1-4 are used. The differentially expressed protein was analyzed by volcano plot. As a result, as shown in FIG. 1B, 19 types of proteins with significantly decreased expression were found in patients with BRCA mutant-positive ovarian cancer, and 61 types of proteins with increased expression were found.
나아가 각각 발현이 감소된 단백질 및 발현이 증가된 단백질에 대한 네트워크 분석을 통해 단백질의 기능을 기준으로 분류하였다. 그 결과, 도 1c에 나타낸 바와 같이 BRCA 양성 난소암 환자에서 발현이 감소된 19종의 단백질들은 중성지방의 이화 과정 조절, 급성-상 반응 및 혈액 응고 피브린 혈전 형성에 관련되어 있는 것을 확인하였고, BRCA 양성 난소암 환자에서 발현이 증가된 61종의 단백질들은 대표적으로 과산화수소 대사과정, NADH 대사과정, 인터루킨-8 생성 조절 및 인터루킨-12 매개 신호전달 경로, 산화적 스트레스에 의한 세포사멸의 조절, 혈소판 응집 및 바이러스 프로세스의 숙주에 의한 양성적 조절에 관련되어 있는 것을 알 수 있었다. Furthermore, the protein was classified based on the function of the protein through network analysis of the protein with reduced expression and the protein with increased expression, respectively. As a result, as shown in Fig. 1c, it was confirmed that 19 types of proteins with decreased expression in BRCA-positive ovarian cancer patients are involved in regulating the catabolic process of triglycerides, acute-phase reactions, and blood clotting fibrin thrombus, 61 proteins with increased expression in benign ovarian cancer patients are typically hydrogen peroxide metabolism, NADH metabolism, interleukin-8 production regulation and interleukin-12 mediated signaling pathway, regulation of cell death by oxidative stress, platelet aggregation And positive regulation by the host of the viral process.
2-2. 정상군 및 난소암 환자에서 차등적으로 발현된 단백질 확인 (Scenario Ⅱ)2-2. Identification of differentially expressed proteins in normal and ovarian cancer patients (Scenario Ⅱ)
본 실시예에서는 BRCA 유전자의 돌연변이 여부에 관계없이 전체 정상군 및 난소암 환자를 대상으로 하였으며, 상기 실시예 2-1과 유사한 방법으로 전체 정상군 및 난소암 환자 유래 혈장 시료에서 차등적으로 발현되는 단백질을 도출하였다. 그 결과, 정상군에서는 13종의 단백질이 유의적으로 증가하였고, 난소암 환자군에서는 48종 단백질의 발현이 유의적으로 증가한 것을 확인하였다. In this example, the subjects were all normal and ovarian cancer patients regardless of whether the BRCA gene was mutated or not, and differentially expressed in plasma samples derived from all normal and ovarian cancer patients in a similar manner to Example 2-1. Protein was derived. As a result, it was confirmed that 13 kinds of proteins were significantly increased in the normal group and 48 kinds of proteins were significantly increased in the ovarian cancer patient group.
2-3. 유전성 난소암 환자에서 특이적으로 발현이 변화된 단백질 확인2-3. Identification of proteins with specific expression changes in patients with hereditary ovarian cancer
이후 상기 실시예 2-1 및 2-2에서 얻어진 결과를 종합적으로 분석하였다. 도 1d에 BRCA 돌연변이 양성 정상군(BRCA+ subjects: HC), 정상군(HC), BRCA 돌연변이 양성 난소암 환자군(BRCA+ subjects: OC), 난소암 환자군(OC)의 각 그룹에서 발현이 증가한 단백질 수를 비교하여 나타내었으며, 도 1e에는 밴다이어그램으로 각 그룹에서 발현이 증가한 단백질 중에 공통적인 단백질 및 각 군에서만 발현이 증가한 단백질을 구분하였다. 그 결과, BRCA 돌연변이 양성 정상군 및 전체 정상군에서 각각 발현이 증가된 단백질 중에 10개의 단백질이 공통되며, BRCA 돌연변이 양성 난소암 환자 및 전체 난소암 환자 각각에서 발현이 증가된 단백질 중에는 46개가 공통적인 것을 알 수 있었다. Then, the results obtained in Examples 2-1 and 2-2 were comprehensively analyzed. 1D shows the number of proteins with increased expression in each group of the BRCA mutant positive normal group (BRCA + subjects: HC), the normal group (HC), the BRCA mutant positive ovarian cancer patient group (BRCA + subjects: OC), and the ovarian cancer patient group (OC). For comparison, in FIG. 1E, a common protein among proteins with increased expression in each group and a protein with increased expression in each group are distinguished by a van diagram. As a result, 10 proteins are common among the proteins with increased expression in the BRCA mutant-positive normal group and the whole normal group, and 46 of the proteins with increased expression in the BRCA mutant-positive ovarian cancer patients and the whole ovarian cancer patients are common. I could see that.
상기 결과들로부터, 공통적으로 발현이 증가된 단백질들을 제외하고 BRCA 돌연변이 양성 정상군에서만 발현이 증가한 단백질 즉, BRCA 돌연변이 양성 난소암 환자군에서만 발현이 감소한 단백질 9종 및 BRCA 돌연변이 양성 난소암 환자군에서만 발현이 증가한 단백질 15종을 분리하였으며, 상기 24종의 단백질을 유전성 난소암의 발병 예측용 마커 후보군으로 도출하였다. 상기 9종 및 15종의 단백질 및 이를 암호화하는 유전자에 대한 정보는 하기 표 1 및 2에 각각 나타내었다. From the above results, except for proteins in which expression was increased in common, expression increased only in the BRCA mutant-positive normal group, i.e., 9 proteins whose expression decreased only in the BRCA-mutant-positive ovarian cancer patient group and expression in the BRCA-mutant-positive ovarian cancer patient group. The increased 15 proteins were isolated, and the 24 proteins were derived as candidate markers for predicting the development of hereditary ovarian cancer. Information on the 9 and 15 proteins and genes encoding them are shown in Tables 1 and 2, respectively.
IndexIndex Uniprot IDUniprot ID GeneGene Protein NameProtein Name
1One P05154P05154 SERPINA5SERPINA5 Plasma serine protease inhibitorPlasma serine protease inhibitor
22 P24593P24593 IGFBP5IGFBP5 Insulin-like growth factor-binding protein 5Insulin-like growth factor-binding protein 5
33 P00734 P00734 F2F2 ProthrombinProthrombin
44 P02786P02786 TFRCTFRC Transferrin receptor protein 1 Transferrin receptor protein 1
55 P14151-2P14151-2 SELLSELL L-selectinL-selectin
66 P02656P02656 APOC3APOC3 Apolipoprotein C-IIIApolipoprotein C-III
77 P08697P08697 SERPINF2SERPINF2 Alpha-2-antiplasminAlpha-2-antiplasmin
88 P01008P01008 SERPINC1SERPINC1 Antithrombin-IIIAntithrombin-III
99 P02753P02753 RBP4RBP4 Retinol-binding protein 4Retinol-binding protein 4
IndexIndex UniprotIDUniprotID Gene Gene Protein NameProtein Name
1One O95497 O95497 VNN1VNN1 PantetheinasePantetheinase
22 P02775P02775 PPBPPPBP Platelet basic protein Platelet basic protein
33 P04075-2P04075-2 ALDOAALDOA Fructose-bisphosphate aldolase A Fructose-bisphosphate aldolase A
44 P04275P04275 VWFVWF von Willebrand factor von Willebrand factor
55 P05121P05121 SERPINE1SERPINE1 Plasminogen activator inhibitor 1 Plasminogen activator inhibitor 1
66 P06744-2P06744-2 GPIGPI Glucose-6-phosphate isomerase Glucose-6-phosphate isomerase
77 P07602-3P07602-3 PSAP PSAP ProsaposinProsaposin
88 P07686P07686 HEXBHEXB Beta-hexosaminidase subunit beta Beta-hexosaminidase subunit beta
99 P07996P07996 THBS1THBS1 Thrombospondin-1 Thrombospondin-1
1010 P09486P09486 SPARCSPARC Osteonectin Osteonectin
1111 P19022P19022 CDH2CDH2 Cadherin-2 Cadherin-2
1212 P22897P22897 MRC1MRC1 Macrophage mannose receptor 1 Macrophage mannose receptor 1
1313 P34932P34932 HSPA4HSPA4 Heat shock 70 kDa protein 4 Heat shock 70 kDa protein 4
1414 P78509P78509 RELN RELN Reelin Reelin
1515 Q14766-4Q14766-4 LTBP1LTBP1 Latent-transforming growth factor beta-binding protein 1 Latent-transforming growth factor beta-binding protein 1
실시예 3. 유전성 난소암 환자에서 특이적으로 발현이 변화된 단백질의 통계적 유의성 유무 분석Example 3. Analysis of the presence or absence of statistical significance of proteins with specific expression changes in patients with hereditary ovarian cancer
본 발명자들은 상기 실시예 2를 통해 도출된 BRCA 돌연변이 양성 난소암 환자에서 특이적으로 발현이 변화된 24종 단백질 각각에 대하여 4개 군(BRCA 음성인 정상군(HN), BRCA 양성인 정상군(HP), BRCA 음성인 난소암 환자군(ON), 및 BRCA 양성인 난소암 환자군(OP)) 간의 단백질 발현량 차이에 대한 통계적 유의성 유무를 분석하였다. The present inventors are four groups (BRCA negative normal group (HN), BRCA positive normal group (HP)) for each of the 24 kinds of proteins whose expression is specifically changed in the BRCA mutant positive ovarian cancer patients derived through Example 2 above. , The analysis of the statistical significance of protein expression difference between BRCA-negative ovarian cancer patient group (ON) and BRCA-positive ovarian cancer patient group (OP) was analyzed.
BRCA 돌연변이를 보유한 난소암 환자에서 발현이 감소된 9종의 단백질에 대한 결과는 도 2a 내지 도 2e에 나타내었고, 발현이 증가된 15종의 단백질에 대한 결과는 도 3a 내지 도 3h에 나타내었다. 분석 결과, 24종의 단백질 모두 BRCA 돌연변이 양성인 정상군과 BRCA 돌연변이 양성인 난소암 환자군 간의 발현수준에 유의한 차이가 있는 것을 확인하였다. 하기 표 3에는 BRCA 돌연변이 양성인 정상군과 BRCA 돌여변이 양성인 난소암 환자군에서 24종 단백질의 평균 발현량 및 표준 편차를 정리하여 나타내었다.Results for 9 proteins with decreased expression in patients with ovarian cancer with BRCA mutations are shown in FIGS. 2A to 2E, and results for 15 proteins with increased expression are shown in FIGS. 3A to 3H. As a result of the analysis, it was confirmed that all 24 proteins had a significant difference in the expression level between the normal group, which is positive for BRCA mutation, and the patient group, which is positive for BRCA mutation. Table 3 below summarizes the average expression level and standard deviation of 24 proteins in the normal group with a positive BRCA mutation and the group with ovarian cancer with a positive BRCA mutation.
AccessionAccession DescriptionDescription HC vs OCHC vs OC Healthy-Healthy- BRCA+BRCA + (n=20)(n = 20) OC-OC- BRCA+BRCA + (n=20) (n = 20) Healthy-Healthy- BRCA+BRCA + (n=20)(n = 20) OC-OC- BRCA+BRCA + (n=20) (n = 20)
P00734P00734 ProthrombinProthrombin HC ↑HC ↑ 38.4938.49 37.1137.11 0.170.17 0.400.40
P01008P01008 Antithrombin-IIIAntithrombin-III HC ↑HC ↑ 38.1438.14 36.8136.81 0.160.16 0.520.52
P02656P02656 Apolipoprotein C-IIIApolipoprotein C-III HC ↑HC ↑ 34.2034.20 33.0633.06 0.710.71 0.970.97
P02753P02753 Retinol-binding protein 4Retinol-binding protein 4 HC ↑HC ↑ 35.5035.50 34.4234.42 0.230.23 0.600.60
P02786P02786 Transferrin receptor protein 1Transferrin receptor protein 1 HC ↑HC ↑ 28.6128.61 26.8326.83 0.580.58 1.101.10
P05154P05154 Plasma serine protease inhibitorPlasma serine protease inhibitor HC ↑HC ↑ 33.1733.17 32.0132.01 0.220.22 0.480.48
P08697P08697 Alpha-2-antiplasminAlpha-2-antiplasmin HC ↑HC ↑ 36.1736.17 35.0435.04 0.130.13 0.320.32
P14151-2P14151-2 Isoform 2 of L-selectinIsoform 2 of L-selectin HC ↑HC ↑ 30.1330.13 29.1129.11 0.550.55 0.650.65
P24593P24593 Insulin-like growth factor-binding protein 5Insulin-like growth factor-binding protein 5 HC ↑HC ↑ 26.7126.71 25.7025.70 0.850.85 0.610.61
O95497O95497 PantetheinasePantetheinase OC ↑OC ↑ 26.3826.38 27.9527.95 1.171.17 1.151.15
P02775P02775 Platelet basic proteinPlatelet basic protein OC ↑OC ↑ 32.1132.11 35.1135.11 0.880.88 0.490.49
P04075-2P04075-2 Isoform 2 of Fructose-bisphosphate aldolase AIsoform 2 of Fructose-bisphosphate aldolase A OC ↑OC ↑ 27.8027.80 28.9228.92 0.360.36 0.870.87
P04275P04275 von Willebrand factorvon Willebrand factor OC ↑OC ↑ 32.0432.04 33.7333.73 0.40.4 0.440.44
P05121P05121 Plasminogen activator inhibitor 1Plasminogen activator inhibitor 1 OC ↑OC ↑ 26.2026.20 27.6427.64 0.60.6 0.650.65
P06744-2P06744-2 Isoform 2 of Glucose-6-phosphate isomeraseIsoform 2 of Glucose-6-phosphate isomerase OC ↑OC ↑ 27.6827.68 28.7728.77 0.480.48 0.630.63
P07602-3P07602-3 Isoform Sap-mu-9 of ProsaposinIsoform Sap-mu-9 of Prosaposin OC ↑OC ↑ 25.2625.26 26.7426.74 0.620.62 0.640.64
P07686P07686 Beta-hexosaminidase subunit betaBeta-hexosaminidase subunit beta OC ↑OC ↑ 24.2024.20 25.4625.46 0.880.88 0.570.57
P07996P07996 Thrombospondin-1Thrombospondin-1 OC ↑OC ↑ 29.8229.82 32.8832.88 1.111.11 0.780.78
P09486P09486 SPARCSPARC OC ↑OC ↑ 25.6725.67 30.1930.19 0.820.82 1.151.15
P19022P19022 Cadherin-2Cadherin-2 OC ↑OC ↑ 26.5826.58 27.7327.73 0.590.59 0.650.65
P22897P22897 Macrophage mannose receptor 1Macrophage mannose receptor 1 OC ↑OC ↑ 26.3526.35 27.3627.36 0.610.61 0.560.56
P34932P34932 Heat shock 70 kDa protein 4Heat shock 70 kDa protein 4 OC ↑OC ↑ 26.0126.01 27.4327.43 0.490.49 0.850.85
P78509P78509 ReelinReelin OC ↑OC ↑ 25.6925.69 27.3627.36 1.241.24 0.600.60
Q14766-4Q14766-4 Isoform 4 of Latent-transforming growth factor beta-binding protein 1Isoform 4 of Latent-transforming growth factor beta-binding protein 1 OC ↑OC ↑ 25.7325.73 28.8228.82 0.840.84 0.580.58
실시예 4. 24종 마커의 민감도 및 특이도 분석Example 4. Analysis of sensitivity and specificity of 24 markers
본 발명자들은 상기 BRCA 돌연변이 양성 난소암 환자군에서 유의적으로 발현이 변화된 24종의 마커에 대하여 정확도를 알아보기 위해 민감도(Sensitivity) 및 특이도(Specificity)를 분석하고자 하였으며, 이를 위해 ROC 곡선 분석을 실시하였다. 민감도 및 특이도는 ROC 곡선 아래 면적(AUC)을 계산함으로써 평가하였다. The present inventors tried to analyze the sensitivity and specificity to determine the accuracy of 24 markers whose expression was significantly changed in the BRCA mutant-positive ovarian cancer patient group, for which ROC curve analysis was performed. Did. Sensitivity and specificity were evaluated by calculating the area under the ROC curve (AUC).
BRCA 돌연변이를 보유한 난소암 환자에서 발현이 감소된 9종의 단백질에 대한 결과는 도 4a 내지 도 4e 및 표 4에 나타내었고, 발현이 증가된 15종의 단백질에 대한 결과는 도 5a 내지 도 5h 및 표 5에 나타내었다. Area=1인 경우 시험 데이터세트에 대한 완벽한 정확도를 갖는 것으로 판단하였고, Area=0.5인 경우에는 부정확한(worthless) 정확도를 갖는 것으로 판단하였다. AUC 값에 따른 정확도 기준은 하기와 같다: 0.9~1 = excellent, 0.8~0.9 = good, 0.7~0.8 = Fair (C), 0.6-0.7 = poor (D), 0.5-0.6 = Fail (F).Results for nine proteins with decreased expression in patients with ovarian cancer with BRCA mutations are shown in FIGS. 4A to 4E and Table 4, and results for 15 proteins with increased expression are shown in FIGS. 5A to 5H and It is shown in Table 5. When Area = 1, it was judged to have perfect accuracy for the test dataset, and when Area = 0.5, it was judged to have inaccurate (worthless) accuracy. Accuracy criteria according to AUC values are as follows: 0.9 ~ 1 = excellent, 0.8 ~ 0.9 = good, 0.7 ~ 0.8 = Fair (C), 0.6-0.7 = poor (D), 0.5-0.6 = Fail (F).
IndexIndex Uniprot IDUniprot ID GeneGene Protein NameProtein Name AUC valueAUC value
1One P05154P05154 SERPINA5SERPINA5 Plasma serine protease inhibitorPlasma serine protease inhibitor 0.9510.951
22 P24593P24593 IGFBP5IGFBP5 Insulin-like growth factor-binding protein 5Insulin-like growth factor-binding protein 5 0.8390.839
33 P00734P00734 F2F2 ProthrombinProthrombin 0.8680.868
44 P02786P02786 TFRCTFRC Transferrin receptor protein 1 Transferrin receptor protein 1 0.7530.753
55 P14151-2P14151-2 SELLSELL L-selectinL-selectin 0.8640.864
66 P02656P02656 APOC3APOC3 Apolipoprotein C-IIIApolipoprotein C-III 0.6330.633
77 P08697P08697 SERPINF2SERPINF2 Alpha-2-antiplasminAlpha-2-antiplasmin 0.9140.914
88 P01008P01008 SERPINC1SERPINC1 Antithrombin-IIIAntithrombin-III 0.9270.927
99 P02753P02753 RBP4RBP4 Retinol-binding protein 4Retinol-binding protein 4 0.9810.981
IndexIndex Uniprot IDUniprot ID GeneGene Protein NameProtein Name AUC valueAUC value
1One O95497O95497 VNN1VNN1 PantetheinasePantetheinase 0.5330.533
22 P02775P02775 PPBPPPBP Platelet basic protein Platelet basic protein 0.5340.534
33 P04075.2P04075.2 ALDOAALDOA Fructose-bisphosphate aldolase A Fructose-bisphosphate aldolase A 0.8440.844
44 P04275P04275 VWFVWF von Willebrand factor von Willebrand factor 0.7920.792
55 P05121P05121 SERPINE1SERPINE1 Plasminogen activator inhibitor 1 Plasminogen activator inhibitor 1 0.6420.642
66 P06744.2P06744.2 GPIGPI Glucose-6-phosphate isomerase Glucose-6-phosphate isomerase 0.7740.774
77 P07602.3P07602.3 PSAPPSAP ProsaposinProsaposin 0.7710.771
88 P07686P07686 HEXBHEXB Beta-hexosaminidase subunit beta Beta-hexosaminidase subunit beta 0.7550.755
99 P07996P07996 THBS1THBS1 Thrombospondin-1 Thrombospondin-1 0.6670.667
1010 P09486P09486 SPARCSPARC OsteonectinOsteonectin 0.6640.664
1111 P19022P19022 CDH2CDH2 Cadherin-2 Cadherin-2 0.8680.868
1212 P22897P22897 MRC1MRC1 Macrophage mannose receptor 1 Macrophage mannose receptor 1 0.8160.816
1313 P34932P34932 HSPA4HSPA4 Heat shock 70 kDa protein 4 Heat shock 70 kDa protein 4 0.8260.826
1414 P78509P78509 RELNRELN Reelin Reelin 0.7600.760
1515 Q14766.4Q14766.4 LTBP1LTBP1 Latent-transforming growth factor beta-binding protein 1 Latent-transforming growth factor beta-binding protein 1 0.6740.674
실시예 5. 24종 마커의 유효성 검증Example 5. Validation of 24 markers
본 발명자들은 상기 24종의 BRCA 돌연변이 양성 난소암 환자군에서 유의적으로 발현이 변화된 24종의 마커에 대하여 유전성 난소암의 발병을 예측할 수 있는 특이적 바이오마커로서의 유효성을 검증하고자 하였다. 이를 위해, 상기 24종의 각 단백질에 대하여 50회 반복하여 2 fold cross validation을 진행하였으며, 도 6에 상기 검증과정에 대한 모식도를 나타내었다.The present inventors tried to verify the effectiveness as a specific biomarker capable of predicting the development of hereditary ovarian cancer against 24 markers whose expression was significantly changed in the group of 24 BRCA mutant positive ovarian cancer patients. To this end, 2 fold cross validations were repeated 50 times for each of the 24 types of proteins, and FIG. 6 shows a schematic diagram of the verification process.
상기 분석을 통해 24종의 후보군 단백질 중에서 선별된 변수인 optimal K 값이 15이고, cross validation의 AUC 값이 0.983 이상이며, Probability(확률)가 0.70 이상(selected K=7)인 15개의 단백질을 선정하였으며, 문헌 등을 통해 7개 단백질을 선별하였다. 또한 이에 추가적으로 24종의 후보군 단백질에서 BRCA 변이 양성 정상군과 난소암 환자 간에 유의적인 발현 차이를 나타내며, BRCA 돌연변이 양성 및 음성군 사이에서도 유의적인 발현 차이를 보인 PPBP, SPARC, THBS1, 및 LTBP1 단백질을 추가하였다. Through the above analysis, 15 proteins with optimal K value of 15 selected from 24 candidate proteins, AUC value of cross validation of 0.983 or more, and Probability (probability) of 0.70 or more (selected K = 7) were selected. 7 proteins were selected through literature. In addition, additionally, PPBP, SPARC, THBS1, and LTBP1 proteins showing significant difference in expression between BRCA mutation-positive normal group and ovarian cancer patients in 24 candidate group proteins, and also showing significant difference in expression between BRCA mutation-positive and negative groups Did.
이에, 상기 실시예를 통해 BRCA 변이 후 난소암 발병 예측용 바이오마커로써 하기 11종이 최종 발굴되었으며, 11종의 바이오마커에 대한 정보를 하기 표 6에 나타내었다.Thus, through the above examples, the following 11 types were finally discovered as biomarkers for predicting the development of ovarian cancer after BRCA mutation, and the information on the 11 types of biomarkers is shown in Table 6 below.
InformationInformation Significant sample groupSignificant sample group Univariate ROC Univariate ROC analysisanalysis
AccessionAccession DescriptionDescription GeneGene HC vs OCHC vs OC AUCAUC
P01008P01008 Antithrombin-III Antithrombin-III SERPINC1SERPINC1 HC ↑HC ↑ 0.9270.927
P02753P02753 Retinol-binding protein 4Retinol-binding protein 4 RBP4RBP4 HC ↑HC ↑ 0.9810.981
P05154P05154 Plasma serine protease inhibitorPlasma serine protease inhibitor SERPINA5SERPINA5 HC ↑HC ↑ 0.9510.951
P08697P08697 Alpha-2-antiplasminAlpha-2-antiplasmin SERPINF2SERPINF2 HC ↑HC ↑ 0.9140.914
P04075-2P04075-2 Isoform 2 of Fructose-bisphosphate aldolase A Isoform 2 of Fructose-bisphosphate aldolase A ALDOAALDOA OC ↑OC ↑ 0.8440.844
P19022P19022 Cadherin-2Cadherin-2 CDH2CDH2 OC ↑OC ↑ 0.8680.868
P22897P22897 Macrophage mannose receptor 1 Macrophage mannose receptor 1 MRC1MRC1 OC ↑OC ↑ 0.8160.816
P02775P02775 Platelet basic protein Platelet basic protein PPBPPPBP OC ↑OC ↑ 0.5340.534
P09486P09486 Osteonectin, SPARCOsteonectin, SPARC SPARCSPARC OC ↑OC ↑ 0.6640.664
P07996P07996 Thrombospondin-1Thrombospondin-1 THBS1THBS1 OC ↑OC ↑ 0.6670.667
Q14766.4Q14766.4 Latent-transforming growth factor beta-binding protein 1 Latent-transforming growth factor beta-binding protein 1 LTBP1LTBP1 OC ↑OC ↑ 0.6740.674
본 발명에 따르면 BRCA 유전자의 돌연변이를 보유한 난소암 환자에서 특이적으로 발현이 변화하는 11종의 바이오마커를 발굴하고 이의 유효성을 검증하였는바, 임상에서 BRCA 유전자의 돌연변이를 가지고 있는 피검자로부터 상기 11종의 바이오마커 유전자의 mRNA 또는 이의 단백질 수준을 측정함으로써 난소암 발병여부에 대한 정보를 조기에 제공할 수 있어 상기 질환에 대한 예방이 가능하며, 또한 상기 바이오마커는 BRCA 유전자 돌연변이가 동반된 유전성 난소암에 대한 표적 치료제를 개발하는데 표적 분자로써 유용하게 활용될 수 있을 것이다.According to the present invention, 11 biomarkers having specific expression changes in ovarian cancer patients with mutations in the BRCA gene were identified and their effectiveness was verified. As a result, the above 11 types were obtained from subjects with mutations in the BRCA gene clinically. By measuring the mRNA or protein level of the biomarker gene, it is possible to provide early information on whether or not ovarian cancer is occurring, thereby preventing the disease, and the biomarker is a hereditary ovarian cancer accompanied by a BRCA gene mutation. It may be usefully used as a target molecule in developing a targeted therapeutic agent for.

Claims (14)

  1. ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 상기 유전자가 암호화하는 단백질을 포함하는, 유전성 난소암의 발병 예측용 마커 조성물.ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166265, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_001365052), SERPINF2 (serpin family F member 2; NM_000934, NM_001165920, NM_TH165 1; NM_003246) comprising at least one gene selected from the group or a protein encoded by the gene, a marker composition for predicting the development of hereditary ovarian cancer.
  2. 제1항에 있어서, According to claim 1,
    상기 유전성 난소암은 BRCA1 또는 BRCA2 유전자의 돌연변이를 동반하는 것을 특징으로 하는, 마커 조성물.The hereditary ovarian cancer is characterized by accompanying a mutation in the BRCA1 or BRCA2 gene, marker composition.
  3. ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 유전성 난소암의 발병 예측용 조성물.ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166265, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC (secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_001365052), SERPINF2 (serpin family F member 2; NM_000934, NM_001165920, NM_TH165 1; NM_003246) composition for predicting the development of hereditary ovarian cancer, comprising an agent for measuring the mRNA level of one or more genes selected from the group consisting of the protein encoded by the gene.
  4. 제3항에 있어서, According to claim 3,
    상기 유전성 난소암은 BRCA1 또는 BRCA2 유전자의 돌연변이를 동반하는 것을 특징으로 하는, 조성물.The hereditary ovarian cancer is characterized in that it is accompanied by a mutation in the BRCA1 or BRCA2 gene, composition.
  5. 제3항에 있어서,According to claim 3,
    상기 유전자의 mRNA 수준을 측정하는 제제는 유전자의 mRNA에 상보적으로 결합하는 센스 및 안티센스 프라이머, 또는 프로브인 것을 특징으로 하는, 조성물.The agent for measuring the mRNA level of the gene is characterized in that the sense and antisense primers, or probes that complementarily bind to the mRNA of the gene, the composition.
  6. 제3항에 있어서,According to claim 3,
    상기 단백질 수준을 측정하는 제제는 상기 유전자가 암호화하는 단백질에 특이적으로 결합하는 항체인 것을 특징으로 하는, 조성물.The agent for measuring the protein level is characterized in that the antibody that specifically binds to the protein encoded by the gene.
  7. 제3항의 조성물을 포함하는, 유전성 난소암의 발병 예측용 키트.A kit for predicting the development of hereditary ovarian cancer, comprising the composition of claim 3.
  8. 피검자 유래의 생물학적 시료에서 ALDOA(aldolase, fructose-bisphosphate A; GenBank 접근(accession) 번호: NM_001243177), CDH2(Cadherin 2; NM_001792, NM_001308176), LTBP1(Latent-transforming growth factor beta-binding protein 1; NM_000627, NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1(mannose receptor C-type 1; NM_002438), PPBP(pro-platelet basic protein; NM_002704), RBP4(Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744), SPARC(secreted protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5(serpin family A member 5; NM_000624), SERPINC1(serpin family C member 1; NM_000488, NM_001365052), SERPINF2(serpin family F member 2; NM_000934, NM_001165920, NM_001165921), 및 THBS1(Thrombospondin 1; NM_003246)으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 포함하는, 유전성 난소암의 발병 예측방법.ALDOA (aldolase, fructose-bisphosphate A; GenBank accession number: NM_001243177), CDH2 (Cadherin 2; NM_001792, NM_001308176), LTBP1 (Latent-transforming growth factor beta-binding protein 1; NM_000627, in biological samples from subjects) NM_001166264, NM_001166265, NM_001166266, NM_206943), MRC1 (mannose receptor C-type 1; NM_002438), PPBP (pro-platelet basic protein; NM_002704), RBP4 (Retinol-binding protein 4; NM_001323517, NM_001323518, NM_006744) protein acidic and cysteine rich; NM_003118, NM_001309443, NM_001309444), SERPINA5 (serpin family A member 5; NM_000624), SERPINC1 (serpin family C member 1; NM_000488, NM_001365052), SERPINF2 (serpin family F member 2; NM_000165, NM_000934, N ), And measuring the mRNA level of one or more genes selected from the group consisting of THBS1 (Thrombospondin 1; NM_003246) or the protein level encoded by the gene, a method for predicting the development of hereditary ovarian cancer.
  9. 제8항에 있어서, The method of claim 8,
    유전성 난소암은 BRCA1 또는 BRCA2 유전자의 돌연변이를 동반하는 것을 특징으로 하는, 예측방법.Hereditary ovarian cancer is a predictive method characterized in that it is accompanied by a mutation in the BRCA1 or BRCA2 gene.
  10. 제8항에 있어서, The method of claim 8,
    상기 피검자는 BRCA1 또는 BRCA2 유전자의 돌연변이를 보유하는 것을 특징으로 하는, 예측방법.The subject is characterized in that it carries a mutation in the BRCA1 or BRCA2 gene, prediction method.
  11. 제8항에 있어서,The method of claim 8,
    상기 RBP4, SERPINA5, SERPINC1 및 SERPINF2로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준이 건강한 정상대조군에 비하여 감소되어 있는 경우 유전성 난소암이 발병할 것으로 예측하는 것을 특징으로 하는, 예측방법.The mRNA of one or more genes selected from the group consisting of RBP4, SERPINA5, SERPINC1 and SERPINF2 or protein levels encoded by the gene are predicted to develop hereditary ovarian cancer when the level of the protein is reduced compared to a healthy normal control group. , Prediction method.
  12. 제8항에 있어서,The method of claim 8,
    상기 ALDOA, CDH2, LTBP1, MRC1, PPBP, SPARC 및 THBS1으로 이루어진 군에서 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준이 건강한 정상대조군에 비하여 증가되어 있는 경우 유전성 난소암이 발병할 것으로 예측하는 것을 특징으로 하는, 예측방법.Genetic ovarian cancer will develop if the mRNA level of one or more genes selected from the group consisting of ALDOA, CDH2, LTBP1, MRC1, PPBP, SPARC and THBS1 or the protein level encoded by the gene is increased compared to a healthy normal control group A prediction method characterized by predicting.
  13. 제8항에 있어서, The method of claim 8,
    상기 mRNA의 발현수준은 in situ 교잡법 (in situ hybridization), 중합효소연쇄반응(PCR), 역전사 중합효소연쇄반응(RT-PCR), 실시간 중합효소연쇄반응(Real-time PCR), RNase 보호 분석법(RNase protection assay; RPA), 마이크로어레이(microarray) 및 노던 블롯팅(northern blotting)으로 이루어진 군으로부터 선택되는 1종 이상의 방법을 통해 측정되는 것을 특징으로 하는, 예측방법.The expression level of the mRNA is in situ hybridization (in situ hybridization), polymerase chain reaction (PCR), reverse transcriptase chain reaction (RT-PCR), real-time polymerase chain reaction (real-time PCR), RNase protection assay (RNase protection assay; RPA), a microarray (microarray) and Northern blotting (northern blotting), a prediction method characterized by being measured by at least one method selected from the group consisting of.
  14. 제8항에 있어서, The method of claim 8,
    상기 단백질의 발현수준은 웨스턴 블롯팅(western blotting), 방사선면역분석법(radioimmunoassay; RIA), 방사 면역 확산법(radioimmunodiffusion), 효소면역분석법 (ELISA), 면역침강법(immunoprecipitation), 유세포분석법(flow cytometry), 면역형광염색법(immunofluorescence), 오우크테로니(ouchterlony), 보체 고정 분석법(complement fixation assay) 및 단백질 칩(protein chip)으로 이루어진 군으로부터 선택되는 1종 이상의 방법을 통해 측정되는 것을 특징으로 하는, 예측방법.The expression level of the protein is western blotting, radioimmunoassay (RIA), radioimmunodiffusion, enzymatic immunoassay (ELISA), immunoprecipitation, flow cytometry. , Characterized by being measured through one or more methods selected from the group consisting of immunofluorescence, ouchterlony, complement fixation assay and protein chip, Prediction method.
PCT/KR2019/015660 2018-11-16 2019-11-15 Biomarker for predicting onset of hereditary ovarian cancer and use thereof WO2020101432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980088377.8A CN113286898A (en) 2018-11-16 2019-11-15 Biomarkers for predicting genetic ovarian carcinogenesis and uses thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180141712 2018-11-16
KR10-2018-0141712 2018-11-16
KR1020190146229A KR102368717B1 (en) 2018-11-16 2019-11-14 Biomarker for predicting development of hereditary ovarian cancer and use thereof
KR10-2019-0146229 2019-11-14

Publications (1)

Publication Number Publication Date
WO2020101432A1 true WO2020101432A1 (en) 2020-05-22

Family

ID=70731184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015660 WO2020101432A1 (en) 2018-11-16 2019-11-15 Biomarker for predicting onset of hereditary ovarian cancer and use thereof

Country Status (1)

Country Link
WO (1) WO2020101432A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050095592A1 (en) * 2002-02-13 2005-05-05 Jazaeri Amir A. Identification of ovarian cancer tumor markers and therapeutic targets
US20070099209A1 (en) * 2005-06-13 2007-05-03 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20110256560A1 (en) * 2008-10-20 2011-10-20 University Health Network Methods and compositions for the detection of ovarian cancer
US20150322530A1 (en) * 2012-10-17 2015-11-12 Cedars-Sinai Medical Center Molecular signatures of ovarian cancer
GB2549763A (en) * 2016-04-28 2017-11-01 Univ Oxford Innovation Ltd Biomarkers for early diagnosis of ovarian cancer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050095592A1 (en) * 2002-02-13 2005-05-05 Jazaeri Amir A. Identification of ovarian cancer tumor markers and therapeutic targets
US20070099209A1 (en) * 2005-06-13 2007-05-03 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20110256560A1 (en) * 2008-10-20 2011-10-20 University Health Network Methods and compositions for the detection of ovarian cancer
US20150322530A1 (en) * 2012-10-17 2015-11-12 Cedars-Sinai Medical Center Molecular signatures of ovarian cancer
GB2549763A (en) * 2016-04-28 2017-11-01 Univ Oxford Innovation Ltd Biomarkers for early diagnosis of ovarian cancer

Similar Documents

Publication Publication Date Title
US7112408B2 (en) Detection of ovarian cancer based upon alpha-haptoglobin levels
EP1862804B1 (en) Method for diagnosis of prostate cancer
KR102368717B1 (en) Biomarker for predicting development of hereditary ovarian cancer and use thereof
JP2017133831A (en) Detecting method for colorectal cancer metastasis
WO2022031072A1 (en) Pancreatic cancer diagnostic composition to be used in buffy coat sample
WO2020256526A1 (en) Urinary exosome biomarker for diagnosing antibody-mediated rejection after kidney transplantation or predicting prognosis of patient after kidney transplantation
WO2021210905A1 (en) Composition for prediction of prognosis for cancer
WO2016199998A1 (en) Method for diagnosing colon cancer using n-glycan mass spectrometry
WO2013048174A2 (en) Kit for diagnosing pancreatic adenocarcinoma, comprising means for measuring ca19-9, cathepsin d and matrix metalloproteinase-7
WO2020101432A1 (en) Biomarker for predicting onset of hereditary ovarian cancer and use thereof
WO2022075773A1 (en) Biomarker for diagnosing pancreatic cancer and use thereof
WO2022265392A1 (en) Multiple biomarkers for diagnosing ovarian cancer, and use thereof
WO2016064229A1 (en) Rheumatoid arthritis related biomarker
WO2021025412A1 (en) Method for diagnosing alzheimer's disease by using complement component c8 gamma
WO2010123216A2 (en) Method for using cfh or apoh as a biochemical marker for diagnosis of acute myeloid leukemia
CN112816711A (en) Molecular marker for prenatal noninvasive diagnosis of neural tube malformation, congenital heart disease and cleft lip and palate and application thereof
WO2020091222A1 (en) Biomarker proteins for diagnosing alzheimer's disease, and uses thereof
WO2022075774A1 (en) Biomarker for predicting metastasis of pancreatic cancer and use thereof
WO2021137553A1 (en) Biomarker composition for diagnosing pre-eclampsia, and use thereof
WO2020256530A1 (en) Urine exosome biomarker for diagnosing t cell mediated rejection after kidney transplantation or predicting prognosis of patient after kidney transplantation
WO2016175393A1 (en) Markers for diagnosing angiostenosis and use thereof
WO2022265318A1 (en) Biomarker composition for differential diagnosis of pancreas neuroendocrine tumors and method for providing information required in differential diagnosis of pancreas neuroendocrine tumors by using same
Li et al. Discovery of novel serum biomarkers for diagnosing and predicting postmenopausal osteoporosis patients by 4D‐label free protein omics
WO2021172926A1 (en) Composition for cancer diagnosis
WO2022075775A1 (en) Marker for predicting responsiveness of pancreatic cancer patient to treatment with anticancer agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883423

Country of ref document: EP

Kind code of ref document: A1