WO2020100918A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same Download PDF

Info

Publication number
WO2020100918A1
WO2020100918A1 PCT/JP2019/044415 JP2019044415W WO2020100918A1 WO 2020100918 A1 WO2020100918 A1 WO 2020100918A1 JP 2019044415 W JP2019044415 W JP 2019044415W WO 2020100918 A1 WO2020100918 A1 WO 2020100918A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
diamine
polymer
crystal aligning
Prior art date
Application number
PCT/JP2019/044415
Other languages
French (fr)
Japanese (ja)
Inventor
泰宏 宮本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020217007766A priority Critical patent/KR20210090158A/en
Priority to JP2020556128A priority patent/JP7494734B2/en
Priority to CN201980075282.2A priority patent/CN113015935A/en
Publication of WO2020100918A1 publication Critical patent/WO2020100918A1/en
Priority to JP2024028088A priority patent/JP2024063092A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display device using the same.
  • the liquid crystal alignment film of this polyimide film is prepared by a method of applying a solution of a polyimide precursor polyamic acid or a solvent-soluble polyimide solution to a substrate and subjecting the film obtained by baking to an alignment treatment such as a rubbing treatment. Has been done.
  • This polyamic acid or solvent-soluble polyimide is generally produced by a polycondensation reaction between a tetracarboxylic acid derivative such as tetracarboxylic dianhydride and a diamine compound.
  • Patent Document 1 in order to shorten the afterimage erasing time in a liquid crystal display element, the end-capping polymer (1) selected from end-capped polyamic acid and the like, and end-unsealed polyamic acid and the like are selected.
  • liquid crystal display elements have been improved in performance and area, and power consumption of display devices has been improved.
  • liquid crystal display elements have come to be used in various environments, and characteristics required for liquid crystal alignment films. Is getting tougher.
  • the problem that electric charges are accumulated in the liquid crystal alignment film and the problem that it becomes difficult to secure a good liquid crystal alignment property become remarkable.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal aligning agent that can obtain a liquid crystal aligning film having both good liquid crystal aligning property and accumulated charge relaxation property.
  • the present invention is based on such findings and is an invention including a liquid crystal aligning agent having the following gist.
  • a diamine component containing and a tetracarboxylic acid component are polymerized, and obtained by reacting with an end-capping agent, and the end-capped first polyimide precursor and a group consisting of its imidized polymer
  • a liquid crystal aligning agent comprising at least one polymer (P1) selected.
  • R 1 , R 21 , and R 22 each independently represent a hydrogen atom or a methyl group
  • R 51 and R 52 each independently represent a hydrogen atom or a methyl group.
  • S p3 and S p4 are , Each independently represents a divalent organic group.
  • a 5 represents a single bond or a divalent organic group.
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal aligning film having both good liquid crystal aligning property and accumulated charge relaxation property.
  • the liquid crystal aligning agent of the present invention is selected from the group consisting of a diamine having a partial skeleton represented by any of the above formulas (ND-1) to (ND-4) and a diamine represented by (ND-5).
  • the specific diamine is at least one selected from the group consisting of a diamine having a partial skeleton represented by the following formulas (ND-1) to (ND-4) and a diamine represented by any one of (ND-5). It is a diamine.
  • R 1 , R 21 and R 22 each independently represent a hydrogen atom or a methyl group.
  • R 51 and R 52 each independently represent a hydrogen atom or a methyl group.
  • S p3 and S p4 represent a divalent organic group.
  • a 5 represents a single bond or a divalent organic group.
  • Preferred examples of the divalent organic group of S p3 and S p4 include, for example, phenylene, pyrrolidine, piperidine, piperazine, a divalent chain hydrocarbon group having 2 to 20 carbon atoms, or the divalent chain form.
  • the hydrocarbon group —CH 2 — is —O—, —CO—, —CO—O—, —O—CO—, —NRCO— (R represents a hydrogen atom or a methyl group), —NRCOO— ( R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS-, -NR- (R represents a methyl group), pyrrolidine, piperidine and piperazine.
  • R represents a hydrogen atom or a methyl group
  • RCOO— R represents a hydrogen atom or a methyl group
  • -CONR- R represents a hydrogen atom or a methyl group
  • -NR- a methyl group
  • pyrrolidine piperidine and piperazine.
  • Examples of the divalent chain hydrocarbon group in S p3 and S p4 include ethylene group, propanediyl group, butanediyl group, pentanediyl group, hexanezyl group, heptanediyl group, octanediyl group, nonanediyl group and decandiyl group. Can be mentioned.
  • Preferred examples of the above divalent organic group for A 5 include a divalent chain hydrocarbon group having 1 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O— , —CO—, —CO—O—, —O—CO—, —NRCO— (R represents a hydrogen atom or a methyl group), —NRCOO— (R represents a hydrogen atom or a methyl group), — Examples thereof include a group substituted with CONR- (R represents a hydrogen atom or a methyl group).
  • Specific examples of the divalent chain hydrocarbon group for A 5 include methylene groups and the divalent chain hydrocarbon groups exemplified for Sp 3 and Sp 4 .
  • Preferred examples of the diamine having a partial skeleton represented by the formula (ND-1) include the following formulas (ND-1-1) and (ND-1-2).
  • R 1 and R 2 represent a hydrogen atom or a methyl group.
  • R 11 and R 22 each independently represent a single bond or * 1-R 3 -Ph- * 2.
  • R 3 is a single bond, a divalent group selected from —O—, —COO—, —OCO—, — (CH 2 ) l —, —O (CH 2 ) m O—, —CONH—, and —NHCO—.
  • * 1 represents a site that bonds to the benzene ring in the formula (ND-1-1) or (ND-1-2)
  • * 2 represents the formula (ND-1-1) or (ND-1-2).
  • n 1 to 3.
  • the substitution positions of the pyrrole ring are preferably the 2-position and the 5-position from the viewpoint of easy synthesis.
  • diamines represented by the above formulas (ND-1-1) and (ND-1-2) include diamines represented by the following formulas (n1-1) to (n1-14). Can be mentioned.
  • Examples of the diamine having a partial skeleton represented by the formula (ND-2) include diamines represented by the following formulas (ND-2-1) to (ND-2-3).
  • R 21, R 22 are each the same meaning, including the preferred embodiment and R 21, R 22 in the formula (ND-2).
  • R 24 represents a single bond or the structure of the following formula (Ar), and n represents an integer of 1 to 3. * Represents a bond.
  • any hydrogen atom of the benzene ring is a monovalent organic group such as an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or the like. It may be substituted with a group.
  • R 5 is a single bond, —O—, —COO—, —OCO—, — (CH 2 ) l —, —O (CH 2 ) m O—, —CONR—, and — It represents a divalent organic group selected from NRCO-, and k is an integer of 1 to 5.
  • R represents hydrogen or a monovalent organic group, and l and m each represent an integer of 1 to 5.
  • * 1 and * 2 represent a bond, and * 1 bonds to the benzene ring in formulas (ND-2-1) to (ND-2-3).
  • Examples of the monovalent organic group for R in the above formula (Ar) include alkyl groups having 1 to 3 carbon atoms.
  • diamines represented by the above formulas (ND-2-1) to (ND-2-3) include diamines represented by the following formulas (n2-1) to (n2-6). ..
  • diamine having a partial skeleton represented by the above formula (ND-3) or (ND-4) include diamines represented by the following formulas (ND-3-1) or (ND-4-1). Is mentioned.
  • diamine represented by the above formula (ND-3-1) include diamines represented by the following formulas (n3-1) to (n3-7).
  • diamine represented by the above formula (ND-4-1) include diamines represented by the following formulas (n4-1) to (n4-6).
  • diamine represented by the above formula (ND-5) include diamines represented by the following formulas (n5-1) to (n5-8).
  • the content of the specific diamine is preferably 5 mol% or more, more preferably 10 mol% or more, further preferably 20 mol% or more, and more preferably 50 mol% or more of the entire diamine component. Particularly preferred.
  • the specific diamine is selected from one type depending on the solubility of the polymer (P1) in the solvent, the coating property of the liquid crystal alignment agent, the alignment property of the liquid crystal when used as a liquid crystal alignment film, the voltage holding ratio, the accumulated charge, and the like. Or, two or more kinds can be used.
  • diamine component for obtaining the polymer (P1) a diamine other than the specific diamine (hereinafter, also referred to as other diamine) may be contained.
  • Other diamines include diamines represented by the following general formula (2).
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. Is. From the viewpoint of liquid crystal alignment, A 1 and A 2 are preferably hydrogen atoms or methyl groups. Examples of the structure of Y 1 are as shown in the following formulas (Y-1) to (Y-68).
  • a diamine having a thiophene or furan structure described in International Publication WO2018 / 092759 preferably a diamine represented by the following formula (sf); 2,3-diaminopyridine, 2,6-diamino Pyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, diaminoorganosiloxane such as 1,3-bis (3-aminopropyl) -tetramethyldisiloxane, aliphatic diamine such as metaxylenediamine, 4,4 Examples thereof include alicyclic diamine such as methylenebis (cyclohexylamine). Other diamines may be used alone or in combination of two or more.
  • Y 1 represents a sulfur atom or an oxygen atom
  • R 2 independently represents a single bond or * 1-R 5 —Ph- * 2
  • R 5 represents a single bond
  • * 1 represents the part couple
  • * 2 represents the part couple
  • Ph represents a phenylene group.
  • n is 1 to 3.
  • tetracarboxylic acid component As the tetracarboxylic acid component for obtaining the polymer (P1), a tetracarboxylic dianhydride represented by the following formula (1) or a derivative thereof (tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester) Or a tetracarboxylic acid dialkyl ester dihalide) (these are collectively referred to as a first tetracarboxylic acid component).
  • a tetracarboxylic dianhydride represented by the following formula (1) or a derivative thereof (tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester) Or a tetracarboxylic acid dialkyl ester dihalide) (these are collectively referred to as a first tetracarboxylic acid component).
  • X represents a tetravalent organic group. Examples thereof include at least one selected from the group consisting of the following formulas (X-1) to (X-14).
  • X and y are each independently a single bond, methylene, ethylene, propylene, ether (—O—), carbonyl (—CO—), ester (—COO—), phenylene, sulfonyl (—SO 2 —) or Represents an amide group (—CONH—),
  • Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group, and j and k each independently. , 0 or 1, m is an integer of 0 to 5. * represents a bond.
  • Preferred examples of the above formula (X-1) include structures represented by the following formulas (X1-1) to (X1-4).
  • Preferred examples of the formula (X-13) include the following formulas (X13-1) to (X13-4).
  • the content of the first tetracarboxylic acid component is preferably 5 mol% or more, more preferably 10 mol% or more, further preferably 20 mol% or more, based on the total amount of the tetracarboxylic acid component, 50 It is particularly preferably at least mol%.
  • the first tetracarboxylic acid component has properties such as solubility of the polymer (P1) in a solvent, applicability of a liquid crystal aligning agent, liquid crystal orientation when used as a liquid crystal orientation film, voltage holding ratio, and accumulated charge. Depending on the type, one type or two or more types can be used.
  • tetracarboxylic acid component for obtaining the polymer (P1) of the present invention other tetracarboxylic acid components other than the first tetracarboxylic acid component can be used.
  • the other tetracarboxylic acid component include the following tetracarboxylic acid dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester or tetracarboxylic acid dialkyl ester dihalide derived from the tetracarboxylic acid dianhydride.
  • 1,2,5,6-naphthalenetetracarboxylic dianhydride 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-anthracenetetracarboxylic dianhydride
  • Anhydride 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, bis (3,4-dicarboxyphenyl) dimethylsilane dianhydride, bis (3,4-dicarboxyphenyl) diphenylsilane dianhydride , 2,6-bis (3,4-dicarboxyphenyl) pyridine dianhydride and the like.
  • Other tetracarboxylic acid components may be used alone or in combination of two or more.
  • the terminal blocking agent is a compound capable of reacting with the unreacted acid terminal and / or amine terminal of the polyimide precursor or its imidized polymer to block these.
  • the terminal blocking agent is not particularly limited as long as it is a compound capable of blocking an acid terminal and / or an amine terminal, but a monoamine or an acid anhydride is preferable.
  • the monoamine can cap the acid end of the polyimide precursor or its imidized polymer
  • the acid anhydride can cap the amine end of the polyimide precursor or its imidized polymer.
  • Preferred examples of monoamines include aniline, 2-aminophenol, 3-aminophenol, 2-amino-m-cresol, 2-amino-p-cresol, 3-amino-o-cresol, 4-amino-o-cresol, 4-amino-m-cresol, 5-amino-o-cresol, 6-amino-m-cresol, 4-amino-2,3-xylenol, 4-amino-3,5-xylenol, 6-amino-2, 4-xylenol, 2-amino-4-ethylphenol, 3-amino-4-ethylphenol, 2-amino-4-tert-butylphenol, 2-amino-4-phenylphenol, 4-amino-2,6-diphenyl Phenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid,
  • the acid anhydride is preferably an acid anhydride having a cyclic structure or an acid anhydride having a crosslinkable group.
  • the acid anhydride include phthalic anhydride, maleic anhydride, nadic acid anhydride, cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic acid anhydride, trimetic acid anhydride, and the following formulas (m-1) to (m-6). ) And the like. You may use 2 or more types of these.
  • the liquid crystal aligning agent of the present invention is at least 1 selected from the group consisting of a second polyimide precursor and an imidized polymer thereof obtained by reacting a diamine component and a tetracarboxylic acid component together with the polymer (P1). It may further contain a seed polymer (P2).
  • the polymer (P1) has a function of excellent stored charge relaxation property
  • the polymer (P2) has a function of excellent liquid crystal alignment, which is preferable.
  • the polyimide precursor of the polymer (P2) or its imidized polymer may have the terminal blocked, and in that case, the diamine component of the polymer (P2) contains a diamine other than the specific diamine.
  • Specific examples include, in addition to the other diamines exemplified as the polymer (P1), diamines described in International Publication WO2018-159733 and International Publication WO2016-104365 for vertically aligning liquid crystals.
  • diamines described in International Publication WO2018-159733 and International Publication WO2016-104365 for vertically aligning liquid crystals.
  • polymerization initiation described in the specific diamine (4) described in International Publication WO2016-104365 and Japanese Unexamined Patent Publication No. 2018-081225 You may use diamine etc. which have a function.
  • a diamine component for obtaining the polymer (P1) may be used in addition to the diamine exemplified above. it can.
  • the diamine component for obtaining the polymer (P2) may contain at least one diamine selected from the following formulas (3), (4) and (5) from the viewpoint of enhancing the liquid crystal alignment. ..
  • a 1 and A 4 each independently represent a single bond or a divalent organic group
  • a 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group or a phosphoric acid.
  • a 3 represents a divalent organic group.
  • a is an integer of 1 to 4, and when a is 2 or more, the structures of A 2 may be the same or different.
  • b and c are each independently an integer of 1 or 2.
  • d is an integer of 0 or 1.
  • the divalent organic group for A 1 and A 4 is a divalent chain hydrocarbon group having 2 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O— , -CO-, -CO-O-, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents hydrogen.
  • Atom or a methyl group —COS—, —NR 1 —CO—NR 2 — (R 1 and R 2 each independently represent a hydrogen atom or a methyl group), —NR— (R is Represents a methyl group), pyrrolidine, piperidine, and a group (h1) substituted with a group selected from piperazine. Even if a part or all of the hydrogen atoms contained in the chain hydrocarbon group and the group (h1) are replaced with an alkyl group having 1 to 3 carbon atoms such as a methyl group or a halogen atom such as a fluorine atom or a chlorine atom. Good.
  • the divalent organic group in A 3 above is a divalent chain hydrocarbon group having 1 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O— or —CO.
  • -, -CO-O-, -NRCO- R represents a hydrogen atom or a methyl group
  • -NRCOO- R represents a hydrogen atom or a methyl group
  • -CONR- R represents a hydrogen atom or a methyl group
  • —COS— —NR 1 —CO—NR 2 — (R 1 and R 2 each independently represent a hydrogen atom or a methyl group), —NR— (R represents a methyl group.
  • Represents pyrrolidine, piperidine, and piperazine, and a group (h2) substituted with a selected group.
  • a part or all of the hydrogen atoms contained in the chain hydrocarbon group of A 3 and the group (h2) are substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group, a halogen atom such as a fluorine atom or a chlorine atom. You may.
  • Examples of the divalent chain hydrocarbon group having 1 to 20 carbon atoms include methanediyl group, ethanediyl group, n-propanediyl group, i-propanediyl group, n-butanediyl group, i-butanediyl group, sec-butanediyl group.
  • alkanediyl group such as t-butanediyl group
  • alkenediyl groups such as ethenediyl group, propenediyl group and butenediyl group
  • alkynediyl groups such as ethenediyl group, propynediyl group and butynediyl group.
  • the monovalent organic group having 1 to 20 carbon atoms in A 2 is, for example, a divalent chain hydrocarbon group having 1 to 20 carbon atoms in A 3 , a group (h2), or a group having 1 to 20 carbon atoms.
  • Part or all of the hydrogen atoms of the divalent chain hydrocarbon group and the group (h2) are substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group or a halogen atom such as a fluorine atom or a chlorine atom.
  • Examples of the group include a group obtained by adding one hydrogen atom to the group exemplified above.
  • Preferred specific examples of at least one diamine selected from the above formula (3), the following formula (4) and the following formula (5) include the following formulas (DA-3-1), (DA-4-1) to (DA-4-1). At least one diamine selected from the group consisting of DA-4-23) and (DA-5-1) to (DA-5-3) can be given.
  • the total amount of at least one diamine selected from the above formulas (3), (4) and (5) is 10 based on the total amount of the diamine components for obtaining the polymer (P2). It is preferably at least mol%.
  • the diamine component for obtaining the polymer (P1) and / or the polymer (P2) is a diamine represented by the following formula (6). It is preferable to include.
  • Y 6 represents a divalent organic group containing a structure represented by the following formula (7).
  • a 6's each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. From the viewpoint of liquid crystal alignment, A 6 is preferably a hydrogen atom or a methyl group. (D is a t-butoxycarbonyl group.)
  • Examples of the divalent organic group containing the structure represented by the above formula (7) include groups represented by the following formula (J-1) or formula (J-2).
  • R 5 is a single bond, — (CH 2 ) n — (n is an integer of 1 to 20), or — (CH 2 ) n — and any —CH 2 — are not adjacent to each other.
  • R represents a hydrogen atom or a monovalent organic group.
  • R 6 and R 7 each independently represent a group having —H, —NHD, —N (D) 2 , —NHD, or a group having —N (D) 2 .
  • R 8 represents a group having —NHD, —N (D) 2 , —NHD, or a group having —N (D) 2 .
  • D represents a t-butoxycarbonyl group. However, at least one of R 5 , R 6 and R 7 has a t-butoxycarbonyl group in the group.
  • divalent organic group represented by the above formula (J-1) or (J-2) include the following formulas (J-1-a) to (J-1-d), It is a divalent organic group represented by (J-2-1).
  • Boc represents a t-butoxycarbonyl group.
  • the tetracarboxylic acid component for obtaining the polymer (P1) can be used as the tetracarboxylic acid component for obtaining the polymer (P2).
  • the first tetracarboxylic acid component can be used from the viewpoint of enhancing the liquid crystal alignment. More preferably, the first tetracarboxylic acid component is used in an amount of 10 mol% or more based on the whole tetracarboxylic acid component used in the polymer (P2).
  • the polymer (P1) is selected from the group consisting of a first polyimide precursor having an end blocked and an imidized polymer thereof, and a diamine component containing at least one diamine selected from specific diamines. And a tetracarboxylic acid component are subjected to a (condensation) polymerization reaction and then reacted with an end-capping agent.
  • the polyimide precursor refers to a polyamic acid or a polyamic acid alkyl ester.
  • the polymer (P1) is preferably a terminal-capped polyimide precursor, and particularly preferably a terminal-capped polyamic acid.
  • the polymer (P1) is a polyimide precursor or an imidized polymer thereof by polymerizing a diamine component containing at least one diamine selected from specific diamines and a tetracarboxylic acid component. Is obtained, and further, the polyimide precursor or its imidized polymer is preferably reacted with an end-capping agent.
  • the polymer (P1) can also be obtained when the diamine component containing at least one diamine selected from the specific diamine and the tetracarboxylic acid component are polymerized or by supplying an end-capping agent during the polymerization. ..
  • the reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent.
  • the solvent used at that time is not particularly limited as long as it can dissolve the generated polyimide precursor. Specific examples of the solvent used in the reaction are shown below, but the solvent is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropanamide, 3- Examples include butoxy-N, N-dimethylpropanamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazolidinone.
  • the polyimide precursor has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, diethylene glycol mono Ethyl ether, diethylene glycol, propyl ether, or the like can be used.
  • the solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is added as it is or in the solvent after being dispersed or dissolved.
  • Method conversely, a method of dispersing a tetracarboxylic acid component in a solvent, or a method of adding a diamine component to a dissolved solution, a method of alternately adding a diamine component and a tetracarboxylic acid component to the reaction system, and the like, Any of these methods may be used.
  • the temperature at which the diamine component and the tetracarboxylic acid component are polycondensed can be selected at any temperature from -20 to 150 ° C, but is preferably from -5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high the viscosity of the reaction solution will be too high and uniform stirring will be difficult. .. Therefore, the concentration of the polymer is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the reaction can be performed at a high concentration in the initial stage and then a solvent can be added.
  • the ratio of the total number of moles of the tetracarboxylic acid component to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the usual polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyimide precursor produced.
  • the imidized polymer is a polyimide obtained by ring-closing a polyimide precursor, and in this polyimide, the ring-closing rate (also referred to as imidization rate) of the amic acid group (amide acid group) does not necessarily have to be 100%. However, it can be arbitrarily adjusted according to the purpose or purpose.
  • the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature is preferably 100 to 400 ° C., more preferably 120 to 250 ° C., and the method is preferably performed while removing the water generated by the imidization reaction outside the system. ..
  • Catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to a solution of the polyimide precursor and stirring the mixture at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is preferably 0.5 to 30 mol times, more preferably 2 to 20 mol times the amic acid group, and the amount of acid anhydride is preferably 1 to 50 mol times the amic acid group. , And more preferably 3 to 30 times by mole.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity to allow the reaction to proceed.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Particularly, acetic anhydride is preferable because purification after the reaction is facilitated.
  • the imidization ratio by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent to cause precipitation.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like.
  • the polymer precipitated by pouring it into a solvent can be collected by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the solvent in this case include alcohols, ketones, hydrocarbons and the like. It is preferable to use three or more kinds of solvents selected from these, because the efficiency of purification is further improved.
  • the polyimide precursor is a polyamic acid alkyl ester
  • a specific method for producing it is, for example, the method described in paragraphs [0054] to [0062] of International Publication WO 2011-115077. Is mentioned.
  • an end-capping agent is added. And react.
  • the amount of the end-capping agent used is not particularly limited, but is preferably 0.001 to 0.8 equivalents relative to 1 equivalent of amino groups in the diamine component involved in the polymerization reaction of the polyimide precursor or its imidized polymer. , 0.01 to 0.2 equivalents are more preferable.
  • 0.001 to 0.8 equivalents are preferable with respect to 1 equivalent of the carboxyl group (or derivative structure thereof) in the tetracarboxylic acid component involved in the polymerization reaction of the polyimide precursor or its imidized polymer, and 0.01 It is preferably about 0.2 equivalent.
  • the reaction temperature for sealing the ends is preferably -50 to 150 ° C, more preferably -30 to 100 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • the polymer (P2) is selected from the group consisting of the second polyimide precursor and its imidized polymer, and is obtained by reacting a diamine component and a tetracarboxylic acid component.
  • the reaction between the diamine component and the tetracarboxylic acid component is the same as that described in the method for producing the polymer (P1).
  • the polymer (P2) is selected from the group consisting of a terminal-blocked polyimide precursor and its imidized polymer, either during or after the production of the polyimide precursor or its imidized polymer, or both.
  • the end capping agent selected from the following formulas (R-1) to (R-2) may be reacted.
  • R 2 and R 2 ' represent a monovalent organic group.
  • N is an integer of 1-2.
  • R 2 and R 2 ′ include methyl group, 9-fluorenylmethyl group, 2,2,2-trichloroethyl group, 2-trimethylsilylethyl group, 1,1-dimethylpropynyl group, 1-methyl- 1-phenylethyl group, 1-methyl-1- (4-biphenylyl) ethyl group, 1,1-dimethyl-2-haloethyl group, 1,1-dimethyl-2-cyanoethyl group, tert-butyl group, cyclobutyl group , 1-methylcyclobutyl group, 1-adamantyl group, vinyl group, allyl group, cinnamyl group, 8-quinolyl group, N-hydroxypiperidinyl group, benzyl group, p-nitrobenzyl group, 3,4-dimethoxy- Examples thereof include 6-nitrobenzyl group and 2,4-dichlorobenzyl group.
  • tert-butyl group 2,2,2-trichloroethyl group, 2-trimethylsilylethyl group, 1,1-dimethylpropynyl group, 1-methyl-1 -(4-biphenylyl) ethyl group, 1,1-dimethyl-2-haloethyl group, 1,1-dimethyl-2-cyanoethyl group, t-butyl group, cyclobutyl group, 1-methylcyclobutyl group, vinyl group, An allyl group, a cinnamyl group and an N-hydroxypiperidinyl group are more preferable, and a 1,1-dimethyl-2-haloethyl group, a 1,1-dimethyl-2-cyanoethyl group and a tert-butyl group are particularly preferable.
  • the liquid crystal aligning agent of the present invention contains the polymer (P1) and, if necessary, the polymer (P2).
  • the content of the polymer (P1) in the liquid crystal aligning agent is preferably 2 to 10% by mass, and more preferably 3 to 8% by mass in the liquid crystal aligning agent.
  • the content of the polymer (P1) is 30 parts by mass or more based on 100 parts by mass of the total amount of the polymer (P1) and the polymer (P2). Is more preferable, 50 parts by mass or more is more preferable, 60 parts by mass or more is further preferable, and 70 parts by mass or more is most preferable.
  • the liquid crystal aligning agent of the present invention may contain a polymer other than the polymer (P1) and the polymer (P2).
  • examples of other polymers include cellulosic polymers, acrylic polymers, methacrylic polymers, polystyrene, polyamides, polysiloxanes and the like.
  • the content of the other polymer is preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass, based on 100 parts by mass of the total amount of the polymer (P1) and the polymer (P2). ..
  • the liquid crystal aligning agent usually contains an organic solvent, and the content of the organic solvent is preferably 70 to 99.9 mass% with respect to the liquid crystal aligning agent. This content can be appropriately changed depending on the coating method of the liquid crystal aligning agent and the target film thickness of the liquid crystal aligning film.
  • the organic solvent used for the liquid crystal aligning agent is preferably a solvent (also referred to as a good solvent) that dissolves the polymer (P1) and the polymer (P2).
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide or ⁇ -butyrolactone is preferable.
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass based on the total amount of the solvent contained in the liquid crystal aligning agent. Is.
  • a solvent also referred to as a poor solvent
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene Gly
  • preferable solvent combinations include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-pyrrolidone and ⁇ -.
  • the amount of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the whole solvent contained in the liquid crystal aligning agent.
  • the type and content of such a solvent are appropriately selected according to the liquid crystal alignment agent coating device, coating conditions, coating environment, and the like.
  • the liquid crystal aligning agent of the present invention includes a dielectric for the purpose of changing electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, a silane coupling agent for improving the adhesion between the liquid crystal aligning film and the substrate, and a liquid crystal.
  • Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound, and examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and 3-aminopropyltriethoxysilane.
  • liquid crystal aligning agent of the present invention may contain the following additives (CL-1) to (CL-15) in order to increase the mechanical strength of the liquid crystal aligning film.
  • the above additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. More preferably, it is 0.5 to 20 parts by mass.
  • the liquid crystal alignment film is obtained by forming a film by coating the above liquid crystal aligning agent on a substrate, preferably drying and then firing.
  • a substrate having high transparency is preferable, and as the material thereof, glass, ceramics such as silicon nitride, plastic such as acrylic resin or polycarbonate, and the like can be used. It is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving the liquid crystal is formed as the substrate from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used for the substrate on one side, and a light-reflecting material such as aluminum can be used for the electrode.
  • a method for forming a film on a substrate from a liquid crystal aligning agent screen printing, offset printing, flexo printing, inkjet method, etc. can be used, and also dip method, roll coater method, slit coater method, spinner method, spray method, etc. It can be used according to the purpose.
  • the film is preferably heated at 30 to 120 ° C., more preferably at 50 to 120 ° C. by a heating means such as a hot plate, a heat circulation type oven, an IR (infrared) type oven. It is preferable to evaporate the solvent by drying treatment for 1 minute to 10 minutes, more preferably 1 minute to 5 minutes.
  • the coating film obtained from the liquid crystal aligning agent is then preferably heated at 120 to 250 ° C., more preferably 150 ° C. by the same heating means as in the above drying treatment. It is baked at ⁇ 230 ° C.
  • the firing time varies depending on the firing temperature, but is preferably 5 minutes to 1 hour, more preferably 5 minutes to 40 minutes.
  • the thickness of the coating film after the baking treatment is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may decrease, and if it is too thick, the electric resistance of the obtained liquid crystal alignment film increases, so that it is 5 to 300 nm. Is preferred, and 10 to 200 nm is more preferred.
  • the obtained coating film is oriented. Examples of the alignment treatment method include a rubbing treatment method and a photo-alignment treatment method.
  • the surface of the coating film is irradiated with radiation polarized in a certain direction.
  • Ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used as the radiation. Among them, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are more preferable.
  • the substrate coated with the liquid crystal alignment film may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C.
  • the irradiation dose of the above radiation is preferably 1 to 10,000 mJ / cm 2 .
  • the liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, more preferably 20: 1 or more.
  • At least one treatment selected from the group consisting of heat treatment and contact treatment with a solvent may be further applied to the film subjected to the orientation treatment.
  • the heat treatment after the orientation treatment can be performed by the same heating means as the above-mentioned drying treatment and firing treatment, and is preferably performed at 180 to 250 ° C, more preferably 180 to 230 ° C.
  • the temperature of the heat treatment is performed within the above range, the contrast of the liquid crystal display element obtained by the obtained liquid crystal alignment film can be increased.
  • the time of the heat treatment varies depending on the heating temperature, but is preferably 5 minutes to 1 hour, more preferably 5 to 40 minutes.
  • the solvent used for the contact treatment with the solvent is not particularly limited as long as it is a solvent that dissolves impurities and the like attached to the liquid crystal alignment film.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like can be mentioned.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate.
  • These solvents may be one type or two or more types.
  • the contact treatment includes dipping treatment and spraying treatment (also referred to as spraying treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour, and particularly, an embodiment in which the immersion treatment is performed for 1 to 30 minutes can be mentioned.
  • the temperature at the time of contact treatment may be room temperature or warming, but is preferably 10 to 80 ° C., and 20 to 50 ° C. is mentioned.
  • ultrasonic treatment or the like may be further performed if necessary.
  • rinsing also referred to as rinsing
  • drying with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone
  • the drying temperature is preferably 50 to 150 ° C, and may be 80 to 120 ° C.
  • the drying time is preferably 10 seconds to 30 minutes, more preferably 1 to 10 minutes.
  • the liquid crystal alignment film of the present invention can be applied to various driving modes such as a TN method, an STN method, an IPS method, an FFS method, a VA method, an MVA method and a PSA method. It is suitable as a liquid crystal alignment film for an electric field type liquid crystal display element, and is particularly useful for an FFS type liquid crystal display element.
  • the liquid crystal display device of the present invention is a device obtained by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the above liquid crystal aligning agent.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that a liquid crystal display element having an active matrix structure in which a switching element such as a TFT is provided in each pixel portion forming an image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes and are patterned so that a desired image can be displayed.
  • an insulating film is provided on each substrate so as to cover the common electrodes and the segment electrodes.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by the sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, and one substrate is overlaid with the other liquid crystal alignment film surface facing each other. Glue with.
  • a liquid crystal material is injected into a space surrounded by the two substrates and the sealant through an opening provided in the sealant. Next, this opening is sealed with an adhesive.
  • the liquid crystal material may have either positive or negative dielectric anisotropy.
  • a liquid crystal having a negative dielectric anisotropy is preferable from the viewpoint of liquid crystal orientation, but it can be used properly according to the application.
  • the polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS butyl cellosolve
  • GPC device Shodex (GPC-101), column: Shodex (KD803, KD805 in series), column temperature: 50 ° C, eluent: N, N-dimethylformamide (lithium bromide-water as an additive)
  • the solvate LiBr.H 2 O
  • phosphoric acid / anhydrous crystal o-phosphoric acid
  • tetrahydrofuran THF
  • Flow rate 1.0 ml / L.
  • Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak manufactured by Polymer Laboratory) Top molecular weight (Mp) about 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak manufactured by Polymer Laboratory
  • the measurement was performed using a sample in which four kinds of 900,000, 100,000, 12,000 and 1,000 were mixed, and three kinds of 150,000, 30,000 and 4,000. Two of the mixed samples were measured separately.
  • a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display device is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • a SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the counter electrode of the first layer.
  • the film thickness of the second-layer SiN film is 500 nm and functions as an interlayer insulating film.
  • a comb-teeth-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer on the second-layer SiN film to form two pixels of a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm in length and about 5 mm in width.
  • the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb-tooth shape formed by arranging a plurality of "dogleg" -shaped electrode elements whose central portion is bent at an internal angle of 160 °.
  • each electrode element in the lateral direction is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode that forms each pixel is configured by arranging a plurality of bent "dogleg" -shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but is similar to that of the electrode element. It has a shape that resembles a bold "dogleg" bent at a part. Each pixel is divided into upper and lower parts with a central bent portion as a boundary, and has a first region on the upper side and a second region on the lower side of the bent portion.
  • the liquid crystal alignment film formed on the electrode-attached substrate is a liquid crystal alignment film formed on the second glass substrate by performing alignment processing so that the direction that equally divides the interior angle of the pixel bend portion and the liquid crystal alignment direction are orthogonal to each other.
  • a liquid crystal cell having the same structure as the liquid crystal cell used for the above-mentioned afterimage evaluation was prepared. Using this liquid crystal cell, an AC voltage of ⁇ 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Then, the pixel electrode of the liquid crystal cell and the counter electrode were short-circuited and left at room temperature for one day. After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
  • the rotation angle when the liquid crystal cell was rotated from the angle where the second region of the first pixel was darkest to the angle where the first region was darkest was calculated as the angle ⁇ .
  • the same angle ⁇ was calculated by comparing the second area and the first area.
  • ⁇ Synthesis example 2> (polyamic acid having unsealed ends) 5.29 g (26.98 mmol) of tetracarboxylic acid dianhydride TA-2 was weighed out in a 100 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 80.13 g of NMP was added, and the mixture was stirred while sending nitrogen. Dissolved. While stirring this carboxylic dianhydride solution, 2.96 g (14.86 mmol) of diamine DA-5, 2.28 g (5.41 mmol) of diamine DA-6, and 1.61 g (diamine DA-7) were obtained.
  • ⁇ Synthesis example 3> (polyamic acid with unsealed ends) 2.98 g (14.96 mmol) of diamine DA-5, 2.11 g (5.00 mmol) of diamine DA-6, and 1 of diamine DA-7 were placed in a 100 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube. .49 g (4.99 mmol) was weighed out, 74.16 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen.
  • Component 1 Component 2 blend ratio (mass ratio) is 5: 5 liquid crystal aligning agent
  • PAA-4 Component 1
  • PAA-1 Component 2
  • NMP 2.41 g, 3.00 g of BCS was added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A1).
  • No abnormalities such as turbidity or precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • a liquid crystal aligning agent (A4) was prepared in the same manner as in Example 1 except that polyamic acid solutions (PAA-5) to (PAA-8) were used instead of the polyamic acid solution (PAA-4). (A7), (A10), and (A13) were obtained.
  • a liquid crystal aligning agent (B1) was obtained in the same manner as in Example 1 except that polyamic acid solutions (PAA-2) to (PAA-3) were used instead of the polyamic acid solution (PAA-4). (B4) was obtained.
  • Component 1 Component 2 blending ratio (mass ratio) is 6: 4 liquid crystal aligning agent
  • Example 2 2.75 g of 12% by mass polyamic acid solution (PAA-4) (component 1) and 1.83 g of 12% by mass polyamic acid solution (PAA-1) (component 2) were placed in a 50 ml Erlenmeyer flask, and NMP 2.41 g, 3.00 g of BCS was added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A2). No abnormalities such as turbidity or precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • a liquid crystal aligning agent (A5) was prepared in the same manner as in Example 2 except that polyamic acid solutions (PAA-5) to (PAA-8) were used instead of the polyamic acid solution (PAA-4). (A8), (A11), and (A14) were obtained.
  • a liquid crystal aligning agent (B2) was obtained in the same manner as in Example 2 except that the polyamic acid solutions (PAA-2) to (PAA-3) were used instead of the polyamic acid solution (PAA-4). (B5) was obtained.
  • Component 1 Component 2 blending ratio (mass ratio) is 7: 3 liquid crystal aligning agent
  • Example 3 3.21 g of 12% by mass polyamic acid solution (PAA-4) (component 1) and 1.38 g of 12% by mass polyamic acid solution (PAA-1) (component 2) were placed in a 50 ml Erlenmeyer flask, and NMP 2.41 g, 3.00 g of BCS was added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A3). No abnormalities such as turbidity or precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • a liquid crystal aligning agent (A6) was prepared in the same manner as in Example 3 except that polyamic acid solutions (PAA-5) to (PAA-8) were used instead of the polyamic acid solution (PAA-4). (A9), (A12) and (A15) were obtained.
  • a liquid crystal aligning agent (B3) was obtained in the same manner as in Example 3 except that polyamic acid solutions (PAA-2) to (PAA-3) were used instead of the polyamic acid solution (PAA-4). (B6) was obtained.
  • Example 16 After filtering the liquid crystal aligning agent (A1) obtained in Example 1 with a filter having a pore size of 1.0 ⁇ m, the prepared substrate with electrodes and a columnar spacer having a height of 4 ⁇ m on which an ITO film was formed on the back surface were prepared.
  • the glass substrate was coated by spin coating. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed for 30 minutes in a hot air circulation type oven at 230 ° C. to form a coating film having a film thickness of 100 nm.
  • This coating film surface was irradiated through a polarizing plate with 0.3 J / cm 2 of linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1.
  • This substrate was baked for 30 minutes in a hot air circulation type oven at 230 ° C. to obtain a substrate with a liquid crystal alignment film.
  • a set of the above-mentioned two substrates is printed, a sealant is printed on the substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0 °, and then the seal is made.
  • the agent was cured to produce an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left overnight, and afterimage evaluation by long-term AC drive was performed.
  • the value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.26 degrees.
  • Examples 22 to 30, Comparative Examples 10 to 12> An FFS-driving liquid crystal cell was prepared in the same manner as in Example 16 except that the liquid crystal aligning agents A7 to A15 and B4 to B6 shown in Table 4 were used instead of the liquid crystal aligning agent (A1). Afterimage evaluation was performed by long-term AC drive. Table 5 shows the value of the angle ⁇ of the liquid crystal cell after the long-term AC driving in each case.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce the afterimage caused by AC drive generated in a liquid crystal display element of the IPS drive system or the FFS drive system, and thus has an afterimage characteristic.
  • a liquid crystal display element of excellent IPS drive system or FFS drive system can be obtained. Therefore, it is used particularly in a liquid crystal display device that requires high display quality.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-214005 filed on November 14, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a liquid crystal alignment agent, by which a liquid crystal alignment film having both good liquid crystal alignment properties and accumulated electric charge relaxation properties can be obtained. This liquid crystal alignment agent is characterized by containing at least one kind of polymer (P1) and an imidized polymer thereof, the polymer (P1) being selected from the group consisting of: a terminal-capped first polyimide precursor which is obtained by polymerizing a tetracarborboxylic acid component and a diamine component including at least one selected from the group consisting of diamines having partial skeletons represented by formulae (ND-1) to (ND-4), and a diamine represented by (ND-5, and then reacting the resultant with a terminal capping agent. (R1, R21, and R22 each independently represent a hydrogen atom or a methyl group, R51 and R52 each independently represent a hydrogen atom or a methyl group, and Sp3 and Sp4 represent a divalent organic group. A5 represents a single bond or a divalent organic group.)

Description

液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display device using the same
 本発明は、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display device using the same.
 現在、液晶表示素子に用いられる液晶配向膜には、多くの場合、ポリイミド膜が使用されている。このポリイミド膜の液晶配向膜は、ポリイミドの前駆体であるポリアミック酸の溶液、又は溶媒可溶性のポリイミドの溶液を基板に塗布し、焼成して得られる膜をラビング処理等の配向処理する方法により作製されている。このポリアミック酸や溶媒可溶性のポリイミドは、一般的に、テトラカルボン酸二無水物等のテトラカルボン酸誘導体と、ジアミン化合物との縮重合反応によって製造されている。 Currently, polyimide films are often used for liquid crystal alignment films used in liquid crystal display devices. The liquid crystal alignment film of this polyimide film is prepared by a method of applying a solution of a polyimide precursor polyamic acid or a solvent-soluble polyimide solution to a substrate and subjecting the film obtained by baking to an alignment treatment such as a rubbing treatment. Has been done. This polyamic acid or solvent-soluble polyimide is generally produced by a polycondensation reaction between a tetracarboxylic acid derivative such as tetracarboxylic dianhydride and a diamine compound.
 ポリアミック酸やポリイミドから得られる液晶配向膜における液晶配向性や電圧の印加に伴って発生する残像を消去する特性を向上させるためにポリアミック酸やポリイミドの末端を封止させることが提案されている。 It has been proposed to seal the ends of the polyamic acid or the polyimide in order to improve the liquid crystal alignment property of the liquid crystal alignment film obtained from the polyamic acid or the polyimide or the property of erasing the afterimage that occurs when a voltage is applied.
 例えば、特許文献1には、液晶表示素子における残像消去時間を短くするために、末端封止ポリアミック酸等から選ばれる末端封止重合体(1)、及び末端未封止ポリアミック酸等から選ばれる末端未封止重合体(2)を含有する液晶配向剤であって、該液晶配向剤中の重合体の全体に占める末端封止重合体(1)の割合が5~60重量%であることを特徴とする液晶配向剤を用いることが記載されている。
 また、特許文献2には、液晶表示素子においてDC残像を生じさせないために、第一級アミノ基を含まない末端骨格を有する第1ポリアミド酸系化合物を含む光配向膜用ワニスを用いることが記載されている。
For example, in Patent Document 1, in order to shorten the afterimage erasing time in a liquid crystal display element, the end-capping polymer (1) selected from end-capped polyamic acid and the like, and end-unsealed polyamic acid and the like are selected. A liquid crystal aligning agent containing an uncapped polymer (2), wherein the ratio of the terminal sealing polymer (1) to the total amount of the polymer in the liquid crystal aligning agent is 5 to 60% by weight. It is described that a liquid crystal aligning agent characterized by
Further, Patent Document 2 describes that a varnish for a photo-alignment film containing a first polyamic acid compound having a terminal skeleton containing no primary amino group is used in order to prevent DC afterimage in a liquid crystal display device. Has been done.
日本特許第4336922号公報Japanese Patent No. 4336922 日本特開2017-90781号公報Japanese Patent Laid-Open No. 2017-90781
 近年、液晶表示素子の高性能化、大面積化、表示デバイスの省電力化等が進み、それに加えて様々な環境下で液晶表示素子が使用されるようになり、液晶配向膜に求められる特性も厳しいものになってきた。とりわけ、液晶表示素子の利用が進むにつれ、液晶配向膜に電荷が蓄積されるという問題や、良好な液晶配向性を確保するのが困難となるという問題が顕著となってきている。 In recent years, liquid crystal display elements have been improved in performance and area, and power consumption of display devices has been improved. In addition, liquid crystal display elements have come to be used in various environments, and characteristics required for liquid crystal alignment films. Is getting tougher. In particular, as the use of liquid crystal display devices progresses, the problem that electric charges are accumulated in the liquid crystal alignment film and the problem that it becomes difficult to secure a good liquid crystal alignment property become remarkable.
 液晶配向膜に電荷が蓄積されると、短時間の駆動でも残像が発生しやすくなる。また、良好な液晶配向性を確保できなくなると光抜けや配向不良が発生しやすくなる。このため、良好な蓄積電荷緩和特性や液晶配向性に対して強い要求があるものの、従来提案されている技術では、これらの両方の要求を十分に満たすことができない場合があった。 If the charge is accumulated in the liquid crystal alignment film, an afterimage is likely to occur even when driven for a short time. In addition, if good liquid crystal alignment cannot be ensured, light leakage and alignment defects are likely to occur. For this reason, although there is a strong demand for good stored charge relaxation characteristics and liquid crystal orientation, there have been cases where the conventionally proposed technology cannot sufficiently satisfy both of these requirements.
 本発明は、上記の事情を鑑みてなされたものであり、良好な液晶配向性、及び蓄積電荷緩和特性を兼ね備えた液晶配向膜が得られる液晶配向剤を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal aligning agent that can obtain a liquid crystal aligning film having both good liquid crystal aligning property and accumulated charge relaxation property.
 本発明者らは、鋭意検討を行った結果、特定のジアミンを使用し、かつ末端が封止された特定のポリイミド系重合体を含有する液晶配向剤が、上記の課題を達成し得ることを見出した。
 本発明は、かかる知見に基づくものであり、下記を要旨とする液晶配向剤を含む発明にある。
 下記式(ND-1)~(ND-4)のいずれかで表される部分骨格を含有するジアミン、及び(ND-5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むジアミン成分と、テトラカルボン酸成分と、を重合反応させ、かつ末端封止剤と反応させて得られる、末端が封止された第1のポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(P1)を含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000010
(R、R21、R22は、それぞれ独立して、水素原子又はメチル基を表し、R51、R52は、それぞれ独立して、水素原子又はメチル基を表す。Sp3、Sp4は、それぞれ独立して2価の有機基を表す。Aは単結合又は2価の有機基を表す。)
As a result of intensive studies, the present inventors have used a specific diamine, and a liquid crystal aligning agent containing a specific polyimide-based polymer having a terminal blocked, that the above-mentioned problems can be achieved. I found it.
The present invention is based on such findings and is an invention including a liquid crystal aligning agent having the following gist.
At least one diamine selected from the group consisting of a diamine containing a partial skeleton represented by any of the following formulas (ND-1) to (ND-4) and a diamine represented by (ND-5): A diamine component containing and a tetracarboxylic acid component are polymerized, and obtained by reacting with an end-capping agent, and the end-capped first polyimide precursor and a group consisting of its imidized polymer A liquid crystal aligning agent comprising at least one polymer (P1) selected.
Figure JPOXMLDOC01-appb-C000010
(R 1 , R 21 , and R 22 each independently represent a hydrogen atom or a methyl group, and R 51 and R 52 each independently represent a hydrogen atom or a methyl group. S p3 and S p4 are , Each independently represents a divalent organic group. A 5 represents a single bond or a divalent organic group.)
 本発明の液晶配向剤によれば、良好な液晶配向性、及び蓄積電荷緩和特性を兼ね備えた液晶配向膜を得ることができる。 According to the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film having both good liquid crystal aligning property and accumulated charge relaxation property.
<重合体(P1)>
 本発明の液晶配向剤は、上記式(ND-1)~(ND-4)のいずれかで表される部分骨格を有するジアミン、及び(ND-5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むジアミン成分と、テトラカルボン酸成分との重合反応させ、かつ末端封止剤と反応させて得られる、末端が封止された第1のポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(P1)を含有する。
<Polymer (P1)>
The liquid crystal aligning agent of the present invention is selected from the group consisting of a diamine having a partial skeleton represented by any of the above formulas (ND-1) to (ND-4) and a diamine represented by (ND-5). A diamine component containing at least one diamine and a tetracarboxylic acid component, which are polymerized and reacted with an end-capping agent, to obtain a terminal-capped first polyimide precursor and imidization thereof. It contains at least one polymer (P1) selected from the group consisting of polymers.
 以下、重合体(P1)の原料となる各成分について説明する。
(特定ジアミン)
 特定ジアミンは、下記式(ND-1)~(ND-4)で表される部分骨格を有するジアミン及び(ND-5)のいずれかで表されるジアミンからなる群から選ばれる少なくとも1種のジアミンである。
Hereinafter, each component as a raw material of the polymer (P1) will be described.
(Specific diamine)
The specific diamine is at least one selected from the group consisting of a diamine having a partial skeleton represented by the following formulas (ND-1) to (ND-4) and a diamine represented by any one of (ND-5). It is a diamine.
Figure JPOXMLDOC01-appb-C000011
 上記式中、R、R21、R22は、それぞれ独立して水素原子又はメチル基を表す。R51、R52は、それぞれ独立して水素原子又はメチル基を表す。Sp3、Sp4は、2価の有機基を表す。Aは単結合又は2価の有機基を表す。
Figure JPOXMLDOC01-appb-C000011
In the above formula, R 1 , R 21 and R 22 each independently represent a hydrogen atom or a methyl group. R 51 and R 52 each independently represent a hydrogen atom or a methyl group. S p3 and S p4 represent a divalent organic group. A 5 represents a single bond or a divalent organic group.
 Sp3、Sp4の上記2価の有機基の好ましい例としては、例えば、フェニレン、ピロリジン、ピペリジン、ピペラジン、炭素数2~20の2価の鎖状炭化水素基、又は該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-O-CO-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-(Rはメチル基を表す)、ピロリジン、ピペリジン及びピペラジンから選ばれる基で置換された基が挙げられる。 Preferred examples of the divalent organic group of S p3 and S p4 include, for example, phenylene, pyrrolidine, piperidine, piperazine, a divalent chain hydrocarbon group having 2 to 20 carbon atoms, or the divalent chain form. The hydrocarbon group —CH 2 — is —O—, —CO—, —CO—O—, —O—CO—, —NRCO— (R represents a hydrogen atom or a methyl group), —NRCOO— ( R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS-, -NR- (R represents a methyl group), pyrrolidine, piperidine and piperazine. The group substituted by the selected group is mentioned.
 上記Sp3、Sp4における2価の鎖状炭化水素基としては、例えば、エチレン基、プロパンジイル基、ブタンジイル基、ペンタンジイル基、ヘキサンジル基、ヘプタンジイル基、オクタンジイル基、ノナンジイル基、デカンジイル基等が挙げられる。 Examples of the divalent chain hydrocarbon group in S p3 and S p4 include ethylene group, propanediyl group, butanediyl group, pentanediyl group, hexanezyl group, heptanediyl group, octanediyl group, nonanediyl group and decandiyl group. Can be mentioned.
 Aの上記2価の有機基の好ましい例としては、炭素数1~20の2価の鎖状炭化水素基、又は該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-O-CO-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)で置換された基等が挙げられる。
 上記Aにおける2価の鎖状炭化水素基の具体例としては、メチレン基の他、上記Sp、Spで例示した2価の鎖状炭化水素基が挙げられる。
Preferred examples of the above divalent organic group for A 5 include a divalent chain hydrocarbon group having 1 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O— , —CO—, —CO—O—, —O—CO—, —NRCO— (R represents a hydrogen atom or a methyl group), —NRCOO— (R represents a hydrogen atom or a methyl group), — Examples thereof include a group substituted with CONR- (R represents a hydrogen atom or a methyl group).
Specific examples of the divalent chain hydrocarbon group for A 5 include methylene groups and the divalent chain hydrocarbon groups exemplified for Sp 3 and Sp 4 .
 式(ND-1)で表される部分骨格を有するジアミンの好ましい例としては、下記式(ND-1-1)又は(ND-1-2)が挙げられる。
Figure JPOXMLDOC01-appb-C000012
Preferred examples of the diamine having a partial skeleton represented by the formula (ND-1) include the following formulas (ND-1-1) and (ND-1-2).
Figure JPOXMLDOC01-appb-C000012
 上記式中、R、Rは水素原子又はメチル基を表す。R11、R22はそれぞれ独立して単結合、又は*1-R-Ph-*2を表す。Rは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表す(l、mは1~5の整数を表す)。なお、*1は式(ND-1-1)又は(ND-1-2)中のベンゼン環と結合する部位を表し、*2は式(ND-1-1)又は(ND-1-2)中のアミノ基と結合する部位を表す。Phはフェニレン基を表す。nは1~3を表す。
 上記式(ND-1-1)、(ND-1-2)において、合成が容易である観点から、ピロール環の置換位置は、2位及び5位であることが好ましい。
In the above formula, R 1 and R 2 represent a hydrogen atom or a methyl group. R 11 and R 22 each independently represent a single bond or * 1-R 3 -Ph- * 2. R 3 is a single bond, a divalent group selected from —O—, —COO—, —OCO—, — (CH 2 ) l —, —O (CH 2 ) m O—, —CONH—, and —NHCO—. Represents an organic group (l and m represent an integer of 1 to 5). In addition, * 1 represents a site that bonds to the benzene ring in the formula (ND-1-1) or (ND-1-2), and * 2 represents the formula (ND-1-1) or (ND-1-2). ) Represents a site to be bonded to the amino group. Ph represents a phenylene group. n represents 1 to 3.
In the above formulas (ND-1-1) and (ND-1-2), the substitution positions of the pyrrole ring are preferably the 2-position and the 5-position from the viewpoint of easy synthesis.
 上記式(ND-1-1)、(ND-1-2)で表されるジアミンの具体例としては、下記式(n1-1)~(n1-14)のずれかで表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Specific examples of the diamines represented by the above formulas (ND-1-1) and (ND-1-2) include diamines represented by the following formulas (n1-1) to (n1-14). Can be mentioned.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式(ND-2)で表される部分骨格を有するジアミンの例としては、下記式(ND-2-1)~(ND-2-3)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000015
Examples of the diamine having a partial skeleton represented by the formula (ND-2) include diamines represented by the following formulas (ND-2-1) to (ND-2-3).
Figure JPOXMLDOC01-appb-C000015
 上記式中、R21、R22は、それぞれ、上記式(ND-2)のR21、R22と好ましい具体例を含めて同義である。R24は単結合又は以下の式(Ar)の構造を表し、nは1~3の整数を表す。*は結合手を表す。更に、ベンゼン環の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)などの1価の有機基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000016
 上記式(Ar)中、Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONR-、及び-NRCO-から選ばれる2価の有機基を表し、kは1~5の整数である。なお、Rは水素又は一価の有機基を表し、l、mは1~5の整数を表す。*1、*2は結合手を表し、*は式(ND-2-1)~式(ND-2-3)中のベンゼン環と結合する。
 上記式(Ar)のRにおける一価の有機基としては、例えば炭素数1~3のアルキル基が挙げられる。
In the above formula, R 21, R 22 are each the same meaning, including the preferred embodiment and R 21, R 22 in the formula (ND-2). R 24 represents a single bond or the structure of the following formula (Ar), and n represents an integer of 1 to 3. * Represents a bond. Further, any hydrogen atom of the benzene ring is a monovalent organic group such as an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or the like. It may be substituted with a group.
Figure JPOXMLDOC01-appb-C000016
In the above formula (Ar), R 5 is a single bond, —O—, —COO—, —OCO—, — (CH 2 ) l —, —O (CH 2 ) m O—, —CONR—, and — It represents a divalent organic group selected from NRCO-, and k is an integer of 1 to 5. R represents hydrogen or a monovalent organic group, and l and m each represent an integer of 1 to 5. * 1 and * 2 represent a bond, and * 1 bonds to the benzene ring in formulas (ND-2-1) to (ND-2-3).
Examples of the monovalent organic group for R in the above formula (Ar) include alkyl groups having 1 to 3 carbon atoms.
 上記式(ND-2-1)~(ND-2-3)で表されるジアミンの好ましい具体例としては、下記式(n2-1)~(n2-6)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Specific preferred examples of the diamines represented by the above formulas (ND-2-1) to (ND-2-3) include diamines represented by the following formulas (n2-1) to (n2-6). ..
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 上記式(ND-3)又は(ND-4)で表される部分骨格を有するジアミンの具体例としては、下記式(ND-3-1)又は(ND-4-1)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000019
Specific examples of the diamine having a partial skeleton represented by the above formula (ND-3) or (ND-4) include diamines represented by the following formulas (ND-3-1) or (ND-4-1). Is mentioned.
Figure JPOXMLDOC01-appb-C000019
 上記式(ND-3-1)で表されるジアミンの好ましい具体例としては、下記式(n3-1)~(n3-7)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000020
Specific preferred examples of the diamine represented by the above formula (ND-3-1) include diamines represented by the following formulas (n3-1) to (n3-7).
Figure JPOXMLDOC01-appb-C000020
 上記式(ND-4-1)で表されるジアミンの好ましい具体例としては、下記式(n4-1)~(n4-6)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000021
Preferred specific examples of the diamine represented by the above formula (ND-4-1) include diamines represented by the following formulas (n4-1) to (n4-6).
Figure JPOXMLDOC01-appb-C000021
 上記式(ND-5)で表されるジアミンの好ましい具体例としては、下記式(n5-1)~(n5-8)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000022
Specific preferred examples of the diamine represented by the above formula (ND-5) include diamines represented by the following formulas (n5-1) to (n5-8).
Figure JPOXMLDOC01-appb-C000022
 特定ジアミンの含有量は、ジアミン成分全体の5モル%以上であることが好ましく、10モル%以上であることが好ましく、20モル%以上であることが更に好ましく、50モル%以上であることが特に好ましい。
 特定ジアミンは、重合体(P1)の溶媒への溶解性、液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷等の特性に応じて、1種、又は2種以上使用できる。
The content of the specific diamine is preferably 5 mol% or more, more preferably 10 mol% or more, further preferably 20 mol% or more, and more preferably 50 mol% or more of the entire diamine component. Particularly preferred.
The specific diamine is selected from one type depending on the solubility of the polymer (P1) in the solvent, the coating property of the liquid crystal alignment agent, the alignment property of the liquid crystal when used as a liquid crystal alignment film, the voltage holding ratio, the accumulated charge, and the like. Or, two or more kinds can be used.
 重合体(P1)を得るためのジアミン成分としては、上記特定ジアミン以外のジアミン(以下、その他のジアミンとも言う。)を含有しても良い。その他のジアミンとして、以下の一般式(2)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000023
As the diamine component for obtaining the polymer (P1), a diamine other than the specific diamine (hereinafter, also referred to as other diamine) may be contained. Other diamines include diamines represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000023
 上記式(2)中、A及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。液晶配向性の観点から、A及びAは水素原子、又はメチル基が好ましい。Yの構造を例示すると、以下の式(Y-1)~式(Y-68)のとおりである。 In the above formula (2), A 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. Is. From the viewpoint of liquid crystal alignment, A 1 and A 2 are preferably hydrogen atoms or methyl groups. Examples of the structure of Y 1 are as shown in the following formulas (Y-1) to (Y-68).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(上記式中のBocは、tert-ブトキシカルボニル基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000027
(Boc in the above formula represents a tert-butoxycarbonyl group. * Represents a bond.)
 また、その他のジアミンとして、国際公開公報WO2018/092759号に記載のチオフェン又はフラン構造を有するジアミン、好ましくは下式(sf)で表されるジアミン;2,3-ジアミノピリジン、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のジアミノオルガノシロキサン、メタキシレンジアミン等の脂肪族ジアミン、4,4-メチレンビス(シクロヘキシルアミン)等の脂環式ジアミン等を挙げることができる。その他のジアミンは1種又は2種以上を併用することもできる。
Figure JPOXMLDOC01-appb-C000028
Further, as the other diamine, a diamine having a thiophene or furan structure described in International Publication WO2018 / 092759, preferably a diamine represented by the following formula (sf); 2,3-diaminopyridine, 2,6-diamino Pyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, diaminoorganosiloxane such as 1,3-bis (3-aminopropyl) -tetramethyldisiloxane, aliphatic diamine such as metaxylenediamine, 4,4 Examples thereof include alicyclic diamine such as methylenebis (cyclohexylamine). Other diamines may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000028
 上記式(sf)中、Yは硫黄原子又は酸素原子を表し、Rは、それぞれ独立して、単結合又は*1-R-Ph-*2を表し、Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表す(l、mは1~5の整数である。)。なお、*1は式(sf)中のベンゼン環と結合する部位を表し、*2は式(sf)中のアミノ基と結合する部位を表す。Phはフェニレン基を表す。nは1~3である。) In the above formula (sf), Y 1 represents a sulfur atom or an oxygen atom, R 2 independently represents a single bond or * 1-R 5 —Ph- * 2, and R 5 represents a single bond, Represents a divalent organic group selected from —O—, —COO—, —OCO—, — (CH 2 ) l —, —O (CH 2 ) m O—, —CONH—, and —NHCO— (l , M is an integer of 1 to 5). In addition, * 1 represents the part couple | bonded with the benzene ring in a formula (sf), and * 2 represents the part couple | bonded with the amino group in a formula (sf). Ph represents a phenylene group. n is 1 to 3. )
(テトラカルボン酸成分)
 重合体(P1)を得るためのテトラカルボン酸成分としては、下記式(1)で表されるテトラカルボン酸二無水物、又はその誘導体(テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライド)(これらを総称して、第1のテトラカルボン酸成分という。)を用いることができる。
(Tetracarboxylic acid component)
As the tetracarboxylic acid component for obtaining the polymer (P1), a tetracarboxylic dianhydride represented by the following formula (1) or a derivative thereof (tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester) Or a tetracarboxylic acid dialkyl ester dihalide) (these are collectively referred to as a first tetracarboxylic acid component).
Figure JPOXMLDOC01-appb-C000029
 上記式中、Xは、4価の有機基を表す。その例としては、下記式(X-1)~(X-14)からなる群から選ばれる少なくとも1種があげられる。
Figure JPOXMLDOC01-appb-C000029
In the above formula, X represents a tetravalent organic group. Examples thereof include at least one selected from the group consisting of the following formulas (X-1) to (X-14).
Figure JPOXMLDOC01-appb-C000030
(x及びyは、それぞれ独立に、単結合、メチレン、エチレン、プロピレン、エーテル(-O-)、カルボニル(-CO-)、エステル(-COO-)、フェニレン、スルホニル(-SO-)又はアミド基(-CONH-)を表す。Z~Zは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はフェニル基を表す。j及びkは、それぞれ独立に、0又は1の整数である。mは0~5の整数である。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000030
(X and y are each independently a single bond, methylene, ethylene, propylene, ether (—O—), carbonyl (—CO—), ester (—COO—), phenylene, sulfonyl (—SO 2 —) or Represents an amide group (—CONH—), Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group, and j and k each independently. , 0 or 1, m is an integer of 0 to 5. * represents a bond.)
 上記式(X-1)の好ましい例として、下記式(X1-1)~(X1-4)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000031
Preferred examples of the above formula (X-1) include structures represented by the following formulas (X1-1) to (X1-4).
Figure JPOXMLDOC01-appb-C000031
 上記式(X-13)の好ましい例としては、下記式(X13-1)~(X13-4)が挙げられる。
Figure JPOXMLDOC01-appb-C000032
Preferred examples of the formula (X-13) include the following formulas (X13-1) to (X13-4).
Figure JPOXMLDOC01-appb-C000032
 第1のテトラカルボン酸成分の含有量は、テトラカルボン酸成分全体の5モル%以上であることが好ましく、10モル%以上であることが好ましく、20モル%以上であることが更に好ましく、50モル%以上であることが特に好ましい。 The content of the first tetracarboxylic acid component is preferably 5 mol% or more, more preferably 10 mol% or more, further preferably 20 mol% or more, based on the total amount of the tetracarboxylic acid component, 50 It is particularly preferably at least mol%.
 第1のテトラカルボン酸成分は、重合体(P1)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷等の特性に応じて、1種、又は2種以上使用できる。 The first tetracarboxylic acid component has properties such as solubility of the polymer (P1) in a solvent, applicability of a liquid crystal aligning agent, liquid crystal orientation when used as a liquid crystal orientation film, voltage holding ratio, and accumulated charge. Depending on the type, one type or two or more types can be used.
 本発明の重合体(P1)を得るためのテトラカルボン酸成分は、第1のテトラカルボン酸成分以外のその他のテトラカルボン酸成分を使用できる。その他のテトラカルボン酸成分としては、下記するテトラカルボン酸二無水物、該テトラカルボン酸二無水物に由来するテトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
 具体的には、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-アントラセンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、ビス(3,4-ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン二無水物、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン二無水物等が挙げられる。
 その他のテトラカルボン酸成分は1種又は2種以上を混合して使用することもできる。
As the tetracarboxylic acid component for obtaining the polymer (P1) of the present invention, other tetracarboxylic acid components other than the first tetracarboxylic acid component can be used. Examples of the other tetracarboxylic acid component include the following tetracarboxylic acid dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester or tetracarboxylic acid dialkyl ester dihalide derived from the tetracarboxylic acid dianhydride.
Specifically, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-anthracenetetracarboxylic dianhydride Anhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, bis (3,4-dicarboxyphenyl) dimethylsilane dianhydride, bis (3,4-dicarboxyphenyl) diphenylsilane dianhydride , 2,6-bis (3,4-dicarboxyphenyl) pyridine dianhydride and the like.
Other tetracarboxylic acid components may be used alone or in combination of two or more.
(末端封止剤)
 本発明において、末端封止剤とは、ポリイミド前駆体又はそのイミド化重合体の有する未反応の酸末端及び/又はアミン末端と反応して、これらを封止することができる化合物である。
 末端封止剤は、酸末端及び/又はアミン末端を封止することができる化合物であれば、特に限定されないが、モノアミン又は酸無水物が好ましい。モノアミンは、ポリイミド前駆体又はそのイミド化重合体の酸末端を封止することができ、酸無水物は、ポリイミド前駆体又はそのイミド化重合体のアミン末端を封止することができる。
(End capping agent)
In the present invention, the terminal blocking agent is a compound capable of reacting with the unreacted acid terminal and / or amine terminal of the polyimide precursor or its imidized polymer to block these.
The terminal blocking agent is not particularly limited as long as it is a compound capable of blocking an acid terminal and / or an amine terminal, but a monoamine or an acid anhydride is preferable. The monoamine can cap the acid end of the polyimide precursor or its imidized polymer, and the acid anhydride can cap the amine end of the polyimide precursor or its imidized polymer.
 モノアミンの好ましい例として、アニリン、2-アミノフェノール、3-アミノフェノール、2-アミノ-m-クレゾール、2-アミノ-p-クレゾール、3-アミノ-o-クレゾール、4-アミノ-o-クレゾール、4-アミノ-m-クレゾール、5-アミノ-o-クレゾール、6-アミノ-m-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-3,5-キシレノール、6-アミノ-2,4-キシレノール、2-アミノ-4-エチルフェノール、3-アミノ-4-エチルフェノール、2-アミノ-4-tert-ブチルフェノール、2-アミノ-4-フェニルフェノール、4-アミノ-2,6-ジフェニルフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノ-m-トルエン酸、3-アミノ-o-トルエン酸、3-アミノ-p-トルエン酸、4-アミノ-m-トルエン酸、6-アミノ-o-トルエン酸、6-アミノ-m-トルエン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、4-アミノトルエン-3-スルホン酸等を挙げることができる。これらを2種以上用いてもよい。 Preferred examples of monoamines include aniline, 2-aminophenol, 3-aminophenol, 2-amino-m-cresol, 2-amino-p-cresol, 3-amino-o-cresol, 4-amino-o-cresol, 4-amino-m-cresol, 5-amino-o-cresol, 6-amino-m-cresol, 4-amino-2,3-xylenol, 4-amino-3,5-xylenol, 6-amino-2, 4-xylenol, 2-amino-4-ethylphenol, 3-amino-4-ethylphenol, 2-amino-4-tert-butylphenol, 2-amino-4-phenylphenol, 4-amino-2,6-diphenyl Phenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-amino-m-toluene acid, 3-amino-o- Toluene acid, 3-amino-p-toluene acid, 4-amino-m-toluene acid, 6-amino-o-toluene acid, 6-amino-m-toluene acid, 3-aminobenzenesulfonic acid, 4-aminobenzene Examples thereof include sulfonic acid and 4-aminotoluene-3-sulfonic acid. You may use 2 or more types of these.
 酸無水物は、環状構造を有する酸無水物又は架橋性基を有する酸無水物が好ましい。酸無水物の例として、無水フタル酸、無水マレイン酸、無水ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメット酸無水物、下記式(m-1)~(m-6)で表される化合物等を挙げることができる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000033
The acid anhydride is preferably an acid anhydride having a cyclic structure or an acid anhydride having a crosslinkable group. Examples of the acid anhydride include phthalic anhydride, maleic anhydride, nadic acid anhydride, cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic acid anhydride, trimetic acid anhydride, and the following formulas (m-1) to (m-6). ) And the like. You may use 2 or more types of these.
Figure JPOXMLDOC01-appb-C000033
<重合体(P2)>
 本発明の液晶配向剤は、重合体(P1)とともに、ジアミン成分とテトラカルボン酸成分とを反応させて得られる、第2のポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(P2)を更に含有してもよい。この場合、例えば重合体(P1)が蓄積電荷緩和特性に優れた機能を有し、重合体(P2)が液晶配向性に優れた機能を有する態様とすることができる点で好ましい。
 重合体(P2)のポリイミド前駆体又はそのイミド化重合体は、末端が封止されていてもよく、その場合において重合体(P2)のジアミン成分は上記特定ジアミン以外のジアミンを含む。具体例を挙げると、重合体(P1)で例示したその他のジアミンの他、液晶を垂直に配向させるために、国際公開公報WO2018-159733号に記載のジアミンや、国際公開公報WO2016-104365号に記載の特定ジアミン(1)等の配向性ジアミン、液晶の応答速度を高めるために、国際公開公報WO2016-104365号に記載の特定ジアミン(4)や日本特開2018-081225号に記載の重合開始機能を有するジアミン等を用いてもよい。
<Polymer (P2)>
The liquid crystal aligning agent of the present invention is at least 1 selected from the group consisting of a second polyimide precursor and an imidized polymer thereof obtained by reacting a diamine component and a tetracarboxylic acid component together with the polymer (P1). It may further contain a seed polymer (P2). In this case, for example, the polymer (P1) has a function of excellent stored charge relaxation property, and the polymer (P2) has a function of excellent liquid crystal alignment, which is preferable.
The polyimide precursor of the polymer (P2) or its imidized polymer may have the terminal blocked, and in that case, the diamine component of the polymer (P2) contains a diamine other than the specific diamine. Specific examples include, in addition to the other diamines exemplified as the polymer (P1), diamines described in International Publication WO2018-159733 and International Publication WO2016-104365 for vertically aligning liquid crystals. In order to enhance the response speed of the oriented diamine such as the specific diamine (1) described above and the liquid crystal, polymerization initiation described in the specific diamine (4) described in International Publication WO2016-104365 and Japanese Unexamined Patent Publication No. 2018-081225 You may use diamine etc. which have a function.
 重合体(P2)の末端が封止されない場合、重合体(P2)を得るためのジアミン成分として、上記で例示したジアミンの他、重合体(P1)を得るためのジアミン成分を使用することができる。
 重合体(P2)を得るためのジアミン成分は、液晶配向性を高める観点において下記の式(3)、式(4)及び式(5)から選ばれる少なくとも1種のジアミンを含有することができる。
When the end of the polymer (P2) is not blocked, as the diamine component for obtaining the polymer (P2), a diamine component for obtaining the polymer (P1) may be used in addition to the diamine exemplified above. it can.
The diamine component for obtaining the polymer (P2) may contain at least one diamine selected from the following formulas (3), (4) and (5) from the viewpoint of enhancing the liquid crystal alignment. ..
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 上記式中、A、Aはそれぞれ独立して、単結合、2価の有機基を表し、Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基を表し、Aは、2価の有機基を表す。aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。b及びcはそれぞれ独立して1又は2の整数である。dは0又は1の整数である。 In the above formula, A 1 and A 4 each independently represent a single bond or a divalent organic group, and A 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group or a phosphoric acid. Represents a group or a monovalent organic group having 1 to 20 carbon atoms, and A 3 represents a divalent organic group. a is an integer of 1 to 4, and when a is 2 or more, the structures of A 2 may be the same or different. b and c are each independently an integer of 1 or 2. d is an integer of 0 or 1.
 上記A、Aにおける2価の有機基としては、炭素数2~20の2価の鎖状炭化水素基、又は該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-CO-NR-(R、Rはそれぞれ独立して、水素原子又はメチル基を表す。)、-NR-(Rはメチル基を表す)、ピロリジン、ピペリジン、及びピペラジンから選ばれる基で置換された基(h1)を表す。尚、上記鎖状炭化水素基及び基(h1)が有する水素原子の一部又は全部をメチル基等の炭素数1~3のアルキル基、フッ素原子、塩素原子等のハロゲン原子で置換してもよい。 The divalent organic group for A 1 and A 4 is a divalent chain hydrocarbon group having 2 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O— , -CO-, -CO-O-, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents hydrogen. Atom or a methyl group), —COS—, —NR 1 —CO—NR 2 — (R 1 and R 2 each independently represent a hydrogen atom or a methyl group), —NR— (R is Represents a methyl group), pyrrolidine, piperidine, and a group (h1) substituted with a group selected from piperazine. Even if a part or all of the hydrogen atoms contained in the chain hydrocarbon group and the group (h1) are replaced with an alkyl group having 1 to 3 carbon atoms such as a methyl group or a halogen atom such as a fluorine atom or a chlorine atom. Good.
 上記Aにおける2価の有機基としては、炭素数1~20の2価の鎖状炭化水素基、又は当該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-CO-NR-(R、Rはそれぞれ独立して、水素原子又はメチル基を表す。)、-NR-(Rはメチル基を表す)、ピロリジン、ピペリジン、及びピペラジンから選ばれる基で置換された基(h2)を表す。尚、上記Aの鎖状炭化水素基及び基(h2)が有する水素原子の一部又は全部をメチル基等の炭素数1~3のアルキル基、フッ素原子、塩素原子等のハロゲン原子で置換してもよい。 The divalent organic group in A 3 above is a divalent chain hydrocarbon group having 1 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O— or —CO. -, -CO-O-, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group) Group), —COS—, —NR 1 —CO—NR 2 — (R 1 and R 2 each independently represent a hydrogen atom or a methyl group), —NR— (R represents a methyl group. Represents), pyrrolidine, piperidine, and piperazine, and a group (h2) substituted with a selected group. In addition, a part or all of the hydrogen atoms contained in the chain hydrocarbon group of A 3 and the group (h2) are substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group, a halogen atom such as a fluorine atom or a chlorine atom. You may.
 上記炭素数1~20の2価の鎖状炭化水素基としては、例えばメタンジイル基、エタンジイル基、n-プロパンジイル基、i-プロパンジイル基、n-ブタンジイル基、i-ブタンジイル基、sec-ブタンジイル基、t-ブタンジイル基等のアルカンジイル基;
 エテンジイル基、プロペンジイル基、ブテンジイル基等のアルケンジイル基;エチンジイル基、プロピンジイル基、ブチンジイル基等のアルキンジイル基等が挙げられる。
Examples of the divalent chain hydrocarbon group having 1 to 20 carbon atoms include methanediyl group, ethanediyl group, n-propanediyl group, i-propanediyl group, n-butanediyl group, i-butanediyl group, sec-butanediyl group. Group, alkanediyl group such as t-butanediyl group;
Examples thereof include alkenediyl groups such as ethenediyl group, propenediyl group and butenediyl group; and alkynediyl groups such as ethenediyl group, propynediyl group and butynediyl group.
 Aにおける炭素数1~20の1価の有機基としては、例えば上記Aの炭素数1~20の2価の鎖状炭化水素基、基(h2)、又は該炭素数1~20の2価の鎖状炭化水素基及び基(h2)が有する水素原子の一部又は全部をメチル基等の炭素数1~3のアルキル基、又は、フッ素原子、塩素原子等のハロゲン原子で置換された基として例示したものに1個の水素原子を加えた基等が挙げられる。 The monovalent organic group having 1 to 20 carbon atoms in A 2 is, for example, a divalent chain hydrocarbon group having 1 to 20 carbon atoms in A 3 , a group (h2), or a group having 1 to 20 carbon atoms. Part or all of the hydrogen atoms of the divalent chain hydrocarbon group and the group (h2) are substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group or a halogen atom such as a fluorine atom or a chlorine atom. Examples of the group include a group obtained by adding one hydrogen atom to the group exemplified above.
 上記式(3)、下記式(4)及び下記式(5)から選ばれる少なくとも1種のジアミンの好ましい具体例として、下記式(DA-3-1)、(DA-4-1)~(DA-4-23)、及び(DA-5-1)~(DA-5-3)からなる群から選ばれる少なくとも1種のジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Preferred specific examples of at least one diamine selected from the above formula (3), the following formula (4) and the following formula (5) include the following formulas (DA-3-1), (DA-4-1) to (DA-4-1). At least one diamine selected from the group consisting of DA-4-23) and (DA-5-1) to (DA-5-3) can be given.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 液晶配向性を高める観点において、上記式(3)、式(4)及び式(5)から選ばれる少なくとも1種のジアミンの合計量は、重合体(P2)を得るためのジアミン成分全体の10モル%以上であることが好ましい。 From the viewpoint of enhancing the liquid crystal alignment, the total amount of at least one diamine selected from the above formulas (3), (4) and (5) is 10 based on the total amount of the diamine components for obtaining the polymer (P2). It is preferably at least mol%.
 重合体(P1)と重合体(P2)の機能分離を高める観点において、重合体(P1)及び/又は重合体(P2)を得るためのジアミン成分は、下記式(6)で表されるジアミンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000039
 上記式中、Yは下記式(7)で表される構造を含む2価の有機基を表す。Aは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基を表す。液晶配向性の観点から、Aは水素原子、又はメチル基が好ましい。
Figure JPOXMLDOC01-appb-C000040
(Dはt-ブトキシカルボニル基である。)
From the viewpoint of enhancing the functional separation of the polymer (P1) and the polymer (P2), the diamine component for obtaining the polymer (P1) and / or the polymer (P2) is a diamine represented by the following formula (6). It is preferable to include.
Figure JPOXMLDOC01-appb-C000039
In the above formula, Y 6 represents a divalent organic group containing a structure represented by the following formula (7). A 6's each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. From the viewpoint of liquid crystal alignment, A 6 is preferably a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000040
(D is a t-butoxycarbonyl group.)
 上記式(7)で表される構造を含む2価の有機基の例としては、下記の式(J-1)又は式(J-2)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000041
Examples of the divalent organic group containing the structure represented by the above formula (7) include groups represented by the following formula (J-1) or formula (J-2).
Figure JPOXMLDOC01-appb-C000041
 上記式中、Rは単結合、-(CH-(nは1~20の整数である)、又は-(CH-の任意の-CH-がそれぞれ隣り合わない条件で-O-、-COO-、-OCO-、-NR-、-NRCO-、-CONR-、-NRCONR-、-NRCOO-、-OCOO-に置き換えられた基を表す。Rは水素原子又は1価の有機基を表す。R、Rは、それぞれ独立して、-H、-NHD、-N(D)、-NHDを有する基、又は-N(D)を有する基を表す。Rは-NHD、-N(D)、-NHDを有する基、又は-N(D)を有する基を表す。Dはt-ブトキシカルボニル基を表す。但し、R、R及びRの少なくとも一つは基中にt-ブトキシカルボニル基を有する。 In the above formula, R 5 is a single bond, — (CH 2 ) n — (n is an integer of 1 to 20), or — (CH 2 ) n — and any —CH 2 — are not adjacent to each other. Represents a group replaced with -O-, -COO-, -OCO-, -NR-, -NRCO-, -CONR-, -NRCONR-, -NRCOO-, -OCOO-. R represents a hydrogen atom or a monovalent organic group. R 6 and R 7 each independently represent a group having —H, —NHD, —N (D) 2 , —NHD, or a group having —N (D) 2 . R 8 represents a group having —NHD, —N (D) 2 , —NHD, or a group having —N (D) 2 . D represents a t-butoxycarbonyl group. However, at least one of R 5 , R 6 and R 7 has a t-butoxycarbonyl group in the group.
 上記の式(J-1)又は式(J-2)で表される2価の有機基のより好ましい具体例は、下記の式(J-1-a)~(J-1-d)、(J-2-1)で表される2価の有機基である。尚、Bocはt-ブトキシカルボニル基を表す。
Figure JPOXMLDOC01-appb-C000042
More preferred specific examples of the divalent organic group represented by the above formula (J-1) or (J-2) include the following formulas (J-1-a) to (J-1-d), It is a divalent organic group represented by (J-2-1). Boc represents a t-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000042
 重合体(P2)を得るためのテトラカルボン酸成分としては、重合体(P1)を得るためのテトラカルボン酸成分を使用できる。具体的には、液晶配向性を高める観点において、上記第1のテトラカルボン酸成分を用いることができる。更に好ましくは上記第1のテトラカルボン酸成分を重合体(P2)に用いるテトラカルボン酸成分全体の10モル%以上用いることが好ましい。 The tetracarboxylic acid component for obtaining the polymer (P1) can be used as the tetracarboxylic acid component for obtaining the polymer (P2). Specifically, the first tetracarboxylic acid component can be used from the viewpoint of enhancing the liquid crystal alignment. More preferably, the first tetracarboxylic acid component is used in an amount of 10 mol% or more based on the whole tetracarboxylic acid component used in the polymer (P2).
<重合体(P1)の製造方法>
 重合体(P1)は、末端が封止された第1のポリイミド前駆体及びそのイミド化重合体からなる群から選ばれるものであって、特定ジアミンから選ばれる少なくとも1種のジアミンを含むジアミン成分と、テトラカルボン酸成分と、を(縮)重合反応させ、かつ末端封止剤と反応させて得られる。
 ここで、ポリイミド前駆体とは、ポリアミック酸又はポリアミック酸アルキルエステルを言う。本発明の液晶配向剤において、重合体(P1)は、末端が封止されたポリイミド前駆体であることが好ましく、特に、末端が封止されたポリアミック酸がより好ましい。
<Method for producing polymer (P1)>
The polymer (P1) is selected from the group consisting of a first polyimide precursor having an end blocked and an imidized polymer thereof, and a diamine component containing at least one diamine selected from specific diamines. And a tetracarboxylic acid component are subjected to a (condensation) polymerization reaction and then reacted with an end-capping agent.
Here, the polyimide precursor refers to a polyamic acid or a polyamic acid alkyl ester. In the liquid crystal aligning agent of the present invention, the polymer (P1) is preferably a terminal-capped polyimide precursor, and particularly preferably a terminal-capped polyamic acid.
 本発明の実施形態においては、重合体(P1)は、特定ジアミンから選ばれる少なくとも1種のジアミンを含むジアミン成分とテトラカルボン酸成分とを重合反応させることによってポリイミド前駆体又はそのイミド化重合体を得て、更に、このポリイミド前駆体又はそのイミド化重合体を末端封止剤と反応させることによって得ることが好ましい。
 上記重合体(P1)は、特定ジアミンから選ばれる少なくとも1種のジアミンを含むジアミン成分とテトラカルボン酸成分とを重合させる際、又は重合中に末端封止剤を供給することにより得ることもできる。
In the embodiment of the present invention, the polymer (P1) is a polyimide precursor or an imidized polymer thereof by polymerizing a diamine component containing at least one diamine selected from specific diamines and a tetracarboxylic acid component. Is obtained, and further, the polyimide precursor or its imidized polymer is preferably reacted with an end-capping agent.
The polymer (P1) can also be obtained when the diamine component containing at least one diamine selected from the specific diamine and the tetracarboxylic acid component are polymerized or by supplying an end-capping agent during the polymerization. ..
 ジアミン成分とテトラカルボン酸成分との反応は、通常、溶媒中で行なわれる。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、ジメチルスルホキシド、又は1,3-ジメチル-イミダゾリジノンが挙げられる。ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又はエチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールものプロピルエーテル等を用いることができる。
The reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent. The solvent used at that time is not particularly limited as long as it can dissolve the generated polyimide precursor. Specific examples of the solvent used in the reaction are shown below, but the solvent is not limited to these examples.
For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropanamide, 3- Examples include butoxy-N, N-dimethylpropanamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazolidinone. If the polyimide precursor has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, diethylene glycol mono Ethyl ether, diethylene glycol, propyl ether, or the like can be used.
 これらの溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。 -These solvents may be used alone or as a mixture. Furthermore, even a solvent that does not dissolve the polyimide precursor may be used as a mixture with the above solvent as long as the generated polyimide precursor does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and causes hydrolysis of the generated polyimide precursor, it is preferable to use a dehydrated and dried solvent.
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散或いは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散或いは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、或いは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを反応系に対して交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合して反応させ重合体としてもよい。 When the diamine component and the tetracarboxylic acid component are reacted in a solvent, the solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is added as it is or in the solvent after being dispersed or dissolved. Method, conversely, a method of dispersing a tetracarboxylic acid component in a solvent, or a method of adding a diamine component to a dissolved solution, a method of alternately adding a diamine component and a tetracarboxylic acid component to the reaction system, and the like, Any of these methods may be used. Further, when using a plurality of diamine components or tetracarboxylic acid components, respectively, may be reacted in a premixed state, may be reacted individually in sequence, further low molecular weight substances reacted separately May be mixed and reacted to form a polymer.
 ジアミン成分とテトラカルボン酸成分とを重縮合せしめる温度は、-20~150℃の任意の温度を選択できるが、好ましくは-5~100℃の範囲である。反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、重合体の濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加できる。
 ポリイミド前駆体を得る重合反応においては、ジアミン成分の合計モル数に対するテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
The temperature at which the diamine component and the tetracarboxylic acid component are polycondensed can be selected at any temperature from -20 to 150 ° C, but is preferably from -5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high the viscosity of the reaction solution will be too high and uniform stirring will be difficult. .. Therefore, the concentration of the polymer is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The reaction can be performed at a high concentration in the initial stage and then a solvent can be added.
In the polymerization reaction for obtaining the polyimide precursor, the ratio of the total number of moles of the tetracarboxylic acid component to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the usual polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyimide precursor produced.
 イミド化重合体は、ポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミック酸基(アミド酸基)の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
The imidized polymer is a polyimide obtained by ring-closing a polyimide precursor, and in this polyimide, the ring-closing rate (also referred to as imidization rate) of the amic acid group (amide acid group) does not necessarily have to be 100%. However, it can be arbitrarily adjusted according to the purpose or purpose.
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、好ましくは100~400℃、より好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。 When the polyimide precursor is thermally imidized in a solution, the temperature is preferably 100 to 400 ° C., more preferably 120 to 250 ° C., and the method is preferably performed while removing the water generated by the imidization reaction outside the system. .. Catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to a solution of the polyimide precursor and stirring the mixture at -20 to 250 ° C, preferably 0 to 180 ° C.
 塩基性触媒の量は、アミック酸基の好ましくは0.5~30モル倍、より好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の好ましくは1~50モル倍、より好ましくは3~30モル倍である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。特に、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量、反応温度、反応時間を調節して制御できる。
The amount of the basic catalyst is preferably 0.5 to 30 mol times, more preferably 2 to 20 mol times the amic acid group, and the amount of acid anhydride is preferably 1 to 50 mol times the amic acid group. , And more preferably 3 to 30 times by mole.
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity to allow the reaction to proceed.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Particularly, acetic anhydride is preferable because purification after the reaction is facilitated. The imidization ratio by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 反応溶液から生成したポリイミド前駆体又はそのイミド化重合体を回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水等を挙げることができる。溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられる。これら中から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the polyimide precursor or its imidized polymer produced from the reaction solution, the reaction solution may be poured into a solvent to cause precipitation. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like. The polymer precipitated by pouring it into a solvent can be collected by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating. Further, by repeating the operation of re-dissolving the recovered polymer in a solvent and re-precipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent in this case include alcohols, ketones, hydrocarbons and the like. It is preferable to use three or more kinds of solvents selected from these, because the efficiency of purification is further improved.
 本発明においてポリイミド前駆体がポリアミック酸アルキルエステルである場合、それを製造するための具体的な方法としては、例えば、国際公開公報WO2011-115077号の段落[0054]~[0062]に記載の手法が挙げられる。 In the present invention, when the polyimide precursor is a polyamic acid alkyl ester, a specific method for producing it is, for example, the method described in paragraphs [0054] to [0062] of International Publication WO 2011-115077. Is mentioned.
 次いで、ポリイミド前駆体又はそのイミド化重合体の酸末端やアミン末端を封止するために、ポリイミド前駆体又はそのイミド化重合体を製造途中又は製造後のいずれかにおいて、末端封止剤を添加して反応させればよい。
 末端封止剤の使用量は、特に限定されないが、ポリイミド前駆体又はそのイミド化重合体の重合反応に関与するジアミン成分中のアミノ基1当量に対し、0.001~0.8当量が好ましく、0.01~0.2当量がより好ましい。
 また、ポリイミド前駆体又はそのイミド化重合体の重合反応に関与するテトラカルボン酸成分中のカルボキシル基(又はその誘導体構造)1当量に対し、0.001~0.8当量が好ましく、0.01~0.2当量が好ましい。
 末端を封止する際の反応温度は、-50~150℃が好ましく、-30~100℃がより好ましい。また、反応時間は、通常、0.1~100時間である。
Next, in order to seal the acid terminal or amine terminal of the polyimide precursor or its imidized polymer, either during or after the production of the polyimide precursor or its imidized polymer, an end-capping agent is added. And react.
The amount of the end-capping agent used is not particularly limited, but is preferably 0.001 to 0.8 equivalents relative to 1 equivalent of amino groups in the diamine component involved in the polymerization reaction of the polyimide precursor or its imidized polymer. , 0.01 to 0.2 equivalents are more preferable.
Further, 0.001 to 0.8 equivalents are preferable with respect to 1 equivalent of the carboxyl group (or derivative structure thereof) in the tetracarboxylic acid component involved in the polymerization reaction of the polyimide precursor or its imidized polymer, and 0.01 It is preferably about 0.2 equivalent.
The reaction temperature for sealing the ends is preferably -50 to 150 ° C, more preferably -30 to 100 ° C. The reaction time is usually 0.1 to 100 hours.
<重合体(P2)の製造方法>
 重合体(P2)は、第2のポリイミド前駆体及びそのイミド化重合体からなる群から選ばれるものであって、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。ジアミン成分とテトラカルボン酸成分との反応については、上記の重合体(P1)の製造方法における記載と同様である。
<Method for producing polymer (P2)>
The polymer (P2) is selected from the group consisting of the second polyimide precursor and its imidized polymer, and is obtained by reacting a diamine component and a tetracarboxylic acid component. The reaction between the diamine component and the tetracarboxylic acid component is the same as that described in the method for producing the polymer (P1).
 重合体(P2)が、末端を封止したポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる場合、ポリイミド前駆体又はそのイミド化重合体を製造途中又は製造後のいずれか又は両方において、下記式(R-1)~(R-2)から選ばれる末端封止剤を反応させればよい。 When the polymer (P2) is selected from the group consisting of a terminal-blocked polyimide precursor and its imidized polymer, either during or after the production of the polyimide precursor or its imidized polymer, or both. The end capping agent selected from the following formulas (R-1) to (R-2) may be reacted.
Figure JPOXMLDOC01-appb-C000043
(R及びR’は、1価の有機基を表す。nは1~2の整数である。)
Figure JPOXMLDOC01-appb-C000043
(R 2 and R 2 'represent a monovalent organic group. N is an integer of 1-2.)
 R及びR’の具体例としては、メチル基、9-フルオニルメチル基、2,2,2-トリクロロエチル基、2-トリメチルシリルエチル基、1,1-ジメチルプロピニル基、1-メチル-1-フェニルエチル基、1-メチル-1-(4-ビフェニルイル)エチル基、1、1-ジメチル-2-ハロエチル基、1,1-ジメチル-2-シアノエチル基、tert-ブチル基、シクロブチル基、1-メチルシクロブチル基、1-アダマンチル基、ビニル基、アリル基、シンナミル基、8-キノリル基、N-ヒドロキシピペリジニル基、ベンジル基、p-ニトロベンジル基、3,4-ジメトキシ-6-ニトロベンジル基、2,4-ジクロロベンジル基が挙げられる。なかでも、液晶表示素子製造プロセスにおける焼成温度との関係から、tert-ブチル基、2,2,2-トリクロロエチル基、2-トリメチルシリルエチル基、1,1-ジメチルプロピニル基、1-メチル-1-(4-ビフェニルイル)エチル基、1、1-ジメチル-2-ハロエチル基、1,1-ジメチル-2-シアノエチル基、t-ブチル基、シクロブチル基、1-メチルシクロブチル基、ビニル基、アリル基、シンナミル基、N-ヒドロキシピペリジニル基がより好ましく、1、1-ジメチル-2-ハロエチル基、1,1-ジメチル-2-シアノエチル基、tert-ブチル基が特に好ましい。 Specific examples of R 2 and R 2 ′ include methyl group, 9-fluorenylmethyl group, 2,2,2-trichloroethyl group, 2-trimethylsilylethyl group, 1,1-dimethylpropynyl group, 1-methyl- 1-phenylethyl group, 1-methyl-1- (4-biphenylyl) ethyl group, 1,1-dimethyl-2-haloethyl group, 1,1-dimethyl-2-cyanoethyl group, tert-butyl group, cyclobutyl group , 1-methylcyclobutyl group, 1-adamantyl group, vinyl group, allyl group, cinnamyl group, 8-quinolyl group, N-hydroxypiperidinyl group, benzyl group, p-nitrobenzyl group, 3,4-dimethoxy- Examples thereof include 6-nitrobenzyl group and 2,4-dichlorobenzyl group. Among them, tert-butyl group, 2,2,2-trichloroethyl group, 2-trimethylsilylethyl group, 1,1-dimethylpropynyl group, 1-methyl-1 -(4-biphenylyl) ethyl group, 1,1-dimethyl-2-haloethyl group, 1,1-dimethyl-2-cyanoethyl group, t-butyl group, cyclobutyl group, 1-methylcyclobutyl group, vinyl group, An allyl group, a cinnamyl group and an N-hydroxypiperidinyl group are more preferable, and a 1,1-dimethyl-2-haloethyl group, a 1,1-dimethyl-2-cyanoethyl group and a tert-butyl group are particularly preferable.
<液晶配向剤>
 本発明の液晶配向剤は、重合体(P1)、及び必要に応じて重合体(P2)を含有する。液晶配向剤における重合体(P1)の含有量は、液晶配向剤中、2~10質量%が好ましく、3~8質量%がより好ましい。
 液晶配向剤が重合体(P2)を含有する場合、重合体(P1)の含有量は、重合体(P1)と重合体(P2)との合計量100質量部に対して、30質量部以上が好ましく、50質量部以上がより好ましく、60質量部以上が更に好ましく、70質量部以上が最も好ましい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention contains the polymer (P1) and, if necessary, the polymer (P2). The content of the polymer (P1) in the liquid crystal aligning agent is preferably 2 to 10% by mass, and more preferably 3 to 8% by mass in the liquid crystal aligning agent.
When the liquid crystal aligning agent contains the polymer (P2), the content of the polymer (P1) is 30 parts by mass or more based on 100 parts by mass of the total amount of the polymer (P1) and the polymer (P2). Is more preferable, 50 parts by mass or more is more preferable, 60 parts by mass or more is further preferable, and 70 parts by mass or more is most preferable.
 本発明の液晶配向剤は、重合体(P1)及び重合体(P2)以外の他の重合体を含有していても良い。それ以外の重合体としては、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、ポリシロキサン等も挙げられる。それ以外の他の重合体の含有量は、重合体(P1)及び重合体(P2)の合計100質量部に対して、0.5~15質量部が好ましく、1~10質量部がより好ましい。 The liquid crystal aligning agent of the present invention may contain a polymer other than the polymer (P1) and the polymer (P2). Examples of other polymers include cellulosic polymers, acrylic polymers, methacrylic polymers, polystyrene, polyamides, polysiloxanes and the like. The content of the other polymer is preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass, based on 100 parts by mass of the total amount of the polymer (P1) and the polymer (P2). ..
 また、液晶配向剤は、通常、有機溶媒が含有するが、有機溶媒の含有量は、液晶配向剤に対して、70~99.9質量%であることが好ましい。この含有量は、液晶配向剤の塗布方法や目的とする液晶配向膜の膜厚によって、適宜変更することができる。
 液晶配向剤に用いる有機溶媒は、重合体(P1)及び重合体(P2)を溶解させる溶媒(良溶媒ともいう)が好ましい。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、等を挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。
 本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。
The liquid crystal aligning agent usually contains an organic solvent, and the content of the organic solvent is preferably 70 to 99.9 mass% with respect to the liquid crystal aligning agent. This content can be appropriately changed depending on the coating method of the liquid crystal aligning agent and the target film thickness of the liquid crystal aligning film.
The organic solvent used for the liquid crystal aligning agent is preferably a solvent (also referred to as a good solvent) that dissolves the polymer (P1) and the polymer (P2). For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like. Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide or γ-butyrolactone is preferable.
The good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass based on the total amount of the solvent contained in the liquid crystal aligning agent. Is.
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を使用できる。下記にその具体例を挙げる。
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチルエステル、乳酸イソアミルエステル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)等を挙げることができる。
As the liquid crystal aligning agent of the present invention, a solvent (also referred to as a poor solvent) that improves the coating property and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied can be used. Specific examples are given below.
For example, diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene Glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monobutyl ether, 1- (2-butoxyethoxy) -2- Propanol, 2- (2-butoxyethoxy) -1-propanol, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol mono Acetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, propylene glycol diacetate, n-butyl acetate, propylene acetate Glycol monoethyl ether, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, n-butyl lactate, isoamyl lactate, Examples thereof include diethylene glycol monoethyl ether and diisobutyl ketone (2,6-dimethyl-4-heptanone).
 なかでも、好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、等を挙げることができる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境等に応じて適宜選択される。 Among them, preferable solvent combinations include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-pyrrolidone and γ-. Butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N- Methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanone, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisopropyl ether, N-methyl-2 -Pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanol, N-methyl-2-pyrrolidone, γ-butyrolactone and dipropylene glycol dimethyl ether and the like can be mentioned. The amount of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the whole solvent contained in the liquid crystal aligning agent. The type and content of such a solvent are appropriately selected according to the liquid crystal alignment agent coating device, coating conditions, coating environment, and the like.
 本発明の液晶配向剤には、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的の誘電体、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。 The liquid crystal aligning agent of the present invention includes a dielectric for the purpose of changing electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, a silane coupling agent for improving the adhesion between the liquid crystal aligning film and the substrate, and a liquid crystal. A crosslinkable compound for the purpose of increasing the hardness and the density of the film when it is formed into an alignment film, and further an imidization accelerator for the purpose of efficiently promoting imidization by heating the polyimide precursor when baking the coating film. You may make it contain.
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、又はN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。 Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound, and examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and 3-aminopropyltriethoxysilane. Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4 , 7-Triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N -Benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (Oxyethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol Diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether 1,3,5, 6-tetraglycidyl-2,4-hexanediol, N, N, N ', N',-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, or Examples thereof include N, N, N ', N',-tetraglycidyl-4,4'-diaminodiphenylmethane and the like.
 また、本発明の液晶配向剤には、液晶配向膜の機械的強度を上げるために以下のような添加剤(CL-1)~(CL-15)を含有してもよい。
Figure JPOXMLDOC01-appb-C000044
Further, the liquid crystal aligning agent of the present invention may contain the following additives (CL-1) to (CL-15) in order to increase the mechanical strength of the liquid crystal aligning film.
Figure JPOXMLDOC01-appb-C000044
 上記の添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。より好ましくは、0.5~20質量部である。 The above additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. More preferably, it is 0.5 to 20 parts by mass.
<液晶配向膜の製造方法>
 液晶配向膜は、上記液晶配向剤を基板上に塗布等により被膜を形成し、好ましくは乾燥し、次いで、焼成して得られる。基板としては、透明性の高い基板が好ましく、その材質として、ガラス、窒化珪素等のセラミクス、アクリル樹脂やポリカーボネート等のプラスチック等が使用できる。基板として、液晶を駆動させるためのITO(Indium Tin Oxide)電極等が形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板には、シリコンウエハー等の不透明のものも使用でき、その電極にはアルミニウム等の光を反射する材料も使用できる。
<Method for producing liquid crystal alignment film>
The liquid crystal alignment film is obtained by forming a film by coating the above liquid crystal aligning agent on a substrate, preferably drying and then firing. As the substrate, a substrate having high transparency is preferable, and as the material thereof, glass, ceramics such as silicon nitride, plastic such as acrylic resin or polycarbonate, and the like can be used. It is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving the liquid crystal is formed as the substrate from the viewpoint of simplifying the process. Further, in the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used for the substrate on one side, and a light-reflecting material such as aluminum can be used for the electrode.
 液晶配向剤から基板上に被膜を形成する方法は、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等が使用でき、また、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法等も目的に応じて使用できる。
 基板上に液晶配向剤の被膜を形成した後、被膜は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、好ましくは30~120℃、より好ましくは50~120℃にて、好ましくは1分~10分、より好ましくは1分~5分乾燥処理することにより溶媒を蒸発させることが好ましい。
As a method for forming a film on a substrate from a liquid crystal aligning agent, screen printing, offset printing, flexo printing, inkjet method, etc. can be used, and also dip method, roll coater method, slit coater method, spinner method, spray method, etc. It can be used according to the purpose.
After forming the film of the liquid crystal aligning agent on the substrate, the film is preferably heated at 30 to 120 ° C., more preferably at 50 to 120 ° C. by a heating means such as a hot plate, a heat circulation type oven, an IR (infrared) type oven. It is preferable to evaporate the solvent by drying treatment for 1 minute to 10 minutes, more preferably 1 minute to 5 minutes.
 重合体中のイミド前駆体の熱イミド化を行う場合には、次いで、液晶配向剤から得られる被膜は、上記の乾燥処理と同様の加熱手段により、好ましくは120~250℃、より好ましくは150~230℃にて焼成処理される。焼成処理の時間は、焼成温度によっても異なるが、好ましくは5分~1時間、より好ましくは5分~40分である。 When the thermal imidization of the imide precursor in the polymer is carried out, the coating film obtained from the liquid crystal aligning agent is then preferably heated at 120 to 250 ° C., more preferably 150 ° C. by the same heating means as in the above drying treatment. It is baked at ~ 230 ° C. The firing time varies depending on the firing temperature, but is preferably 5 minutes to 1 hour, more preferably 5 minutes to 40 minutes.
 上記焼成処理後の被膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があり、厚すぎると得られる液晶配向膜の電気抵抗が大きくなるので、5~300nmが好ましく、10~200nmがより好ましい。
 上記焼成処理後に、得られた被膜は配向処理される。配向処理する方法としては、ラビング処理法、光配向処理法等が挙げられる。
The thickness of the coating film after the baking treatment is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may decrease, and if it is too thick, the electric resistance of the obtained liquid crystal alignment film increases, so that it is 5 to 300 nm. Is preferred, and 10 to 200 nm is more preferred.
After the baking treatment, the obtained coating film is oriented. Examples of the alignment treatment method include a rubbing treatment method and a photo-alignment treatment method.
 光配向処理の具体例としては、上記被膜の表面に、一定方向に偏向された放射線を照射する。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、100~400nmの波長を有する紫外線が好ましく、より好ましくは、200~400nmの波長を有する紫外線である。液晶配向性を改善するために、液晶配向膜が塗膜された基板を50~250℃で加熱しながら、紫外線を照射してもよい。また、上記放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。このようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
As a specific example of the photo-alignment treatment, the surface of the coating film is irradiated with radiation polarized in a certain direction. Ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used as the radiation. Among them, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are more preferable. In order to improve the liquid crystal alignment, the substrate coated with the liquid crystal alignment film may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C. The irradiation dose of the above radiation is preferably 1 to 10,000 mJ / cm 2 . Among them, 100 to 5,000 mJ / cm 2 is preferable. The liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
The higher the extinction ratio of polarized ultraviolet rays, the higher anisotropy can be imparted, which is preferable. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, more preferably 20: 1 or more.
 上記配向処理を施した被膜に、更に、加熱処理及び溶媒による接触処理からなる群から選ばれる少なくとも1つの処理を施してもよい。
 配向処理後の加熱処理は、上記の乾燥処理や焼成処理と同様の加熱手段により行うことができ、好ましくは180~250℃、より好ましくは180~230℃にて行われる。加熱処理の温度が、上記の範囲で行われる場合、得られる液晶配向膜によって得られる液晶表示素子のコントラストを高めることができる。加熱処理の時間は、加熱温度によっても異なるが、好ましくは5分~1時間、より好ましくは5~40分である。
At least one treatment selected from the group consisting of heat treatment and contact treatment with a solvent may be further applied to the film subjected to the orientation treatment.
The heat treatment after the orientation treatment can be performed by the same heating means as the above-mentioned drying treatment and firing treatment, and is preferably performed at 180 to 250 ° C, more preferably 180 to 230 ° C. When the temperature of the heat treatment is performed within the above range, the contrast of the liquid crystal display element obtained by the obtained liquid crystal alignment film can be increased. The time of the heat treatment varies depending on the heating temperature, but is preferably 5 minutes to 1 hour, more preferably 5 to 40 minutes.
 上記溶媒による接触処理に使用する溶媒としては、液晶配向膜に付着していた不純物等を溶解する溶媒であれば、特に限定されない。
 具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。これらの溶媒は、1種でも2種以上であってもよい。
The solvent used for the contact treatment with the solvent is not particularly limited as long as it is a solvent that dissolves impurities and the like attached to the liquid crystal alignment film.
Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like can be mentioned. Among them, water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate. These solvents may be one type or two or more types.
 上記接触処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、10秒~1時間が好ましく、特に、1~30分間浸漬処理をする態様が挙げられる。また、接触処理時の温度は、常温でも加温してもよいが、好ましくは、10~80℃であり、20~50℃が挙げられる。接触処理時に、必要に応じて、超音波処理等を、更に行ってもよい。 The contact treatment includes dipping treatment and spraying treatment (also referred to as spraying treatment). The treatment time in these treatments is preferably 10 seconds to 1 hour, and particularly, an embodiment in which the immersion treatment is performed for 1 to 30 minutes can be mentioned. The temperature at the time of contact treatment may be room temperature or warming, but is preferably 10 to 80 ° C., and 20 to 50 ° C. is mentioned. At the time of contact treatment, ultrasonic treatment or the like may be further performed if necessary.
 上記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等の低沸点溶媒によるすすぎ(リンスともいう)や乾燥を行ってもよい。その際、リンスと乾燥のどちらか一方を行っても、両方を行ってもよい。乾燥温度は、50~150℃が好ましく、80~120℃が挙げられる。また、乾燥時間は10秒~30分が好ましく、1~10分が好ましい。
 上記溶媒による接触処理を行った後、上記配向処理後の加熱処理を施してもよい。このような態様とすることで、液晶配向性に優れた液晶配向膜が得られる。
After the contact treatment, rinsing (also referred to as rinsing) or drying with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone may be performed. At that time, either one of rinsing and drying or both of them may be performed. The drying temperature is preferably 50 to 150 ° C, and may be 80 to 120 ° C. The drying time is preferably 10 seconds to 30 minutes, more preferably 1 to 10 minutes.
After the contact treatment with the solvent, the heat treatment after the orientation treatment may be performed. With such a mode, a liquid crystal alignment film having excellent liquid crystal alignment can be obtained.
<液晶表示素子>
 本発明の液晶配向膜は、TN方式、STN方式、IPS方式、FFS方式、VA方式、MVA方式、PSA方式等の種々の駆動モードに適用することができるが、IPS方式やFFS方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子に有用である。本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT等のスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
<Liquid crystal display element>
The liquid crystal alignment film of the present invention can be applied to various driving modes such as a TN method, an STN method, an IPS method, an FFS method, a VA method, an MVA method and a PSA method. It is suitable as a liquid crystal alignment film for an electric field type liquid crystal display element, and is particularly useful for an FFS type liquid crystal display element. The liquid crystal display device of the present invention is a device obtained by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the above liquid crystal aligning agent.
As an example of a method of manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that a liquid crystal display element having an active matrix structure in which a switching element such as a TFT is provided in each pixel portion forming an image display may be used.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、上記のような条件で、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を、互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておくことが好ましい。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておくことが好ましい。 Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be, for example, ITO electrodes and are patterned so that a desired image can be displayed. Next, an insulating film is provided on each substrate so as to cover the common electrodes and the segment electrodes. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by the sol-gel method. Next, under the above conditions, a liquid crystal alignment film is formed on each substrate, and one substrate is overlaid with the other liquid crystal alignment film surface facing each other. Glue with. In order to control the substrate gap, it is usually preferable to mix a spacer in the sealant. Further, it is preferable that spacers for controlling the substrate gap are also scattered on the in-plane portion where the sealant is not provided. It is preferable that a part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
 その後、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入する。次いで、この開口部を接着剤で封止する。注入には、真空注入法や大気中で毛細管現象を利用した方法が挙げられ、ODF(One Drop Fill)法を用いてもよい。液晶材料としては、誘電異方性が正負いずれのものを用いてもよい。本発明では液晶配向性の観点から負の誘電異方性を有する液晶の方が好ましいが、用途に応じて使い分けることができる。
 液晶セルに液晶材料が注入されたのち、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に、一対の偏光板を貼り付けることが好ましい。
After that, a liquid crystal material is injected into a space surrounded by the two substrates and the sealant through an opening provided in the sealant. Next, this opening is sealed with an adhesive. Examples of the injection include a vacuum injection method and a method utilizing a capillary phenomenon in the atmosphere, and an ODF (One Drop Fill) method may be used. The liquid crystal material may have either positive or negative dielectric anisotropy. In the present invention, a liquid crystal having a negative dielectric anisotropy is preferable from the viewpoint of liquid crystal orientation, but it can be used properly according to the application.
After the liquid crystal material is injected into the liquid crystal cell, the polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto. The abbreviations of the compounds and the methods for measuring each property below are as follows.
NMP:N-メチル-2-ピロリドン、   GBL:γ―ブチロラクトン
BCS:ブチルセロソルブ
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone BCS: butyl cellosolve
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
[粘度]
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレンオキシド換算値として、数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
 GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/Lを含有する。)、流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[viscosity]
Using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), the sample amount was 1.1 mL, the cone rotor TE-1 (1 ° 34 ', R24), and the temperature was 25 ° C.
[Molecular weight]
The number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as a polyethylene oxide conversion value by measuring with a GPC (normal temperature gel permeation chromatography) device.
GPC device: Shodex (GPC-101), column: Shodex (KD803, KD805 in series), column temperature: 50 ° C, eluent: N, N-dimethylformamide (lithium bromide-water as an additive) The solvate (LiBr.H 2 O) contains 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) contains 30 mmol / L, and tetrahydrofuran (THF) contains 10 ml / L.), Flow rate: 1.0 ml / L. Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak manufactured by Polymer Laboratory) Top molecular weight (Mp) about 12,000, 4,000, 1,000). In order to avoid overlapping peaks, the measurement was performed using a sample in which four kinds of 900,000, 100,000, 12,000 and 1,000 were mixed, and three kinds of 150,000, 30,000 and 4,000. Two of the mixed samples were measured separately.
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。
 始めに、電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が内角160°に屈曲した「くの字」形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した「くの字」形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
[Production of liquid crystal cell]
A liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display device is manufactured.
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 50 mm and a thickness of 0.7 mm. On the substrate, an ITO electrode having a solid pattern, which constitutes a counter electrode as a first layer, is formed. A SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the counter electrode of the first layer. The film thickness of the second-layer SiN film is 500 nm and functions as an interlayer insulating film. A comb-teeth-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer on the second-layer SiN film to form two pixels of a first pixel and a second pixel. ing. The size of each pixel is 10 mm in length and about 5 mm in width. At this time, the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer.
The pixel electrode of the third layer has a comb-tooth shape formed by arranging a plurality of "dogleg" -shaped electrode elements whose central portion is bent at an internal angle of 160 °. The width of each electrode element in the lateral direction is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode that forms each pixel is configured by arranging a plurality of bent "dogleg" -shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but is similar to that of the electrode element. It has a shape that resembles a bold "dogleg" bent at a part. Each pixel is divided into upper and lower parts with a central bent portion as a boundary, and has a first region on the upper side and a second region on the lower side of the bent portion.
 次に、液晶配向剤を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート法にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を照射した。この基板を、230℃の熱風循環式オーブンで更に30分間焼成し、液晶配向膜付き基板を得た。なお、上記電極付き基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理した。上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。 Next, after filtering the liquid crystal aligning agent with a filter having a pore size of 1.0 μm, spin coating is performed on the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface. It was applied by the method. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed for 30 minutes in a hot air circulation type oven at 230 ° C. to form a coating film having a film thickness of 100 nm. This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm having an extinction ratio of 10: 1 or more through a polarizing plate. This substrate was further baked in a hot air circulation type oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film. The liquid crystal alignment film formed on the electrode-attached substrate is a liquid crystal alignment film formed on the second glass substrate by performing alignment processing so that the direction that equally divides the interior angle of the pixel bend portion and the liquid crystal alignment direction are orthogonal to each other. Was subjected to an alignment treatment so that the alignment direction of the liquid crystal on the first substrate and the alignment direction of the liquid crystal on the second substrate coincided with each other when the liquid crystal cell was manufactured. Set the above two substrates as a set, print the sealant on the substrate, and bond the other substrate so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0 °, and then the sealant is cured. Then, an empty cell was produced. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS driven liquid crystal cell. Then, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left overnight, and then used for each evaluation.
 [長期交流駆動による残像評価]
 上記した残像評価に使用した液晶セルと同様の構造の液晶セルを準備した。
 この液晶セルを用い、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し同様の角度Δを算出した。
[Afterimage evaluation by long-term AC drive]
A liquid crystal cell having the same structure as the liquid crystal cell used for the above-mentioned afterimage evaluation was prepared.
Using this liquid crystal cell, an AC voltage of ± 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Then, the pixel electrode of the liquid crystal cell and the counter electrode were short-circuited and left at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle where the second region of the first pixel was darkest to the angle where the first region was darkest was calculated as the angle Δ. Similarly, for the second pixel, the same angle Δ was calculated by comparing the second area and the first area.
<合成例1>(末端が封止されていないポリアミック酸)
 撹拌装置及び窒素導入管付きの3L四つ口フラスコに、ジアミンDA-1を17.30g(159.98mmol)、ジアミンDA-2を58.63g(240.0mmol)、ジアミンDA-3を76.89g(240.0mmol)及びジアミンDA-4を54.63g(159.99mmol)量り取り、NMPを2458.13g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、テトラカルボン酸二無水物TA-1を171.27g(764.02mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸溶液(PAA-1)を得た。
 このポリアミック酸溶液の粘度は426mPa・sであった。また、このポリアミック酸の分子量はMn=12,380、Mw=33,250であった。
<Synthesis Example 1> (polyamic acid with unterminated ends)
In a 3 L four-necked flask equipped with a stirrer and a nitrogen inlet tube, 17.30 g (159.98 mmol) of diamine DA-1, 58.63 g (240.0 mmol) of diamine DA-2 and 76. 89 g (240.0 mmol) and diamine DA-4 (54.63 g, 159.99 mmol) were weighed out, NMP (2458.13 g) was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 171.27 g (764.02 mmol) of tetracarboxylic acid dianhydride TA-1 was added, and further NMP was added so that the solid content concentration became 12% by mass, and the mixture was added at 20 ° C. at 20 ° C. After stirring for a time, a polyamic acid solution (PAA-1) was obtained.
The viscosity of this polyamic acid solution was 426 mPa · s. The molecular weight of this polyamic acid was Mn = 12,380 and Mw = 33,250.
<合成例2>(末端が封止されていないポリアミック酸)
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、テトラカルボン酸二無水物TA-2を5.29g(26.98mmol)量り取り、NMPを80.13g加えて、窒素を送りながら撹拌し溶解させた。このカルボン酸二無水物溶液を撹拌しながら、ジアミンDA-5を2.96g(14.86mmol)、ジアミンDA-6を2.28g(5.41mmol)、及びジアミンDA-7を1.61g(5.43mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸溶液(PAA-2)を得た。
 このポリアミック酸溶液の粘度は437mPa・sであった。また、このポリアミック酸の分子量はMn=16,331、Mw=35,853であった。
<Synthesis example 2> (polyamic acid having unsealed ends)
5.29 g (26.98 mmol) of tetracarboxylic acid dianhydride TA-2 was weighed out in a 100 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 80.13 g of NMP was added, and the mixture was stirred while sending nitrogen. Dissolved. While stirring this carboxylic dianhydride solution, 2.96 g (14.86 mmol) of diamine DA-5, 2.28 g (5.41 mmol) of diamine DA-6, and 1.61 g (diamine DA-7) were obtained. (5.43 mmol), NMP was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at 40 ° C. for 20 hours to obtain a polyamic acid solution (PAA-2).
The viscosity of this polyamic acid solution was 437 mPa · s. The molecular weight of this polyamic acid was Mn = 16,331 and Mw = 35,853.
<合成例3>(末端が封止されていないポリアミック酸)
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-5を2.98g(14.96mmol)、ジアミンDA-6を2.11g(5.00mmol)、及びジアミンDA-7を1.49g(4.99mmol)量り取り、NMPを74.16g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、テトラカルボン酸二無水物TA-2を4.64g(23.66mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸溶液(PAA-3)を得た。
 このポリアミック酸溶液の粘度は443mPa・sであった。また、このポリアミック酸の分子量はMn=12,155、Mw=35,725であった。
<Synthesis example 3> (polyamic acid with unsealed ends)
2.98 g (14.96 mmol) of diamine DA-5, 2.11 g (5.00 mmol) of diamine DA-6, and 1 of diamine DA-7 were placed in a 100 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube. .49 g (4.99 mmol) was weighed out, 74.16 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 4.64 g (23.66 mmol) of tetracarboxylic dianhydride TA-2 was added, and further NMP was added so that the solid content concentration became 12% by mass, and 20 ° C. at 40 ° C. After stirring for a time, a polyamic acid solution (PAA-3) was obtained.
The viscosity of this polyamic acid solution was 443 mPa · s. The molecular weight of this polyamic acid was Mn = 12,155 and Mw = 35,725.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
<合成例4>(末端が封止されたポリアミック酸)
 50mL三角フラスコに、ポリアミック酸(PAA-2)を20.0g量り取り、末端封止剤MA-1を0.035g(0.38mmol、重合反応に関与するジアミン中のアミノ基1当量に対して0.04当量)加え、40℃で20時間撹拌して、ポリアミック酸溶液(PAA-4)を得た。ポリアミック酸溶液(PAA-4)は酸末端が封止された。
<Synthesis Example 4> (Polyamic acid having a terminal blocked)
Into a 50 mL Erlenmeyer flask, 20.0 g of polyamic acid (PAA-2) was weighed out, and 0.035 g (0.38 mmol) of the terminal blocking agent MA-1 was added to 1 equivalent of amino groups in the diamine involved in the polymerization reaction. 0.04 eq) was added and stirred at 40 ° C. for 20 hours to obtain a polyamic acid solution (PAA-4). The acid end of the polyamic acid solution (PAA-4) was blocked.
<合成例5~8>(末端が封止されたポリアミック酸)
 下記表2に示す、ポリアミック酸溶液と末端封止剤を使用し、それぞれ、合成例4と同様に実施することにより、下記表2に示すポリアミック酸溶液(PAA-5)~(PAA-8)を得た。ポリアミック酸溶液(PAA-5)は酸末端が封止され、ポリアミック酸溶液(PAA-6)~(PAA-8)はアミン末端が封止された。
<Synthesis Examples 5 to 8> (Polyamic acid having a terminal blocked)
The polyamic acid solution and the terminal blocking agent shown in Table 2 below were used, and each was carried out in the same manner as in Synthesis Example 4 to obtain the polyamic acid solutions (PAA-5) to (PAA-8) shown in Table 2 below. Got The polyamic acid solution (PAA-5) was capped at the acid end, and the polyamic acid solutions (PAA-6) to (PAA-8) were capped at the amine end.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
(成分1:成分2のブレンド比(質量比)が5:5である液晶配向剤)
<実施例1>
 12質量%のポリアミック酸溶液(PAA-4)(成分1)2.29gと12質量%のポリアミック酸溶液(PAA-1)(成分2)2.29gを50ml三角フラスコに取り、NMP2.41g、BCS3.00gを加え、25℃にて2時間混合して、液晶配向剤(A1)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
(Component 1: Component 2 blend ratio (mass ratio) is 5: 5 liquid crystal aligning agent)
<Example 1>
2.29 g of 12 mass% polyamic acid solution (PAA-4) (component 1) and 2.29 g of 12 mass% polyamic acid solution (PAA-1) (component 2) were placed in a 50 ml Erlenmeyer flask, and NMP of 2.41 g, 3.00 g of BCS was added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A1). No abnormalities such as turbidity or precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<実施例4、7、10、13>
 ポリアミック酸溶液(PAA-4)の代わりに、ポリアミック酸溶液(PAA-5)~(PAA-8)を用いた以外は、実施例1と同様に実施することにより、液晶配向剤(A4)、(A7)、(A10)、(A13)を得た。
<比較例1、4>
 ポリアミック酸溶液(PAA-4)の代わりに、ポリアミック酸溶液(PAA-2)~(PAA-3)を用いた以外は、実施例1と同様に実施することにより、液晶配向剤(B1)と(B4)を得た。
<Examples 4, 7, 10, 13>
A liquid crystal aligning agent (A4) was prepared in the same manner as in Example 1 except that polyamic acid solutions (PAA-5) to (PAA-8) were used instead of the polyamic acid solution (PAA-4). (A7), (A10), and (A13) were obtained.
<Comparative Examples 1 and 4>
A liquid crystal aligning agent (B1) was obtained in the same manner as in Example 1 except that polyamic acid solutions (PAA-2) to (PAA-3) were used instead of the polyamic acid solution (PAA-4). (B4) was obtained.
(成分1:成分2のブレンド比(質量比)が6:4である液晶配向剤)
<実施例2>
 12質量%のポリアミック酸溶液(PAA-4)(成分1)2.75gと12質量%のポリアミック酸溶液(PAA-1)(成分2)1.83gを50ml三角フラスコに取り、NMP2.41g、BCS3.00gを加え、25℃にて2時間混合して、液晶配向剤(A2)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
(Component 1: Component 2 blending ratio (mass ratio) is 6: 4 liquid crystal aligning agent)
<Example 2>
2.75 g of 12% by mass polyamic acid solution (PAA-4) (component 1) and 1.83 g of 12% by mass polyamic acid solution (PAA-1) (component 2) were placed in a 50 ml Erlenmeyer flask, and NMP 2.41 g, 3.00 g of BCS was added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A2). No abnormalities such as turbidity or precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<実施例5、8、11、14>
 ポリアミック酸溶液(PAA-4)の代わりに、ポリアミック酸溶液(PAA-5)~(PAA-8)を用いた以外は、実施例2と同様に実施することにより、液晶配向剤(A5)、(A8)、(A11)、(A14)を得た。
<比較例2、5>
 ポリアミック酸溶液(PAA-4)の代わりに、ポリアミック酸溶液(PAA-2)~(PAA-3)を用いた以外は、実施例2と同様に実施することにより、液晶配向剤(B2)と(B5)を得た。
<Examples 5, 8, 11, 14>
A liquid crystal aligning agent (A5) was prepared in the same manner as in Example 2 except that polyamic acid solutions (PAA-5) to (PAA-8) were used instead of the polyamic acid solution (PAA-4). (A8), (A11), and (A14) were obtained.
<Comparative examples 2 and 5>
A liquid crystal aligning agent (B2) was obtained in the same manner as in Example 2 except that the polyamic acid solutions (PAA-2) to (PAA-3) were used instead of the polyamic acid solution (PAA-4). (B5) was obtained.
(成分1:成分2のブレンド比(質量比)が7:3である液晶配向剤)
<実施例3>
 12質量%のポリアミック酸溶液(PAA-4)(成分1)3.21gと12質量%のポリアミック酸溶液(PAA-1)(成分2)1.38gを50ml三角フラスコに取り、NMP2.41g、BCS3.00gを加え、25℃にて2時間混合して、液晶配向剤(A3)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
(Component 1: Component 2 blending ratio (mass ratio) is 7: 3 liquid crystal aligning agent)
<Example 3>
3.21 g of 12% by mass polyamic acid solution (PAA-4) (component 1) and 1.38 g of 12% by mass polyamic acid solution (PAA-1) (component 2) were placed in a 50 ml Erlenmeyer flask, and NMP 2.41 g, 3.00 g of BCS was added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A3). No abnormalities such as turbidity or precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<実施例6、9、12、15>
 ポリアミック酸溶液(PAA-4)の代わりに、ポリアミック酸溶液(PAA-5)~(PAA-8)を用いた以外は、実施例3と同様に実施することにより、液晶配向剤(A6)、(A9)、(A12)、(A15)を得た。
<比較例3、6>
 ポリアミック酸溶液(PAA-4)の代わりに、ポリアミック酸溶液(PAA-2)~(PAA-3)を用いた以外は、実施例3と同様に実施することにより、液晶配向剤(B3)と(B6)を得た。
<Examples 6, 9, 12, 15>
A liquid crystal aligning agent (A6) was prepared in the same manner as in Example 3 except that polyamic acid solutions (PAA-5) to (PAA-8) were used instead of the polyamic acid solution (PAA-4). (A9), (A12) and (A15) were obtained.
<Comparative Examples 3 and 6>
A liquid crystal aligning agent (B3) was obtained in the same manner as in Example 3 except that polyamic acid solutions (PAA-2) to (PAA-3) were used instead of the polyamic acid solution (PAA-4). (B6) was obtained.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
(長期交流駆動による残像評価結果)
<実施例16>
 実施例1で得られた液晶配向剤(A1)を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.3J/cm照射した。この基板を、230℃の熱風循環式オーブンで30分間焼成し、液晶配向膜付き基板を得た。
(Result of afterimage evaluation by long-term AC drive)
<Example 16>
After filtering the liquid crystal aligning agent (A1) obtained in Example 1 with a filter having a pore size of 1.0 μm, the prepared substrate with electrodes and a columnar spacer having a height of 4 μm on which an ITO film was formed on the back surface were prepared. The glass substrate was coated by spin coating. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed for 30 minutes in a hot air circulation type oven at 230 ° C. to form a coating film having a film thickness of 100 nm. This coating film surface was irradiated through a polarizing plate with 0.3 J / cm 2 of linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1. This substrate was baked for 30 minutes in a hot air circulation type oven at 230 ° C. to obtain a substrate with a liquid crystal alignment film.
 得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.26度であった。 A set of the above-mentioned two substrates is printed, a sealant is printed on the substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0 °, and then the seal is made. The agent was cured to produce an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS driven liquid crystal cell. After that, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left overnight, and afterimage evaluation by long-term AC drive was performed. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.26 degrees.
<実施例17~21、比較例7~9>
 液晶配向剤(A1)の代わりに、それぞれ、表3に示した液晶配向剤A2~A5、B1~B3をそれぞれ用いた以外は、実施例16と全く同様の方法でFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を、表4に示す。
<Examples 17 to 21, Comparative Examples 7 to 9>
An FFS-driving liquid crystal cell was produced in the same manner as in Example 16 except that the liquid crystal aligning agents A2 to A5 and B1 to B3 shown in Table 3 were used instead of the liquid crystal aligning agent (A1). Afterimage evaluation was performed by long-term AC drive. Table 4 shows the values of the angle Δ of the liquid crystal cell after the long-term AC driving.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
<実施例22~30、比較例10~12>
 液晶配向剤(A1)の代わりに、それぞれ、表4に示した液晶配向剤A7~A15、B4~B6をそれぞれ用いた以外は、実施例16と全く同様の方法でFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を、表5に示す。
<Examples 22 to 30, Comparative Examples 10 to 12>
An FFS-driving liquid crystal cell was prepared in the same manner as in Example 16 except that the liquid crystal aligning agents A7 to A15 and B4 to B6 shown in Table 4 were used instead of the liquid crystal aligning agent (A1). Afterimage evaluation was performed by long-term AC drive. Table 5 shows the value of the angle Δ of the liquid crystal cell after the long-term AC driving in each case.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 表4において、比較例7と実施例16、19、比較例8と実施例17、20、比較例9と実施例18、21を比べると、酸末端をモノアミンで修飾したポリアミック酸をブレンドした場合に、交流駆動による残像が低減する傾向にあることがわかる。
 また、表5において、比較例10と実施例22、25、28、比較例11と実施例23、26、29、比較例12と実施例24、26、30をそれぞれ比べると、アミン末端をカルボン酸無水物で修飾したポリアミック酸をブレンドした場合に、長期交流駆動による残像が低減する傾向にあることが確認された。
 ブレンド比が同じ比較例と実施例について、そのΔ値の差分をとると、成分1のブレンド比率が高い時ほど、比較例のΔ値と実施例のΔ値の差は大きくなる傾向にあった。このことから、本手法は成分1の比率を高めたい場合に特に有用である。
In Table 4, comparing Comparative Example 7 with Examples 16 and 19, Comparative Example 8 with Examples 17 and 20, and Comparative Example 9 with Examples 18 and 21, when blending the polyamic acid whose acid terminal is modified with monoamine It can be seen that the afterimage tends to decrease due to the AC drive.
Further, in Table 5, when comparing Comparative Example 10 with Examples 22, 25, 28, Comparative Example 11 with Examples 23, 26, 29, and Comparative Example 12 with Examples 24, 26, 30, respectively, the amine terminal was compared with the carboxyl group. It was confirmed that when blending a polyamic acid modified with an acid anhydride, the afterimage due to long-term AC drive tends to decrease.
Taking the difference between the Δ values of the comparative example and the example having the same blend ratio, the difference between the Δ value of the comparative example and the Δ value of the example tended to increase as the blend ratio of the component 1 was higher. .. Therefore, this method is particularly useful when it is desired to increase the ratio of component 1.
 本発明の液晶配向剤から得られる液晶配向膜は、液晶パネル製造における歩留りが高く、且つIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。そのため、特に、高い表示品位が求められる液晶表示素子において使用される。
 なお、2018年11月14日に出願された日本特許出願2018-214005号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce the afterimage caused by AC drive generated in a liquid crystal display element of the IPS drive system or the FFS drive system, and thus has an afterimage characteristic. A liquid crystal display element of excellent IPS drive system or FFS drive system can be obtained. Therefore, it is used particularly in a liquid crystal display device that requires high display quality.
In addition, the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-214005 filed on November 14, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Claims (13)

  1.  下記式(ND-1)~(ND-4)のいずれかで表される部分骨格を含有するジアミン、及び(ND-5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むジアミン成分と、テトラカルボン酸成分と、を重合反応させ、かつ末端封止剤と反応させて得られる、末端が封止された第1のポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(P1)を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (R、R21、R22は、それぞれ独立して、水素原子又はメチル基を表し、R51、R52は、それぞれ独立して、水素原子又はメチル基を表す。Sp3、Sp4は、それぞれ独立して2価の有機基を表す。Aは単結合又は2価の有機基を表す。)
    At least one diamine selected from the group consisting of a diamine containing a partial skeleton represented by any of the following formulas (ND-1) to (ND-4) and a diamine represented by (ND-5): A diamine component containing and a tetracarboxylic acid component are polymerized, and obtained by reacting with an end-capping agent, and the end-capped first polyimide precursor and a group consisting of its imidized polymer A liquid crystal aligning agent comprising at least one polymer (P1) selected.
    Figure JPOXMLDOC01-appb-C000001
    (R 1 , R 21 , and R 22 each independently represent a hydrogen atom or a methyl group, and R 51 and R 52 each independently represent a hydrogen atom or a methyl group. S p3 and S p4 are , Each independently represents a divalent organic group. A 5 represents a single bond or a divalent organic group.)
  2.  前記テトラカルボン酸成分が、下記式(1)で表されるテトラカルボン酸二無水物を含む、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (Xは、下記式(X-1)~(X-14)から選ばれる4価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (x及びyは、それぞれ独立に、単結合、メチレン、エチレン、プロピレン、エーテル、カルボニル、エステル、フェニレン、スルホニル又はアミド基を表す。Z~Zは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はフェニル基を表す。j及びkは、0又は1の整数である。mは0~5の整数である。*は結合手を表す。)
    The liquid crystal aligning agent according to claim 1, wherein the tetracarboxylic acid component contains a tetracarboxylic dianhydride represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (X represents a tetravalent organic group selected from the following formulas (X-1) to (X-14).)
    Figure JPOXMLDOC01-appb-C000003
    (X and y each independently represent a single bond, methylene, ethylene, propylene, ether, carbonyl, ester, phenylene, sulfonyl or amide group. Z 1 to Z 4 are each independently hydrogen atom, methyl Represents a group, an ethyl group, a propyl group, a chlorine atom or a phenyl group, j and k are integers of 0 or 1, m is an integer of 0 to 5, and * represents a bond.)
  3.  前記式(1)で表されるテトラカルボン酸二無水物の含有量が、テトラカルボン酸成分全体の5モル%以上である、請求項2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 2, wherein the content of the tetracarboxylic dianhydride represented by the formula (1) is 5 mol% or more of the total tetracarboxylic acid component.
  4.  上記式(ND-1)~(ND-4)で表される部分骨格を含有するジアミン及び(ND-5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンの含有量が、ジアミン成分全体の5モル%以上である、請求項1~3のいずれか1項に記載の液晶配向剤。 The content of at least one diamine selected from the group consisting of diamines containing the partial skeletons represented by the above formulas (ND-1) to (ND-4) and diamines represented by (ND-5) is The liquid crystal aligning agent according to any one of claims 1 to 3, which is 5 mol% or more of the entire diamine component.
  5.  前記ジアミン成分が、前記式(ND-1)~(ND-4)で表される部分骨格を含有するジアミン及び(ND-5)で表されるジアミンからなる群から選ばれるジアミンを少なくとも2種含有する、請求項1~4のいずれか1項に記載の液晶配向剤。 The diamine component is at least two diamines selected from the group consisting of diamines containing the partial skeletons represented by the formulas (ND-1) to (ND-4) and diamines represented by (ND-5). The liquid crystal aligning agent according to any one of claims 1 to 4, which is contained.
  6.  前記(ND-1)で表される部分骨格を含有するジアミンが、下記式(ND-1-1)又は(ND-1-2)で表されるジアミンである、請求項1~5のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (R、Rは、それぞれ独立して水素原子又はメチル基を表し、R11、R22はそれぞれ独立して単結合、又は*1-R-Ph-*2を表し、Rは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表す(l、mは1~5の整数を表す)。*1は式(ND-1-1)又は(ND-1-2)中のベンゼン環と結合する部位を表し、*2は式(ND-1-1)又は(ND-1-2)中のアミノ基と結合する部位を表す。Phはフェニレン基を表す。nは1~3の整数である。)
    6. The diamine having a partial skeleton represented by (ND-1) is a diamine represented by the following formula (ND-1-1) or (ND-1-2). The liquid crystal aligning agent according to item 1.
    Figure JPOXMLDOC01-appb-C000004
    (R 1 and R 2 each independently represent a hydrogen atom or a methyl group, R 11 and R 22 each independently represent a single bond, or * 1-R 3 -Ph- * 2, and R 3 is A single bond, a divalent organic group selected from —O—, —COO—, —OCO—, — (CH 2 ) l —, —O (CH 2 ) m O—, —CONH—, and —NHCO— Represents (l and m represent an integer of 1 to 5) * 1 represents a site bonded to the benzene ring in formula (ND-1-1) or (ND-1-2), and * 2 represents formula (ND). (ND-1-1) or (ND-1-2) represents a site that binds to an amino group, Ph represents a phenylene group, and n is an integer of 1 to 3.)
  7.  ジアミン成分とテトラカルボン酸成分とを反応させて得られる、第2のポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(P2)を更に含有する、請求項1~6のいずれか1項に記載の液晶配向剤。 The at least one polymer (P2) selected from the group consisting of a second polyimide precursor and its imidized polymer, which is obtained by reacting a diamine component and a tetracarboxylic acid component, is further contained. 7. The liquid crystal aligning agent according to any one of items 6 to 6.
  8.  前記重合体(P2)の原料であるジアミン成分が、下記式(3)、下記式(4)及び下記式(5)からなる群から選ばれる少なくとも1種のジアミンを含有する、請求項7に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (A、Aはそれぞれ独立して、単結合、又は2価の有機基を表し、Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基を表し、Aは、2価の有機基を表す。aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。b及びcはそれぞれ独立して1~2の整数である。dは0又は1の整数である。)
    The diamine component which is a raw material of the polymer (P2) contains at least one diamine selected from the group consisting of the following formula (3), the following formula (4) and the following formula (5). The liquid crystal aligning agent described.
    Figure JPOXMLDOC01-appb-C000005
    (A 1 and A 4 each independently represent a single bond or a divalent organic group, A 2 represents a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphoric acid group, Or a monovalent organic group having 1 to 20 carbon atoms, A 3 represents a divalent organic group, a is an integer of 1 to 4, and when a is 2 or more, the structure of A 2 is the same. B and c are each independently an integer of 1 to 2, and d is an integer of 0 or 1.)
  9.  前記重合体(P2)の原料であるジアミン成分が、下記式(DA-3-1)、(DA-4-1)~(DA-4-23)、及び(DA-5-1)~(DA-5-3)よりなる群から選ばれる少なくとも1種のジアミンを含有する、請求項7~8のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    The diamine component which is a raw material of the polymer (P2) is represented by the following formulas (DA-3-1), (DA-4-1) to (DA-4-23), and (DA-5-1) to (DA-5-1). The liquid crystal aligning agent according to any one of claims 7 to 8, containing at least one diamine selected from the group consisting of DA-5-3).
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
  10.  前記末端封止剤が、酸無水物又はモノアミンである、請求項1~9のずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 9, wherein the terminal blocking agent is an acid anhydride or a monoamine.
  11.  前記重合体(P1)の含有量は、前記重合体(P1)と前記重合体(P2)との合計量100質量部に対して、30質量部以上である、請求項7~10のいずれか1項に記載の液晶配向剤。 The content of the polymer (P1) is 30 parts by mass or more based on 100 parts by mass of the total amount of the polymer (P1) and the polymer (P2). The liquid crystal aligning agent according to item 1.
  12.  請求項1~11のいずれか1項に記載の液晶配向剤を塗布し、焼成して得られた膜に、偏光された紫外線を照射して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying polarized ultraviolet light to a film obtained by applying the liquid crystal alignment agent according to any one of claims 1 to 11 and baking it.
  13.  請求項12に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 12.
PCT/JP2019/044415 2018-11-14 2019-11-12 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same WO2020100918A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217007766A KR20210090158A (en) 2018-11-14 2019-11-12 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using same
JP2020556128A JP7494734B2 (en) 2018-11-14 2019-11-12 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
CN201980075282.2A CN113015935A (en) 2018-11-14 2019-11-12 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP2024028088A JP2024063092A (en) 2018-11-14 2024-02-28 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-214005 2018-11-14
JP2018214005 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020100918A1 true WO2020100918A1 (en) 2020-05-22

Family

ID=70730413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044415 WO2020100918A1 (en) 2018-11-14 2019-11-12 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same

Country Status (5)

Country Link
JP (2) JP7494734B2 (en)
KR (1) KR20210090158A (en)
CN (1) CN113015935A (en)
TW (1) TWI821453B (en)
WO (1) WO2020100918A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930247A (en) * 2020-07-13 2022-01-14 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN113930248A (en) * 2020-07-13 2022-01-14 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022176680A1 (en) * 2021-02-16 2022-08-25 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) * 2021-03-09 2022-09-15 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115724757A (en) * 2021-08-25 2023-03-03 臻鼎科技股份有限公司 Diamine monomer compound, preparation method thereof, resin, flexible film and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090781A (en) * 2015-11-13 2017-05-25 株式会社ジャパンディスプレイ Varnish for optical alignment film and liquid crystal display
WO2017126627A1 (en) * 2016-01-22 2017-07-27 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element using same
WO2018062197A1 (en) * 2016-09-29 2018-04-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2018110354A1 (en) * 2016-12-15 2018-06-21 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336922B2 (en) 2000-04-12 2009-09-30 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090781A (en) * 2015-11-13 2017-05-25 株式会社ジャパンディスプレイ Varnish for optical alignment film and liquid crystal display
WO2017126627A1 (en) * 2016-01-22 2017-07-27 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element using same
WO2018062197A1 (en) * 2016-09-29 2018-04-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2018110354A1 (en) * 2016-12-15 2018-06-21 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930247A (en) * 2020-07-13 2022-01-14 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN113930248A (en) * 2020-07-13 2022-01-14 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI834894B (en) * 2020-07-13 2024-03-11 奇美實業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022176680A1 (en) * 2021-02-16 2022-08-25 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) * 2021-03-09 2022-09-15 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
JP7494734B2 (en) 2024-06-04
TWI821453B (en) 2023-11-11
JPWO2020100918A1 (en) 2021-09-30
KR20210090158A (en) 2021-07-19
CN113015935A (en) 2021-06-22
TW202030316A (en) 2020-08-16
JP2024063092A (en) 2024-05-10

Similar Documents

Publication Publication Date Title
JP7494734B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP3912284B2 (en) Liquid crystal alignment agent for driving horizontal electric field, liquid crystal alignment film, and liquid crystal display element
JP5870487B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5109371B2 (en) Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display device using the same
CN105593754B (en) Liquid crystal aligning agent for transverse electric field driving system, liquid crystal alignment film, and liquid crystal display element using same
JP6627772B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using the same
WO2020158818A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display device using same
JPWO2018030489A1 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP7131538B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TW201823308A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014148596A1 (en) Liquid crystal orientation agent, liquid crystal orientation membrane, and liquid crystal display element using same
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN113423763B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN114080443B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP7468365B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
CN116529290A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7472799B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2022085674A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP3858808B2 (en) Liquid crystal alignment treatment agent
WO2020218331A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN117511567A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN116917798A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884177

Country of ref document: EP

Kind code of ref document: A1