WO2020100450A1 - Infrared transmission cover - Google Patents

Infrared transmission cover Download PDF

Info

Publication number
WO2020100450A1
WO2020100450A1 PCT/JP2019/038282 JP2019038282W WO2020100450A1 WO 2020100450 A1 WO2020100450 A1 WO 2020100450A1 JP 2019038282 W JP2019038282 W JP 2019038282W WO 2020100450 A1 WO2020100450 A1 WO 2020100450A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
vehicle
cover
base material
cover body
Prior art date
Application number
PCT/JP2019/038282
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 康人
英登 前田
晃司 奥村
達也 大庭
新太朗 大川
宏明 安藤
功徳 吉澤
Original Assignee
豊田合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田合成株式会社 filed Critical 豊田合成株式会社
Publication of WO2020100450A1 publication Critical patent/WO2020100450A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/52Radiator or grille guards ; Radiator grilles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present disclosure is applied to an infrared sensor mounted on a vehicle as a sensor for detecting a situation around the vehicle, and relates to an infrared transparent cover that covers an infrared transmitter and a receiver of the infrared sensor.
  • Infrared sensors or radio wave radar devices tend to be mounted on the vehicle to detect the situation around the vehicle.
  • the infrared sensor transmits infrared rays to the outside of the vehicle, and receives infrared rays reflected by hitting objects outside the vehicle, including preceding vehicles and pedestrians.
  • the radio wave radar device transmits radio waves such as millimeter waves to the outside of the vehicle and receives the radio waves reflected by an object outside the vehicle. These infrared rays and radio waves are used for recognizing the object, and for detecting the distance between the vehicle and the object, the relative speed, and the like.
  • infrared sensors or radio wave radar devices are placed in exposed states, they will be visible from outside the vehicle. Due to this, not only the infrared sensor itself or the radio wave radar device itself, but also the appearance around the infrared sensor or the radio wave radar device in the vehicle is impaired. Therefore, an infrared transparent cover that covers the infrared transmitter and receiver of the infrared sensor and has infrared transparency is disposed in front of the infrared sensor in the infrared transmission direction. Further, a radio wave transmission cover that hides the radio wave radar device and has radio wave transparency is disposed in front of the radio wave radar device in the radio wave transmission direction.
  • Patent Document 1 describes a radio wave transmission cover including a base material made of a transparent resin material. A fine concavo-convex portion is provided on the rear surface of the base material in the radio wave transmission direction.
  • the visible light is reflected and diffused in the fine irregularities, so that a sense of unity with peripheral design components can be provided and the designability can be improved.
  • the depth of the uneven portion is set to 1/4 to 1/10 or less of the wavelength of the radio wave, so that the radio wave transmission in the radio wave transmission cover is ensured.
  • the improvement in design mentioned above is required not only for the radio wave transmission cover but also for the infrared transmission cover. Therefore, it is possible to apply the fine uneven
  • the infrared transparent cover includes a base material made of a transparent resin material, and fine irregularities are provided on the rear surface of the base material in the infrared transmission direction.
  • the infrared transmittance of the infrared transmissive cover provided with fine irregularities on the rear surface of the base material was measured, it was found to be lower than 50%. It is considered that this is because a large amount of infrared light is reflected by the uneven portion. Therefore, merely providing a fine concave-convex portion on the rear surface of the base material in the transmission direction can provide a sense of unity with the peripheral design component. It is difficult for infrared rays to sufficiently pass through the infrared transparent cover, and it is difficult for the infrared sensor to sufficiently exhibit the function of recognizing an object outside the vehicle and the function of detecting the distance between the vehicle and the object, the relative speed, and the like.
  • An object of the present disclosure is to provide an infrared transmissive cover that can improve the design while ensuring the detection function of the infrared sensor.
  • the infrared transparent cover according to the first aspect for solving the above-mentioned problems is mounted on the vehicle as a sensor for detecting a situation around the vehicle, and a transmitting section for transmitting infrared rays in a wavelength range of 900 nm to 1600 nm to the outside of the vehicle.
  • an infrared transmissive cover that is applied to an infrared sensor that includes a receiver that receives infrared rays reflected by an object outside the vehicle, and that is an infrared transmissive cover that includes a cover body that covers the transmitter and the receiver, wherein the cover body is A base material formed of a transparent resin material having infrared transparency and having a back surface in the infrared transmission direction as a target surface and a wrinkle formed on the target surface, and filling the uneven portion of the wrinkle.
  • the base material is covered from the rear side in the transmission direction, and a coating layer that reflects visible light and has infrared transparency is provided, and the infrared transmittance of the cover body is 50. % Or more.
  • the term "transparency” here includes not only colorless transparency but also colored transparency (colored transparency).
  • the visible light passes through the base material. Some of the visible light that has passed through the substrate strikes the grain and is reflected at various angles. On the rear surface of the base material and the coating layer in the transmission direction, there are a spot (shade) where the visible light does not hit and a spot (shadow) where the light is blocked by the texture. Therefore, from the front of the infrared transmission cover in the transmission direction, a portion corresponding to the grain can be seen in a shaded state. Due to this shadow, a sense of unity with the design parts around the infrared transmission cover is obtained in the vehicle, and the designability is enhanced.
  • part of the visible light that has passed through the base material is reflected by the coating layer.
  • the reflectance of visible light is 1% or more.
  • the color of the visible light reflected can be seen from the front of the infrared transmission cover in the transmission direction.
  • the coating layer suppresses (shields) the parts that are located behind the cover body in the transmission direction, especially the transmission and reception parts of the infrared sensor, to be seen through.
  • the coating layer has infrared transparency.
  • the coating layer is provided by coating the base material from the rear side in the transmission direction in a state where the uneven portions of the texture are filled. Compared to the case without it, it also exerts the function of increasing the infrared transmittance in the grain. This is because if there is only a grain and no coating layer, infrared rays will be reflected (refracted) at various angles due to the irregularities of the grain. However, when the uneven portion of the grain is filled with the coating layer, the unevenness disappears or becomes gentle and the reflection amount decreases.
  • the infrared rays When infrared rays are transmitted from the transmitter of the infrared sensor, the infrared rays sequentially pass through the coating layer and the base material in the cover body. At this time, part of the infrared rays passes through the grain.
  • the infrared light transmitted through the cover main body hits an object outside the vehicle including a preceding vehicle and a pedestrian and is reflected, and then again passes through the base material and the coating layer in the cover main body in order. At this time, part of the infrared rays passes through the grain.
  • the infrared light transmitted through the cover body is received by the receiver.
  • the infrared sensor recognizes an object or detects the distance between the vehicle and the object, the relative speed, and the like based on the infrared rays transmitted and received.
  • the infrared transmittance of the cover body is 50% or more, the cover body does not easily interfere with the infrared transmission. Therefore, the infrared sensor is likely to exhibit the function of recognizing the object, the function of detecting the distance between the vehicle and the object, the relative speed, and the like. The infrared rays are reflected by the grain.
  • the grain has a depth of 5 ⁇ m to 50 ⁇ m.
  • the uneven portion of the texture becomes more visible, so that the designability is improved, but infrared rays are more likely to be reflected and the transmittance is reduced.
  • the infrared rays are less likely to be reflected and the transmittance is higher, but the uneven portion of the texture becomes less visible and the design is deteriorated.
  • An infrared transmitting cover according to a second aspect for solving the above-mentioned problems is mounted on the vehicle as a sensor for detecting a situation around the vehicle, and a transmitting section for transmitting infrared rays in a wavelength range of 900 nm to 1600 nm to the outside of the vehicle.
  • an infrared transmissive cover that is applied to an infrared sensor that includes a receiver that receives infrared rays reflected by an object outside the vehicle, and that is an infrared transmissive cover that includes a cover body that covers the transmitter and the receiver, wherein the cover body is A base material formed of a transparent resin material having infrared transparency, and a bright layer formed on the target surface with a part of the rear surface of the base material in the infrared transmission direction as a target surface; While covering the base material and the glitter layer from the rear side in the transmission direction, the coating layer that reflects visible light and has infrared transparency, the glitter layer, the core, and the core It is formed of a coating film formed of materials having different refractive indexes, and a filler including a shell that covers the core is dispersed therein, and the infrared transmittance of the cover main body is 50% or more.
  • the term "transparency” here includes not only colorless transparency but also colored transparency (colored transparency).
  • the visible light passes through the base material. After passing through the base material, part of the visible light that has entered the glitter layer strikes the surface of the shell and is reflected. Another part of the visible light is refracted at the surface of the shell, enters the shell, is reflected at the boundary between the shell and the core, and goes out of the shell again.
  • These two types of visible light interfere with each other when their phases are aligned, and only the visible light of that color is intensified. Which color of visible light is enhanced depends on the thickness of the shell.
  • the thickness of the shell it is possible to enhance visible light of a specific color having a wavelength corresponding to the thickness. From the front of the infrared transmission cover in the transmission direction, the reflected visible light looks like a metal with a specific color. That is, a color with metallic luster can be seen from the front of the infrared transmission cover in the transmission direction.
  • the color of the visible light reflected and enhanced by the shell and the core is matched with the color of the design component around the infrared transmission cover in the vehicle, so that a sense of unity with the design component is obtained and the design is improved. ..
  • the metallic luster portion of the glitter layer further enhances the feeling of unity with the design component and further improves the designability.
  • a part of visible light transmitted through the base material is reflected by the coating layer.
  • the reflectance of visible light is 1% or more. The color of the visible light reflected can be seen from the front of the infrared transmission cover in the transmission direction.
  • the infrared rays When infrared rays are transmitted from the transmitter of the infrared sensor, the infrared rays penetrate the coating layer and the base material in the cover body. At this time, part of the infrared rays passes through the bright layer and another part passes through the coating layer.
  • the infrared light that has passed through the cover main body hits an object outside the vehicle including a preceding vehicle, a pedestrian, etc., and is reflected, and then again passes through the base material and the coating layer in the cover main body.
  • part of the infrared rays passes through the bright layer and another part passes through the coating layer.
  • the infrared light transmitted through the cover body is received by the receiver.
  • the infrared sensor recognizes an object or detects the distance between the vehicle and the object, the relative speed, and the like based on the infrared rays transmitted and received.
  • the infrared sensor Since the infrared transmittance of the cover body is 50% or more, it is unlikely that the cover body will interfere with infrared transmission. Therefore, the infrared sensor is likely to exhibit the function of recognizing the object, the function of detecting the distance between the vehicle and the object, the relative speed, and the like.
  • the filler may be one in which the core is made of aluminum oxide or titanium oxide, and the shell is made of pearl mica having tin oxide or zirconium oxide. Further, the filler may be one in which the core is made of silicon dioxide and the shell is made of a glass filler made of titanium oxide.
  • the infrared transmission cover is an infrared transmission cover having the radiator grill as a peripheral design component by being arranged in a window portion formed in the radiator grill of the vehicle, and the radiator grill has a lattice portion. Therefore, it is preferable that the target surface is set at a position adjacent to the lattice portion.
  • the shaded portion due to grain or the metallic luster portion due to the glitter layer appear to be continuous with the lattice portion. Therefore, as compared with the case where the shaded portion or the metallic luster portion is distant from the lattice portion, the feeling of unity with the design component of the infrared transmission cover is further enhanced, and the designability is further improved.
  • the lattice portion has a horizontal lattice portion extending in the vehicle width direction, the horizontal lattice portion is divided into a pair of horizontal lattice constituent portions by the formation of the window portion, It is preferable that the target surface is set on the same line as both the horizontal lattice constituent parts.
  • the shaded portion due to the grain or the metallic luster portion due to the glitter layer is located between both horizontal lattice constituent portions of the horizontal lattice portion. From the front side of the infrared transmission cover in the transmission direction, it appears that both horizontal lattice constituent parts are connected in a straight line via the shaded portion or the metallic gloss portion. Therefore, the sense of unity between the infrared transparent cover and the surrounding design parts is further enhanced, and the designability is further improved.
  • FIG. 2 is an enlarged side sectional view of a grain and its peripheral portion in the infrared transmission cover of FIG. 1.
  • FIG. 3A is a front view of a vehicle to which the infrared transmissive cover of the first embodiment is applied, and
  • FIG. 3B is a partial front view showing a part of FIG.
  • the forward direction of the vehicle is the front and the reverse direction is the rear.
  • the up-down direction means the up-down direction of the vehicle
  • the left-right direction is the vehicle width direction, and coincides with the left-right direction when the vehicle is moving forward.
  • the scale is appropriately changed to show each part. This point is the same as in FIG. 7 and FIGS. 8A and 8B showing the second embodiment, and also in FIG. 9 showing a modified example.
  • a radiator grill 14 is arranged at the front of the vehicle 10, between the hood 11 and the front bumper 12, and between the pair of headlamps 13.
  • the radiator grille 14 has a function of guiding outside air such as traveling wind to a radiator (not shown) to cool the radiator.
  • the radiator grille 14 includes a horizontally long rectangular frame portion 15 and a lattice portion 16 provided in a region surrounded by the frame portion 15.
  • the lattice portion 16 has a plurality of horizontal lattice portions 17. These horizontal lattice portions 17 extend in the vehicle width direction and are bridged between both side wall portions of the frame portion 15.
  • the radiator grill 14 having such a structure corresponds to a peripheral design part for the infrared ray transmitting covers 30, 40, 50 described later.
  • a rectangular frame-shaped window portion 19 is formed in the center portion of the radiator grill 14 in the vehicle width direction. Due to the formation of the window portions 19, some of the horizontal lattice portions 17 are divided at the central portion in the vehicle width direction.
  • the portions of the horizontal lattice portion 17 on both sides of the window portion 19 in the vehicle width direction are referred to as horizontal lattice forming portions 18.
  • the two horizontal lattice forming portions 18 corresponding to one horizontal lattice portion 17 are separated from each other in the vehicle width direction with the window portion 19 interposed therebetween so as to form a pair.
  • an infrared sensor 20 shown in FIG. 1 is mounted as a sensor for detecting the situation around the vehicle 10.
  • the infrared sensor 20 transmits the infrared IR toward the front of the vehicle 10 and receives the infrared IR reflected by hitting an object outside the vehicle such as a preceding vehicle or a pedestrian.
  • Infrared IR is a type of electromagnetic wave, and has a wavelength longer than that of visible light and shorter than that of radio waves.
  • the infrared sensor 20 recognizes the object outside the vehicle based on the transmitted infrared IR and the received infrared IR, and also detects the distance between the vehicle 10 and the object, the relative speed, and the like.
  • the infrared sensor 20 transmits the infrared IR toward the front of the vehicle 10
  • the infrared sensor 20 transmits the infrared IR from the rear to the front of the vehicle 10.
  • the front in the transmission direction of the infrared IR substantially matches the front of the vehicle 10
  • the rear in the same transmission direction substantially matches the rear of the vehicle 10. Therefore, in the following description, the front in the infrared IR transmission direction is simply referred to as “front”, “front”, and the rear in the same transmission direction is simply referred to as “rear”, “rear”, and the like.
  • the latter half of the outer shell of the infrared sensor 20 is composed of the case 21, and the first half is composed of the cover 26.
  • the infrared sensor 20 is fixed to the vehicle body or the like.
  • the case 21 includes a cylindrical peripheral wall portion 22 and a bottom wall portion 23 formed at the rear end of the peripheral wall portion 22. That is, the case 21 has a bottomed cylindrical shape with an open front surface.
  • the entire case 21 is made of a resin material such as polybutylene terephthalate resin (PBT).
  • PBT polybutylene terephthalate resin
  • the cover 26 is made of a resin material containing a visible light cut pigment.
  • resin materials include polycarbonate resin (PC), polymethylmethacrylate resin (PMMA), cycloolefin polymer (COP), resin glass, and the like.
  • PC polycarbonate resin
  • PMMA polymethylmethacrylate resin
  • COP cycloolefin polymer
  • the cover 26 is arranged on the front side of the case 21 and covers the transmitter 24 and the receiver 25 from the front.
  • an infrared transmission cover 30 provided separately from the infrared sensor 20 is arranged in the window portion 19.
  • the infrared transparent cover 30 includes a plate-shaped cover body portion 32 and a mounting portion 31 that projects rearward from the rear surface of the cover body portion 32.
  • the cover body 32 is located in front of the cover 26, and indirectly covers the transmitter 24 and the receiver 25 from the front via the cover 26.
  • the infrared transparent cover 30 is fixed to the vehicle body or the like at the mounting portion 31.
  • the infrared transparent cover 30 has a function as a cover of the infrared sensor 20 and also has a function as a garnish for decorating the front portion of the vehicle 10.
  • the cover body 32 includes a base material 33, a coating layer 36, and a hard coat layer 37.
  • the base material 33 is formed of a transparent resin material having infrared IR transparency, for example, PC, PMMA, COP, or the like.
  • the transparency here includes colorless transparency as well as colored transparency (colored transparency).
  • the target surface 29 is set on a part of the rear surface of the base material 33.
  • the target surface 29 is set in a region of the horizontal lattice portion 17 divided by the formation of the window portion 19, that is, a strip-shaped region extending in the vehicle width direction.
  • the target surface 29 is located at the same or substantially the same height as each pair of the horizontal lattice forming portions 18, and has the same or substantially the same vertical width as the vertical width of the horizontal lattice forming portions 18. Both ends of the target surface 29 in the vehicle width direction are adjacent to the pair of horizontal lattice constituent parts 18. In other words, the target surface 29 is set on the same line as the pair of horizontal lattice constituent parts 18.
  • the target surface 29 is provided with a wrinkle 34 having a fine uneven pattern (wrinkle pattern).
  • the wrinkles 34 may be wrinkle patterns called convex wrinkles formed by a regular pattern, or wrinkle patterns called pearskin wrinkles formed by an irregular pattern.
  • a satin texture is formed as the texture 34.
  • the concavo-convex portion 35 of the embossment 34 has a depth of 5 ⁇ m to 50 ⁇ m.
  • the coating layer 36 is formed by applying an infrared transparent ink (IR ink), which is known as a material having a high infrared IR transmittance and a low visible light transmittance, to the rear surface of the base material 33 including the embosses 34. Is formed by.
  • IR ink infrared transparent ink
  • the coating film layer 36 covers the base material 33 from the rear side in a state where the concave and convex portions 35 of the grain 34 are filled.
  • the coating layer 36 is made of a coating material containing a black pigment.
  • the hard coat layer 37 is formed on the front surface of the base material 33 and has infrared IR transparency and hardness higher than that of the base material 33.
  • the hard coat layer 37 is formed by applying a known surface treatment agent to the front surface of the base material 33.
  • the surface treatment agent include acrylate-based, oxetane-based, and silicone-based organic hard coating agents, inorganic hard coating agents, organic-inorganic hybrid hard coating agents, and the like.
  • FIG. 4 shows the result of measurement of the relationship between the depth of the uneven portion in the texture and the infrared transmittance of the cover body.
  • the solid line indicates the measurement result of the infrared transmission cover of Example 1 in which the rear surface of the textured substrate was covered with the coating layer.
  • the alternate long and two short dashes line shows the measurement result of the infrared transmission cover of Comparative Example 1 in which the coating layer is not formed and the wrinkles are exposed.
  • the transmittance decreases as the depth of the emboss becomes deeper.
  • the transmittance is below the required value of 50% regardless of the depth of the texture.
  • the transmittance is 50% or more in the region where the depth of the wrinkles is 5 ⁇ m to 50 ⁇ m.
  • the transmittance is less than 50% in the region where the depth of the wrinkles is larger than 50 ⁇ m.
  • FIG. 5 shows the results of measuring the infrared transmittance for each wavelength in the infrared transparent cover of Comparative Example 2 in which the texture and the coating layer are not formed. It can be seen from FIG. 5 that the transmittance is 50% or more in the wavelength range of 900 nm to 1600 nm.
  • FIG. 6 shows the results of measuring the infrared transmittance for each wavelength in the infrared transparent cover of Example 2 in which the texture and the coating layer are formed. It can be seen from FIG. 6 that the transmittance is 50% or more in the wavelength range of 900 nm to 1600 nm.
  • the operation and effect of the infrared transmission cover 30 of the first embodiment will be described.
  • the visible light is transmitted through the hard coat layer 37 and the base material 33 in order.
  • a part of the visible light transmitted through the base material 33 strikes the embossed surface 34 and is reflected at various angles.
  • On the rear surface of the base material 33 and the coating layer 36 there are a portion (shade) where the visible light does not hit in the grain 34 and a portion where the light is blocked by the grain 34 and becomes dark (shadow). Therefore, from the front of the vehicle 10, a portion corresponding to the grain 34 can be seen as a shaded shaded portion 38.
  • the shaded portion 38 provides a sense of unity with the radiator grille 14, which is a design component around the infrared transmission cover 30 in the vehicle 10, and enhances the design.
  • the uneven portion 35 becomes more visible, so that the designability is improved, but the infrared IR is easily reflected and the transmittance is reduced.
  • the infrared IR is less likely to be reflected and the transmittance is higher, but the uneven portion 35 is less visible and the designability is deteriorated.
  • the embosses 34 are formed to have a depth of 5 ⁇ m to 50 ⁇ m, both improvement in design and improvement in transmittance are achieved.
  • the shaded portion 38 due to the grain 34 appears to be continuous with the lattice portion 16. Therefore, compared with the case where the shaded portion 38 is away from the lattice portion 16, the infrared transmission cover 30 has a greater sense of unity with the radiator grille 14, and the designability is further improved.
  • the shaded portion 38 is located between each pair of horizontal lattice constituent parts 18. From the front of the vehicle 10, it appears that the pair of horizontal lattice constituent parts 18 are connected in a straight line with the shaded part 38 in between. Therefore, the infrared transmission cover 30 and the radiator grille 14 have a greater sense of unity, and the design is further improved.
  • the coating layer 36 In addition, a part of the visible light transmitted through the base material 33 is reflected by the coating layer 36.
  • the reflectance of visible light is 1% or more. From the front of the vehicle 10, the color of the visible light reflected can be seen.
  • the coating film layer 36 formed of the coating material containing the black pigment exhibits a function of hiding (shielding) a member arranged behind the infrared transmission cover 30, particularly the infrared sensor 20. Therefore, when the infrared transmissive cover 30 is viewed from the front of the vehicle 10, the infrared sensor 20 located behind it is difficult to see. Therefore, the design is improved as compared with the case where the infrared sensor 20 can be seen through the infrared transparent cover 30.
  • the coating layer 36 is not provided by coating the base material 33 from the rear side in a state in which the uneven portions 35 of the embosses 34 are filled. In comparison with the above, it also exhibits the function of increasing the infrared IR transmissivity in the grain 34. This is because if the wrinkles 34 are only present and the coating layer 36 is not present, the infrared rays IR will be reflected or refracted at various angles due to the unevenness of the wrinkles 34. However, when the uneven portion 35 of the grain 34 is filled with the coating layer 36, the unevenness disappears or becomes gentle, and the reflection amount and the refraction angle decrease.
  • the infrared ray IR when the infrared ray IR is transmitted from the transmitting section 24 of the infrared sensor 20, the infrared ray IR is sequentially transmitted through the coating layer 36, the base material 33 and the hard coat layer 37 in the cover body 32. .. At this time, since the depth of the uneven portion 35 of the wrinkle 34 is as shallow as 5 ⁇ m to 50 ⁇ m, part of the infrared IR is transmitted through the wrinkle 34 and part of it is reflected by the wrinkle 34.
  • the infrared ray IR transmitted through the cover body 32 hits an object outside the vehicle including a preceding vehicle, a pedestrian, etc., and is reflected, and then, again, the hard coat layer 37, the base material 33 and the coating layer 36 in the cover body 32. Through in order. At this time, a part of the infrared ray IR passes through the grain 34 as described above.
  • the infrared IR transmitted through the cover body 32 is received by the receiver 25.
  • the infrared sensor 20 recognizes an object and detects a distance between the vehicle 10 and the object, a relative speed, and the like based on the infrared IR transmitted and received.
  • the cover body 32 Since the infrared transmittance of the cover body 32 is 50% or more, which is the required value, the cover body 32 does not easily hinder the transmission of infrared IR. The amount of the infrared IR that is attenuated by the cover body 32 can be kept within an allowable range. Therefore, the infrared sensor 20 easily exhibits the function of recognizing the object and the function of detecting the distance between the vehicle 10 and the object, the relative speed, and the like.
  • the hard coat layer 37 formed on the front surface of the base material 33 enhances the impact resistance of the infrared transparent cover 30. Therefore, the hard coat layer 37 can prevent the front surface of the infrared transparent cover 30 from being damaged by flying stones or the like. Further, the hard coat layer 37 enhances the weather resistance of the infrared transparent cover 30. Therefore, the hard coat layer 37 can prevent the infrared transparent cover 30 from being deteriorated or deteriorated due to sunlight, wind and rain, temperature change, or the like.
  • a glitter layer 41 for producing a metallic luster is formed on the base material 33 at a position corresponding to the grain 34 instead of the grain 34. This is different from the infrared transparent cover 30 of the first embodiment in that it is present.
  • the glitter layer 41 contains a metal, not only visible light but also infrared IR is reflected. That is, when the glitter layer 41 contains a metal, the infrared rays IR do not pass through the glitter layer 41. Therefore, in the second embodiment, the glitter layer 41 is formed of a coating film in which the filler 42 is dispersed in order to provide a glitter appearance without using a metal material.
  • the filler 42 has a property of transmitting infrared IR, which reflects part of visible light, transmits part of infrared IR, and reflects part thereof.
  • Each filler 42 is composed of a core 43 and a shell (coating) 44 that covers the entire core 43.
  • the shell 44 has a refractive index different from that of the core 43.
  • Both the core 43 and the shell 44 are formed of a material having infrared IR transparency.
  • each of the fillers 42 is composed of a core 43 made of a low refractive index material and a shell 44 made of a high refractive index material having a higher refractive index than the core 43. There is.
  • each filler 42 for example, pearl mica in which the core 43 is formed of aluminum oxide or titanium oxide and the shell 44 is formed of metal oxide such as tin oxide or zirconium oxide can be used. Further, as each filler 42, a glass filler in which the core 43 is formed of silica (silicon dioxide) and the shell 44 is formed of a metal oxide such as titanium oxide can be used.
  • the material forming the core 43 and the shell 44 it is desirable to select a material having a large difference in refractive index. This is because more visible light is reflected as the difference in refractive index increases.
  • the infrared IR is reflected by the filler 42 as the content of the filler 42 in the glitter layer 41 increases (the concentration increases), and the transmittance of the infrared IR decreases. From the viewpoint of making the infrared IR transmittance 50% or more, it is desirable that the concentration of the filler 42 be kept to about 2 weight percent (wt%).
  • the infrared IR transmittance varies depending on the type of the filler 42.
  • the transmittance of infrared IR tends to be higher than that when pearl mica is used.
  • the coating layer 36 is formed by applying the infrared transmitting ink (IR ink) similar to that of the first embodiment to the rear surface of the base material 33 and the rear surface of the glitter layer 41.
  • the coating layer 36 is formed of a coating material containing a black pigment. The coating layer 36 covers the base 33 and the glitter layer 41 from the rear side.
  • the hard coat layer 37 is formed on the front surface of the substrate 33, and the infrared IR transmittance of the cover body 32 is 50% or more, which is the same as in the first embodiment. Next, the operation and effect of the second embodiment configured as described above will be described.
  • the cover body 32 When the cover body 32 is irradiated with visible light from the front of the vehicle 10, the visible light sequentially passes through the hard coat layer 37 and the base material 33. A part of the visible light transmitted through the base material 33 enters the glitter layer 41. In the bright layer 41, so-called thin film interference occurs. That is, part of the visible light that has entered the glitter layer 41 strikes the surface of the shell 44 and is reflected, as indicated by the arrow in FIG.
  • the color of the visible light reflected and enhanced by the shell 44 and the core 43 of the glitter layer 41 is matched with the color of the radiator grille 14, so that a sense of unity with the radiator grille 14 can be obtained, and the design is improved. Be done.
  • the metallic luster portion 45 of the glitter layer 41 seems to be continuous with the lattice portion 16. Therefore, compared with the case where the metallic luster portion 45 is separated from the lattice portion 16, the feeling of unity with the radiator grille 14 is further enhanced, and the designability is further improved.
  • the metallic luster portion 45 is located between each pair of the horizontal lattice forming portions 18. From the front of the vehicle 10, it appears that the pair of horizontal lattice forming portions 18 are connected in a straight line with the metallic luster portion 45 interposed therebetween. As a result, the infrared transmission cover 40 and the radiator grille 14 have a greater sense of unity, and the designability is further improved.
  • the metallic luster portion 45 of the glitter layer 41 further enhances the sense of unity with the radiator grille 14 and further improves the design.
  • the coating layer 36 and the hard coat layer 37 have the same actions and effects as those of the first embodiment.
  • the infrared ray IR is transmitted from the transmitting section 24 of the infrared sensor 20
  • the infrared ray IR passes through the coating layer 36, the base material 33 and the hard coat layer 37 in the cover main body section 32 in order as shown in FIG. To Penetrate.
  • a part of the infrared IR is transmitted through the bright layer 41 and another part is transmitted through the coating layer 36.
  • the infrared light IR transmitted through the cover body 32 is reflected by hitting an object outside the vehicle including a preceding vehicle and a pedestrian, and then again transmitted through the hard coat layer 37, the base material 33 and the coating layer 36 in the cover body 32 in order. To do. At this time, a part of the infrared IR is transmitted through the bright layer 41 and another part is transmitted through the coating layer 36.
  • the infrared ray IR transmitted through the cover body 32 is received by the receiver 25.
  • the infrared sensor 20 recognizes an object or detects a distance between the vehicle 10 and the object, a relative speed, and the like based on the infrared IR transmitted and received.
  • the cover body 32 Since the transmittance of infrared IR in the cover body 32 is 50% or more, as in the first embodiment, the cover body 32 is unlikely to interfere with the transmission of infrared IR. Therefore, the infrared sensor 20 is likely to exhibit the function of recognizing the object, the function of detecting the distance between the vehicle 10 and the object, the relative speed, and the like, as in the first embodiment.
  • the grain 34 may be changed to a grain different from the satin grain, for example, a line grain.
  • the coating layer 36 having infrared IR transmission is made of a coating material containing a black pigment or pearl mica, but the coating layer 36 is white.
  • a coating material containing a chromatic pigment may be used.
  • the coating layer 36 may be formed by using a dye-based paint.
  • a filler 43 including a core 43 made of a high refractive index material and a shell 44 made of a low refractive index material having a lower refractive index than the core 43 is used. It may be used.
  • the infrared transparent covers 30 and 40 are provided separately from the infrared sensor 20, but the infrared transparent cover constitutes a part of the infrared sensor 20. Good.
  • the cover forming the first half of the outer shell of the infrared sensor 20 may be formed by the infrared transparent cover 50. That is, the cover 26 in FIG. 1 may be changed to the infrared transparent cover 50.
  • the infrared transparent cover 50 shown in FIG. 9 includes a cylindrical peripheral wall portion 51 and a plate-shaped cover main body portion 52 formed at the front end of the peripheral wall portion 51.
  • the peripheral wall portion 51 is adjacent to the front side of the peripheral wall portion 22 of the case 21 in the infrared sensor 20.
  • the peripheral portion of the cover main body 52 is expanded outward from the peripheral wall 51, but may not be expanded.
  • Most of the cover body 52 is located in front of the bottom wall 23 of the infrared sensor 20, and covers the transmitter 24 and the receiver 25 from the front.
  • the infrared transparent cover 50 has a function as a cover of the infrared sensor 20 and also has a function as a garnish for decorating the front portion of the vehicle 10.
  • the layer structure of the cover body 52 is the same as the layer structure of the cover body 32 in the first or second embodiment. Therefore, also in this modification, the same operation and effect as those of the first or second embodiment can be obtained.
  • the infrared transparent covers 30, 40, 50 may be arranged in the window portion 19 formed in the lattice portion 16 having a shape different from those of the above-described embodiments.
  • the infrared transparent covers 30, 40, 50 may be arranged in the window portion 19 having a shape different from that of each of the above embodiments. In this case, the shape of the cover main body portions 32 and 52 is changed to the shape corresponding to the shape of the lattice portion 16.
  • the infrared transparent covers 30, 40, 50 may be arranged in the front portion of the vehicle 10 in the window portion 19 formed in a design component different from the radiator grille 14.
  • the infrared transparent covers 30, 40, 50 are also applicable to the case where the infrared sensor 20 is mounted at a position different from the front part of the vehicle 10, for example, at the rear part. In this case, the infrared sensor 20 transmits the infrared IR toward the rear of the vehicle 10.
  • the infrared transparent covers 30, 40, 50 are arranged in the front in the transmission direction, that is, behind the vehicle 10 with respect to each infrared sensor 20.
  • the infrared transparent covers 30, 40, 50 are also applicable when the infrared sensor 20 is mounted on both sides of the front or rear of the vehicle 10, that is, the diagonal front side or the diagonal rear side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

An infrared transmission cover (30) is applied to an infrared sensor (20) mounted on a vehicle. The infrared sensor (20) is provided with a transmitter (24) for transmitting infrared rays (IR) in the wavelength range of 900 nm to 1600 nm toward the outside of the vehicle and a receiver (25) for receiving the infrared rays (IR) impinging on and reflected by an object outside the vehicle. An infrared transmission cover (30) is provided with a cover body (32) for covering the transmitter (24) and the receiver (25). The cover body (32) includes a base material (33) and a film layer (36). The base material (33) is formed from a transparent resin material through which infrared rays (IR) can be transmitted and has grains (34) at a portion of the rear surface in the transmission direction of the infrared rays (IR). The film layer (36) covers the base material (33) from behind in the transmission direction while filling around the irregular portions of the grains (34), and reflects visible light while allowing the infrared rays (IR) to pass therethrough. The transmissivity of the cover body (32) for the infrared rays (IR) is greater than or equal to 50%.

Description

赤外線透過カバーInfrared transparent cover
 本開示は、車両の周辺の状況を検出するセンサとして同車両に搭載された赤外線センサに適用され、同赤外線センサにおける赤外線の送信部及び受信部を覆う赤外線透過カバーに関する。 The present disclosure is applied to an infrared sensor mounted on a vehicle as a sensor for detecting a situation around the vehicle, and relates to an infrared transparent cover that covers an infrared transmitter and a receiver of the infrared sensor.
 車両の周辺の状況を検出するために、赤外線センサ又は電波レーダ装置が同車両に搭載される傾向にある。赤外線センサは、赤外線を車外へ向けて送信し、先行車両、歩行者等を含む車外の物体に当たって反射された赤外線を受信する。電波レーダ装置は、ミリ波等の電波を車外へ向けて送信し、車外の物体に当たって反射された電波を受信する。これらの赤外線及び電波は、上記物体の認識に用いられたり、車両と上記物体との距離、相対速度等の検出に用いられたりする。 Infrared sensors or radio wave radar devices tend to be mounted on the vehicle to detect the situation around the vehicle. The infrared sensor transmits infrared rays to the outside of the vehicle, and receives infrared rays reflected by hitting objects outside the vehicle, including preceding vehicles and pedestrians. The radio wave radar device transmits radio waves such as millimeter waves to the outside of the vehicle and receives the radio waves reflected by an object outside the vehicle. These infrared rays and radio waves are used for recognizing the object, and for detecting the distance between the vehicle and the object, the relative speed, and the like.
 上記赤外線センサ又は電波レーダ装置がそれぞれむき出しの状態で配置されると、それらが車両の外方から見えてしまう。このことが原因で、赤外線センサ自体又は電波レーダ装置自体はもちろんのこと、車両において赤外線センサの周辺又は電波レーダ装置の周辺の見栄えが損なわれる。そこで、赤外線センサにおける赤外線の送信部及び受信部を覆い隠し、かつ赤外線の透過性を有する赤外線透過カバーが、赤外線の送信方向における赤外線センサの前方に配置される。また、電波レーダ装置を隠し、かつ電波の透過性を有する電波透過カバーが電波の送信方向における電波レーダ装置の前方に配置される。 If the above infrared sensors or radio wave radar devices are placed in exposed states, they will be visible from outside the vehicle. Due to this, not only the infrared sensor itself or the radio wave radar device itself, but also the appearance around the infrared sensor or the radio wave radar device in the vehicle is impaired. Therefore, an infrared transparent cover that covers the infrared transmitter and receiver of the infrared sensor and has infrared transparency is disposed in front of the infrared sensor in the infrared transmission direction. Further, a radio wave transmission cover that hides the radio wave radar device and has radio wave transparency is disposed in front of the radio wave radar device in the radio wave transmission direction.
 上記赤外線透過カバー又は電波透過カバーが取り付けられた場合、それらの色等が、周辺の意匠部品の色等と異なると、その意匠部品との一体感が得られず、意匠性が低下する。そこで、色等を意匠部品に合わせることにより意匠部品との一体感を出して、意匠性を高めることのできる電波透過カバーが種々検討されている。例えば、特許文献1には、透明な樹脂材料からなる基材を備えた電波透過カバーが記載されている。電波の送信方向における基材の後面には、微細な凹凸部が設けられている。この電波透過カバーによると、微細な凹凸部において可視光を反射及び拡散させることで、周辺の意匠部品との一体感を出して、意匠性を高めることが可能である。また、凹凸部の深さが、電波の波長の1/4~1/10以下に設定されることで、電波透過カバーにおける電波の透過性が確保される。 When the infrared transparent cover or the radio wave transparent cover is attached, if the color of the infrared transparent cover or the radio wave transparent cover is different from the color of the surrounding design parts, a sense of unity with the design parts cannot be obtained, and the designability deteriorates. Therefore, various radio wave transmission covers have been studied that can enhance the design by giving a sense of unity with the design component by matching colors and the like with the design component. For example, Patent Document 1 describes a radio wave transmission cover including a base material made of a transparent resin material. A fine concavo-convex portion is provided on the rear surface of the base material in the radio wave transmission direction. According to this radio wave transmission cover, the visible light is reflected and diffused in the fine irregularities, so that a sense of unity with peripheral design components can be provided and the designability can be improved. In addition, the depth of the uneven portion is set to 1/4 to 1/10 or less of the wavelength of the radio wave, so that the radio wave transmission in the radio wave transmission cover is ensured.
特許第5610344号公報Japanese Patent No. 5610344
 上述した意匠性の向上は、上記電波透過カバーに限らず、赤外線透過カバーについても要望される。そのため、上記特許文献1に記載された微細な凹凸部を、赤外線透過カバーに適用することが考えられる。この場合、赤外線透過カバーが透明な樹脂材料からなる基材を備え、赤外線の送信方向における基材の後面に微細な凹凸部が設けられる。 The improvement in design mentioned above is required not only for the radio wave transmission cover but also for the infrared transmission cover. Therefore, it is possible to apply the fine uneven | corrugated part described in the said patent document 1 to an infrared transmission cover. In this case, the infrared transparent cover includes a base material made of a transparent resin material, and fine irregularities are provided on the rear surface of the base material in the infrared transmission direction.
 ところが、赤外線透過カバーの基材後面に微細な凹凸部を設けたものにおける赤外線の透過率を測定してみると、50%よりも低いことが判った。これは、凹凸部で反射される赤外線が多いためと考えられる。そのため、上記送信方向における基材の後面に、単に微細な凹凸部を設けるだけでは、周辺の意匠部品との一体感を出すことができるにとどまる。赤外線が赤外線透過カバーを十分透過できず、赤外線センサが車外の物体を認識する機能や、車両と物体との距離、相対速度等を検出する機能を十分発揮することが難しい。 However, when the infrared transmittance of the infrared transmissive cover provided with fine irregularities on the rear surface of the base material was measured, it was found to be lower than 50%. It is considered that this is because a large amount of infrared light is reflected by the uneven portion. Therefore, merely providing a fine concave-convex portion on the rear surface of the base material in the transmission direction can provide a sense of unity with the peripheral design component. It is difficult for infrared rays to sufficiently pass through the infrared transparent cover, and it is difficult for the infrared sensor to sufficiently exhibit the function of recognizing an object outside the vehicle and the function of detecting the distance between the vehicle and the object, the relative speed, and the like.
 なお、意匠部品との一体感を出して、意匠性を高める他の対策として、上記送信方向における基材の後面の一部に、上記微細な凹凸部よりも大きな凹部を設けることが考えられるが、赤外線が凹部を透過する際に大きく屈折するため、透過率が低い。また、別の対策として、上記送信方向における基材の後面の一部に、メタリック材料からなる塗膜層を形成することが考えられるが、赤外線が塗膜層で反射されるため、透過率が低い。このように、上記いずれの対策も、赤外線センサにおける赤外線の検出機能を確保できないという問題がある。 It should be noted that, as another measure for enhancing the designability by giving a feeling of unity with the design component, it is conceivable to provide a concave portion larger than the fine uneven portion on a part of the rear surface of the base material in the transmission direction. Since infrared rays are largely refracted when passing through the recesses, the transmittance is low. Further, as another measure, it is conceivable to form a coating layer made of a metallic material on a part of the rear surface of the base material in the transmission direction, but since infrared rays are reflected by the coating layer, the transmittance is Low. As described above, none of the above measures has a problem in that the infrared detecting function of the infrared sensor cannot be secured.
 本開示の目的は、赤外線センサの検出機能を確保しながら、意匠性の向上を図ることのできる赤外線透過カバーを提供することにある。 An object of the present disclosure is to provide an infrared transmissive cover that can improve the design while ensuring the detection function of the infrared sensor.
 上記課題を解決する第1の態様に係る赤外線透過カバーは、車両の周辺の状況を検出するセンサとして同車両に搭載され、かつ900nm~1600nmの波長域の赤外線を車外へ向けて送信する送信部と、車外の物体に当たって反射された赤外線を受信する受信部とを備える赤外線センサに適用され、前記送信部及び前記受信部を覆うカバー本体部を備える赤外線透過カバーであって、前記カバー本体部は、赤外線の透過性を有する透明な樹脂材料により形成され、かつ赤外線の送信方向における後面の一部を対象面として、同対象面にシボが形成された基材と、前記シボの凹凸部分を埋めた状態で、前記基材を前記送信方向における後側から被覆するとともに、可視光を反射し、かつ赤外線の透過性を有する塗膜層とを備え、前記カバー本体部における赤外線の透過率が50%以上である。 The infrared transparent cover according to the first aspect for solving the above-mentioned problems is mounted on the vehicle as a sensor for detecting a situation around the vehicle, and a transmitting section for transmitting infrared rays in a wavelength range of 900 nm to 1600 nm to the outside of the vehicle. And an infrared transmissive cover that is applied to an infrared sensor that includes a receiver that receives infrared rays reflected by an object outside the vehicle, and that is an infrared transmissive cover that includes a cover body that covers the transmitter and the receiver, wherein the cover body is A base material formed of a transparent resin material having infrared transparency and having a back surface in the infrared transmission direction as a target surface and a wrinkle formed on the target surface, and filling the uneven portion of the wrinkle. In the above state, the base material is covered from the rear side in the transmission direction, and a coating layer that reflects visible light and has infrared transparency is provided, and the infrared transmittance of the cover body is 50. % Or more.
 なお、ここでの透明には、無色透明のほか、着色透明(有色透明)も含まれる。
 上記の構成によれば、赤外線の送信方向における前方から可視光がカバー本体部に照射されると、その可視光は基材を透過する。基材を透過した可視光の一部は、シボに当たって様々な角度で反射される。上記送信方向における基材の後面及び塗膜層には、シボにおいて可視光の当たらない箇所(陰)と、シボによって光が遮られて暗くなる箇所(影)とができる。従って、上記送信方向における赤外線透過カバーの前方からは、シボに対応した箇所が陰影の付いた状態で見える。この陰影により、車両において赤外線透過カバーの周辺の意匠部品との一体感が得られ、意匠性が高められる。
The term "transparency" here includes not only colorless transparency but also colored transparency (colored transparency).
According to the above configuration, when the cover body is irradiated with visible light from the front in the infrared transmission direction, the visible light passes through the base material. Some of the visible light that has passed through the substrate strikes the grain and is reflected at various angles. On the rear surface of the base material and the coating layer in the transmission direction, there are a spot (shade) where the visible light does not hit and a spot (shadow) where the light is blocked by the texture. Therefore, from the front of the infrared transmission cover in the transmission direction, a portion corresponding to the grain can be seen in a shaded state. Due to this shadow, a sense of unity with the design parts around the infrared transmission cover is obtained in the vehicle, and the designability is enhanced.
 また、基材を透過した可視光の一部は塗膜層で反射される。可視光の反射率は1%以上である。上記送信方向における赤外線透過カバーの前方からは、反射された可視光の色が見える。 Also, part of the visible light that has passed through the base material is reflected by the coating layer. The reflectance of visible light is 1% or more. The color of the visible light reflected can be seen from the front of the infrared transmission cover in the transmission direction.
 従って、上記送信方向におけるカバー本体部よりも後方に位置する部品、特に赤外線センサの送信部や受信部が透けて見えることが塗膜層によって抑制(遮蔽)される。塗膜層は、赤外線の透過性を有する。 Therefore, the coating layer suppresses (shields) the parts that are located behind the cover body in the transmission direction, especially the transmission and reception parts of the infrared sensor, to be seen through. The coating layer has infrared transparency.
 ここで、塗膜層は、上述した遮蔽効果を発揮するほかにも、シボの凹凸部分を埋めた状態で、基材を上記送信方向における後側から被覆することで、塗膜層が設けられない場合に比べ、シボにおける赤外線の透過性を高める機能も発揮する。なぜなら、シボのみで塗膜層が無い場合だと、赤外線がシボの凹凸によって様々な角度で反射(屈折)してしまう。しかしながら、シボの凹凸部分を塗膜層で埋めた場合は、凹凸が無くなる、又は緩やかになり、反射量が減るからである。 Here, in addition to exhibiting the above-mentioned shielding effect, the coating layer is provided by coating the base material from the rear side in the transmission direction in a state where the uneven portions of the texture are filled. Compared to the case without it, it also exerts the function of increasing the infrared transmittance in the grain. This is because if there is only a grain and no coating layer, infrared rays will be reflected (refracted) at various angles due to the irregularities of the grain. However, when the uneven portion of the grain is filled with the coating layer, the unevenness disappears or becomes gentle and the reflection amount decreases.
 赤外線センサの送信部から赤外線が送信されると、その赤外線は、カバー本体部における塗膜層及び基材を順に透過する。この際、赤外線の一部はシボを通過する。カバー本体部を透過した赤外線は、先行車両、歩行者等を含む車外の物体に当たって反射された後、再びカバー本体部における基材及び塗膜層を順に透過する。この際、赤外線の一部はシボを通過する。カバー本体部を透過した赤外線は、受信部によって受信される。赤外線センサでは、送信及び受信された上記赤外線に基づき、物体が認識されたり、車両と同物体との距離、相対速度等が検出されたりする。 When infrared rays are transmitted from the transmitter of the infrared sensor, the infrared rays sequentially pass through the coating layer and the base material in the cover body. At this time, part of the infrared rays passes through the grain. The infrared light transmitted through the cover main body hits an object outside the vehicle including a preceding vehicle and a pedestrian and is reflected, and then again passes through the base material and the coating layer in the cover main body in order. At this time, part of the infrared rays passes through the grain. The infrared light transmitted through the cover body is received by the receiver. The infrared sensor recognizes an object or detects the distance between the vehicle and the object, the relative speed, and the like based on the infrared rays transmitted and received.
 カバー本体部における赤外線の透過率が50%以上であるため、同カバー本体部は赤外線の透過の妨げとなりにくい。そのため、赤外線センサは、上記物体を認識する機能や、車両と上記物体との距離、相対速度等を検出する機能を発揮しやすい。赤外線は、シボにて反射される。 Since the infrared transmittance of the cover body is 50% or more, the cover body does not easily interfere with the infrared transmission. Therefore, the infrared sensor is likely to exhibit the function of recognizing the object, the function of detecting the distance between the vehicle and the object, the relative speed, and the like. The infrared rays are reflected by the grain.
 上記赤外線透過カバーにおいて、前記シボは、5μm~50μmの深さを有していることが好ましい。
 シボの深さが深くなるほど、同シボの凹凸部分が見えやすくなるため、意匠性が向上するものの、赤外線が反射しやすくなって透過率が低下する。反対に、シボの深さが浅くなるほど、赤外線が反射しにくくなって透過率が高くなるものの、シボの凹凸部分が見えにくくなり意匠性が低下する。
In the infrared transparent cover, it is preferable that the grain has a depth of 5 μm to 50 μm.
As the depth of the texture becomes deeper, the uneven portion of the texture becomes more visible, so that the designability is improved, but infrared rays are more likely to be reflected and the transmittance is reduced. On the contrary, as the depth of the texture becomes shallower, the infrared rays are less likely to be reflected and the transmittance is higher, but the uneven portion of the texture becomes less visible and the design is deteriorated.
 この点、上記の構成によるように、シボが5μm~50μmの深さに形成されると、意匠性の向上と透過率の向上との両立が可能である。
 上記課題を解決する第2の態様に係る赤外線透過カバーは、車両の周辺の状況を検出するセンサとして同車両に搭載され、かつ900nm~1600nmの波長域の赤外線を車外へ向けて送信する送信部と、車外の物体に当たって反射された赤外線を受信する受信部とを備える赤外線センサに適用され、前記送信部及び前記受信部を覆うカバー本体部を備える赤外線透過カバーであって、前記カバー本体部は、赤外線の透過性を有する透明な樹脂材料により形成された基材と、赤外線の送信方向における前記基材の後面の一部を対象面として、同対象面上に形成された光輝層と、前記基材及び前記光輝層を前記送信方向における後側から被覆するとともに、可視光を反射し、かつ赤外線の透過性を有する塗膜層とを備え、前記光輝層は、コアと、前記コアとは異なる屈折率を有する材料により形成され、かつ前記コアを被覆するシェルとからなるフィラーが分散された塗膜により形成されており、前記カバー本体部における赤外線の透過率が50%以上である。
In this respect, when the wrinkles are formed to a depth of 5 μm to 50 μm as in the above configuration, it is possible to improve both the design and the transmittance.
An infrared transmitting cover according to a second aspect for solving the above-mentioned problems is mounted on the vehicle as a sensor for detecting a situation around the vehicle, and a transmitting section for transmitting infrared rays in a wavelength range of 900 nm to 1600 nm to the outside of the vehicle. And an infrared transmissive cover that is applied to an infrared sensor that includes a receiver that receives infrared rays reflected by an object outside the vehicle, and that is an infrared transmissive cover that includes a cover body that covers the transmitter and the receiver, wherein the cover body is A base material formed of a transparent resin material having infrared transparency, and a bright layer formed on the target surface with a part of the rear surface of the base material in the infrared transmission direction as a target surface; While covering the base material and the glitter layer from the rear side in the transmission direction, the coating layer that reflects visible light and has infrared transparency, the glitter layer, the core, and the core It is formed of a coating film formed of materials having different refractive indexes, and a filler including a shell that covers the core is dispersed therein, and the infrared transmittance of the cover main body is 50% or more.
 なお、ここでの透明には、無色透明のほか、着色透明(有色透明)も含まれる。
 上記の構成によれば、赤外線の送信方向における前方から可視光がカバー本体部に照射されると、その可視光は基材を透過する。基材を透過した後、光輝層に入射した可視光の一部は、シェルの表面に当たって反射される。また、可視光の別の一部は、シェルの表面で屈折してから同シェルの中に入り、シェルとコアとの境界で反射されて再びシェルの外に出ていく。こうした2種類の可視光は、位相が揃うことで互いに干渉し、その色の可視光のみが強められる。どの色の可視光が強められるかは、シェルの厚みによって異なる。そのため、シェルの厚みを調整することで、厚みに対応した波長を有する特定の色の可視光を強めることが可能である。上記送信方向における赤外線透過カバーの前方からは、反射された可視光が、特定の色を帯びた状態で金属のように輝いて見える。すなわち、上記送信方向における赤外線透過カバーの前方からは、金属光沢を伴う色が見える。
The term "transparency" here includes not only colorless transparency but also colored transparency (colored transparency).
According to the above configuration, when the cover body is irradiated with visible light from the front in the infrared transmission direction, the visible light passes through the base material. After passing through the base material, part of the visible light that has entered the glitter layer strikes the surface of the shell and is reflected. Another part of the visible light is refracted at the surface of the shell, enters the shell, is reflected at the boundary between the shell and the core, and goes out of the shell again. These two types of visible light interfere with each other when their phases are aligned, and only the visible light of that color is intensified. Which color of visible light is enhanced depends on the thickness of the shell. Therefore, by adjusting the thickness of the shell, it is possible to enhance visible light of a specific color having a wavelength corresponding to the thickness. From the front of the infrared transmission cover in the transmission direction, the reflected visible light looks like a metal with a specific color. That is, a color with metallic luster can be seen from the front of the infrared transmission cover in the transmission direction.
 さらに、シェル及びコアで反射されて強められる可視光の色が、車両において赤外線透過カバーの周辺の意匠部品の色に合わせられることで、意匠部品との一体感が得られ、意匠性が高められる。 Further, the color of the visible light reflected and enhanced by the shell and the core is matched with the color of the design component around the infrared transmission cover in the vehicle, so that a sense of unity with the design component is obtained and the design is improved. ..
 また、上記意匠部品が金属光沢を有する場合には、光輝層の金属光沢部分により、意匠部品との一体感がより高められ、意匠性が一層良好なものとなる。
 さらに、基材を透過した可視光の一部は塗膜層で反射される。可視光の反射率は1%以上である。上記送信方向における赤外線透過カバーの前方からは、反射された可視光の色が見える。
When the design component has a metallic luster, the metallic luster portion of the glitter layer further enhances the feeling of unity with the design component and further improves the designability.
Further, a part of visible light transmitted through the base material is reflected by the coating layer. The reflectance of visible light is 1% or more. The color of the visible light reflected can be seen from the front of the infrared transmission cover in the transmission direction.
 従って、上記送信方向におけるカバー本体部よりも後方に位置する部品、特に赤外線センサの送信部や受信部が透けて見えることが抑制(遮蔽)される。
 赤外線センサの送信部から赤外線が送信されると、その赤外線は、カバー本体部における塗膜層及び基材を透過する。この際、赤外線の一部は光輝層を透過し、別の一部は塗膜層を透過する。カバー本体部を透過した赤外線は、先行車両、歩行者等を含む車外の物体に当たって反射された後、再びカバー本体部における基材及び塗膜層を透過する。この際、赤外線の一部は光輝層を透過し、別の一部は塗膜層を透過する。カバー本体部を透過した赤外線は、受信部によって受信される。赤外線センサでは、送信及び受信された上記赤外線に基づき、物体が認識されたり、車両と同物体との距離、相対速度等が検出されたりする。
Therefore, it is possible to suppress (shield) the parts that are located behind the cover main body portion in the transmission direction, particularly the transmission portion and the reception portion of the infrared sensor, to be seen through.
When infrared rays are transmitted from the transmitter of the infrared sensor, the infrared rays penetrate the coating layer and the base material in the cover body. At this time, part of the infrared rays passes through the bright layer and another part passes through the coating layer. The infrared light that has passed through the cover main body hits an object outside the vehicle including a preceding vehicle, a pedestrian, etc., and is reflected, and then again passes through the base material and the coating layer in the cover main body. At this time, part of the infrared rays passes through the bright layer and another part passes through the coating layer. The infrared light transmitted through the cover body is received by the receiver. The infrared sensor recognizes an object or detects the distance between the vehicle and the object, the relative speed, and the like based on the infrared rays transmitted and received.
 カバー本体部における赤外線の透過率が50%以上であるため、同カバー本体部が赤外線の透過の妨げとなりにくい。そのため、赤外線センサは、上記物体を認識する機能や、車両と上記物体との距離、相対速度等を検出する機能を発揮しやすい。 Since the infrared transmittance of the cover body is 50% or more, it is unlikely that the cover body will interfere with infrared transmission. Therefore, the infrared sensor is likely to exhibit the function of recognizing the object, the function of detecting the distance between the vehicle and the object, the relative speed, and the like.
 上記赤外線透過カバーにおいて、前記フィラーは、前記コアが酸化アルミニウム又は酸化チタンにより形成され、かつ前記シェルが酸化スズ又は酸化ジルコニウムにより形成されたパールマイカにより構成されたものであってもよい。また、前記フィラーは、前記コアが二酸化ケイ素により形成され、かつ前記シェルが酸化チタンにより形成されたガラスフィラーにより構成されたものであってもよい。 In the infrared transparent cover, the filler may be one in which the core is made of aluminum oxide or titanium oxide, and the shell is made of pearl mica having tin oxide or zirconium oxide. Further, the filler may be one in which the core is made of silicon dioxide and the shell is made of a glass filler made of titanium oxide.
 上記赤外線透過カバーは、前記車両のラジエータグリルに形成された窓部に配置されることにより、同ラジエータグリルを周辺の意匠部品とする赤外線透過カバーであって、前記ラジエータグリルは格子部を有しており、前記対象面は、前記格子部に対し隣接する箇所に設定されていることが好ましい。 The infrared transmission cover is an infrared transmission cover having the radiator grill as a peripheral design component by being arranged in a window portion formed in the radiator grill of the vehicle, and the radiator grill has a lattice portion. Therefore, it is preferable that the target surface is set at a position adjacent to the lattice portion.
 上記の構成によれば、赤外線の送信方向における赤外線透過カバーの前方からは、シボによる陰影部分、又は光輝層による金属光沢部分が、格子部に連続しているように見える。そのため、上記陰影部分又は金属光沢部分が、格子部から遠ざかっている場合に比べ、赤外線透過カバーの意匠部品との一体感がより高められ、意匠性が一層良好なものとなる。 According to the above configuration, from the front of the infrared ray transmitting cover in the infrared ray transmitting direction, the shaded portion due to grain or the metallic luster portion due to the glitter layer appear to be continuous with the lattice portion. Therefore, as compared with the case where the shaded portion or the metallic luster portion is distant from the lattice portion, the feeling of unity with the design component of the infrared transmission cover is further enhanced, and the designability is further improved.
 上記赤外線透過カバーにおいて、前記格子部は、車幅方向に延びる横格子部を有しており、前記横格子部は、前記窓部の形成により、一対の横格子構成部に分断されており、前記対象面は、両横格子構成部と同一線上に設定されていることが好ましい。 In the infrared transparent cover, the lattice portion has a horizontal lattice portion extending in the vehicle width direction, the horizontal lattice portion is divided into a pair of horizontal lattice constituent portions by the formation of the window portion, It is preferable that the target surface is set on the same line as both the horizontal lattice constituent parts.
 上記の構成によれば、シボによる陰影部分、又は光輝層による金属光沢部分が、横格子部の両横格子構成部間に位置する。上記送信方向における赤外線透過カバーの前方からは、両横格子構成部が、陰影部分又は金属光沢部分を介して一直線状に繋がっているように見える。そのため、赤外線透過カバーと周辺の意匠部品との一体感がさらに高められ、意匠性がさらに良好なものとなる。 According to the above configuration, the shaded portion due to the grain or the metallic luster portion due to the glitter layer is located between both horizontal lattice constituent portions of the horizontal lattice portion. From the front side of the infrared transmission cover in the transmission direction, it appears that both horizontal lattice constituent parts are connected in a straight line via the shaded portion or the metallic gloss portion. Therefore, the sense of unity between the infrared transparent cover and the surrounding design parts is further enhanced, and the designability is further improved.
 上記赤外線透過カバーによれば、赤外線センサの検出機能を確保しながら、意匠性の向上を図ることができる。 With the infrared transparent cover, it is possible to improve the design while ensuring the detection function of the infrared sensor.
第1実施形態を示す図であり、赤外線センサと、同赤外線センサとは別に設けられて、赤外線の送信方向における赤外線センサの前方に配置された赤外線透過カバーとを示す側断面図。It is a figure showing a 1st embodiment, and is a sectional side view showing an infrared sensor and an infrared transparent cover which is provided separately from the infrared sensor and which is arranged in front of the infrared sensor in an infrared transmission direction. 図1の赤外線透過カバーにおけるシボ及びその周辺部分の拡大側断面図。FIG. 2 is an enlarged side sectional view of a grain and its peripheral portion in the infrared transmission cover of FIG. 1. (a)は第1実施形態の赤外線透過カバーが適用された車両の正面図、(b)は図3(a)の一部を拡大して示す部分正面図。FIG. 3A is a front view of a vehicle to which the infrared transmissive cover of the first embodiment is applied, and FIG. 3B is a partial front view showing a part of FIG. 第1実施形態の効果を説明する図であり、実施例1及び比較例1について、シボの深さと赤外線の透過率との関係を測定した結果を示すグラフ。It is a figure explaining the effect of 1st Embodiment, and is a graph which shows the result of having measured the relationship between the depth of a wrinkle and the transmittance | permeability of infrared rays about Example 1 and the comparative example 1. 第1実施形態の効果を説明する図であり、シボ及び塗膜層が形成されていない比較例2の赤外線透過カバーにおける赤外線の透過率を波長毎に測定した結果を示すグラフ。It is a figure explaining the effect of 1st Embodiment, and is a graph which shows the result of having measured the transmittance | permeability of the infrared ray in the infrared rays transmission cover of the comparative example 2 in which the wrinkle and the coating layer are not formed. 第1実施形態の効果を説明する図であり、シボ及び塗膜層が形成された実施例2の赤外線透過カバーにおける赤外線の透過率を波長毎に測定した結果を示すグラフ。It is a figure explaining the effect of 1st Embodiment, and is a graph which shows the result of having measured the transmittance | permeability of the infrared rays in the infrared transmission cover of Example 2 in which the wrinkle and the coating film layer were formed for every wavelength. 第2実施形態の赤外線透過カバーにおけるカバー本体部の部分側断面図。The partial sectional side view of the cover body part in the infrared penetration cover of a 2nd embodiment. (a)は第2実施形態におけるフィラーの概略構成を示す断面図、(b)は図8(a)の部分拡大断面図。(A) is sectional drawing which shows schematic structure of the filler in 2nd Embodiment, (b) is a partial expanded sectional view of Fig.8 (a). 赤外線透過カバーによりカバーが兼ねられた変形例の赤外線センサの側断面図。The sectional side view of the infrared sensor of the modification in which the cover also served as the infrared transparent cover.
 (第1実施形態)
 以下、赤外線透過カバーを具体化した第1実施形態について、図1~図6を参照して説明する。
(First embodiment)
Hereinafter, a first embodiment in which the infrared transparent cover is embodied will be described with reference to FIGS. 1 to 6.
 なお、以下の記載においては、車両の前進方向を前方とし、後進方向を後方として説明する。また、上下方向は車両の上下方向を意味し、左右方向は車幅方向であって車両の前進時の左右方向と一致するものとする。また、図1及び図2では、赤外線透過カバー30における各部を認識可能な大きさとするために、縮尺を適宜変更して各部を示している。この点は、第2実施形態を示す図7及び図8(a),(b)についても、また変形例を示す図9についても同様である。 Note that, in the following description, the forward direction of the vehicle is the front and the reverse direction is the rear. Further, the up-down direction means the up-down direction of the vehicle, the left-right direction is the vehicle width direction, and coincides with the left-right direction when the vehicle is moving forward. In addition, in FIGS. 1 and 2, in order to make each part of the infrared transmission cover 30 recognizable, the scale is appropriately changed to show each part. This point is the same as in FIG. 7 and FIGS. 8A and 8B showing the second embodiment, and also in FIG. 9 showing a modified example.
 図3(a)に示すように、車両10の前部であって、ボンネット11とフロントバンパ12との間であり、かつ、一対のヘッドランプ13間にはラジエータグリル14が配置されている。 As shown in FIG. 3 (a), a radiator grill 14 is arranged at the front of the vehicle 10, between the hood 11 and the front bumper 12, and between the pair of headlamps 13.
 ラジエータグリル14は、走行風等の外気をラジエータ(図示略)に導いて同ラジエータを冷却する機能を有している。ラジエータグリル14は、横長の四角環状をなす枠部15と、枠部15によって囲まれた領域に設けられた格子部16とを備えている。格子部16は、複数本の横格子部17を有している。これらの横格子部17は、車幅方向に延び、かつ枠部15の両側壁部間に架け渡されている。こうした構成のラジエータグリル14は、後述する赤外線透過カバー30,40,50にとって周辺の意匠部品に該当する。 The radiator grille 14 has a function of guiding outside air such as traveling wind to a radiator (not shown) to cool the radiator. The radiator grille 14 includes a horizontally long rectangular frame portion 15 and a lattice portion 16 provided in a region surrounded by the frame portion 15. The lattice portion 16 has a plurality of horizontal lattice portions 17. These horizontal lattice portions 17 extend in the vehicle width direction and are bridged between both side wall portions of the frame portion 15. The radiator grill 14 having such a structure corresponds to a peripheral design part for the infrared ray transmitting covers 30, 40, 50 described later.
 また、図3(b)に示すように、車幅方向におけるラジエータグリル14の中央部分には、四角枠状をなす窓部19が形成されている。窓部19の形成により、一部の横格子部17は、車幅方向における中央部分で分断されている。ここで、横格子部17のうち、車幅方向における窓部19の両外側の部分を、横格子構成部18というものとする。図3(b)に示すように、一本の横格子部17に対応する2つの横格子構成部18は、対をなすように窓部19を挟んで互いに車幅方向に離間している。 Further, as shown in FIG. 3B, a rectangular frame-shaped window portion 19 is formed in the center portion of the radiator grill 14 in the vehicle width direction. Due to the formation of the window portions 19, some of the horizontal lattice portions 17 are divided at the central portion in the vehicle width direction. Here, the portions of the horizontal lattice portion 17 on both sides of the window portion 19 in the vehicle width direction are referred to as horizontal lattice forming portions 18. As shown in FIG. 3B, the two horizontal lattice forming portions 18 corresponding to one horizontal lattice portion 17 are separated from each other in the vehicle width direction with the window portion 19 interposed therebetween so as to form a pair.
 窓部19とラジエータとの間の空間には、車両10の周辺の状況を検出するセンサとして、図1に示す赤外線センサ20が搭載されている。
 赤外線センサ20は、車両10の前方へ向けて赤外線IRを送信し、かつ先行車両、歩行者等の車外の物体に当たって反射された赤外線IRを受信する。赤外線IRは、電磁波の一種であり、可視光の波長よりも長く、電波よりも短い波長を有する。赤外線センサ20は、送信した赤外線IRと受信した赤外線IRとに基づき、車外の上記物体を認識するとともに、車両10と上記物体との距離、相対速度等を検出する。
In the space between the window 19 and the radiator, an infrared sensor 20 shown in FIG. 1 is mounted as a sensor for detecting the situation around the vehicle 10.
The infrared sensor 20 transmits the infrared IR toward the front of the vehicle 10 and receives the infrared IR reflected by hitting an object outside the vehicle such as a preceding vehicle or a pedestrian. Infrared IR is a type of electromagnetic wave, and has a wavelength longer than that of visible light and shorter than that of radio waves. The infrared sensor 20 recognizes the object outside the vehicle based on the transmitted infrared IR and the received infrared IR, and also detects the distance between the vehicle 10 and the object, the relative speed, and the like.
 なお、上述したように、赤外線センサ20が車両10の前方に向けて赤外線IRを送信することから、赤外線センサ20による赤外線IRの送信方向は、車両10の後方から前方へ向かう方向である。赤外線IRの送信方向における前方は、車両10の前方と概ね合致し、同送信方向における後方は車両10の後方と概ね合致する。そのため、以後の記載では、赤外線IRの送信方向における前方を単に「前方」、「前」等といい、同送信方向における後方を単に「後方」、「後」等というものとする。 As described above, since the infrared sensor 20 transmits the infrared IR toward the front of the vehicle 10, the infrared sensor 20 transmits the infrared IR from the rear to the front of the vehicle 10. The front in the transmission direction of the infrared IR substantially matches the front of the vehicle 10, and the rear in the same transmission direction substantially matches the rear of the vehicle 10. Therefore, in the following description, the front in the infrared IR transmission direction is simply referred to as “front”, “front”, and the rear in the same transmission direction is simply referred to as “rear”, “rear”, and the like.
 図1に示すように、赤外線センサ20の外殻部分の後半部はケース21によって構成され、前半部分はカバー26によって構成されている。赤外線センサ20は、車体等に固定されている。 As shown in FIG. 1, the latter half of the outer shell of the infrared sensor 20 is composed of the case 21, and the first half is composed of the cover 26. The infrared sensor 20 is fixed to the vehicle body or the like.
 ケース21は、筒状をなす周壁部22と、周壁部22の後端部に形成された底壁部23とを備えている。すなわち、ケース21は、前面が開放された有底筒状をなしている。ケース21の全体は、ポリブチレンテレフタレート樹脂(PBT)等の樹脂材料によって形成されている。底壁部23の前側には、赤外線IRを送信する送信部24と、赤外線IRを受信する受信部25とが配置されている。 The case 21 includes a cylindrical peripheral wall portion 22 and a bottom wall portion 23 formed at the rear end of the peripheral wall portion 22. That is, the case 21 has a bottomed cylindrical shape with an open front surface. The entire case 21 is made of a resin material such as polybutylene terephthalate resin (PBT). On the front side of the bottom wall portion 23, a transmitting portion 24 for transmitting the infrared IR and a receiving portion 25 for receiving the infrared IR are arranged.
 カバー26は、可視光カット顔料の含有された樹脂材料によって形成されている。該当する樹脂材料としては、例えば、ポリカーボネート樹脂(PC)、ポリメタクリル酸メチル樹脂(PMMA)、シクロオレフィンポリマー(COP)、樹脂ガラス等が挙げられる。カバー26は、ケース21の前側に配置されて、送信部24及び受信部25を前方から覆っている。 The cover 26 is made of a resin material containing a visible light cut pigment. Examples of applicable resin materials include polycarbonate resin (PC), polymethylmethacrylate resin (PMMA), cycloolefin polymer (COP), resin glass, and the like. The cover 26 is arranged on the front side of the case 21 and covers the transmitter 24 and the receiver 25 from the front.
 図1及び図3(a),(b)に示すように、窓部19には、赤外線センサ20とは別に設けられた赤外線透過カバー30が配置されている。赤外線透過カバー30は、板状のカバー本体部32と、カバー本体部32の後面から後方へ突出する取付部31とを備えている。カバー本体部32は、カバー26の前方に位置しており、送信部24及び受信部25を、前方からカバー26を介して間接的に覆っている。赤外線透過カバー30は、取付部31において車体等に固定されている。 As shown in FIGS. 1 and 3A and 3B, an infrared transmission cover 30 provided separately from the infrared sensor 20 is arranged in the window portion 19. The infrared transparent cover 30 includes a plate-shaped cover body portion 32 and a mounting portion 31 that projects rearward from the rear surface of the cover body portion 32. The cover body 32 is located in front of the cover 26, and indirectly covers the transmitter 24 and the receiver 25 from the front via the cover 26. The infrared transparent cover 30 is fixed to the vehicle body or the like at the mounting portion 31.
 赤外線透過カバー30は、赤外線センサ20のカバーとしての機能を有するほかに、車両10の前部を装飾するガーニッシュとしての機能も有している。
 図1に示すように、カバー本体部32は、基材33、塗膜層36及びハードコート層37を備えている。
The infrared transparent cover 30 has a function as a cover of the infrared sensor 20 and also has a function as a garnish for decorating the front portion of the vehicle 10.
As shown in FIG. 1, the cover body 32 includes a base material 33, a coating layer 36, and a hard coat layer 37.
 基材33は、赤外線IRの透過性を有する透明な樹脂材料、例えば、PC、PMMA、COP等によって形成されている。ここでの透明には、無色透明のほか、着色透明(有色透明)も含まれる。 The base material 33 is formed of a transparent resin material having infrared IR transparency, for example, PC, PMMA, COP, or the like. The transparency here includes colorless transparency as well as colored transparency (colored transparency).
 図2及び図3(b)に示すように、基材33の後面の一部には対象面29が設定されている。対象面29は、横格子部17のうち、窓部19の形成により分断された領域、すなわち、車幅方向に延びる帯状の領域に設定されている。対象面29は、各対の横格子構成部18と同じ又は略同じ高さに位置しており、横格子構成部18の上下幅と同じ又は略同じ上下幅を有している。車幅方向における対象面29の両端部は、対をなす両横格子構成部18に隣接している。表現を変えると、対象面29は対をなす両横格子構成部18と同一線上に設定されている。 As shown in FIGS. 2 and 3B, the target surface 29 is set on a part of the rear surface of the base material 33. The target surface 29 is set in a region of the horizontal lattice portion 17 divided by the formation of the window portion 19, that is, a strip-shaped region extending in the vehicle width direction. The target surface 29 is located at the same or substantially the same height as each pair of the horizontal lattice forming portions 18, and has the same or substantially the same vertical width as the vertical width of the horizontal lattice forming portions 18. Both ends of the target surface 29 in the vehicle width direction are adjacent to the pair of horizontal lattice constituent parts 18. In other words, the target surface 29 is set on the same line as the pair of horizontal lattice constituent parts 18.
 対象面29には、図1及び図2に示すように、微小な凹凸模様(皺模様)からなるシボ34が形成されている。シボ34は、規則的なパターンにより形成された、凸シボと呼ばれる皺模様であってもよいし、不規則なパターンにより形成された、梨地シボと呼ばれるシワ模様であってもよい。第1実施形態では、シボ34として、梨地シボが形成されている。シボ34における凹凸部分35は、5μm~50μmの深さを有している。 As shown in FIGS. 1 and 2, the target surface 29 is provided with a wrinkle 34 having a fine uneven pattern (wrinkle pattern). The wrinkles 34 may be wrinkle patterns called convex wrinkles formed by a regular pattern, or wrinkle patterns called pearskin wrinkles formed by an irregular pattern. In the first embodiment, a satin texture is formed as the texture 34. The concavo-convex portion 35 of the embossment 34 has a depth of 5 μm to 50 μm.
 塗膜層36は、赤外線IRの透過率が高く、かつ可視光の透過率が低い材料として知られている赤外線透過インキ(IRインキ)を、シボ34を含む基材33の後面に塗布することによって形成されている。塗膜層36は、シボ34の凹凸部分35を埋めた状態で、基材33を後側から被覆している。IRインキとしては、屈折率が基材33の屈折率により近いものが望ましい。第1実施形態では、塗膜層36は、黒色顔料が含有された塗料によって形成されている。 The coating layer 36 is formed by applying an infrared transparent ink (IR ink), which is known as a material having a high infrared IR transmittance and a low visible light transmittance, to the rear surface of the base material 33 including the embosses 34. Is formed by. The coating film layer 36 covers the base material 33 from the rear side in a state where the concave and convex portions 35 of the grain 34 are filled. As the IR ink, one having a refractive index closer to that of the base material 33 is desirable. In the first embodiment, the coating layer 36 is made of a coating material containing a black pigment.
 ハードコート層37は、基材33の前面に形成されており、赤外線IRの透過性と同基材33よりも高い硬度とを有している。ハードコート層37は、基材33の前面に公知の表面処理剤を塗布することにより形成されている。表面処理剤としては、例えば、アクリレート系、オキセタン系、シリコーン系等の有機系ハードコート剤、無機系ハードコート剤、有機無機ハイブリッド系ハードコート剤等が挙げられる。 The hard coat layer 37 is formed on the front surface of the base material 33 and has infrared IR transparency and hardness higher than that of the base material 33. The hard coat layer 37 is formed by applying a known surface treatment agent to the front surface of the base material 33. Examples of the surface treatment agent include acrylate-based, oxetane-based, and silicone-based organic hard coating agents, inorganic hard coating agents, organic-inorganic hybrid hard coating agents, and the like.
 上記カバー本体部32における赤外線IRの透過率の要求値は50%であり、第1実施形態のカバー本体部32は、50%以上の透過率を有している。
 図4は、シボにおける凹凸部分の深さとカバー本体部における赤外線の透過率との関係を測定した結果を示している。図4中、実線は、シボを有する基材の後面が塗膜層によって被覆された実施例1の赤外線透過カバーについての測定結果を示している。図4中、二点鎖線は、塗膜層が形成されておらず、シボが露出している比較例1の赤外線透過カバーについての測定結果を示している。
The required value of the infrared IR transmittance of the cover body 32 is 50%, and the cover body 32 of the first embodiment has a transmittance of 50% or more.
FIG. 4 shows the result of measurement of the relationship between the depth of the uneven portion in the texture and the infrared transmittance of the cover body. In FIG. 4, the solid line indicates the measurement result of the infrared transmission cover of Example 1 in which the rear surface of the textured substrate was covered with the coating layer. In FIG. 4, the alternate long and two short dashes line shows the measurement result of the infrared transmission cover of Comparative Example 1 in which the coating layer is not formed and the wrinkles are exposed.
 いずれの場合もシボの深さが深くなるに従い透過率が低下する。
 また、比較例1では、シボの深さに拘わらず透過率が、要求値である50%を下回っていることが判る。また、実施例1では、シボの深さが5μm~50μmの領域において、透過率が50%以上になっていることが判る。なお、実施例1では、シボの深さが50μmよりも大きな領域で、透過率が50%を下回っている。
In either case, the transmittance decreases as the depth of the emboss becomes deeper.
In Comparative Example 1, it can be seen that the transmittance is below the required value of 50% regardless of the depth of the texture. Further, in Example 1, it can be seen that the transmittance is 50% or more in the region where the depth of the wrinkles is 5 μm to 50 μm. In Example 1, the transmittance is less than 50% in the region where the depth of the wrinkles is larger than 50 μm.
 また、図5は、シボ及び塗膜層が形成されていない比較例2の赤外線透過カバーにおける赤外線の透過率を波長毎に測定した結果を示している。この図5からは、900nm~1600nmの波長域において、透過率が50%以上であることが判る。 Further, FIG. 5 shows the results of measuring the infrared transmittance for each wavelength in the infrared transparent cover of Comparative Example 2 in which the texture and the coating layer are not formed. It can be seen from FIG. 5 that the transmittance is 50% or more in the wavelength range of 900 nm to 1600 nm.
 また、図6は、シボ及び塗膜層が形成された実施例2の赤外線透過カバーにおける赤外線の透過率を波長毎に測定した結果を示している。この図6からは、900nm~1600nmの波長域において、透過率が50%以上であることが判る。 Further, FIG. 6 shows the results of measuring the infrared transmittance for each wavelength in the infrared transparent cover of Example 2 in which the texture and the coating layer are formed. It can be seen from FIG. 6 that the transmittance is 50% or more in the wavelength range of 900 nm to 1600 nm.
 次に、第1実施形態の赤外線透過カバー30の作用及び効果について説明する。
 図2及び図3(b)に示すように、車両10の前方から可視光がカバー本体部32に照射されると、その可視光は、ハードコート層37及び基材33を順に透過する。基材33を透過した可視光の一部は、シボ34に当たって様々な角度で反射される。基材33の後面及び塗膜層36には、シボ34において可視光の当たらない箇所(陰)と、シボ34によって光が遮られて暗くなる箇所(影)とができる。従って、車両10の前方からは、シボ34に対応した箇所が陰影のついた陰影部分38として見える。この陰影部分38により、車両10において赤外線透過カバー30の周辺の意匠部品であるラジエータグリル14との一体感が得られ、意匠性が高められる。
Next, the operation and effect of the infrared transmission cover 30 of the first embodiment will be described.
As shown in FIGS. 2 and 3B, when visible light is applied to the cover body 32 from the front of the vehicle 10, the visible light is transmitted through the hard coat layer 37 and the base material 33 in order. A part of the visible light transmitted through the base material 33 strikes the embossed surface 34 and is reflected at various angles. On the rear surface of the base material 33 and the coating layer 36, there are a portion (shade) where the visible light does not hit in the grain 34 and a portion where the light is blocked by the grain 34 and becomes dark (shadow). Therefore, from the front of the vehicle 10, a portion corresponding to the grain 34 can be seen as a shaded shaded portion 38. The shaded portion 38 provides a sense of unity with the radiator grille 14, which is a design component around the infrared transmission cover 30 in the vehicle 10, and enhances the design.
 ここで、シボ34の深さが深くなるほど、凹凸部分35が見えやすくなるため、意匠性が向上するものの、赤外線IRが反射されやすくなって透過率が低下する。反対に、シボ34の深さが浅くなるほど、赤外線IRが反射されにくくなって透過率が高くなるものの、凹凸部分35が見えにくくなり意匠性が低下する。この点、第1実施形態では、シボ34が5μm~50μmの深さに形成されていることから、意匠性の向上と透過率の向上とが両立される。 Here, as the depth of the grain 34 becomes deeper, the uneven portion 35 becomes more visible, so that the designability is improved, but the infrared IR is easily reflected and the transmittance is reduced. On the contrary, as the depth of the grain 34 becomes shallower, the infrared IR is less likely to be reflected and the transmittance is higher, but the uneven portion 35 is less visible and the designability is deteriorated. In this respect, in the first embodiment, since the embosses 34 are formed to have a depth of 5 μm to 50 μm, both improvement in design and improvement in transmittance are achieved.
 また、車両10の前方からは、シボ34による陰影部分38が、格子部16に連続しているように見える。そのため、上記陰影部分38が、格子部16から遠ざかっている場合に比べ、赤外線透過カバー30のラジエータグリル14との一体感がより高められ、意匠性が一層良好なものとなる。 Also, from the front of the vehicle 10, the shaded portion 38 due to the grain 34 appears to be continuous with the lattice portion 16. Therefore, compared with the case where the shaded portion 38 is away from the lattice portion 16, the infrared transmission cover 30 has a greater sense of unity with the radiator grille 14, and the designability is further improved.
 特に、第1実施形態では、陰影部分38が各対の横格子構成部18間に位置する。車両10の前方からは、対をなす両横格子構成部18が、陰影部分38を挟んで一直線状に繋がっているように見える。そのため、赤外線透過カバー30とラジエータグリル14との一体感がさらに高められ、意匠性がさらに良好なものとなる。 In particular, in the first embodiment, the shaded portion 38 is located between each pair of horizontal lattice constituent parts 18. From the front of the vehicle 10, it appears that the pair of horizontal lattice constituent parts 18 are connected in a straight line with the shaded part 38 in between. Therefore, the infrared transmission cover 30 and the radiator grille 14 have a greater sense of unity, and the design is further improved.
 加えて、基材33を透過した可視光の一部は塗膜層36で反射される。可視光の反射率は1%以上である。車両10の前方からは、反射された可視光の色が見える。
 黒色顔料の含有された塗料によって形成された塗膜層36は、赤外線透過カバー30よりも後方に配置された部材、特に、赤外線センサ20を隠す(遮蔽する)機能を発揮する。そのため、車両10の前方から赤外線透過カバー30を見た場合、その奥に位置する赤外線センサ20は見えにくい。従って、赤外線センサ20が赤外線透過カバー30を介して透けて見える場合に比べて意匠性が向上する。
In addition, a part of the visible light transmitted through the base material 33 is reflected by the coating layer 36. The reflectance of visible light is 1% or more. From the front of the vehicle 10, the color of the visible light reflected can be seen.
The coating film layer 36 formed of the coating material containing the black pigment exhibits a function of hiding (shielding) a member arranged behind the infrared transmission cover 30, particularly the infrared sensor 20. Therefore, when the infrared transmissive cover 30 is viewed from the front of the vehicle 10, the infrared sensor 20 located behind it is difficult to see. Therefore, the design is improved as compared with the case where the infrared sensor 20 can be seen through the infrared transparent cover 30.
 塗膜層36は、上述した遮蔽効果を発揮するほかにも、シボ34の凹凸部分35を埋めた状態で、基材33を後側から被覆することで、塗膜層36が設けられない場合に比べ、シボ34における赤外線IRの透過性を高める機能も発揮する。なぜなら、シボ34のみで塗膜層36が無い場合だと、赤外線IRがシボ34の凹凸によって様々な角度で反射や屈折してしまう。しかしながら、シボ34の凹凸部分35を塗膜層36で埋めた場合は、凹凸が無くなる、又は緩やかになり、反射量や屈折角が減るからである。 In addition to the above-described shielding effect, the coating layer 36 is not provided by coating the base material 33 from the rear side in a state in which the uneven portions 35 of the embosses 34 are filled. In comparison with the above, it also exhibits the function of increasing the infrared IR transmissivity in the grain 34. This is because if the wrinkles 34 are only present and the coating layer 36 is not present, the infrared rays IR will be reflected or refracted at various angles due to the unevenness of the wrinkles 34. However, when the uneven portion 35 of the grain 34 is filled with the coating layer 36, the unevenness disappears or becomes gentle, and the reflection amount and the refraction angle decrease.
 図1に示すように、赤外線センサ20の送信部24から赤外線IRが送信されると、その赤外線IRは、カバー本体部32における塗膜層36、基材33及びハードコート層37を順に透過する。この際、シボ34の凹凸部分35の深さが5μm~50μmと浅いため、赤外線IRの一部はシボ34を透過し、一部はシボ34にて反射される。また、カバー本体部32を透過した赤外線IRは、先行車両、歩行者等を含む車外の物体に当たって反射された後、再び同カバー本体部32におけるハードコート層37、基材33及び塗膜層36を順に透過する。この際、赤外線IRの一部は上記と同様にシボ34を透過する。カバー本体部32を透過した赤外線IRは受信部25によって受信される。赤外線センサ20では、送信及び受信された上記赤外線IRに基づき、物体の認識や、車両10と同物体との距離、相対速度等の検出が行われる。 As shown in FIG. 1, when the infrared ray IR is transmitted from the transmitting section 24 of the infrared sensor 20, the infrared ray IR is sequentially transmitted through the coating layer 36, the base material 33 and the hard coat layer 37 in the cover body 32. .. At this time, since the depth of the uneven portion 35 of the wrinkle 34 is as shallow as 5 μm to 50 μm, part of the infrared IR is transmitted through the wrinkle 34 and part of it is reflected by the wrinkle 34. Further, the infrared ray IR transmitted through the cover body 32 hits an object outside the vehicle including a preceding vehicle, a pedestrian, etc., and is reflected, and then, again, the hard coat layer 37, the base material 33 and the coating layer 36 in the cover body 32. Through in order. At this time, a part of the infrared ray IR passes through the grain 34 as described above. The infrared IR transmitted through the cover body 32 is received by the receiver 25. The infrared sensor 20 recognizes an object and detects a distance between the vehicle 10 and the object, a relative speed, and the like based on the infrared IR transmitted and received.
 カバー本体部32における赤外線IRの透過率が、要求値である50%以上であるため、同カバー本体部32は赤外線IRの透過の妨げとなりにくい。赤外線IRのうち、カバー本体部32によって減衰される量を許容範囲にとどめることができる。そのため、赤外線センサ20は、上記物体を認識する機能や、車両10と上記物体との距離、相対速度等を検出する機能を発揮しやすい。 Since the infrared transmittance of the cover body 32 is 50% or more, which is the required value, the cover body 32 does not easily hinder the transmission of infrared IR. The amount of the infrared IR that is attenuated by the cover body 32 can be kept within an allowable range. Therefore, the infrared sensor 20 easily exhibits the function of recognizing the object and the function of detecting the distance between the vehicle 10 and the object, the relative speed, and the like.
 さらに、赤外線透過カバー30では、基材33の前面に形成されたハードコート層37が、赤外線透過カバー30の耐衝撃性を高める。従って、赤外線透過カバー30の前面に飛び石等により傷が付くのをハードコート層37によって抑制することができる。また、ハードコート層37は、赤外線透過カバー30の耐候性を高める。従って、太陽光、風雨、温度変化等が原因で、赤外線透過カバー30が変質したり劣化したりするのをハードコート層37によって抑制することができる。 Further, in the infrared transparent cover 30, the hard coat layer 37 formed on the front surface of the base material 33 enhances the impact resistance of the infrared transparent cover 30. Therefore, the hard coat layer 37 can prevent the front surface of the infrared transparent cover 30 from being damaged by flying stones or the like. Further, the hard coat layer 37 enhances the weather resistance of the infrared transparent cover 30. Therefore, the hard coat layer 37 can prevent the infrared transparent cover 30 from being deteriorated or deteriorated due to sunlight, wind and rain, temperature change, or the like.
 (第2実施形態)
 次に、赤外線透過カバーの第2実施形態について、図7及び図8(a),(b)を参照して説明する。
(Second embodiment)
Next, a second embodiment of the infrared transparent cover will be described with reference to FIGS. 7 and 8A and 8B.
 第2実施形態の赤外線透過カバー40は、基材33において上記シボ34に対応する箇所に、金属調の光沢感(光輝外観)を出すための光輝層41が、シボ34に代えて形成されている点で、第1実施形態の赤外線透過カバー30と異なっている。 In the infrared transmissive cover 40 of the second embodiment, a glitter layer 41 for producing a metallic luster (glossy appearance) is formed on the base material 33 at a position corresponding to the grain 34 instead of the grain 34. This is different from the infrared transparent cover 30 of the first embodiment in that it is present.
 光輝外観を出すには、可視光を多く反射及び散乱させることが必要であり、その点では、アルミニウム等の金属のフィラーを光輝層41に含有させることが適している。しかし、光輝層41に金属が含有されると、可視光だけでなく赤外線IRも反射されてしまう。すなわち、光輝層41に金属が含有されると、赤外線IRは光輝層41を透過しない。そこで、第2実施形態では、金属材料を用いずに光輝外観を出すべく、フィラー42が分散された塗膜により、光輝層41が形成されている。フィラー42は、可視光の一部を反射するとともに、赤外線IRの一部を透過し、かつ一部を反射するという、赤外線IRの透過性を有している。 In order to obtain a bright appearance, it is necessary to reflect and scatter a large amount of visible light, and in that respect, it is suitable to include a filler of a metal such as aluminum in the bright layer 41. However, when the glitter layer 41 contains a metal, not only visible light but also infrared IR is reflected. That is, when the glitter layer 41 contains a metal, the infrared rays IR do not pass through the glitter layer 41. Therefore, in the second embodiment, the glitter layer 41 is formed of a coating film in which the filler 42 is dispersed in order to provide a glitter appearance without using a metal material. The filler 42 has a property of transmitting infrared IR, which reflects part of visible light, transmits part of infrared IR, and reflects part thereof.
 各フィラー42は、コア43と、そのコア43の全体を被覆するシェル(皮膜)44とによって構成されている。シェル44は、コア43とは異なる屈折率を有している。コア43及びシェル44のいずれも、赤外線IRの透過性を有する材料によって形成されている。第2実施形態では、各フィラー42として、低屈折率材料によって形成されたコア43と、同コア43よりも屈折率の高い高屈折率材料によって形成されたシェル44とからなるものが用いられている。 Each filler 42 is composed of a core 43 and a shell (coating) 44 that covers the entire core 43. The shell 44 has a refractive index different from that of the core 43. Both the core 43 and the shell 44 are formed of a material having infrared IR transparency. In the second embodiment, each of the fillers 42 is composed of a core 43 made of a low refractive index material and a shell 44 made of a high refractive index material having a higher refractive index than the core 43. There is.
 各フィラー42としては、例えば、コア43を、酸化アルミニウム又は酸化チタンにより形成し、シェル44を酸化スズ、酸化ジルコニウム等の金属酸化物によって形成したパールマイカを用いることができる。また、各フィラー42として、コア43をシリカ(二酸化ケイ素)により形成し、シェル44を酸化チタン等の金属酸化物によって形成したガラスフィラーを用いることができる。 As each filler 42, for example, pearl mica in which the core 43 is formed of aluminum oxide or titanium oxide and the shell 44 is formed of metal oxide such as tin oxide or zirconium oxide can be used. Further, as each filler 42, a glass filler in which the core 43 is formed of silica (silicon dioxide) and the shell 44 is formed of a metal oxide such as titanium oxide can be used.
 コア43及びシェル44を形成する材料としては、屈折率の差が大きいものが選ばれることが望ましい。これは、屈折率の差が大きくなるに従い多くの可視光が反射されるからである。 As the material forming the core 43 and the shell 44, it is desirable to select a material having a large difference in refractive index. This is because more visible light is reflected as the difference in refractive index increases.
 光輝層41におけるフィラー42の含有量が多くなる(濃度が高くなる)に従い赤外線IRがフィラー42で反射されてしまい、赤外線IRの透過率が低下する。赤外線IRの透過率を50%以上にする観点からは、フィラー42の濃度を2重量パーセント(wt%)程度にとどめることが望ましい。 The infrared IR is reflected by the filler 42 as the content of the filler 42 in the glitter layer 41 increases (the concentration increases), and the transmittance of the infrared IR decreases. From the viewpoint of making the infrared IR transmittance 50% or more, it is desirable that the concentration of the filler 42 be kept to about 2 weight percent (wt%).
 光輝層41におけるフィラー42の濃度を一定とした場合、フィラー42の種類によって赤外線IRの透過率が異なる。フィラー42としてガラスフィラーを用いた場合には、パールマイカを用いた場合よりも、赤外線IRの透過率が高くなる傾向にある。 When the concentration of the filler 42 in the glitter layer 41 is constant, the infrared IR transmittance varies depending on the type of the filler 42. When a glass filler is used as the filler 42, the transmittance of infrared IR tends to be higher than that when pearl mica is used.
 塗膜層36は、第1実施形態と同様の赤外線透過インキ(IRインキ)が、基材33の後面及び光輝層41の後面に塗布されることによって形成されている。第2実施形態では、塗膜層36は、黒色顔料の含有された塗料によって形成されている。塗膜層36は、基材33及び光輝層41を後側から被覆している。 The coating layer 36 is formed by applying the infrared transmitting ink (IR ink) similar to that of the first embodiment to the rear surface of the base material 33 and the rear surface of the glitter layer 41. In the second embodiment, the coating layer 36 is formed of a coating material containing a black pigment. The coating layer 36 covers the base 33 and the glitter layer 41 from the rear side.
 基材33の前面にハードコート層37が形成されている点、及びカバー本体部32における赤外線IRの透過率が50%以上である点は、第1実施形態と同様である。
 次に、上記のように構成された第2実施形態の作用及び効果について説明する。
The hard coat layer 37 is formed on the front surface of the substrate 33, and the infrared IR transmittance of the cover body 32 is 50% or more, which is the same as in the first embodiment.
Next, the operation and effect of the second embodiment configured as described above will be described.
 車両10の前方から可視光がカバー本体部32に照射されると、その可視光は、ハードコート層37及び基材33を順に透過する。基材33を透過した可視光の一部は、光輝層41に入射する。光輝層41では、いわゆる薄膜干渉が起こる。すなわち、光輝層41に入射した可視光の一部は、図8(b)において矢印で示すように、シェル44の表面に当たって反射される。 When the cover body 32 is irradiated with visible light from the front of the vehicle 10, the visible light sequentially passes through the hard coat layer 37 and the base material 33. A part of the visible light transmitted through the base material 33 enters the glitter layer 41. In the bright layer 41, so-called thin film interference occurs. That is, part of the visible light that has entered the glitter layer 41 strikes the surface of the shell 44 and is reflected, as indicated by the arrow in FIG.
 また、光輝層41に入射した可視光の別の一部は、シェル44の表面で屈折してから同シェル44の中に入り、シェル44とコア43との境界で反射されて再びシェル44の外に出ていく。こうした2種類の可視光は、位相が揃うことで互いに干渉する。この干渉により、特定の色の可視光のみが強められる。どの色の可視光が強められるかは、シェル44の厚みによって異なる。そのため、シェル44の厚みを調整することで、厚みに対応した波長を有する特定の色の可視光を強めることが可能である。車両10の前方からは、上記のように光輝層41で強められた色であり、かつ金属のような輝きを伴う色の可視光が見える。すなわち、車両10の前方からは、金属光沢を伴う色が見える。 Further, another part of the visible light incident on the glitter layer 41 is refracted at the surface of the shell 44 and then enters the shell 44, is reflected at the boundary between the shell 44 and the core 43, and is again reflected by the shell 44. Go out. These two types of visible light interfere with each other when their phases are aligned. This interference enhances only visible light of a particular color. Which color of visible light is enhanced depends on the thickness of the shell 44. Therefore, by adjusting the thickness of the shell 44, it is possible to enhance visible light of a specific color having a wavelength corresponding to the thickness. From the front of the vehicle 10, visible light having a color enhanced by the glitter layer 41 as described above and having a shine like metal can be seen. That is, a color with metallic luster can be seen from the front of the vehicle 10.
 さらに、光輝層41のシェル44及びコア43で反射されて強められる可視光の色が、ラジエータグリル14の色に合わせられることで、同ラジエータグリル14との一体感が得られ、意匠性が高められる。 Furthermore, the color of the visible light reflected and enhanced by the shell 44 and the core 43 of the glitter layer 41 is matched with the color of the radiator grille 14, so that a sense of unity with the radiator grille 14 can be obtained, and the design is improved. Be done.
 また、図3(b)及び図7に示すように、車両10の前方からは、光輝層41による金属光沢部分45が、格子部16に連続しているように見える。そのため、上記金属光沢部分45が、格子部16から遠ざかっている場合に比べ、ラジエータグリル14との一体感がより高められ、意匠性が一層良好なものとなる。 Further, as shown in FIGS. 3B and 7, from the front of the vehicle 10, the metallic luster portion 45 of the glitter layer 41 seems to be continuous with the lattice portion 16. Therefore, compared with the case where the metallic luster portion 45 is separated from the lattice portion 16, the feeling of unity with the radiator grille 14 is further enhanced, and the designability is further improved.
 特に、第2実施形態では、金属光沢部分45が各対の横格子構成部18間に位置する。車両10の前方からは、対をなす両横格子構成部18が、金属光沢部分45を挟んで一直線状に繋がっているように見える。そのため、赤外線透過カバー40とラジエータグリル14との一体感がさらに高められ、意匠性がさらに良好なものとなる。 In particular, in the second embodiment, the metallic luster portion 45 is located between each pair of the horizontal lattice forming portions 18. From the front of the vehicle 10, it appears that the pair of horizontal lattice forming portions 18 are connected in a straight line with the metallic luster portion 45 interposed therebetween. As a result, the infrared transmission cover 40 and the radiator grille 14 have a greater sense of unity, and the designability is further improved.
 また、ラジエータグリル14が金属光沢を有する場合には、光輝層41の金属光沢部分45により、ラジエータグリル14との一体感がより高められ、意匠性が一層良好なものとなる。 Further, when the radiator grille 14 has a metallic luster, the metallic luster portion 45 of the glitter layer 41 further enhances the sense of unity with the radiator grille 14 and further improves the design.
 なお、塗膜層36及びハードコート層37は、第1実施形態と同様の作用及び効果を発揮する。
 ところで、赤外線センサ20の送信部24から赤外線IRが送信されると、その赤外線IRは、図7に示すように、カバー本体部32における塗膜層36、基材33及びハードコート層37を順に透過する。この際、赤外線IRの一部は光輝層41を透過し、別の一部は塗膜層36を透過する。カバー本体部32を透過した赤外線IRは、先行車両、歩行者等を含む車外の物体に当たって反射された後、再びカバー本体部32におけるハードコート層37、基材33及び塗膜層36を順に透過する。この際、赤外線IRの一部は光輝層41を透過し、別の一部は塗膜層36を透過する。カバー本体部32を透過した赤外線IRは、受信部25によって受信される。赤外線センサ20では、送信及び受信された上記赤外線IRに基づき、物体が認識されたり、車両10と同物体との距離、相対速度等が検出されたりする。
The coating layer 36 and the hard coat layer 37 have the same actions and effects as those of the first embodiment.
By the way, when the infrared ray IR is transmitted from the transmitting section 24 of the infrared sensor 20, the infrared ray IR passes through the coating layer 36, the base material 33 and the hard coat layer 37 in the cover main body section 32 in order as shown in FIG. To Penetrate. At this time, a part of the infrared IR is transmitted through the bright layer 41 and another part is transmitted through the coating layer 36. The infrared light IR transmitted through the cover body 32 is reflected by hitting an object outside the vehicle including a preceding vehicle and a pedestrian, and then again transmitted through the hard coat layer 37, the base material 33 and the coating layer 36 in the cover body 32 in order. To do. At this time, a part of the infrared IR is transmitted through the bright layer 41 and another part is transmitted through the coating layer 36. The infrared ray IR transmitted through the cover body 32 is received by the receiver 25. The infrared sensor 20 recognizes an object or detects a distance between the vehicle 10 and the object, a relative speed, and the like based on the infrared IR transmitted and received.
 カバー本体部32における赤外線IRの透過率が、第1実施形態と同様に、50%以上であるため、同カバー本体部32が赤外線IRの透過の妨げとなりにくい。そのため、赤外線センサ20は、第1実施形態と同様に、上記物体を認識する機能や、車両10と上記物体との距離、相対速度等を検出する機能を発揮しやすい。 Since the transmittance of infrared IR in the cover body 32 is 50% or more, as in the first embodiment, the cover body 32 is unlikely to interfere with the transmission of infrared IR. Therefore, the infrared sensor 20 is likely to exhibit the function of recognizing the object, the function of detecting the distance between the vehicle 10 and the object, the relative speed, and the like, as in the first embodiment.
 なお、上記各実施形態は、これを以下のように変更した変形例として実施することもできる。
 ・第1実施形態において、シボ34が梨地シボとは異なる種類のシボ、例えば線シボに変更されてもよい。
In addition, each of the above-described embodiments may be implemented as a modified example in which the following modifications are made.
In the first embodiment, the grain 34 may be changed to a grain different from the satin grain, for example, a line grain.
 ・上記第1及び第2実施形態では、赤外線IRの透過性を有する塗膜層36として、黒色顔料や、パールマイカを含有する塗料からなるものを示したが、同塗膜層36は、白色や有彩色の顔料を含有する塗料が用いられて形成されてもよい。さらに、染料系の塗料が用いられて上記塗膜層36が形成されてもよい。 In the first and second embodiments described above, the coating layer 36 having infrared IR transmission is made of a coating material containing a black pigment or pearl mica, but the coating layer 36 is white. Alternatively, a coating material containing a chromatic pigment may be used. Further, the coating layer 36 may be formed by using a dye-based paint.
 ・フィラー42として、第2実施形態とは逆に、高屈折率材料によって形成されたコア43と、同コア43よりも屈折率の低い低屈折率材料によって形成されたシェル44とからなるものが用いられてもよい。 As the filler 42, contrary to the second embodiment, a filler 43 including a core 43 made of a high refractive index material and a shell 44 made of a low refractive index material having a lower refractive index than the core 43 is used. It may be used.
 ・第1及び第2実施形態は、赤外線透過カバー30,40が赤外線センサ20とは別に設けられたものであったが、赤外線透過カバーは、赤外線センサ20の一部を構成するものであってもよい。 In the first and second embodiments, the infrared transparent covers 30 and 40 are provided separately from the infrared sensor 20, but the infrared transparent cover constitutes a part of the infrared sensor 20. Good.
 より詳しくは、図9に示すように、赤外線センサ20の外殻部分の前半部分を構成するカバーが、赤外線透過カバー50によって構成されてもよい。すなわち、図1におけるカバー26が赤外線透過カバー50に変更されてもよい。図9に示す赤外線透過カバー50は、筒状をなす周壁部51と、周壁部51の前端部に形成された板状のカバー本体部52とを備えている。周壁部51は、赤外線センサ20におけるケース21の周壁部22の前側に隣接している。カバー本体部52の周縁部分は、周壁部51よりも外方へ拡張されているが、拡張されなくてもよい。カバー本体部52の大部分は、赤外線センサ20の底壁部23の前方に位置しており、送信部24及び受信部25を前方から覆っている。 More specifically, as shown in FIG. 9, the cover forming the first half of the outer shell of the infrared sensor 20 may be formed by the infrared transparent cover 50. That is, the cover 26 in FIG. 1 may be changed to the infrared transparent cover 50. The infrared transparent cover 50 shown in FIG. 9 includes a cylindrical peripheral wall portion 51 and a plate-shaped cover main body portion 52 formed at the front end of the peripheral wall portion 51. The peripheral wall portion 51 is adjacent to the front side of the peripheral wall portion 22 of the case 21 in the infrared sensor 20. The peripheral portion of the cover main body 52 is expanded outward from the peripheral wall 51, but may not be expanded. Most of the cover body 52 is located in front of the bottom wall 23 of the infrared sensor 20, and covers the transmitter 24 and the receiver 25 from the front.
 この変形例でも、赤外線透過カバー50は、赤外線センサ20のカバーとしての機能を有するほかに、車両10の前部を装飾するガーニッシュとしての機能を有している。
 なお、カバー本体部52の層構造は、第1又は第2実施形態におけるカバー本体部32の層構造と同様である。従って、この変形例でも、第1又は第2実施形態と同様の作用及び効果が得られる。
In this modification as well, the infrared transparent cover 50 has a function as a cover of the infrared sensor 20 and also has a function as a garnish for decorating the front portion of the vehicle 10.
The layer structure of the cover body 52 is the same as the layer structure of the cover body 32 in the first or second embodiment. Therefore, also in this modification, the same operation and effect as those of the first or second embodiment can be obtained.
 ・赤外線透過カバー30,40,50は、上記各実施形態とは異なる形状をなす格子部16に形成された窓部19に配置されてもよい。
 ・赤外線透過カバー30,40,50は、上記各実施形態とは異なる形状をなす窓部19に配置されてもよい。この場合には、カバー本体部32,52の形状が格子部16の形状に対応する形状に変更される。
The infrared transparent covers 30, 40, 50 may be arranged in the window portion 19 formed in the lattice portion 16 having a shape different from those of the above-described embodiments.
The infrared transparent covers 30, 40, 50 may be arranged in the window portion 19 having a shape different from that of each of the above embodiments. In this case, the shape of the cover main body portions 32 and 52 is changed to the shape corresponding to the shape of the lattice portion 16.
 ・赤外線透過カバー30,40,50は、車両10の前部において、ラジエータグリル14とは異なる意匠部品に形成された窓部19に配置されてもよい。
 ・赤外線透過カバー30,40,50は、赤外線センサ20が車両10の前部とは異なる箇所、例えば後部に搭載された場合にも適用可能である。この場合、赤外線センサ20は、車両10の後方に向けて赤外線IRを送信する。赤外線透過カバー30,40,50は、送信方向における前方、すなわち、各赤外線センサ20に対し車両10の後方に配置される。
The infrared transparent covers 30, 40, 50 may be arranged in the front portion of the vehicle 10 in the window portion 19 formed in a design component different from the radiator grille 14.
The infrared transparent covers 30, 40, 50 are also applicable to the case where the infrared sensor 20 is mounted at a position different from the front part of the vehicle 10, for example, at the rear part. In this case, the infrared sensor 20 transmits the infrared IR toward the rear of the vehicle 10. The infrared transparent covers 30, 40, 50 are arranged in the front in the transmission direction, that is, behind the vehicle 10 with respect to each infrared sensor 20.
 また、赤外線透過カバー30,40,50は、赤外線センサ20が車両10の前部又は後部の両側部、すなわち、斜め前側部や斜め後側部に搭載された場合にも適用可能である。 The infrared transparent covers 30, 40, 50 are also applicable when the infrared sensor 20 is mounted on both sides of the front or rear of the vehicle 10, that is, the diagonal front side or the diagonal rear side.
 10…車両、14…ラジエータグリル(意匠部品)、16…格子部、17…横格子部、18…横格子構成部、19…窓部、20…赤外線センサ、24…送信部、25…受信部、29…対象面、30,40,50…赤外線透過カバー、32,52…カバー本体部、33…基材、34…シボ、35…凹凸部分、36…塗膜層、41…光輝層、42…フィラー、43…コア、44…シェル、IR…赤外線。 DESCRIPTION OF SYMBOLS 10 ... Vehicle, 14 ... Radiator grille (design part), 16 ... Lattice part, 17 ... Horizontal lattice part, 18 ... Horizontal lattice forming part, 19 ... Window part, 20 ... Infrared sensor, 24 ... Transmitting part, 25 ... Receiving part , 29 ... Target surface, 30, 40, 50 ... Infrared transmitting cover, 32, 52 ... Cover body part, 33 ... Base material, 34 ... Texture, 35 ... Uneven portion, 36 ... Coating layer, 41 ... Bright layer, 42 ... Filler, 43 ... Core, 44 ... Shell, IR ... Infrared.

Claims (7)

  1.  車両の周辺の状況を検出するセンサとして同車両に搭載され、かつ900nm~1600nmの波長域の赤外線を車外へ向けて送信する送信部と、車外の物体に当たって反射された赤外線を受信する受信部とを備える赤外線センサに適用され、前記送信部及び前記受信部を覆うカバー本体部を備える赤外線透過カバーであって、
     前記カバー本体部は、
     赤外線の透過性を有する透明な樹脂材料により形成され、かつ赤外線の送信方向における後面の一部を対象面として、同対象面にシボが形成された基材と、
     前記シボの凹凸部分を埋めた状態で、前記基材を前記送信方向における後側から被覆するとともに、可視光を反射し、かつ赤外線の透過性を有する塗膜層と
    を備え、
     前記カバー本体部における赤外線の透過率が50%以上である赤外線透過カバー。
    A transmitter mounted on the vehicle as a sensor for detecting the condition around the vehicle and transmitting infrared rays in the wavelength range of 900 nm to 1600 nm to the outside of the vehicle, and a receiver receiving infrared rays reflected by an object outside the vehicle. Which is applied to an infrared sensor comprising: an infrared transparent cover having a cover body that covers the transmitter and the receiver,
    The cover body is
    Formed of a transparent resin material having infrared transparency, and a part of the rear surface in the infrared transmission direction as the target surface, a base material having a wrinkle formed on the target surface,
    In a state where the uneven portion of the grain is filled, while covering the base material from the rear side in the transmission direction, the visible light is reflected, and a coating layer having infrared transparency is provided,
    An infrared transparent cover having an infrared transmittance of 50% or more in the cover body.
  2.  前記シボは、5μm~50μmの深さを有している請求項1に記載の赤外線透過カバー。 The infrared transparent cover according to claim 1, wherein the grain has a depth of 5 μm to 50 μm.
  3.  車両の周辺の状況を検出するセンサとして同車両に搭載され、かつ900nm~1600nmの波長域の赤外線を車外へ向けて送信する送信部と、車外の物体に当たって反射された赤外線を受信する受信部とを備える赤外線センサに適用され、前記送信部及び前記受信部を覆うカバー本体部を備える赤外線透過カバーであって、
     前記カバー本体部は、
     赤外線の透過性を有する透明な樹脂材料により形成された基材と、
     赤外線の送信方向における前記基材の後面の一部を対象面として、同対象面上に形成された光輝層と、
     前記基材及び前記光輝層を前記送信方向における後側から被覆するとともに、可視光を反射し、かつ赤外線の透過性を有する塗膜層と
    を備え、
     前記光輝層は、コアと、前記コアとは異なる屈折率を有する材料により形成され、かつ前記コアを被覆するシェルとからなるフィラーが分散された塗膜により形成されており、
     前記カバー本体部における赤外線の透過率が50%以上である赤外線透過カバー。
    A transmitter mounted on the vehicle as a sensor for detecting the condition around the vehicle and transmitting infrared rays in the wavelength range of 900 nm to 1600 nm to the outside of the vehicle, and a receiver receiving infrared rays reflected by an object outside the vehicle. Which is applied to an infrared sensor comprising: an infrared transparent cover having a cover body that covers the transmitter and the receiver,
    The cover body is
    A base material formed of a transparent resin material having infrared transparency,
    As a target surface a part of the rear surface of the substrate in the infrared transmission direction, and a glitter layer formed on the target surface,
    While coating the base material and the glitter layer from the rear side in the transmission direction, the visible light is reflected, and a coating film layer having infrared transparency is provided,
    The glitter layer is formed of a coating film in which a filler composed of a core and a shell having a refractive index different from that of the core and covering the core is dispersed,
    An infrared transparent cover having an infrared transmittance of 50% or more in the cover body.
  4.  前記フィラーは、前記コアが酸化アルミニウム又は酸化チタンにより形成され、かつ前記シェルが酸化スズ又は酸化ジルコニウムにより形成されたパールマイカにより構成されている請求項3に記載の赤外線透過カバー。 The infrared transparent cover according to claim 3, wherein the filler has a core made of aluminum oxide or titanium oxide and a shell made of pearl mica formed of tin oxide or zirconium oxide.
  5.  前記フィラーは、前記コアが二酸化ケイ素により形成され、かつ前記シェルが酸化チタンにより形成されたガラスフィラーにより構成されている請求項3に記載の赤外線透過カバー。 The infrared transparent cover according to claim 3, wherein the filler is composed of a glass filler in which the core is made of silicon dioxide and the shell is made of titanium oxide.
  6.  前記赤外線透過カバーは、前記車両のラジエータグリルに形成された窓部に配置されることにより、同ラジエータグリルを周辺の意匠部品とする赤外線透過カバーであって、
     前記ラジエータグリルは格子部を有しており、前記対象面は、前記格子部に対し隣接する箇所に設定されている請求項1~5のいずれか1項に記載の赤外線透過カバー。
    The infrared transmissive cover is an infrared transmissive cover in which the radiator grill is arranged in a window portion formed in the radiator grill of the vehicle, and the radiator grill is used as a peripheral design component.
    The infrared transparent cover according to any one of claims 1 to 5, wherein the radiator grill has a lattice portion, and the target surface is set at a position adjacent to the lattice portion.
  7.  前記格子部は、車幅方向に延びる横格子部を有しており、
     前記横格子部は、前記窓部の形成により、一対の横格子構成部に分断されており、
     前記対象面は、両横格子構成部と同一線上に設定されている請求項6に記載の赤外線透過カバー。
    The lattice portion has a horizontal lattice portion extending in the vehicle width direction,
    The horizontal lattice portion is divided into a pair of horizontal lattice constituent portions by forming the window portion,
    The infrared transparent cover according to claim 6, wherein the target surface is set on the same line as both of the horizontal lattice constituent parts.
PCT/JP2019/038282 2018-11-14 2019-09-27 Infrared transmission cover WO2020100450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018213810A JP7242261B2 (en) 2018-11-14 2018-11-14 Infrared transmission cover
JP2018-213810 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020100450A1 true WO2020100450A1 (en) 2020-05-22

Family

ID=70730682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038282 WO2020100450A1 (en) 2018-11-14 2019-09-27 Infrared transmission cover

Country Status (2)

Country Link
JP (1) JP7242261B2 (en)
WO (1) WO2020100450A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230917A1 (en) * 2021-04-30 2022-11-03 豊田合成株式会社 Infrared light–transmitting product

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610344B2 (en) * 1974-05-02 1981-03-07
JPH0498201A (en) * 1990-08-17 1992-03-30 Japan Synthetic Rubber Co Ltd Optical film
JPH04315927A (en) * 1991-04-15 1992-11-06 Horiba Ltd Infrared ray detector
JPH0756011A (en) * 1993-08-17 1995-03-03 Nissha Printing Co Ltd Front surface panel and transfer material for front surface panel
JP2004004840A (en) * 2002-05-14 2004-01-08 Merck Patent Gmbh Infrared reflective material
JP2005227146A (en) * 2004-02-13 2005-08-25 Hosiden Corp Infrared proximity sensor
JP2006165493A (en) * 2004-11-12 2006-06-22 Tokai Kogaku Kk Infrared beam receiving and emitting unit, manufacturing method thereof and electronic apparatus provided therewith
JP2010072616A (en) * 2008-08-20 2010-04-02 Tokai Kogaku Kk Optical article for infrared communication and light receiving unit for infrared communication
JP2012088694A (en) * 2010-09-22 2012-05-10 Toray Ind Inc Film and molding using the same, electronic apparatus
JP2014071295A (en) * 2012-09-28 2014-04-21 Tokai Kogaku Kk Optical article for infrared-ray reception/emission and infrared ray receiving/emitting part
JP2014069634A (en) * 2012-09-28 2014-04-21 Toyoda Gosei Co Ltd Vehicle decorative member
WO2016117452A1 (en) * 2015-01-19 2016-07-28 旭硝子株式会社 Optical device and optical member
JP2017077881A (en) * 2015-10-21 2017-04-27 豊田合成株式会社 Exterior decorative member for vehicle and method of manufacturing the same
JP2018031888A (en) * 2016-08-24 2018-03-01 豊田合成株式会社 Near-infrared sensor cover
WO2018052057A1 (en) * 2016-09-15 2018-03-22 豊田合成 株式会社 Near infrared sensor cover
JP2019057481A (en) * 2017-09-22 2019-04-11 豊田合成株式会社 Cover device for near-infrared light sensor
JP2019056758A (en) * 2017-09-20 2019-04-11 Agc株式会社 Optical device and optical member
JP2019168264A (en) * 2018-03-22 2019-10-03 豊田合成株式会社 Near-infrared sensor cover

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825789A (en) * 1994-07-12 1996-01-30 Dainippon Printing Co Ltd Transfer sheet
JP2003101483A (en) 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd Infrared ray (ir) transmitter and ir headphone system
JP2004358919A (en) 2003-06-09 2004-12-24 Nissha Printing Co Ltd Method for producing insert-molded article having feel of unevenness
JP6545096B2 (en) 2015-12-24 2019-07-17 株式会社チノー Human body detector

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610344B2 (en) * 1974-05-02 1981-03-07
JPH0498201A (en) * 1990-08-17 1992-03-30 Japan Synthetic Rubber Co Ltd Optical film
JPH04315927A (en) * 1991-04-15 1992-11-06 Horiba Ltd Infrared ray detector
JPH0756011A (en) * 1993-08-17 1995-03-03 Nissha Printing Co Ltd Front surface panel and transfer material for front surface panel
JP2004004840A (en) * 2002-05-14 2004-01-08 Merck Patent Gmbh Infrared reflective material
JP2005227146A (en) * 2004-02-13 2005-08-25 Hosiden Corp Infrared proximity sensor
JP2006165493A (en) * 2004-11-12 2006-06-22 Tokai Kogaku Kk Infrared beam receiving and emitting unit, manufacturing method thereof and electronic apparatus provided therewith
JP2010072616A (en) * 2008-08-20 2010-04-02 Tokai Kogaku Kk Optical article for infrared communication and light receiving unit for infrared communication
JP2012088694A (en) * 2010-09-22 2012-05-10 Toray Ind Inc Film and molding using the same, electronic apparatus
JP2014071295A (en) * 2012-09-28 2014-04-21 Tokai Kogaku Kk Optical article for infrared-ray reception/emission and infrared ray receiving/emitting part
JP2014069634A (en) * 2012-09-28 2014-04-21 Toyoda Gosei Co Ltd Vehicle decorative member
WO2016117452A1 (en) * 2015-01-19 2016-07-28 旭硝子株式会社 Optical device and optical member
JP2017077881A (en) * 2015-10-21 2017-04-27 豊田合成株式会社 Exterior decorative member for vehicle and method of manufacturing the same
JP2018031888A (en) * 2016-08-24 2018-03-01 豊田合成株式会社 Near-infrared sensor cover
WO2018052057A1 (en) * 2016-09-15 2018-03-22 豊田合成 株式会社 Near infrared sensor cover
JP2019056758A (en) * 2017-09-20 2019-04-11 Agc株式会社 Optical device and optical member
JP2019057481A (en) * 2017-09-22 2019-04-11 豊田合成株式会社 Cover device for near-infrared light sensor
JP2019168264A (en) * 2018-03-22 2019-10-03 豊田合成株式会社 Near-infrared sensor cover

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230917A1 (en) * 2021-04-30 2022-11-03 豊田合成株式会社 Infrared light–transmitting product

Also Published As

Publication number Publication date
JP2020079053A (en) 2020-05-28
JP7242261B2 (en) 2023-03-20

Similar Documents

Publication Publication Date Title
US10794757B2 (en) Near-infrared sensor cover
JP6901566B2 (en) Radome for vehicles
JP6812936B2 (en) Cover device for near infrared sensor
CN110275226A (en) Sensor window
US11199610B2 (en) Onboard sensor cover
JP7042999B2 (en) Radio wave transmission cover
JP2020008389A (en) Sensor unit for vehicles
JP2007130876A (en) Transparent ornament
CN109641788A (en) Glass for Autonomous Vehicle
WO2020100450A1 (en) Infrared transmission cover
CN109782253B (en) Laser radar cover
CN115123105A (en) Exterior article for vehicle
JP7131506B2 (en) In-vehicle sensor cover
US20230161010A1 (en) Near-infrared sensor cover
CN110461785B (en) Glass for autonomous vehicle
JP7384113B2 (en) vehicle garnish
JP7276406B2 (en) Near-infrared sensor cover
JP2019117260A (en) Resin molding, and transparent cover, radiator grille and door molding using the same
JP7494796B2 (en) Millimeter wave transmission garnish
KR20130060016A (en) Surface armored sheet
JP7267036B2 (en) radar cover
JP7034123B2 (en) Radar cover
JP7141982B2 (en) VEHICLE INTERIOR MATERIAL AND METHOD FOR MANUFACTURING VEHICLE INTERIOR MATERIAL
JP2022129146A (en) Electromagnetic sensor cover
JP2000172187A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884165

Country of ref document: EP

Kind code of ref document: A1