WO2020100912A1 - Method for producing ferric citrate hydrate - Google Patents

Method for producing ferric citrate hydrate Download PDF

Info

Publication number
WO2020100912A1
WO2020100912A1 PCT/JP2019/044385 JP2019044385W WO2020100912A1 WO 2020100912 A1 WO2020100912 A1 WO 2020100912A1 JP 2019044385 W JP2019044385 W JP 2019044385W WO 2020100912 A1 WO2020100912 A1 WO 2020100912A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferric citrate
citrate hydrate
citric acid
ferric
water
Prior art date
Application number
PCT/JP2019/044385
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 宮奥
康平 齋藤
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2020556123A priority Critical patent/JP7335269B2/en
Priority to CN201980071005.4A priority patent/CN112955138B/en
Publication of WO2020100912A1 publication Critical patent/WO2020100912A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/02Iron compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel method for producing ferric citrate hydrate.
  • Ferric citrate is a compound containing ferric iron that is trivalent iron and a molecular structure derived from citric acid, and the molar ratio of the molecular structure derived from citric acid to ferric iron in ferric citrate. Is not supposed to take a certain value. It is also called ferric citrate hydrate because it contains a certain amount of water. It is known that the ferric citrate hydrate can be suitably used as a therapeutic agent for hyperphosphatemia in renal failure patients, in addition to reagents and food additives. Such ferric citrate hydrate for pharmaceutical use preferably has a large BET specific surface area and excellent solubility as compared with ferric citrate hydrate for food additive use. It is known that it is preferable that the BET specific surface area is 16 m 2 / g or more. (See Patent Document 1 or 2).
  • Patent Document 1 ferric chloride hexahydrate is reacted with a base such as sodium hydroxide to obtain water.
  • Ferric oxide is obtained, the obtained ferric hydroxide is centrifuged, and then ferric hydroxide is reacted with citric acid in water to obtain a solution containing ferric citrate.
  • a water-soluble organic solvent such as acetone to precipitate ferric citrate hydrate as a solid to produce.
  • Patent Document 2 the content of ⁇ -iron oxide hydroxide in ferric citrate hydrate produced by controlling the temperature and time when sodium hydroxide is added in the above production method within a predetermined range. It is disclosed that the amount can be suppressed.
  • Cited Document 2 the obtained ferric hydroxide is separated by filtration.
  • Patent Document 3 discloses the following manufacturing method. Citric acid, ferric chloride and sodium hydroxide are mixed in water with heating to give a solution containing ferric citrate. The solution is added to alcohols such as methanol to precipitate ferric citrate hydrate as a solid to produce ferric citrate hydrate having a BET specific surface area of 1 to 15 m 2 / g.
  • alcohols such as methanol
  • ferric citrate hydrate as a solid to produce ferric citrate hydrate having a BET specific surface area of 1 to 15 m 2 / g.
  • sodium citrate may be substituted for citric acid and sodium hydroxide.
  • Patent Documents 1 and 2 can produce ferric citrate hydrate having a BET specific surface area of 16 m 2 / g or more, ferric hydroxide and ferric citrate hydrate.
  • the solid-liquid separation property is extremely poor, and there is a problem from the viewpoint of operability.
  • Patent Document 3 is relatively simple in operability because ferric hydroxide does not precipitate in the system, but it is difficult to remove by-produced sodium chloride, and the obtained ferric citrate is obtained.
  • ferric citrate hydrate produced by the production method described in Patent Document 3 has a BET specific surface area of 1 to 15 m 2 / g and not 16 m 2 / g or more, it is used for pharmaceutical applications. It was difficult to do so. That is, by a simple operation, other components such as by-product salts such as sodium chloride are not included, and more accurately, other components such as by-product salts such as sodium chloride are not included or less (the same applies below. ) And a method capable of easily producing a high-quality ferric citrate hydrate having a large BET specific surface area has been desired.
  • ferric citrate hydrate citric acid, ferric chloride, and an alkali metal or alkaline earth metal which is lithium or magnesium.
  • a metal or alkaline earth metal hydroxide or carbonate at least one of lithium hydroxide or carbonate or magnesium hydroxide or carbonate
  • base a metal or alkaline earth metal hydroxide or carbonate (at least one of lithium hydroxide or carbonate or magnesium hydroxide or carbonate)
  • ferric citrate hydrate that does not contain other components such as by-product salts can be easily obtained, and the equivalent of base to ferric chloride can be obtained. It was found that the BET specific surface area of the ferric citrate hydrate produced can be set to 16 m 2 / g or more by setting (molar equivalent, the same applies below) to 0.30 to 0.95 equivalent.
  • the present invention has been completed.
  • the equivalent number of the base with respect to ferric chloride is a numerical value in consideration of the valence of ferric chloride and the valence of the base.
  • the base is lithium hydroxide
  • 3 mol of the base is required for 1 mol of ferric chloride
  • the number of moles of the base is the valence of the base.
  • the number of equivalents of the base to ferric chloride is calculated by dividing the number obtained by multiplying 1 by the number obtained by multiplying the number of moles of ferric chloride by 3 which is the valence of the iron ion of ferric chloride.
  • the equivalent number of the base to ferric chloride in the above formula (1) is 1, as described above.
  • the equivalent number in the present invention is 0.3 to 0.95 equivalent, which is a feature that it is smaller than the above theoretical amount.
  • citric acid, ferric chloride, and a hydroxide or carbonate of an alkali metal or an alkaline earth metal are mixed in water to obtain a mixture, and the mixture is then mixed with an organic solvent.
  • a method for producing ferric citrate hydrate by producing a ferric citrate hydrate by mixing with, wherein the alkali metal or alkaline earth metal is lithium or magnesium, and ferric chloride is a method for producing ferric citrate hydrate in which the hydroxide or carbonate of an alkali metal or alkaline earth metal is 0.30 to 0.95 equivalent.
  • One aspect of the present invention is the method for producing the ferric citrate hydrate, wherein the amount of the water is 2.0 to 8.5 mL with respect to 1 g of the citric acid. As a result, ferric citrate hydrate from which by-product salts have been removed to a higher degree can be produced. Further, one aspect of the present invention is the method for producing the ferric citrate hydrate, wherein 1.0 to 2.5 equivalents of ferric chloride are used with respect to the citric acid. Thereby, the production yield of ferric citrate hydrate can be further improved.
  • ferric citrate hydrate having a large BET specific surface area of 16 m 2 / g or more and containing no by-product salt can be obtained with high purity and high yield by a simple operation. Can be obtained at Therefore, according to the present invention, ferric citrate hydrate having a quality expected to be preferably used as a drug substance can be easily produced as compared with a known production method.
  • Example 3 is an X-ray diffraction chart of ferric citrate hydrate obtained in Example 2.
  • 16 is an X-ray diffraction chart of ferric citrate hydrate obtained in Example 15.
  • 8 is an X-ray diffraction chart of ferric citrate hydrate obtained in Comparative Example 4.
  • 9 is an X-ray diffraction chart of ferric citrate hydrate obtained in Comparative Example 5.
  • citric acid, ferric chloride, and at least one hydroxide or carbonate of an alkali metal or an alkaline earth metal are mixed in water to obtain a mixture, and the mixture is mixed with an organic solvent.
  • a method for producing a ferric citrate hydrate by producing a ferric citrate hydrate by mixing, wherein the alkali metal or alkaline earth metal is lithium or magnesium, and with respect to ferric chloride And a hydroxide or carbonate of an alkali metal or an alkaline earth metal in an amount of 0.30 to 0.95 equivalent is a method for producing ferric citrate hydrate.
  • the manufacturing method of the present invention will be described in detail below.
  • citric acid can be used as reagents, industrial products, etc. without particular limitation.
  • the form thereof is not particularly limited, and in addition to the solid form, a form such as an aqueous solution may be used.
  • citric acid may be in the form of hydrate as well as anhydride, but any form may be used.
  • the usage of other raw materials such as ferric chloride is calculated based on the usage of citric acid. Therefore, the amount of citric acid used may be appropriately determined according to the production scale of ferric citrate hydrate. When a hydrate, an aqueous solution, or the like is used, the amount converted to the pure content of citric acid contained therein (hereinafter, referred to as “pure citric acid conversion amount”) is used as a standard. When citric acid, its hydrate, aqueous solution, etc. are used in combination, the total of the amount of citric acid used and the amount of citric acid converted to pure content is used as the standard. Further, the amount of water contained in the form is included in the amount of water used in the present invention.
  • the pure content of citric acid may be calculated by a known method such as high performance liquid chromatography (HPLC) or a quantification method using a titrator.
  • HPLC high performance liquid chromatography
  • KF Karl Fischer titration
  • Citric acid may contain impurities such as aconitic acid and citraconic acid derived from the decomposition of citric acid depending on the production conditions.
  • impurities such as aconitic acid and citraconic acid derived from the decomposition of citric acid depending on the production conditions.
  • citric acid having a low content of the impurities it is preferable to use citric acid having a low content of the impurities.
  • the purity of citric acid is preferably 98.0 to 99.9%, and impurities such as aconitic acid and citraconic acid are 0.01 to 1 respectively. It is preferably 0.0%.
  • ferric chloride can be used without particular limitation in reagents, industrial products and the like.
  • the form thereof is not particularly limited, and in addition to the solid form, a form such as an aqueous solution may be used.
  • ferric chloride may be in the form of a hydrate as well as an anhydride, but any form may be used.
  • the amount of ferric chloride used is preferably 1.0 to 2.5 equivalents of ferric chloride with respect to citric acid. By setting it as the said range, the manufacturing yield of ferric citrate hydrate can be improved more. Further, within the range, depending on the amount used, the molecular structure derived from citric acid in the obtained ferric citrate hydrate (Fe (C 6 H 5 O 7 ) in the formula (1) (C 6 The ratio of the content of H 5 O 7 ) 3- ) and ferric iron, that is, the molar ratio of the molecular structure derived from citric acid to ferric iron in the ferric citrate hydrate can be adjusted.
  • the amount of ferric chloride used may be appropriately determined according to the desired molar ratio of ferric citrate hydrate.
  • the amount used is based on the amount converted to the pure content of ferric chloride contained therein (the amount converted to the pure content of ferric chloride).
  • the amount of water contained in the form is included in the amount of water used in the present invention.
  • a hydroxide or carbonate of an alkali metal or an alkaline earth metal in which an alkali metal or an alkaline earth metal as a base is lithium or magnesium (a hydroxide or a carbonate of lithium, or a hydroxide of magnesium or Carbonate) is used, but specifically, lithium hydroxide, magnesium hydroxide, lithium carbonate and magnesium carbonate.
  • bases may be used alone or in combination of two or more. Further, these can be used without particular limitation, such as reagents and industrial products. Among these, lithium hydroxide and magnesium hydroxide are more preferable in consideration of reactivity.
  • the amount of the above base used is 0.30 to 0.95 equivalent to ferric chloride, that is, 0.30 to 2.38 equivalent to citric acid.
  • the BET specific surface area of ferric citrate hydrate can be 16 m ⁇ 2 > / g or more. Within this range, the BET specific surface area of ferric citrate hydrate tends to increase as the amount of base used decreases. On the other hand, as the amount of the base used increases, the production yield of ferric citrate hydrate tends to increase. Therefore, the amount of the base used may be appropriately determined within the above range according to the desired BET specific surface area and the like. From the viewpoint of the BET specific surface area and the production yield, the amount of the base used is ferric chloride.
  • lithium hydroxide exists in the form of a monohydrate in addition to the anhydride, but the form is not particularly limited, and may be a solution form such as an aqueous solution.
  • the amount of the base used is based on the amount converted to the pure content of the base contained therein (the pure content conversion amount of the base). Further, the amount of water contained in the form is included in the amount of water used in the present invention.
  • water in the present invention, water is not particularly limited, and tap water, ion-exchanged water, distilled water or the like can be used.
  • the amount of water used is preferably 2.0 to 8.5 mL with respect to 1 g of citric acid.
  • the amount of water used is preferably 2.0 to 8.5 mL with respect to 1 g of citric acid.
  • the generated by-product salt can be sufficiently removed, and the amount of the by-product salt in the ferric citrate hydrate produced is reduced. it can.
  • 8.5 mL or less of water the amount of ferric citrate hydrate dissolved in the mother liquor (dispersion solvent in the suspension containing ferric citrate hydrate described below) It is possible to reduce and increase the production yield of ferric citrate hydrate.
  • the ferric citrate hydrate obtained when using less than 2.5 mL of water tends to be granular, but when it is 2.5 mL or more, the obtained ferric citrate hydrate is It tends to be powdery. It is considered that due to this difference in shape, the incorporation of the by-product salt into the ferric citrate hydrate is reduced, and the residual amount of the by-product salt can be more highly reduced.
  • the amount of water contained in the form is included in the amount of water used in the present invention.
  • citric acid, ferric chloride, and an alkali metal or alkaline earth metal hydroxide or carbonate are mixed in water to obtain a mixture.
  • the mixing operation is not particularly limited and may be carried out by a known method, but a container made of glass, stainless steel, Teflon (registered trademark), glass lining or the like is used, and further, a mechanical stirrer, a magnetic stirrer or the like is used. It is preferable to mix each raw material with stirring from the viewpoint of uniformity and operability.
  • the mixing order of each raw material is not particularly limited, but when only other raw materials except for citric acid are mixed, ferric hydroxide is once precipitated in the system.
  • ferric hydroxide may be converted into other iron compounds such as ⁇ , ⁇ or ⁇ iron oxide hydroxide and iron oxide depending on the temperature and the like.
  • the iron compound has a remarkably low solubility in water or an aqueous citric acid solution as compared with ferric hydroxide, and as a result, it remains as an insoluble solid even after the subsequent addition of citric acid, and the produced citric acid The production yield of diiron hydrate may decrease, and the iron compound may remain in the ferric citrate hydrate.
  • each raw material it is preferable to mix water and citric acid before mixing ferric chloride and a hydroxide or carbonate of an alkali metal or an alkaline earth metal. Furthermore, when a hydroxide or carbonate of an alkali metal or an alkaline earth metal is mixed with a mixture containing ferric chloride, the hydroxide or carbonate of an alkali metal or an alkaline earth metal becomes a lump, which causes a long dissolution time. Since it may take time, it is more preferable to mix the alkali metal or alkaline earth metal hydroxide or carbonate before the ferric chloride is mixed.
  • citric acid it is more preferable to mix citric acid, water, a hydroxide or carbonate of an alkali metal or an alkaline earth metal, and ferric chloride in this order.
  • citric acid water, a hydroxide or carbonate of an alkali metal or an alkaline earth metal, and ferric chloride in this order.
  • ferric chloride ferric chloride
  • the temperature of the above mixing operation is preferably 35 to 80 ° C. when all the raw materials are mixed.
  • the solid raw materials are dissolved in water to react with each other, and ferric citrate hydrate is produced.
  • Ferric citrate hydrate may precipitate due to the high solids concentration in it.
  • the temperature is 80 ° C. or lower, the decomposition of ferric citrate hydrate and / or citric acid can be suppressed, and the purity of the ferric citrate hydrate produced can be further increased.
  • the temperature is particularly Not limited.
  • ferric citrate hydrate If each raw material dissolves in water, the formation of ferric citrate hydrate will proceed instantaneously, so after mixing all the raw materials, visually confirm the dissolution of each solid and set the mixing time. It may be determined appropriately. It is usually sufficient to mix for at least 5 minutes after adding the last raw material. However, depending on the mixing temperature, the decomposition of ferric citrate hydrate and / or citric acid tends to proceed as the mixing time increases, so once dissolution is confirmed, mixing with an organic solvent, which is the next operation, is performed. It is preferable to carry out the operation.
  • Organic solvent In the present invention, the mixture obtained as described above and an organic solvent are mixed. By the mixing operation, ferric citrate hydrate is precipitated, and a suspension containing ferric citrate hydrate can be obtained.
  • the organic solvent is not particularly limited as long as it is an organic solvent in which ferric citrate hydrate is precipitated by mixing with the mixture, but since the solid concentration of the mixture is usually high, the organic solvent Depending on the type, when mixed with the mixture, the organic solvent may be separated and the mixture may not be uniformly mixed, and ferric citrate hydrate may not be precipitated. Regardless of the manufacturing conditions of the mixture, examples of the organic solvent in which ferric citrate hydrate is precipitated include methanol, ethanol, 1-propanol, and 2-propanol.
  • the amount of the organic solvent used is preferably 3 to 20 mL per 1 g of citric acid. By setting it as the said range, ferric citrate hydrate will precipitate after mixing with an organic solvent. In the above range, considering the production yield of ferric citrate hydrate, operability, etc., the amount of the organic solvent used is more preferably 4 to 15 mL with respect to 1 g of citric acid, and 5 to 13 mL. More preferable.
  • an organic solvent other than the above may be contained as long as the content is 1 mL or less per 1 mL of the organic solvent.
  • the organic solvent other than the above is an organic solvent that is miscible with the above organic solvent and water, and specifically, alcohols such as 1-butanol, 2-butanol, t-butanol, allyl alcohol, propargyl alcohol, acetone, Ketones such as methyl ethyl ketone, acetylacetone and diacetone alcohol, cyclic ethers such as tetrahydrofuran and dioxane, nitriles such as acetonitrile, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone and the like Examples thereof include nitrogen-containing compounds and sulfur-containing compounds such as dimethyl sulfoxide.
  • alcohols such as 1-butanol, 2-butanol, t-butanol, allyl alcohol, propargyl alcohol, etc.
  • acetone are taken into consideration because of their relatively low boiling point, easy removal, and production yield.
  • Methyl ethyl ketone, acetylacetone, diacetone alcohol, and other ketones, tetrahydrofuran, dioxane, and other cyclic ethers, acetonitrile, and other nitriles are more preferred, and acetone, methyl ethyl ketone, acetylacetone, diacetone alcohol, and other ketones are more preferred.
  • the mixture of the mixture and the organic solvent may be carried out as long as the mixing operation can be carried out, and the method for carrying out the mixture is not particularly limited, but similar to the preparation of the above mixture, glass, stainless steel, Teflon (registered trademark). From the viewpoint of uniformity and operability, it is preferable to mix the mixture and the organic solvent with stirring by using a container for manufacturing, glass lining or the like, and further using a mechanical stirrer, a magnetic stirrer or the like.
  • the order of mixing the mixture and the organic solvent is not particularly limited, and the organic solvent may be added to the mixture after it is produced, or the mixture may be added to the organic solvent.
  • the method of dropping the mixture into the organic solvent is preferable from the viewpoint of operability and production yield.
  • the dropping rate of the above mixture may be appropriately determined while confirming the working time and the degree of dispersion of the precipitated ferric citrate hydrate in the solvent, but usually it is determined within the range of 5 minutes to 5 hours. Good.
  • the temperature at the time of mixing may be appropriately determined in consideration of the boiling point of the organic solvent to be used, but if it is too low, ferric citrate hydrate tends to agglomerate, and if it is too high, the citric acid no. Since decomposition of diiron hydrate and / or citric acid may cause by-production of impurities such as aconitic acid, it is preferably carried out in the range of 20 to 80 ° C. Considering operability such as solid-liquid separation of the precipitated ferric citrate hydrate and volatilization of the organic solvent, the temperature is more preferably 25 to 70 ° C, further preferably 30 to 60 ° C.
  • the mixture After mixing the above mixture with an organic solvent, it is preferable to hold the mixture for a certain period of time with stirring in order to sufficiently precipitate ferric citrate hydrate.
  • the holding time varies depending on the temperature at the time of mixing, etc., but it is usually sufficient to hold for 15 minutes to 50 hours. Further, the temperature in the operation is preferably in the same range as in the mixing for the same reason as in the mixing. As described above, a suspension containing ferric citrate hydrate can be obtained.
  • the ferric citrate hydrate obtained by the above-mentioned production method of the present invention is ferric citrate hydrate obtained by solid-liquid separation from the suspension using vacuum filtration, pressure filtration, centrifugation, or the like. It can be isolated as a wet form of ferric citrate hydrate containing a product and an organic solvent.
  • the isolated wet body of ferric citrate hydrate is preferably washed with an organic solvent or a mixed solvent of an organic solvent and water. By this washing, the mother liquor (dispersing solvent in the suspension) remaining in the wet body can be removed, and the residual amount of the by-product salt in the ferric citrate hydrate can be further reduced.
  • the mixing ratio is 0.2 to 2 mL of water with respect to 1 mL of the organic solvent, since it is possible to suppress the decrease in the production yield due to the dissolution of ferric citrate hydrate in the washing solution and the precipitation of by-product salts. Is preferred. From the viewpoint of cleaning efficiency, it is preferable that the amount of the cleaning liquid used is 0.5 to 5 mL with respect to 1 g of citric acid as a raw material.
  • the mother liquor may remain in the wet body depending on the method of solid-liquid separation or the production scale.
  • the mixture may be mixed with an organic solvent and a mixed solvent of water to prepare a suspension again (hereinafter, referred to as “resuspension”), and then solid-liquid separation may be performed for washing.
  • suspension an organic solvent and a mixed solvent of water
  • solid-liquid separation may be performed for washing. According to this operation, the residual amount of the mother liquor in the wet body can be further reduced, and the residual amount of the by-product salt in the ferric citrate hydrate produced as a result can be further reduced.
  • the organic solvent in the mixed solvent used for washing by preparing the resuspension is an organic solvent having a solubility of 0.2 g or more in 1 g of water at 25 ° C.
  • Specific examples include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and allyl alcohol, esters such as methyl acetate, ethers such as tetrahydrofuran and dioxane, acetone, methyl ethyl ketone, acetylacetone and diacetone alcohol.
  • Examples include ketones and nitriles such as acetonitrile.
  • alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and allyl alcohol, and acetone, methyl ethyl ketone, and acetylacetone are used from the viewpoint of solubility and easy removal of ferric citrate hydrate in a cleaning solution.
  • Ketones such as diacetone alcohol and the like are more preferable, and methanol, ethanol, 1-propanol, 2-propanol, acetone and methyl ethyl ketone are more preferable.
  • these may use a single type and may use multiple types.
  • the mixing ratio of the organic solvent and water is preferably 0.1 to 2 mL of water to 1 mL of the organic solvent.
  • the amount of the mixed solvent used is preferably 0.5 to 20 mL with respect to 1 g of citric acid as a raw material, from the viewpoint of operability and cleaning efficiency, and of these, 1.0 to 15 mL is more preferable. , 1.5 to 10 mL is more preferable.
  • the method for carrying out the resuspension is not particularly limited as long as the resuspension can be prepared.
  • the wet body, the organic solvent and water are mixed.
  • the mixed solvent may be mixed with stirring.
  • the mixed solvent of the organic solvent and water is preferably prepared before mixing with the wet body.
  • the temperature of the mixing operation is preferably in the range of ⁇ 20 to 75 ° C. in consideration of the stirring efficiency and the production yield, and the operability of the mixing operation and the solid-liquid separation operation after mixing and the boiling point of the organic solvent are considered. Then, 0 to 70 ° C. is more preferable, and 10 to 60 ° C. is further preferable.
  • mixing it is preferable from the viewpoint of uniformity and the like that mixing is performed in the temperature range for a certain time or more with stirring. It cannot be specified unconditionally because it depends on the production scale, etc., but it is usually sufficient to maintain the mixed state for 15 minutes to 2 hours.
  • the resuspension prepared as described above is subjected to solid-liquid separation using vacuum filtration, pressure filtration, centrifugal separation, etc. in the same manner as the above suspension to obtain a wet solution of ferric citrate hydrate.
  • the body may be isolated. Also in the solid-liquid separation operation, the wet body after solid-liquid separation is preferably washed with an organic solvent or a mixed solvent of an organic solvent and water.
  • the wet body of ferric citrate hydrate thus isolated can be made into ferric citrate hydrate from which the organic solvent and the like have been removed by drying as described below.
  • the solid surface of the ferric citrate hydrate is dissolved in the water contained in the wet body during the drying operation to hydrate the ferric citrate.
  • the BET specific surface area of the product may decrease. Therefore, it is preferable to reduce the content of water in the wet body before drying.
  • anhydrous equivalent amount of ferric citrate hydrate based on 1 g of the amount of ferric citrate hydrate contained in the wet body converted to an anhydride (hereinafter, referred to as “anhydrous equivalent amount of ferric citrate hydrate”)
  • the water content is preferably 0.05 to 0.5 g.
  • the anhydrous equivalent of ferric citrate hydrate contained in the wet body is determined by measuring the content of water and the organic solvent in the wet body by KF, gas chromatography (GC) or the like, and measuring the water content. And calculated by subtracting the content of the organic solvent from the weight of the wet body.
  • the washing at the time of solid-liquid separation is finally carried out only with the organic solvent.
  • washing with an organic solvent may be performed plural times, or washing may be performed by preparing a suspension again from the wet body after solid-liquid separation and the organic solvent.
  • ferric citrate hydrate By the solid-liquid separation operation described above, by drying the produced wet body of ferric citrate hydrate, by removing excess water and organic solvent contained in the wet body, ferric citrate hydrate Can be isolated as a product.
  • the drying operation may be carried out by a known method, for example, using a shelf dryer or a conical dryer, under vacuum, under a dry air atmosphere, or under an inert gas atmosphere such as nitrogen or argon, It should be carried out.
  • the temperature of the drying operation is preferably ⁇ 80 to 80 ° C. in consideration of the stability of ferric citrate hydrate.
  • the drying time may be appropriately determined while confirming the residual amount of the organic solvent and the like, but is usually 0.5 to 100 hours. Furthermore, in the drying process, when the resin becomes lumpy and the reduction efficiency of the organic solvent is low, it can be dried more efficiently by making it into a powder using a hammer mill, a pin mill or the like.
  • the ferric citrate hydrate produced by the present invention has a low content of organic impurities derived from the decomposition of ferric citrate and / or citric acid, and a by-product salt.
  • the content of inorganic impurities derived from the above is small and the purity is high.
  • the ferric citrate hydrate has a BET specific surface area of more than 16 m 2 / g, according to the production method of the present invention, citric acid of a quality expected to be suitably used as a drug substance Ferric iron hydrate can be easily produced by comparison with known production methods.
  • the purity of the ferric citrate hydrates of Examples and Comparative Examples and the content of the molecular structure derived from citric acid were measured by high performance liquid chromatography (HPLC) under the conditions described below.
  • HPLC high performance liquid chromatography
  • the BET specific surface areas of the ferric citrate hydrates of Examples and Comparative Examples were measured by the nitrogen adsorption method described later.
  • the presence or absence of by-product salts in the ferric citrate hydrates of Examples and Comparative Examples was evaluated by powder X-ray diffraction (XRD) described below, and alkali derived from the by-product salts was evaluated.
  • the residual amount of metal or alkaline earth metal in ferric citrate hydrate was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) described later.
  • the water content of the ferric citrate hydrate was measured by the Karl Fischer titration method (KF) described below, and the iron content was measured by the redox titration method.
  • KF Karl Fischer titration method
  • the purity of ferric citrate hydrate is a molecule derived from citric acid relative to the sum of the area values of all peaks (excluding iron and solvent-derived peaks) measured under the conditions. It is the ratio of the peak area values of the structure. Further, the content of the citric acid-derived molecular structure in the ferric citrate hydrate, the peak area value of the citric acid-derived molecular structure measured under the conditions, the calibration curve of citric acid as a standard substance was calculated and converted into citric acid content. The molar ratio was calculated by substituting the citric acid content into the second formula of the above molar ratio calculation formula.
  • Liquid chromatograph device manufactured by Waters Corporation
  • Detector Ultraviolet absorptiometer (manufactured by Waters Corporation) Measurement wavelength: 210 nm
  • Column A stainless tube having an inner diameter of 4.6 mm and a length of 250 mm packed with 5 ⁇ m octadecylsilylated silica gel for liquid chromatography.
  • Mobile phase After adding 12.0 g of sodium dihydrogen phosphate to 2000 mL of water to dissolve it, A mixed solution adjusted to pH 2.2 by adding phosphoric acid.
  • the total amount of water in the solution was 169 mL, and was 4.6 mL with respect to 1 g of citric acid.
  • the obtained solution was added dropwise to 300 mL of 2-propanol at 35 to 45 ° C. over 15 minutes. ..
  • the mixture was stirred at 35 to 45 ° C for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with a mixed solvent of 60 mL of 2-propanol and 20 mL of water.
  • the obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 41.1 g of ferric citrate hydrate (production yield 102.8% based on the weight of citric acid monohydrate). It was
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 17.8 m 2 / g, and the purity by HPLC was 99.84%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 19.4% and 54.0%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.81. It was Further, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 2.4%.
  • the water content of ferric citrate hydrate was 16.0% as analyzed by KF.
  • Example 2 To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (190.3 mmol) of citric acid monohydrate and 140 mL of water (3.8 mL for 1 g of citric acid) were added and stirred, and the mixture was stirred. An aqueous acid solution was prepared. Then, 17.7 g of magnesium hydroxide (303.3 mmol, 0.85 equivalent with respect to ferric chloride) was added over 15 minutes, and then warmed up to around 40 ° C. to dissolve magnesium hydroxide. confirmed. After adding 64.3 g (237.9 mmol, 1.25 equivalents to citric acid) of ferric chloride hexahydrate at 40 ° C.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 40.0 g of ferric citrate hydrate (production yield 100.0% based on the weight of citric acid monohydrate). It was
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 18.2 m 2 / g, and the purity by HPLC was 99.85%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 19.8% and 54.9%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.81.
  • the X-ray diffraction chart shown in FIG. 1 was obtained by XRD analysis, and only the halo pattern peculiar to ferric citrate hydrate was shown. No peak derived from raw salt such as magnesium chloride was detected.
  • the residual amount of magnesium which is an element derived from the by-product salt, was 1.1%.
  • the water content of ferric citrate hydrate was 16.9% as analyzed by KF.
  • Example 3 to 10 Comparative Examples 1 to 3 It carried out like Example 2 except having changed the usage-amount of magnesium hydroxide and ferric chloride hexahydrate. The conditions and results are shown in Table 1.
  • Examples 11 to 14 The same procedure as in Example 2 was carried out except that the amount of water used was changed. The conditions and results are shown in Table 2.
  • Example 15 It carried out like Example 2 except having used 24.0 g (572.0 mmol, 0.80 equivalent with respect to ferric chloride) of lithium hydroxide monohydrate instead of magnesium hydroxide, 39.8 g of ferric citrate hydrate (manufacturing yield 99.5% based on the weight of citric acid monohydrate) was obtained. The total amount of water in the solution before being added dropwise to 2-propanol was 180 mL, which was 4.9 mL with respect to 1 g of citric acid.
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 18.0 m 2 / g, and the purity by HPLC was 99.82%.
  • the contents of iron and citric acid in ferric citrate hydrate were 20.1% and 57.3%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.83.
  • the X-ray diffraction chart shown in FIG. 2 was obtained by the XRD analysis, and only the halo pattern peculiar to ferric citrate hydrate was shown. No peak derived from raw salt such as lithium chloride was detected. Further, according to the analysis by ICP-OES, the residual amount of lithium, which is an element derived from the by-product salt, was 1.3%.
  • the water content of ferric citrate hydrate was 16.3% as determined by KF analysis.
  • Example 16 To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (208.2 mmol) of citric acid anhydride and 116 mL of water (2.9 mL per 1 g of citric acid) were added and stirred to obtain an aqueous citric acid solution. Was prepared. Then, 18.2 g of magnesium hydroxide (312.3 mmol, 0.67 equivalents relative to ferric chloride) was added over 15 minutes, and then heated to around 45 ° C. to confirm that magnesium hydroxide was dissolved. confirmed. Ferric chloride hexahydrate (84.4 g, 312.3 mmol, 1.5 equivalents based on citric acid) was added at 40 ° C.
  • the obtained wet body and 180 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, heated to about 40 ° C., and then stirred at 35 to 45 ° C. for 30 minutes. Then, 140 mL of water was added, and the mixture was stirred at 35 to 45 ° C. for 30 minutes.
  • the obtained suspension was filtered by pressure filtration, the solid after filtration was washed twice with a mixed solvent of 60 mL of acetone and 20 mL of water, and further, the solid after filtration was washed once with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 45 ° C. for 15 hours to obtain 46.0 g of ferric citrate hydrate (manufacturing yield 115.0% based on the weight of citric anhydride).
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 19.8 m 2 / g, and the purity by HPLC was 99.85%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 20.5% and 54.6%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.77. It was Further, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 0.9%. Further, the water content of the ferric citrate hydrate was 19.8% as analyzed by KF.
  • the total amount of water in the solution was 68 mL, 1.9 mL for 1 g of sodium citrate, and 2.6 mL for converted 1 g of citric acid.
  • After cooling to around 30 ° C. it was obtained.
  • the obtained solution was added dropwise to 300 mL of methanol at 20 to 30 ° C. over 15 minutes.
  • the mixture was stirred at 20 to 30 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 30 mL of methanol.
  • the obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 33.2 g of ferric citrate hydrate (manufacturing yield 83.0% based on the weight of sodium citrate dihydrate). Obtained.
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 1.9 m 2 / g, and the purity by HPLC was 98.77%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 13.8% and 48.9%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 1.03.
  • the X-ray diffraction chart shown in FIG. 3 was obtained by the XRD analysis, and in addition to the halo pattern peculiar to ferric citrate hydrate, the diffraction angles 2 ⁇ were 27.5 ° and 31.8 °, Peaks were shown at 45.5 °, 54.0 °, and 56.6 °.
  • This peak is a characteristic peak of sodium chloride, which is a by-product salt. Furthermore, according to the analysis by ICP-OES, the residual amount of sodium, which is an element derived from the by-product salt, was 15.3%. Further, the water content of the ferric citrate hydrate was 10.1% as analyzed by KF.
  • the total amount of water in the solution was 124 mL, which was 3.4 mL for 1 g of citric acid.
  • the obtained solution was added to 600 mL of methanol at 20 to 30 ° C. It dripped over 15 minutes. The mixture was stirred at 20 to 30 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 60 mL of methanol.
  • the obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 35.9 g of ferric citrate hydrate (manufacturing yield 89.8% based on the weight of sodium citrate dihydrate). Obtained.
  • the BET specific surface area of the obtained ferric citrate hydrate by a nitrogen adsorption method was 4.5 m 2 / g, and the purity by HPLC was 98.26%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 15.1% and 52.2%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 1.00.
  • the X-ray diffraction chart shown in FIG. 4 was obtained by the XRD analysis, and in addition to the halo pattern peculiar to ferric citrate hydrate, the diffraction angles 2 ⁇ were 31.8 ° and 45.6 °, It showed a peak at 56.6 °.
  • This peak is a characteristic peak of sodium chloride, which is a by-product salt. Furthermore, the analysis by ICP-OES revealed that the residual amount of sodium, which is an element derived from the by-product salt, was 7.7%. The water content of ferric citrate hydrate was 11.3% as analyzed by KF.

Abstract

The present invention provides a production method for easily obtaining highly pure ferric citrate hydrate which exhibits reduced organic and inorganic impurities and has a high BET specific surface area. The present invention is a ferric citrate hydrate production method for producing ferric citrate hydrate by obtaining a mixture by mixing citric acid, ferric chloride and at least one base selected from the group consisting of lithium hydroxide, lithium carbonate, magnesium hydroxide and magnesium carbonate in water, and mixing said mixture with an organic solvent, wherein the base constitutes 0.30-0.95 equivalents of the ferric chloride.

Description

クエン酸第二鉄水和物の製造方法Method for producing ferric citrate hydrate
 本発明は、クエン酸第二鉄水和物の新規な製造方法に関する。 The present invention relates to a novel method for producing ferric citrate hydrate.
 クエン酸第二鉄は、三価の鉄である第二鉄とクエン酸由来の分子構造とを含む化合物であり、クエン酸第二鉄中の第二鉄に対するクエン酸由来の分子構造のモル比率は、一定の値を採らないとされている。また、一定量の水を含むことから、クエン酸第二鉄水和物とも呼ばれる。当該クエン酸第二鉄水和物は、試薬や食品添加物の他に、腎不全患者における高リン血症の治療薬として好適に利用できることが知られている。このような医薬品用途のクエン酸第二鉄水和物は、食品添加物用途のクエン酸第二鉄水和物と比較して、BET比表面積が大きく、溶解性に優れることが好ましく、具体的にはBET比表面積が16m2/g以上であることが好ましいことが知られている。(特許文献1又は2参照)。 Ferric citrate is a compound containing ferric iron that is trivalent iron and a molecular structure derived from citric acid, and the molar ratio of the molecular structure derived from citric acid to ferric iron in ferric citrate. Is not supposed to take a certain value. It is also called ferric citrate hydrate because it contains a certain amount of water. It is known that the ferric citrate hydrate can be suitably used as a therapeutic agent for hyperphosphatemia in renal failure patients, in addition to reagents and food additives. Such ferric citrate hydrate for pharmaceutical use preferably has a large BET specific surface area and excellent solubility as compared with ferric citrate hydrate for food additive use. It is known that it is preferable that the BET specific surface area is 16 m 2 / g or more. (See Patent Document 1 or 2).
 BET比表面積が16m2/g以上のクエン酸第二鉄水和物の製造方法として、特許文献1において、塩化第二鉄・六水和物と水酸化ナトリウム等の塩基とを反応させ、水酸化第二鉄を得、得られた水酸化第二鉄を遠心分離し、次いで水中で水酸化第二鉄とクエン酸とを反応させ、クエン酸第二鉄を含有する溶液を得、該溶液をアセトン等の水溶性有機溶媒に滴下し、クエン酸第二鉄水和物を固体として析出させて製造する方法が開示されている。また、特許文献2において、上記製造方法における水酸化ナトリウムを加える際の温度、時間を所定の範囲とすることで、製造されるクエン酸第二鉄水和物中のβ酸化水酸化鉄の含有量を抑制できることが開示されている。なお、引用文献2においては得られた水酸化第二鉄をろ過によって分離している。 As a method for producing a ferric citrate hydrate having a BET specific surface area of 16 m 2 / g or more, in Patent Document 1, ferric chloride hexahydrate is reacted with a base such as sodium hydroxide to obtain water. Ferric oxide is obtained, the obtained ferric hydroxide is centrifuged, and then ferric hydroxide is reacted with citric acid in water to obtain a solution containing ferric citrate. There is disclosed a method in which is added dropwise to a water-soluble organic solvent such as acetone to precipitate ferric citrate hydrate as a solid to produce. Further, in Patent Document 2, the content of β-iron oxide hydroxide in ferric citrate hydrate produced by controlling the temperature and time when sodium hydroxide is added in the above production method within a predetermined range. It is disclosed that the amount can be suppressed. In Cited Document 2, the obtained ferric hydroxide is separated by filtration.
 その他の製造方法として、特許文献3において、以下の製造方法が開示されている。クエン酸、塩化第二鉄及び水酸化ナトリウムを水中、加熱下で混合し、クエン酸第二鉄を含有する溶液を得る。該溶液をメタノール等のアルコール類に加えて、クエン酸第二鉄水和物を固体として析出させてBET比表面積が1~15m2/gのクエン酸第二鉄水和物を製造する。ここで、クエン酸及び水酸化ナトリウムは、クエン酸ナトリウムを代用してもよい。 As another manufacturing method, Patent Document 3 discloses the following manufacturing method. Citric acid, ferric chloride and sodium hydroxide are mixed in water with heating to give a solution containing ferric citrate. The solution is added to alcohols such as methanol to precipitate ferric citrate hydrate as a solid to produce ferric citrate hydrate having a BET specific surface area of 1 to 15 m 2 / g. Here, sodium citrate may be substituted for citric acid and sodium hydroxide.
特許第4964585号公報Japanese Patent No. 4964585 特許第5944077号公報Japanese Patent No. 5944077 国際公開第2015/110968号International Publication No. 2015/110968
 特許文献1及び2の製造方法は、BET比表面積が16m2/g以上のクエン酸第二鉄水和物を製造することができるが、水酸化第二鉄及びクエン酸第二鉄水和物の固液分離性が著しく悪く、操作性の観点で課題がある。さらに、水酸化第二鉄の合成時に副生塩として生成する塩化ナトリウムを除去するために、水酸化第二鉄を多量の水を用いて複数回洗浄する必要があり、原材料の使用量や操作の煩雑さが課題であった。特許文献3の製造方法は、水酸化第二鉄が系中で析出しないため、操作性は比較的簡便であるが、副生する塩化ナトリウムの除去が困難であり、得られるクエン酸第二鉄水和物中に塩化ナトリウムが他の製造方法と比較して多く残存する。さらに、特許文献3に記載の製造方法により製造されるクエン酸第二鉄水和物のBET比表面積は1~15m2/gであって、16m2/g以上ではないため、医薬品用途として用いることが困難である等の課題があった。即ち、簡便な操作により、塩化ナトリウム等の副生塩等の他の成分を含まず、より正確には、塩化ナトリウム等の副生塩等の他の成分が含まれない又は少なく(以下も同様)、且つ、大きなBET比表面積を有する高品質なクエン酸第二鉄水和物を簡便に製造できる方法が望まれていた。 Although the production methods of Patent Documents 1 and 2 can produce ferric citrate hydrate having a BET specific surface area of 16 m 2 / g or more, ferric hydroxide and ferric citrate hydrate. The solid-liquid separation property is extremely poor, and there is a problem from the viewpoint of operability. Furthermore, in order to remove sodium chloride produced as a by-product salt during the synthesis of ferric hydroxide, it is necessary to wash ferric hydroxide multiple times with a large amount of water. Was a problem. The production method of Patent Document 3 is relatively simple in operability because ferric hydroxide does not precipitate in the system, but it is difficult to remove by-produced sodium chloride, and the obtained ferric citrate is obtained. A large amount of sodium chloride remains in the hydrate as compared with other production methods. Furthermore, since the ferric citrate hydrate produced by the production method described in Patent Document 3 has a BET specific surface area of 1 to 15 m 2 / g and not 16 m 2 / g or more, it is used for pharmaceutical applications. It was difficult to do so. That is, by a simple operation, other components such as by-product salts such as sodium chloride are not included, and more accurately, other components such as by-product salts such as sodium chloride are not included or less (the same applies below. ) And a method capable of easily producing a high-quality ferric citrate hydrate having a large BET specific surface area has been desired.
 上記課題に対し本発明者らは、クエン酸第二鉄水和物の製造方法を鋭意検討した結果、クエン酸、塩化第二鉄、及びアルカリ金属又はアルカリ土類金属がリチウム又はマグネシウムであるアルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩(リチウムの水酸化物若しくは炭酸塩又はマグネシウムの水酸化物若しくは炭酸塩の少なくとも1つ)(以下、単に「塩基」ともいう。)を用いてクエン酸第二鉄水和物を製造することにより、副生塩等の他の成分を含まないクエン酸第二鉄水和物が簡便に得られること、さらに、塩化第二鉄に対する塩基の当量(モル当量、以下も同様)を0.30~0.95当量とすることで、製造されるクエン酸第二鉄水和物のBET比表面積を16m2/g以上とすることができることを見出し、本発明を完成させるに至った。 With respect to the above problems, the present inventors have made extensive studies on a method for producing a ferric citrate hydrate, citric acid, ferric chloride, and an alkali metal or alkaline earth metal which is lithium or magnesium. Using a metal or alkaline earth metal hydroxide or carbonate (at least one of lithium hydroxide or carbonate or magnesium hydroxide or carbonate) (hereinafter, also simply referred to as “base”). By producing ferric citrate hydrate, ferric citrate hydrate that does not contain other components such as by-product salts can be easily obtained, and the equivalent of base to ferric chloride can be obtained. It was found that the BET specific surface area of the ferric citrate hydrate produced can be set to 16 m 2 / g or more by setting (molar equivalent, the same applies below) to 0.30 to 0.95 equivalent. The present invention has been completed.
 上記の塩基を用いた場合、塩化リチウムや塩化マグネシウムが副生塩として生成するが、該副生塩を含まないクエン酸第二鉄水和物が得られるのは、該副生塩のアルコール等の有機溶媒への溶解性が高いことに起因して、それらの除去効率が高く、結果、製造されるクエン酸第二鉄水和物中の副生塩の残留量を高度に低減できるためと考えられる。また、塩化第二鉄に対する塩基の当量数を0.30~0.95当量とすることで、製造されるクエン酸第二鉄水和物のBET比表面積を16m2/g以上とすることができる理由は、明らかではないが、次のように推測される。クエン酸第二鉄製造の反応は、上記塩基が水酸化リチウムの場合、下記式(1)の化学式 When the above base is used, lithium chloride or magnesium chloride is produced as a by-product salt, but ferric citrate hydrate not containing the by-product salt can be obtained by alcohol such as the by-product salt. Because of their high solubility in organic solvents, their removal efficiency is high, and as a result, the residual amount of by-product salts in the ferric citrate hydrate produced can be highly reduced. Conceivable. Further, by setting the equivalent number of the base to ferric chloride to 0.30 to 0.95 equivalent, the BET specific surface area of the ferric citrate hydrate produced can be 16 m 2 / g or more. The reason for this is not clear, but is speculated as follows. When the base is lithium hydroxide, the reaction for producing ferric citrate is represented by the following chemical formula (1).
Figure JPOXMLDOC01-appb-C000001
により示されるように、理論的には塩化第二鉄に対して塩基を1当量必要とする。ここで、塩化第二鉄に対する塩基の当量数は、塩化第二鉄の価数及び塩基の価数を考慮した数値である。具体的には、上記式(1)において、塩基が水酸化リチウムの場合、塩化第二鉄1モルに対して塩基を3モル必要とするが、当該塩基のモル数に塩基の価数である1を乗じた数値を、塩化第二鉄のモル数に塩化第二鉄の鉄イオンの価数である3を乗じた数値で除すことにより、塩化第二鉄に対する塩基の当量数が算出される。即ち、上記式(1)における塩化第二鉄に対する塩基の当量数は、上記の通り、1となる。一方、本発明における当該当量数は0.3~0.95当量であり、上記の理論量と比較して小さいことが特徴である。このように塩基に対して過剰の塩化第二鉄を使用することにより、未反応の塩化第二鉄が系内に共存することがクエン酸第二鉄水和物のBET比表面積の向上に寄与すると考えられる。
Figure JPOXMLDOC01-appb-C000001
Theoretically requires one equivalent of base with respect to ferric chloride. Here, the equivalent number of the base with respect to ferric chloride is a numerical value in consideration of the valence of ferric chloride and the valence of the base. Specifically, in the above formula (1), when the base is lithium hydroxide, 3 mol of the base is required for 1 mol of ferric chloride, and the number of moles of the base is the valence of the base. The number of equivalents of the base to ferric chloride is calculated by dividing the number obtained by multiplying 1 by the number obtained by multiplying the number of moles of ferric chloride by 3 which is the valence of the iron ion of ferric chloride. It That is, the equivalent number of the base to ferric chloride in the above formula (1) is 1, as described above. On the other hand, the equivalent number in the present invention is 0.3 to 0.95 equivalent, which is a feature that it is smaller than the above theoretical amount. By using an excess of ferric chloride with respect to the base in this way, the presence of unreacted ferric chloride in the system contributes to the improvement of the BET specific surface area of the ferric citrate hydrate. It is thought that.
 即ち、本発明の一態様は、水中で、クエン酸、塩化第二鉄、及びアルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩を混合し、混合物を得た後、該混合物を有機溶媒と混合することによりクエン酸第二鉄水和物を製造するクエン酸第二鉄水和物の製造方法であって、アルカリ金属又はアルカリ土類金属がリチウム又はマグネシウムであり、塩化第二鉄に対してアルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩が0.30~0.95当量である、クエン酸第二鉄水和物の製造方法である。 That is, in one embodiment of the present invention, citric acid, ferric chloride, and a hydroxide or carbonate of an alkali metal or an alkaline earth metal are mixed in water to obtain a mixture, and the mixture is then mixed with an organic solvent. A method for producing ferric citrate hydrate by producing a ferric citrate hydrate by mixing with, wherein the alkali metal or alkaline earth metal is lithium or magnesium, and ferric chloride On the other hand, it is a method for producing ferric citrate hydrate in which the hydroxide or carbonate of an alkali metal or alkaline earth metal is 0.30 to 0.95 equivalent.
 本発明の一態様は上記クエン酸1gに対して上記水の量が2.0~8.5mLである、上記クエン酸第二鉄水和物の製造方法である。これにより、より高度に副生塩が除去されたクエン酸第二鉄水和物を製造することができる。さらに、本発明の一態様は上記クエン酸に対して1.0~2.5当量の塩化第二鉄を用いる上記クエン酸第二鉄水和物の製造方法である。これにより、クエン酸第二鉄水和物の製造収率をより向上させることができる。 One aspect of the present invention is the method for producing the ferric citrate hydrate, wherein the amount of the water is 2.0 to 8.5 mL with respect to 1 g of the citric acid. As a result, ferric citrate hydrate from which by-product salts have been removed to a higher degree can be produced. Further, one aspect of the present invention is the method for producing the ferric citrate hydrate, wherein 1.0 to 2.5 equivalents of ferric chloride are used with respect to the citric acid. Thereby, the production yield of ferric citrate hydrate can be further improved.
 本発明の製造方法によれば、簡便な操作により、副生塩を含まず、且つ、16m2/g以上の大きなBET比表面積を有するクエン酸第二鉄水和物を高純度・高収率で得ることができる。そのため、本発明によれば医薬品原薬としても好適に使用できることが期待される品質のクエン酸第二鉄水和物を、公知の製造方法と比較して簡便に製造することができる。 According to the production method of the present invention, ferric citrate hydrate having a large BET specific surface area of 16 m 2 / g or more and containing no by-product salt can be obtained with high purity and high yield by a simple operation. Can be obtained at Therefore, according to the present invention, ferric citrate hydrate having a quality expected to be preferably used as a drug substance can be easily produced as compared with a known production method.
実施例2において得られたクエン酸第二鉄水和物のX線回折チャートである。3 is an X-ray diffraction chart of ferric citrate hydrate obtained in Example 2. 実施例15において得られたクエン酸第二鉄水和物のX線回折チャートである。16 is an X-ray diffraction chart of ferric citrate hydrate obtained in Example 15. 比較例4において得られたクエン酸第二鉄水和物のX線回折チャートである。8 is an X-ray diffraction chart of ferric citrate hydrate obtained in Comparative Example 4. 比較例5において得られたクエン酸第二鉄水和物のX線回折チャートである。9 is an X-ray diffraction chart of ferric citrate hydrate obtained in Comparative Example 5.
 本発明は、水中で、クエン酸、塩化第二鉄、及びアルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩の少なくとも1つを混合し、混合物を得た後、該混合物を有機溶媒と混合することによりクエン酸第二鉄水和物を製造するクエン酸第二鉄水和物の製造方法であって、アルカリ金属又はアルカリ土類金属がリチウム又はマグネシウムであり、塩化第二鉄に対してアルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩が0.30~0.95当量である、クエン酸第二鉄水和物の製造方法である。以下本発明の製造方法について詳述する。 In the present invention, citric acid, ferric chloride, and at least one hydroxide or carbonate of an alkali metal or an alkaline earth metal are mixed in water to obtain a mixture, and the mixture is mixed with an organic solvent. A method for producing a ferric citrate hydrate by producing a ferric citrate hydrate by mixing, wherein the alkali metal or alkaline earth metal is lithium or magnesium, and with respect to ferric chloride And a hydroxide or carbonate of an alkali metal or an alkaline earth metal in an amount of 0.30 to 0.95 equivalent is a method for producing ferric citrate hydrate. The manufacturing method of the present invention will be described in detail below.
 (クエン酸)
 本発明において、クエン酸は、試薬や工業品等、特に制限されることなく使用することができる。また、その形態についても特に制限されず、固体形態の他、水溶液等の形態を使用してもよい。また、固体形態の場合、クエン酸は無水物の他に、水和物の形態のものがあるが、何れの形態であってもよい。
(citric acid)
In the present invention, citric acid can be used as reagents, industrial products, etc. without particular limitation. Also, the form thereof is not particularly limited, and in addition to the solid form, a form such as an aqueous solution may be used. In the case of the solid form, citric acid may be in the form of hydrate as well as anhydride, but any form may be used.
 本発明において、塩化第二鉄等の他の原材料の使用量は、クエン酸の使用量を基準にして算出する。そのため、クエン酸の使用量は、クエン酸第二鉄水和物の製造スケールにより適宜決定すればよい。なお、水和物や水溶液等の形態を用いる場合、それらに含まれるクエン酸の純分に換算した量(以下、「クエン酸の純分換算量」と称す)を基準とする。また、クエン酸並びにその水和物及び水溶液等を併用する場合、クエン酸の使用量と上記クエン酸の純分換算量の合計を基準とする。さらに、当該形態に含まれる水の量は、本発明における水の使用量に含める。クエン酸の純分換算量は、高速液体クロマトグラフィー(HPLC)や滴定装置等を用いた定量法等の公知の方法により算出すればよい。又は、カールフィッシャー滴定法(KF)等により当該形態中の水の量を測定し、当該形態の全量から該水の量を差し引くことで、クエン酸の純分換算量を算出してもよい。 In the present invention, the usage of other raw materials such as ferric chloride is calculated based on the usage of citric acid. Therefore, the amount of citric acid used may be appropriately determined according to the production scale of ferric citrate hydrate. When a hydrate, an aqueous solution, or the like is used, the amount converted to the pure content of citric acid contained therein (hereinafter, referred to as “pure citric acid conversion amount”) is used as a standard. When citric acid, its hydrate, aqueous solution, etc. are used in combination, the total of the amount of citric acid used and the amount of citric acid converted to pure content is used as the standard. Further, the amount of water contained in the form is included in the amount of water used in the present invention. The pure content of citric acid may be calculated by a known method such as high performance liquid chromatography (HPLC) or a quantification method using a titrator. Alternatively, the amount of water in the form may be measured by Karl Fischer titration (KF) or the like, and the amount of water may be subtracted from the total amount of the form to calculate the amount of citric acid as a pure component.
 クエン酸は、製造条件等によっては、クエン酸の分解に由来するアコニット酸やシトラコン酸等の不純物を含む場合がある。製造されるクエン酸第二鉄水和物の純度をより高めるために、当該不純物の含有量が少ないクエン酸を使用することが好ましい。具体的には、実施例に記載のHPLCによる分析において、クエン酸の純度は98.0~99.9%であることが好ましく、アコニット酸やシトラコン酸等の不純物はそれぞれが0.01~1.0%であることが好ましい。 ㆍ Citric acid may contain impurities such as aconitic acid and citraconic acid derived from the decomposition of citric acid depending on the production conditions. In order to further increase the purity of the ferric citrate hydrate produced, it is preferable to use citric acid having a low content of the impurities. Specifically, in the analysis by HPLC described in the Examples, the purity of citric acid is preferably 98.0 to 99.9%, and impurities such as aconitic acid and citraconic acid are 0.01 to 1 respectively. It is preferably 0.0%.
 (塩化第二鉄)
 本発明において、塩化第二鉄は、試薬や工業品等、特に制限されることなく使用することができる。また、その形態についても特に制限されず、固体形態の他、水溶液等の形態を使用してもよい。また、固体形態の場合、塩化第二鉄は無水物の他に、水和物の形態のものがあるが、何れの形態であってもよい。
(Ferric chloride)
In the present invention, ferric chloride can be used without particular limitation in reagents, industrial products and the like. Also, the form thereof is not particularly limited, and in addition to the solid form, a form such as an aqueous solution may be used. Further, in the case of the solid form, ferric chloride may be in the form of a hydrate as well as an anhydride, but any form may be used.
 塩化第二鉄の使用量は、クエン酸に対して塩化第二鉄が1.0~2.5当量であることが好ましい。当該範囲とすることで、クエン酸第二鉄水和物の製造収量をより高めることができる。さらに、当該範囲において、その使用量によって、得られるクエン酸第二鉄水和物中のクエン酸由来の分子構造(上記式(1)中のFe(C6H5O7)の(C6H5O73-)及び第二鉄の含有量の比、即ち、クエン酸第二鉄水和物中の第二鉄に対するクエン酸由来の分子構造のモル比率を調整することができる。具体的には、通常、クエン酸に対して塩化第二鉄が1.0当量の場合、得られるクエン酸第二鉄水和物中の第二鉄に対するクエン酸由来の分子構造のモル比率は0.8~1.1であり、1.5当量の場合0.7~1.0であり、2.0当量の場合0.6~0.9となる。よって、所望のクエン酸第二鉄水和物の上記モル比率に応じて、塩化第二鉄の使用量を適宜決定すればよい。なお、当該使用量は、水和物や水溶液等の形態を用いる場合、それらに含まれる塩化第二鉄の純分に換算した量(塩化第二鉄の純分換算量)を基準とする。さらに、当該形態に含まれる水の量は、本発明における水の使用量に含める。 The amount of ferric chloride used is preferably 1.0 to 2.5 equivalents of ferric chloride with respect to citric acid. By setting it as the said range, the manufacturing yield of ferric citrate hydrate can be improved more. Further, within the range, depending on the amount used, the molecular structure derived from citric acid in the obtained ferric citrate hydrate (Fe (C 6 H 5 O 7 ) in the formula (1) (C 6 The ratio of the content of H 5 O 7 ) 3- ) and ferric iron, that is, the molar ratio of the molecular structure derived from citric acid to ferric iron in the ferric citrate hydrate can be adjusted. Specifically, usually, when ferric chloride is 1.0 equivalent to citric acid, the molar ratio of the molecular structure derived from citric acid to ferric iron in the obtained ferric citrate hydrate is It is 0.8 to 1.1, 0.7 to 1.0 when 1.5 equivalents, and 0.6 to 0.9 when 2.0 equivalents. Therefore, the amount of ferric chloride used may be appropriately determined according to the desired molar ratio of ferric citrate hydrate. In addition, when the form such as a hydrate or an aqueous solution is used, the amount used is based on the amount converted to the pure content of ferric chloride contained therein (the amount converted to the pure content of ferric chloride). Further, the amount of water contained in the form is included in the amount of water used in the present invention.
 なお、上記当量数は、クエン酸及び塩化第二鉄の価数がいずれも3であるため、単に各モル数を用いて算出すればよい。即ち、使用するクエン酸が1モル、塩化第二鉄が1モルの場合、クエン酸に対する塩化第二鉄の当量数は1となる。 Note that the above equivalent number can be calculated simply by using the number of moles because the valences of citric acid and ferric chloride are both 3. That is, when 1 mol of citric acid and 1 mol of ferric chloride are used, the equivalent number of ferric chloride to citric acid is 1.
 (アルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩)
 本発明において、塩基としてアルカリ金属又はアルカリ土類金属がリチウム又はマグネシウムであるアルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩(リチウムの水酸化物若しくは炭酸塩、又はマグネシウムの水酸化物若しくは炭酸塩)を使用するが、具体的には、水酸化リチウム、水酸化マグネシウム、炭酸リチウム及び炭酸マグネシウムである。これら塩基は、単一種を使用してもよく、複数種を使用してもよい。また、これらは、試薬や工業品等、特に制限されることなく使用することができる。これらの中でも、反応性を考慮すると、水酸化リチウム、水酸化マグネシウムがより好ましい。
(Hydroxide or carbonate of alkali metal or alkaline earth metal)
In the present invention, a hydroxide or carbonate of an alkali metal or an alkaline earth metal in which an alkali metal or an alkaline earth metal as a base is lithium or magnesium (a hydroxide or a carbonate of lithium, or a hydroxide of magnesium or Carbonate) is used, but specifically, lithium hydroxide, magnesium hydroxide, lithium carbonate and magnesium carbonate. These bases may be used alone or in combination of two or more. Further, these can be used without particular limitation, such as reagents and industrial products. Among these, lithium hydroxide and magnesium hydroxide are more preferable in consideration of reactivity.
 上記塩基の使用量は、塩化第二鉄に対して0.30~0.95当量、すなわちクエン酸に対して0.30~2.38当量である。当該範囲とすることで、クエン酸第二鉄水和物のBET比表面積を16m2/g以上とすることができる。当該範囲において、塩基の使用量が少なくなるにつれ、クエン酸第二鉄水和物のBET比表面積は大きくなる傾向がある。一方、塩基の使用量が大きくなるにつれ、クエン酸第二鉄水和物の製造収率が高くなる傾向がある。よって、所望のBET比表面積等に応じて、上記範囲の中で、塩基の使用量を適宜決定すればよいが、BET比表面積及び製造収率の観点から、塩基の使用量は塩化第二鉄に対して0.40~0.90当量、すなわちクエン酸に対して0.40~2.25当量がより好ましく、0.50~0.85当量、すなわちクエン酸に対して0.50~2.13当量がさらに好ましい。上記塩基の内、水酸化リチウムは無水物の他に、一水和物の形態が存在するが、その形態は特に制限されず、さらに、水溶液等の溶液形態であってもよい。ただし、塩基の使用量は、水和物や水溶液等の形態を用いる場合、それらに含まれる塩基の純分に換算した量(塩基の純分換算量)を基準とする。さらに、当該形態に含まれる水の量は、本発明における水の使用量に含める。 The amount of the above base used is 0.30 to 0.95 equivalent to ferric chloride, that is, 0.30 to 2.38 equivalent to citric acid. By setting it as the said range, the BET specific surface area of ferric citrate hydrate can be 16 m < 2 > / g or more. Within this range, the BET specific surface area of ferric citrate hydrate tends to increase as the amount of base used decreases. On the other hand, as the amount of the base used increases, the production yield of ferric citrate hydrate tends to increase. Therefore, the amount of the base used may be appropriately determined within the above range according to the desired BET specific surface area and the like. From the viewpoint of the BET specific surface area and the production yield, the amount of the base used is ferric chloride. Is more preferably 0.40 to 0.90 equivalent, that is, 0.40 to 2.25 equivalent to citric acid, more preferably 0.50 to 0.85 equivalent, that is, 0.50 to 2 to citric acid. 0.13 equivalents are even more preferred. Among the above-mentioned bases, lithium hydroxide exists in the form of a monohydrate in addition to the anhydride, but the form is not particularly limited, and may be a solution form such as an aqueous solution. However, in the case of using a hydrate, an aqueous solution, or the like, the amount of the base used is based on the amount converted to the pure content of the base contained therein (the pure content conversion amount of the base). Further, the amount of water contained in the form is included in the amount of water used in the present invention.
 なお、上記当量数は、塩化第二鉄の鉄イオンの価数及び使用する塩基の価数を考慮して決定する必要がある。即ち、使用する塩基のモル数に塩基の価数で乗じた数値を、塩化第二鉄のモル数に塩化第二鉄の鉄イオンの価数である3を乗じた数値で除すことにより、塩化第二鉄に対する塩基の当量を算出する。具体的には、アルカリ金属がリチウムであれば、その価数は1であり、アルカリ土類金属がマグネシウムであれば、価数は2であるため、例えば、塩化第二鉄1モルを使用し、塩基を1モル使用した場合、アルカリ金属がリチウムであれば塩化第二鉄に対する塩基の当量数は0.33となり、アルカリ土類金属がマグネシウムであれば0.67となる。 Note that it is necessary to determine the above equivalent number by considering the valence of the iron ion of ferric chloride and the valence of the base used. That is, by dividing the number of moles of the base used by the valence of the base, by dividing the number of moles of ferric chloride by 3 which is the valence of the iron ion of ferric chloride, Calculate the equivalent of base to ferric chloride. Specifically, if the alkali metal is lithium, the valence is 1, and if the alkaline earth metal is magnesium, the valence is 2. Therefore, for example, 1 mol of ferric chloride is used. When 1 mol of the base is used, the equivalent number of the base to ferric chloride is 0.33 if the alkali metal is lithium, and 0.67 if the alkaline earth metal is magnesium.
 (水)
 本発明において、水は、特に制限されることなく、水道水、イオン交換水、蒸留水等を使用することができる。水の使用量は、クエン酸1gに対して、2.0~8.5mLであることが好ましい。クエン酸1gに対して、2.0mL以上の水を用いることで、生成する副生塩を十分に除去でき、製造されるクエン酸第二鉄水和物中の副生塩の残量を低減できる。一方、8.5mL以下の水を用いることで、母液(後述するクエン酸第二鉄水和物を含有する懸濁液中の分散溶媒)へのクエン酸第二鉄水和物の溶解量が低減し、クエン酸第二鉄水和物の製造収率を高めることができる。当該副生塩の除去効率や製造収率、操作性等を考慮すると、クエン酸1gに対して、2.5~7.5mLがより好ましく、3.0~6.5mLがさらに好ましい。特に、2.5mL未満の水を用いた場合に得られるクエン酸第二鉄水和物が粒状になる傾向があるが、2.5mL以上の場合、得られるクエン酸第二鉄水和物は粉末状になる傾向がある。この形状の違いにより、クエン酸第二鉄水和物中への副生塩の取り込みが低減され、副生塩の残留量をより高度に低減できると考えられる。なお、上記したように、原材料を水和物や水溶液等の形態で用いる場合、当該形態に含まれる水の量は、本発明における水の使用量に含める。
(water)
In the present invention, water is not particularly limited, and tap water, ion-exchanged water, distilled water or the like can be used. The amount of water used is preferably 2.0 to 8.5 mL with respect to 1 g of citric acid. By using 2.0 mL or more of water for 1 g of citric acid, the generated by-product salt can be sufficiently removed, and the amount of the by-product salt in the ferric citrate hydrate produced is reduced. it can. On the other hand, by using 8.5 mL or less of water, the amount of ferric citrate hydrate dissolved in the mother liquor (dispersion solvent in the suspension containing ferric citrate hydrate described below) It is possible to reduce and increase the production yield of ferric citrate hydrate. Considering the removal efficiency of the by-product salt, production yield, operability, etc., 2.5 to 7.5 mL is more preferable, and 3.0 to 6.5 mL is even more preferable, relative to 1 g of citric acid. In particular, the ferric citrate hydrate obtained when using less than 2.5 mL of water tends to be granular, but when it is 2.5 mL or more, the obtained ferric citrate hydrate is It tends to be powdery. It is considered that due to this difference in shape, the incorporation of the by-product salt into the ferric citrate hydrate is reduced, and the residual amount of the by-product salt can be more highly reduced. As described above, when the raw material is used in the form of a hydrate or an aqueous solution, the amount of water contained in the form is included in the amount of water used in the present invention.
 (混合物の調製)
 本発明において、水中で、クエン酸、塩化第二鉄、及びアルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩を混合し、混合物を得る。当該混合操作は、特に制限されず、公知の方法により実施すればよいが、ガラス製、ステンレス製、テフロン(登録商標)製、グラスライニング等の容器を用い、さらに、メカニカルスターラー、マグネティックスターラー等を用いて、各原料を撹拌下で混合することが、均一性や操作性の観点で好ましい。また、各原料の混合順序は、特に制限されないが、クエン酸を除く、他の原料のみを混合した場合、水酸化第二鉄が一旦系内で析出する。その場合、水の使用量や混合時の温度によっては、混合によって得られた懸濁液の粘性が高く、撹拌不良が発生する場合がある。また、水酸化第二鉄は、温度等によっては、α、β、又は、γ酸化水酸化鉄、酸化鉄等の他の鉄化合物へと変換される場合がある。当該鉄化合物は、水やクエン酸水溶液に対する溶解性が、水酸化第二鉄と比較して著しく低く、その結果、続くクエン酸の添加後も、不溶性固体として残存し、製造されるクエン酸第二鉄水和物の製造収率の低下やクエン酸第二鉄水和物中への当該鉄化合物の残存が生じる場合がある。そのため、各原料の混合順序として、塩化第二鉄、及び、アルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩が混合される以前に、水とクエン酸とを混合させることが好ましい。さらに、塩化第二鉄を含む混合物にアルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩を混合した場合、アルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩が塊状となり、溶解に長時間を要する場合があるため、塩化第二鉄が混合される以前に、アルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩を混合させることがより好ましい。以上を考慮すると具体的には、クエン酸、水、アルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩、塩化第二鉄の順序で混合することがより好ましい。なお、当該混合順序において、クエン酸と水の混合順序は逆であっても何ら問題無い。
(Preparation of mixture)
In the present invention, citric acid, ferric chloride, and an alkali metal or alkaline earth metal hydroxide or carbonate are mixed in water to obtain a mixture. The mixing operation is not particularly limited and may be carried out by a known method, but a container made of glass, stainless steel, Teflon (registered trademark), glass lining or the like is used, and further, a mechanical stirrer, a magnetic stirrer or the like is used. It is preferable to mix each raw material with stirring from the viewpoint of uniformity and operability. The mixing order of each raw material is not particularly limited, but when only other raw materials except for citric acid are mixed, ferric hydroxide is once precipitated in the system. In that case, depending on the amount of water used and the temperature at the time of mixing, the viscosity of the suspension obtained by mixing may be high, and poor stirring may occur. Further, ferric hydroxide may be converted into other iron compounds such as α, β or γ iron oxide hydroxide and iron oxide depending on the temperature and the like. The iron compound has a remarkably low solubility in water or an aqueous citric acid solution as compared with ferric hydroxide, and as a result, it remains as an insoluble solid even after the subsequent addition of citric acid, and the produced citric acid The production yield of diiron hydrate may decrease, and the iron compound may remain in the ferric citrate hydrate. Therefore, as a mixing order of each raw material, it is preferable to mix water and citric acid before mixing ferric chloride and a hydroxide or carbonate of an alkali metal or an alkaline earth metal. Furthermore, when a hydroxide or carbonate of an alkali metal or an alkaline earth metal is mixed with a mixture containing ferric chloride, the hydroxide or carbonate of an alkali metal or an alkaline earth metal becomes a lump, which causes a long dissolution time. Since it may take time, it is more preferable to mix the alkali metal or alkaline earth metal hydroxide or carbonate before the ferric chloride is mixed. Considering the above, specifically, it is more preferable to mix citric acid, water, a hydroxide or carbonate of an alkali metal or an alkaline earth metal, and ferric chloride in this order. In the mixing order, there is no problem even if the mixing order of citric acid and water is reversed.
 上記混合操作の温度は、全ての原料を混合した時点では、35~80℃であることが好ましい。全ての原料を混合した時点では、各固体の原料は水中に溶解して反応し、クエン酸第二鉄水和物が生成するが、35℃未満の場合、水の使用量が少ないと、溶液中の固体濃度が高いために、クエン酸第二鉄水和物が析出する場合がある。35℃以上とすることで、クエン酸第二鉄水和物の析出を回避し、溶液状態を安定的に維持できる。一方、80℃以下であれば、クエン酸第二鉄水和物及び/又はクエン酸の分解を抑制でき、製造されるクエン酸第二鉄水和物の純度をより高めることができる。上記範囲の中でも、操作性や製造されるクエン酸第二鉄水和物の品質の観点から、37.5~75℃がより好ましく、40~70℃がさらに好ましい。なお、一部の原料のみを混合する段階では、上記の温度範囲とする必要は無い。例えば、塩化第二鉄を最後に混合する場合であれば、塩化第二鉄の混合後の時点で、上記範囲とすればよく、塩化第二鉄を除く原料の混合段階では、その温度は特に制限されない。 The temperature of the above mixing operation is preferably 35 to 80 ° C. when all the raw materials are mixed. At the time of mixing all the raw materials, the solid raw materials are dissolved in water to react with each other, and ferric citrate hydrate is produced. Ferric citrate hydrate may precipitate due to the high solids concentration in it. By setting the temperature to 35 ° C. or higher, precipitation of ferric citrate hydrate can be avoided and the solution state can be stably maintained. On the other hand, if the temperature is 80 ° C. or lower, the decomposition of ferric citrate hydrate and / or citric acid can be suppressed, and the purity of the ferric citrate hydrate produced can be further increased. Within the above range, from the viewpoint of operability and the quality of the ferric citrate hydrate to be produced, 37.5 to 75 ° C is more preferable, and 40 to 70 ° C is even more preferable. In addition, at the stage of mixing only some of the raw materials, it is not necessary to set the temperature within the above range. For example, in the case of mixing ferric chloride last, at the time after mixing ferric chloride, it may be in the above range, in the mixing stage of the raw material excluding ferric chloride, the temperature is particularly Not limited.
 各原料が水中に溶解すれば、クエン酸第二鉄水和物の生成は瞬時に進行するため、全ての原料を混合した後、各固体の溶解を目視等で確認して、混合させる時間を適宜決定すればよい。通常、最後の原材料を加えた後、5分間以上混合すれば十分である。ただし、混合温度によっては、混合時間が延びるにつれて、クエン酸第二鉄水和物及び/又はクエン酸の分解が進行する傾向にあるため、溶解を確認次第、次操作である有機溶媒との混合操作を実施することが好ましい。 If each raw material dissolves in water, the formation of ferric citrate hydrate will proceed instantaneously, so after mixing all the raw materials, visually confirm the dissolution of each solid and set the mixing time. It may be determined appropriately. It is usually sufficient to mix for at least 5 minutes after adding the last raw material. However, depending on the mixing temperature, the decomposition of ferric citrate hydrate and / or citric acid tends to proceed as the mixing time increases, so once dissolution is confirmed, mixing with an organic solvent, which is the next operation, is performed. It is preferable to carry out the operation.
 (有機溶媒)
 本発明において、上記のようにして得られた混合物と有機溶媒とを混合する。当該混合操作により、クエン酸第二鉄水和物が析出し、クエン酸第二鉄水和物を含む懸濁液を得ることができる。当該有機溶媒とは、上記混合物との混合により、クエン酸第二鉄水和物が析出する有機溶媒であれば、特に制限されないが、通常、上記混合物は固体濃度が高いために、有機溶媒の種類によっては、混合物と混合した際に、有機溶媒と分層して均一に混合せず、クエン酸第二鉄水和物が析出しない場合がある。混合物の製造条件によらず、クエン酸第二鉄水和物が析出する有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノールが挙げられる。これらは単一種を使用してもよく、複数種を使用してもよい。これらの中でも、操作性やクエン酸第二鉄水和物の製造収率等を考慮すると、エタノール、1-プロパノール、2-プロパノールがより好ましく、1-プロパノール、2-プロパノールがさらに好ましい。当該有機溶媒の使用量は、クエン酸1gに対して、3~20mLであることが好ましい。当該範囲とすることで、有機溶媒との混合後にクエン酸第二鉄水和物が析出する。上記範囲の中でも、クエン酸第二鉄水和物の製造収率や操作性等を考慮すると、当該有機溶媒の使用量は、クエン酸1gに対して4~15mLがより好ましく、5~13mLがさらに好ましい。
(Organic solvent)
In the present invention, the mixture obtained as described above and an organic solvent are mixed. By the mixing operation, ferric citrate hydrate is precipitated, and a suspension containing ferric citrate hydrate can be obtained. The organic solvent is not particularly limited as long as it is an organic solvent in which ferric citrate hydrate is precipitated by mixing with the mixture, but since the solid concentration of the mixture is usually high, the organic solvent Depending on the type, when mixed with the mixture, the organic solvent may be separated and the mixture may not be uniformly mixed, and ferric citrate hydrate may not be precipitated. Regardless of the manufacturing conditions of the mixture, examples of the organic solvent in which ferric citrate hydrate is precipitated include methanol, ethanol, 1-propanol, and 2-propanol. These may use a single type or a plurality of types. Of these, ethanol, 1-propanol, and 2-propanol are more preferable, and 1-propanol and 2-propanol are even more preferable, considering the operability and the production yield of ferric citrate hydrate. The amount of the organic solvent used is preferably 3 to 20 mL per 1 g of citric acid. By setting it as the said range, ferric citrate hydrate will precipitate after mixing with an organic solvent. In the above range, considering the production yield of ferric citrate hydrate, operability, etc., the amount of the organic solvent used is more preferably 4 to 15 mL with respect to 1 g of citric acid, and 5 to 13 mL. More preferable.
 また、上記の有機溶媒をクエン酸1gに対して3~20mLを使用する場合、当該有機溶媒1mLに対して含有量が1mL以下であれば、上記以外の有機溶媒を含んでも構わない。上記以外の有機溶媒とは、上記有機溶媒及び水と混和する有機溶媒であり、具体的には、1-ブタノール、2-ブタノール、t-ブタノール、アリルアルコール、プロパルギルアルコール等のアルコール類、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類、テトラヒドロフラン、ジオキサン等の環状エーテル類、アセトニトリル等のニトリル類、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン等の含窒素化合物、ジメチルスルホキシド等の含硫黄化合物等が挙げられる。これらは単一種を使用してもよく、複数種を使用してもよい。また、これらの中でも、沸点が比較的低く、除去が容易である点や製造収率等を考慮すると、1-ブタノール、2-ブタノール、t-ブタノール、アリルアルコール、プロパルギルアルコール等のアルコール類、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類、テトラヒドロフラン、ジオキサン等の環状エーテル類、アセトニトリル等のニトリル類がより好ましく、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類がさらに好ましい。 When 3 to 20 mL of the above organic solvent is used per 1 g of citric acid, an organic solvent other than the above may be contained as long as the content is 1 mL or less per 1 mL of the organic solvent. The organic solvent other than the above is an organic solvent that is miscible with the above organic solvent and water, and specifically, alcohols such as 1-butanol, 2-butanol, t-butanol, allyl alcohol, propargyl alcohol, acetone, Ketones such as methyl ethyl ketone, acetylacetone and diacetone alcohol, cyclic ethers such as tetrahydrofuran and dioxane, nitriles such as acetonitrile, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone and the like Examples thereof include nitrogen-containing compounds and sulfur-containing compounds such as dimethyl sulfoxide. These may use a single type or a plurality of types. Of these, alcohols such as 1-butanol, 2-butanol, t-butanol, allyl alcohol, propargyl alcohol, etc., and acetone are taken into consideration because of their relatively low boiling point, easy removal, and production yield. , Methyl ethyl ketone, acetylacetone, diacetone alcohol, and other ketones, tetrahydrofuran, dioxane, and other cyclic ethers, acetonitrile, and other nitriles are more preferred, and acetone, methyl ethyl ketone, acetylacetone, diacetone alcohol, and other ketones are more preferred.
 (混合物と有機溶媒との混合)
 本発明において、混合物と有機溶媒との混合は、当該混合操作を実施できればよく、その実施方法は特に制限されないが、上記の混合物の調製と同様に、ガラス製、ステンレス製、テフロン(登録商標)製、グラスライニング等の容器を用い、さらに、メカニカルスターラー、マグネティックスターラー等を用いて、混合物と有機溶媒を撹拌下で混合することが、均一性や操作性の観点で好ましい。また、混合物と有機溶媒との混合順序についても特に制限されず、混合物を製造後、これに有機溶媒を添加してもよいし、又は、有機溶媒中に、混合物を添加してもよい。ただし、クエン酸第二鉄水和物が析出する際に、塊状になりやすく、撹拌が困難になる場合や析出したクエン酸第二鉄水和物が容器壁面に固着し、製造収率が低下する場合があることから、操作性や製造収率の観点から有機溶媒中に、混合物を滴下する方法が好ましい。上記混合物の滴下速度は、作業時間や析出するクエン酸第二鉄水和物の溶媒中への分散具合等を確認しながら適宜決定すればよいが、通常5分間~5時間の範囲で決定すればよい。
(Mixture of mixture with organic solvent)
In the present invention, the mixture of the mixture and the organic solvent may be carried out as long as the mixing operation can be carried out, and the method for carrying out the mixture is not particularly limited, but similar to the preparation of the above mixture, glass, stainless steel, Teflon (registered trademark). From the viewpoint of uniformity and operability, it is preferable to mix the mixture and the organic solvent with stirring by using a container for manufacturing, glass lining or the like, and further using a mechanical stirrer, a magnetic stirrer or the like. The order of mixing the mixture and the organic solvent is not particularly limited, and the organic solvent may be added to the mixture after it is produced, or the mixture may be added to the organic solvent. However, when ferric citrate hydrate precipitates, it tends to become agglomerate and it becomes difficult to stir, or the precipitated ferric citrate hydrate sticks to the container wall surface, reducing the production yield. In some cases, the method of dropping the mixture into the organic solvent is preferable from the viewpoint of operability and production yield. The dropping rate of the above mixture may be appropriately determined while confirming the working time and the degree of dispersion of the precipitated ferric citrate hydrate in the solvent, but usually it is determined within the range of 5 minutes to 5 hours. Good.
 また、混合時の温度は、使用する有機溶媒の沸点等を考慮して適宜決定すればよいが、あまり低すぎるとクエン酸第二鉄水和物が塊状になりやすく、高すぎるとクエン酸第二鉄水和物及び/又はクエン酸の分解により、アコニット酸等の不純物の副生が懸念されることから、20~80℃の範囲で行うことが好ましい。特に析出したクエン酸第二鉄水和物の固液分離等の操作性や有機溶媒の揮発等を考慮すると、25~70℃がより好ましく、30~60℃がさらに好ましい。 Further, the temperature at the time of mixing may be appropriately determined in consideration of the boiling point of the organic solvent to be used, but if it is too low, ferric citrate hydrate tends to agglomerate, and if it is too high, the citric acid no. Since decomposition of diiron hydrate and / or citric acid may cause by-production of impurities such as aconitic acid, it is preferably carried out in the range of 20 to 80 ° C. Considering operability such as solid-liquid separation of the precipitated ferric citrate hydrate and volatilization of the organic solvent, the temperature is more preferably 25 to 70 ° C, further preferably 30 to 60 ° C.
 上記混合物と有機溶媒を混合させた後、クエン酸第二鉄水和物を十分に析出させるために、撹拌したまま一定時間保持することが好ましい。保持時間は、混合時の温度等によって異なるが、通常15分間~50時間保持すれば十分である。また、当該操作における温度は、上記混合時と同様の理由から、混合時と同様の範囲が好ましい。以上のようにして、クエン酸第二鉄水和物を含有する懸濁液を得ることができる。 After mixing the above mixture with an organic solvent, it is preferable to hold the mixture for a certain period of time with stirring in order to sufficiently precipitate ferric citrate hydrate. The holding time varies depending on the temperature at the time of mixing, etc., but it is usually sufficient to hold for 15 minutes to 50 hours. Further, the temperature in the operation is preferably in the same range as in the mixing for the same reason as in the mixing. As described above, a suspension containing ferric citrate hydrate can be obtained.
 (クエン酸第二鉄水和物の湿体の単離)
 上記本発明の製造方法により得られたクエン酸第二鉄水和物は、上記懸濁液より減圧濾過や加圧濾過、遠心分離等を用いて固液分離により、クエン酸第二鉄水和物と有機溶媒を含むクエン酸第二鉄水和物の湿体として単離することができる。当該操作において、単離したクエン酸第二鉄水和物の湿体は、有機溶媒、又は、有機溶媒と水との混合溶媒で洗浄することが好ましい。この洗浄により、湿体に残存する母液(上記懸濁液中の分散溶媒)を除去でき、クエン酸第二鉄水和物中の副生塩の残留量をより低減できる。上記の中でも、有機溶媒と水との混合溶媒で洗浄することで、洗浄時に湿体に残存する母液から副生塩等が析出しないため、より好ましい。その混合比率は、洗浄液へのクエン酸第二鉄水和物の溶解による製造収率の低下や副生塩の析出を抑制できる点から、有機溶媒1mLに対して、水が0.2~2mLであることが好ましい。また、その使用量は、原料のクエン酸1gに対して、洗浄液が0.5~5mLであることが、洗浄効率の点から好ましい。
(Isolation of wet body of ferric citrate hydrate)
The ferric citrate hydrate obtained by the above-mentioned production method of the present invention is ferric citrate hydrate obtained by solid-liquid separation from the suspension using vacuum filtration, pressure filtration, centrifugation, or the like. It can be isolated as a wet form of ferric citrate hydrate containing a product and an organic solvent. In the operation, the isolated wet body of ferric citrate hydrate is preferably washed with an organic solvent or a mixed solvent of an organic solvent and water. By this washing, the mother liquor (dispersing solvent in the suspension) remaining in the wet body can be removed, and the residual amount of the by-product salt in the ferric citrate hydrate can be further reduced. Among the above, by washing with a mixed solvent of an organic solvent and water, by-product salts and the like do not precipitate from the mother liquor remaining in the wet body during washing, which is more preferable. The mixing ratio is 0.2 to 2 mL of water with respect to 1 mL of the organic solvent, since it is possible to suppress the decrease in the production yield due to the dissolution of ferric citrate hydrate in the washing solution and the precipitation of by-product salts. Is preferred. From the viewpoint of cleaning efficiency, it is preferable that the amount of the cleaning liquid used is 0.5 to 5 mL with respect to 1 g of citric acid as a raw material.
 上記のようにして、固液分離後の湿体を洗浄しても、固液分離の方法や製造スケール等によっては、湿体に母液が残留する場合があるため、固液分離後の湿体と有機溶媒及び水からなる混合溶媒とを混合し、再度懸濁液(以下、「再懸濁液」という)を調製した後、固液分離することによって洗浄を行ってもよい。当該操作によれば、湿体中の母液の残存をより低減でき、結果的に製造されるクエン酸第二鉄水和物中の副生塩の残留量をより低減できる。 Even if the wet body after solid-liquid separation is washed as described above, the mother liquor may remain in the wet body depending on the method of solid-liquid separation or the production scale. Alternatively, the mixture may be mixed with an organic solvent and a mixed solvent of water to prepare a suspension again (hereinafter, referred to as “resuspension”), and then solid-liquid separation may be performed for washing. According to this operation, the residual amount of the mother liquor in the wet body can be further reduced, and the residual amount of the by-product salt in the ferric citrate hydrate produced as a result can be further reduced.
 当該再懸濁液を調製することによる洗浄に使用する混合溶媒における有機溶媒は、25℃の水1gに対して、溶解度が0.2g以上の有機溶媒である。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、アリルアルコール等のアルコール類、酢酸メチル等のエステル類、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類、アセトニトリル等のニトリル類が挙げられる。これらの中でも、洗浄液に対するクエン酸第二鉄水和物の溶解性や除去の容易さの観点から、メタノール、エタノール、1-プロパノール、2-プロパノール、アリルアルコール等のアルコール類及びアセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類がより好ましく、メタノール、エタノール、1-プロパノール、2-プロパノール、アセトン、メチルエチルケトンがさらに好ましい。なお、これらは単一種を使用してもよく、複数種を使用してもよい。 The organic solvent in the mixed solvent used for washing by preparing the resuspension is an organic solvent having a solubility of 0.2 g or more in 1 g of water at 25 ° C. Specific examples include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and allyl alcohol, esters such as methyl acetate, ethers such as tetrahydrofuran and dioxane, acetone, methyl ethyl ketone, acetylacetone and diacetone alcohol. Examples include ketones and nitriles such as acetonitrile. Among these, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and allyl alcohol, and acetone, methyl ethyl ketone, and acetylacetone are used from the viewpoint of solubility and easy removal of ferric citrate hydrate in a cleaning solution. , Ketones such as diacetone alcohol and the like are more preferable, and methanol, ethanol, 1-propanol, 2-propanol, acetone and methyl ethyl ketone are more preferable. In addition, these may use a single type and may use multiple types.
 有機溶媒と水との混合比率は、有機溶媒1mLに対して、水が0.1~2mLであることが好ましい。また、当該混合溶媒の使用量は、原料のクエン酸1gに対して0.5~20mLであることが、操作性や洗浄効率の点から好ましく、これらの中でも、1.0~15mLがより好ましく、1.5~10mLがさらに好ましい。 The mixing ratio of the organic solvent and water is preferably 0.1 to 2 mL of water to 1 mL of the organic solvent. The amount of the mixed solvent used is preferably 0.5 to 20 mL with respect to 1 g of citric acid as a raw material, from the viewpoint of operability and cleaning efficiency, and of these, 1.0 to 15 mL is more preferable. , 1.5 to 10 mL is more preferable.
 当該再懸濁液の調製は、再懸濁液が調製できれば、その実施方法は特に制限されること無いが、混合物の調製や有機溶媒との混合と同様に、湿体と有機溶媒及び水の混合溶媒とを撹拌下で混合すればよい。ただし、有機溶媒及び水の混合溶媒は、湿体との混合前に調製することが好ましい。また、当該混合操作の温度は、撹拌効率や製造収率を考慮すると、-20~75℃の範囲が好ましく、当該混合操作及び混合後の固液分離操作の操作性や有機溶媒の沸点を考慮すると、0~70℃がより好ましく、10~60℃がさらに好ましい。また、混合後は、当該温度範囲で一定時間以上、撹拌下で混合することが均一性等の観点から好ましい。製造スケール等によるため、一概に規定できないが、通常、15分間~2時間混合状態を保持すれば十分である。 The method for carrying out the resuspension is not particularly limited as long as the resuspension can be prepared. However, similar to the preparation of the mixture and the mixing with the organic solvent, the wet body, the organic solvent and water are mixed. The mixed solvent may be mixed with stirring. However, the mixed solvent of the organic solvent and water is preferably prepared before mixing with the wet body. The temperature of the mixing operation is preferably in the range of −20 to 75 ° C. in consideration of the stirring efficiency and the production yield, and the operability of the mixing operation and the solid-liquid separation operation after mixing and the boiling point of the organic solvent are considered. Then, 0 to 70 ° C. is more preferable, and 10 to 60 ° C. is further preferable. In addition, after mixing, it is preferable from the viewpoint of uniformity and the like that mixing is performed in the temperature range for a certain time or more with stirring. It cannot be specified unconditionally because it depends on the production scale, etc., but it is usually sufficient to maintain the mixed state for 15 minutes to 2 hours.
 以上のようにして調製した再懸濁液は、上記懸濁液と同様にして、減圧濾過や加圧濾過、遠心分離等を用いて固液分離により、クエン酸第二鉄水和物の湿体を単離すればよい。当該固液分離操作においても、固液分離後の湿体は、有機溶媒、又は、有機溶媒と水との混合溶媒で洗浄することが好ましい。 The resuspension prepared as described above is subjected to solid-liquid separation using vacuum filtration, pressure filtration, centrifugal separation, etc. in the same manner as the above suspension to obtain a wet solution of ferric citrate hydrate. The body may be isolated. Also in the solid-liquid separation operation, the wet body after solid-liquid separation is preferably washed with an organic solvent or a mixed solvent of an organic solvent and water.
 このようにして単離されたクエン酸第二鉄水和物の湿体は、後述のように乾燥させることにより、有機溶媒等が除去されたクエン酸第二鉄水和物とすることができるが、当該乾燥操作において、湿体中に水を多く含む場合、乾燥操作時にクエン酸第二鉄水和物の固体表面が湿体に含まれる水に溶解して、クエン酸第二鉄水和物のBET比表面積が低下する場合がある。そのため、乾燥前の湿体中の水の含有量を低減させることが好ましい。具体的には、湿体に含まれるクエン酸第二鉄水和物の無水物に換算した量(以下、「クエン酸第二鉄水和物の無水物換算量」と称す)1gに対して、水の含有量が0.05~0.5gであることが好ましい。ここで、湿体に含まれるクエン酸第二鉄水和物の無水物換算量は、湿体中の水及び有機溶媒の含有量をKFやガスクロマトグラフィー(GC)等により測定し、当該水及び有機溶媒の含有量を湿体重量から差し引くことにより算出される。湿体中の水の含有量を上記範囲とするためには、上記の固液分離時の洗浄は、最終的には有機溶媒のみで実施することが好ましい。当該範囲とするために、有機溶媒による洗浄を複数回行ってもよく、又は、固液分離後の湿体と有機溶媒とから再度懸濁液を調製することによって洗浄してもよい。 The wet body of ferric citrate hydrate thus isolated can be made into ferric citrate hydrate from which the organic solvent and the like have been removed by drying as described below. However, in the drying operation, when the wet body contains a large amount of water, the solid surface of the ferric citrate hydrate is dissolved in the water contained in the wet body during the drying operation to hydrate the ferric citrate. The BET specific surface area of the product may decrease. Therefore, it is preferable to reduce the content of water in the wet body before drying. Specifically, based on 1 g of the amount of ferric citrate hydrate contained in the wet body converted to an anhydride (hereinafter, referred to as “anhydrous equivalent amount of ferric citrate hydrate”) The water content is preferably 0.05 to 0.5 g. Here, the anhydrous equivalent of ferric citrate hydrate contained in the wet body is determined by measuring the content of water and the organic solvent in the wet body by KF, gas chromatography (GC) or the like, and measuring the water content. And calculated by subtracting the content of the organic solvent from the weight of the wet body. In order to keep the water content in the wet body within the above range, it is preferable that the washing at the time of solid-liquid separation is finally carried out only with the organic solvent. In order to obtain the above range, washing with an organic solvent may be performed plural times, or washing may be performed by preparing a suspension again from the wet body after solid-liquid separation and the organic solvent.
 (クエン酸第二鉄水和物の単離)
 上記の固液分離操作により、製造されたクエン酸第二鉄水和物の湿体を乾燥させ、湿体に含まれる過剰な水や有機溶媒を除去することで、クエン酸第二鉄水和物として単離できる。当該乾燥操作は、公知の方法により実施すればよく、例えば、棚式乾燥機やコニカル乾燥機を用いて、真空下、乾燥空気雰囲気下、又は窒素やアルゴンなどの不活性ガス雰囲気下にて、実施すればよい。また、当該乾燥操作の温度は、クエン酸第二鉄水和物の安定性を考慮すると、-80~80℃が好ましい。この範囲の中で、乾燥操作に使用する設備や圧力、有機溶媒の沸点等を考慮して適宜決定すればよいが、乾燥効率やクエン酸第二鉄水和物の安定性を考慮すると、-40~70℃がより好ましく、0~60℃がさらに好ましい。また、乾燥時間は有機溶媒等の残留量を確認しながら適宜決定すればよいが、通常、0.5~100時間である。さらに、乾燥過程において、塊状となり、有機溶媒の低減効率が低い場合は、ハンマーミルやピンミル等を用いて粉末状とすることで、より効率的に乾燥することができる。
(Isolation of ferric citrate hydrate)
By the solid-liquid separation operation described above, by drying the produced wet body of ferric citrate hydrate, by removing excess water and organic solvent contained in the wet body, ferric citrate hydrate Can be isolated as a product. The drying operation may be carried out by a known method, for example, using a shelf dryer or a conical dryer, under vacuum, under a dry air atmosphere, or under an inert gas atmosphere such as nitrogen or argon, It should be carried out. Further, the temperature of the drying operation is preferably −80 to 80 ° C. in consideration of the stability of ferric citrate hydrate. Within this range, it may be appropriately determined in consideration of the equipment and pressure used for the drying operation, the boiling point of the organic solvent, etc., but considering the drying efficiency and the stability of ferric citrate hydrate, − 40 to 70 ° C. is more preferable, and 0 to 60 ° C. is further preferable. The drying time may be appropriately determined while confirming the residual amount of the organic solvent and the like, but is usually 0.5 to 100 hours. Furthermore, in the drying process, when the resin becomes lumpy and the reduction efficiency of the organic solvent is low, it can be dried more efficiently by making it into a powder using a hammer mill, a pin mill or the like.
 以上のようにして、本発明により製造されたクエン酸第二鉄水和物は、クエン酸第二鉄及び/又はクエン酸の分解に由来する有機不純物の含有量が少なく、また、副生塩等に由来する無機不純物の含有量も少なく、高純度である。さらに、該クエン酸第二鉄水和物は16m2/gを超えるBET比表面積を有するため、本発明の製造方法によれば医薬品原薬としても好適に使用できることが期待される品質のクエン酸第二鉄水和物を、公知の製造方法と比較して簡便に製造することができる。 As described above, the ferric citrate hydrate produced by the present invention has a low content of organic impurities derived from the decomposition of ferric citrate and / or citric acid, and a by-product salt. The content of inorganic impurities derived from the above is small and the purity is high. Further, since the ferric citrate hydrate has a BET specific surface area of more than 16 m 2 / g, according to the production method of the present invention, citric acid of a quality expected to be suitably used as a drug substance Ferric iron hydrate can be easily produced by comparison with known production methods.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって何等制限されることはない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 なお、実施例、比較例のクエン酸第二鉄水和物の純度及びクエン酸由来の分子構造の含有量は、高速液体クロマトグラフィー(HPLC)により後述の条件で測定した。また、実施例、比較例のクエン酸第二鉄水和物のBET比表面積は、後述の窒素吸着法により測定した。さらに、実施例、比較例のクエン酸第二鉄水和物中の副生塩の含有の有無は、後述の粉末X線回折(XRD)により評価し、また、当該副生塩に由来するアルカリ金属又はアルカリ土類金属のクエン酸第二鉄水和物中の残留量は、後述の誘導結合プラズマ発光分光分析(ICP-OES)により測定した。また、クエン酸第二鉄水和物の水分量は後述のカールフィッシャー滴定法(KF)、鉄含有量は酸化還元滴定法により測定した。なお、クエン酸第二鉄水和物中の鉄に対するクエン酸由来の分子構造のモル比率は、上記の方法により測定した鉄及びクエン酸由来の分子構造の含有量と鉄及びクエン酸の分子量(55.84及び192.12)を用いて下記式により算出した。
(モル比率)=(クエン酸由来の分子構造の含有量)/(クエン酸由来の分子構造の分子量)/(鉄含有量)×(鉄分子量)
=(クエン酸含有量)/(クエン酸分子量)/(鉄含有量)×(鉄分子量)
 (純度及びクエン酸含有量)
 HPLCによるクエン酸第二鉄水和物の純度の測定は以下の条件にて行った。当該条件によるHPLC分析では、クエン酸第二鉄水和物中のクエン酸由来の分子構造の保持時間は6.6分付近である。以下の実施例、比較例において、クエン酸第二鉄水和物の純度は、当該条件で測定される全ピーク(鉄及び溶媒由来のピークを除く)の面積値の合計に対するクエン酸由来の分子構造のピーク面積値の割合である。また、クエン酸第二鉄水和物中のクエン酸由来の分子構造の含有量は、当該条件で測定されるクエン酸由来の分子構造のピーク面積値を、標準物質であるクエン酸の検量線に当てはめてクエン酸含有量に換算して算出した。このクエン酸含有量を上記モル比率の計算式の第二式に代入してモル比率を算出した。
The purity of the ferric citrate hydrates of Examples and Comparative Examples and the content of the molecular structure derived from citric acid were measured by high performance liquid chromatography (HPLC) under the conditions described below. The BET specific surface areas of the ferric citrate hydrates of Examples and Comparative Examples were measured by the nitrogen adsorption method described later. Further, the presence or absence of by-product salts in the ferric citrate hydrates of Examples and Comparative Examples was evaluated by powder X-ray diffraction (XRD) described below, and alkali derived from the by-product salts was evaluated. The residual amount of metal or alkaline earth metal in ferric citrate hydrate was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) described later. The water content of the ferric citrate hydrate was measured by the Karl Fischer titration method (KF) described below, and the iron content was measured by the redox titration method. The molar ratio of the citric acid-derived molecular structure to iron in the ferric citrate hydrate, the content of the iron and citric acid-derived molecular structure measured by the above method and the molecular weight of iron and citric acid ( 55.84 and 192.12), and calculated by the following formula.
(Molar ratio) = (Content of molecular structure derived from citric acid) / (Molecular weight of molecular structure derived from citric acid) / (Iron content) × (Molecular weight of iron)
= (Citric acid content) / (citric acid molecular weight) / (iron content) x (iron molecular weight)
(Purity and citric acid content)
The measurement of the purity of ferric citrate hydrate by HPLC was performed under the following conditions. According to the HPLC analysis under the conditions, the retention time of the molecular structure derived from citric acid in ferric citrate hydrate is around 6.6 minutes. In the following examples and comparative examples, the purity of ferric citrate hydrate is a molecule derived from citric acid relative to the sum of the area values of all peaks (excluding iron and solvent-derived peaks) measured under the conditions. It is the ratio of the peak area values of the structure. Further, the content of the citric acid-derived molecular structure in the ferric citrate hydrate, the peak area value of the citric acid-derived molecular structure measured under the conditions, the calibration curve of citric acid as a standard substance Was calculated and converted into citric acid content. The molar ratio was calculated by substituting the citric acid content into the second formula of the above molar ratio calculation formula.
 装置:液体クロマトグラフ装置(Waters Corporation製)
 検出器:紫外吸光光度計(Waters Corporation製)
 測定波長:210nm
 カラム:内径4.6mm、長さ250mmのステンレス管に、5μmの液体クロマトグ
     ラフィー用オクタデシルシリル化シリカゲルが充填されたもの。
Device: Liquid chromatograph device (manufactured by Waters Corporation)
Detector: Ultraviolet absorptiometer (manufactured by Waters Corporation)
Measurement wavelength: 210 nm
Column: A stainless tube having an inner diameter of 4.6 mm and a length of 250 mm packed with 5 μm octadecylsilylated silica gel for liquid chromatography.
 移動相:りん酸二水素ナトリウム12.0gを水2000mLに添加し溶解させた後、
     りん酸を加えて、pH2.2に調整した混合液。
Mobile phase: After adding 12.0 g of sodium dihydrogen phosphate to 2000 mL of water to dissolve it,
A mixed solution adjusted to pH 2.2 by adding phosphoric acid.
 流量:毎分1.0mL
 カラム温度:30℃付近の一定温度
 測定時間:30分
 (BET比表面積)
 窒素吸着法によるクエン酸第二鉄水和物のBET比表面積の測定は以下の条件にて行った。当該条件で窒素の分散圧が0.1~0.3の範囲で各分散圧での窒素吸着量を測定し、分散圧と窒素吸着量からBET法により解析し算出した。
Flow rate: 1.0 mL per minute
Column temperature: constant temperature around 30 ° C Measurement time: 30 minutes (BET specific surface area)
The BET specific surface area of ferric citrate hydrate by the nitrogen adsorption method was measured under the following conditions. Under the conditions, the nitrogen adsorption amount at each dispersion pressure was measured in the range of 0.1 to 0.3, and the BET method was used to analyze and calculate the dispersion amount and the nitrogen adsorption amount.
 装置:比表面積測定装置(MicrotracBEL製)
 測定方法:定容量式窒素吸着法
 試料量:約100mg
 前処理温度:40℃
 前処理時間:1時間
 (副生塩等の含有の有無)
 XRDによるクエン酸第二鉄水和物中の副生塩の含有の有無の評価は以下の条件にて行った。なお、1.541858オングストロームの波長を有するCuKα放射線を使用した。
Device: Specific surface area measuring device (made by MicrotracBEL)
Measurement method: Constant volume nitrogen adsorption method Sample amount: Approximately 100 mg
Pretreatment temperature: 40 ° C
Pre-treatment time: 1 hour (whether by-product salt is included)
The presence or absence of the by-product salt contained in the ferric citrate hydrate by XRD was evaluated under the following conditions. Note that CuKα radiation having a wavelength of 1.541858 Å was used.
 装置:粉末X線回折装置(Rigaku製)
 電圧:40kV
 電流:30mA
 サンプリング幅:0.020°
 スキャンスピード:1.0°/分
 スキャン範囲:始角は5°、終了角は60°
 (アルカリ金属又はアルカリ土類金属の残留量)
 ICP-OESによるクエン酸第二鉄水和物中のアルカリ金属又はアルカリ土類金属の残留量の測定は以下の条件にて行った。以下の実施例、比較例において、クエン酸第二鉄水和物中のアルカリ金属又はアルカリ土類金属の残留量は、当該条件で測定されるアルカリ金属又はアルカリ土類金属のピーク面積値から検量線法により算出した、クエン酸第二鉄水和物の質量に対するアルカリ金属又はアルカリ土類金属の質量の割合である。
Equipment: powder X-ray diffractometer (made by Rigaku)
Voltage: 40kV
Current: 30mA
Sampling width: 0.020 °
Scan speed: 1.0 ° / min Scan range: Start angle is 5 °, end angle is 60 °
(Residual amount of alkali metal or alkaline earth metal)
The residual amount of alkali metal or alkaline earth metal in ferric citrate hydrate was measured by ICP-OES under the following conditions. In the following Examples and Comparative Examples, the residual amount of alkali metal or alkaline earth metal in ferric citrate hydrate is calibrated from the peak area value of alkali metal or alkaline earth metal measured under the conditions. It is the ratio of the mass of alkali metal or alkaline earth metal to the mass of ferric citrate hydrate calculated by the line method.
 装置:誘導結合プラズマ発光分光分析装置(サーモフィッシャーサイエンティフィック製)
 RFパワー:1150W
 ネプライザーガス流量:0.70L/分
 (水分量)
 KFによるクエン酸第二鉄水和物の水分量は、下記条件で測定した。以下の実施例、比較例において、クエン酸第二鉄水和物の水分量は、当該条件で測定される、クエン酸第二鉄水和物の質量に対する水の質量の割合である。なお、水分量は、当該条件にて3回測定した平均値を採用した。
Equipment: Inductively coupled plasma optical emission spectrophotometer (Made by Thermo Fisher Scientific)
RF power: 1150W
Neprizer gas flow rate: 0.70 L / min (water content)
The water content of ferric citrate hydrate by KF was measured under the following conditions. In the following Examples and Comparative Examples, the water content of ferric citrate hydrate is the ratio of the mass of water to the mass of ferric citrate hydrate measured under the conditions. In addition, the water content used the average value measured 3 times on the said conditions.
 装置:水分測定装置(三菱化学製)
 測定方法:カールフィッシャー滴定容量法
 滴定剤:SS-Z(三菱化学製)
 溶剤:無水メタノール
 試料量:約50mg
 (鉄含有量)
 酸化還元滴定法によるクエン酸第二鉄水和物の鉄含有量は、下記条件で測定した。以下の実施例、比較例において、クエン酸第二鉄水和物の鉄含有量は、当該条件で測定される、クエン酸第二鉄水和物の質量に対する鉄の質量の割合である。
Equipment: Moisture analyzer (Made by Mitsubishi Chemical)
Measurement method: Karl Fischer titration volume method Titrant: SS-Z (Mitsubishi Chemical)
Solvent: anhydrous methanol Sample amount: about 50mg
(Iron content)
The iron content of the ferric citrate hydrate by the redox titration method was measured under the following conditions. In the following Examples and Comparative Examples, the iron content of the ferric citrate hydrate is the ratio of the mass of iron to the mass of the ferric citrate hydrate measured under the conditions.
 装置:滴定用ビュレット(アズワン製)
 測定方法:酸化還元滴定法
 滴定剤:チオ硫酸ナトリウム溶液
 指示薬:デンプン
 試料量:約1g
 [実施例1]
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、クエン酸一水和物40.0g(190.3mmol)と水140mL(クエン酸1gに対して3.8mL)を加え撹拌し、クエン酸水溶液を調製した。次いで、水酸化マグネシウム17.7g(303.3mmol、塩化第二鉄に対して0.85当量)を15分間かけて加えた後、40℃付近まで加温し、水酸化マグネシウムが溶解したことを確認した。塩化第二鉄六水和物64.3g(237.9mmol、クエン酸に対して1.25当量)を40℃以上で加えた後、55℃付近まで加温し、50~60℃で1時間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は169mLであり、クエン酸1gに対して4.6mLであった。)得られた溶液を、2-プロパノール300mLに、35~45℃で15分間かけて滴下した。35~45℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、2-プロパノール60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄した。
Equipment: Burette for titration (made by AS ONE)
Measurement method: Redox titration method Titrant: Sodium thiosulfate solution Indicator: Starch Sample amount: Approximately 1 g
[Example 1]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (190.3 mmol) of citric acid monohydrate and 140 mL of water (3.8 mL for 1 g of citric acid) were added and stirred, and the mixture was stirred. An aqueous acid solution was prepared. Then, 17.7 g of magnesium hydroxide (303.3 mmol, 0.85 equivalent with respect to ferric chloride) was added over 15 minutes, and then warmed up to around 40 ° C. to dissolve magnesium hydroxide. confirmed. After adding 64.3 g (237.9 mmol, 1.25 equivalents to citric acid) of ferric chloride hexahydrate at 40 ° C. or higher, heat up to around 55 ° C. and at 50 to 60 ° C. for 1 hour. After stirring, it was confirmed that ferric chloride hexahydrate was dissolved. (The total amount of water in the solution was 169 mL, and was 4.6 mL with respect to 1 g of citric acid.) The obtained solution was added dropwise to 300 mL of 2-propanol at 35 to 45 ° C. over 15 minutes. .. The mixture was stirred at 35 to 45 ° C for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with a mixed solvent of 60 mL of 2-propanol and 20 mL of water.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン250mLを加え、25~35℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、クエン酸第二鉄水和物41.1g(クエン酸一水和物の重量を基準とした製造収率102.8%)を得た。 The obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 41.1 g of ferric citrate hydrate (production yield 102.8% based on the weight of citric acid monohydrate). It was
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は17.8m2/gであり、HPLCによる純度は99.84%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ19.4%、54.0%であり、鉄に対するクエン酸由来の分子構造のモル比率は0.81であった。また、ICP-OESでの分析により、副生塩由来の元素であるマグネシウムの残留量は2.4%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は16.0%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 17.8 m 2 / g, and the purity by HPLC was 99.84%. The contents of iron and citric acid in the ferric citrate hydrate were 19.4% and 54.0%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.81. It was Further, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 2.4%. The water content of ferric citrate hydrate was 16.0% as analyzed by KF.
 [実施例2]
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、クエン酸一水和物40.0g(190.3mmol)と水140mL(クエン酸1gに対して3.8mL)を加え撹拌し、クエン酸水溶液を調製した。次いで、水酸化マグネシウム17.7g(303.3mmol、塩化第二鉄に対して0.85当量)を15分間かけて加えた後、40℃付近まで加温し、水酸化マグネシウムが溶解したことを確認した。塩化第二鉄六水和物64.3g(237.9mmol、クエン酸に対して1.25当量)を40℃以上で加えた後、55℃付近まで加温し、50~60℃で1時間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は169mLであり、クエン酸1gに対して4.6mLであった。)得られた溶液を、2-プロパノール300mLに、35~45℃で15分間かけて滴下した。35~45℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、2-プロパノール60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄した。
[Example 2]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (190.3 mmol) of citric acid monohydrate and 140 mL of water (3.8 mL for 1 g of citric acid) were added and stirred, and the mixture was stirred. An aqueous acid solution was prepared. Then, 17.7 g of magnesium hydroxide (303.3 mmol, 0.85 equivalent with respect to ferric chloride) was added over 15 minutes, and then warmed up to around 40 ° C. to dissolve magnesium hydroxide. confirmed. After adding 64.3 g (237.9 mmol, 1.25 equivalents to citric acid) of ferric chloride hexahydrate at 40 ° C. or higher, heat up to around 55 ° C. and at 50 to 60 ° C. for 1 hour. After stirring, it was confirmed that ferric chloride hexahydrate was dissolved. (The total amount of water in the solution was 169 mL, and was 4.6 mL with respect to 1 g of citric acid.) The obtained solution was added dropwise to 300 mL of 2-propanol at 35 to 45 ° C. over 15 minutes. .. The mixture was stirred at 35 to 45 ° C for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with a mixed solvent of 60 mL of 2-propanol and 20 mL of water.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン200mL及び水100mLから調製した混合溶媒を加え、40℃付近まで加温した後、35~45℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄した。さらに、撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン250mLを加え、25~35℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、クエン酸第二鉄水和物40.0g(クエン酸一水和物の重量を基準とした製造収率100.0%)を得た。 To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, the obtained wet body, a mixed solvent prepared from 200 mL of acetone and 100 mL of water were added, and the mixture was heated up to about 40 ° C. and then heated at 35 to 45 ° C. Stir for minutes. The obtained suspension was filtered by pressure filtration, and the filtered solid was washed twice with a mixed solvent of 60 mL of acetone and 20 mL of water. Further, the obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C. for 30 minutes. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 40.0 g of ferric citrate hydrate (production yield 100.0% based on the weight of citric acid monohydrate). It was
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は18.2m2/gであり、HPLCによる純度は99.85%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ19.8%、54.9%であり、鉄に対するクエン酸由来の分子構造のモル比率は0.81であった。また、XRDでの分析により、図1に示すX線回折チャートが得られ、クエン酸第二鉄水和物に特有のハローパターンのみを示し、クエン酸や塩化第二鉄等の各原材料及び副生塩である塩化マグネシウム等に由来するピークは検出されなかった。さらに、ICP-OESでの分析により、副生塩由来の元素であるマグネシウムの残留量は1.1%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は16.9%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 18.2 m 2 / g, and the purity by HPLC was 99.85%. The contents of iron and citric acid in the ferric citrate hydrate were 19.8% and 54.9%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.81. It was In addition, the X-ray diffraction chart shown in FIG. 1 was obtained by XRD analysis, and only the halo pattern peculiar to ferric citrate hydrate was shown. No peak derived from raw salt such as magnesium chloride was detected. Furthermore, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 1.1%. The water content of ferric citrate hydrate was 16.9% as analyzed by KF.
 [実施例3~10、比較例1~3]
 水酸化マグネシウム及び塩化第二鉄六水和物の使用量を変更したこと以外は、実施例2と同様にして実施した。条件と結果を表1に示した。
[Examples 3 to 10, Comparative Examples 1 to 3]
It carried out like Example 2 except having changed the usage-amount of magnesium hydroxide and ferric chloride hexahydrate. The conditions and results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
 [実施例11~14]
 水の使用量を変更したこと以外は、実施例2と同様にして実施した。条件と結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
[Examples 11 to 14]
The same procedure as in Example 2 was carried out except that the amount of water used was changed. The conditions and results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
 [実施例15]
 水酸化マグネシウムの代わりに水酸化リチウム一水和物24.0g(572.0mmol、塩化第二鉄に対して0.80当量)を使用したこと以外は、実施例2と同様にして実施し、クエン酸第二鉄水和物39.8g(クエン酸一水和物の重量を基準とした製造収率99.5%)を得た。なお、2-プロパノールに滴下する前の溶液中の水の総量は180mLであり、クエン酸1gに対して4.9mLであった。
Figure JPOXMLDOC01-appb-T000003
[Example 15]
It carried out like Example 2 except having used 24.0 g (572.0 mmol, 0.80 equivalent with respect to ferric chloride) of lithium hydroxide monohydrate instead of magnesium hydroxide, 39.8 g of ferric citrate hydrate (manufacturing yield 99.5% based on the weight of citric acid monohydrate) was obtained. The total amount of water in the solution before being added dropwise to 2-propanol was 180 mL, which was 4.9 mL with respect to 1 g of citric acid.
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は18.0m2/gであり、HPLCによる純度は99.82%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ20.1%、57.3%であり、鉄に対するクエン酸由来の分子構造のモル比率は0.83であった。また、XRDでの分析により、図2に示すX線回折チャートが得られ、クエン酸第二鉄水和物に特有のハローパターンのみを示し、クエン酸や塩化第二鉄等の各原材料及び副生塩である塩化リチウム等に由来するピークは検出されなかった。さらに、ICP-OESでの分析により、副生塩由来の元素であるリチウムの残留量は1.3%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は16.3%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 18.0 m 2 / g, and the purity by HPLC was 99.82%. The contents of iron and citric acid in ferric citrate hydrate were 20.1% and 57.3%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.83. It was Moreover, the X-ray diffraction chart shown in FIG. 2 was obtained by the XRD analysis, and only the halo pattern peculiar to ferric citrate hydrate was shown. No peak derived from raw salt such as lithium chloride was detected. Further, according to the analysis by ICP-OES, the residual amount of lithium, which is an element derived from the by-product salt, was 1.3%. The water content of ferric citrate hydrate was 16.3% as determined by KF analysis.
 [実施例16]
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、クエン酸無水物40.0g(208.2mmol)と水116mL(クエン酸1gに対して2.9mL)を加え撹拌し、クエン酸水溶液を調製した。次いで、水酸化マグネシウム18.2g(312.3mmol、塩化第二鉄に対して0.67当量)を15分間かけて加えた後、45℃付近まで加温し、水酸化マグネシウムが溶解したことを確認した。塩化第二鉄六水和物84.4g(312.3mmol、クエン酸に対して1.5当量)を40℃以上で加えた後、55℃付近まで加温し、50~60℃で30分間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は150mLであり、クエン酸1gに対して3.7mLであった。)得られた溶液を、2-プロパノール300mLに、35~45℃で15分間かけて滴下した。35~45℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、2-プロパノール60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄した。
[Example 16]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (208.2 mmol) of citric acid anhydride and 116 mL of water (2.9 mL per 1 g of citric acid) were added and stirred to obtain an aqueous citric acid solution. Was prepared. Then, 18.2 g of magnesium hydroxide (312.3 mmol, 0.67 equivalents relative to ferric chloride) was added over 15 minutes, and then heated to around 45 ° C. to confirm that magnesium hydroxide was dissolved. confirmed. Ferric chloride hexahydrate (84.4 g, 312.3 mmol, 1.5 equivalents based on citric acid) was added at 40 ° C. or higher, and then warmed to around 55 ° C., and at 50 to 60 ° C. for 30 minutes. After stirring, it was confirmed that ferric chloride hexahydrate was dissolved. (The total amount of water in the solution was 150 mL, which was 3.7 mL with respect to 1 g of citric acid.) The obtained solution was added dropwise to 300 mL of 2-propanol at 35 to 45 ° C. over 15 minutes. .. The mixture was stirred at 35 to 45 ° C for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with a mixed solvent of 60 mL of 2-propanol and 20 mL of water.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン180mLを加え、40℃付近まで加温した後、35~45℃で30分間撹拌した。次いで、水140mLを加え、35~45℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄し、さらに、アセトン80mLで濾過後の固体を1回洗浄した。得られた湿体を、45℃で15時間減圧乾燥し、クエン酸第二鉄水和物46.0g(クエン酸無水物の重量を基準とした製造収率115.0%)を得た。 The obtained wet body and 180 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, heated to about 40 ° C., and then stirred at 35 to 45 ° C. for 30 minutes. Then, 140 mL of water was added, and the mixture was stirred at 35 to 45 ° C. for 30 minutes. The obtained suspension was filtered by pressure filtration, the solid after filtration was washed twice with a mixed solvent of 60 mL of acetone and 20 mL of water, and further, the solid after filtration was washed once with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 45 ° C. for 15 hours to obtain 46.0 g of ferric citrate hydrate (manufacturing yield 115.0% based on the weight of citric anhydride).
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は19.8m2/gであり、HPLCによる純度は99.85%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ20.5%、54.6%であり、鉄に対するクエン酸由来の分子構造のモル比率は0.77であった。また、ICP-OESでの分析により、副生塩由来の元素であるマグネシウムの残留量は0.9%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は19.8%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 19.8 m 2 / g, and the purity by HPLC was 99.85%. The contents of iron and citric acid in the ferric citrate hydrate were 20.5% and 54.6%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.77. It was Further, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 0.9%. Further, the water content of the ferric citrate hydrate was 19.8% as analyzed by KF.
 [比較例4](特許文献3に記載の製造方法)
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、クエン酸ナトリウム二水和物40.0g(136.0mmol)と水48mLを加え撹拌し、クエン酸ナトリウム水溶液を調製した。次いで、塩化第二鉄六水和物36.8g(136.1mmol)を40℃以上で加えた後、85℃付近まで加温し、80~90℃で1時間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は68mLであり、クエン酸ナトリウム1gに対して1.9mLであり、換算したクエン酸1gに対して2.6mLあった。)30℃付近に冷却した後、得られた溶液を、メタノール300mLに、20~30℃で15分間かけて滴下した。20~30℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、メタノール30mLで濾過後の固体を2回洗浄した。
[Comparative Example 4] (Production method described in Patent Document 3)
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (136.0 mmol) of sodium citrate dihydrate and 48 mL of water were added and stirred to prepare an aqueous sodium citrate solution. Then, 36.8 g (136.1 mmol) of ferric chloride hexahydrate was added at 40 ° C. or higher, then heated to around 85 ° C., stirred at 80 to 90 ° C. for 1 hour, and ferric chloride hexahydrate was added. It was confirmed that the hydrate was dissolved. (The total amount of water in the solution was 68 mL, 1.9 mL for 1 g of sodium citrate, and 2.6 mL for converted 1 g of citric acid.) After cooling to around 30 ° C., it was obtained. The obtained solution was added dropwise to 300 mL of methanol at 20 to 30 ° C. over 15 minutes. The mixture was stirred at 20 to 30 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 30 mL of methanol.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン250mLを加え、25~35℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、クエン酸第二鉄水和物33.2g(クエン酸ナトリウム二水和物の重量を基準とした製造収率83.0%)を得た。 The obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 33.2 g of ferric citrate hydrate (manufacturing yield 83.0% based on the weight of sodium citrate dihydrate). Obtained.
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は1.9m2/gであり、HPLCによる純度は98.77%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ13.8%、48.9%であり、鉄に対するクエン酸由来の分子構造のモル比率は1.03であった。また、XRDでの分析により、図3に示すX線回折チャートが得られ、クエン酸第二鉄水和物に特有のハローパターン以外に、回折角2θが27.5°及び31.8°、45.5°、54.0°、56.6°にピークを示した。当該ピークは、副生塩である塩化ナトリウムの特徴的なピークである。さらに、ICP-OESでの分析により、副生塩由来の元素であるナトリウムの残留量は15.3%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は10.1%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 1.9 m 2 / g, and the purity by HPLC was 98.77%. The contents of iron and citric acid in the ferric citrate hydrate were 13.8% and 48.9%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 1.03. It was Moreover, the X-ray diffraction chart shown in FIG. 3 was obtained by the XRD analysis, and in addition to the halo pattern peculiar to ferric citrate hydrate, the diffraction angles 2θ were 27.5 ° and 31.8 °, Peaks were shown at 45.5 °, 54.0 °, and 56.6 °. This peak is a characteristic peak of sodium chloride, which is a by-product salt. Furthermore, according to the analysis by ICP-OES, the residual amount of sodium, which is an element derived from the by-product salt, was 15.3%. Further, the water content of the ferric citrate hydrate was 10.1% as analyzed by KF.
 [比較例5](特許文献3に記載の製造方法)
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、水酸化ナトリウム22.8g(570.0mmol)と水100mLを加え撹拌し、水酸化ナトリウム水溶液を調製した。次いで、クエン酸一水和物40.0g(190.3mmol)加え30分間撹拌し、クエン酸一水和物が溶解したことを確認した。塩化第二鉄六水和物51.4g(190.2mmol)を加えた後、55℃付近まで加温し、50~55℃で1時間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は124mLであり、クエン酸1gに対して3.4mLであった。)30℃付近に冷却した後、得られた溶液を、メタノール600mLに、20~30℃で15分間かけて滴下した。20~30℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、メタノール60mLで濾過後の固体を2回洗浄した。
[Comparative Example 5] (Production method described in Patent Document 3)
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 22.8 g (570.0 mmol) of sodium hydroxide and 100 mL of water were added and stirred to prepare an aqueous sodium hydroxide solution. Then, 40.0 g (190.3 mmol) of citric acid monohydrate was added and stirred for 30 minutes to confirm that the citric acid monohydrate was dissolved. After adding 51.4 g (190.2 mmol) of ferric chloride hexahydrate, the mixture was heated up to around 55 ° C. and stirred at 50 to 55 ° C. for 1 hour to dissolve the ferric chloride hexahydrate. It was confirmed. (The total amount of water in the solution was 124 mL, which was 3.4 mL for 1 g of citric acid.) After cooling to around 30 ° C., the obtained solution was added to 600 mL of methanol at 20 to 30 ° C. It dripped over 15 minutes. The mixture was stirred at 20 to 30 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 60 mL of methanol.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン250mLを加え、25~35℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、クエン酸第二鉄水和物35.9g(クエン酸ナトリウム二水和物の重量を基準とした製造収率89.8%)を得た。 The obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 35.9 g of ferric citrate hydrate (manufacturing yield 89.8% based on the weight of sodium citrate dihydrate). Obtained.
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は4.5m2/gであり、HPLCによる純度は98.26%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ15.1%、52.2%であり、鉄に対するクエン酸由来の分子構造のモル比率は1.00であった。また、XRDでの分析により、図4に示すX線回折チャートが得られ、クエン酸第二鉄水和物に特有のハローパターン以外に、回折角2θが31.8°及び45.6°、56.6°にピークを示した。当該ピークは、副生塩である塩化ナトリウムの特徴的なピークである。さらに、ICP-OESでの分析により、副生塩由来の元素であるナトリウムの残留量は7.7%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は11.3%であった。 The BET specific surface area of the obtained ferric citrate hydrate by a nitrogen adsorption method was 4.5 m 2 / g, and the purity by HPLC was 98.26%. The contents of iron and citric acid in the ferric citrate hydrate were 15.1% and 52.2%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 1.00. It was Moreover, the X-ray diffraction chart shown in FIG. 4 was obtained by the XRD analysis, and in addition to the halo pattern peculiar to ferric citrate hydrate, the diffraction angles 2θ were 31.8 ° and 45.6 °, It showed a peak at 56.6 °. This peak is a characteristic peak of sodium chloride, which is a by-product salt. Furthermore, the analysis by ICP-OES revealed that the residual amount of sodium, which is an element derived from the by-product salt, was 7.7%. The water content of ferric citrate hydrate was 11.3% as analyzed by KF.

Claims (3)

  1.  水酸化リチウム、炭酸リチウム、水酸化物マグネシウム及び炭酸マグネシウムからなる群より選択される少なくとも一つの塩基、クエン酸、並びに塩化第二鉄を水の中で混合して混合物を得、該混合物を有機溶媒と混合することによりクエン酸第二鉄水和物を製造するクエン酸第二鉄水和物の製造方法であって、前記塩化第二鉄に対して前記塩基が0.30~0.95当量である、クエン酸第二鉄水和物の製造方法。 At least one base selected from the group consisting of lithium hydroxide, lithium carbonate, magnesium hydroxide and magnesium carbonate, citric acid, and ferric chloride are mixed in water to obtain a mixture, and the mixture is mixed with an organic solvent. A method for producing ferric citrate hydrate by producing ferric citrate hydrate by mixing with a solvent, wherein the base is 0.30 to 0.95 with respect to the ferric chloride. A method for producing ferric citrate hydrate, which is equivalent.
  2.  前記クエン酸1gに対して前記水の量が2.0~8.5mLである、請求項1に記載のクエン酸第二鉄水和物の製造方法。 The method for producing ferric citrate hydrate according to claim 1, wherein the amount of the water is 2.0 to 8.5 mL with respect to 1 g of the citric acid.
  3.  前記クエン酸に対して前記塩化第二鉄が1.0~2.5当量である、請求項1又は2に記載のクエン酸第二鉄水和物の製造方法。 The method for producing a ferric citrate hydrate according to claim 1 or 2, wherein the ferric chloride is 1.0 to 2.5 equivalents relative to the citric acid.
PCT/JP2019/044385 2018-11-14 2019-11-12 Method for producing ferric citrate hydrate WO2020100912A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020556123A JP7335269B2 (en) 2018-11-14 2019-11-12 Method for producing ferric citrate hydrate
CN201980071005.4A CN112955138B (en) 2018-11-14 2019-11-12 Method for producing ferric citrate hydrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-214017 2018-11-14
JP2018214017 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020100912A1 true WO2020100912A1 (en) 2020-05-22

Family

ID=70731137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044385 WO2020100912A1 (en) 2018-11-14 2019-11-12 Method for producing ferric citrate hydrate

Country Status (3)

Country Link
JP (1) JP7335269B2 (en)
CN (1) CN112955138B (en)
WO (1) WO2020100912A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1600302A (en) * 2003-09-22 2005-03-30 宝龄富锦生技股份有限公司 Combination of medicine containing ferric citrate, medicine level ferric citrate, preparation method, and diet nutrition containing ferric citrate in medicine level
JP2006518391A (en) * 2003-02-19 2006-08-10 グロボアジア エルエルシー Ferric organic compounds, their use, and methods for their production
JP2012162522A (en) * 2011-01-18 2012-08-30 Japan Tobacco Inc FERRIC CITRATE NOT SUBSTANTIALLY CONTAINING β OXIDATION IRON HYDROXIDE
WO2015110968A1 (en) * 2014-01-23 2015-07-30 Lupin Limited Pharmaceutical grade ferric citrate and method for its production
JP2018500308A (en) * 2014-12-17 2018-01-11 バイオフォア インディア ファーマシューティカルズ プライベート リミテッド Improved method for synthesizing organoiron compounds
JP2018526349A (en) * 2015-08-05 2018-09-13 ルピン・リミテッド Process for the preparation of pharmaceutical grade ferric citrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896484B (en) * 2007-12-14 2013-06-12 百利高贸易(上海)有限公司 Theobromine production process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518391A (en) * 2003-02-19 2006-08-10 グロボアジア エルエルシー Ferric organic compounds, their use, and methods for their production
CN1600302A (en) * 2003-09-22 2005-03-30 宝龄富锦生技股份有限公司 Combination of medicine containing ferric citrate, medicine level ferric citrate, preparation method, and diet nutrition containing ferric citrate in medicine level
JP2012162522A (en) * 2011-01-18 2012-08-30 Japan Tobacco Inc FERRIC CITRATE NOT SUBSTANTIALLY CONTAINING β OXIDATION IRON HYDROXIDE
WO2015110968A1 (en) * 2014-01-23 2015-07-30 Lupin Limited Pharmaceutical grade ferric citrate and method for its production
JP2018500308A (en) * 2014-12-17 2018-01-11 バイオフォア インディア ファーマシューティカルズ プライベート リミテッド Improved method for synthesizing organoiron compounds
JP2018526349A (en) * 2015-08-05 2018-09-13 ルピン・リミテッド Process for the preparation of pharmaceutical grade ferric citrate

Also Published As

Publication number Publication date
CN112955138A (en) 2021-06-11
CN112955138B (en) 2023-08-22
JP7335269B2 (en) 2023-08-29
JPWO2020100912A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6995892B2 (en) Manufacturing method of Sugamadex
WO2020100912A1 (en) Method for producing ferric citrate hydrate
JP7335268B2 (en) Method for producing ferric citrate hydrate
JP5132225B2 (en) Amorphous spherical aluminum silicate, method for producing the same, and preparation using the aluminum silicate.
KR20160119058A (en) Production method for purified material containing crystalline l-carnosine zinc complex
JP7200123B2 (en) Method for producing ferric citrate hydrate
JP6173931B2 (en) Method for producing alkali metal iodide or alkaline earth metal iodide
KR20100045985A (en) Process for producing toluidine compound
EP2736614B1 (en) Method of removing alkylene halogenohydrin from cellulose ether
JP6705121B2 (en) High-purity lithium styrenesulfonate
JP5743474B2 (en) Process for producing 4-amino-5-chloro-2-ethoxy-N-[[4- (4-fluorobenzyl) -2-morpholinyl] methyl] benzamide citrate dihydrate
EP3589620B1 (en) Precipitation method and synthesis method of 2,6-diamino-3,5-dinitropyrazine-1-oxide
JPH04261189A (en) Production of tin trifluoromethanesulfonate
JP2019167305A (en) Method for producing ferric citrate
JP7175235B2 (en) Method for producing ferric citrate hydrate
Maksimov et al. Structure and properties of H 8 (PW 11 TiO 39) 2 O heteropoly acid
US6515159B2 (en) S,S-ethylenediamine-N,N′-disuccinic acid iron alkali salt and a process for production thereof
Gill et al. Preparation, Characterization, X-Ray Structure Determination and Solution Properties of some Novel Copper (I) Bisulfate and Sulfate Salts and Their Stable Derivatives
JP3924027B2 (en) Sodium orthohydroxymandelate / phenol / water complex, process for its preparation and use for the separation of sodium orthohydroxymandelate
JP6499948B2 (en) Method for producing celecoxib type II crystal
JP2022141367A (en) Mesyl acid garenoxacin containing dimethyl sulfoxide, and production method of the same
JP4463622B2 (en) Process for producing 1,3-adamantanediols
JP2005179344A (en) Production method for fullerene-carboxylic acid adduct, and fullerene-carboxylic acid adduct material
WO2000073272A1 (en) High-purity copper pyrithione and process for producing the same
JP2019089673A (en) Method for producing inorganic iodine anhydrous compound and lump thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884916

Country of ref document: EP

Kind code of ref document: A1