WO2020100911A1 - Method for producing ferric citrate hydrate - Google Patents

Method for producing ferric citrate hydrate Download PDF

Info

Publication number
WO2020100911A1
WO2020100911A1 PCT/JP2019/044384 JP2019044384W WO2020100911A1 WO 2020100911 A1 WO2020100911 A1 WO 2020100911A1 JP 2019044384 W JP2019044384 W JP 2019044384W WO 2020100911 A1 WO2020100911 A1 WO 2020100911A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferric citrate
water
ferric
citric acid
organic solvent
Prior art date
Application number
PCT/JP2019/044384
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 宮奥
康平 齋藤
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201980070605.9A priority Critical patent/CN112969456B/en
Priority to JP2020556122A priority patent/JP7335268B2/en
Publication of WO2020100911A1 publication Critical patent/WO2020100911A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/02Iron compounds

Definitions

  • the present invention relates to a novel method for producing ferric citrate hydrate.
  • Ferric citrate is a compound containing ferric iron that is trivalent iron and a molecular structure derived from citric acid, and the molar ratio of the molecular structure derived from citric acid to ferric iron has a constant value. It is said that it will not be taken. It is also called ferric citrate hydrate because it contains a certain amount of water. It is known that the ferric citrate hydrate can be suitably used as a therapeutic agent for hyperphosphatemia in renal failure patients, in addition to reagents and food additives. Such ferric citrate hydrate for pharmaceutical use preferably has a large BET specific surface area and excellent solubility as compared with ferric citrate for food additive use. It is known that the specific surface area is preferably 16 m 2 / g or more. (See Patent Document 1 or 2).
  • ferric citrate hydrate having a BET specific surface area of 16 m 2 / g or more
  • a base such as sodium hydroxide
  • ferric hydroxide is reacted with a base such as sodium hydroxide
  • Obtaining ferric hydroxide then reacting ferric hydroxide with citric acid in water to obtain a solution containing ferric citrate, and dropping the solution into a water-soluble organic solvent such as acetone
  • a method for producing ferric citrate hydrate by depositing it as a solid is disclosed.
  • Patent Document 3 as a method for producing ferric citrate hydrate having excellent solubility, after ferric citrate is dissolved in water, an organic solvent is added to the solution to prepare ferric citrate. A method of depositing iron hydrate as a solid is disclosed.
  • ferric citrate hydrate is known to cause ulcerative gastrointestinal side effects, and in order to reduce the occurrence of side effects, the dose of ferric citrate hydrate should be reduced. It is necessary to further improve the BET specific surface area in order to improve the dissolution rate and solubility in blood.
  • the production methods of Patent Documents 1 and 2 can produce ferric citrate hydrate having a BET specific surface area of 16 m 2 / g or more, but the BET specific surface area is about 45 m 2 / g at the maximum. Yes, it is not possible to produce ferric citrate hydrate with a larger BET specific surface area.
  • Patent Document 3 the production method of Patent Document 3 is difficult to dissolve ferric citrate, which is a raw material, in water.
  • the ferric acid citrate is not completely dissolved, the production yield of the ferric citrate hydrate to be produced is low, and the BET specific surface area of the ferric citrate hydrate is described in Patent Documents 1 and 2.
  • the above dissolution operation was carried out at a high temperature, all the raw materials were dissolved, and the production yield and BET specific surface area were improved, but a decrease in purity was observed due to the decomposition of ferric citrate and / or citric acid. ..
  • an object of the present invention is to provide a production method for efficiently obtaining ferric citrate hydrate having high purity and various BET specific surface areas regardless of the raw materials used.
  • ferric citrate which is a raw material when the BET specific surface area of the ferric citrate hydrate produced is reduced
  • the ferric citrate contains elements other than iron, hydrogen, carbon, and oxygen, which are the constituent elements of ferric citrate, such as magnesium (Mg), calcium (Ca), and silicon (Si).
  • Mg magnesium
  • Ca calcium
  • Si silicon
  • ferric citrate containing such an element was used as a raw material
  • a method for increasing the BET specific surface area of the ferric citrate hydrate produced was earnestly studied, and it was found that When contacting a solution in which ferric chloride and ferric citrate are dissolved and a water-soluble organic solvent, by containing ferric chloride in the solution of ferric citrate, in the raw material It was found that a ferric citrate hydrate having a high BET specific surface area can be obtained regardless of the type and amount of the above-mentioned elements contained. Furthermore, they have found that the BET specific surface area can be adjusted to an arbitrary value by adjusting the amount of ferric chloride contained in the ferric citrate solution, and have completed the present invention.
  • the present invention comprises a modified ferric citrate hydrate including a step 2 of contacting a solution containing water, ferric chloride and a raw material ferric citrate with a water-soluble organic solvent. It is a method of manufacturing a product.
  • the present invention can preferably adopt the following aspects. 1)
  • the solution contains citric acid.
  • the water-soluble organic solvent is a solvent containing at least ketones or alcohols. 3) Using 5 to 40 g (5 to 40 parts by mass) of ferric chloride with respect to 100 g (100 parts by mass) of the anhydrous ferric citrate equivalent to the raw material.
  • the method further comprises a step 1 of preparing the raw material ferric citrate by mixing the mixture with an organic solvent. 5) In the step 1, the amount of the water is 2.0 to 8.5 mL with respect to 1 g of the citric acid. 6) In the step 1, the ferric chloride is 1.0 to 2.5 equivalents with respect to the citric acid.
  • ferric citrate hydrate having a large BET specific surface area of 10 m 2 / g or more can be obtained.
  • the ferric citrate as a raw material may contain elements such as magnesium and calcium depending on the production method, but the ferric citrate stably has a large BET specific surface area regardless of the kind and amount of these elements.
  • a hydrate can be obtained.
  • the BET specific surface area can be arbitrarily adjusted by adjusting the amount of ferric chloride, and a ferric citrate hydrate having a maximum BET specific surface area of 165 m 2 / g is obtained. You can also Further, the obtained ferric citrate hydrate contains almost no impurities, has high purity, and is expected to be suitably used for pharmaceutical applications.
  • the BET specific surface area of the modified ferric citrate hydrate and 100 parts by mass of ferric chloride with respect to 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material It is a graph which shows the relationship with. 13 is an X-ray diffraction chart of ferric citrate hydrate obtained in Example 13. 9 is an X-ray diffraction chart of ferric citrate hydrate obtained in Comparative Example 8. 11 is an X-ray diffraction chart of ferric citrate hydrate obtained in Comparative Example 9.
  • the present invention comprises a modified ferric citrate hydrate, which comprises a step 2 of contacting a solution containing water, ferric chloride and the raw material ferric citrate with a water-soluble organic solvent. It is a manufacturing method.
  • the raw material ferric citrate or a hydrate thereof is hereinafter referred to as "raw material ferric citrate", which is obtained by bringing the solution and the water-soluble organic solvent into contact with each other.
  • Ferric citrate hydrate is also referred to as "modified form”. The manufacturing method of the present invention will be described in detail below.
  • Step 2 is a step of contacting a solution containing water, ferric chloride and raw material ferric citrate with a water-soluble organic solvent.
  • step 2 will be described.
  • ferric citrate as a raw material to be dissolved in the solution is not particularly limited, and is commercially available as a reagent or food additive, prepared by step 1 described below, or known. What was manufactured by the method of can be used. Examples of known methods include the methods described in Patent Documents 1 and 2. Specifically, ferric chloride hexahydrate is first dissolved in water and then hydrolyzed with sodium hydroxide to obtain ferric hydroxide. Ferric citrate is produced by reacting the obtained ferric hydroxide with citric acid in water. Ferric citrate as a raw material can be produced by precipitating ferric citrate using an organic solvent, and then separating and drying the solution containing the ferric citrate.
  • the quality of commercially available ferric citrate usually has a BET specific surface area of about 0.2 to 3 m 2 / g.
  • the purity by high performance liquid chromatography (HPLC) is about 60.0 to 75.0%, aconitic acid is 25.0 to 35.0%, citraconic acid is 0.2 to 3.0%, and itaconic acid is About 0.1 to 1.0% is included.
  • the ferric citrate which is a raw material produced by the known methods described in Patent Documents 1 and 2, has a BET specific surface area of about 16 to 45 m 2 / g.
  • the purity by high performance liquid chromatography is about 90.0 to 98.5%, aconitic acid is 0.5 to 5.0%, citraconic acid is 0.05 to 2.0%, and itaconic acid is About 0.1 to 2.0% is included.
  • ferric citrate water improved to a purity acceptable for use as a drug substance It is possible to produce Japanese products.
  • ferric citrate as a raw material having a purity of about 90.0 to 98.5% by HPLC from the viewpoint that a highly pure ferric citrate hydrate can be obtained. It is more preferable to use the prepared raw material ferric citrate.
  • ferric citrate as a raw material may contain elements such as sodium, magnesium, calcium and silicon in addition to iron, hydrogen, carbon and oxygen which are the constituent elements of ferric citrate.
  • commercially available ferric citrate for food additive use includes those containing 0.6% by mass of magnesium and 0.5% by mass of calcium, and those containing 0.4% by mass of silicon.
  • a modified product having a large BET specific surface area can be obtained even when ferric citrate containing many elements other than the constituent elements is used as a raw material. It is preferable that the content of the element contained in is small, and at least the content of magnesium in ferric citrate as a raw material is preferably 3.0% by mass or less.
  • Such contained elements are analyzed by inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectroscopy (ICP-OES), fluorescent X-ray (XRF), scanning electron microscope / energy dispersive X-ray spectroscopy. (SEM / EDS) and the like.
  • ICP-MS inductively coupled plasma mass spectrometry
  • ICP-OES inductively coupled plasma optical emission spectroscopy
  • XRF fluorescent X-ray
  • SEM / EDS scanning electron microscope / energy dispersive X-ray spectroscopy.
  • Water used for the solution containing ferric chloride and the raw material ferric citrate in step 2 is not particularly limited, and tap water, ion-exchanged water, distilled water, or the like can be used.
  • the amount of water used is 50 with respect to 100 g (100 parts by mass) of 100 g (100 parts by mass) of the amount converted to the anhydrous ferric citrate as a raw material (hereinafter referred to as the “anhydrous equivalent amount of ferric citrate as a raw material”) It is preferably about 500 mL (50 to 500 parts by volume).
  • the anhydrous equivalent amount of ferric citrate of the raw material from the weight of ferric citrate of the raw material, the weight obtained by subtracting the weight of water and organic solvent contained in ferric citrate of the raw material Show.
  • the amount of water and organic solvent contained in the raw material ferric citrate varies depending on the production conditions, storage conditions and the like. Therefore, in order to control the quality such as the BET specific surface area of the modified product and the production yield more highly, the amount of water contained in the ferric citrate as a raw material is determined by Karl Fischer titration (KF) or the like.
  • the amount of the organic solvent was measured using gas chromatography (GC), etc., and the amount of water used was calculated based on the anhydrous equivalent amount of ferric citrate as the raw material calculated from the amount of the water or the organic solvent. It is preferable to determine.
  • the amounts of ferric chloride, citric acid, and a water-soluble organic solvent described below are also preferably calculated based on the anhydrous equivalent amount of ferric citrate as a raw material for the same reason as above.
  • the amount of water used is 50 mL (50 parts by volume) or more per 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material, ferric citrate or chloride as a starting material It is preferable in that all the ferric iron can be dissolved, the viscosity of the produced solution is low, and the handling is easy.
  • the amount is 500 mL (500 parts by volume) or less, the amount of the water-soluble organic solvent used can be further reduced in order to precipitate the modified product, and the production yield is high, which is preferable.
  • 75 to 450 mL (75 to 450 parts by volume) is preferable for 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material, and 100 It is more preferably up to 400 mL (100 to 400 parts by volume).
  • the water used in step 2 may contain other solvent.
  • the other solvent include water-soluble organic solvents such as acetone.
  • the amount of the water-soluble organic solvent is preferably 50 g (50 parts by mass) or less with respect to 100 g (100 parts by mass) of a solution containing ferric chloride and ferric citrate as a raw material. In this case, the amount of water used does not include the amount of the other solvent.
  • the water-soluble organic solvent used here is used separately from the water-soluble organic solvent that is brought into contact with a solution containing ferric chloride and the raw material ferric citrate described below.
  • the amount of the water-soluble organic solvent described below that is, the amount of the water-soluble organic solvent to be contacted with the solution containing ferric chloride and the raw material ferric citrate, is actually used to precipitate ferric citrate hydrate. It is the amount used for.
  • the ferric chloride dissolved in the solution is not particularly limited, and reagents, industrial products, etc. can be used.
  • the form of the solid or solution of ferric chloride is not particularly limited, and the solid form may be dissolved in water or a water-soluble organic solvent and used as a solution.
  • ferric chloride may be in the form of a hydrate as well as an anhydride, but any form may be used.
  • the amount of water contained in them must be included in the amount of water used.
  • the amount of the water-soluble organic solvent contained therein needs to be included in the amount of the water-soluble organic solvent that may be contained in the above solution.
  • the amount of ferric chloride used may be appropriately determined according to the desired BET specific surface area of the modified body, but with respect to 100 g (100 parts by mass) of the ferric citrate as a raw material in terms of anhydride. It is preferably 2.5 to 50 g (2.5 to 50 parts by mass).
  • the BET specific surface area of the reformed product By using 2.5 g (2.5 parts by mass) or more of ferric chloride with respect to 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material, the BET specific surface area of the reformed product The BET specific surface area of the obtained modified product tends to increase as the amount of use increases.
  • the amount of ferric chloride is 50 g (50 parts by mass) or less with respect to 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material, ferric chloride remains in the reformed body. Without it, more accurately, the reformed body does not contain ferric chloride or the ferric chloride remaining in the reformed body is small, and a highly purified reformed body can be obtained.
  • the residual amount of ferric chloride can be measured by X-ray powder diffraction (XRD) or the like.
  • the solution containing water, ferric chloride and the raw material ferric citrate further contains citric acid, because the raw material ferric citrate is easily dissolved.
  • the molecular structure derived from ferric and citric acid in the resulting modified body when ferric citrate is Fe (C 6 H 5 O 7 ) (C 6 H 5 O 7 ) 3- ) content ratio, that is, the molar ratio of the molecular structure derived from citric acid to the ferric iron in the modified body (hereinafter, "modified iron and citric acid molecule The "molar ratio with the structure”) can be varied.
  • the molar ratio of the modified product can be set to a desired value by adjusting the amount of citric acid contained in the solution.
  • the content thereof is preferably 5 to 200 g (5 to 200 parts by mass) with respect to 100 g (100 parts by mass) of the anhydrous ferric citrate as a raw material.
  • the citric acid used is not particularly limited, and industrially available grade citric acid can be used.
  • impurities such as aconitic acid, citraconic acid, and itaconic acid contained in the modified product are impurities derived from citric acid, and from the viewpoint of obtaining a highly purified modified product, the above-mentioned impurities contained in citric acid are included.
  • the content of impurities by HPLC is preferably 0.5% or less.
  • citric acid exists in the form of anhydrate as well as the form of a monohydrate, but the form is not particularly limited, and may be in the form of a solid, for example, a solution of water or a water-soluble organic solvent. ..
  • the amount converted to the pure content of citric acid contained in each should be within the above range. Is preferable, and the amount of water contained in each is preferably included in the amount of water used. Further, also in the case of the solution form of the water-soluble organic solvent, the amount of the water-soluble organic solvent contained therein is preferably included in the amount of the water-soluble organic solvent that may be contained in the above solution.
  • molar ratio of the citric acid-derived molecular structure to ferric iron in the ferric iron citrate (hereinafter, referred to as “molar ratio of the raw material iron and citric acid molecular structure”), for example, Using ferric iron citrate as a raw material having a ferric citrate content of 15.0% and a citric acid-derived molecular structure content of 60.0%, that is, a raw material molar ratio of 1.16, When 10 g (10 parts by mass) of acid is used with respect to 100 g (100 parts by mass) of anhydride of ferric citrate as a raw material, the modified iron and The molar ratio with the citric acid molecular structure is usually about 0.90, and when 20 g (20 parts by mass) of citric acid is used, the molar ratio
  • the solution containing water, ferric chloride and the raw material ferric citrate may be prepared by dissolving ferric chloride and the raw material ferric citrate in water.
  • the preparation method is not particularly limited, but water, ferric chloride, and raw materials can be obtained by using a container made of glass, stainless steel, Teflon (registered trademark), glass lining, or the like, and further using a mechanical stirrer, a magnetic stirrer, or the like. From the viewpoint of uniformity and operability, it is preferable to mix the ferric citrate of (1) under stirring and dissolve the ferric chloride and the raw material ferric citrate in water.
  • the order of mixing water, ferric chloride and the raw material ferric citrate is not particularly limited, but it is preferable to sequentially add ferric chloride and the raw material ferric citrate to water and mix them.
  • citric acid is added to the solution, the order of mixing is not limited, but after mixing water and citric acid to form an aqueous citric acid solution, ferric chloride and the second citric acid starting material are mixed.
  • ferric chloride and the second citric acid starting material are mixed.
  • the preparation temperature of the solution depends on the manufacturing conditions such as the type of ferric citrate used as a raw material and the amount of water used, so the temperature at which ferric chloride and the ferric citrate raw material are dissolved is appropriately adjusted. It may be adjusted, but it is usually 0 to 80 ° C. However, ferric citrate and / or citric acid decomposes under high temperature, and the purity of the modified product tends to decrease, and at low temperature, the time required for dissolution tends to increase, so the preparation temperature Is preferably 5 to 70 ° C., more preferably 10 to 60 ° C.
  • the time required for dissolution may be appropriately determined by visually confirming the disappearance of ferric chloride and the raw material ferric citrate. Depending on the dissolution temperature, the amount of impurities such as aconitic acid derived from the decomposition of ferric citrate and / or citric acid tends to increase as the holding time of the dissolution liquid increases.
  • the time required for dissolution is preferably within 2 hours. Further, it is preferable that after confirming the disappearance of solids (ferric citrate, ferric chloride, citric acid as raw materials), it is promptly contacted with a water-soluble organic solvent.
  • step 2 a solution containing water, ferric chloride, and ferric citrate as a raw material prepared as described above is contacted with a water-soluble organic solvent.
  • Ferric citrate in the solution is insoluble in the water-soluble organic solvent, and thus ferric citrate hydrate is precipitated by the operation.
  • the water-soluble organic solvent in step 2 is an organic solvent that mixes with water at an arbitrary ratio. That is, it is an organic solvent having a solubility of 20 g (20 parts by mass) or more in 100 g (100 parts by mass) of water at 25 ° C.
  • the water-soluble organic solvent examples include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and allyl alcohol, esters such as methyl acetate, ethers such as tetrahydrofuran and dioxane, acetone, methyl ethyl ketone and acetylacetone. , Ketones such as diacetone alcohol, and nitriles such as acetonitrile. Among these, ketones or alcohols are preferable from the viewpoint of the quality and yield of the modified product, and particularly acetone, 2-propanol, methanol or ethanol is preferable.
  • the ratio of the ketone or the alcohol in the mixed solvent is 50% by mass or more. Is preferred.
  • the amount of the water-soluble organic solvent to be used may be appropriately determined in consideration of the capacity of the production apparatus, etc., but from the viewpoint of the quality of the reformed product and the yield, the equivalent amount of ferric citrate as the anhydride is 100 g ( It may be appropriately determined within the range of 200 to 4000 mL (200 to 4000 volume parts) with respect to 100 parts by weight.
  • the amount of the water-soluble organic solvent used is 200 mL (200 parts by volume) or more, it is preferable in terms of the production yield of the modified product, solid-liquid separation property, and the like, and when it is 4000 mL (4000 parts by volume) or less, per batch It is preferable in terms of yield.
  • the amount of the water-soluble organic solvent used is 100 g (100 parts by mass) of the ferric citrate as a raw material in terms of the anhydride.
  • 300 to 3000 mL (300 to 3000 parts by volume) is preferable, 350 to 2000 mL (350 to 2000 parts by volume) is more preferable, and 350 to 1000 mL (350 to 1000 parts by volume) is the most preferable.
  • the equipment used for the contact operation between the solution containing water, ferric chloride and the raw material ferric citrate in step 2 and the water-soluble organic solvent is not particularly limited, and the equipment used for producing the solution is not limited. Can be done using. Further, the method of contacting the solution and the water-soluble organic solvent is not particularly limited, after the solution is produced, a water-soluble organic solvent may be added thereto, or in a water-soluble organic solvent, You may add the said solution.
  • the method of dropping the above-mentioned solution into the water-soluble organic solvent is preferable.
  • the dropping rate of the above-mentioned solution may be appropriately determined while confirming the working time and the degree of dispersion of the precipitated reforming substance in the solvent, but it is usually determined within the range of 5 minutes to 5 hours.
  • the temperature at the time of contact may be appropriately determined in consideration of the boiling point of the water-soluble organic solvent to be used, but if the temperature is too low, the modified body tends to agglomerate, and if it is too high, ferric citrate water is used. It is preferable to carry out the treatment in the range of ⁇ 20 to 70 ° C. because there is a concern that impurities such as aconitic acid will be produced as a by-product due to decomposition of the hydrate and / or citric acid. Considering operability such as solid-liquid separation of the precipitated ferric citrate hydrate and volatilization of the water-soluble organic solvent, the temperature is preferably -10 to 65 ° C, more preferably 0 to 60 ° C.
  • the modified product can be isolated by solid-liquid separation using vacuum filtration or pressure filtration of the suspension, solid-liquid separation using centrifugal separation, or the like to obtain a modified wet product, and drying the wet product. it can.
  • the wet body of the modified product refers to the water-containing product and the water-containing organic solvent product of the modified product obtained by the production method of the present invention, and in particular, the amount converted to the anhydride of the modified product.
  • a wet body containing 5 to 45 g (5 to 45 parts by mass) of water with respect to 100 g (100 parts by mass) of the converted anhydrous product is referred to as a low water content wet body.
  • a step of drying the low hydrous product after obtaining the low hydrous product is included.
  • the modified product obtained by the production method of the present invention is subjected to solid-liquid separation from the above suspension using vacuum filtration, pressure filtration, centrifugal separation or the like to obtain a modified wet body of ferric citrate. It is preferable to isolate the modified product by dispersing it in a water-soluble organic solvent to obtain the low-moisture-content wet body and drying it.
  • the wet body after solid-liquid separation and the low-moisture content body have hygroscopicity, and the BET specific surface area of the modified body may decrease due to dissolution of the solid surface due to an increase in water content.
  • the BET specific surface area may decrease during the drying operation depending on the conditions of the drying operation of the wet body and the low water content wet body. This phenomenon is speculated to be because the solid surface of ferric citrate hydrate is dissolved by water. Therefore, during the solid-liquid separation and the drying operation, it is preferable to suppress the mixing of water from the external atmosphere into the wet body of ferric citrate hydrate and the low water content wet body.
  • solid-liquid separation and drying operations are preferably performed under a vacuum, a dry air atmosphere, or an atmosphere of an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • the wet body and the low water content wet body are washed with a water-soluble organic solvent or a mixed solvent with water, and the mother liquor as a dispersion solvent in the suspension is sufficiently removed.
  • the washing method is not particularly limited, but it may be performed by bringing the wet body and the washing liquid into contact with each other in the apparatus used for the solid-liquid separation.
  • the wet body after the solid-liquid separation and the cleaning liquid may be mixed to form a suspension, and then the solid-liquid separation may be performed again, that is, a reslurry cleaning operation may be used.
  • the amount of the solvent used for washing is 50 to 1000 g (50 to 1000 parts by mass) with respect to 100 g (100 parts by mass) of ferric citrate as a raw material, so that a sufficient cleaning effect can be obtained.
  • the high production yield of the modified product is preferable.
  • the wet body and the low water content wet body of the modified body are dried under normal pressure, reduced pressure, or aeration of an inert gas such as nitrogen or argon to obtain a modified body containing no water-soluble organic solvent. It can be isolated.
  • the drying temperature is ⁇ 80 ° C. or higher and lower than 60 ° C., and the time may be appropriately determined while checking the residual amount of the water-soluble organic solvent and the like, but it is usually 0.5 to 100 hours. Further, in the drying process, when it becomes a lump and the reduction efficiency of the water-soluble organic solvent is low, it can be dried more efficiently by making it into a powder using a hammer mill, a pin mill or the like.
  • the water-soluble organic solvent can be reduced by bringing it into contact with an atmosphere containing water.
  • the reformer may be held in the atmosphere or an atmosphere in which temperature and relative humidity are adjusted.
  • the BET specific surface area of the modified product tends to decrease when it comes into contact with water, it is dried in advance in an atmosphere not containing water to reduce the water-soluble organic solvent as much as possible. It is preferable to shorten the drying time under an atmosphere containing water.
  • the decrease width of the BET specific surface area changes depending on the temperature and the relative humidity. Therefore, considering the decrease width of the BET specific surface area, the temperature is 5 to 60 ° C. and the relative humidity is 20 to 95 RH%. Is preferred.
  • the time required for the drying may be appropriately determined while confirming the residual amount of the water-soluble organic solvent and the like as in the above, but is usually 0.5 to 100 hours.
  • modified ferric citrate hydrate having a large BET specific surface area can be produced regardless of the ferric citrate used as a raw material. Further, by adjusting the amount of ferric chloride used, modified ferric citrate hydrate having various BET specific surface areas in the range of 10 to 165 m 2 / g of BET specific surface area by nitrogen adsorption method. You can get things. As a result, it has excellent solubility in a solvent such as water. Furthermore, since the purity can be further increased as compared with ferric citrate as a raw material, it can be suitably used as a drug or a food additive.
  • Step 1 of preparing a ferric citrate hydrate used as the raw material ferric citrate will be described.
  • citric acid, ferric chloride, and hydroxide or carbonate of magnesium are mixed in water to obtain a mixture, and then the mixture is mixed with an organic solvent to prepare aqueous ferric citrate solution.
  • This is a step of preparing a Japanese product.
  • the magnesium hydroxide or carbonate is 0.30 to 0.95 equivalent to ferric chloride.
  • citric acid can be used without any particular limitation, such as reagents and industrial products. Also, the form thereof is not particularly limited, and a form such as an aqueous solution may be used in addition to the solid form. In the case of the solid form, citric acid may be in the form of hydrate as well as anhydride, but any form may be used.
  • step 1 the amount of other raw materials such as ferric chloride used is calculated based on the amount of citric acid used in step 2. Therefore, the amount of citric acid used may be appropriately determined according to the preparation scale of ferric citrate hydrate. When a hydrate, an aqueous solution, or the like is used, the amount of citric acid contained in them is converted to a pure content. When citric acid and its hydrate, aqueous solution and the like are used in combination, the sum of the amount of citric acid used and the amount of the citric acid converted to pure content is the standard. Further, the amount of water contained in the form is included in the amount of water used in the present invention.
  • the pure content of citric acid may be calculated by a known method such as high performance liquid chromatography (HPLC) or a quantification method using a titrator.
  • HPLC high performance liquid chromatography
  • KF Karl Fischer titration method
  • Citric acid may contain impurities such as aconitic acid and citraconic acid derived from the decomposition of citric acid depending on the production conditions.
  • impurities such as aconitic acid and citraconic acid derived from the decomposition of citric acid depending on the production conditions.
  • citric acid having a low content of the impurities it is preferable to use citric acid having a low content of the impurities.
  • the purity of citric acid is preferably 98.0 to 99.9%, and impurities such as aconitic acid and citraconic acid are 0.01 to 1 respectively. It is preferably 0.0%.
  • ferric chloride can be used without any particular limitation, such as reagents and industrial products.
  • the form thereof is not particularly limited, and in addition to the solid form, a form such as an aqueous solution may be used.
  • ferric chloride may be in the form of a hydrate as well as an anhydride, but any form may be used.
  • the amount of ferric chloride used is preferably 1.0 to 2.5 equivalents of ferric chloride with respect to the citric acid used in step 1. By setting it as the said range, the manufacturing yield of ferric citrate hydrate can be improved more. Furthermore, in the range, the molar ratio of the raw material iron and the citric acid molecular structure can be adjusted by the amount used. Specifically, usually, when ferric chloride is 1.0 equivalent to citric acid, the molar ratio of the obtained raw material is 0.8 to 1.1, and when it is 1.5 equivalent, it is 0.7. It is ⁇ 1.0, and when it is 2.0 equivalents, it is 0.6 to 0.9. Therefore, the amount of ferric chloride used may be appropriately determined according to the desired molar ratio of the raw materials.
  • the amount used is based on the amount converted to the pure content of ferric chloride contained therein (the amount converted to the pure content of ferric chloride). Further, the amount of water contained in the form is included in the amount of water used in step 1.
  • magnesium hydroxide or carbonate (hereinafter referred to as "magnesium hydroxide or the like") is used as a base. Specifically, magnesium hydroxide or magnesium carbonate is used. These bases may be used alone or in combination of two or more. Further, these can be used without particular limitation, such as reagents and industrial products. Among these, magnesium hydroxide is more preferable in consideration of reactivity.
  • the amount of the base used is 0.30 to 0.95 equivalent to the ferric chloride used in Step 1, that is, 0.30 to 2.38 equivalent to the citric acid used in Step 1.
  • the BET specific surface area of ferric citrate hydrate can be 16 m ⁇ 2 > / g or more. Within this range, the BET specific surface area of ferric citrate hydrate tends to increase as the amount of base used decreases. On the other hand, as the amount of the base used increases, the production yield of ferric citrate hydrate tends to increase. Therefore, the amount of the base used may be appropriately determined within the above range according to the desired BET specific surface area and the like.
  • the amount of the base used is 1 More preferably 0.40 to 0.90 equivalents to ferric chloride, that is, 0.40 to 2.25 equivalents to the citric acid used in step 1, 0.50 to 0.85 equivalents, 0.50 to 2.13 equivalents relative to the citric acid used in step 1 are more preferable.
  • step 1 the water is not particularly limited, and tap water, ion-exchanged water, distilled water or the like can be used.
  • the amount of water used in step 1 is preferably 2.0 to 8.5 mL with respect to 1 g of citric acid used in step 1.
  • the generated by-product salt can be sufficiently removed, and the by-product salt in the ferric citrate hydrate produced. The remaining amount of can be reduced.
  • the amount of ferric citrate hydrate dissolved in the mother liquor (dispersion solvent in the suspension containing ferric citrate hydrate described below) It is possible to reduce and increase the production yield of ferric citrate hydrate.
  • 2.5 to 7.5 mL is more preferable, and 3.0 to 6.5 mL per 1 g of citric acid used in Step 1. More preferable.
  • the ferric citrate hydrate obtained when using less than 2.5 mL of water tends to be granular, but when it is 2.5 mL or more, the obtained ferric citrate becomes powdery. Tend to be.
  • the incorporation of the by-product salt into the ferric citrate hydrate is reduced, and the residual amount of the by-product salt can be more highly reduced.
  • the amount of water contained in the form is included in the amount of water used in step 1.
  • step 1 citric acid, ferric chloride, and hydroxide of magnesium are mixed in water to obtain a mixture.
  • the mixing operation is not particularly limited and may be carried out by a known method, but a container made of glass, stainless steel, Teflon (registered trademark), glass lining or the like is used, and further, a mechanical stirrer, a magnetic stirrer or the like is used. It is preferable to mix each raw material with stirring from the viewpoint of uniformity and operability.
  • the mixing order of each raw material is not particularly limited, but when only other raw materials except for citric acid are mixed, ferric hydroxide is once precipitated in the system.
  • ferric hydroxide may be converted into other iron compounds such as ⁇ , ⁇ or ⁇ iron oxide hydroxide and iron oxide depending on the temperature and the like.
  • the iron compound has a significantly lower solubility in water or an aqueous citric acid solution than ferric hydroxide, and as a result, it remains as an insoluble solid even after the subsequent addition of citric acid, and the prepared citric acid
  • the production yield of diiron hydrate may decrease and the iron compound may remain in the ferric citrate hydrate.
  • each raw material it is preferable to mix water and citric acid before mixing ferric chloride, hydroxide of magnesium, and the like. Furthermore, when magnesium hydroxide or the like is mixed with a mixture containing ferric chloride, magnesium hydroxide or the like becomes a lump and it may take a long time to dissolve, so ferric chloride is mixed. It is more preferable to previously mix magnesium hydroxide or the like. Considering the above, specifically, it is more preferable to mix ferric chloride in the order of citric acid, water, hydroxide of magnesium and the like. In the mixing order, there is no problem even if the mixing order of citric acid and water is reversed.
  • the temperature of the above mixing operation is preferably 35 to 80 ° C. when all the raw materials are mixed. At the time of mixing all the raw materials, the solid raw materials are dissolved in water and reacted to produce ferric citrate hydrate. Ferric citrate hydrate may precipitate due to the high solids concentration in it. By setting the temperature to 35 ° C. or higher, precipitation of ferric citrate hydrate can be avoided and the solution state can be stably maintained. On the other hand, if the temperature is 80 ° C. or lower, decomposition of ferric citrate hydrate and / or citric acid can be suppressed, and the purity of the prepared ferric citrate hydrate can be further increased.
  • the temperature is particularly Not limited.
  • ferric citrate hydrate will proceed instantaneously, so after mixing all the raw materials, visually confirm the dissolution of each solid and set the time for mixing. It may be determined appropriately. It is usually sufficient to mix for at least 5 minutes after adding the last raw material. However, depending on the mixing temperature, as the mixing time increases, the decomposition of ferric citrate hydrate and / or citric acid tends to proceed, so as soon as dissolution is confirmed, mixing with an organic solvent, which is the next operation, is performed. It is preferable to carry out the operation.
  • step 1 the mixture obtained as described above and an organic solvent are mixed. By the mixing operation, ferric citrate hydrate is precipitated, and a suspension containing ferric citrate hydrate can be obtained.
  • the organic solvent is not particularly limited as long as it is an organic solvent in which ferric citrate hydrate is precipitated by mixing with the mixture, but usually, the mixture has a high solid concentration, and therefore the organic solvent Depending on the type, when mixed with the mixture, it may be separated into an organic solvent and may not be uniformly mixed, and ferric citrate hydrate may not be precipitated. Irrespective of the manufacturing conditions of the mixture, examples of the organic solvent in which ferric citrate hydrate precipitates include methanol, ethanol, 1-propanol, and 2-propanol.
  • the amount of the organic solvent used is preferably 3 to 20 mL with respect to 1 g of citric acid used in step 1. By setting it as the said range, a ferric citrate hydrate will precipitate after mixing with an organic solvent. Among the above ranges, considering the production yield of ferric citrate hydrate, operability, etc., the amount of the organic solvent used is more preferably 4 to 15 mL with respect to 1 g of citric acid used in step 1. 5 to 13 mL is more preferable.
  • organic solvent when 3 to 20 mL of the above organic solvent is used with respect to 1 g of citric acid used in step 1, if the content is 1 mL or less with respect to 1 mL of the organic solvent, an organic solvent other than the above may be contained. I do not care.
  • the organic solvent other than the above is an organic solvent which is miscible with the above organic solvent and water, and specifically, alcohols such as 1-butanol, 2-butanol, t-butanol, allyl alcohol, propargyl alcohol, acetone, Ketones such as methyl ethyl ketone, acetylacetone and diacetone alcohol, cyclic ethers such as tetrahydrofuran and dioxane, nitriles such as acetonitrile, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone and the like
  • examples thereof include nitrogen-containing compounds and sulfur-containing compounds such as dimethyl sulfoxide.
  • alcohols such as 1-butanol, 2-butanol, t-butanol, allyl alcohol, and propargyl alcohol, acetone, etc. are taken into consideration in view of their relatively low boiling point, easy removal, production yield, and the like.
  • Ketones such as methyl ethyl ketone, acetylacetone and diacetone alcohol, cyclic ethers such as tetrahydrofuran and dioxane, and nitriles such as acetonitrile are more preferable, and ketones such as acetone, methyl ethyl ketone, acetylacetone and diacetone alcohol are more preferable.
  • step 1 the mixture and the organic solvent may be mixed as long as the mixing operation can be carried out, and the method for carrying out the mixing is not particularly limited, but similar to the preparation of the above mixture, glass, stainless steel, Teflon (registered trademark) From the viewpoint of uniformity and operability, it is preferable to mix the mixture and the organic solvent with stirring by using a container for manufacturing, glass lining or the like, and further using a mechanical stirrer, a magnetic stirrer or the like.
  • the order of mixing the mixture and the organic solvent is not particularly limited, and the organic solvent may be added to the mixture after it is produced, or the mixture may be added to the organic solvent.
  • the method of dropping the mixture into the organic solvent is preferable from the viewpoint of operability and production yield.
  • the dropping rate of the above mixture may be appropriately determined while confirming the working time and the degree of dispersion of the precipitated ferric citrate hydrate in the solvent, but usually it is determined within the range of 5 minutes to 5 hours. Good.
  • the temperature at the time of mixing may be appropriately determined in consideration of the boiling point of the organic solvent to be used, but if it is too low, ferric citrate hydrate tends to agglomerate, and if it is too high, the citric acid no. Since decomposition of diiron hydrate and / or citric acid may cause by-production of impurities such as aconitic acid, it is preferably carried out in the range of 20 to 80 ° C. Considering operability such as solid-liquid separation of the precipitated ferric citrate hydrate and volatilization of the organic solvent, the temperature is more preferably 25 to 70 ° C, further preferably 30 to 60 ° C.
  • the mixture After mixing the above mixture with an organic solvent, it is preferable to hold the mixture for a certain period of time with stirring in order to sufficiently precipitate ferric citrate hydrate.
  • the holding time varies depending on the temperature at the time of mixing, etc., but it is usually sufficient to hold for 15 minutes to 50 hours. Further, the temperature in the operation is preferably in the same range as in the mixing for the same reason as in the mixing. As described above, a suspension containing ferric citrate hydrate can be obtained.
  • the ferric citrate hydrate obtained in step 1 is subjected to solid-liquid separation from the above suspension using vacuum filtration, pressure filtration, centrifugation or the like to obtain ferric citrate hydrate and an organic solvent.
  • the isolated wet body of ferric citrate hydrate is preferably washed with an organic solvent or a mixed solvent of an organic solvent and water. By this washing, the mother liquor (dispersing solvent in the suspension) remaining in the wet body can be removed, and the residual amount of the by-product salt in the ferric citrate hydrate can be further reduced.
  • the mixing ratio is 0.2 to 2 mL of water with respect to 1 mL of the organic solvent, since it is possible to suppress the decrease in the production yield due to the dissolution of ferric citrate hydrate in the washing solution and the precipitation of by-product salts. Is preferred. From the viewpoint of cleaning efficiency, it is preferable that the amount of the cleaning liquid used is 0.5 to 5 mL with respect to 1 g of citric acid as the raw material used in step 1.
  • the mother liquor may remain in the wet body depending on the method of solid-liquid separation or the preparation scale.
  • the mixture may be mixed with an organic solvent and a mixed solvent of water to prepare a suspension again (hereinafter, referred to as “resuspension”), and then solid-liquid separation may be performed for washing.
  • suspension an organic solvent and a mixed solvent of water to prepare a suspension again (hereinafter, referred to as “resuspension”), and then solid-liquid separation may be performed for washing. According to this operation, the residual amount of the mother liquor in the wet body can be further reduced, and the residual amount of the by-product salt in the ferric citrate hydrate produced as a result can be further reduced.
  • the organic solvent in the mixed solvent used for washing by preparing the resuspension is an organic solvent having a solubility of 0.2 g or more in 1 g of water at 25 ° C.
  • Specific examples include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and allyl alcohol, esters such as methyl acetate, ethers such as tetrahydrofuran and dioxane, acetone, methyl ethyl ketone, acetylacetone and diacetone alcohol.
  • Examples include ketones and nitriles such as acetonitrile.
  • alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and allyl alcohol, and acetone, methyl ethyl ketone, and acetylacetone are used from the viewpoint of solubility and easy removal of ferric citrate hydrate in a cleaning solution.
  • Ketones such as diacetone alcohol and the like are more preferable, and methanol, ethanol, 1-propanol, 2-propanol, acetone and methyl ethyl ketone are more preferable.
  • these may use a single type and may use multiple types.
  • the mixing ratio of the organic solvent and water is preferably 0.1 to 2 mL of water to 1 mL of the organic solvent.
  • the amount of the mixed solvent used is preferably 0.5 to 20 mL with respect to 1 g of citric acid as a raw material used in Step 1, from the viewpoint of operability and cleaning efficiency. ⁇ 15 mL is more preferred, and 1.5-10 mL is even more preferred.
  • the method for carrying out the resuspension is not particularly limited as long as the resuspension can be prepared.
  • the wet body, the organic solvent and water are mixed.
  • the mixed solvent may be mixed with stirring.
  • the mixed solvent of the organic solvent and water is preferably prepared before mixing with the wet body.
  • the temperature of the mixing operation is preferably in the range of ⁇ 20 to 75 ° C. in consideration of the stirring efficiency and the production yield, and the operability of the mixing operation and the solid-liquid separation operation after mixing and the boiling point of the organic solvent are considered. Then, 0 to 70 ° C. is more preferable, and 10 to 60 ° C. is further preferable.
  • mixing it is preferable from the viewpoint of uniformity and the like that mixing is performed in the temperature range for a certain time or more with stirring. It cannot be specified unconditionally because it depends on the production scale, etc., but it is usually sufficient to maintain the mixed state for 15 minutes to 2 hours.
  • the resuspension prepared as described above is subjected to solid-liquid separation using vacuum filtration, pressure filtration, centrifugal separation, etc. in the same manner as the above suspension to obtain a wet solution of ferric citrate hydrate.
  • the body may be isolated. Also in the solid-liquid separation operation, the wet body after solid-liquid separation is preferably washed with an organic solvent or a mixed solvent of an organic solvent and water.
  • the wet body of ferric citrate hydrate thus isolated can be made into ferric citrate hydrate from which the organic solvent and the like have been removed by drying as described below.
  • the solid surface of the ferric citrate hydrate is dissolved in the water contained in the wet body during the drying operation to hydrate the ferric citrate.
  • the BET specific surface area of the product may decrease. Therefore, it is preferable to reduce the content of water in the wet body before drying.
  • the amount converted to the anhydrous ferric citrate hydrate contained in the wet body (hereinafter, referred to as "anhydrous equivalent amount of ferric citrate hydrate in the wet body")
  • the content of water is preferably 0.05 to 0.5 g per 1 g.
  • the anhydrous equivalent amount of ferric citrate hydrate in the wet body is determined by measuring the contents of water and the organic solvent in the wet body by KF, gas chromatography (GC), etc. It is calculated by subtracting the content of the organic solvent from the weight of the wet body.
  • the washing at the time of solid-liquid separation is finally carried out only with the organic solvent.
  • washing with an organic solvent may be performed plural times, or washing may be performed by preparing a suspension again from the wet body after solid-liquid separation and the organic solvent.
  • the wet body of the prepared ferric citrate hydrate is dried, and excess water and organic solvent contained in the wet body are removed, thereby ferric citrate hydrate.
  • the drying operation may be carried out by a known method, for example, using a shelf dryer or a conical dryer, under vacuum, under a dry air atmosphere, or under an inert gas atmosphere such as nitrogen or argon, It should be carried out. Further, the temperature of the drying operation is preferably ⁇ 80 to 80 ° C. in consideration of the stability of ferric citrate hydrate.
  • the drying time may be appropriately determined while confirming the residual amount of the organic solvent and the like, but is usually 0.5 to 100 hours. Furthermore, in the drying process, when the resin becomes lumpy and the reduction efficiency of the organic solvent is low, it can be dried more efficiently by making it into a powder using a hammer mill, a pin mill or the like.
  • the ferric citrate hydrate prepared by the step 1 has a low content of organic impurities derived from the decomposition of ferric citrate and / or citric acid, and the by-product salt.
  • the content of inorganic impurities derived from the like is also low, and a high purity equal to or higher than that of ferric citrate produced by a known method and commercially available ferric citrate used in Examples described later, and Since it has a BET specific surface area of more than 16 m 2 / g, it can be suitably used as ferric citrate as a raw material used in step 2.
  • the purity and the citric acid content of the ferric citrate and the modified ferric citrate hydrates of the raw materials of Examples and Comparative Examples were measured by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the BET specific surface areas of the ferric citrate and the modified ferric citrate hydrates of the examples and comparative examples were measured by the nitrogen adsorption method.
  • the iron content of ferric citrate as a raw material and the modified ferric citrate hydrate of Examples and Comparative Examples was measured by a redox titration method.
  • the water content of ferric citrate as a raw material in Examples and Comparative Examples is respectively Karl Fischer titration method (KF), gas chromatography (GC), inductively coupled plasma. It was measured by optical emission spectroscopy (ICP-OES).
  • the content of citric acid in the ferric citrate raw material and the modified ferric citrate hydrate was calculated by the calibration curve method from the peak area value of citric acid measured under the conditions, It is the ratio of the mass of citric acid to the mass of the raw material ferric citrate and the modified ferric citrate hydrate.
  • Liquid chromatograph device manufactured by Waters Corporation
  • Detector Ultraviolet absorptiometer (manufactured by Waters Corporation) Measurement wavelength: 210 nm
  • Column A stainless tube having an inner diameter of 4.6 mm and a length of 250 mm packed with 5 ⁇ m octadecylsilylated silica gel for liquid chromatography.
  • Mobile phase A mixed solution prepared by adding 12.0 g of sodium dihydrogen phosphate to 2000 mL of water and dissolving it, and then adding phosphoric acid to adjust the pH to 2.2.
  • the iron content of the ferric citrate hydrate by the redox titration method was measured under the following conditions. In the following Examples and Comparative Examples, the iron content of ferric citrate hydrate is the ratio of the mass of iron to the mass of ferric citrate hydrate measured under the conditions.
  • Gas Chromatograph (Agilent Technologies, Inc.)
  • Detector Hydrogen flame ionization detector (Agilent Technologies, Inc.)
  • Introduction method Headspace method
  • Column A fused silica tube having an inner diameter of 0.53 mm and a length of 30 m, which is coated with polyethylene glycol for gas chromatography in a thickness of 1 ⁇ m.
  • the ferric citrate as a raw material used in Examples and Comparative Examples is a commercially available ferric citrate manufactured by Company A and Company B, and is prepared in Production Example 1 below. Was used. The results of analysis of the water content and the content of the organic solvent in the ferric citrate of these raw materials are shown in Table 1 below.
  • the molar ratio of the iron and citric acid molecular structure of the modified body and the molar ratio of the iron and citric acid molecular structure of the raw material, the modified body and ferric citrate of the raw material measured by the method described above.
  • the contents of the molecular structures derived from iron and citric acid and the molecular weights of iron and citric acid were calculated by the following formulas, respectively.
  • the solid After stirring at 20 to 30 ° C for 1 hour, the solid was filtered by pressure filtration, and the filtered solid was washed twice with 80 mL of acetone.
  • the obtained wet body and 400 mL of acetone were stirred at 20 to 30 ° C. for 30 minutes, the solid was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C for 15 hours to obtain 30.1 g of ferric citrate as a raw material.
  • Example 1 In a 100-mL four-necked flask equipped with a stirring blade and a thermometer, 0.33 g of citric acid monohydrate (9.1 g of citric acid per 100 g of anhydrous ferric citrate as a raw material) and water. 8 mL was added and stirred to prepare an aqueous citric acid solution. Next, 4.0 g of ferric citrate manufactured by Company A (an amount of ferric citrate equivalent to an anhydride: 3.3 g) as ferric citrate as a raw material was added little by little over 15 minutes and stirred. After stirring at 50 to 60 ° C. for 30 minutes and further at 20 to 30 ° C.
  • the solid After stirring at 20 to 30 ° C. for 1 hour, the solid was filtered by pressure filtration, and the filtered solid was washed twice with 8 mL of acetone.
  • the obtained wet body and 20 mL of acetone were stirred at 20 to 30 ° C. for 30 minutes, the solid was filtered by pressure filtration, and the solid after filtration was washed twice with 8 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours, and further kept in an atmosphere at 40 ° C. and 40 RH% for 12 hours to obtain a modified ferric citrate hydrate. 3.7 g of iron hydrate was obtained.
  • the production yield of the modified ferric citrate hydrate based on the weight of the raw material ferric citrate was 92.0%.
  • the BET specific surface area of the modified ferric citrate hydrate determined by the nitrogen adsorption method was 32.6 m 2 / g, and the purity determined by HPLC was 82.78%.
  • the contents of iron and citric acid in the modified ferric citrate hydrate were 19.2% by mass and 57.9% by mass, respectively, and the molar ratio of citric acid to iron was 0.88. Met.
  • Example 2 Same as Example 1 except that the amount of ferric chloride hexahydrate and / or citric acid monohydrate used was changed or ferric chloride hexahydrate was not used. It was carried out. The conditions and results are shown in Table 2.
  • Example 5 when ferric citrate as a raw material was added and stirred for 30 minutes at 50 to 60 ° C., the ferric citrate as a raw material was not completely dissolved. After stirring for 1.5 hours, it was confirmed that the whole amount was dissolved.
  • Examples 10 and 11 The same procedure as in Example 1 was carried out except that the ferric citrate used as the starting material was changed. The conditions and results are shown in Table 3.
  • Example 12 To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (190.3 mmol) of citric acid monohydrate and 140 mL of water (3.8 mL per 1 g of citric acid) were added and stirred, and the mixture was stirred. An aqueous acid solution was prepared. Then, 17.7 g of magnesium hydroxide (303.3 mmol, 0.85 equivalent to ferric chloride) was added over 15 minutes, and then heated up to around 40 ° C. to confirm that the magnesium hydroxide was dissolved. confirmed. Ferric chloride hexahydrate 64.3 g (237.9 mmol, 1.25 equivalents relative to citric acid) was added at 40 ° C.
  • the obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 41.1 g of ferric citrate hydrate (production yield 102.8% based on the weight of citric acid monohydrate). It was
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 17.8 m 2 / g, and the purity by HPLC was 99.84%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 19.4% and 54.0%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.81. It was Further, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 2.4%.
  • the water content of ferric citrate hydrate was 16.0% as analyzed by KF.
  • Example 13 To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (190.3 mmol) of citric acid monohydrate and 140 mL of water (3.8 mL for 1 g of citric acid) were added and stirred, and the mixture was stirred. An aqueous acid solution was prepared. Then, 17.7 g of magnesium hydroxide (303.3 mmol, 0.85 equivalent with respect to ferric chloride) was added over 15 minutes, and then warmed up to around 40 ° C. to dissolve magnesium hydroxide. confirmed. After adding 64.3 g (237.9 mmol, 1.25 equivalents to citric acid) of ferric chloride hexahydrate at 40 ° C.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 40.0 g of ferric citrate hydrate (production yield 100.0% based on the weight of citric acid monohydrate). It was
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 18.2 m 2 / g, and the purity by HPLC was 99.85%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 19.8% and 54.9%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.81.
  • the X-ray diffraction chart shown in FIG. 2 was obtained by the analysis by XRD, and only the halo pattern peculiar to ferric citrate hydrate was shown, and each raw material such as citric acid and ferric chloride and sub-materials No peak derived from raw salt such as magnesium chloride was detected.
  • the residual amount of magnesium which is an element derived from the by-product salt, was 1.1%.
  • the water content of ferric citrate hydrate was 16.9% as analyzed by KF.
  • Example 14 to 21 Comparative Examples 5 to 7
  • the procedure of Example 13 was repeated, except that the amounts of magnesium hydroxide and ferric chloride hexahydrate used were changed.
  • the conditions and results are shown in Table 4.
  • Example 13 was carried out in the same manner as in Example 13 except that the amount of water used was changed. The conditions and results are shown in Table 5.
  • Example 26 To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (208.2 mmol) of citric acid anhydride and 116 mL of water (2.9 mL per 1 g of citric acid) were added and stirred to obtain an aqueous citric acid solution. Was prepared. Then, 18.2 g of magnesium hydroxide (312.3 mmol, 0.67 equivalents relative to ferric chloride) was added over 15 minutes, and then heated to around 45 ° C. to confirm that magnesium hydroxide was dissolved. confirmed. Ferric chloride hexahydrate (84.4 g, 312.3 mmol, 1.5 equivalents based on citric acid) was added at 40 ° C.
  • the obtained wet body and 180 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, heated to about 40 ° C., and then stirred at 35 to 45 ° C. for 30 minutes. Then, 140 mL of water was added, and the mixture was stirred at 35 to 45 ° C. for 30 minutes.
  • the obtained suspension was filtered by pressure filtration, the solid after filtration was washed twice with a mixed solvent of 60 mL of acetone and 20 mL of water, and further, the solid after filtration was washed once with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 45 ° C. for 15 hours to obtain ferric citrate hydrate 46.0 g (production yield 115.0% based on the weight of citric anhydride).
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 19.8 m 2 / g, and the purity by HPLC was 99.85%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 20.5% and 54.6%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.77. It was Further, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 0.9%. Further, the water content of the ferric citrate hydrate was 19.8% as analyzed by KF.
  • the total amount of water in the solution was 68 mL, 1.9 mL for 1 g of sodium citrate, and 2.6 mL for converted 1 g of citric acid.
  • After cooling to around 30 ° C. it was obtained.
  • the obtained solution was added dropwise to 300 mL of methanol at 20 to 30 ° C. over 15 minutes.
  • the mixture was stirred at 20 to 30 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 30 mL of methanol.
  • the obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 33.2 g of ferric citrate hydrate (manufacturing yield 83.0% based on the weight of sodium citrate dihydrate). Obtained.
  • the BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 1.9 m 2 / g, and the purity by HPLC was 98.77%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 13.8% and 48.9%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 1.03.
  • the X-ray diffraction chart shown in FIG. 3 was obtained by the XRD analysis, and in addition to the halo pattern peculiar to ferric citrate hydrate, the diffraction angles 2 ⁇ were 27.5 °, 31.8 °, Peaks were shown at 45.5 °, 54.0 ° and 56.6 °.
  • the peak is a characteristic peak of sodium chloride, which is a by-product salt. Furthermore, according to the analysis by ICP-OES, the residual amount of sodium, which is an element derived from the by-product salt, was 15.3%. Further, the water content of the ferric citrate hydrate was 10.1% as analyzed by KF.
  • the total amount of water in the solution was 124 mL, which was 3.4 mL for 1 g of citric acid.
  • the obtained solution was added to 600 mL of methanol at 20 to 30 ° C. It dripped over 15 minutes. The mixture was stirred at 20 to 30 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 60 mL of methanol.
  • the obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes.
  • the obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone.
  • the obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 35.9 g of ferric citrate hydrate (manufacturing yield 89.8% based on the weight of sodium citrate dihydrate). Obtained.
  • the BET specific surface area of the obtained ferric citrate hydrate by a nitrogen adsorption method was 4.5 m 2 / g, and the purity by HPLC was 98.26%.
  • the contents of iron and citric acid in the ferric citrate hydrate were 15.1% and 52.2%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 1.00.
  • the X-ray diffraction chart shown in FIG. 4 was obtained by the XRD analysis. In addition to the halo pattern peculiar to ferric citrate hydrate, the diffraction angles 2 ⁇ were 31.8 °, 45.6 ° and It showed a peak at 56.6 °.
  • This peak is a characteristic peak of sodium chloride, which is a by-product salt. Furthermore, the analysis by ICP-OES revealed that the residual amount of sodium, which is an element derived from the by-product salt, was 7.7%. The water content of ferric citrate hydrate was 11.3% as analyzed by KF.
  • Example 27 Example 1 was carried out in the same manner as in Example 1 except that the raw material ferric citrate used was changed to the raw material ferric citrate hydrate obtained in Example 13. The conditions and results are shown in Table 6.
  • Comparative Example 10 The same procedure as in Comparative Example 1 was carried out except that the raw material ferric citrate used was changed to the raw material ferric citrate hydrate obtained in Example 13. The conditions and results are shown in Table 6.
  • Examples 28 to 34 It carried out like Example 27 except having changed the usage-amount of ferric chloride hexahydrate and / or citric acid monohydrate. The conditions and results are shown in Table 6.

Abstract

The present invention provides a production method for efficiently obtaining ferric citrate hydrate which exhibits various BET specific surface areas and a high degree of purity regardless of the starting material which is used. The present invention involves a method for producing a modified ferric citrate hydrate which includes a step 2 for contacting a water-soluble organic solvent and a solution containing water, ferric chloride and ferric citrate, which is a starting material.

Description

クエン酸第二鉄水和物の製造方法Method for producing ferric citrate hydrate
 本発明は、クエン酸第二鉄水和物の新規な製造方法に関する。 The present invention relates to a novel method for producing ferric citrate hydrate.
 クエン酸第二鉄は、三価の鉄である第二鉄とクエン酸由来の分子構造とを含む化合物であり、第二鉄に対するとクエン酸由来の分子構造のモル比率は、一定の値を採らないとされている。また、一定量の水を含むことから、クエン酸第二鉄水和物とも呼ばれる。当該クエン酸第二鉄水和物は、試薬や食品添加物の他に、腎不全患者における高リン血症の治療薬として好適に利用できることが知られている。このような医薬品用途のクエン酸第二鉄水和物は、食品添加物用途のクエン酸第二鉄と比較して、BET比表面積が大きく、溶解性に優れることが好ましく、具体的にはBET比表面積が16m2/g以上であることが好ましいことが知られている。(特許文献1又は2参照)。 Ferric citrate is a compound containing ferric iron that is trivalent iron and a molecular structure derived from citric acid, and the molar ratio of the molecular structure derived from citric acid to ferric iron has a constant value. It is said that it will not be taken. It is also called ferric citrate hydrate because it contains a certain amount of water. It is known that the ferric citrate hydrate can be suitably used as a therapeutic agent for hyperphosphatemia in renal failure patients, in addition to reagents and food additives. Such ferric citrate hydrate for pharmaceutical use preferably has a large BET specific surface area and excellent solubility as compared with ferric citrate for food additive use. It is known that the specific surface area is preferably 16 m 2 / g or more. (See Patent Document 1 or 2).
 BET比表面積が16m2/g以上のクエン酸第二鉄水和物の製造方法として、特許文献1及び2において、塩化第二鉄六水和物と水酸化ナトリウム等の塩基とを反応させ、水酸化第二鉄を得、次いで水中で水酸化第二鉄とクエン酸とを反応させ、クエン酸第二鉄を含有する溶液を得、該溶液をアセトン等の水溶性有機溶媒に滴下し、クエン酸第二鉄水和物を固体として析出させて製造する方法が開示されている。 As a method for producing a ferric citrate hydrate having a BET specific surface area of 16 m 2 / g or more, in Patent Documents 1 and 2, ferric chloride hexahydrate is reacted with a base such as sodium hydroxide, Obtaining ferric hydroxide, then reacting ferric hydroxide with citric acid in water to obtain a solution containing ferric citrate, and dropping the solution into a water-soluble organic solvent such as acetone, A method for producing ferric citrate hydrate by depositing it as a solid is disclosed.
 また、特許文献3において、溶解性に優れるクエン酸第二鉄水和物の製造方法として、水にクエン酸第二鉄を溶解させた後、該溶液に有機溶媒を加えて、クエン酸第二鉄水和物を固体として析出させる方法が開示されている。 Further, in Patent Document 3, as a method for producing ferric citrate hydrate having excellent solubility, after ferric citrate is dissolved in water, an organic solvent is added to the solution to prepare ferric citrate. A method of depositing iron hydrate as a solid is disclosed.
特許第4964585号公報Japanese Patent No. 4964585 特許第5944077号公報Japanese Patent No. 5944077 国際公開第2007/062561号International Publication No. 2007/062561
 一方、クエン酸第二鉄水和物は潰瘍性消化管副作用が発生することが知られており、副作用の発生を低減させるためには、クエン酸第二鉄水和物の投与量を低減させることが必要であり、血中での溶解速度及び溶解度を向上させるために、さらなるBET比表面積の向上が要望されている。しかしながら、特許文献1及び2の製造方法は、BET比表面積が16m2/g以上のクエン酸第二鉄水和物を製造することができるが、BET比表面積は最大で45m2/g程度であり、より大きなBET比表面積を有するクエン酸第二鉄水和物を製造することができない。さらに、水酸化第二鉄とクエン酸との反応は高温下で行う必要があり、その結果、クエン酸第二鉄及び/又はクエン酸の分解が進行し、得られるクエン酸第二鉄水和物の純度が低いことが課題であった。 On the other hand, ferric citrate hydrate is known to cause ulcerative gastrointestinal side effects, and in order to reduce the occurrence of side effects, the dose of ferric citrate hydrate should be reduced. It is necessary to further improve the BET specific surface area in order to improve the dissolution rate and solubility in blood. However, the production methods of Patent Documents 1 and 2 can produce ferric citrate hydrate having a BET specific surface area of 16 m 2 / g or more, but the BET specific surface area is about 45 m 2 / g at the maximum. Yes, it is not possible to produce ferric citrate hydrate with a larger BET specific surface area. Furthermore, the reaction between ferric hydroxide and citric acid must be carried out at a high temperature, and as a result, the decomposition of ferric citrate and / or citric acid proceeds, and the resulting ferric citrate hydrate The problem was that the purity of the product was low.
 一方、特許文献3の製造方法は、本発明者らの検討によると、原料であるクエン酸第二鉄が水に溶解し難いため、当該溶解操作を低温下で実施した場合、原料であるクエン酸第二鉄が全量溶解せず、製造されるクエン酸第二鉄水和物の製造収率が低く、また、当該クエン酸第二鉄水和物のBET比表面積は、特許文献1及び2の製造方法と同程度であった。上記溶解操作を高温下で実施すれば、原料が全量溶解し、製造収率及びBET比表面積が向上したが、クエン酸第二鉄及び/又はクエン酸の分解により、純度の低下が見られた。さらに、使用する原料のクエン酸第二鉄によっては、製造されるクエン酸第二鉄水和物のBET比表面積が低下する場合があり、堅牢性(BET比表面積の再現性)の観点でも課題があった。すなわち、本発明の目的は、使用する原料に関わらず、高純度で種々のBET比表面積を有するクエン酸第二鉄水和物を効率的に得る製造方法を提供することにある。 On the other hand, according to the study by the present inventors, the production method of Patent Document 3 is difficult to dissolve ferric citrate, which is a raw material, in water. The ferric acid citrate is not completely dissolved, the production yield of the ferric citrate hydrate to be produced is low, and the BET specific surface area of the ferric citrate hydrate is described in Patent Documents 1 and 2. Was about the same as the manufacturing method of. When the above dissolution operation was carried out at a high temperature, all the raw materials were dissolved, and the production yield and BET specific surface area were improved, but a decrease in purity was observed due to the decomposition of ferric citrate and / or citric acid. .. Further, the BET specific surface area of the ferric citrate hydrate to be produced may decrease depending on the ferric citrate used as a raw material, which is also a problem from the viewpoint of robustness (reproducibility of BET specific surface area). was there. That is, an object of the present invention is to provide a production method for efficiently obtaining ferric citrate hydrate having high purity and various BET specific surface areas regardless of the raw materials used.
 上記課題に対し本発明者らは、まず、特許文献3の製造方法において、製造されるクエン酸第二鉄水和物のBET比表面積が低下した場合の原料であるクエン酸第二鉄について、詳細に分析を行った。その結果、当該クエン酸第二鉄は、クエン酸第二鉄の構成元素である鉄、水素、炭素及び酸素以外の元素、例えばマグネシウム(Mg)やカルシウム(Ca)、ケイ素(Si)等を含むことが分かった。これらの元素を含むことで、有機溶媒と接触させた際に析出する固体のクエン酸第二鉄水和物のBET比表面積が大きくならないと推測される。そこで原料として、このような元素を含むクエン酸第二鉄を用いた場合にも、製造されるクエン酸第二鉄水和物のBET比表面積を大きくする方法について鋭意検討を行ったところ、水に塩化第二鉄及びクエン酸第二鉄が溶解した溶解液と水溶性有機溶媒とを接触させる際に、クエン酸第二鉄の溶解液に塩化第二鉄を含有させることで、原料中に含有される上記元素の種類や量によらず高いBET比表面積を有するクエン酸第二鉄水和物が得られることを見出した。さらに、クエン酸第二鉄の溶解液に含有させる塩化第二鉄の量を調整することによって、任意のBET比表面積に調整できることを見出し、本発明を完成させるに至った。即ち、本発明は、水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と、水溶性有機溶媒とを接触させる工程2を含む、改質されたクエン酸第二鉄水和物の製造方法である。本発明はさらに以下の態様を好適に採り得る。
1)前記溶解液にクエン酸を含むこと。
2)前記水溶性有機溶媒が、少なくともケトン類又はアルコール類を含む溶媒であること。
3)前記原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対し、塩化第二鉄を5~40g(5~40質量部)用いること。
4)クエン酸、塩化第二鉄、及び塩基としてマグネシウムの水酸化物または炭酸塩を、塩化第二鉄に対して塩基が0.30~0.95当量で水の中で混合して混合物を得、該混合物を有機溶媒と混合して前記原料のクエン酸第二鉄を調製する工程1をさらに含むこと。
5)前記工程1において、前記クエン酸1gに対して前記水の量が2.0~8.5mLであること。
6)前記工程1において、前記クエン酸に対して前記塩化第二鉄が1.0~2.5当量であること。
With respect to the above problems, the present inventors first describe, in the production method of Patent Document 3, regarding ferric citrate which is a raw material when the BET specific surface area of the ferric citrate hydrate produced is reduced, Detailed analysis was performed. As a result, the ferric citrate contains elements other than iron, hydrogen, carbon, and oxygen, which are the constituent elements of ferric citrate, such as magnesium (Mg), calcium (Ca), and silicon (Si). I found out. It is presumed that the BET specific surface area of the solid ferric citrate hydrate that precipitates when brought into contact with an organic solvent does not become large due to the inclusion of these elements. Therefore, when ferric citrate containing such an element was used as a raw material, a method for increasing the BET specific surface area of the ferric citrate hydrate produced was earnestly studied, and it was found that When contacting a solution in which ferric chloride and ferric citrate are dissolved and a water-soluble organic solvent, by containing ferric chloride in the solution of ferric citrate, in the raw material It was found that a ferric citrate hydrate having a high BET specific surface area can be obtained regardless of the type and amount of the above-mentioned elements contained. Furthermore, they have found that the BET specific surface area can be adjusted to an arbitrary value by adjusting the amount of ferric chloride contained in the ferric citrate solution, and have completed the present invention. That is, the present invention comprises a modified ferric citrate hydrate including a step 2 of contacting a solution containing water, ferric chloride and a raw material ferric citrate with a water-soluble organic solvent. It is a method of manufacturing a product. The present invention can preferably adopt the following aspects.
1) The solution contains citric acid.
2) The water-soluble organic solvent is a solvent containing at least ketones or alcohols.
3) Using 5 to 40 g (5 to 40 parts by mass) of ferric chloride with respect to 100 g (100 parts by mass) of the anhydrous ferric citrate equivalent to the raw material.
4) Mixing citric acid, ferric chloride, and magnesium hydroxide or carbonate as a base in water at 0.30 to 0.95 equivalent of base with respect to ferric chloride to form a mixture. The method further comprises a step 1 of preparing the raw material ferric citrate by mixing the mixture with an organic solvent.
5) In the step 1, the amount of the water is 2.0 to 8.5 mL with respect to 1 g of the citric acid.
6) In the step 1, the ferric chloride is 1.0 to 2.5 equivalents with respect to the citric acid.
 本発明の製造方法によれば、10m2/g以上の大きなBET比表面積を有するクエン酸第二鉄水和物を得ることができる。また、原料となるクエン酸第二鉄は、製造方法によってマグネシウムやカルシウム等の元素を含み得るが、これらの元素の種類や量によらず安定的に大きなBET比表面積を有するクエン酸第二鉄水和物を得ることができる。さらに、塩化第二鉄の量を調整することによって、BET比表面積を任意に調整することが可能であり、最大で165m2/gのBET比表面積を有するクエン酸第二鉄水和物を得ることもできる。また、得られたクエン酸第二鉄水和物は、不純物をほとんど含まず、高純度であり、医薬品用途として好適に使用できると期待される。 According to the production method of the present invention, ferric citrate hydrate having a large BET specific surface area of 10 m 2 / g or more can be obtained. Further, the ferric citrate as a raw material may contain elements such as magnesium and calcium depending on the production method, but the ferric citrate stably has a large BET specific surface area regardless of the kind and amount of these elements. A hydrate can be obtained. Furthermore, the BET specific surface area can be arbitrarily adjusted by adjusting the amount of ferric chloride, and a ferric citrate hydrate having a maximum BET specific surface area of 165 m 2 / g is obtained. You can also Further, the obtained ferric citrate hydrate contains almost no impurities, has high purity, and is expected to be suitably used for pharmaceutical applications.
本発明の製造方法における原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対する塩化第二鉄の質量部と、改質されたクエン酸第二鉄水和物のBET比表面積との関係を示すグラフである。In the production method of the present invention, the BET specific surface area of the modified ferric citrate hydrate and 100 parts by mass of ferric chloride with respect to 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material. It is a graph which shows the relationship with. 実施例13において得られたクエン酸第二鉄水和物のX線回折チャートである。13 is an X-ray diffraction chart of ferric citrate hydrate obtained in Example 13. 比較例8において得られたクエン酸第二鉄水和物のX線回折チャートである。9 is an X-ray diffraction chart of ferric citrate hydrate obtained in Comparative Example 8. 比較例9において得られたクエン酸第二鉄水和物のX線回折チャートである。11 is an X-ray diffraction chart of ferric citrate hydrate obtained in Comparative Example 9.
 本発明は、水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と、水溶性有機溶媒とを接触させる工程2を含む、改質されたクエン酸第二鉄水和物の製造方法である。本発明においては、以下、原料のクエン酸第二鉄またはその水和物を「原料のクエン酸第二鉄」、上記溶解液と水溶性有機溶媒とを接触させた後に得られる改質されたクエン酸第二鉄水和物を「改質体」とも称する。以下本発明の製造方法について詳述する。 The present invention comprises a modified ferric citrate hydrate, which comprises a step 2 of contacting a solution containing water, ferric chloride and the raw material ferric citrate with a water-soluble organic solvent. It is a manufacturing method. In the present invention, the raw material ferric citrate or a hydrate thereof is hereinafter referred to as "raw material ferric citrate", which is obtained by bringing the solution and the water-soluble organic solvent into contact with each other. Ferric citrate hydrate is also referred to as "modified form". The manufacturing method of the present invention will be described in detail below.
 <工程2>
 工程2は、水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と、水溶性有機溶媒とを接触させる工程である。以下、工程2について説明する。
<Step 2>
Step 2 is a step of contacting a solution containing water, ferric chloride and raw material ferric citrate with a water-soluble organic solvent. Hereinafter, step 2 will be described.
 (原料のクエン酸第二鉄)
 工程2において、溶解液に溶解させる原料のクエン酸第二鉄としては特に制限されることなく、試薬や食品添加物用途として市販されているもの、後述する工程1により調製したもの、又は、公知の方法により製造したものを使用することができる。公知の方法の一例として、特許文献1及び2に記載された方法が挙げられる。具体的には、まず、塩化第二鉄六水和物を水に溶解させ、次いで、水酸化ナトリウムを用いて加水分解することにより水酸化第二鉄を得る。得られた水酸化第二鉄とクエン酸とを水中で反応させることにより、クエン酸第二鉄が生成する。当該クエン酸第二鉄を含む溶液を、有機溶媒を用いてクエン酸第二鉄を析出させた後、分離及び乾燥することにより原料のクエン酸第二鉄を製造することができる。
(Raw material ferric citrate)
In step 2, ferric citrate as a raw material to be dissolved in the solution is not particularly limited, and is commercially available as a reagent or food additive, prepared by step 1 described below, or known. What was manufactured by the method of can be used. Examples of known methods include the methods described in Patent Documents 1 and 2. Specifically, ferric chloride hexahydrate is first dissolved in water and then hydrolyzed with sodium hydroxide to obtain ferric hydroxide. Ferric citrate is produced by reacting the obtained ferric hydroxide with citric acid in water. Ferric citrate as a raw material can be produced by precipitating ferric citrate using an organic solvent, and then separating and drying the solution containing the ferric citrate.
 市販品のクエン酸第二鉄の品質は通常、BET比表面積が0.2~3m2/g程度である。また高速液体クロマトグラフィー(HPLC)による純度が60.0~75.0%程度であり、アコニット酸が25.0~35.0%、シトラコン酸が0.2~3.0%、イタコン酸が0.1~1.0%程度含まれる。一方、上記特許文献1及び2に記載された公知の方法によって製造される原料のクエン酸第二鉄は、BET比表面積が16~45m2/g程度である。また高速液体クロマトグラフィー(HPLC)による純度が90.0~98.5%程度であり、アコニット酸が0.5~5.0%、シトラコン酸が0.05~2.0%、イタコン酸が0.1~2.0%程度含まれる。本発明の製造方法では、市販品又は上記製造方法によって製造される原料のクエン酸第二鉄を用いても、医薬品原薬として使用する上で許容される純度まで向上したクエン酸第二鉄水和物を製造することが可能である。特に高純度のクエン酸第二鉄水和物が得られるという点で、HPLCによる純度が90.0~98.5%程度である原料のクエン酸第二鉄を用いることが好ましく、工程1で調製した原料のクエン酸第二鉄を用いることがより好ましい。 The quality of commercially available ferric citrate usually has a BET specific surface area of about 0.2 to 3 m 2 / g. The purity by high performance liquid chromatography (HPLC) is about 60.0 to 75.0%, aconitic acid is 25.0 to 35.0%, citraconic acid is 0.2 to 3.0%, and itaconic acid is About 0.1 to 1.0% is included. On the other hand, the ferric citrate, which is a raw material produced by the known methods described in Patent Documents 1 and 2, has a BET specific surface area of about 16 to 45 m 2 / g. The purity by high performance liquid chromatography (HPLC) is about 90.0 to 98.5%, aconitic acid is 0.5 to 5.0%, citraconic acid is 0.05 to 2.0%, and itaconic acid is About 0.1 to 2.0% is included. In the production method of the present invention, even when using ferric citrate as a commercial product or a raw material produced by the above-mentioned production method, ferric citrate water improved to a purity acceptable for use as a drug substance It is possible to produce Japanese products. In particular, it is preferable to use ferric citrate as a raw material having a purity of about 90.0 to 98.5% by HPLC from the viewpoint that a highly pure ferric citrate hydrate can be obtained. It is more preferable to use the prepared raw material ferric citrate.
 なお、上記原料のクエン酸第二鉄中には、クエン酸第二鉄の構成元素である鉄、水素、炭素及び酸素以外にナトリウム、マグネシウム、カルシウム、ケイ素等の元素が含まれる場合がある。例えば、市販の食品添加物用途のクエン酸第二鉄は、マグネシウムを0.6質量%及びカルシウムを0.5質量%含むものやケイ素を0.4質量%含むものがある。本発明の製造方法では、構成元素以外の元素を多く含むクエン酸第二鉄を原料として用いた場合でも大きなBET比表面積を有する改質体を得ることができるが、原料のクエン酸第二鉄に含有される当該元素の含有量は少ない方が好ましく、少なくとも、原料のクエン酸第二鉄中のマグネシウムの含有量が、3.0質量%以下であることが好ましい。このような含有元素の分析は、誘導結合プラズマ質量分析(ICP-MS)、誘導結合プラズマ発光分光分析(ICP-OES)、蛍光X線(XRF)、走査型電子顕微鏡/エネルギー分散型X線分光(SEM/EDS)等を用いて実施することができる。 Note that the above-mentioned ferric citrate as a raw material may contain elements such as sodium, magnesium, calcium and silicon in addition to iron, hydrogen, carbon and oxygen which are the constituent elements of ferric citrate. For example, commercially available ferric citrate for food additive use includes those containing 0.6% by mass of magnesium and 0.5% by mass of calcium, and those containing 0.4% by mass of silicon. In the production method of the present invention, a modified product having a large BET specific surface area can be obtained even when ferric citrate containing many elements other than the constituent elements is used as a raw material. It is preferable that the content of the element contained in is small, and at least the content of magnesium in ferric citrate as a raw material is preferably 3.0% by mass or less. Such contained elements are analyzed by inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectroscopy (ICP-OES), fluorescent X-ray (XRF), scanning electron microscope / energy dispersive X-ray spectroscopy. (SEM / EDS) and the like.
 (水)
 工程2において、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液に用いる水は、特に制限されることなく、水道水、イオン交換水、蒸留水等を使用することができる。水の使用量は、原料のクエン酸第二鉄の無水物に換算した量(以下、「原料のクエン酸第二鉄の無水物換算量」と称す)100g(100質量部)に対し、50~500mL(50~500容量部)であることが好ましい。ここで、原料のクエン酸第二鉄の無水物換算量とは、原料のクエン酸第二鉄の重量から、原料のクエン酸第二鉄に含まれる水や有機溶媒の重量を差し引いた重量を示す。原料のクエン酸第二鉄は、製造条件や保管条件等により、含有する水や有機溶媒の量が異なる。そのため、より高度に改質体のBET比表面積等の品質や製造収率を制御するために、原料のクエン酸第二鉄に含有する水の量はカールフィッシャー滴定法(KF)等を用いて、有機溶媒の量はガスクロマトグラフィー(GC)等を用いて測定し、当該水や有機溶媒の量から算出した原料のクエン酸第二鉄の無水物換算量に対して、水の使用量を決定することが好ましい。後述の塩化第二鉄やクエン酸、水溶性有機溶媒の使用量も、上記と同様の理由から、原料のクエン酸第二鉄の無水物換算量を基準として算出することが好ましい。
(water)
Water used for the solution containing ferric chloride and the raw material ferric citrate in step 2 is not particularly limited, and tap water, ion-exchanged water, distilled water, or the like can be used. The amount of water used is 50 with respect to 100 g (100 parts by mass) of 100 g (100 parts by mass) of the amount converted to the anhydrous ferric citrate as a raw material (hereinafter referred to as the “anhydrous equivalent amount of ferric citrate as a raw material”) It is preferably about 500 mL (50 to 500 parts by volume). Here, the anhydrous equivalent amount of ferric citrate of the raw material, from the weight of ferric citrate of the raw material, the weight obtained by subtracting the weight of water and organic solvent contained in ferric citrate of the raw material Show. The amount of water and organic solvent contained in the raw material ferric citrate varies depending on the production conditions, storage conditions and the like. Therefore, in order to control the quality such as the BET specific surface area of the modified product and the production yield more highly, the amount of water contained in the ferric citrate as a raw material is determined by Karl Fischer titration (KF) or the like. The amount of the organic solvent was measured using gas chromatography (GC), etc., and the amount of water used was calculated based on the anhydrous equivalent amount of ferric citrate as the raw material calculated from the amount of the water or the organic solvent. It is preferable to determine. The amounts of ferric chloride, citric acid, and a water-soluble organic solvent described below are also preferably calculated based on the anhydrous equivalent amount of ferric citrate as a raw material for the same reason as above.
 上記範囲の中でも、水の使用量が原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対し、50mL(50容量部)以上の場合、原料のクエン酸第二鉄や塩化第二鉄を全量溶解することができる点、また、製造される溶解液の粘度も低く、取り扱いが容易である等の操作性の点で好ましい。一方、500mL(500容量部)以下の場合、改質体を析出させるために、水溶性有機溶媒の使用量をより少なくすることができ、且つ、製造収率が高い点で好ましい。上記の中でも、操作性や製造収率等を考慮すると、原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対し、75~450mL(75~450容量部)が好ましく、100~400mL(100~400容量部)がより好ましい。 In the above range, when the amount of water used is 50 mL (50 parts by volume) or more per 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material, ferric citrate or chloride as a starting material It is preferable in that all the ferric iron can be dissolved, the viscosity of the produced solution is low, and the handling is easy. On the other hand, when the amount is 500 mL (500 parts by volume) or less, the amount of the water-soluble organic solvent used can be further reduced in order to precipitate the modified product, and the production yield is high, which is preferable. Among the above, in consideration of operability and production yield, 75 to 450 mL (75 to 450 parts by volume) is preferable for 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material, and 100 It is more preferably up to 400 mL (100 to 400 parts by volume).
 工程2に用いる水は、他の溶媒を含有してもよい。他の溶媒として具体的には、アセトン等の水溶性有機溶媒が挙げられる。該水溶性有機溶媒は、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液100g(100質量部)に対し、50g(50質量部)以下であることが好ましい。この場合、上記水の使用量には、該他の溶媒量は含めない。ここで用いる水溶性有機溶媒は、後述する塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と接触させる水溶性有機溶媒とは別に用いるものである。後述する水溶性有機溶媒、すなわち塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と接触させる水溶性有機溶媒の使用量は、クエン酸第二鉄水和物を析出させるために実際に用いる使用量である。 The water used in step 2 may contain other solvent. Specific examples of the other solvent include water-soluble organic solvents such as acetone. The amount of the water-soluble organic solvent is preferably 50 g (50 parts by mass) or less with respect to 100 g (100 parts by mass) of a solution containing ferric chloride and ferric citrate as a raw material. In this case, the amount of water used does not include the amount of the other solvent. The water-soluble organic solvent used here is used separately from the water-soluble organic solvent that is brought into contact with a solution containing ferric chloride and the raw material ferric citrate described below. The amount of the water-soluble organic solvent described below, that is, the amount of the water-soluble organic solvent to be contacted with the solution containing ferric chloride and the raw material ferric citrate, is actually used to precipitate ferric citrate hydrate. It is the amount used for.
 (塩化第二鉄)
 工程2において、溶解液に溶解させる塩化第二鉄は、特に制限されることなく、試薬や工業品等を使用することができる。また、塩化第二鉄の固体や溶液等の形態についても特に制限されず、固体形態を水や水溶性有機溶媒に溶解させ溶液として使用してもよい。また、固体形態の場合、塩化第二鉄は無水物の他に、水和物の状態のものがあるが、何れの形態であってもよい。ただし、水和物や水溶液形態の場合、それらに含まれる水の量は、上記水の使用量に含める必要がある。また、水溶性有機溶媒の溶液形態の場合、それに含まれる水溶性有機溶媒の量は、上記の溶解液に含有してもよい水溶性有機溶媒の量に含める必要がある。
(Ferric chloride)
In step 2, the ferric chloride dissolved in the solution is not particularly limited, and reagents, industrial products, etc. can be used. Further, the form of the solid or solution of ferric chloride is not particularly limited, and the solid form may be dissolved in water or a water-soluble organic solvent and used as a solution. In the case of the solid form, ferric chloride may be in the form of a hydrate as well as an anhydride, but any form may be used. However, in the case of a hydrate or an aqueous solution, the amount of water contained in them must be included in the amount of water used. Further, in the case of the solution form of the water-soluble organic solvent, the amount of the water-soluble organic solvent contained therein needs to be included in the amount of the water-soluble organic solvent that may be contained in the above solution.
 塩化第二鉄の使用量は、所望する改質体のBET比表面積に応じて適宜決定すればよいが、原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対して、2.5~50g(2.5~50質量部)であることが好ましい。塩化第二鉄は原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対して、2.5g(2.5質量部)以上を用いることで、改質体のBET比表面積を比較的大きくすることができるが、その使用量が多くなると、得られる改質体のBET比表面積は増加する傾向にある。また、塩化第二鉄が原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対して、50g(50質量部)以下であれば、改質体に塩化第二鉄が残留することなく、より正確には改質体に塩化第二鉄が含まれないか改質体に残留する塩化第二鉄は少なく、高純度の改質体を得ることができる。なお、塩化第二鉄の残留量はX線粉末回折(XRD)等で測定できる。上記範囲の中でも、改質体のBET比表面積や純度の観点から、原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対して、3.5~45g(3.5~45質量部)がより好ましく、5~40g(5~40質量部)が最も好ましい。 The amount of ferric chloride used may be appropriately determined according to the desired BET specific surface area of the modified body, but with respect to 100 g (100 parts by mass) of the ferric citrate as a raw material in terms of anhydride. It is preferably 2.5 to 50 g (2.5 to 50 parts by mass). By using 2.5 g (2.5 parts by mass) or more of ferric chloride with respect to 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material, the BET specific surface area of the reformed product The BET specific surface area of the obtained modified product tends to increase as the amount of use increases. Further, if the amount of ferric chloride is 50 g (50 parts by mass) or less with respect to 100 g (100 parts by mass) of anhydrous ferric citrate as a raw material, ferric chloride remains in the reformed body. Without it, more accurately, the reformed body does not contain ferric chloride or the ferric chloride remaining in the reformed body is small, and a highly purified reformed body can be obtained. The residual amount of ferric chloride can be measured by X-ray powder diffraction (XRD) or the like. Within the above range, from the viewpoint of the BET specific surface area and purity of the modified product, 3.5 to 45 g (3.5 to 45 g) relative to 100 g (100 parts by mass) of the anhydrous ferric citrate as the raw material. 45 parts by mass) is more preferable, and 5 to 40 g (5 to 40 parts by mass) is the most preferable.
 (クエン酸)
 工程2において、水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液には、さらにクエン酸が含まれることが、原料のクエン酸第二鉄が溶解し易くなるため好ましい。また、溶解液中のクエン酸の含有量により、得られる改質体中の第二鉄及びクエン酸由来の分子構造(クエン酸第二鉄をFe(C6H5O7)とした場合の(C6H5O73-)の含有量の比、即ち、改質体中の第二鉄に対するクエン酸由来の分子構造のモル比率(以下、「改質体の鉄とクエン酸分子構造とのモル比率」と称す)を変化させることができる。そのため、溶解液にクエン酸を含有させる量を調整することで、改質体のモル比率を所望の数値とすることができる。その含有量は、原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対して、5~200g(5~200質量部)であることが好ましい。用いるクエン酸としては特に制限されることなく、工業的に入手可能なグレードのクエン酸を用いることが可能である。上述したとおり、改質体中に含有されるアコニット酸、シトラコン酸、イタコン酸等の不純物はクエン酸由来の不純物であり、高純度の改質体を得る観点から、クエン酸中に含有する上記不純物のHPLCによる含有量は各0.5%以下であることが好ましい。
(citric acid)
In the step 2, it is preferable that the solution containing water, ferric chloride and the raw material ferric citrate further contains citric acid, because the raw material ferric citrate is easily dissolved. Further, depending on the content of citric acid in the solution, the molecular structure derived from ferric and citric acid in the resulting modified body (when ferric citrate is Fe (C 6 H 5 O 7 ) (C 6 H 5 O 7 ) 3- ) content ratio, that is, the molar ratio of the molecular structure derived from citric acid to the ferric iron in the modified body (hereinafter, "modified iron and citric acid molecule The "molar ratio with the structure") can be varied. Therefore, the molar ratio of the modified product can be set to a desired value by adjusting the amount of citric acid contained in the solution. The content thereof is preferably 5 to 200 g (5 to 200 parts by mass) with respect to 100 g (100 parts by mass) of the anhydrous ferric citrate as a raw material. The citric acid used is not particularly limited, and industrially available grade citric acid can be used. As described above, impurities such as aconitic acid, citraconic acid, and itaconic acid contained in the modified product are impurities derived from citric acid, and from the viewpoint of obtaining a highly purified modified product, the above-mentioned impurities contained in citric acid are included. The content of impurities by HPLC is preferably 0.5% or less.
 さらにクエン酸は無水物の形態の他、一水和物の形態も存在するが、その形態は特に制限されず、固体の他、例えば水や水溶性有機溶媒の溶液の形態であってもよい。ただし、用いるクエン酸が一水和物や溶液状の場合、それぞれに含まれるクエン酸の純分に換算した量(以下、「クエン酸の純分換算量」と称す)が上記範囲とすることが好ましく、また、それぞれに含まれる水の量についても、上記水の使用量に含めることが好ましい。また、水溶性有機溶媒の溶液形態の場合についても、それに含まれる水溶性有機溶媒の量は、上記の溶解液に含有してもよい水溶性有機溶媒の量に含めることが好ましい。 Further, citric acid exists in the form of anhydrate as well as the form of a monohydrate, but the form is not particularly limited, and may be in the form of a solid, for example, a solution of water or a water-soluble organic solvent. .. However, when the citric acid to be used is in the form of a monohydrate or solution, the amount converted to the pure content of citric acid contained in each (hereinafter, referred to as the “pure content of citric acid”) should be within the above range. Is preferable, and the amount of water contained in each is preferably included in the amount of water used. Further, also in the case of the solution form of the water-soluble organic solvent, the amount of the water-soluble organic solvent contained therein is preferably included in the amount of the water-soluble organic solvent that may be contained in the above solution.
 上記範囲の中で、溶解液に対するクエン酸の使用量が多くなると、改質体中のクエン酸の含有量が増加し、結果的に、改質体のモル比率は高くなる傾向にある。原料のクエン酸第二鉄中の第二鉄に対するクエン酸由来の分子構造のモル比率(以下、「原料の鉄とクエン酸分子構造とのモル比率」と称す)にもよるが、例えば、第二鉄の含有量が15.0%、クエン酸由来の分子構造の含有量が60.0%、即ち、原料のモル比率が1.16である原料のクエン酸第二鉄を用いて、クエン酸を原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対して、10g(10質量部)を使用した場合、他の製造条件にもよるが、改質体の鉄とクエン酸分子構造とのモル比率は通常、約0.90であり、クエン酸を20g(20質量部)使用した場合、改質体の鉄とクエン酸分子構造とのモル比率は通常、約0.92となる。 ▽ Within the above range, when the amount of citric acid used in the solution increases, the content of citric acid in the reformate increases, and as a result, the molar ratio of the reformate tends to increase. Depending on the molar ratio of the citric acid-derived molecular structure to ferric iron in the ferric iron citrate (hereinafter, referred to as “molar ratio of the raw material iron and citric acid molecular structure”), for example, Using ferric iron citrate as a raw material having a ferric citrate content of 15.0% and a citric acid-derived molecular structure content of 60.0%, that is, a raw material molar ratio of 1.16, When 10 g (10 parts by mass) of acid is used with respect to 100 g (100 parts by mass) of anhydride of ferric citrate as a raw material, the modified iron and The molar ratio with the citric acid molecular structure is usually about 0.90, and when 20 g (20 parts by mass) of citric acid is used, the molar ratio between the iron and the citric acid molecular structure of the modified product is usually about 0. It becomes .92.
 (溶解液の調製)
 工程2において、水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液は、水に塩化第二鉄及び原料のクエン酸第二鉄を溶解させて調製すればよい。その調製方法は特に制限されないが、ガラス製、ステンレス製、テフロン(登録商標)製、グラスライニング等の容器を用いてさらに、メカニカルスターラー、マグネティックスターラー等を用いて、水、塩化第二鉄及び原料のクエン酸第二鉄を撹拌下で混合し、水に塩化第二鉄及び原料のクエン酸第二鉄を溶解させることが、均一性や操作性の観点で好ましい。水、塩化第二鉄及び原料のクエン酸第二鉄の混合順序は、特に制限されないが、水に塩化第二鉄と原料のクエン酸第二鉄を順次添加して混合することが好ましい。また、該溶解液にクエン酸を含有させる場合も、同様に混合順序は制限されないが、水とクエン酸を混合して、クエン酸水溶液とした後、塩化第二鉄及び原料のクエン酸第二鉄を混合することで、塩化第二鉄及び原料のクエン酸第二鉄がより溶解し易くなるため、操作時間の短縮等の観点からより好ましい。
(Preparation of dissolution solution)
In step 2, the solution containing water, ferric chloride and the raw material ferric citrate may be prepared by dissolving ferric chloride and the raw material ferric citrate in water. The preparation method is not particularly limited, but water, ferric chloride, and raw materials can be obtained by using a container made of glass, stainless steel, Teflon (registered trademark), glass lining, or the like, and further using a mechanical stirrer, a magnetic stirrer, or the like. From the viewpoint of uniformity and operability, it is preferable to mix the ferric citrate of (1) under stirring and dissolve the ferric chloride and the raw material ferric citrate in water. The order of mixing water, ferric chloride and the raw material ferric citrate is not particularly limited, but it is preferable to sequentially add ferric chloride and the raw material ferric citrate to water and mix them. Similarly, when citric acid is added to the solution, the order of mixing is not limited, but after mixing water and citric acid to form an aqueous citric acid solution, ferric chloride and the second citric acid starting material are mixed. By mixing iron, ferric chloride and the raw material ferric citrate are more easily dissolved, which is more preferable from the viewpoint of shortening the operation time and the like.
 また、溶解液の調製温度は、使用する原料のクエン酸第二鉄の種類や水の使用量等の製造条件によるため、塩化第二鉄及び原料のクエン酸第二鉄が溶解する温度に適宜調整すればよいが、通常は0~80℃である。ただし、高温下ではクエン酸第二鉄及び/又はクエン酸が分解し、改質体の純度が低下する傾向にあり、また、低温下では溶解に要する時間が長くなる傾向にあるため、調製温度は好ましくは5~70℃、より好ましくは10~60℃である。 Further, the preparation temperature of the solution depends on the manufacturing conditions such as the type of ferric citrate used as a raw material and the amount of water used, so the temperature at which ferric chloride and the ferric citrate raw material are dissolved is appropriately adjusted. It may be adjusted, but it is usually 0 to 80 ° C. However, ferric citrate and / or citric acid decomposes under high temperature, and the purity of the modified product tends to decrease, and at low temperature, the time required for dissolution tends to increase, so the preparation temperature Is preferably 5 to 70 ° C., more preferably 10 to 60 ° C.
 溶解に要する時間は、目視により塩化第二鉄及び原料のクエン酸第二鉄の消失を確認する等して適宜決定すればよい。溶解温度によっては、溶解液の保持時間が延びるにつれて、クエン酸第二鉄及び/又はクエン酸の分解に由来するアコニット酸等の不純物量が増加する傾向にある。溶解に要する時間としては、2時間以内に行うことが好ましい。また、固体(原料のクエン酸第二鉄、塩化第二鉄、クエン酸)の消失を確認した後、速やかに水溶性有機溶媒と接触させることが好ましい。 The time required for dissolution may be appropriately determined by visually confirming the disappearance of ferric chloride and the raw material ferric citrate. Depending on the dissolution temperature, the amount of impurities such as aconitic acid derived from the decomposition of ferric citrate and / or citric acid tends to increase as the holding time of the dissolution liquid increases. The time required for dissolution is preferably within 2 hours. Further, it is preferable that after confirming the disappearance of solids (ferric citrate, ferric chloride, citric acid as raw materials), it is promptly contacted with a water-soluble organic solvent.
 (水溶性有機溶媒)
 工程2において、上記のようにして調製した水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と水溶性有機溶媒とを接触させる。上記溶解液中のクエン酸第二鉄は、水溶性有機溶媒には不溶であるため、当該操作によってクエン酸第二鉄水和物が析出する。工程2における水溶性有機溶媒とは、水と任意の割合で混合する有機溶媒である。すなわち、25℃の水100g(100質量部)に対して、溶解度が20g(20質量部)以上の有機溶媒である。かかる水溶性有機溶媒として具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、アリルアルコール等のアルコール類、酢酸メチル等のエステル類、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類、アセトニトリル等のニトリル類が挙げられる。これらの中でも、改質体の品質、及び収量の観点からケトン類、またはアルコール類が好ましく、特にアセトン、2-プロパノール、メタノールまたはエタノールが好ましい。上記水溶性有機溶媒としてケトン類、またはアルコール類と他の溶媒との混合溶媒を用いる場合には収量の観点から、該混合溶媒におけるケトン類、またはアルコール類の割合を50質量%以上とすることが好ましい。
(Water-soluble organic solvent)
In step 2, a solution containing water, ferric chloride, and ferric citrate as a raw material prepared as described above is contacted with a water-soluble organic solvent. Ferric citrate in the solution is insoluble in the water-soluble organic solvent, and thus ferric citrate hydrate is precipitated by the operation. The water-soluble organic solvent in step 2 is an organic solvent that mixes with water at an arbitrary ratio. That is, it is an organic solvent having a solubility of 20 g (20 parts by mass) or more in 100 g (100 parts by mass) of water at 25 ° C. Specific examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and allyl alcohol, esters such as methyl acetate, ethers such as tetrahydrofuran and dioxane, acetone, methyl ethyl ketone and acetylacetone. , Ketones such as diacetone alcohol, and nitriles such as acetonitrile. Among these, ketones or alcohols are preferable from the viewpoint of the quality and yield of the modified product, and particularly acetone, 2-propanol, methanol or ethanol is preferable. When a ketone or a mixed solvent of an alcohol and another solvent is used as the water-soluble organic solvent, from the viewpoint of yield, the ratio of the ketone or the alcohol in the mixed solvent is 50% by mass or more. Is preferred.
 水溶性有機溶媒の使用量は、製造装置の容量等を勘案して適宜決定すればよいが、改質体の品質、及び収量の観点から原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対し、200~4000mL(200~4000容量部)の範囲で適宜決定すればよい。特に水溶性有機溶媒の使用量が200mL(200容量部)以上の場合、改質体の製造収率、固液分離性等の点で好ましく、4000mL(4000容量部)以下の場合、バッチ当たりの収量の点で好ましい。上記の中でも、改質体の製造収率、固液分離性等を考慮すると、原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対し、水溶性有機溶媒の使用量は300~3000mL(300~3000容量部)が好ましく、350~2000mL(350~2000容量部)がより好ましく、350~1000mL(350~1000容量部)が最も好ましい。 The amount of the water-soluble organic solvent to be used may be appropriately determined in consideration of the capacity of the production apparatus, etc., but from the viewpoint of the quality of the reformed product and the yield, the equivalent amount of ferric citrate as the anhydride is 100 g ( It may be appropriately determined within the range of 200 to 4000 mL (200 to 4000 volume parts) with respect to 100 parts by weight. In particular, when the amount of the water-soluble organic solvent used is 200 mL (200 parts by volume) or more, it is preferable in terms of the production yield of the modified product, solid-liquid separation property, and the like, and when it is 4000 mL (4000 parts by volume) or less, per batch It is preferable in terms of yield. Among the above, in consideration of the production yield of the modified product, solid-liquid separability, etc., the amount of the water-soluble organic solvent used is 100 g (100 parts by mass) of the ferric citrate as a raw material in terms of the anhydride. 300 to 3000 mL (300 to 3000 parts by volume) is preferable, 350 to 2000 mL (350 to 2000 parts by volume) is more preferable, and 350 to 1000 mL (350 to 1000 parts by volume) is the most preferable.
 (水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と水溶性有機溶媒との接触)
 工程2における、水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と水溶性有機溶媒との接触操作に用いる設備としては、特に制限されず、溶解液の製造に用いた設備を用いて行えばよい。また、上記溶解液と水溶性有機溶媒との接触方法についても特に制限されず、溶解液を製造後、これに水溶性有機溶媒を添加してもよいし、又は、水溶性有機溶媒中に、上記溶解液を添加してもよい。改質体が析出する際に、塊状になりやすく、撹拌が困難になる場合や析出した改質体が容器壁面に固着し、改質体の収量が低下する場合があるため、操作性や収量の観点から水溶性有機溶媒中に、上記溶解液を滴下する方法が好ましい。上記溶解液の滴下速度は、作業時間や析出する改質体の溶媒中への分散具合等を確認しながら適宜決定すればよいが、通常5分間~5時間の範囲で決定すればよい。また、接触時の温度は、使用する水溶性有機溶媒の沸点等を考慮して適宜決定すればよいが、あまり低すぎると改質体が塊状になりやすく、高すぎるとクエン酸第二鉄水和物及び/又はクエン酸の分解により、アコニット酸等の不純物の副生が懸念されることから、-20~70℃の範囲で行うことが好ましい。特に析出したクエン酸第二鉄水和物の固液分離等の操作性や水溶性有機溶媒の揮発等を考慮すると、-10~65℃が好ましく、0~60℃がより好ましい。
(Contact between a solution containing water, ferric chloride and the raw material ferric citrate and a water-soluble organic solvent)
The equipment used for the contact operation between the solution containing water, ferric chloride and the raw material ferric citrate in step 2 and the water-soluble organic solvent is not particularly limited, and the equipment used for producing the solution is not limited. Can be done using. Further, the method of contacting the solution and the water-soluble organic solvent is not particularly limited, after the solution is produced, a water-soluble organic solvent may be added thereto, or in a water-soluble organic solvent, You may add the said solution. When the reformed product precipitates, it tends to be lumpy and difficult to stir, or the deposited reformed product may stick to the wall surface of the container, reducing the yield of the reformed product. From the viewpoint of, the method of dropping the above-mentioned solution into the water-soluble organic solvent is preferable. The dropping rate of the above-mentioned solution may be appropriately determined while confirming the working time and the degree of dispersion of the precipitated reforming substance in the solvent, but it is usually determined within the range of 5 minutes to 5 hours. Further, the temperature at the time of contact may be appropriately determined in consideration of the boiling point of the water-soluble organic solvent to be used, but if the temperature is too low, the modified body tends to agglomerate, and if it is too high, ferric citrate water is used. It is preferable to carry out the treatment in the range of −20 to 70 ° C. because there is a concern that impurities such as aconitic acid will be produced as a by-product due to decomposition of the hydrate and / or citric acid. Considering operability such as solid-liquid separation of the precipitated ferric citrate hydrate and volatilization of the water-soluble organic solvent, the temperature is preferably -10 to 65 ° C, more preferably 0 to 60 ° C.
 上記溶解液と水溶性有機溶媒とを接触させた後、クエン酸第二鉄水和物を十分に析出させるために、攪拌したまま一定時間保持することが好ましい。保持時間は、接触時の温度等によって異なるが、通常15分間~50時間保持すれば十分である。このような本発明の製造方法によって、改質されたクエン酸第二鉄水和物を含有する懸濁液を得ることができる。 After bringing the above solution into contact with the water-soluble organic solvent, it is preferable to hold the solution for a certain period of time with stirring in order to sufficiently precipitate ferric citrate hydrate. The holding time varies depending on the temperature at the time of contact, etc., but normally 15 minutes to 50 hours is sufficient. By such a production method of the present invention, a suspension containing the modified ferric citrate hydrate can be obtained.
 (以後の操作)
 改質体は、上記懸濁液の減圧濾過や加圧濾過、遠心分離等を用いた固液分離により改質体の湿体を得、当該湿体を乾燥することにより、単離することができる。本発明において、改質体の湿体とは、上記本発明の製造方法によって得られた改質体の含水物及び含水溶性有機溶媒物をいい、特に、改質体の無水物に換算した量である改質体の無水物換算量100g(100質量部)に対し、水を5~45g(5~45質量部)含む湿体を低含水湿体という。上記製造方法で得られた改質体を含む懸濁液から、改質体を単離するためには、前記低含水湿体を得た後、該低含水湿体を乾燥させる工程を含むことが好ましい。本発明の製造方法で得られた改質体を、上記懸濁液より減圧濾過や加圧濾過、遠心分離等を用いて固液分離し、改質されたクエン酸第二鉄の湿体を水溶性有機溶媒に分散させ上記低含水湿体を得、これを乾燥することにより、改質体を単離することが好ましい。
(Subsequent operations)
The modified product can be isolated by solid-liquid separation using vacuum filtration or pressure filtration of the suspension, solid-liquid separation using centrifugal separation, or the like to obtain a modified wet product, and drying the wet product. it can. In the present invention, the wet body of the modified product refers to the water-containing product and the water-containing organic solvent product of the modified product obtained by the production method of the present invention, and in particular, the amount converted to the anhydride of the modified product. A wet body containing 5 to 45 g (5 to 45 parts by mass) of water with respect to 100 g (100 parts by mass) of the converted anhydrous product is referred to as a low water content wet body. In order to isolate the modified product from the suspension containing the modified product obtained by the above-mentioned production method, a step of drying the low hydrous product after obtaining the low hydrous product is included. Is preferred. The modified product obtained by the production method of the present invention is subjected to solid-liquid separation from the above suspension using vacuum filtration, pressure filtration, centrifugal separation or the like to obtain a modified wet body of ferric citrate. It is preferable to isolate the modified product by dispersing it in a water-soluble organic solvent to obtain the low-moisture-content wet body and drying it.
 固液分離後の湿体及び低含水湿体は吸湿性があり、水分量の増加により、固体表面が溶解することで改質体のBET比表面積が低下する場合がある。又は、該湿体及び低含水湿体の乾燥操作の条件によっては、乾燥操作時にBET比表面積が低下する場合がある。この現象は、クエン酸第二鉄水和物の固体表面が水によって溶解することが理由として推測される。したがって、固液分離及び乾燥操作の際、外部雰囲気からクエン酸第二鉄水和物の湿体及び低含水湿体中への水の混入を抑制することが好ましい。具体的には、真空下、乾燥空気雰囲気下、または窒素やアルゴンなどの不活性ガス雰囲気下にて、固液分離及び乾燥操作を行うことが好ましい。また、固液分離操作において、上記湿体及び低含水湿体は水溶性有機溶媒、または、水との混合溶媒により洗浄し、上記懸濁液中の分散溶媒である母液を十分に取り除くことによることが好ましい。その洗浄方法は特に制限されないが、固液分離に使用した装置内において、湿体と洗浄液とを接触させて洗浄してもよい。又は、固液分離後の湿体と洗浄液とを混合して、懸濁液とした後、再度固液分離を行う、即ち、リスラリー洗浄操作を用いてもよい。なお、洗浄に使用する溶媒の量は、原料のクエン酸第二鉄100g(100質量部)に対して、50~1000g(50~1000質量部)であることが、洗浄効果が十分に得られること、及び改質体の製造収率が高いことから好ましい。 The wet body after solid-liquid separation and the low-moisture content body have hygroscopicity, and the BET specific surface area of the modified body may decrease due to dissolution of the solid surface due to an increase in water content. Alternatively, the BET specific surface area may decrease during the drying operation depending on the conditions of the drying operation of the wet body and the low water content wet body. This phenomenon is speculated to be because the solid surface of ferric citrate hydrate is dissolved by water. Therefore, during the solid-liquid separation and the drying operation, it is preferable to suppress the mixing of water from the external atmosphere into the wet body of ferric citrate hydrate and the low water content wet body. Specifically, solid-liquid separation and drying operations are preferably performed under a vacuum, a dry air atmosphere, or an atmosphere of an inert gas such as nitrogen or argon. In the solid-liquid separation operation, the wet body and the low water content wet body are washed with a water-soluble organic solvent or a mixed solvent with water, and the mother liquor as a dispersion solvent in the suspension is sufficiently removed. Preferably. The washing method is not particularly limited, but it may be performed by bringing the wet body and the washing liquid into contact with each other in the apparatus used for the solid-liquid separation. Alternatively, the wet body after the solid-liquid separation and the cleaning liquid may be mixed to form a suspension, and then the solid-liquid separation may be performed again, that is, a reslurry cleaning operation may be used. It should be noted that the amount of the solvent used for washing is 50 to 1000 g (50 to 1000 parts by mass) with respect to 100 g (100 parts by mass) of ferric citrate as a raw material, so that a sufficient cleaning effect can be obtained. And the high production yield of the modified product is preferable.
 当該改質体の湿体及び低含水湿体は、常圧下、減圧下、又は、窒素やアルゴンなどの不活性ガスの通気下において乾燥させることにより、水溶性有機溶媒を含まない改質体を単離できる。乾燥温度は、-80℃以上60℃未満であり、その時間は水溶性有機溶媒等の残留量を確認しながら適宜決定すればよいが、通常、0.5~100時間である。また、乾燥過程において、塊状となり、水溶性有機溶媒の低減効率が低い場合は、ハンマーミルやピンミル等を用いて粉末状とすることで、より効率的に乾燥することができる。さらに、上記乾燥方法により水溶性有機溶媒の低減が困難な場合、水を含有する雰囲気と接触させることにより、水溶性有機溶媒を低減できる。具体的には、大気下や温度及び相対湿度を調整した雰囲気下に改質体を保持すればよい。ただし、上記の通り、改質体は水と接触することでBET比表面積が低下する傾向にあるため、事前に上記の水を含有しない雰囲気下で乾燥し、出来るだけ水溶性有機溶媒を低減し、水を含有する雰囲気下での乾燥時間を短縮することが好ましい。また、水を含有する雰囲気は、その温度や相対湿度により、BET比表面積の低下幅が変わるため、BET比表面積の低下幅を考慮すると、温度は5~60℃、相対湿度は20~95RH%が好ましい。また、当該乾燥に要する時間は、上記と同様に、水溶性有機溶媒等の残留量を確認しながら適宜決定すればよいが、通常、0.5~100時間である。 The wet body and the low water content wet body of the modified body are dried under normal pressure, reduced pressure, or aeration of an inert gas such as nitrogen or argon to obtain a modified body containing no water-soluble organic solvent. It can be isolated. The drying temperature is −80 ° C. or higher and lower than 60 ° C., and the time may be appropriately determined while checking the residual amount of the water-soluble organic solvent and the like, but it is usually 0.5 to 100 hours. Further, in the drying process, when it becomes a lump and the reduction efficiency of the water-soluble organic solvent is low, it can be dried more efficiently by making it into a powder using a hammer mill, a pin mill or the like. Furthermore, when it is difficult to reduce the water-soluble organic solvent by the above drying method, the water-soluble organic solvent can be reduced by bringing it into contact with an atmosphere containing water. Specifically, the reformer may be held in the atmosphere or an atmosphere in which temperature and relative humidity are adjusted. However, as described above, since the BET specific surface area of the modified product tends to decrease when it comes into contact with water, it is dried in advance in an atmosphere not containing water to reduce the water-soluble organic solvent as much as possible. It is preferable to shorten the drying time under an atmosphere containing water. Further, in an atmosphere containing water, the decrease width of the BET specific surface area changes depending on the temperature and the relative humidity. Therefore, considering the decrease width of the BET specific surface area, the temperature is 5 to 60 ° C. and the relative humidity is 20 to 95 RH%. Is preferred. Further, the time required for the drying may be appropriately determined while confirming the residual amount of the water-soluble organic solvent and the like as in the above, but is usually 0.5 to 100 hours.
 (改質されたクエン酸第二鉄水和物)
 上記本発明の製造方法によれば、使用する原料のクエン酸第二鉄に関わらず、BET比表面積が大きい改質されたクエン酸第二鉄水和物を製造することができる。また、塩化第二鉄の使用量を調整することで窒素吸着法によるBET比表面積が10~165m2/g相当の範囲で種々のBET比表面積を有する改質されたクエン酸第二鉄水和物を得ることができる。その結果、水等の溶媒に対する溶解性に優れる。さらに、原料のクエン酸第二鉄と比較して、純度をより高めることができるため、医薬品や食品添加物として好適に使用することができる。
(Modified ferric citrate hydrate)
According to the above-mentioned production method of the present invention, a modified ferric citrate hydrate having a large BET specific surface area can be produced regardless of the ferric citrate used as a raw material. Further, by adjusting the amount of ferric chloride used, modified ferric citrate hydrate having various BET specific surface areas in the range of 10 to 165 m 2 / g of BET specific surface area by nitrogen adsorption method. You can get things. As a result, it has excellent solubility in a solvent such as water. Furthermore, since the purity can be further increased as compared with ferric citrate as a raw material, it can be suitably used as a drug or a food additive.
 <工程1>
 以下、本発明の製造方法において、原料のクエン酸第二鉄として使用するクエン酸第二鉄水和物を調製する工程1について説明する。工程1は、水中で、クエン酸、塩化第二鉄、及びマグネシウムの水酸化物又は炭酸塩を混合し、混合物を得た後、該混合物を有機溶媒と混合することによりクエン酸第二鉄水和物を調製する工程である。この際、塩化第二鉄に対してマグネシウムの水酸化物又は炭酸塩が0.30~0.95当量である。
<Step 1>
Hereinafter, in the production method of the present invention, Step 1 of preparing a ferric citrate hydrate used as the raw material ferric citrate will be described. In the step 1, citric acid, ferric chloride, and hydroxide or carbonate of magnesium are mixed in water to obtain a mixture, and then the mixture is mixed with an organic solvent to prepare aqueous ferric citrate solution. This is a step of preparing a Japanese product. At this time, the magnesium hydroxide or carbonate is 0.30 to 0.95 equivalent to ferric chloride.
 (クエン酸)
 工程1において、クエン酸は、試薬や工業品等、特に制限されることなく使用することができる。また、その形態についても特に制限されず、固体形態の他、水溶液等の形態を使用してもよい。また、固体形態の場合、クエン酸は無水物の他に、水和物の形態のものがあるが、何れの形態であってもよい。
(citric acid)
In step 1, citric acid can be used without any particular limitation, such as reagents and industrial products. Also, the form thereof is not particularly limited, and a form such as an aqueous solution may be used in addition to the solid form. In the case of the solid form, citric acid may be in the form of hydrate as well as anhydride, but any form may be used.
 工程1において、塩化第二鉄等の他の原材料の使用量は、工程2で使用するクエン酸の使用量を基準にして算出する。そのため、クエン酸の使用量は、クエン酸第二鉄水和物の調製スケールにより適宜決定すればよい。なお、水和物や水溶液等の形態を用いる場合、それらに含まれるクエン酸の純分換算量を基準とする。また、クエン酸並びにその水和物及び水溶液等を併用する場合、クエン酸の使用量と上記クエン酸の純分換算量の合計を基準とする。さらに、当該形態に含まれる水の量は、本発明における水の使用量に含める。クエン酸の純分換算量は、高速液体クロマトグラフィー(HPLC)や滴定装置等を用いた定量法等の公知の方法により算出すればよい。又は、カールフィッシャー滴定法(KF)等により当該形態中の水の量を測定し、当該形態の全量から該水の量を差し引くことで、クエン酸の純分換算量を算出してもよい。 In step 1, the amount of other raw materials such as ferric chloride used is calculated based on the amount of citric acid used in step 2. Therefore, the amount of citric acid used may be appropriately determined according to the preparation scale of ferric citrate hydrate. When a hydrate, an aqueous solution, or the like is used, the amount of citric acid contained in them is converted to a pure content. When citric acid and its hydrate, aqueous solution and the like are used in combination, the sum of the amount of citric acid used and the amount of the citric acid converted to pure content is the standard. Further, the amount of water contained in the form is included in the amount of water used in the present invention. The pure content of citric acid may be calculated by a known method such as high performance liquid chromatography (HPLC) or a quantification method using a titrator. Alternatively, the amount of water in the form may be measured by the Karl Fischer titration method (KF) or the like, and the amount of water may be subtracted from the total amount of the form to calculate the amount of citric acid as a pure component.
 クエン酸は、製造条件等によっては、クエン酸の分解に由来するアコニット酸やシトラコン酸等の不純物を含む場合がある。調製されるクエン酸第二鉄水和物の純度をより高めるために、当該不純物の含有量が少ないクエン酸を使用することが好ましい。具体的には、実施例に記載のHPLCによる分析において、クエン酸の純度は98.0~99.9%であることが好ましく、アコニット酸やシトラコン酸等の不純物はそれぞれが0.01~1.0%であることが好ましい。 ㆍ Citric acid may contain impurities such as aconitic acid and citraconic acid derived from the decomposition of citric acid depending on the production conditions. In order to further improve the purity of the prepared ferric citrate hydrate, it is preferable to use citric acid having a low content of the impurities. Specifically, in the analysis by HPLC described in the examples, the purity of citric acid is preferably 98.0 to 99.9%, and impurities such as aconitic acid and citraconic acid are 0.01 to 1 respectively. It is preferably 0.0%.
 (塩化第二鉄)
 工程1において、塩化第二鉄は、試薬や工業品等、特に制限されることなく使用することができる。また、その形態についても特に制限されず、固体形態の他、水溶液等の形態を使用してもよい。また、固体形態の場合、塩化第二鉄は無水物の他に、水和物の形態のものがあるが、何れの形態であってもよい。
(Ferric chloride)
In the step 1, ferric chloride can be used without any particular limitation, such as reagents and industrial products. Also, the form thereof is not particularly limited, and in addition to the solid form, a form such as an aqueous solution may be used. Further, in the case of the solid form, ferric chloride may be in the form of a hydrate as well as an anhydride, but any form may be used.
 塩化第二鉄の使用量は、工程1で使用するクエン酸に対して塩化第二鉄が1.0~2.5当量であることが好ましい。当該範囲とすることで、クエン酸第二鉄水和物の製造収量をより高めることができる。さらに、当該範囲において、その使用量によって、原料の鉄とクエン酸分子構造のモル比率を調整することができる。具体的には、通常、クエン酸に対して塩化第二鉄が1.0当量の場合、得られる原料のモル比率は0.8~1.1であり、1.5当量の場合0.7~1.0であり、2.0当量の場合0.6~0.9となる。よって、所望の原料のモル比率に応じて、塩化第二鉄の使用量を適宜決定すればよい。なお、当該使用量は、水和物や水溶液等の形態を用いる場合、それらに含まれる塩化第二鉄の純分に換算した量(塩化第二鉄の純分換算量)を基準とする。さらに、当該形態に含まれる水の量は、工程1における水の使用量に含める。 The amount of ferric chloride used is preferably 1.0 to 2.5 equivalents of ferric chloride with respect to the citric acid used in step 1. By setting it as the said range, the manufacturing yield of ferric citrate hydrate can be improved more. Furthermore, in the range, the molar ratio of the raw material iron and the citric acid molecular structure can be adjusted by the amount used. Specifically, usually, when ferric chloride is 1.0 equivalent to citric acid, the molar ratio of the obtained raw material is 0.8 to 1.1, and when it is 1.5 equivalent, it is 0.7. It is ˜1.0, and when it is 2.0 equivalents, it is 0.6 to 0.9. Therefore, the amount of ferric chloride used may be appropriately determined according to the desired molar ratio of the raw materials. In addition, when the form such as a hydrate or an aqueous solution is used, the amount used is based on the amount converted to the pure content of ferric chloride contained therein (the amount converted to the pure content of ferric chloride). Further, the amount of water contained in the form is included in the amount of water used in step 1.
 なお、上記当量数は、クエン酸及び塩化第二鉄の価数がいずれも3であるため、単に各モル数を用いて算出すればよい。即ち、使用するクエン酸が1モル、塩化第二鉄が1モルの場合、クエン酸に対する塩化第二鉄の当量数は1となる。 Note that the above equivalent number can be calculated simply by using the number of moles because the valences of citric acid and ferric chloride are both 3. That is, when 1 mol of citric acid and 1 mol of ferric chloride are used, the equivalent number of ferric chloride to citric acid is 1.
 (マグネシウムの水酸化物又は炭酸塩)
 工程1において、塩基としてマグネシウムの水酸化物又は炭酸塩(以下、「マグネシウムの水酸化物等」と称す)を使用する。具体的には、水酸化マグネシウム又は炭酸マグネシウムを使用する。これら塩基は、単一種を使用してもよく、複数種を使用してもよい。また、これらは、試薬や工業品等、特に制限されることなく使用することができる。これらの中でも、反応性を考慮すると、水酸化マグネシウムがより好ましい。
(Magnesium hydroxide or carbonate)
In step 1, magnesium hydroxide or carbonate (hereinafter referred to as "magnesium hydroxide or the like") is used as a base. Specifically, magnesium hydroxide or magnesium carbonate is used. These bases may be used alone or in combination of two or more. Further, these can be used without particular limitation, such as reagents and industrial products. Among these, magnesium hydroxide is more preferable in consideration of reactivity.
 上記塩基の使用量は、工程1で使用する塩化第二鉄に対して0.30~0.95当量、すなわち工程1で使用するクエン酸に対して0.30~2.38当量である。当該範囲とすることで、クエン酸第二鉄水和物のBET比表面積を16m2/g以上とすることができる。当該範囲において、塩基の使用量が少なくなるにつれ、クエン酸第二鉄水和物のBET比表面積は大きくなる傾向がある。一方、塩基の使用量が大きくなるにつれ、クエン酸第二鉄水和物の製造収率が高くなる傾向がある。よって、所望のBET比表面積等に応じて、上記範囲の中で、塩基の使用量を適宜決定すればよいが、BET比表面積及び製造収率の観点から、塩基の使用量は工程1で使用する塩化第二鉄に対して0.40~0.90当量、すなわち工程1で使用するクエン酸に対して0.40~2.25当量がより好ましく、0.50~0.85当量、すなわち工程1で使用するクエン酸に対して0.50~2.13当量がさらに好ましい。 The amount of the base used is 0.30 to 0.95 equivalent to the ferric chloride used in Step 1, that is, 0.30 to 2.38 equivalent to the citric acid used in Step 1. By setting it as the said range, the BET specific surface area of ferric citrate hydrate can be 16 m < 2 > / g or more. Within this range, the BET specific surface area of ferric citrate hydrate tends to increase as the amount of base used decreases. On the other hand, as the amount of the base used increases, the production yield of ferric citrate hydrate tends to increase. Therefore, the amount of the base used may be appropriately determined within the above range according to the desired BET specific surface area and the like. From the viewpoint of the BET specific surface area and the production yield, the amount of the base used is 1 More preferably 0.40 to 0.90 equivalents to ferric chloride, that is, 0.40 to 2.25 equivalents to the citric acid used in step 1, 0.50 to 0.85 equivalents, 0.50 to 2.13 equivalents relative to the citric acid used in step 1 are more preferable.
 なお、上記当量数は、塩化第二鉄の鉄イオンの価数及び使用する塩基の価数を考慮して決定する必要がある。即ち、使用する塩基のモル数に塩基の価数で乗じた数値を、塩化第二鉄のモル数に塩化第二鉄の鉄イオンの価数である3を乗じた数値で除すことにより、塩化第二鉄に対する塩基の当量を算出する。具体的には、塩化第二鉄1モルを使用し、塩基を1モル使用した場合、マグネシウムイオンの価数は2であるため、当量数は0.67となる。 Note that it is necessary to determine the above equivalent number by considering the valence of the iron ion of ferric chloride and the valence of the base used. That is, by dividing the number of moles of the base used by the valence of the base, by dividing the number of moles of ferric chloride by 3 which is the valence of the iron ion of ferric chloride, Calculate the equivalent of base to ferric chloride. Specifically, when 1 mol of ferric chloride is used and 1 mol of a base is used, the equivalent number is 0.67 because the valence of magnesium ion is 2.
 (水)
 工程1において、水は、特に制限されることなく、水道水、イオン交換水、蒸留水等を使用することができる。工程1の水の使用量は、工程1で使用するクエン酸1gに対して、2.0~8.5mLであることが好ましい。工程1で使用するクエン酸1gに対して、2.0mL以上の水を用いることで、生成する副生塩を十分に除去でき、製造されるクエン酸第二鉄水和物中の副生塩の残量を低減できる。一方、8.5mL以下の水を用いることで、母液(後述するクエン酸第二鉄水和物を含有する懸濁液中の分散溶媒)へのクエン酸第二鉄水和物の溶解量が低減し、クエン酸第二鉄水和物の製造収率を高めることができる。当該副生塩の除去効率や製造収率、操作性等を考慮すると、工程1で使用するクエン酸1gに対して、2.5~7.5mLがより好ましく、3.0~6.5mLがさらに好ましい。特に、2.5mL未満の水を用いた場合に得られるクエン酸第二鉄水和物が粒状になる傾向があるが、2.5mL以上の場合、得られるクエン酸第二鉄は粉末状になる傾向がある。この形状の違いにより、クエン酸第二鉄水和物中への副生塩の取り込みが低減され、副生塩の残留量をより高度に低減できると考えられる。なお、上記したように、原材料を水和物や水溶液等の形態で用いる場合、当該形態に含まれる水の量は、工程1における水の使用量に含める。
(water)
In step 1, the water is not particularly limited, and tap water, ion-exchanged water, distilled water or the like can be used. The amount of water used in step 1 is preferably 2.0 to 8.5 mL with respect to 1 g of citric acid used in step 1. By using 2.0 mL or more of water for 1 g of citric acid used in step 1, the generated by-product salt can be sufficiently removed, and the by-product salt in the ferric citrate hydrate produced. The remaining amount of can be reduced. On the other hand, by using 8.5 mL or less of water, the amount of ferric citrate hydrate dissolved in the mother liquor (dispersion solvent in the suspension containing ferric citrate hydrate described below) It is possible to reduce and increase the production yield of ferric citrate hydrate. Considering the removal efficiency of the by-product salt, the production yield, the operability, etc., 2.5 to 7.5 mL is more preferable, and 3.0 to 6.5 mL per 1 g of citric acid used in Step 1. More preferable. In particular, the ferric citrate hydrate obtained when using less than 2.5 mL of water tends to be granular, but when it is 2.5 mL or more, the obtained ferric citrate becomes powdery. Tend to be. It is considered that due to this difference in shape, the incorporation of the by-product salt into the ferric citrate hydrate is reduced, and the residual amount of the by-product salt can be more highly reduced. As described above, when the raw material is used in the form of a hydrate or an aqueous solution, the amount of water contained in the form is included in the amount of water used in step 1.
 (混合物の調製)
 工程1において、水中で、クエン酸、塩化第二鉄、及びマグネシウムの水酸化物等を混合し、混合物を得る。当該混合操作は、特に制限されず、公知の方法により実施すればよいが、ガラス製、ステンレス製、テフロン(登録商標)製、グラスライニング等の容器を用い、さらに、メカニカルスターラー、マグネティックスターラー等を用いて、各原料を撹拌下で混合することが、均一性や操作性の観点で好ましい。また、各原料の混合順序は、特に制限されないが、クエン酸を除く、他の原料のみを混合した場合、水酸化第二鉄が一旦系内で析出する。その場合、水の使用量や混合時の温度によっては、混合によって得られた懸濁液の粘性が高く、撹拌不良が発生する場合がある。また、水酸化第二鉄は、温度等によっては、α、β、又は、γ酸化水酸化鉄、酸化鉄等の他の鉄化合物へと変換される場合がある。当該鉄化合物は、水やクエン酸水溶液に対する溶解性が、水酸化第二鉄と比較して著しく低く、その結果、続くクエン酸の添加後も、不溶性固体として残存し、調製されるクエン酸第二鉄水和物の製造収率の低下やクエン酸第二鉄水和物中への当該鉄化合物の残存が生じる場合がある。そのため、各原料の混合順序として、塩化第二鉄、及び、マグネシウムの水酸化物等が混合される以前に、水とクエン酸とを混合させることが好ましい。さらに、塩化第二鉄を含む混合物にマグネシウムの水酸化物等を混合した場合、マグネシウムの水酸化物等が塊状となり、溶解に長時間を要する場合があるため、塩化第二鉄が混合される以前に、マグネシウムの水酸化物等を混合させることがより好ましい。以上を考慮すると具体的には、クエン酸、水、マグネシウムの水酸化物等、塩化第二鉄の順序で混合することがより好ましい。なお、当該混合順序において、クエン酸と水の混合順序は逆であっても何ら問題無い。
(Preparation of mixture)
In step 1, citric acid, ferric chloride, and hydroxide of magnesium are mixed in water to obtain a mixture. The mixing operation is not particularly limited and may be carried out by a known method, but a container made of glass, stainless steel, Teflon (registered trademark), glass lining or the like is used, and further, a mechanical stirrer, a magnetic stirrer or the like is used. It is preferable to mix each raw material with stirring from the viewpoint of uniformity and operability. The mixing order of each raw material is not particularly limited, but when only other raw materials except for citric acid are mixed, ferric hydroxide is once precipitated in the system. In that case, depending on the amount of water used and the temperature at the time of mixing, the viscosity of the suspension obtained by mixing may be high, and poor stirring may occur. Further, ferric hydroxide may be converted into other iron compounds such as α, β or γ iron oxide hydroxide and iron oxide depending on the temperature and the like. The iron compound has a significantly lower solubility in water or an aqueous citric acid solution than ferric hydroxide, and as a result, it remains as an insoluble solid even after the subsequent addition of citric acid, and the prepared citric acid The production yield of diiron hydrate may decrease and the iron compound may remain in the ferric citrate hydrate. Therefore, as a mixing order of each raw material, it is preferable to mix water and citric acid before mixing ferric chloride, hydroxide of magnesium, and the like. Furthermore, when magnesium hydroxide or the like is mixed with a mixture containing ferric chloride, magnesium hydroxide or the like becomes a lump and it may take a long time to dissolve, so ferric chloride is mixed. It is more preferable to previously mix magnesium hydroxide or the like. Considering the above, specifically, it is more preferable to mix ferric chloride in the order of citric acid, water, hydroxide of magnesium and the like. In the mixing order, there is no problem even if the mixing order of citric acid and water is reversed.
 上記混合操作の温度は、全ての原料を混合した時点では、35~80℃であることが好ましい。全ての原料を混合した時点では、各固体の原料は水中に溶解して反応し、クエン酸第二鉄水和物が生成するが、35℃未満の場合、水の使用量が少ないと、溶液中の固体濃度が高いために、クエン酸第二鉄水和物が析出する場合がある。35℃以上とすることで、クエン酸第二鉄水和物の析出を回避し、溶液状態を安定的に維持できる。一方、80℃以下であれば、クエン酸第二鉄水和物及び/又はクエン酸の分解を抑制でき、調製されるクエン酸第二鉄水和物の純度をより高めることができる。上記範囲の中でも、操作性や製造されるクエン酸第二鉄水和物の品質の観点から、37.5~75℃がより好ましく、40~70℃がさらに好ましい。なお、一部の原料のみを混合する段階では、上記の温度範囲とする必要は無い。例えば、塩化第二鉄を最後に混合する場合であれば、塩化第二鉄の混合後の時点で、上記範囲とすればよく、塩化第二鉄を除く原料の混合段階では、その温度は特に制限されない。 The temperature of the above mixing operation is preferably 35 to 80 ° C. when all the raw materials are mixed. At the time of mixing all the raw materials, the solid raw materials are dissolved in water and reacted to produce ferric citrate hydrate. Ferric citrate hydrate may precipitate due to the high solids concentration in it. By setting the temperature to 35 ° C. or higher, precipitation of ferric citrate hydrate can be avoided and the solution state can be stably maintained. On the other hand, if the temperature is 80 ° C. or lower, decomposition of ferric citrate hydrate and / or citric acid can be suppressed, and the purity of the prepared ferric citrate hydrate can be further increased. Within the above range, from the viewpoint of operability and the quality of the ferric citrate hydrate to be produced, 37.5 to 75 ° C is more preferable, and 40 to 70 ° C is further preferable. In addition, at the stage of mixing only some of the raw materials, it is not necessary to set the temperature within the above range. For example, in the case of mixing ferric chloride last, at the time after the mixing of ferric chloride, it may be in the above range, in the mixing stage of the raw materials except ferric chloride, the temperature is particularly Not limited.
 各原料が水中に溶解すれば、クエン酸第二鉄水和物の生成は瞬時に進行するため、全ての原料を混合した後、各固体の溶解を目視等で確認して、混合させる時間を適宜決定すればよい。通常、最後の原材料を加えた後、5分間以上混合すれば十分である。ただし、混合温度によっては、混合時間が延びるにつれて、クエン酸第二鉄水和物及び/又はクエン酸の分解が進行する傾向にあるため、溶解を確認次第、次操作である有機溶媒との混合操作を実施することが好ましい。 If each raw material dissolves in water, the formation of ferric citrate hydrate will proceed instantaneously, so after mixing all the raw materials, visually confirm the dissolution of each solid and set the time for mixing. It may be determined appropriately. It is usually sufficient to mix for at least 5 minutes after adding the last raw material. However, depending on the mixing temperature, as the mixing time increases, the decomposition of ferric citrate hydrate and / or citric acid tends to proceed, so as soon as dissolution is confirmed, mixing with an organic solvent, which is the next operation, is performed. It is preferable to carry out the operation.
 (有機溶媒)
 工程1において、上記のようにして得られた混合物と有機溶媒とを混合する。当該混合操作により、クエン酸第二鉄水和物が析出し、クエン酸第二鉄水和物を含む懸濁液を得ることができる。当該有機溶媒とは、上記混合物との混合により、クエン酸第二鉄水和物が析出する有機溶媒であれば、特に制限されないが、通常、上記混合物は固体濃度が高いために、有機溶媒の種類によっては、混合物と混合した際に、有機溶媒と分層して均一に混合せず、クエン酸第二鉄水和物が析出しない場合がある。混合物の製造条件によらず、クエン酸第二鉄水和物が析出する有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノールが挙げられる。これらは単一種を使用してもよく、複数種を使用してもよい。これらの中でも、操作性やクエン酸第二鉄水和物の製造収率等を考慮すると、エタノール、1-プロパノール、2-プロパノールがより好ましく、1-プロパノール、2-プロパノールがさらに好ましい。当該有機溶媒の使用量は、工程1で使用するクエン酸1gに対して、3~20mLであることが好ましい。当該範囲とすることで、有機溶媒との混合後にクエン酸第二鉄水和物が析出する。上記範囲の中でも、クエン酸第二鉄水和物の製造収率や操作性等を考慮すると、当該有機溶媒の使用量は、工程1で使用するクエン酸1gに対して4~15mLがより好ましく、5~13mLがさらに好ましい。
(Organic solvent)
In step 1, the mixture obtained as described above and an organic solvent are mixed. By the mixing operation, ferric citrate hydrate is precipitated, and a suspension containing ferric citrate hydrate can be obtained. The organic solvent is not particularly limited as long as it is an organic solvent in which ferric citrate hydrate is precipitated by mixing with the mixture, but usually, the mixture has a high solid concentration, and therefore the organic solvent Depending on the type, when mixed with the mixture, it may be separated into an organic solvent and may not be uniformly mixed, and ferric citrate hydrate may not be precipitated. Irrespective of the manufacturing conditions of the mixture, examples of the organic solvent in which ferric citrate hydrate precipitates include methanol, ethanol, 1-propanol, and 2-propanol. These may use a single type or a plurality of types. Of these, ethanol, 1-propanol, and 2-propanol are more preferable, and 1-propanol and 2-propanol are even more preferable, considering the operability and the production yield of ferric citrate hydrate. The amount of the organic solvent used is preferably 3 to 20 mL with respect to 1 g of citric acid used in step 1. By setting it as the said range, a ferric citrate hydrate will precipitate after mixing with an organic solvent. Among the above ranges, considering the production yield of ferric citrate hydrate, operability, etc., the amount of the organic solvent used is more preferably 4 to 15 mL with respect to 1 g of citric acid used in step 1. 5 to 13 mL is more preferable.
 また、上記の有機溶媒を工程1で使用するクエン酸1gに対して3~20mLを使用する場合、当該有機溶媒1mLに対して含有量が1mL以下であれば、上記以外の有機溶媒を含んでも構わない。上記以外の有機溶媒とは、上記有機溶媒及び水と混和する有機溶媒であり、具体的には、1-ブタノール、2-ブタノール、t-ブタノール、アリルアルコール、プロパルギルアルコール等のアルコール類、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類、テトラヒドロフラン、ジオキサン等の環状エーテル類、アセトニトリル等のニトリル類、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン等の含窒素化合物、ジメチルスルホキシド等の含硫黄化合物等が挙げられる。これらは単一種を使用してもよく、複数種を使用してもよい。また、これらの中でも、沸点が比較的低く、除去が容易である点や製造収率等を考慮すると、1-ブタノール、2-ブタノール、t-ブタノール、アリルアルコール、プロパルギルアルコール等のアルコール類、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類、テトラヒドロフラン、ジオキサン等の環状エーテル類、アセトニトリル等のニトリル類がより好ましく、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類がさらに好ましい。 Further, when 3 to 20 mL of the above organic solvent is used with respect to 1 g of citric acid used in step 1, if the content is 1 mL or less with respect to 1 mL of the organic solvent, an organic solvent other than the above may be contained. I do not care. The organic solvent other than the above is an organic solvent which is miscible with the above organic solvent and water, and specifically, alcohols such as 1-butanol, 2-butanol, t-butanol, allyl alcohol, propargyl alcohol, acetone, Ketones such as methyl ethyl ketone, acetylacetone and diacetone alcohol, cyclic ethers such as tetrahydrofuran and dioxane, nitriles such as acetonitrile, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone and the like Examples thereof include nitrogen-containing compounds and sulfur-containing compounds such as dimethyl sulfoxide. These may use a single type or a plurality of types. Of these, alcohols such as 1-butanol, 2-butanol, t-butanol, allyl alcohol, and propargyl alcohol, acetone, etc. are taken into consideration in view of their relatively low boiling point, easy removal, production yield, and the like. , Ketones such as methyl ethyl ketone, acetylacetone and diacetone alcohol, cyclic ethers such as tetrahydrofuran and dioxane, and nitriles such as acetonitrile are more preferable, and ketones such as acetone, methyl ethyl ketone, acetylacetone and diacetone alcohol are more preferable.
 (混合物と有機溶媒との混合)
 工程1において、混合物と有機溶媒との混合は、当該混合操作を実施できればよく、その実施方法は特に制限されないが、上記の混合物の調製と同様に、ガラス製、ステンレス製、テフロン(登録商標)製、グラスライニング等の容器を用い、さらに、メカニカルスターラー、マグネティックスターラー等を用いて、混合物と有機溶媒を撹拌下で混合することが、均一性や操作性の観点で好ましい。また、混合物と有機溶媒との混合順序についても特に制限されず、混合物を製造後、これに有機溶媒を添加してもよいし、又は、有機溶媒中に、混合物を添加してもよい。ただし、クエン酸第二鉄水和物が析出する際に、塊状になりやすく、撹拌が困難になる場合や析出したクエン酸第二鉄水和物が容器壁面に固着し、製造収率が低下する場合があることから、操作性や製造収率の観点から有機溶媒中に、混合物を滴下する方法が好ましい。上記混合物の滴下速度は、作業時間や析出するクエン酸第二鉄水和物の溶媒中への分散具合等を確認しながら適宜決定すればよいが、通常5分間~5時間の範囲で決定すればよい。
(Mixture of mixture with organic solvent)
In step 1, the mixture and the organic solvent may be mixed as long as the mixing operation can be carried out, and the method for carrying out the mixing is not particularly limited, but similar to the preparation of the above mixture, glass, stainless steel, Teflon (registered trademark) From the viewpoint of uniformity and operability, it is preferable to mix the mixture and the organic solvent with stirring by using a container for manufacturing, glass lining or the like, and further using a mechanical stirrer, a magnetic stirrer or the like. The order of mixing the mixture and the organic solvent is not particularly limited, and the organic solvent may be added to the mixture after it is produced, or the mixture may be added to the organic solvent. However, when ferric citrate hydrate precipitates, it tends to become agglomerate and it becomes difficult to stir, or the precipitated ferric citrate hydrate sticks to the container wall surface, reducing the production yield. In some cases, the method of dropping the mixture into the organic solvent is preferable from the viewpoint of operability and production yield. The dropping rate of the above mixture may be appropriately determined while confirming the working time and the degree of dispersion of the precipitated ferric citrate hydrate in the solvent, but usually it is determined within the range of 5 minutes to 5 hours. Good.
 また、混合時の温度は、使用する有機溶媒の沸点等を考慮して適宜決定すればよいが、あまり低すぎるとクエン酸第二鉄水和物が塊状になりやすく、高すぎるとクエン酸第二鉄水和物及び/又はクエン酸の分解により、アコニット酸等の不純物の副生が懸念されることから、20~80℃の範囲で行うことが好ましい。特に析出したクエン酸第二鉄水和物の固液分離等の操作性や有機溶媒の揮発等を考慮すると、25~70℃がより好ましく、30~60℃がさらに好ましい。 Further, the temperature at the time of mixing may be appropriately determined in consideration of the boiling point of the organic solvent to be used, but if it is too low, ferric citrate hydrate tends to agglomerate, and if it is too high, the citric acid no. Since decomposition of diiron hydrate and / or citric acid may cause by-production of impurities such as aconitic acid, it is preferably carried out in the range of 20 to 80 ° C. Considering operability such as solid-liquid separation of the precipitated ferric citrate hydrate and volatilization of the organic solvent, the temperature is more preferably 25 to 70 ° C, further preferably 30 to 60 ° C.
 上記混合物と有機溶媒を混合させた後、クエン酸第二鉄水和物を十分に析出させるために、撹拌したまま一定時間保持することが好ましい。保持時間は、混合時の温度等によって異なるが、通常15分間~50時間保持すれば十分である。また、当該操作における温度は、上記混合時と同様の理由から、混合時と同様の範囲が好ましい。以上のようにして、クエン酸第二鉄水和物を含有する懸濁液を得ることができる。 After mixing the above mixture with an organic solvent, it is preferable to hold the mixture for a certain period of time with stirring in order to sufficiently precipitate ferric citrate hydrate. The holding time varies depending on the temperature at the time of mixing, etc., but it is usually sufficient to hold for 15 minutes to 50 hours. Further, the temperature in the operation is preferably in the same range as in the mixing for the same reason as in the mixing. As described above, a suspension containing ferric citrate hydrate can be obtained.
 (クエン酸第二鉄水和物の湿体の単離)
 工程1により得られたクエン酸第二鉄水和物は、上記懸濁液より減圧濾過や加圧濾過、遠心分離等を用いて固液分離により、クエン酸第二鉄水和物と有機溶媒を含むクエン酸第二鉄水和物の湿体として単離することができる。当該操作において、単離したクエン酸第二鉄水和物の湿体は、有機溶媒、又は、有機溶媒と水との混合溶媒で洗浄することが好ましい。この洗浄により、湿体に残存する母液(上記懸濁液中の分散溶媒)を除去でき、クエン酸第二鉄水和物中の副生塩の残留量をより低減できる。上記の中でも、有機溶媒と水との混合溶媒で洗浄することで、洗浄時に湿体に残存する母液から副生塩等が析出しないため、より好ましい。その混合比率は、洗浄液へのクエン酸第二鉄水和物の溶解による製造収率の低下や副生塩の析出を抑制できる点から、有機溶媒1mLに対して、水が0.2~2mLであることが好ましい。また、その使用量は、工程1で使用する原料のクエン酸1gに対して、洗浄液が0.5~5mLであることが、洗浄効率の点から好ましい。
(Isolation of wet body of ferric citrate hydrate)
The ferric citrate hydrate obtained in step 1 is subjected to solid-liquid separation from the above suspension using vacuum filtration, pressure filtration, centrifugation or the like to obtain ferric citrate hydrate and an organic solvent. Can be isolated as a wet form of ferric citrate hydrate. In the operation, the isolated wet body of ferric citrate hydrate is preferably washed with an organic solvent or a mixed solvent of an organic solvent and water. By this washing, the mother liquor (dispersing solvent in the suspension) remaining in the wet body can be removed, and the residual amount of the by-product salt in the ferric citrate hydrate can be further reduced. Among the above, by washing with a mixed solvent of an organic solvent and water, by-product salts and the like do not precipitate from the mother liquor remaining in the wet body during washing, which is more preferable. The mixing ratio is 0.2 to 2 mL of water with respect to 1 mL of the organic solvent, since it is possible to suppress the decrease in the production yield due to the dissolution of ferric citrate hydrate in the washing solution and the precipitation of by-product salts. Is preferred. From the viewpoint of cleaning efficiency, it is preferable that the amount of the cleaning liquid used is 0.5 to 5 mL with respect to 1 g of citric acid as the raw material used in step 1.
 上記のようにして、固液分離後の湿体を洗浄しても、固液分離の方法や調製スケール等によっては、湿体に母液が残留する場合があるため、固液分離後の湿体と有機溶媒及び水からなる混合溶媒とを混合し、再度懸濁液(以下、「再懸濁液」という)を調製した後、固液分離することによって洗浄を行ってもよい。当該操作によれば、湿体中の母液の残存をより低減でき、結果的に製造されるクエン酸第二鉄水和物中の副生塩の残留量をより低減できる。 Even if the wet body after solid-liquid separation is washed as described above, the mother liquor may remain in the wet body depending on the method of solid-liquid separation or the preparation scale. Alternatively, the mixture may be mixed with an organic solvent and a mixed solvent of water to prepare a suspension again (hereinafter, referred to as “resuspension”), and then solid-liquid separation may be performed for washing. According to this operation, the residual amount of the mother liquor in the wet body can be further reduced, and the residual amount of the by-product salt in the ferric citrate hydrate produced as a result can be further reduced.
 当該再懸濁液を調製することによる洗浄に使用する混合溶媒における有機溶媒は、25℃の水1gに対して、溶解度が0.2g以上の有機溶媒である。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、アリルアルコール等のアルコール類、酢酸メチル等のエステル類、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類、アセトニトリル等のニトリル類が挙げられる。これらの中でも、洗浄液に対するクエン酸第二鉄水和物の溶解性や除去の容易さの観点から、メタノール、エタノール、1-プロパノール、2-プロパノール、アリルアルコール等のアルコール類及びアセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類がより好ましく、メタノール、エタノール、1-プロパノール、2-プロパノール、アセトン、メチルエチルケトンがさらに好ましい。なお、これらは単一種を使用してもよく、複数種を使用してもよい。 The organic solvent in the mixed solvent used for washing by preparing the resuspension is an organic solvent having a solubility of 0.2 g or more in 1 g of water at 25 ° C. Specific examples include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and allyl alcohol, esters such as methyl acetate, ethers such as tetrahydrofuran and dioxane, acetone, methyl ethyl ketone, acetylacetone and diacetone alcohol. Examples include ketones and nitriles such as acetonitrile. Among these, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and allyl alcohol, and acetone, methyl ethyl ketone, and acetylacetone are used from the viewpoint of solubility and easy removal of ferric citrate hydrate in a cleaning solution. , Ketones such as diacetone alcohol and the like are more preferable, and methanol, ethanol, 1-propanol, 2-propanol, acetone and methyl ethyl ketone are more preferable. In addition, these may use a single type and may use multiple types.
 有機溶媒と水との混合比率は、有機溶媒1mLに対して、水が0.1~2mLであることが好ましい。また、当該混合溶媒の使用量は、工程1で使用する原料のクエン酸1gに対して0.5~20mLであることが、操作性や洗浄効率の点から好ましく、これらの中でも、1.0~15mLがより好ましく、1.5~10mLがさらに好ましい。 The mixing ratio of the organic solvent and water is preferably 0.1 to 2 mL of water to 1 mL of the organic solvent. In addition, the amount of the mixed solvent used is preferably 0.5 to 20 mL with respect to 1 g of citric acid as a raw material used in Step 1, from the viewpoint of operability and cleaning efficiency. ~ 15 mL is more preferred, and 1.5-10 mL is even more preferred.
 当該再懸濁液の調製は、再懸濁液が調製できれば、その実施方法は特に制限されること無いが、混合物の調製や有機溶媒との混合と同様に、湿体と有機溶媒及び水の混合溶媒とを撹拌下で混合すればよい。ただし、有機溶媒及び水の混合溶媒は、湿体との混合前に調製することが好ましい。また、当該混合操作の温度は、撹拌効率や製造収率を考慮すると、-20~75℃の範囲が好ましく、当該混合操作及び混合後の固液分離操作の操作性や有機溶媒の沸点を考慮すると、0~70℃がより好ましく、10~60℃がさらに好ましい。また、混合後は、当該温度範囲で一定時間以上、撹拌下で混合することが均一性等の観点から好ましい。製造スケール等によるため、一概に規定できないが、通常、15分間~2時間混合状態を保持すれば十分である。 The method for carrying out the resuspension is not particularly limited as long as the resuspension can be prepared. However, similar to the preparation of the mixture and the mixing with the organic solvent, the wet body, the organic solvent and water are mixed. The mixed solvent may be mixed with stirring. However, the mixed solvent of the organic solvent and water is preferably prepared before mixing with the wet body. The temperature of the mixing operation is preferably in the range of −20 to 75 ° C. in consideration of the stirring efficiency and the production yield, and the operability of the mixing operation and the solid-liquid separation operation after mixing and the boiling point of the organic solvent are considered. Then, 0 to 70 ° C. is more preferable, and 10 to 60 ° C. is further preferable. In addition, after mixing, it is preferable from the viewpoint of uniformity and the like that mixing is performed in the temperature range for a certain time or more with stirring. It cannot be specified unconditionally because it depends on the production scale, etc., but it is usually sufficient to maintain the mixed state for 15 minutes to 2 hours.
 以上のようにして調製した再懸濁液は、上記懸濁液と同様にして、減圧濾過や加圧濾過、遠心分離等を用いて固液分離により、クエン酸第二鉄水和物の湿体を単離すればよい。当該固液分離操作においても、固液分離後の湿体は、有機溶媒、又は、有機溶媒と水との混合溶媒で洗浄することが好ましい。 The resuspension prepared as described above is subjected to solid-liquid separation using vacuum filtration, pressure filtration, centrifugal separation, etc. in the same manner as the above suspension to obtain a wet solution of ferric citrate hydrate. The body may be isolated. Also in the solid-liquid separation operation, the wet body after solid-liquid separation is preferably washed with an organic solvent or a mixed solvent of an organic solvent and water.
 このようにして単離されたクエン酸第二鉄水和物の湿体は、後述のように乾燥させることにより、有機溶媒等が除去されたクエン酸第二鉄水和物とすることができるが、当該乾燥操作において、湿体中に水を多く含む場合、乾燥操作時にクエン酸第二鉄水和物の固体表面が湿体に含まれる水に溶解して、クエン酸第二鉄水和物のBET比表面積が低下する場合がある。そのため、乾燥前の湿体中の水の含有量を低減させることが好ましい。具体的には、湿体に含まれるクエン酸第二鉄水和物の無水物に換算した量(以下、「湿体中のクエン酸第二鉄水和物の無水物換算量」と称す)1gに対して、水の含有量が0.05~0.5gであることが好ましい。ここで、湿体中のクエン酸第二鉄水和物の無水物換算量は、湿体中の水及び有機溶媒の含有量をKFやガスクロマトグラフィー(GC)等により測定し、当該水及び有機溶媒の含有量を湿体重量から差し引くことにより算出される。湿体中の水の含有量を上記範囲とするためには、上記の固液分離時の洗浄は、最終的には有機溶媒のみで実施することが好ましい。当該範囲とするために、有機溶媒による洗浄を複数回行ってもよく、又は、固液分離後の湿体と有機溶媒とから再度懸濁液を調製することによって洗浄してもよい。 The wet body of ferric citrate hydrate thus isolated can be made into ferric citrate hydrate from which the organic solvent and the like have been removed by drying as described below. However, in the drying operation, when the wet body contains a large amount of water, the solid surface of the ferric citrate hydrate is dissolved in the water contained in the wet body during the drying operation to hydrate the ferric citrate. The BET specific surface area of the product may decrease. Therefore, it is preferable to reduce the content of water in the wet body before drying. Specifically, the amount converted to the anhydrous ferric citrate hydrate contained in the wet body (hereinafter, referred to as "anhydrous equivalent amount of ferric citrate hydrate in the wet body") The content of water is preferably 0.05 to 0.5 g per 1 g. Here, the anhydrous equivalent amount of ferric citrate hydrate in the wet body is determined by measuring the contents of water and the organic solvent in the wet body by KF, gas chromatography (GC), etc. It is calculated by subtracting the content of the organic solvent from the weight of the wet body. In order to keep the water content in the wet body within the above range, it is preferable that the washing at the time of solid-liquid separation is finally carried out only with the organic solvent. In order to obtain the above range, washing with an organic solvent may be performed plural times, or washing may be performed by preparing a suspension again from the wet body after solid-liquid separation and the organic solvent.
 (クエン酸第二鉄水和物の単離)
 上記の固液分離操作により、調製されたクエン酸第二鉄水和物の湿体を乾燥させ、湿体に含まれる過剰な水や有機溶媒を除去することで、クエン酸第二鉄水和物として単離できる。当該乾燥操作は、公知の方法により実施すればよく、例えば、棚式乾燥機やコニカル乾燥機を用いて、真空下、乾燥空気雰囲気下、又は窒素やアルゴンなどの不活性ガス雰囲気下にて、実施すればよい。また、当該乾燥操作の温度は、クエン酸第二鉄水和物の安定性を考慮すると、-80~80℃が好ましい。この範囲の中で、乾燥操作に使用する設備や圧力、有機溶媒の沸点等を考慮して適宜決定すればよいが、乾燥効率やクエン酸第二鉄水和物の安定性を考慮すると、-40~70℃がより好ましく、0~60℃がさらに好ましい。また、乾燥時間は有機溶媒等の残留量を確認しながら適宜決定すればよいが、通常、0.5~100時間である。さらに、乾燥過程において、塊状となり、有機溶媒の低減効率が低い場合は、ハンマーミルやピンミル等を用いて粉末状とすることで、より効率的に乾燥することができる。
(Isolation of ferric citrate hydrate)
By the solid-liquid separation operation described above, the wet body of the prepared ferric citrate hydrate is dried, and excess water and organic solvent contained in the wet body are removed, thereby ferric citrate hydrate. Can be isolated as a product. The drying operation may be carried out by a known method, for example, using a shelf dryer or a conical dryer, under vacuum, under a dry air atmosphere, or under an inert gas atmosphere such as nitrogen or argon, It should be carried out. Further, the temperature of the drying operation is preferably −80 to 80 ° C. in consideration of the stability of ferric citrate hydrate. Within this range, it may be appropriately determined in consideration of the equipment and pressure used for the drying operation, the boiling point of the organic solvent, etc., but considering the drying efficiency and the stability of ferric citrate hydrate, − 40 to 70 ° C. is more preferable, and 0 to 60 ° C. is further preferable. The drying time may be appropriately determined while confirming the residual amount of the organic solvent and the like, but is usually 0.5 to 100 hours. Furthermore, in the drying process, when the resin becomes lumpy and the reduction efficiency of the organic solvent is low, it can be dried more efficiently by making it into a powder using a hammer mill, a pin mill or the like.
 以上のようにして、工程1により調製されたクエン酸第二鉄水和物は、クエン酸第二鉄及び/又はクエン酸の分解に由来する有機不純物の含有量が少なく、また、副生塩等に由来する無機不純物の含有量も少なく、後述の実施例で使用した市販品のクエン酸第二鉄及び公知の方法によって製造されたクエン酸第二鉄と同等以上の高純度であり、さらに、16m2/gを超えるBET比表面積を有するため、工程2で使用される原料のクエン酸第二鉄として好適に使用することができる。 As described above, the ferric citrate hydrate prepared by the step 1 has a low content of organic impurities derived from the decomposition of ferric citrate and / or citric acid, and the by-product salt. The content of inorganic impurities derived from the like is also low, and a high purity equal to or higher than that of ferric citrate produced by a known method and commercially available ferric citrate used in Examples described later, and Since it has a BET specific surface area of more than 16 m 2 / g, it can be suitably used as ferric citrate as a raw material used in step 2.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって何等制限されることはない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 なお、実施例及び比較例の原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物の純度、クエン酸含有量は、高速液体クロマトグラフィー(HPLC)により測定した。また、実施例及び比較例の原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物のBET比表面積は、窒素吸着法により測定した。さらに、実施例及び比較例の原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物の鉄含有量は、酸化還元滴定法により測定した。また、実施例及び比較例の原料のクエン酸第二鉄の水分量、有機溶媒量及び構成元素以外の元素量は、それぞれカールフィッシャー滴定法(KF)、ガスクロマトグラフィー(GC)、誘導結合プラズマ発光分光分析法(ICP-OES)により測定した。 The purity and the citric acid content of the ferric citrate and the modified ferric citrate hydrates of the raw materials of Examples and Comparative Examples were measured by high performance liquid chromatography (HPLC). In addition, the BET specific surface areas of the ferric citrate and the modified ferric citrate hydrates of the examples and comparative examples were measured by the nitrogen adsorption method. Further, the iron content of ferric citrate as a raw material and the modified ferric citrate hydrate of Examples and Comparative Examples was measured by a redox titration method. Further, the water content of ferric citrate as a raw material in Examples and Comparative Examples, the amount of organic solvent, and the amount of elements other than the constituent elements are respectively Karl Fischer titration method (KF), gas chromatography (GC), inductively coupled plasma. It was measured by optical emission spectroscopy (ICP-OES).
 (純度、クエン酸含有量)
 HPLCによる原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物の純度、クエン酸含有量の測定は以下の条件にて行った。当該条件によるHPLC分析では、原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物中のクエン酸の保持時間は6.6分付近である。以下の実施例及び比較例において、原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物の純度は、当該条件で測定される全ピーク(鉄及び溶媒由来のピークを除く)の面積値の合計に対するクエン酸のピーク面積値の割合である。
(Purity, citric acid content)
The measurement of the purity of ferric citrate as a raw material and the modified ferric citrate hydrate and the content of citric acid by HPLC were performed under the following conditions. According to the HPLC analysis under the conditions, the retention time of citric acid in the raw material ferric citrate and the modified ferric citrate hydrate is around 6.6 minutes. In the following examples and comparative examples, the purity of the ferric citrate as a raw material and the modified ferric citrate hydrate are all peaks measured under the conditions (excluding iron and peaks derived from the solvent). ) Is the ratio of the peak area value of citric acid to the total area value.
 また、原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物中のクエン酸含有量は、当該条件で測定されるクエン酸のピーク面積値から検量線法により算出した、原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物の質量に対するクエン酸の質量の割合である。 The content of citric acid in the ferric citrate raw material and the modified ferric citrate hydrate was calculated by the calibration curve method from the peak area value of citric acid measured under the conditions, It is the ratio of the mass of citric acid to the mass of the raw material ferric citrate and the modified ferric citrate hydrate.
 装置:液体クロマトグラフ装置(Waters Corporation製)
 検出器:紫外吸光光度計(Waters Corporation製)
 測定波長:210nm
 カラム:内径4.6mm、長さ250mmのステンレス管に、5μmの液体クロマトグラフィー用オクタデシルシリル化シリカゲルが充填されたもの。
Device: Liquid chromatograph device (manufactured by Waters Corporation)
Detector: Ultraviolet absorptiometer (manufactured by Waters Corporation)
Measurement wavelength: 210 nm
Column: A stainless tube having an inner diameter of 4.6 mm and a length of 250 mm packed with 5 μm octadecylsilylated silica gel for liquid chromatography.
 移動相:りん酸二水素ナトリウム12.0gを水2000mLに添加し溶解させた後、りん酸を加えて、pH2.2に調整した混合液。 Mobile phase: A mixed solution prepared by adding 12.0 g of sodium dihydrogen phosphate to 2000 mL of water and dissolving it, and then adding phosphoric acid to adjust the pH to 2.2.
 流量:毎分1.0mL
 カラム温度:30℃付近の一定温度
 測定時間:30分
 (BET比表面積)
 原料のクエン酸第二鉄及び改質されたクエン酸第二鉄水和物のBET比表面積は、下記条件で窒素の分散圧が0.1~0.3の範囲で各分散圧での窒素吸着量を測定し、分散圧と窒素吸着量からBET法により解析し算出した。
Flow rate: 1.0 mL per minute
Column temperature: constant temperature around 30 ° C Measurement time: 30 minutes (BET specific surface area)
The BET specific surface areas of the raw material ferric citrate and the modified ferric citrate hydrate are such that the nitrogen dispersion pressure is in the range of 0.1 to 0.3 under the following conditions. The amount of adsorption was measured and analyzed by the BET method from the dispersion pressure and the amount of nitrogen adsorbed and calculated.
 装置:比表面積測定装置(MicrotracBEL製)
 測定方法:定容量式窒素吸着法
 試料量:約100mg
 前処理温度:40℃
 前処理時間:1時間
 (鉄含有量)
 酸化還元滴定法によるクエン酸第二鉄水和物の鉄含有量は、下記条件で測定した。以下の実施例及び比較例において、クエン酸第二鉄水和物の鉄含有量は、当該条件で測定される、クエン酸第二鉄水和物の質量に対する鉄の質量の割合である。
Device: Specific surface area measuring device (made by MicrotracBEL)
Measurement method: Constant volume nitrogen adsorption method Sample amount: Approximately 100 mg
Pretreatment temperature: 40 ° C
Pretreatment time: 1 hour (iron content)
The iron content of the ferric citrate hydrate by the redox titration method was measured under the following conditions. In the following Examples and Comparative Examples, the iron content of ferric citrate hydrate is the ratio of the mass of iron to the mass of ferric citrate hydrate measured under the conditions.
 装置:滴定用ビュレット(アズワン製)
 測定方法:酸化還元滴定法
 滴定剤:チオ硫酸ナトリウム溶液
 指示薬:デンプン試薬
 試料量:約1g
 (水分量)
 KFによる原料のクエン酸第二鉄の水分量は、下記条件で測定した。以下の実施例及び比較例において、原料のクエン酸第二鉄の水分量は、当該条件で測定される、原料のクエン酸第二鉄の質量に対する水の質量の割合である。なお、水分量は、当該条件にて3回測定した平均値を採用した。
Equipment: Burette for titration (made by AS ONE)
Measurement method: Redox titration method Titrant: Sodium thiosulfate solution Indicator: Starch reagent Sample amount: Approx. 1 g
(amount of water)
The water content of ferric citrate as a raw material measured by KF was measured under the following conditions. In the following Examples and Comparative Examples, the water content of ferric citrate as a raw material is the ratio of the mass of water to the mass of ferric citrate as a raw material measured under the conditions. In addition, the water content used the average value measured 3 times on the said conditions.
 装置:水分測定装置(三菱化学製)
 測定方法:カールフィッシャー滴定容量法
 滴定剤:SS-Z(三菱化学製)
 溶剤:無水メタノール
 試料量:約50mg
 (有機溶媒量)
 GCによる原料のクエン酸第二鉄の有機溶媒量の測定は以下の条件にて行った。以下の実施例及び比較例において、原料のクエン酸第二鉄の有機溶媒量は、当該条件で測定される有機溶媒のピーク面積値から検量線法により算出した、原料のクエン酸第二鉄の質量に対する有機溶媒の質量の割合である。
Equipment: Moisture analyzer (Made by Mitsubishi Chemical)
Measurement method: Karl Fischer titration volume method Titrant: SS-Z (Mitsubishi Chemical)
Solvent: anhydrous methanol Sample amount: about 50mg
(Amount of organic solvent)
The amount of organic solvent of ferric citrate as a raw material was measured by GC under the following conditions. In the following Examples and Comparative Examples, the organic solvent amount of the ferric citrate as a raw material was calculated by a calibration curve method from the peak area value of the organic solvent measured under the conditions, and the ferric citrate as a raw material It is the ratio of the mass of the organic solvent to the mass.
 装置:ガスクロマトグラフ装置(Agilent Technologies, Inc.製)
 検出器:水素炎イオン化検出器(Agilent Technologies, Inc.製)
 導入方式:ヘッドスペース法
 カラム:内径0.53mm、長さ30mのフューズドシリカ管の内面にガスクロマトグラフィー用ポリエチレングリコールを厚さ1μmで被覆されたもの。
Device: Gas Chromatograph (Agilent Technologies, Inc.)
Detector: Hydrogen flame ionization detector (Agilent Technologies, Inc.)
Introduction method: Headspace method Column: A fused silica tube having an inner diameter of 0.53 mm and a length of 30 m, which is coated with polyethylene glycol for gas chromatography in a thickness of 1 μm.
 カラム温度:注入後50℃6分、その後毎分40℃で220℃まで昇温し、220℃で5分間維持する。 Column temperature: 50 ° C. for 6 minutes after injection, then increase to 220 ° C. at 40 ° C./min and maintain at 220 ° C. for 5 minutes.
 カラム圧力:3psi
 注入温度:250℃
 検出器温度:250℃
 キャリヤーガス:ヘリウム
 スプリット:1/10
 ヘッドスペース加熱温度:90℃
 ヘッドスペース加熱時間:30分間
 (マグネシウムの残留量)
 ICP-OESによるクエン酸第二鉄水和物中のマグネシウムの残留量の測定は以下の条件にて行った。以下の実施例及び比較例において、クエン酸第二鉄水和物中のマグネシウムの残留量は、当該条件で測定されるマグネシウムのピーク面積値から検量線法により算出した、クエン酸第二鉄水和物の質量に対するマグネシウムの質量の割合である。
Column pressure: 3 psi
Injection temperature: 250 ℃
Detector temperature: 250 ℃
Carrier gas: Helium Split: 1/10
Headspace heating temperature: 90 ° C
Headspace heating time: 30 minutes (residual amount of magnesium)
The residual amount of magnesium in ferric citrate hydrate was measured by ICP-OES under the following conditions. In the following Examples and Comparative Examples, the residual amount of magnesium in the ferric citrate hydrate was calculated by the calibration curve method from the peak area value of magnesium measured under the conditions, ferric citrate water. It is the ratio of the mass of magnesium to the mass of the sword.
 装置:誘導結合プラズマ発光分光分析装置(サーモフィッシャーサイエンティフィック製)
 RFパワー:1150W
 ネプライザーガス流量:0.70L/分
 (構成元素以外の元素量)
 ICP-OESによる原料のクエン酸第二鉄中の構成元素以外の元素量の測定は以下の条件にて行った。以下の実施例及び比較例において、原料のクエン酸第二鉄中の構成元素以外の元素量は、当該条件で測定される構成元素以外の元素のピーク面積値から検量線法により算出した、原料のクエン酸第二鉄の質量に対する構成元素以外の元素の質量の割合である。
Equipment: Inductively coupled plasma optical emission spectrophotometer (Made by Thermo Fisher Scientific)
RF power: 1150W
Neprizer gas flow rate: 0.70 L / min (amount of elements other than constituent elements)
The amount of elements other than the constituent elements in the raw material ferric citrate was measured by ICP-OES under the following conditions. In the following Examples and Comparative Examples, the amount of elements other than the constituent elements in the ferric citrate of the raw material was calculated by the calibration curve method from the peak area values of the elements other than the constituent elements measured under the conditions, the raw material Is the ratio of the mass of elements other than the constituent elements to the mass of ferric citrate.
 装置:誘導結合プラズマ発光分光分析装置(サーモフィッシャーサイエンティフィック製)
 RFパワー:1150W
 ネプライザーガス流量:0.70L/min.
 (副生塩等の含有の有無)
 XRDによるクエン酸第二鉄水和物中の副生塩の含有の有無の評価は以下の条件にて行った。なお、1.541858オングストロームの波長を有するCuKα放射線を使用した。
Equipment: Inductively coupled plasma optical emission spectrophotometer (Made by Thermo Fisher Scientific)
RF power: 1150W
Neprizer gas flow rate: 0.70 L / min.
(Presence or absence of by-product salt, etc.)
The presence or absence of the by-product salt contained in the ferric citrate hydrate by XRD was evaluated under the following conditions. Note that CuKα radiation having a wavelength of 1.541858 Å was used.
 装置:粉末X線回折装置(Rigaku製)
 電圧:40kV
 電流:30mA
 サンプリング幅:0.020°
 スキャンスピード:1.0°/分
 スキャン範囲:始角は5°、終了角は60°
 以下、実施例及び比較例で用いた原料のクエン酸第二鉄は、市販品としてA社製及びB社製のクエン酸第二鉄を使用し、また、下記製造例1にて調製したものを用いた。これらの原料のクエン酸第二鉄中の水分及び有機溶媒の含有量等の分析結果は以下の表1のとおりである。なお、上記改質体の鉄とクエン酸分子構造とのモル比率及び原料の鉄とクエン酸分子構造とのモル比率は、上記の方法により測定した改質体及び原料のクエン酸第二鉄の、鉄及びクエン酸由来の分子構造の含有量並びに鉄及びクエン酸の分子量(55.84及び192.12)を用いてそれぞれ下記式により算出した。
Equipment: powder X-ray diffractometer (made by Rigaku)
Voltage: 40kV
Current: 30mA
Sampling width: 0.020 °
Scan speed: 1.0 ° / min Scan range: Start angle is 5 °, end angle is 60 °
Hereinafter, the ferric citrate as a raw material used in Examples and Comparative Examples is a commercially available ferric citrate manufactured by Company A and Company B, and is prepared in Production Example 1 below. Was used. The results of analysis of the water content and the content of the organic solvent in the ferric citrate of these raw materials are shown in Table 1 below. Incidentally, the molar ratio of the iron and citric acid molecular structure of the modified body and the molar ratio of the iron and citric acid molecular structure of the raw material, the modified body and ferric citrate of the raw material measured by the method described above. , And the contents of the molecular structures derived from iron and citric acid and the molecular weights of iron and citric acid (55.84 and 192.12) were calculated by the following formulas, respectively.
 (モル比率)=(クエン酸由来の分子構造の含有量)/(クエン酸由来の分子構造の分子量)/(鉄含有量)×(鉄分子量)
=(クエン酸含有量)/(クエン酸分子量)/(鉄含有量)×(鉄分子量)
(Molar ratio) = (Content of molecular structure derived from citric acid) / (Molecular weight of molecular structure derived from citric acid) / (Iron content) × (Molecular weight of iron)
= (Citric acid content) / (citric acid molecular weight) / (iron content) x (iron molecular weight)
Figure JPOXMLDOC01-appb-T000001
 [製造例1]
 攪拌翼、温度計を取り付けた500mLの四つ口フラスコに、塩化第二鉄六水和物40.0gと水160mLを加え攪拌した。次いで、水酸化ナトリウム17.7gと水160mLから調製した水溶液を0~10℃で2.5時間かけて滴下した。次いで、0~10℃で1時間撹拌した後、遠心分離により固体を分離し、水80mLで固体を2回洗浄し、水酸化第二鉄の湿体を得た。
Figure JPOXMLDOC01-appb-T000001
[Production Example 1]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g of ferric chloride hexahydrate and 160 mL of water were added and stirred. Then, an aqueous solution prepared from 17.7 g of sodium hydroxide and 160 mL of water was added dropwise at 0 to 10 ° C over 2.5 hours. Then, after stirring at 0 to 10 ° C. for 1 hour, the solid was separated by centrifugation, and the solid was washed twice with 80 mL of water to obtain a wet body of ferric hydroxide.
 攪拌翼、温度計を取り付けた200mLの四つ口フラスコに、クエン酸無水物37.0gと水48mLを加え攪拌した。次いで、水酸化第二鉄の湿体を加えた後、80℃付近まで加温し、75~85℃で2時間撹拌した。25℃付近まで冷却した後、加圧濾過により濾過して不溶物を除去し、濾液を得た。アセトン800mLに、20~30℃で15分間かけて得られた濾液を滴下した。20~30℃で1時間撹拌した後、加圧濾過により固体を濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体とアセトン400mLを20~30℃で30分間撹拌した後、加圧濾過により固体を濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、原料のクエン酸第二鉄30.1gを得た。 37.0 g of citric acid anhydride and 48 mL of water were added to a 200 mL four-necked flask equipped with a stirring blade and a thermometer and stirred. Then, after adding a wet body of ferric hydroxide, the mixture was heated to about 80 ° C. and stirred at 75 to 85 ° C. for 2 hours. After cooling to around 25 ° C., filtration was performed by pressure filtration to remove insoluble matter, and a filtrate was obtained. The filtrate obtained was added dropwise to 800 mL of acetone at 20 to 30 ° C. over 15 minutes. After stirring at 20 to 30 ° C for 1 hour, the solid was filtered by pressure filtration, and the filtered solid was washed twice with 80 mL of acetone. The obtained wet body and 400 mL of acetone were stirred at 20 to 30 ° C. for 30 minutes, the solid was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C for 15 hours to obtain 30.1 g of ferric citrate as a raw material.
 [実施例1]
 攪拌翼、温度計を取り付けた100mLの四つ口フラスコに、クエン酸一水和物0.33g(原料のクエン酸第二鉄の無水物換算量100gに対してクエン酸9.1g)と水8mLを加え攪拌し、クエン酸水溶液を調製した。次いで、原料のクエン酸第二鉄としてA社製クエン酸第二鉄4.0g(クエン酸第二鉄の無水物換算量:3.3g)を15分間かけて少しずつ加え攪拌した。50~60℃で30分間撹拌した後、さらに、20~30℃で30分間撹拌し、原料のクエン酸第二鉄の全量が溶解し、溶液が形成したことを確認した。さらに、塩化第二鉄六水和物0.65g(原料のクエン酸第二鉄の無水物換算量100gに対して塩化第二鉄11.8g)と水1mLから調製した塩化第二鉄水溶液を加え、20~30℃で30分間撹拌した。アセトン30mLに、20~30℃で15分間かけて得られた溶液を滴下した。
[Example 1]
In a 100-mL four-necked flask equipped with a stirring blade and a thermometer, 0.33 g of citric acid monohydrate (9.1 g of citric acid per 100 g of anhydrous ferric citrate as a raw material) and water. 8 mL was added and stirred to prepare an aqueous citric acid solution. Next, 4.0 g of ferric citrate manufactured by Company A (an amount of ferric citrate equivalent to an anhydride: 3.3 g) as ferric citrate as a raw material was added little by little over 15 minutes and stirred. After stirring at 50 to 60 ° C. for 30 minutes and further at 20 to 30 ° C. for 30 minutes, it was confirmed that the entire amount of ferric citrate as a raw material was dissolved and a solution was formed. Further, an aqueous ferric chloride solution prepared from 0.65 g of ferric chloride hexahydrate (11.8 g of ferric chloride based on 100 g of the anhydrous equivalent of ferric citrate as a raw material) and 1 mL of water was used. In addition, the mixture was stirred at 20 to 30 ° C for 30 minutes. The solution obtained was added dropwise to 30 mL of acetone at 20 to 30 ° C. over 15 minutes.
 20~30℃で1時間撹拌した後、加圧濾過により固体を濾過し、アセトン8mLで濾過後の固体を2回洗浄した。得られた湿体とアセトン20mLを20~30℃で30分間撹拌した後、加圧濾過により固体を濾過し、アセトン8mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、さらに、40℃40RH%の雰囲気下に12時間保持することにより、改質されたクエン酸第二鉄水和物としてクエン酸第二鉄水和物3.7gを得た。原料のクエン酸第二鉄の重量を基準とした改質されたクエン酸第二鉄水和物の製造収率は92.0%であった。また、改質されたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は32.6m2/gであり、HPLCによる純度は82.78%であった。また、改質されたクエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ19.2質量%、57.9質量%であり、鉄に対するクエン酸のモル比率は0.88であった。 After stirring at 20 to 30 ° C. for 1 hour, the solid was filtered by pressure filtration, and the filtered solid was washed twice with 8 mL of acetone. The obtained wet body and 20 mL of acetone were stirred at 20 to 30 ° C. for 30 minutes, the solid was filtered by pressure filtration, and the solid after filtration was washed twice with 8 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours, and further kept in an atmosphere at 40 ° C. and 40 RH% for 12 hours to obtain a modified ferric citrate hydrate. 3.7 g of iron hydrate was obtained. The production yield of the modified ferric citrate hydrate based on the weight of the raw material ferric citrate was 92.0%. The BET specific surface area of the modified ferric citrate hydrate determined by the nitrogen adsorption method was 32.6 m 2 / g, and the purity determined by HPLC was 82.78%. Further, the contents of iron and citric acid in the modified ferric citrate hydrate were 19.2% by mass and 57.9% by mass, respectively, and the molar ratio of citric acid to iron was 0.88. Met.
 [実施例2~9、比較例1、2]
 塩化第二鉄六水和物及び/又はクエン酸一水和物の使用量を変更したこと、又は、塩化第二鉄六水和物を使用しなかったこと以外は、実施例1と同様にして実施した。条件と結果を表2に示した。なお、実施例5において、原料のクエン酸第二鉄を加え、50~60℃で30分間撹拌した時点で、原料のクエン酸第二鉄が全量溶解しなかったため、さらに、70~80℃で1.5時間撹拌し、全量が溶解したことを確認した。また、実施例1~4及び比較例1における、原料のクエン酸第二鉄の無水物換算量100g(100質量部)に対する塩化第二鉄の質量部と、改質されたクエン酸第二鉄水和物のBET比表面積の結果とのプロット図を図1に示した。
[Examples 2 to 9, Comparative Examples 1 and 2]
Same as Example 1 except that the amount of ferric chloride hexahydrate and / or citric acid monohydrate used was changed or ferric chloride hexahydrate was not used. It was carried out. The conditions and results are shown in Table 2. In Example 5, when ferric citrate as a raw material was added and stirred for 30 minutes at 50 to 60 ° C., the ferric citrate as a raw material was not completely dissolved. After stirring for 1.5 hours, it was confirmed that the whole amount was dissolved. Further, in Examples 1 to 4 and Comparative Example 1, a part by mass of ferric chloride with respect to 100 g (100 parts by mass) of an anhydrous equivalent of ferric citrate as a raw material, and modified ferric citrate A plot of the results of the BET specific surface area of the hydrate is shown in FIG.
Figure JPOXMLDOC01-appb-T000002
 [実施例10、11]
 使用する原料のクエン酸第二鉄を変更した以外は、実施例1と同様にして実施した。条件と結果を表3に示した。
Figure JPOXMLDOC01-appb-T000002
[Examples 10 and 11]
The same procedure as in Example 1 was carried out except that the ferric citrate used as the starting material was changed. The conditions and results are shown in Table 3.
 [比較例3、4]
 使用する原料のクエン酸第二鉄を変更した以外は、比較例1と同様にして実施した。条件と結果を表3に示した。
[Comparative Examples 3 and 4]
The same procedure as in Comparative Example 1 was repeated except that the ferric citrate used as the starting material was changed. The conditions and results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 以下、工程1によるクエン酸第二鉄水和物の調製例を実施例12~26及び比較例5~9に示す。
Figure JPOXMLDOC01-appb-T000003
Hereinafter, preparation examples of ferric citrate hydrate according to step 1 are shown in Examples 12 to 26 and Comparative Examples 5 to 9.
 [実施例12]
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、クエン酸一水和物40.0g(190.3mmol)と水140mL(クエン酸1gに対して3.8mL)を加え撹拌し、クエン酸水溶液を調製した。次いで、水酸化マグネシウム17.7g(303.3mmol、塩化第二鉄に対して0.85当量)を15分間かけて加えた後、40℃付近まで加温し、水酸化マグネシウムが溶解したことを確認した。塩化第二鉄六水和物64.3g(237.9mmol、クエン酸に対して1.25当量)を40℃以上で加えた後、55℃付近まで加温し、50~60℃で1時間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は169mLであり、クエン酸1gに対して4.6mLであった。)得られた溶液を、2-プロパノール300mLに、35~45℃で15分間かけて滴下した。35~45℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、2-プロパノール60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄した。
[Example 12]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (190.3 mmol) of citric acid monohydrate and 140 mL of water (3.8 mL per 1 g of citric acid) were added and stirred, and the mixture was stirred. An aqueous acid solution was prepared. Then, 17.7 g of magnesium hydroxide (303.3 mmol, 0.85 equivalent to ferric chloride) was added over 15 minutes, and then heated up to around 40 ° C. to confirm that the magnesium hydroxide was dissolved. confirmed. Ferric chloride hexahydrate 64.3 g (237.9 mmol, 1.25 equivalents relative to citric acid) was added at 40 ° C. or higher, then warmed to around 55 ° C., and at 50 to 60 ° C. for 1 hour. After stirring, it was confirmed that ferric chloride hexahydrate was dissolved. (The total amount of water in the solution was 169 mL, and was 4.6 mL with respect to 1 g of citric acid.) The obtained solution was added dropwise to 300 mL of 2-propanol at 35 to 45 ° C. over 15 minutes. . The mixture was stirred at 35 to 45 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the filtered solid was washed twice with a mixed solvent of 60 mL of 2-propanol and 20 mL of water.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン250mLを加え、25~35℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、クエン酸第二鉄水和物41.1g(クエン酸一水和物の重量を基準とした製造収率102.8%)を得た。 The obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 41.1 g of ferric citrate hydrate (production yield 102.8% based on the weight of citric acid monohydrate). It was
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は17.8m2/gであり、HPLCによる純度は99.84%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ19.4%、54.0%であり、鉄に対するクエン酸由来の分子構造のモル比率は0.81であった。また、ICP-OESでの分析により、副生塩由来の元素であるマグネシウムの残留量は2.4%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は16.0%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 17.8 m 2 / g, and the purity by HPLC was 99.84%. The contents of iron and citric acid in the ferric citrate hydrate were 19.4% and 54.0%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.81. It was Further, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 2.4%. The water content of ferric citrate hydrate was 16.0% as analyzed by KF.
 [実施例13]
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、クエン酸一水和物40.0g(190.3mmol)と水140mL(クエン酸1gに対して3.8mL)を加え撹拌し、クエン酸水溶液を調製した。次いで、水酸化マグネシウム17.7g(303.3mmol、塩化第二鉄に対して0.85当量)を15分間かけて加えた後、40℃付近まで加温し、水酸化マグネシウムが溶解したことを確認した。塩化第二鉄六水和物64.3g(237.9mmol、クエン酸に対して1.25当量)を40℃以上で加えた後、55℃付近まで加温し、50~60℃で1時間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は169mLであり、クエン酸1gに対して4.6mLであった。)得られた溶液を、2-プロパノール300mLに、35~45℃で15分間かけて滴下した。35~45℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、2-プロパノール60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄した。
[Example 13]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (190.3 mmol) of citric acid monohydrate and 140 mL of water (3.8 mL for 1 g of citric acid) were added and stirred, and the mixture was stirred. An aqueous acid solution was prepared. Then, 17.7 g of magnesium hydroxide (303.3 mmol, 0.85 equivalent with respect to ferric chloride) was added over 15 minutes, and then warmed up to around 40 ° C. to dissolve magnesium hydroxide. confirmed. After adding 64.3 g (237.9 mmol, 1.25 equivalents to citric acid) of ferric chloride hexahydrate at 40 ° C. or higher, heat up to around 55 ° C. and at 50 to 60 ° C. for 1 hour. After stirring, it was confirmed that ferric chloride hexahydrate was dissolved. (The total amount of water in the solution was 169 mL, and was 4.6 mL with respect to 1 g of citric acid.) The obtained solution was added dropwise to 300 mL of 2-propanol at 35 to 45 ° C. over 15 minutes. .. The mixture was stirred at 35 to 45 ° C for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with a mixed solvent of 60 mL of 2-propanol and 20 mL of water.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン200mL及び水100mLから調製した混合溶媒を加え、40℃付近まで加温した後、35~45℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄した。さらに、撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン250mLを加え、25~35℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、クエン酸第二鉄水和物40.0g(クエン酸一水和物の重量を基準とした製造収率100.0%)を得た。 To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, the obtained wet body, a mixed solvent prepared from 200 mL of acetone and 100 mL of water were added, and the mixture was heated up to about 40 ° C. and then heated at 35 to 45 ° C. Stir for minutes. The obtained suspension was filtered by pressure filtration, and the filtered solid was washed twice with a mixed solvent of 60 mL of acetone and 20 mL of water. Further, the obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C. for 30 minutes. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 40.0 g of ferric citrate hydrate (production yield 100.0% based on the weight of citric acid monohydrate). It was
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は18.2m2/gであり、HPLCによる純度は99.85%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ19.8%、54.9%であり、鉄に対するクエン酸由来の分子構造のモル比率は0.81であった。また、XRDでの分析により、図2に示すX線回折チャートが得られ、クエン酸第二鉄水和物に特有のハローパターンのみを示し、クエン酸や塩化第二鉄等の各原材料及び副生塩である塩化マグネシウム等に由来するピークは検出されなかった。さらに、ICP-OESでの分析により、副生塩由来の元素であるマグネシウムの残留量は1.1%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は16.9%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 18.2 m 2 / g, and the purity by HPLC was 99.85%. The contents of iron and citric acid in the ferric citrate hydrate were 19.8% and 54.9%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.81. It was Moreover, the X-ray diffraction chart shown in FIG. 2 was obtained by the analysis by XRD, and only the halo pattern peculiar to ferric citrate hydrate was shown, and each raw material such as citric acid and ferric chloride and sub-materials No peak derived from raw salt such as magnesium chloride was detected. Furthermore, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 1.1%. The water content of ferric citrate hydrate was 16.9% as analyzed by KF.
 [実施例14~21、比較例5~7]
 水酸化マグネシウム及び塩化第二鉄六水和物の使用量を変更したこと以外は、実施例13と同様にして実施した。条件と結果を表4に示した。
[Examples 14 to 21, Comparative Examples 5 to 7]
The procedure of Example 13 was repeated, except that the amounts of magnesium hydroxide and ferric chloride hexahydrate used were changed. The conditions and results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 [実施例22~25]
 水の使用量を変更したこと以外は、実施例13と同様にして実施した。条件と結果を表5に示した。
Figure JPOXMLDOC01-appb-T000004
[Examples 22 to 25]
Example 13 was carried out in the same manner as in Example 13 except that the amount of water used was changed. The conditions and results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 [実施例26]
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、クエン酸無水物40.0g(208.2mmol)と水116mL(クエン酸1gに対して2.9mL)を加え撹拌し、クエン酸水溶液を調製した。次いで、水酸化マグネシウム18.2g(312.3mmol、塩化第二鉄に対して0.67当量)を15分間かけて加えた後、45℃付近まで加温し、水酸化マグネシウムが溶解したことを確認した。塩化第二鉄六水和物84.4g(312.3mmol、クエン酸に対して1.5当量)を40℃以上で加えた後、55℃付近まで加温し、50~60℃で30分間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は150mLであり、クエン酸1gに対して3.7mLであった。)得られた溶液を、2-プロパノール300mLに、35~45℃で15分間かけて滴下した。35~45℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、2-プロパノール60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄した。
Figure JPOXMLDOC01-appb-T000005
[Example 26]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (208.2 mmol) of citric acid anhydride and 116 mL of water (2.9 mL per 1 g of citric acid) were added and stirred to obtain an aqueous citric acid solution. Was prepared. Then, 18.2 g of magnesium hydroxide (312.3 mmol, 0.67 equivalents relative to ferric chloride) was added over 15 minutes, and then heated to around 45 ° C. to confirm that magnesium hydroxide was dissolved. confirmed. Ferric chloride hexahydrate (84.4 g, 312.3 mmol, 1.5 equivalents based on citric acid) was added at 40 ° C. or higher, and then warmed to around 55 ° C., and at 50-60 ° C. for 30 minutes After stirring, it was confirmed that ferric chloride hexahydrate was dissolved. (The total amount of water in the solution was 150 mL, which was 3.7 mL with respect to 1 g of citric acid.) The obtained solution was added dropwise to 300 mL of 2-propanol at 35 to 45 ° C. over 15 minutes. . The mixture was stirred at 35 to 45 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the filtered solid was washed twice with a mixed solvent of 60 mL of 2-propanol and 20 mL of water.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン180mLを加え、40℃付近まで加温した後、35~45℃で30分間撹拌した。次いで、水140mLを加え、35~45℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン60mLと水20mLとの混合溶媒で濾過後の固体を2回洗浄し、さらに、アセトン80mLで濾過後の固体を1回洗浄した。得られた湿体を、45℃で15時間減圧乾燥し、クエン酸第二鉄水和物46.0g(クエン酸無水物の重量を基準とした製造収率115.0%)を得た。 The obtained wet body and 180 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, heated to about 40 ° C., and then stirred at 35 to 45 ° C. for 30 minutes. Then, 140 mL of water was added, and the mixture was stirred at 35 to 45 ° C. for 30 minutes. The obtained suspension was filtered by pressure filtration, the solid after filtration was washed twice with a mixed solvent of 60 mL of acetone and 20 mL of water, and further, the solid after filtration was washed once with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 45 ° C. for 15 hours to obtain ferric citrate hydrate 46.0 g (production yield 115.0% based on the weight of citric anhydride).
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は19.8m2/gであり、HPLCによる純度は99.85%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ20.5%、54.6%であり、鉄に対するクエン酸由来の分子構造のモル比率は0.77であった。また、ICP-OESでの分析により、副生塩由来の元素であるマグネシウムの残留量は0.9%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は19.8%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 19.8 m 2 / g, and the purity by HPLC was 99.85%. The contents of iron and citric acid in the ferric citrate hydrate were 20.5% and 54.6%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 0.77. It was Further, according to the analysis by ICP-OES, the residual amount of magnesium, which is an element derived from the by-product salt, was 0.9%. Further, the water content of the ferric citrate hydrate was 19.8% as analyzed by KF.
 [比較例8]
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、クエン酸ナトリウム二水和物40.0g(136.0mmol)と水48mLを加え撹拌し、クエン酸ナトリウム水溶液を調製した。次いで、塩化第二鉄六水和物36.8g(136.1mmol)を40℃以上で加えた後、85℃付近まで加温し、80~90℃で1時間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は68mLであり、クエン酸ナトリウム1gに対して1.9mLであり、換算したクエン酸1gに対して2.6mLあった。)30℃付近に冷却した後、得られた溶液を、メタノール300mLに、20~30℃で15分間かけて滴下した。20~30℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、メタノール30mLで濾過後の固体を2回洗浄した。
[Comparative Example 8]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 40.0 g (136.0 mmol) of sodium citrate dihydrate and 48 mL of water were added and stirred to prepare an aqueous sodium citrate solution. Then, 36.8 g (136.1 mmol) of ferric chloride hexahydrate was added at 40 ° C. or higher, then heated to around 85 ° C., stirred at 80 to 90 ° C. for 1 hour, and ferric chloride hexahydrate was added. It was confirmed that the hydrate was dissolved. (The total amount of water in the solution was 68 mL, 1.9 mL for 1 g of sodium citrate, and 2.6 mL for converted 1 g of citric acid.) After cooling to around 30 ° C., it was obtained. The obtained solution was added dropwise to 300 mL of methanol at 20 to 30 ° C. over 15 minutes. The mixture was stirred at 20 to 30 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 30 mL of methanol.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン250mLを加え、25~35℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、クエン酸第二鉄水和物33.2g(クエン酸ナトリウム二水和物の重量を基準とした製造収率83.0%)を得た。 The obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 33.2 g of ferric citrate hydrate (manufacturing yield 83.0% based on the weight of sodium citrate dihydrate). Obtained.
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は1.9m2/gであり、HPLCによる純度は98.77%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ13.8%、48.9%であり、鉄に対するクエン酸由来の分子構造のモル比率は1.03であった。また、XRDでの分析により、図3に示すX線回折チャートが得られ、クエン酸第二鉄水和物に特有のハローパターン以外に、回折角2θが27.5°、31.8°、45.5°、54.0°及び56.6°にピークを示した。当該ピークは、副生塩である塩化ナトリウムの特徴的なピークである。さらに、ICP-OESでの分析により、副生塩由来の元素であるナトリウムの残留量は15.3%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は10.1%であった。 The BET specific surface area of the obtained ferric citrate hydrate by the nitrogen adsorption method was 1.9 m 2 / g, and the purity by HPLC was 98.77%. The contents of iron and citric acid in the ferric citrate hydrate were 13.8% and 48.9%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 1.03. It was Moreover, the X-ray diffraction chart shown in FIG. 3 was obtained by the XRD analysis, and in addition to the halo pattern peculiar to ferric citrate hydrate, the diffraction angles 2θ were 27.5 °, 31.8 °, Peaks were shown at 45.5 °, 54.0 ° and 56.6 °. The peak is a characteristic peak of sodium chloride, which is a by-product salt. Furthermore, according to the analysis by ICP-OES, the residual amount of sodium, which is an element derived from the by-product salt, was 15.3%. Further, the water content of the ferric citrate hydrate was 10.1% as analyzed by KF.
 [比較例9]
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、水酸化ナトリウム22.8g(570.0mmol)と水100mLを加え撹拌し、水酸化ナトリウム水溶液を調製した。次いで、クエン酸一水和物40.0g(190.3mmol)加え30分間撹拌し、クエン酸一水和物が溶解したことを確認した。塩化第二鉄六水和物51.4g(190.2mmol)を加えた後、55℃付近まで加温し、50~55℃で1時間撹拌し、塩化第二鉄六水和物が溶解したことを確認した。(当該溶液中の水の総量は124mLであり、クエン酸1gに対して3.4mLであった。)30℃付近に冷却した後、得られた溶液を、メタノール600mLに、20~30℃で15分間かけて滴下した。20~30℃で1時間撹拌し、析出したクエン酸第二鉄水和物を含む懸濁液を得た。得られた懸濁液を加圧濾過により濾過し、メタノール60mLで濾過後の固体を2回洗浄した。
[Comparative Example 9]
To a 500 mL four-necked flask equipped with a stirring blade and a thermometer, 22.8 g (570.0 mmol) of sodium hydroxide and 100 mL of water were added and stirred to prepare an aqueous sodium hydroxide solution. Then, 40.0 g (190.3 mmol) of citric acid monohydrate was added and stirred for 30 minutes to confirm that the citric acid monohydrate was dissolved. After adding 51.4 g (190.2 mmol) of ferric chloride hexahydrate, the mixture was heated up to around 55 ° C. and stirred at 50 to 55 ° C. for 1 hour to dissolve the ferric chloride hexahydrate. It was confirmed. (The total amount of water in the solution was 124 mL, which was 3.4 mL for 1 g of citric acid.) After cooling to around 30 ° C., the obtained solution was added to 600 mL of methanol at 20 to 30 ° C. It dripped over 15 minutes. The mixture was stirred at 20 to 30 ° C. for 1 hour to obtain a suspension containing the precipitated ferric citrate hydrate. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 60 mL of methanol.
 撹拌翼、温度計を取り付けた500mLの四つ口フラスコに、得られた湿体とアセトン250mLを加え、25~35℃で30分間撹拌した。得られた懸濁液を加圧濾過により濾過し、アセトン80mLで濾過後の固体を2回洗浄した。得られた湿体を、30℃で15時間減圧乾燥し、クエン酸第二鉄水和物35.9g(クエン酸ナトリウム二水和物の重量を基準とした製造収率89.8%)を得た。 The obtained wet body and 250 mL of acetone were added to a 500 mL four-necked flask equipped with a stirring blade and a thermometer, and stirred at 25 to 35 ° C for 30 minutes. The obtained suspension was filtered by pressure filtration, and the solid after filtration was washed twice with 80 mL of acetone. The obtained wet body was dried under reduced pressure at 30 ° C. for 15 hours to obtain 35.9 g of ferric citrate hydrate (manufacturing yield 89.8% based on the weight of sodium citrate dihydrate). Obtained.
 得られたクエン酸第二鉄水和物の窒素吸着法によるBET比表面積は4.5m2/gであり、HPLCによる純度は98.26%であった。また、クエン酸第二鉄水和物中の鉄及びクエン酸の含有量はそれぞれ15.1%、52.2%であり、鉄に対するクエン酸由来の分子構造のモル比率は1.00であった。また、XRDでの分析により、図4に示すX線回折チャートが得られ、クエン酸第二鉄水和物に特有のハローパターン以外に、回折角2θが31.8°、45.6°及び56.6°にピークを示した。当該ピークは、副生塩である塩化ナトリウムの特徴的なピークである。さらに、ICP-OESでの分析により、副生塩由来の元素であるナトリウムの残留量は7.7%であった。また、KFでの分析により、クエン酸第二鉄水和物の水分量は11.3%であった。 The BET specific surface area of the obtained ferric citrate hydrate by a nitrogen adsorption method was 4.5 m 2 / g, and the purity by HPLC was 98.26%. The contents of iron and citric acid in the ferric citrate hydrate were 15.1% and 52.2%, respectively, and the molar ratio of the citric acid-derived molecular structure to iron was 1.00. It was Moreover, the X-ray diffraction chart shown in FIG. 4 was obtained by the XRD analysis. In addition to the halo pattern peculiar to ferric citrate hydrate, the diffraction angles 2θ were 31.8 °, 45.6 ° and It showed a peak at 56.6 °. This peak is a characteristic peak of sodium chloride, which is a by-product salt. Furthermore, the analysis by ICP-OES revealed that the residual amount of sodium, which is an element derived from the by-product salt, was 7.7%. The water content of ferric citrate hydrate was 11.3% as analyzed by KF.
 以下、工程1により得られたクエン酸第二鉄水和物を原料のクエン酸第二鉄として用いた工程2による改質されたクエン酸第二鉄水和物の製造例を実施例27~34及び比較例10に示す。
[実施例27]
 使用する原料のクエン酸第二鉄を、実施例13で得られた原料のクエン酸第二鉄水和物に変更した以外は、実施例1と同様にして実施した。条件と結果を表6に示した。
[比較例10]
 使用する原料のクエン酸第二鉄を、実施例13で得られた原料のクエン酸第二鉄水和物に変更した以外は、比較例1と同様にして実施した。条件と結果を表6に示した。
[実施例28~34]
 塩化第二鉄六水和物及び/又はクエン酸一水和物の使用量を変更したこと以外は、実施例27と同様にして実施した。条件と結果を表6に示した。
Hereinafter, Examples of producing the ferric citrate hydrate modified by the step 2 using the ferric citrate hydrate obtained in the step 1 as a starting ferric citrate are described in Examples 27 to 34 and Comparative Example 10.
[Example 27]
Example 1 was carried out in the same manner as in Example 1 except that the raw material ferric citrate used was changed to the raw material ferric citrate hydrate obtained in Example 13. The conditions and results are shown in Table 6.
[Comparative Example 10]
The same procedure as in Comparative Example 1 was carried out except that the raw material ferric citrate used was changed to the raw material ferric citrate hydrate obtained in Example 13. The conditions and results are shown in Table 6.
[Examples 28 to 34]
It carried out like Example 27 except having changed the usage-amount of ferric chloride hexahydrate and / or citric acid monohydrate. The conditions and results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (7)

  1.  水、塩化第二鉄及び原料のクエン酸第二鉄を含む溶解液と、水溶性有機溶媒とを接触させる工程2を含む、改質されたクエン酸第二鉄水和物の製造方法。 A method for producing a modified ferric citrate hydrate, which comprises a step 2 of contacting a solution containing water, ferric chloride and a raw material ferric citrate with a water-soluble organic solvent.
  2.  前記溶解液がクエン酸をさらに含む、請求項1に記載の改質されたクエン酸第二鉄水和物の製造方法。 The method for producing a modified ferric citrate hydrate according to claim 1, wherein the solution further contains citric acid.
  3.  前記水溶性有機溶媒が、少なくともケトン類又はアルコール類を含む溶媒である請求項1または2に記載の改質されたクエン酸第二鉄水和物の製造方法。 The method for producing a modified ferric citrate hydrate according to claim 1 or 2, wherein the water-soluble organic solvent is a solvent containing at least a ketone or an alcohol.
  4.  前記クエン酸第二鉄の無水物換算量100g(100質量部)に対し、前記塩化第二鉄を5~40g(5~40質量部)用いる、請求項1~3のいずれか一項に記載の改質されたクエン酸第二鉄水和物の製造方法。 4. The ferric chloride is used in an amount of 5 g to 40 g (5 to 40 parts by mass) per 100 g (100 parts by mass) of the ferric citrate in terms of an anhydride. A method for producing a modified ferric citrate hydrate.
  5.  クエン酸、塩化第二鉄、及び塩基としてマグネシウムの水酸化物または炭酸塩を、塩化第二鉄に対して塩基が0.30~0.95当量で水の中で混合して混合物を得、該混合物を有機溶媒と混合して前記原料のクエン酸第二鉄を調製する工程1をさらに含む、請求項1~4のいずれか一項に記載の改質されたクエン酸第二鉄水和物の製造方法。 Citric acid, ferric chloride, and magnesium hydroxide or carbonate as a base are mixed in water at 0.30 to 0.95 equivalents of base with respect to ferric chloride to obtain a mixture, The modified ferric citrate hydrate according to any one of claims 1 to 4, further comprising a step 1 of preparing the raw material ferric citrate by mixing the mixture with an organic solvent. Method of manufacturing things.
  6.  前記工程1において、前記クエン酸1gに対して前記水の量が2.0~8.5mLである、請求項5に記載の改質されたクエン酸第二鉄水和物の製造方法。 The method for producing a modified ferric citrate hydrate according to claim 5, wherein, in the step 1, the amount of the water is 2.0 to 8.5 mL with respect to 1 g of the citric acid.
  7.  前記工程1において、前記クエン酸に対して前記塩化第二鉄が1.0~2.5当量である、請求項5又は6に記載の改質されたクエン酸第二鉄水和物の製造方法。 7. The modified ferric citrate hydrate according to claim 5 or 6, wherein the ferric chloride is 1.0 to 2.5 equivalents relative to the citric acid in the step 1. Method.
PCT/JP2019/044384 2018-11-14 2019-11-12 Method for producing ferric citrate hydrate WO2020100911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980070605.9A CN112969456B (en) 2018-11-14 2019-11-12 Method for producing ferric citrate hydrate
JP2020556122A JP7335268B2 (en) 2018-11-14 2019-11-12 Method for producing ferric citrate hydrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018214016 2018-11-14
JP2018-214016 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020100911A1 true WO2020100911A1 (en) 2020-05-22

Family

ID=70730260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044384 WO2020100911A1 (en) 2018-11-14 2019-11-12 Method for producing ferric citrate hydrate

Country Status (3)

Country Link
JP (1) JP7335268B2 (en)
CN (1) CN112969456B (en)
WO (1) WO2020100911A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117534122A (en) * 2024-01-10 2024-02-09 华能国际电力股份有限公司德州电厂 Conductive particle based on microscale reaction layer surface and used for hydrogen production by water electrolysis and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1600302A (en) * 2003-09-22 2005-03-30 宝龄富锦生技股份有限公司 Combination of medicine containing ferric citrate, medicine level ferric citrate, preparation method, and diet nutrition containing ferric citrate in medicine level
JP2006518391A (en) * 2003-02-19 2006-08-10 グロボアジア エルエルシー Ferric organic compounds, their use, and methods for their production
JP2012162522A (en) * 2011-01-18 2012-08-30 Japan Tobacco Inc FERRIC CITRATE NOT SUBSTANTIALLY CONTAINING β OXIDATION IRON HYDROXIDE
WO2015110968A1 (en) * 2014-01-23 2015-07-30 Lupin Limited Pharmaceutical grade ferric citrate and method for its production
JP2018500308A (en) * 2014-12-17 2018-01-11 バイオフォア インディア ファーマシューティカルズ プライベート リミテッド Improved method for synthesizing organoiron compounds
JP2018526349A (en) * 2015-08-05 2018-09-13 ルピン・リミテッド Process for the preparation of pharmaceutical grade ferric citrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108125193A (en) * 2017-12-29 2018-06-08 南通市飞宇精细化学品有限公司 A kind of preparation method of food additive citric acid iron

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518391A (en) * 2003-02-19 2006-08-10 グロボアジア エルエルシー Ferric organic compounds, their use, and methods for their production
CN1600302A (en) * 2003-09-22 2005-03-30 宝龄富锦生技股份有限公司 Combination of medicine containing ferric citrate, medicine level ferric citrate, preparation method, and diet nutrition containing ferric citrate in medicine level
JP2012162522A (en) * 2011-01-18 2012-08-30 Japan Tobacco Inc FERRIC CITRATE NOT SUBSTANTIALLY CONTAINING β OXIDATION IRON HYDROXIDE
WO2015110968A1 (en) * 2014-01-23 2015-07-30 Lupin Limited Pharmaceutical grade ferric citrate and method for its production
JP2018500308A (en) * 2014-12-17 2018-01-11 バイオフォア インディア ファーマシューティカルズ プライベート リミテッド Improved method for synthesizing organoiron compounds
JP2018526349A (en) * 2015-08-05 2018-09-13 ルピン・リミテッド Process for the preparation of pharmaceutical grade ferric citrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117534122A (en) * 2024-01-10 2024-02-09 华能国际电力股份有限公司德州电厂 Conductive particle based on microscale reaction layer surface and used for hydrogen production by water electrolysis and application
CN117534122B (en) * 2024-01-10 2024-04-05 华能国际电力股份有限公司德州电厂 Conductive particle based on microscale reaction layer surface and used for hydrogen production by water electrolysis and application

Also Published As

Publication number Publication date
CN112969456A (en) 2021-06-15
JP7335268B2 (en) 2023-08-29
JPWO2020100911A1 (en) 2021-09-30
CN112969456B (en) 2023-10-17

Similar Documents

Publication Publication Date Title
Feng et al. Efficient vapor-assisted aging synthesis of functional and highly crystalline MOFs from CuO and rare earth sesquioxides/carbonates
WO2020100911A1 (en) Method for producing ferric citrate hydrate
KR20180090346A (en) AHU-377 and a method for producing crystal form II of a process hydrate of trisalbano trisodium salt
WO2001038329A1 (en) Anhydrous mirtazapine crystals and process for producing the same
JP7335269B2 (en) Method for producing ferric citrate hydrate
WO2015119235A1 (en) Production method for purified material containing crystalline l-carnosine zinc complex
JP6173931B2 (en) Method for producing alkali metal iodide or alkaline earth metal iodide
CN111032611A (en) Method for producing ferric citrate hydrate
JP6471495B2 (en) Lithium styrene sulfonate
CN110684030B (en) Synthesis method and application of hydroxyl cucurbituril CB [6] - (OH) n with controllable hydroxyl number
JP2022028365A (en) Method for producing lanthanum carbonate hydrate
KR20180057103A (en) Preparation method of ruthenium compound and ruthenium compound thereby
EP3774823B1 (en) Polymorph of sodium neridronate and preparation process thereof
JP2016185937A (en) High-purity styrenesulfonic acid lithium
JP7175235B2 (en) Method for producing ferric citrate hydrate
EP3067316A1 (en) Powdered gyro-light-type calcium silicate having high oil absorbency and large particle diameter, and production method therefor
JP2019167305A (en) Method for producing ferric citrate
EP4086227A1 (en) Metal double salt liquid dispersion, method for producing metal double salt liquid dispersion, metal oxide nanoparticle liquid dispersion, and method for producing metal oxide nanoparticle liquid dispersion
EP3589620B1 (en) Precipitation method and synthesis method of 2,6-diamino-3,5-dinitropyrazine-1-oxide
EP3875463B1 (en) Cyclic-di-amp sodium salt crystal
Maksimov et al. Structure and properties of H 8 (PW 11 TiO 39) 2 O heteropoly acid
US6515159B2 (en) S,S-ethylenediamine-N,N′-disuccinic acid iron alkali salt and a process for production thereof
JPH07224084A (en) Preparation of sennosides a and b
TW201709980A (en) Ethoxylation catalyst and manufacturing method of the same
Gill et al. Preparation, Characterization, X-Ray Structure Determination and Solution Properties of some Novel Copper (I) Bisulfate and Sulfate Salts and Their Stable Derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884504

Country of ref document: EP

Kind code of ref document: A1