WO2020100401A1 - Radio wave sensor and safe-driving assistance system - Google Patents

Radio wave sensor and safe-driving assistance system Download PDF

Info

Publication number
WO2020100401A1
WO2020100401A1 PCT/JP2019/035903 JP2019035903W WO2020100401A1 WO 2020100401 A1 WO2020100401 A1 WO 2020100401A1 JP 2019035903 W JP2019035903 W JP 2019035903W WO 2020100401 A1 WO2020100401 A1 WO 2020100401A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
unit
received
transmission
radio
Prior art date
Application number
PCT/JP2019/035903
Other languages
French (fr)
Japanese (ja)
Inventor
東田宣男
白永英晃
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020100401A1 publication Critical patent/WO2020100401A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Definitions

  • the present invention relates to a radio wave sensor and a safe driving support system.
  • This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-211984 for which it applied on November 12, 2018, and takes in those the indications of all here.
  • the radio wave sensor includes a transmitter that repeatedly transmits a radio wave having a predetermined pattern, a receiver that receives the radio wave, a frequency component of the radio wave transmitted by the transmitter, and a frequency component of the radio wave received by the receiver. And a pattern signal acquisition unit that generates a difference signal for each pattern having a frequency component of a difference between and, and an addition unit that adds the difference signals at the corresponding timings in a plurality of patterns with respect to a plurality of timings in the pattern. And a detection unit that detects an object based on the difference signals at the plurality of timings that are respectively added by the addition unit.
  • a radio wave sensor includes a transmitting unit that transmits a radio wave, a receiving unit that receives a radio wave including a reflected wave of the radio wave transmitted by the transmitting unit, and a radio wave received by the receiving unit.
  • a detection unit that performs detection processing for detecting an object based on radio waves, a determination unit that determines the periodicity of the received radio waves, and a transmission timing of radio waves by the transmission unit based on the determination result of the determination unit.
  • an adjusting unit for adjusting.
  • the safe driving support system of the present disclosure includes a radio wave sensor, a signal control device that creates and transmits information related to safe driving support based on a detection result of the radio wave sensor, and the signal control device that receives the signal control device.
  • a radio transmitter for transmitting radio waves containing information wherein the radio wave sensor includes a transmitter for transmitting radio waves, a receiver for receiving radio waves including reflected waves of the radio waves transmitted by the transmitter, and the receiver Based on the received radio wave that is a radio wave received by the unit, a detection unit that performs a detection process to detect an object, a determination unit that determines the periodicity of the received radio wave, and based on the determination result of the determination unit And an adjusting unit that adjusts the transmission timing of the radio wave by the transmitting unit.
  • One aspect of the present disclosure may be realized not only as a radio wave sensor including such a characteristic processing unit but also as a method having such characteristic processing as a step, or causing a computer to execute the step. Can be realized as a program for. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit which realizes part or all of a radio wave sensor.
  • FIG. 1 is a diagram showing a configuration of a safe driving support system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a state in which an installation example at the intersection of the safe driving support system according to the exemplary embodiment of the present invention is viewed obliquely from above.
  • FIG. 3 is a diagram showing the configuration of the radio wave sensor in the safe driving support system according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of the detection period and each sequence set by the control unit in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of respective waveforms of the trigger signal and the divided clock signal generated by the control unit and the clock generation circuit in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a safe driving support system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a state in which an installation example at the intersection of the safe driving support system according to the
  • FIG. 6 is a diagram showing an example of respective waveforms of a transmission wave and a difference signal generated by the transmission unit and the difference signal generation unit in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a signal processing unit in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a processing spectrum generated by the FMCW processing unit in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of respective waveforms of a reception radio wave and a differential signal received by the receiving unit in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of the waveform of the differential signal stored in the memory of the radio wave sensor according to the embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of correlation values calculated in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing another example of each waveform of the received radio wave and the differential signal in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 13 is a diagram showing another example of the correlation value calculated in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing an example of each waveform of a received radio wave and a differential signal in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 15 is a diagram showing an example of a period that can be changed as a new transmission timing in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 16 is a diagram showing an example of how the radio wave transmission timing is changed in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 17 is a diagram showing an example of the target reflected wave and the interference wave after the transmission timing of the radio wave is changed in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 18 is a diagram showing an example of each waveform of a received radio wave and a differential signal in the radio wave sensor according to the embodiment of the present invention.
  • FIG. 19 is a flowchart that defines an operation procedure when the radio wave sensor according to the embodiment of the present invention determines the periodicity of the received radio wave and adjusts the transmission timing of its own radio wave.
  • FIG. 20 is a flowchart that defines an operation procedure when the determination unit in the radio wave sensor according to the embodiment of the present invention makes a determination regarding the periodicity of received radio waves.
  • the present disclosure has been made to solve the above problems, and an object thereof is to provide a radio wave sensor and a safe driving support system capable of avoiding radio wave interference and detecting a target object better. That is.
  • a radio wave sensor includes a transmitter that transmits radio waves, a receiver that receives radio waves including reflected waves of the radio waves transmitted by the transmitter, and a receiver that receives the radio waves. Based on a received radio wave that is a received radio wave, a detection unit that performs detection processing for detecting an object, a determination unit that determines the periodicity of the received radio wave, and the transmission unit based on the determination result of the determination unit. And an adjusting unit that adjusts the transmission timing of the radio wave.
  • the device that is the source of the received radio waves is fixed Since it is possible to judge whether or not the device is installed in the same place, more accurate transmission timing control is performed without being affected by the temporary radio waves from unfixed devices such as in-vehicle devices. be able to. Therefore, it is possible to avoid the interference of radio waves and detect the object better. Further, the periodicity of the received radio wave can be determined without demodulating the signal included in the received radio wave.
  • the transmission unit intermittently transmits radio waves
  • the determination unit determines the periodicity of the received radio waves during the non-transmission period of radio waves by the transmission unit.
  • the radio wave sensor further includes a setting unit that sets a detection period in which the detection process is performed and a non-detection period in which the detection unit is not performed and radio waves are not transmitted from the transmission unit, and the determination is performed.
  • the unit determines the periodicity of the received radio wave in the non-detection period.
  • the non-detection period it is difficult to detect a radio wave from another device that is difficult to detect during the detection period, for example, the radio wave from another device that receives the radio wave when its own transmitted radio wave is reflected by the object. , Can be easily detected.
  • the determination unit calculates a correlation between the radio wave transmitted by the transmission unit and the received radio wave, and makes a determination regarding the periodicity based on the calculated correlation.
  • the determination unit determines the periodicity based on whether or not the received radio wave satisfies a predetermined condition regarding another device that transmits a radio wave that becomes an interference wave with respect to the radio wave transmitted by the transmission unit. Make decisions about.
  • the radio wave sensor may have periodicity based on characteristics other than the waveform of the received radio wave, such as the transmission timing of the radio wave of another device that transmits an electric wave that becomes an interference wave of the received radio wave and the distance to the device.
  • the periodicity of the received radio wave can be determined by using the measurement result of the received radio wave that is received less frequently. Thereby, the periodicity of the received radio wave can be determined in a shorter time.
  • a safe driving assistance system includes a radio wave sensor, a signal control device that creates and transmits information regarding safe driving assistance based on a detection result of the radio wave sensor, and the signal control.
  • a radio transmission device for transmitting a radio wave containing the information received from the device, wherein the radio wave sensor receives a radio wave including a transmission part for transmitting the radio wave and a reflected wave of the radio wave transmitted by the transmission part.
  • Section a detection section that performs detection processing for detecting an object based on a received radio wave that is a radio wave received by the reception section, a determination section that determines the periodicity of the received radio wave, and a determination section of the determination section.
  • An adjusting unit that adjusts the transmission timing of the radio wave by the transmitting unit based on the determination result.
  • the device that is the source of the received radio waves is fixed Since it is possible to judge whether or not the device is installed in the same place, more accurate transmission timing control is performed without being affected by the temporary radio waves from unfixed devices such as in-vehicle devices. be able to. Therefore, it is possible to avoid the interference of radio waves and detect the object better. Further, the periodicity of the received radio wave can be determined without demodulating the signal included in the received radio wave.
  • FIG. 1 is a diagram showing a configuration of a safe driving support system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a state in which an installation example at the intersection of the safe driving support system according to the exemplary embodiment of the present invention is viewed obliquely from above.
  • the safe driving support system 301 includes a radio wave sensor 101, a relay device 141, a signal control device 151, a wireless transmission device 152, an antenna 153, and a pedestrian signal light device 161. Equipped with.
  • the signal control device 151 and the pedestrian signal light device 161 in the safe driving support system 301 constitute a traffic signal and are installed, for example, near the intersection CS1.
  • a pedestrian crossing PC1 is provided near the intersection CS1.
  • the road provided with the pedestrian crossing PC1 is defined as the target road Rd1.
  • the target road Rd1 forms an intersection CS1.
  • a road that intersects with the target road Rd1 at the intersection CS1 is defined as an intersection road Rd2.
  • intersection of the target road Rd1 and the intersection road Rd2 is the intersection CS1.
  • the intersection CS1 overlaps with the target road Rd1 and also overlaps with the intersection road Rd2.
  • more roads may intersect.
  • the target road Rd1 includes an outflow road Rde, which is driven by an unillustrated automobile Tgt1 flowing out of the intersection CS1, and an inflow road Rdi, which is driven by the automobile Tgt1 flowing into the intersection CS1.
  • a lane TrL is provided between the outflow road Rde and the inflow road Rdi.
  • a sidewalk Pv1 is provided at the opposite end of the inflow road Rdi with respect to the outflow road Rde so as to extend along the target road Rd1.
  • the sidewalk Pv1 changes its extension direction from the direction along the target road Rd1 to the direction along the intersection road Rd2 by extending along the arcuate corner cut CCe in the vicinity of the intersection CS1.
  • a sidewalk Pv2 is provided at the opposite end of the outflow road Rde to the inflow road Rdi so as to extend along the target road Rd1.
  • the sidewalk Pv2 extends along the arcuate corner cut CCi near the intersection CS1 to change the extension direction from the direction along the target road Rd1 to the direction along the intersection road Rd2.
  • the target area A1 is at least a part of the irradiation range of the radio wave transmitted from the radio wave sensor 101, and is an area including, for example, all of the pedestrian crossing PC1.
  • the radio wave sensor 101 can detect an object in the target area A1. More specifically, the radio wave sensor 101 detects a pedestrian Tgt2 crossing the road using the pedestrian crossing PC1 as the target Tgt in the target area A1.
  • the pedestrian Tgt2 is not limited to a walking person, and includes a bicycle and the like.
  • the target Tgt may include an automobile Tgt1 that runs along the target road Rd1 and passes through the pedestrian crossing PC1.
  • the radio wave sensor 101 is installed, for example, near the target road Rd1. Specifically, the radio wave sensor 101 is fixed to a pillar PW installed on the side opposite to the target road Rd1 with respect to the sidewalk Pv1. More specifically, the radio wave sensor 101 is provided on an extension of the pedestrian crossing PC1 toward the sidewalk Pv1.
  • the relay device 141 is fixed to the support PW. Although not shown in FIG. 2, the radio wave sensor 101 and the relay device 141 are connected by, for example, a signal line. The relay device 141 performs a relay process of transmitting the information received from the radio wave sensor 101 to the signal control device 151.
  • the safe driving support system 301 may not have the relay device 141 and may be configured such that the radio wave sensor 101 and the signal control device 151 are directly connected by a signal line or the like.
  • the signal control device 151 and the wireless transmission device 152 are fixed to a pillar PV installed on the sidewalk Pv2.
  • the antenna 153 is fixed to the top of the pillar PV.
  • the two pedestrian signal lights 161 are fixed to the columns PW and PV, respectively.
  • the signal control device 151, the wireless transmission device 152, the relay device 141, and the two pedestrian signal light devices 161 are connected by signal lines.
  • the wireless transmission device 152 and the antenna 153 are connected by a signal line.
  • the radio wave sensor 101 transmits a radio wave to the target area A1.
  • the radio wave sensor 101 receives a radio wave reflected by an object.
  • the radio wave sensor 101 detects the pedestrian Tgt2 on the pedestrian crossing PC1 based on the received radio wave, and transmits the detection result to the signal control device 151 via the relay device 141.
  • the pedestrian signal light device 161 lights up and displays “recommendation” or “remarkable” for the pedestrian Tgt2 crossing the pedestrian crossing PC1.
  • the signal control device 151 extends the remaining time when the detection result indicates that the pedestrian Tgt2 is detected at the pedestrian crossing PC1 in the case where the remaining time for turning on “Recommendation” in the pedestrian signal light device 161 is small. I do. Note that the signal control device 151 may notify the pedestrian Tgt2 by voice that the remaining time for lighting “Recommendation” is short.
  • the signal control device 151 lights “Tomare” in the pedestrian signal light device 161
  • the detection result indicates that the pedestrian Tgt2 is detected at the pedestrian crossing PC1
  • the signal control device 151 walks to the effect that it is dangerous.
  • the person Tgt2 is warned by voice.
  • the signal control device 151 creates information regarding safe driving support based on the detection result received from the radio wave sensor 101, and transmits the information to the wireless transmission device 152.
  • the wireless transmission device 152 transmits a radio wave including the information received from the signal control device 151.
  • the signal control device 151 provides a service to the automobile Tgt1 based on the detection result received from the radio wave sensor 101.
  • the signal control device 151 creates pedestrian warning information indicating that the pedestrian Tgt2 at the pedestrian crossing PC1 should be noted. , And transmits the created pedestrian warning information to the wireless transmission device 152.
  • the wireless transmission device 152 When the wireless transmission device 152 receives the pedestrian warning information from the signal control device 151, the wireless transmission device 152 generates a radio wave including the received pedestrian warning information, and transmits the generated radio wave via the antenna 153. The pedestrian warning information is notified to the automobile Tgt1.
  • the vehicle Tgt1 (not shown) turning right or left from the intersection road Rd2 and trying to pass the pedestrian crossing PC1 receives the radio wave transmitted from the wireless transmission device 152, it acquires the pedestrian warning information included in the received radio wave. Then, based on the acquired pedestrian warning information, the driver of the automobile Tgt1 is notified that the crossing target on the pedestrian crossing PC1 should be noted.
  • Patent Document 2 discloses that a transmitting side transmits its own transmission timing and the like to a receiving side as follows.
  • a wireless communication system for synchronizing a receiving side and a receiving side is disclosed.
  • the wireless communication system is a wireless communication system including a transmitter and a receiver, and the transmitter modulates a carrier wave by the PDU generation unit that generates a PDU with a time stamp.
  • a modulation transmitting unit that transmits a radio wave from a transmitting antenna, and a transmission delay time of the following "transmission delay time from the time of setting the time stamp to the time of transmitting the radio wave" is added to its own local time to obtain the time stamp.
  • a time correction unit and the receiver includes a demodulation reception unit that extracts the PDU from a radio signal that reaches a reception antenna, an SDU reproduction unit that reproduces the SDU and the time stamp from the PDU, The following "Reception delay time from reception of radio wave to arrival of preamble to SDU playback unit” and “Reception delay time from arrival of preamble to SDU playback unit to acquisition of time stamp” And a second time correction unit for adding the reproduction delay time to the time stamp to obtain a correction time value.
  • radio wave sensors such as radar sensors that use millimeter waves often do not have the function of demodulating signals based on received radio waves. Therefore, the method described in Patent Document 2 is difficult to realize, for example, in a radar sensor using a millimeter wave.
  • the radio wave sensor according to the embodiment of the present invention solves the above problem by the following configuration and operation.
  • FIG. 3 is a diagram showing the configuration of the radio wave sensor in the safe driving support system according to the embodiment of the present invention.
  • a radio wave sensor 101 includes a transmitter 1, a receiver 2, a difference signal generator 3, a controller (adjustment unit and setting unit) 4, a signal processor 5, and a clock generator. 6 and a detection processing unit (detection unit) 7.
  • the radio wave sensor 101 does not have a function of modulating / demodulating radio waves.
  • the transmitting unit 1 includes a transmitting antenna 21, a power amplifier 22, a directional coupler 23, a VCO (Voltage-Controlled Oscillator) 24, a voltage generating unit 25, and a switch 26.
  • the reception unit 2 includes a reception antenna 31 and a low noise amplifier 32.
  • the differential signal generator 3 includes a mixer 33, an IF (Intermediate Frequency) amplifier 34, a low-pass filter 35, and an A / D converter (ADC) 36.
  • IF Intermediate Frequency
  • ADC A / D converter
  • the radio wave sensor 101 is, for example, Non-Patent Document 1 (Koji Yoichi, 2 persons, “Expanding application of millimeter wave technology”, [online], [search on May 22, 2016], Internet ⁇ URL: http: //Www.spc.co.jp/spc/pdf/giho21_09.pdf>) and Non-Patent Document 2 (Takayuki Inaba, Tetsuro Kirimoto, "In-vehicle millimeter-wave radar", Automotive Technology, February 2010, 64th) Vol. 2, No. 2, p. 74-79), which is a radar for detecting an object Tgt using the FM-CW method.
  • Non-Patent Document 1 Korean Yoichi, 2 persons, “Expanding application of millimeter wave technology”, [online], [search on May 22, 2016], Internet ⁇ URL: http: //Www.spc.co.jp/spc/pdf/giho21_09.pdf>
  • Non-Patent Document 2 (Ta
  • FIG. 4 is a diagram showing an example of the detection period and each sequence set by the control unit in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time.
  • the detection processing unit 7 performs a detection process of detecting an object based on the received radio wave that is the radio wave received by the reception unit 2.
  • control unit 4 in the radio wave sensor 101 sets a detection period in which the radio wave sensor 101 of its own outputs the detection result of the target Tgt once, for example.
  • control unit 4 sets the detection period having the length Pm, for example, based on the moving speed of the object Tgt.
  • the length Pm is variable, for example. Details of the setting method of the detection period length Pm will be described later.
  • the detection period includes, for example, M sequences of Seq1 to SeqM.
  • M is an integer of 2 or more.
  • one pattern of radio waves or one sub-pattern of radio waves is transmitted from the transmission unit 1.
  • FIG. 5 is a diagram showing an example of each waveform of a trigger signal and a divided clock signal generated by the control unit and the clock generation circuit in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time and the vertical axis represents the level of each signal.
  • the clock generation circuit 6 generates, for example, a clock signal and a divided clock signal. Specifically, the clock generation circuit 6 generates, for example, a rectangular wave clock signal CLK having a cycle Tck. Further, the clock generation circuit 6 generates the divided clock signal CS having the cycle Tc by dividing the generated clock signal CLK by, for example, 10.
  • the clock generation circuit 6 outputs the generated clock signal CLK to the differential signal generation unit 3, and outputs the generated divided clock signal CS to the control unit 4 and the differential signal generation unit 3.
  • the control unit 4 sets each sequence. More specifically, the control unit 4 generates the trigger signal TS at each start timing of each sequence, and outputs the generated trigger signal TS to the transmission unit 1 and the signal processing unit 5.
  • the control unit 4 counts the number of rising edges of the divided clock signal CS received from the clock generation circuit 6 and generates and outputs the trigger signal TS every Ns of the edges. ..
  • Ns is an integer of 2 or more, and may be a predetermined value or may be variable.
  • a value obtained by multiplying the cycle Tc by Ns is the cycle Tt of one sequence.
  • the value of Ns is set so that the cycle Tt is, for example, 0.1 ms to 100 ms.
  • FIG. 6 is a diagram showing an example of respective waveforms of a transmission wave and a difference signal generated by the transmission unit and the difference signal generation unit in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the frequencies Ft and Fr of the transmitted and received radio waves, the frequency Fb of the differential signal, and the amplitude Ab of the differential signal in order from the top of the paper.
  • the frequency Ft of the transmitted radio wave is represented by the solid line
  • the frequency Fr of the received radio wave is represented by the broken line.
  • the delay of the received radio wave with respect to the transmitted radio wave is shown.
  • the transmission unit 1 intermittently transmits radio waves of a predetermined pattern. Specifically, the transmission unit 1 repeatedly transmits, for example, a radio wave generated using the FM-CW modulation method to the target area A1. More specifically, for example, as shown in FIG. 6, the transmission unit 1 repeatedly transmits a radio wave of a pattern Pt1 in which the frequency Ft increases by a predetermined amount per unit time to the target area A1.
  • the transmitting unit 1 is not limited to the configuration that periodically transmits radio waves, but may have a configuration that irregularly transmits radio waves.
  • the transmitter 1 may transmit radio waves in a pattern in which the frequency Ft decreases by a predetermined amount per unit time.
  • the pattern of the radio wave transmitted by the transmitter 1 is not limited to the configuration determined by the time change of the frequency as shown in FIG. 6, but may be the configuration determined by the time change of the amplitude.
  • the control unit 4 outputs the transmission parameters used in the FM-CW method to the transmission unit 1, the signal processing unit 5, and the detection processing unit 7, for example, for each detection period.
  • the transmission parameters include the sweep start frequency F2, the frequency sweep direction, the frequency sweep width ⁇ f, the period Tt which is the length of one sequence, the sweep time Ts, the period Tc of the divided clock signal CS, and the length of the detection period. Pm is included.
  • control unit 4 generates the guard signal GS indicating the start timing of the guard period Gp in which the radio wave is not transmitted from the transmission unit 1 at the timing when the sweep time Ts has elapsed after the generation of the trigger signal TS, and transmits the guard signal GS to the transmission unit 1. Output.
  • the guard signal GS is synchronized with the divided clock signal CS.
  • the guard period Gp is provided, for example, at the rear of each sequence, and continues after the guard signal GS is output until the trigger signal TS indicating the start timing of the next sequence is output.
  • the guard period Gp may be provided in the front part of each sequence.
  • the voltage generation unit 25 in the transmission unit 1 uses the sweep start frequency F2, the frequency sweep direction, the frequency sweep width ⁇ f, and the sweep time Ts received from the control unit 4 in advance as transmission parameters. Then, in the transmission period Tp, a voltage whose magnitude increases at a constant rate (hereinafter, also referred to as FM modulation voltage) is generated and output to the VCO 24.
  • FM modulation voltage a voltage whose magnitude increases at a constant rate
  • the transmission period Tp is a period during which a radio wave is transmitted from the transmission unit 1. Specifically, the sweep time Ts elapses after the voltage generation unit 25 receives the trigger signal TS from the control unit 4, and the guard signal GS is transmitted. It is the period until receiving.
  • the VCO 24 generates a transmission wave RFt having a frequency according to the magnitude of the voltage received from the voltage generator 25.
  • the VCO 24 generates a transmission wave RFt in the 24 GHz band having a frequency sweep width of ⁇ f and outputs it to the directional coupler 23 in accordance with the FM modulation voltage received from the voltage generator 25.
  • the directional coupler 23 distributes the transmission wave RFt received from the VCO 24 to the switch 26 and the differential signal generator 3.
  • the switch 26 has a first end connected to the directional coupler 23 and a second end connected to the power amplifier 22.
  • the switch 26 receives the trigger signal TS from the control unit 4
  • the switch 26 transitions to the ON state and electrically connects the first end and the second end.
  • the switch 26 receives the guard signal GS from the control unit 4
  • the switch 26 transitions to the off state and electrically insulates the first end and the second end.
  • the transmission wave RFt output by the VCO 24 is not transmitted to the power amplifier 22 in the guard period Gp, but is transmitted to the power amplifier 22 in the transmission period Tp that is a period different from the guard period Gp.
  • the power amplifier 22 amplifies the transmission wave RFt received from the switch 26 and transmits the amplified transmission wave RFt to the target area A1 via the transmission antenna 21.
  • the receiving unit 2 receives an electric wave from the target area A1 or the like, that is, an electric wave including a reflected wave of the electric wave transmitted by the transmitting unit 1. More specifically, the receiving antenna 31 in the receiving unit 2 stops the target object Tgt in the target area A1, specifically, a movable object such as a pedestrian Tgt2 and an automobile Tgt1, and a guardrail and a pillar PV. It is possible to receive the radio waves reflected by an object that is present.
  • the operation of the radio wave sensor 101 which is suitable when the target Tgt is a movable object, will be described.
  • the receiving antenna 31 may receive a radio wave transmitted by an interfering object that transmits an interference wave.
  • the interfering object is, for example, an electronic scanning type millimeter-wave radar device mounted on the automobile Tgt1 located in the target area A1 or outside the target area A1.
  • the low noise amplifier 32 amplifies the received radio wave, which is the radio wave received by the reception antenna 31, and outputs the amplified radio wave to the difference signal generation unit 3.
  • the difference signal generation unit 3 generates a difference signal having a frequency component that is the difference between the frequency component of the radio wave transmitted by the transmission unit 1 and the frequency component of the radio wave received by the reception unit 2.
  • the mixer 33 in the difference signal generation unit 3 generates an analog difference signal Ba1 having a frequency component of the difference between the transmission wave RFt received from the transmission unit 1 and the reception radio wave received from the low noise amplifier 32.
  • the time change of the frequency Fb and the amplitude Ab of the differential signal Ba1 is shown in FIG.
  • the mixer 33 outputs the generated difference signal Ba1 to the IF amplifier 34.
  • the IF amplifier 34 amplifies the differential signal Ba1 received from the mixer 33 and outputs it to the low-pass filter 35.
  • the low-pass filter 35 attenuates a frequency component of a predetermined frequency or higher among the frequency components of the differential signal Ba1 amplified by the IF amplifier 34.
  • the A / D converter 36 performs sampling processing of the differential signal Ba1 at the cycle Tck of the clock signal CLK, for example. More specifically, the A / D converter 36 sets the difference signal Ba1 that has passed through the low-pass filter 35 by q bits (q is 2 or more) every sampling cycle Tck in accordance with the timing of the rising edge of the clock signal CLK received from the clock generation circuit 6. To the digital difference signal Bd1.
  • the sampling timings for each cycle Tc of the divided clock signal CS are indicated by white circles.
  • Sampling numbers 1 to 12 indicating the sampling order are assigned to the sampling timing for each cycle Tc in each sequence.
  • the A / D converter 36 outputs the converted differential signal Bd1 to the signal processing unit 5.
  • FIG. 7 is a diagram showing a configuration of a signal processing unit in the radio wave sensor according to the embodiment of the present invention.
  • the signal processing unit 5 includes a memory 41, an FFT (Fast Fourier Transform) processing unit 42, an FMCW processing unit 43, a pattern signal acquisition unit 44, an addition unit 45, and a determination unit 46. including.
  • FFT Fast Fourier Transform
  • the memory 41 in the signal processing unit 5 stores the differential signal Bd1 received from the A / D converter 36.
  • the pattern signal acquisition unit 44 generates a set of difference signals Bd1 for each cycle Tc (hereinafter, also referred to as pattern signal) corresponding to the pattern Pt1 based on the cycle Tc received from the control unit 4. More specifically, the pattern signal acquisition unit 44 recognizes the start timing and the end timing of one sequence based on the trigger signal TS received from the control unit 4.
  • the pattern signal acquisition unit 44 stores the difference signal Bd1 for each cycle Tc, that is, the pattern signal, among the time-series difference signals Bd1 sampled at the sampling cycle Tck in the sequence, for example, every time a sequence ends. Take out from 41.
  • the pattern signal acquisition unit 44 outputs the extracted pattern signal to the addition unit 45.
  • the adding unit 45 adds the difference signals at the corresponding timings in the plurality of patterns Pt1 with respect to the plurality of timings in the pattern Pt1. Specifically, the addition unit 45 adds the differential signals having the same sampling number in the plurality of patterns Pt1 at each sampling timing indicated by the sampling numbers 1 to 12 in the pattern Pt1.
  • the adding unit 45 determines the number M of a plurality of patterns to be added, for example, for each detection period.
  • the addition unit 45 determines the number M based on the detection period length Pm and the cycle Tt included in the transmission parameter received from the control unit 4.
  • the addition unit 45 determines the value obtained by dividing the length Pm of the detection period by the cycle Tt as the number M.
  • the addition unit 45 repeatedly receives the pattern signal from the pattern signal acquisition unit 44. Specifically, for example, when the addition unit 45 receives the pattern signal from the pattern signal acquisition unit 44 at the timing when the sequence Seq1 shown in FIG. 6 has expired, the addition unit 45 accumulates the received pattern signal as the target pattern signal.
  • the pattern signal includes the amplitude Ab sampled at each sampling timing indicated by the sampling numbers 1 to 12.
  • the addition unit 45 performs the following processing.
  • the addition unit 45 updates the target pattern signal by adding the amplitudes Ab included in the target pattern signal and the amplitudes Ab included in the pattern signal of the sequence Seq2 between the amplitudes Ab having the same sampling number.
  • the adding unit 45 similarly updates the target pattern signal at the timing when each of the sequences Seq3 to SeqM expires.
  • the addition unit 45 outputs the updated target pattern signal to the FFT processing unit 42.
  • the FFT processing unit 42 When the FFT processing unit 42 receives the target pattern signal from the adding unit 45, the FFT processing unit 42 performs the FFT process on the received target pattern signal to generate the power spectrum FS1 and the phase spectrum PS1.
  • the power spectrum FS1 indicates the amplitude of each frequency component included in the difference signal Bd1 accumulated in the detection period.
  • the phase spectrum PS1 indicates the phase of each frequency component included in the difference signal Bd1 accumulated in the detection period.
  • the FFT processing unit 42 outputs the generated power spectrum FS1 and phase spectrum PS1 to the FMCW processing unit 43.
  • FIG. 8 is a diagram showing an example of a processing spectrum generated by the FMCW processing unit in the radio wave sensor according to the embodiment of the present invention.
  • the vertical axis represents intensity and the horizontal axis represents the distance from the radio wave sensor 101 to the object.
  • the FMCW processing unit 43 determines whether or not an object is present based on the radio wave received by the receiving unit 2.
  • the FMCW processing unit 43 holds a background spectrum that is a power spectrum in a state where there are no movable objects such as a pedestrian Tgt2 and a car Tgt1 in the target area A1, for example.
  • the FMCW processing unit 43 Upon receiving the power spectrum FS1 and the phase spectrum PS1 from the FFT processing unit 42, the FMCW processing unit 43 generates a processed spectrum by subtracting each frequency component of the background spectrum from each frequency component of the received power spectrum FS1.
  • the FMCW processing unit 43 converts the frequency Fb of the generated processing spectrum and the frequency Fb of the phase spectrum PS1 into the distance L.
  • c is the speed of light.
  • vr is a moving speed of the object along a direction approaching or moving away from the radio wave sensor 101 (hereinafter, also referred to as a detection target speed).
  • f0 is an average of the sweep start frequency F2 and the sweep end frequency F1 obtained by adding the frequency sweep width ⁇ f to the sweep start frequency F2.
  • the FMCW processing unit 43 sets the frequency Fb on the horizontal axis of the processing spectrum and the phase spectrum PS1 to the distance L by using the frequency sweep width ⁇ f and the sweep time Ts included in the transmission parameter received from the control unit 4 and the equation (2). Convert.
  • FIG. 8 shows a processed spectrum in which the horizontal axis is converted from frequency to distance.
  • the FMCW processing unit 43 performs peak detection processing on the generated processing spectrum. More specifically, the FMCW processing unit 43 analyzes the processed spectrum and tries to detect a peak having an intensity equal to or higher than a predetermined threshold value Thfm.
  • the FMCW processing unit 43 determines that an object exists when a peak having an intensity equal to or higher than the threshold Thfm can be detected. In this example, the FMCW processing unit 43 detects one peak Pn1 and determines that an object exists. On the other hand, when the FMCW processing unit 43 cannot detect a peak having an intensity equal to or higher than the threshold Thfm, the FMCW processing unit 43 determines that there is no object.
  • the FMCW processing unit 43 outputs result information indicating the determination result, the intensity of the detected peak Pn1 and the distance L corresponding to the peak Pn1 to the detection processing unit 7.
  • the detection processing unit 7 detects the target Tgt based on the difference signals of the plurality of timings added by the adding unit 45.
  • the detection processing unit 7 detects the target Tgt based on the result information received from the FMCW processing unit 43.
  • the detection processing unit 7 determines that the target Tgt does not exist, for example, when the determination result indicated by the result information indicates the absence of the object.
  • the detection processing unit 7 selects the pedestrian Tgt2 or the automobile Tgt1 as the type of the object Tgt based on the magnitude of the peak intensity indicated by the result information. Identify. Specifically, the detection processing unit 7 determines that the type of the target object Tgt is the automobile Tgt1 when the peak intensity is large, and determines the type of the target object is the pedestrian Tgt2 when the peak intensity is small.
  • the determination unit 46 determines the periodicity of received radio waves. For example, the determination unit 46 determines the periodicity of the radio wave received by the reception unit 2 during the non-transmission period of the radio wave by the transmission unit 1, that is, the guard period Gp.
  • FIG. 9 is a diagram showing an example of respective waveforms of a reception radio wave and a differential signal received by the receiving unit in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper.
  • the frequency Ft of the transmitted radio wave is represented by the solid line
  • the frequency Fr of the received radio wave is represented by the broken line.
  • the digital difference signal Bd1 at the sampling timing for each cycle Tc of the divided clock signal CS is indicated by a white circle.
  • the sampling timing for each cycle Tc in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
  • FIG. 9 shows the frequencies Ft and Fr of the transmission radio wave and the reception radio wave when the reception radio wave includes a radio wave other than the target reflected wave, which is the radio wave in which the self transmission radio wave is reflected, in the guard period Gp in the radio wave sensor 101. And the frequency Fb of the difference signal.
  • the determination unit 46 calculates the correlation between the radio wave transmitted by the transmission unit 1 and the received radio wave, and determines the periodicity of the radio wave included in the received radio wave based on the calculated correlation.
  • the determination unit 46 detects the target reflected wave included in the radio wave received by the reception unit 2 based on the difference signal Bd1.
  • the determination unit 46 determines, for example, the difference signal Bd1 for each cycle Tck in the period of the sampling numbers 12 to 5 including the difference signal Bd1 having the sampling numbers 1 to 4 corresponding to the sweep time Ts, It is acquired from the memory 41.
  • the determination unit 46 for example, among the acquired difference signals Bd1, for each difference signal Bd1 corresponding to the sampling numbers 1 to 4, the difference signal Bd1 and ten difference signals before and after the difference signal Bd1.
  • a spectrum FS0 corresponding to the differential signal Bd1 of the sampling number is generated.
  • the determination unit 46 obtains the value of the frequency component included in each corresponding difference signal Bd1 based on the generated spectrum FS0 for each sampling number.
  • the determination unit 46 determines that, for example, among the acquired difference signals Bd1, the value of the frequency component of the difference signal Bd1 having the sampling number 1 is zero, and the sampling numbers are 2 to 4.
  • the values of the frequency components of a certain difference signal Bd1 are all less than a predetermined positive threshold value F3, and the magnitudes thereof are the same, for example, the difference between the maximum value and the minimum value is less than the predetermined threshold value, each difference It is determined that the signal Bd1 is a differential signal based on the target reflected wave.
  • the determination unit 46 also determines whether the radio wave received by the reception unit 2 includes an interference wave that is a radio wave other than the target reflected wave, based on the difference signal Bd1.
  • the value of the frequency component of the differential signal Bd1 indicates that the transmission wave from the transmission unit 1 is present when the radio wave received by the reception unit 2 includes an interference wave that is a radio wave other than the target reflected wave. Not doing so will result in a negative value. Therefore, the determination unit 46 confirms the sign of the differential signal Bd1 during the guard period Gp to determine whether the radio wave received by the reception unit 2 includes an interference wave that is a radio wave other than the target reflected wave. To judge.
  • the determination unit 46 acquires, for example, a set of a plurality of continuous difference signals Bd1 corresponding to the guard period from the memory 41, and the difference signal Bd1 in the acquired set includes a difference signal Bd1 having a negative value. If the radio wave is received, it is determined that the radio wave received by the receiving unit 2 includes an interference wave. That is, the determination unit 46 detects the presence of a device that transmits a radio wave, other than its own radio wave sensor 101.
  • the determination unit 46 performs an interference wave detection process, for example, when it detects the presence of a device that transmits a radio wave other than its own radio wave sensor 101.
  • Interference wave detection processing 1 For example, when a radio wave sensor 101B, which is another radio wave sensor 101, is further installed on the pole PV shown in FIG. 2, the radio wave sensor 101A, which is the radio wave sensor 101 installed on the pole PW, transmits the radio wave transmitted from the radio wave sensor 101B. To receive.
  • the administrator of the radio wave sensor 101A and the radio wave sensor 101B estimates the waveform of the differential signal Pd2 based on the received radio wave when the radio wave sensor 101A receives the transmission radio wave from the radio wave sensor 101B, and uses the estimated waveform. It can be registered in the memory 41 of the radio wave sensor 101A.
  • FIG. 10 is a diagram showing an example of the waveform of the differential signal stored in the memory of the radio wave sensor according to the embodiment of the present invention.
  • the vertical axis represents the frequency Fb of the difference signal Pd2
  • the horizontal axis represents time.
  • the difference signal Pd2 the difference analog-digital converted at four consecutive sampling timings at intervals of the cycle Tc.
  • a set of signals Pd2 (hereinafter, also referred to as comparison waveform Wd2) is stored.
  • the determination unit 46 calculates the correlation between the comparison waveform Wd2 and the waveform of the difference signal Bd1, and determines whether the transmission timing of the interference wave is periodic based on the calculated correlation.
  • the determination unit 46 acquires the comparison waveform Wd2 from the memory 41, for example. Further, the determination unit 46 acquires from the memory 41, for example, a set of difference signals Bd1 having sampling numbers 1 to 4 in a certain sequence.
  • the determination unit 46 calculates the correlation between the acquired comparison waveform Wd2 and the pair of difference signals Bd1.
  • the determination unit 46 acquires a set of difference signals Bd1 having sampling numbers 2 to 5 from the memory 41, and calculates a correlation between the acquired set of difference signals Bd1 and the comparison waveform Wd2.
  • the determination unit 46 similarly acquires the set of difference signals Bd1 from the memory 41 while shifting the sampling number by 1, and calculates the correlation between the acquired set of difference signals Bd1 and the comparison waveform Wd2.
  • the determination unit 46 acquires four differential signals Bd1 that are continuous over the next sequence.
  • the determination unit 46 determines that the corresponding pair is a differential signal based on the radio wave transmitted from the radio wave sensor 101B, and the first sampling in the pair of the differential signal Bd1.
  • a number hereinafter, also referred to as a start number
  • a sampling number at the end hereinafter, also referred to as an end number
  • the determination unit 46 receives its own radio wave from the radio wave sensor 101B. And outputs the determination result including the information indicating the existence of the radio wave and each stored sampling number to the control unit 4.
  • FIG. 11 is a diagram showing an example of correlation values calculated in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents the last sampling number
  • the vertical axis represents the frequency Fb and the correlation value of the differential signal in order from the top of the paper.
  • the determination unit 46 determines that there is a radio wave from the radio wave sensor 101B because the correlation value of the pair of difference signals Bd1 having the end number of 10 is larger than the predetermined threshold value Y1 in the plurality of sequences.
  • the judgment result including the information and the start number 7 and the end number 10 is output to the control unit 4.
  • the determination unit 46 is not limited to the configuration in which the transmission timing of the interference wave is periodic, and the correlation value larger than the threshold value Y1 is one or more.
  • a configuration may be used in which the transmission timing of the interference wave is determined to be periodic when it is calculated for every sequence or once for every one or more detection periods.
  • the determination unit 46 determines whether or not the transmission timing of the interference wave is periodic, thereby determining whether or not the device that is the transmission source of the interference wave is a device that is fixedly grounded. Can be judged.
  • the determination unit 46 determines the cycle of the radio wave included in the received radio wave based on whether the received radio wave satisfies a predetermined condition regarding another device that transmits the radio wave that is the interference wave with respect to the radio wave transmitted by the transmission unit 1. Make sex decisions.
  • the administrator registers information such as the timing of the radio wave transmitted from the radio wave sensor 101B and the distance between the radio wave sensor 101A and the radio wave sensor 101B in the memory 41 in advance.
  • the judgment unit 46 judges the periodicity of the radio waves included in the received radio waves, based on the information registered in the memory 41, for example.
  • the determination unit 46 determines the reception timing of the radio wave transmitted from the radio wave sensor 101B in its own radio wave sensor 101A based on the timing of the radio wave transmitted from the radio wave sensor 101B and the distance between the radio wave sensor 101A and the radio wave sensor 101B. presume.
  • the judgment unit 46 acquires from the memory 41, for example, a set of difference signals Bd1 having sampling numbers 1 to 12 corresponding to a certain sequence.
  • the determination unit 46 transmits the difference signal Bd1 from the radio wave sensor 101B. It is determined that the difference signal is based on the radio wave.
  • the determination unit 46 has its own clock signal CS. Information indicating that the frequency error is large may be output to the control unit 4.
  • the control unit 4 creates an adjustment instruction for adjusting the frequency of the clock signal CS according to the information received from the determination unit 46, and outputs the adjustment instruction to the clock generation circuit 6.
  • the clock generation circuit 6 adjusts the frequency of the clock signal CS according to the adjustment instruction received from the control unit 4.
  • control unit 4 is not limited to the above-described timing, distance, and the like, and is configured to make a determination regarding the periodicity of the radio wave included in the received radio wave based on the characteristics of the received radio wave such as the frequency sweep direction and the frequency sweep width. May be.
  • FIG. 12 is a diagram showing another example of each waveform of the received radio wave and the differential signal in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper.
  • the frequency Ft of the transmitted radio wave is represented by the solid line
  • the frequency Fr of the received radio wave is represented by the broken line.
  • the digital difference signal Bd1 at the sampling timing for each cycle Tc of the divided clock signal CS is indicated by a white circle.
  • the sampling timing for each cycle Tc in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
  • FIG. 12 shows the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal when the reception radio wave contains an interference wave in the guard period in the radio wave sensor 101.
  • the radio wave sensor 101 receives, for example, a radio wave having a waveform that is not registered with itself during the guard period Gp.
  • the determining unit 46 performs the interference wave detection process 2 when the calculated correlation value of each set in the interference wave detection process 1 is less than or equal to a predetermined threshold value Y1, for example.
  • the determination unit 46 compares, in the sequence Seq1, a set of differential signals Bd1 having consecutive negative frequency component values included in a set of a plurality of consecutive differential signals Bd1 corresponding to the acquired guard period with a comparison waveform. It is saved in the memory 41 as Wd3.
  • the determination unit 46 stores the set of differential signals Bd1 with sampling numbers 7 to 10 shown in FIG. 12, for example, in the memory 41 to register each set of differential signals Bd1 as the comparison waveform Wd3. To do.
  • the determination unit 46 uses the registered comparison waveform Wd3 to calculate the correlation with the waveform of the differential signal Bd1 in the set of differential signals Bd1 after the sequence Seq2, and the correlation is included in the received radio wave based on the calculated correlation. Determines the periodicity of radio waves.
  • the determination unit 46 acquires a set of four consecutive differential signals Bd1 from the memory 41 while shifting the sampling number by 1, and correlates the acquired set of differential signals Bd1 with the comparison waveform Wd3. To calculate.
  • FIG. 13 is a diagram showing another example of the correlation value calculated by the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents the last sampling number
  • the vertical axis represents the frequency Fb and the correlation value of the differential signal in order from the top of the paper.
  • the determination unit 46 determines that there is an interference wave because the correlation value of the waveform of the difference signal Bd1 having the end number of 10 is larger than the predetermined threshold value Y2 in a plurality of sequences after the sequence Seq2.
  • the judgment result including the information and the start number 7 and the end number 10 is output to the control unit 4.
  • FIG. 14 is a diagram showing an example of each waveform of a received radio wave and a differential signal in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper.
  • the frequency Ft of the transmitted radio wave is represented by the solid line
  • the frequency Fr of the received radio wave is represented by the broken line.
  • the digital difference signal Bd1 at the sampling timing for each cycle Tc of the divided clock signal CS is shown by a white circle.
  • the sampling timing for each cycle Tc in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
  • the radio wave sensor 101 receives the target reflected wave and the interference wave in the transmission period Tp.
  • the determination unit 46 for example, because the value of the frequency component of the difference signal Bd1 whose sampling number is 1 in each difference signal Bd1 acquired from the memory 41 is not zero, the target reflected wave is included in the radio wave received by the reception unit 2. It is determined that an interference wave that is a radio wave other than the above is included, and, for example, interference wave detection processing 2 is performed.
  • the determining unit 46 determines that the interference signal is included in the period of the sampling numbers 12 to 3 because the value of the frequency component of the differential signal Bd1 having the sampling numbers of 1 to 3 is negative. to decide.
  • the determining unit 46 stores the difference signal Bd1 having the sampling number 12 to the difference signal Bd1 having the sampling number 3 in the next sequence in the memory 41, thereby registering the set of the difference signals Bd1 as the comparison waveform Wd4. Then, the registered comparison waveform Wd4 is used to calculate the correlation with the set of difference signals Bd1 of the next sequence and thereafter.
  • the determination unit 46 acquires a set of five consecutive difference signals Bd1 from the memory 41 while shifting the sampling number by 1, and correlates the acquired set of difference signals Bd1 with the comparison waveform Wd4. To calculate.
  • the determination unit 46 determines that the radio waves included in the received radio waves have periodicity based on the calculated correlation, the information indicating the existence of the interference wave and the stored sampling number, that is, the start number 12 and the end number 4 are stored.
  • the determination result including and is output to the control unit 4.
  • the determination unit 46 may be configured to perform the interference wave detection processing 1 when it determines that the radio wave received by the reception unit 2 includes an interference wave that is a radio wave other than the target reflected wave.
  • the determination unit 46 may be configured not to perform the interference wave detection process 1 and the interference wave detection process 2. More specifically, for example, when the signal strength indicated by the value of the difference signal Bd1 acquired from the memory 41 is smaller than a predetermined threshold value, the determination unit 46 does not have to perform the interference wave detection process 1 and the interference wave detection process 2. Good.
  • the control unit 4 adjusts the transmission timing of radio waves by the transmission unit 1 based on the determination result of the determination unit 46. For example, the control unit 4 adjusts the transmission timing so that the radio wave is transmitted from the transmission unit 1 at a timing different from the transmission period of the interference wave.
  • control unit 4 acquires the start number and the end number included in the determination result received from the determination unit 46.
  • control unit 4 receives the determination result including the start number 12 and the end number 3 from the determination unit 46.
  • control unit 4 determines whether to change the transmission timing of the radio wave by the transmission unit 1 based on the acquired start number and end number.
  • the control unit 4 determines that the transmission period Tp is the period from the start number 12 to the end number 3 because the transmission period Tp corresponding to the sampling numbers 1 to 4 includes the periods of the start number 12 and the end number 3, for example. It is decided to be a period that does not overlap with.
  • FIG. 15 is a diagram showing an example of a period that can be changed as a new transmission timing in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper.
  • the frequency Ft of the transmitted radio wave is represented by the solid line
  • the frequency Fr of the received radio wave is represented by the broken line.
  • the digital difference signal Bd1 at each sampling timing of each sequence in a certain sequence is indicated by a white circle.
  • Each sampling timing is represented by a sampling number of 1 to 12 indicating the sampling order.
  • the sweep start of the changed transmission radio wave is performed at any timing of the sampling numbers 4 to 9. Just set it.
  • the control unit 4 changes the start of the sweep of the transmitted radio wave to the timing of the sampling number 5 or 9.
  • control unit 4 delays the transmission timing of the radio wave by the transmission unit 1 by 4 pulses or 8 pulses of the clock signal CS.
  • FIG. 16 is a diagram showing an example of how the radio wave transmission timing is changed in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time and the vertical axis represents the level of each signal.
  • the control unit 4 does not generate the trigger signal TS indicating the start of the next detection period after the end of the last sequence SeqM in a certain detection period, and then outputs the clock signal after the end of the sequence SeqM.
  • the trigger signal TS is generated, and the generated trigger signal TS is output to the transmission unit 1 and the signal processing unit 5.
  • the start timing of the next detection period is shifted to 5 cycles later.
  • FIG. 17 is a diagram showing an example of a target reflected wave and an interference wave after changing the transmission timing of the radio wave in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper.
  • the frequency Ft of the transmitted radio wave is represented by the solid line
  • the frequency Fr of the received radio wave is represented by the broken line.
  • the digital difference signal Bd1 at each sampling timing of each sequence is indicated by a white circle.
  • the sampling timing in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
  • the timing of receiving the interference wave is changed from the period of sampling numbers 12 to 3 to the period of sampling numbers 8 to 11 by changing the transmission timing of the transmission radio wave.
  • control unit 4 determines the determination result including the start number 12 and the end number 4 that overlap with the transmission period Tp and the determination result indicating the start number 8 and the end number 11 included in the guard period Gp.
  • the transmission period Tp is set to a period that does not overlap the period from the start number 12 to the end number 4 and the period from the start number 8 to the end number 11.
  • control unit 4 changes the start of sweeping the transmission radio wave to a period in which the sampling number is 5 to 7.
  • control unit 4 is not limited to the configuration of changing the sweep start timing as the adjustment of the radio wave transmission timing, and may change the transmission period Tp by shortening the sweep time Ts, for example.
  • control unit 4 further sets one or a plurality of detection periods in which the detection process is performed and a non-detection period in which the detection process is not performed and radio waves are not transmitted from the transmission unit 1.
  • control unit 4 sets a non-detection period Tn in which no detection process is performed and no radio wave is transmitted from the transmission unit 1 after the end of one or more detection periods.
  • the determination unit 46 can easily detect an interference wave that is difficult to detect, an interference wave received at the same timing as the target reflected wave in the detection period, an interference wave with low power, and the like.
  • the control unit 4 After repeating the detection period a predetermined number of times, the control unit 4 outputs the trigger signal TS generated at the start timing of the next sequence to the signal processing unit 5. That is, the controller 4 does not output the generated trigger signal TS to the transmitter 1. As a result, the transmission of the radio wave from the transmitter 1 is stopped, so that the radio wave sensor 101 can more efficiently detect the interference wave without receiving the target reflected wave.
  • control unit 4 restarts the output of the generated trigger signal TS to the transmission unit 1 after the non-detection period Tn has elapsed.
  • the judgment unit 46 judges the periodicity of the radio wave received by the reception unit 2 in the non-detection period Tn.
  • the determination unit 46 performs at least one of the interference wave detection process 1 and the interference wave detection process 2 in the non-detection period Tn, and determines that the radio wave included in the received radio wave has periodicity. , And outputs the determination result to the control unit 4.
  • FIG. 18 is a diagram showing an example of each waveform of a received radio wave and a differential signal in the radio wave sensor according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the frequency Fr of the received radio wave and the frequency Fb of the differential signal in order from the upper side of the paper.
  • the digital difference signal Bd1 at each sampling timing of each sequence is indicated by a white circle.
  • the sampling timing in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
  • the radio wave sensor 101 receives the interference wave during the non-detection period Tn during the period of sampling numbers 1 to 4 corresponding to the transmission period Tp.
  • the determining unit 46 determines that the radio wave received during the period includes an interference wave, for example, by calculating the correlation between the waveform of the above-described difference signal Pd2 and the waveform of the difference signal Bd1 based on the interference wave. You can
  • the control unit 4 adjusts the transmission timing of the radio wave by the transmission unit 1 based on the determination result received from the determination unit 46 in the non-detection period Tn.
  • Each device in the safe driving support system 301 includes a computer including a memory, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including some or all of the steps of the following flowchart from the memory. To do.
  • the programs of these plural devices can be installed from the outside.
  • the programs of these plural devices are distributed in a state of being stored in a recording medium.
  • FIG. 19 is a flowchart that defines an operation procedure when the radio wave sensor according to the embodiment of the present invention determines the periodicity of received radio waves and adjusts the transmission timing of its own radio waves.
  • the radio wave sensor 101 transits to the detection period (step S101) and determines whether or not an interference wave is received (step S102).
  • step S105 When the radio wave sensor 101 does not receive the interference wave (NO in step S102), it waits until the next detection period (step S105).
  • the radio wave sensor 101 determines whether or not the interference wave is received in the transmission period Tp of its own transmission radio wave (step S103). ).
  • the radio wave sensor 101 When the radio wave sensor 101 receives an interference wave at a timing different from the transmission period Tp (NO in step S103), the radio wave sensor 101 waits until the next detection period (step S105).
  • the radio wave sensor 101 receives the interference wave in the transmission period Tp (YES in step S103), it adjusts the transmission timing of its own transmission radio wave (step S104) and waits until the next detection period (step S104). S105).
  • the radio wave sensor 101 waits until the next detection period (NO in step S105) until the predetermined number of detection periods elapses (step S105).
  • the radio wave sensor 101 transitions to the non-detection period Tn (step S106) when a predetermined number of detection periods have passed (YES in step S105).
  • the radio wave sensor 101 determines whether or not an interference wave is received in the non-detection period Tn (step S107).
  • the radio wave sensor 101 continues to monitor the interference wave (step S110).
  • the radio wave sensor 101 determines whether the interference wave is received at the transmission timing of its own radio wave (step S108).
  • the radio wave sensor 101 continues to monitor the interference wave when the interference wave is received at a timing different from the transmission period Tp (NO in step S108) (step S110).
  • the radio wave sensor 101 when the radio wave sensor 101 is receiving the interference wave in the period corresponding to the transmission period Tp (YES in step S108), the radio wave sensor 101 adjusts the transmission timing of its own radio wave (step S109) and continues to monitor the interference wave. (Step S110).
  • the radio wave sensor 101 transitions to the detection period (step S101).
  • FIG. 20 is a flow chart that defines an operation procedure when the determination unit in the radio wave sensor according to the embodiment of the present invention determines the periodicity of the received radio wave.
  • FIG. 20 shows in detail the operation of steps S102 and S107 of FIG.
  • the determination unit 46 acquires a set of each differential signal Bd1 from the memory 41 (step S201), and determines whether the acquired set includes the differential signal Bd1 based on the interference wave. Yes (step S202).
  • the determination unit 46 determines that the acquired pair includes the differential signal based on the interference wave (YES in step S202)
  • the correlation between the comparative waveform registered in the memory 41 and the waveform of the differential signal Bd1 is determined. It is calculated (step S203).
  • the determination unit 46 registers the waveform of the difference signal Bd1 as a comparison waveform in the memory 41 (step S208).
  • the determination unit 46 acquires It is determined that the set of difference signals Bd1 includes the difference signal based on the interference wave (step S206).
  • the determination unit 46 determines that the differential signal Bd1 does not include the differential signal based on the interference wave (step S205). Step S207).
  • control unit 4 is configured to set the non-detection period Tn, but the configuration is not limited to this.
  • the control unit 4 may have a configuration in which the non-detection period Tn is not provided.
  • the determination unit 46 is configured to determine whether the transmission timing of the radio wave included in the received radio wave is periodic, but the configuration is not limited to this. is not.
  • the determination unit 46 may be configured to determine the possibility that the transmission timing of the radio waves included in the received radio waves is periodic.
  • the determination unit 46 is configured to make a determination regarding the periodicity of the radio wave received in the guard period Gp, but the configuration is not limited to this.
  • the determination unit 46 may be configured to make a determination regarding the periodicity of only the radio waves received in the transmission period Tp.
  • the transmission unit 1 transmits a radio wave.
  • the receiver 2 receives a radio wave including a reflected wave of the radio wave transmitted by the transmitter 1.
  • the detection processing unit 7 detects an object based on the received radio wave that is the radio wave received by the reception unit 2.
  • the determination unit 46 determines the periodicity of received radio waves.
  • the control unit 4 adjusts the transmission timing of radio waves by the transmission unit 1 based on the determination result of the determination unit 46.
  • the signal control device 151 creates information regarding safe driving support based on the detection result received from the radio wave sensor 101, and transmits the information to the wireless transmission device 152. ..
  • the wireless transmission device 152 transmits a radio wave including the information received from the signal control device 151.
  • the configuration that makes the determination regarding the periodicity of the received radio wave it is possible to determine whether or not the device that is the transmission source of the received radio wave is a device that is fixedly installed.
  • the influence of radio waves from non-fixed devices can be suppressed, and more accurate transmission timing control can be performed.
  • the periodicity of the received radio wave can be determined without demodulating the signal included in the received radio wave.
  • the radio wave sensor and the safe driving support system can avoid the radio wave interference and detect the object better. Specifically, when another radio wave sensor or the like is present near its own radio wave sensor, it is possible to avoid the interference of the radio waves transmitted by the both radio wave sensors and detect the target object better.
  • the transmission unit 1 transmits radio waves intermittently.
  • the determination unit 46 determines the periodicity of the radio wave received by the reception unit 2 during the non-transmission period of the radio wave by the transmission unit 1.
  • control unit 4 sets a detection period in which the detection process is performed and a non-detection period in which the transmission unit 1 does not transmit the radio wave.
  • the determination unit 46 determines the periodicity of the radio wave received by the reception unit 2 during the non-detection period.
  • the non-detection period Tn As described above, due to the configuration in which the non-detection period Tn is provided, it is difficult to detect in the detection period, for example, radio waves from other devices that receive at the timing when the radio wave reflected by the target object is received. Can be easily detected.
  • the determination unit 46 calculates the correlation between the radio wave transmitted by the transmission unit 1 and the received radio wave, and makes the determination regarding the periodicity based on the calculated correlation. ..
  • the determination unit 46 determines whether the received radio wave satisfies a predetermined condition regarding another device that transmits a radio wave that becomes an interference wave with respect to the radio wave transmitted by the transmission unit 1. Based on the above, the judgment regarding the periodicity is made.
  • the radio wave sensor 101 performs a cycle based on characteristics other than the waveform of the received radio wave, such as the transmission timing of the radio wave of another device that transmits an electric wave that becomes an interference wave of the received radio wave and the distance to the device.
  • characteristics other than the waveform of the received radio wave such as the transmission timing of the radio wave of another device that transmits an electric wave that becomes an interference wave of the received radio wave and the distance to the device.
  • a transmitter that transmits radio waves A receiver that receives radio waves, A detection unit that performs a detection process of detecting an object based on a received radio wave that is a radio wave received by the reception unit, A determination unit that determines the periodicity of the received radio wave, An adjusting unit that adjusts the transmission timing of the radio wave by the transmitting unit based on the determination result of the determining unit, The determination unit determines whether the transmission timing of the received radio wave is periodic, The adjustment unit adjusts the transmission timing so that the radio wave is transmitted from the transmission unit at a timing different from the transmission period of the reception radio wave, The radio wave sensor does not have a function of modulating and demodulating radio waves.

Abstract

This radio wave sensor comprises a transmission unit for transmitting radio waves, a reception unit for receiving radio waves, a sensing unit for performing sensing processing for sensing an object on the basis of received radio waves which are radio waves received by the reception unit, a determination unit for making a determination relating to the periodicity of the received radio waves, and an adjustment unit for adjusting the timing of radio wave transmission by the transmission unit on the basis of the result of determination by the determination unit.

Description

電波センサおよび安全運転支援システムRadio wave sensor and safe driving support system
 本発明は、電波センサおよび安全運転支援システムに関する。
 この出願は、2018年11月12日に出願された日本出願特願2018-211984号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present invention relates to a radio wave sensor and a safe driving support system.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-211984 for which it applied on November 12, 2018, and takes in those the indications of all here.
 特開2018-004508号公報(特許文献1)には、以下のような技術が開示されている。すなわち、電波センサは、所定のパターンの電波を繰り返し送信する送信部と、電波を受信する受信部と、前記送信部によって送信される電波の周波数成分と前記受信部によって受信される電波の周波数成分との差の周波数成分を有する、前記パターンごとの差分信号を生成するパターン信号取得部と、前記パターンにおける複数のタイミングについて、複数の前記パターンにおける対応の前記タイミングの前記差分信号を加算する加算部と、前記加算部によってそれぞれ加算された、前記複数のタイミングの前記差分信号に基づいて対象物を検知する検知部とを備える。 Japanese Patent Laying-Open No. 2018-004508 (Patent Document 1) discloses the following technique. That is, the radio wave sensor includes a transmitter that repeatedly transmits a radio wave having a predetermined pattern, a receiver that receives the radio wave, a frequency component of the radio wave transmitted by the transmitter, and a frequency component of the radio wave received by the receiver. And a pattern signal acquisition unit that generates a difference signal for each pattern having a frequency component of a difference between and, and an addition unit that adds the difference signals at the corresponding timings in a plurality of patterns with respect to a plurality of timings in the pattern. And a detection unit that detects an object based on the difference signals at the plurality of timings that are respectively added by the addition unit.
特開2018-004508号公報JP, 2008-004508, A 特開2011-199689号公報JP, 2011-199689, A
 (1)本開示の電波センサは、電波を送信する送信部と、前記送信部によって送信された電波の反射波を含む電波を受信する受信部と、前記受信部によって受信された電波である受信電波に基づいて、対象物を検知する検知処理を行う検知部と、前記受信電波の周期性に関する判断を行う判断部と、前記判断部の判断結果に基づいて、前記送信部による電波の送信タイミングを調整する調整部とを備える。 (1) A radio wave sensor according to the present disclosure includes a transmitting unit that transmits a radio wave, a receiving unit that receives a radio wave including a reflected wave of the radio wave transmitted by the transmitting unit, and a radio wave received by the receiving unit. A detection unit that performs detection processing for detecting an object based on radio waves, a determination unit that determines the periodicity of the received radio waves, and a transmission timing of radio waves by the transmission unit based on the determination result of the determination unit. And an adjusting unit for adjusting.
 (6)本開示の安全運転支援システムは、電波センサと、前記電波センサの検知結果に基づいて、安全運転支援に関する情報を作成して送信する信号制御装置と、前記信号制御装置から受信した前記情報を含む電波を送信する無線送信装置とを備え、前記電波センサは、電波を送信する送信部と、前記送信部によって送信された電波の反射波を含む電波を受信する受信部と、前記受信部によって受信された電波である受信電波に基づいて、対象物を検知する検知処理を行う検知部と、前記受信電波の周期性に関する判断を行う判断部と、前記判断部の判断結果に基づいて、前記送信部による電波の送信タイミングを調整する調整部とを含む。 (6) The safe driving support system of the present disclosure includes a radio wave sensor, a signal control device that creates and transmits information related to safe driving support based on a detection result of the radio wave sensor, and the signal control device that receives the signal control device. A radio transmitter for transmitting radio waves containing information, wherein the radio wave sensor includes a transmitter for transmitting radio waves, a receiver for receiving radio waves including reflected waves of the radio waves transmitted by the transmitter, and the receiver Based on the received radio wave that is a radio wave received by the unit, a detection unit that performs a detection process to detect an object, a determination unit that determines the periodicity of the received radio wave, and based on the determination result of the determination unit And an adjusting unit that adjusts the transmission timing of the radio wave by the transmitting unit.
 本開示の一態様は、このような特徴的な処理部を備える電波センサとして実現され得るだけでなく、かかる特徴的な処理をステップとする方法として実現され得たり、かかるステップをコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、電波センサの一部または全部を実現する半導体集積回路として実現され得る。 One aspect of the present disclosure may be realized not only as a radio wave sensor including such a characteristic processing unit but also as a method having such characteristic processing as a step, or causing a computer to execute the step. Can be realized as a program for. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit which realizes part or all of a radio wave sensor.
図1は、本発明の実施の形態に係る安全運転支援システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a safe driving support system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る安全運転支援システムの交差点における設置例を斜め上方から見た状態を示す図である。FIG. 2 is a diagram showing a state in which an installation example at the intersection of the safe driving support system according to the exemplary embodiment of the present invention is viewed obliquely from above. 図3は、本発明の実施の形態に係る安全運転支援システムにおける電波センサの構成を示す図である。FIG. 3 is a diagram showing the configuration of the radio wave sensor in the safe driving support system according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る電波センサにおける制御部が設定する検知期間および各シーケンスの一例を示す図である。FIG. 4 is a diagram showing an example of the detection period and each sequence set by the control unit in the radio wave sensor according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る電波センサにおける制御部およびクロック生成回路がそれぞれ生成するトリガ信号および分周クロック信号の各波形の一例を示す図である。FIG. 5 is a diagram showing an example of respective waveforms of the trigger signal and the divided clock signal generated by the control unit and the clock generation circuit in the radio wave sensor according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る電波センサにおける送信部および差分信号生成部がそれぞれ生成する送信波および差分信号の各波形の一例を示す図である。FIG. 6 is a diagram showing an example of respective waveforms of a transmission wave and a difference signal generated by the transmission unit and the difference signal generation unit in the radio wave sensor according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る電波センサにおける信号処理部の構成を示す図である。FIG. 7 is a diagram showing a configuration of a signal processing unit in the radio wave sensor according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る電波センサにおけるFMCW処理部が生成する処理スペクトルの一例を示す図である。FIG. 8 is a diagram showing an example of a processing spectrum generated by the FMCW processing unit in the radio wave sensor according to the embodiment of the present invention. 図9は、本発明の実施の形態に係る電波センサにおける受信部によって受信された受信電波および差分信号の各波形の一例を示す図である。FIG. 9 is a diagram showing an example of respective waveforms of a reception radio wave and a differential signal received by the receiving unit in the radio wave sensor according to the embodiment of the present invention. 図10は、本発明の実施の形態に係る電波センサにおけるメモリに保存された差分信号の波形の一例を示す図である。FIG. 10 is a diagram showing an example of the waveform of the differential signal stored in the memory of the radio wave sensor according to the embodiment of the present invention. 図11は、本発明の実施の形態に係る電波センサにおいて算出された相関値の一例を示す図である。FIG. 11 is a diagram showing an example of correlation values calculated in the radio wave sensor according to the embodiment of the present invention. 図12は、本発明の実施の形態に係る電波センサにおける受信電波および差分信号の各波形の他の例を示す図である。FIG. 12 is a diagram showing another example of each waveform of the received radio wave and the differential signal in the radio wave sensor according to the embodiment of the present invention. 図13は、本発明の実施の形態に係る電波センサにおいて算出された相関値の他の例を示す図である。FIG. 13 is a diagram showing another example of the correlation value calculated in the radio wave sensor according to the embodiment of the present invention. 図14は、本発明の実施の形態に係る電波センサにおける受信電波および差分信号の各波形の一例を示す図である。FIG. 14 is a diagram showing an example of each waveform of a received radio wave and a differential signal in the radio wave sensor according to the embodiment of the present invention. 図15は、本発明の実施の形態に係る電波センサにおける、新たな送信タイミングとして変更可能な期間の一例を示す図である。FIG. 15 is a diagram showing an example of a period that can be changed as a new transmission timing in the radio wave sensor according to the embodiment of the present invention. 図16は、本発明の実施の形態に係る電波センサにおける、電波の送信タイミングを変更する様子の一例を示す図である。FIG. 16 is a diagram showing an example of how the radio wave transmission timing is changed in the radio wave sensor according to the embodiment of the present invention. 図17は、本発明の実施の形態に係る電波センサにおける、電波の送信タイミングの変更後の対象反射波および干渉波の一例を示す図である。FIG. 17 is a diagram showing an example of the target reflected wave and the interference wave after the transmission timing of the radio wave is changed in the radio wave sensor according to the embodiment of the present invention. 図18は、本発明の実施の形態に係る電波センサにおける受信電波および差分信号の各波形の一例を示す図である。FIG. 18 is a diagram showing an example of each waveform of a received radio wave and a differential signal in the radio wave sensor according to the embodiment of the present invention. 図19は、本発明の実施の形態に係る電波センサが受信電波の周期性に関する判断を行い、自己の電波の送信タイミングを調整する際の動作手順を定めたフローチャートである。FIG. 19 is a flowchart that defines an operation procedure when the radio wave sensor according to the embodiment of the present invention determines the periodicity of the received radio wave and adjusts the transmission timing of its own radio wave. 図20は、本発明の実施の形態に係る電波センサにおける判断部が受信電波の周期性に関する判断を行う際の動作手順を定めたフローチャートである。FIG. 20 is a flowchart that defines an operation procedure when the determination unit in the radio wave sensor according to the embodiment of the present invention makes a determination regarding the periodicity of received radio waves.
 [本開示が解決しようとする課題]
 このような特許文献1に記載の技術を超えて、電波の干渉を回避して対象物をより良好に検知することが可能な技術が望まれる。
[Problems to be solved by the present disclosure]
Beyond the technique described in Patent Document 1, there is a demand for a technique capable of avoiding radio wave interference and detecting a target object better.
 本開示は、上述の課題を解決するためになされたもので、その目的は、電波の干渉を回避して対象物をより良好に検知することが可能な電波センサおよび安全運転支援システムを提供することである。 The present disclosure has been made to solve the above problems, and an object thereof is to provide a radio wave sensor and a safe driving support system capable of avoiding radio wave interference and detecting a target object better. That is.
 [本開示の効果]
 本開示によれば、電波の干渉を回避して対象物をより良好に検知することができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to avoid radio wave interference and detect a target object better.
 [本願発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
[Description of Embodiments of the Present Invention]
First, the contents of the embodiments of the present invention will be listed and described.
 (1)本発明の実施の形態に係る電波センサは、電波を送信する送信部と、前記送信部によって送信された電波の反射波を含む電波を受信する受信部と、前記受信部によって受信された電波である受信電波に基づいて、対象物を検知する検知処理を行う検知部と、前記受信電波の周期性に関する判断を行う判断部と、前記判断部の判断結果に基づいて、前記送信部による電波の送信タイミングを調整する調整部とを備える。 (1) A radio wave sensor according to an embodiment of the present invention includes a transmitter that transmits radio waves, a receiver that receives radio waves including reflected waves of the radio waves transmitted by the transmitter, and a receiver that receives the radio waves. Based on a received radio wave that is a received radio wave, a detection unit that performs detection processing for detecting an object, a determination unit that determines the periodicity of the received radio wave, and the transmission unit based on the determination result of the determination unit. And an adjusting unit that adjusts the transmission timing of the radio wave.
 このように、受信電波の周期性に関する判断を行う構成により、他に電波を送信する機器が存在する場合、当該機器が送信した電波を受信し、受信した電波の送信元である機器が、固定して設置された機器であるか否か等を判断することができるため、車載機等の固定されていない機器からの一時的な電波の影響にとらわれることなく、より正確な送信タイミング制御を行うことができる。したがって、電波の干渉を回避して対象物をより良好に検知することができる。また、受信電波に含まれる信号を復調することなく受信電波の周期性を判断することができる。 In this way, with the configuration that determines the periodicity of received radio waves, when there is another device that transmits radio waves, the device that is the source of the received radio waves is fixed Since it is possible to judge whether or not the device is installed in the same place, more accurate transmission timing control is performed without being affected by the temporary radio waves from unfixed devices such as in-vehicle devices. be able to. Therefore, it is possible to avoid the interference of radio waves and detect the object better. Further, the periodicity of the received radio wave can be determined without demodulating the signal included in the received radio wave.
 (2)好ましくは、前記送信部は、電波を間欠的に送信し、前記判断部は、前記送信部による電波の非送信期間における前記受信電波の、周期性に関する判断を行う。 (2) Preferably, the transmission unit intermittently transmits radio waves, and the determination unit determines the periodicity of the received radio waves during the non-transmission period of radio waves by the transmission unit.
 このような構成により、対象物を検知する通常の動作を行いながら非送信期間において他の機器からの電波を容易に検出することができる。また、送信タイミングの正しい変更先を容易に得ることができる。 With such a configuration, it is possible to easily detect radio waves from other devices during the non-transmission period while performing the normal operation of detecting an object. Further, it is possible to easily obtain the correct change destination of the transmission timing.
 (3)好ましくは、前記電波センサは、さらに、前記検知処理を行う検知期間、および前記検知処理を行わず、前記送信部から電波を送信しない非検知期間を設定する設定部を備え、前記判断部は、前記非検知期間における前記受信電波の、周期性に関する判断を行う。 (3) Preferably, the radio wave sensor further includes a setting unit that sets a detection period in which the detection process is performed and a non-detection period in which the detection unit is not performed and radio waves are not transmitted from the transmission unit, and the determination is performed. The unit determines the periodicity of the received radio wave in the non-detection period.
 このように、非検知期間を設ける構成により、検知期間において検出することが困難な、たとえば、自己の送信電波が対象物に反射された電波を受信するタイミングにおいて受信する他の機器からの電波を、容易に検出することができる。 As described above, by providing the non-detection period, it is difficult to detect a radio wave from another device that is difficult to detect during the detection period, for example, the radio wave from another device that receives the radio wave when its own transmitted radio wave is reflected by the object. , Can be easily detected.
 (4)好ましくは、前記判断部は、前記送信部によって送信される電波と前記受信電波との相関を算出し、算出した前記相関に基づいて、前記周期性に関する判断を行う。 (4) Preferably, the determination unit calculates a correlation between the radio wave transmitted by the transmission unit and the received radio wave, and makes a determination regarding the periodicity based on the calculated correlation.
 このような構成により、受信電波の波形に基づいて周期性を容易に判断することができる。 With this configuration, it is possible to easily determine the periodicity based on the waveform of the received radio wave.
 (5)好ましくは、前記判断部は、前記送信部によって送信された電波に対する干渉波となる電波を送信する他の装置に関する所定条件を前記受信電波が満たすか否かに基づいて、前記周期性に関する判断を行う。 (5) Preferably, the determination unit determines the periodicity based on whether or not the received radio wave satisfies a predetermined condition regarding another device that transmits a radio wave that becomes an interference wave with respect to the radio wave transmitted by the transmission unit. Make decisions about.
 このように、たとえば、電波センサが、受信電波の干渉波となる電波を送信する他の装置の電波の送信タイミングおよび当該装置までの距離等の、受信電波の波形以外の特徴に基づいて周期性を判断する構成により、より少ない回数の受信電波の測定結果を用いて、受信電波の周期性を判断することができる。これにより、より短い時間で受信電波の周期性を判断することができる。 In this way, for example, the radio wave sensor may have periodicity based on characteristics other than the waveform of the received radio wave, such as the transmission timing of the radio wave of another device that transmits an electric wave that becomes an interference wave of the received radio wave and the distance to the device. With the configuration for determining, the periodicity of the received radio wave can be determined by using the measurement result of the received radio wave that is received less frequently. Thereby, the periodicity of the received radio wave can be determined in a shorter time.
 (6)本発明の実施の形態に係る安全運転支援システムは、電波センサと、前記電波センサの検知結果に基づいて、安全運転支援に関する情報を作成して送信する信号制御装置と、前記信号制御装置から受信した前記情報を含む電波を送信する無線送信装置とを備え、前記電波センサは、電波を送信する送信部と、前記送信部によって送信された電波の反射波を含む電波を受信する受信部と、前記受信部によって受信された電波である受信電波に基づいて、対象物を検知する検知処理を行う検知部と、前記受信電波の周期性に関する判断を行う判断部と、前記判断部の判断結果に基づいて、前記送信部による電波の送信タイミングを調整する調整部とを含む。 (6) A safe driving assistance system according to an embodiment of the present invention includes a radio wave sensor, a signal control device that creates and transmits information regarding safe driving assistance based on a detection result of the radio wave sensor, and the signal control. A radio transmission device for transmitting a radio wave containing the information received from the device, wherein the radio wave sensor receives a radio wave including a transmission part for transmitting the radio wave and a reflected wave of the radio wave transmitted by the transmission part. Section, a detection section that performs detection processing for detecting an object based on a received radio wave that is a radio wave received by the reception section, a determination section that determines the periodicity of the received radio wave, and a determination section of the determination section. An adjusting unit that adjusts the transmission timing of the radio wave by the transmitting unit based on the determination result.
 このように、受信電波の周期性に関する判断を行う構成により、他に電波を送信する機器が存在する場合、当該機器が送信した電波を受信し、受信した電波の送信元である機器が、固定して設置された機器であるか否か等を判断することができるため、車載機等の固定されていない機器からの一時的な電波の影響にとらわれることなく、より正確な送信タイミング制御を行うことができる。したがって、電波の干渉を回避して対象物をより良好に検知することができる。また、受信電波に含まれる信号を復調することなく受信電波の周期性を判断することができる。 In this way, with the configuration that determines the periodicity of received radio waves, when there is another device that transmits radio waves, the device that is the source of the received radio waves is fixed Since it is possible to judge whether or not the device is installed in the same place, more accurate transmission timing control is performed without being affected by the temporary radio waves from unfixed devices such as in-vehicle devices. be able to. Therefore, it is possible to avoid the interference of radio waves and detect the object better. Further, the periodicity of the received radio wave can be determined without demodulating the signal included in the received radio wave.
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated. Further, at least a part of the embodiments described below may be arbitrarily combined.
 [構成および基本動作]
 図1は、本発明の実施の形態に係る安全運転支援システムの構成を示す図である。図2は、本発明の実施の形態に係る安全運転支援システムの交差点における設置例を斜め上方から見た状態を示す図である。
[Configuration and basic operation]
FIG. 1 is a diagram showing a configuration of a safe driving support system according to an embodiment of the present invention. FIG. 2 is a diagram showing a state in which an installation example at the intersection of the safe driving support system according to the exemplary embodiment of the present invention is viewed obliquely from above.
 図1および図2を参照して、安全運転支援システム301は、電波センサ101と、中継装置141と、信号制御装置151と、無線送信装置152と、アンテナ153と、歩行者用信号灯器161とを備える。安全運転支援システム301における信号制御装置151および歩行者用信号灯器161は、交通信号機を構成し、たとえば交差点CS1の近傍に設置される。 1 and 2, the safe driving support system 301 includes a radio wave sensor 101, a relay device 141, a signal control device 151, a wireless transmission device 152, an antenna 153, and a pedestrian signal light device 161. Equipped with. The signal control device 151 and the pedestrian signal light device 161 in the safe driving support system 301 constitute a traffic signal and are installed, for example, near the intersection CS1.
 [交差点付近について]
 たとえば、図2に示すように、交差点CS1付近において横断歩道PC1が設けられている。ここで、横断歩道PC1が設けられている道路を対象道路Rd1と定義する。対象道路Rd1は、交差点CS1を形成する。また、交差点CS1において対象道路Rd1と交差する道路を交差道路Rd2と定義する。
[About the intersection]
For example, as shown in FIG. 2, a pedestrian crossing PC1 is provided near the intersection CS1. Here, the road provided with the pedestrian crossing PC1 is defined as the target road Rd1. The target road Rd1 forms an intersection CS1. Further, a road that intersects with the target road Rd1 at the intersection CS1 is defined as an intersection road Rd2.
 すなわち、対象道路Rd1および交差道路Rd2が交差する部分が交差点CS1である。言い換えると、交差点CS1は、対象道路Rd1と重複し、かつ交差道路Rd2と重複している。なお、交差点CS1において、さらに多数の道路が交差してもよい。 That is, the intersection of the target road Rd1 and the intersection road Rd2 is the intersection CS1. In other words, the intersection CS1 overlaps with the target road Rd1 and also overlaps with the intersection road Rd2. At the intersection CS1, more roads may intersect.
 対象道路Rd1は、交差点CS1から流出する図示しない自動車Tgt1が走行する流出道路Rdeと、交差点CS1へ流入する自動車Tgt1が走行する流入道路Rdiとを含む。流出道路Rdeおよび流入道路Rdiの間に、車線TrLが設けられている。 The target road Rd1 includes an outflow road Rde, which is driven by an unillustrated automobile Tgt1 flowing out of the intersection CS1, and an inflow road Rdi, which is driven by the automobile Tgt1 flowing into the intersection CS1. A lane TrL is provided between the outflow road Rde and the inflow road Rdi.
 流出道路Rdeに対する流入道路Rdiの反対側の端には、対象道路Rd1に沿って延伸するように歩道Pv1が設けられている。歩道Pv1は、交差点CS1の近傍において円弧形状の隅切りCCeに沿って延伸することにより対象道路Rd1に沿う方向から交差道路Rd2に沿う方向へ延伸方向を変える。 A sidewalk Pv1 is provided at the opposite end of the inflow road Rdi with respect to the outflow road Rde so as to extend along the target road Rd1. The sidewalk Pv1 changes its extension direction from the direction along the target road Rd1 to the direction along the intersection road Rd2 by extending along the arcuate corner cut CCe in the vicinity of the intersection CS1.
 また、流入道路Rdiに対する流出道路Rdeの反対側の端には、対象道路Rd1に沿って延伸するように歩道Pv2が設けられている。歩道Pv2は、交差点CS1の近傍において円弧形状の隅切りCCiに沿って延伸することにより対象道路Rd1に沿う方向から交差道路Rd2に沿う方向へ延伸方向を変える。 A sidewalk Pv2 is provided at the opposite end of the outflow road Rde to the inflow road Rdi so as to extend along the target road Rd1. The sidewalk Pv2 extends along the arcuate corner cut CCi near the intersection CS1 to change the extension direction from the direction along the target road Rd1 to the direction along the intersection road Rd2.
 対象エリアA1は、電波センサ101から送信された電波の照射範囲の少なくとも一部であり、横断歩道PC1のたとえば全部を含むエリアである。 The target area A1 is at least a part of the irradiation range of the radio wave transmitted from the radio wave sensor 101, and is an area including, for example, all of the pedestrian crossing PC1.
 電波センサ101は、対象エリアA1における物体を検知することが可能である。より詳細には、電波センサ101は、対象エリアA1において、横断歩道PC1を用いて道路を横断する歩行者Tgt2を対象物Tgtとして検知する。ここで、歩行者Tgt2は、歩いている人間に限定されず、自転車等を含む。なお、対象物Tgtには、歩行者Tgt2の他に、対象道路Rd1に沿って走行して横断歩道PC1を通過する自動車Tgt1が含まれてもよい。 The radio wave sensor 101 can detect an object in the target area A1. More specifically, the radio wave sensor 101 detects a pedestrian Tgt2 crossing the road using the pedestrian crossing PC1 as the target Tgt in the target area A1. Here, the pedestrian Tgt2 is not limited to a walking person, and includes a bicycle and the like. In addition to the pedestrian Tgt2, the target Tgt may include an automobile Tgt1 that runs along the target road Rd1 and passes through the pedestrian crossing PC1.
 [電波センサの設置位置]
 電波センサ101は、たとえば対象道路Rd1付近に設置されている。具体的には、電波センサ101は、歩道Pv1に対して対象道路Rd1の反対側に設置された支柱PWに固定されている。より詳細には、電波センサ101は、横断歩道PC1の歩道Pv1側への延長線上に設けられている。
[Radio sensor installation position]
The radio wave sensor 101 is installed, for example, near the target road Rd1. Specifically, the radio wave sensor 101 is fixed to a pillar PW installed on the side opposite to the target road Rd1 with respect to the sidewalk Pv1. More specifically, the radio wave sensor 101 is provided on an extension of the pedestrian crossing PC1 toward the sidewalk Pv1.
 中継装置141は、支柱PWに固定されている。電波センサ101および中継装置141は、図2では図示していないがたとえば信号線で接続されている。中継装置141は、電波センサ101から受信した情報を信号制御装置151へ送信する中継処理を行う。なお、安全運転支援システム301は、中継装置141を備えず、電波センサ101および信号制御装置151が信号線等によって直接接続される構成であってもよい。 The relay device 141 is fixed to the support PW. Although not shown in FIG. 2, the radio wave sensor 101 and the relay device 141 are connected by, for example, a signal line. The relay device 141 performs a relay process of transmitting the information received from the radio wave sensor 101 to the signal control device 151. The safe driving support system 301 may not have the relay device 141 and may be configured such that the radio wave sensor 101 and the signal control device 151 are directly connected by a signal line or the like.
 信号制御装置151および無線送信装置152は、歩道Pv2に設置された支柱PVに固定されている。また、アンテナ153は、支柱PVの頂部に固定されている。 The signal control device 151 and the wireless transmission device 152 are fixed to a pillar PV installed on the sidewalk Pv2. The antenna 153 is fixed to the top of the pillar PV.
 2つの歩行者用信号灯器161は、支柱PWおよびPVにそれぞれ固定されている。信号制御装置151と、無線送信装置152、中継装置141および2つの歩行者用信号灯器161とは、図2では図示していないが信号線でそれぞれ接続されている。無線送信装置152およびアンテナ153は、図2では図示していないが信号線で接続されている。 The two pedestrian signal lights 161 are fixed to the columns PW and PV, respectively. Although not shown in FIG. 2, the signal control device 151, the wireless transmission device 152, the relay device 141, and the two pedestrian signal light devices 161 are connected by signal lines. Although not shown in FIG. 2, the wireless transmission device 152 and the antenna 153 are connected by a signal line.
 電波センサ101は、対象エリアA1へ電波を送信する。対象エリアA1内に位置する物体、たとえば、自動車Tgt1、歩行者Tgt2および支柱PV等は、電波センサ101から送信された電波を反射する。電波センサ101は、物体により反射された電波を受信する。 The radio wave sensor 101 transmits a radio wave to the target area A1. Objects located in the target area A1, such as the automobile Tgt1, the pedestrian Tgt2, and the pillar PV, reflect the radio waves transmitted from the radio wave sensor 101. The radio wave sensor 101 receives a radio wave reflected by an object.
 電波センサ101は、受信した電波に基づいて、横断歩道PC1における歩行者Tgt2を検知し、検知結果を中継装置141経由で信号制御装置151へ送信する。 The radio wave sensor 101 detects the pedestrian Tgt2 on the pedestrian crossing PC1 based on the received radio wave, and transmits the detection result to the signal control device 151 via the relay device 141.
 歩行者用信号灯器161は、信号制御装置151の制御に従って、横断歩道PC1を横断する歩行者Tgt2に対して「すすめ」または「とまれ」を点灯して表示する。 According to the control of the signal control device 151, the pedestrian signal light device 161 lights up and displays “recommendation” or “remarkable” for the pedestrian Tgt2 crossing the pedestrian crossing PC1.
 たとえば、信号制御装置151は、歩行者用信号灯器161において「すすめ」を点灯する残り時間が少ない場合において、横断歩道PC1において歩行者Tgt2を検知したことを検知結果が示すとき、残り時間の延長を行う。なお、信号制御装置151は、「すすめ」を点灯する残り時間が少ない旨を歩行者Tgt2に音声で通知してもよい。 For example, the signal control device 151 extends the remaining time when the detection result indicates that the pedestrian Tgt2 is detected at the pedestrian crossing PC1 in the case where the remaining time for turning on “Recommendation” in the pedestrian signal light device 161 is small. I do. Note that the signal control device 151 may notify the pedestrian Tgt2 by voice that the remaining time for lighting “Recommendation” is short.
 また、信号制御装置151は、歩行者用信号灯器161において「とまれ」を点灯している場合において、横断歩道PC1において歩行者Tgt2を検知したことを検知結果が示すとき、危険である旨を歩行者Tgt2に音声で警告する。 Further, when the signal control device 151 lights “Tomare” in the pedestrian signal light device 161, when the detection result indicates that the pedestrian Tgt2 is detected at the pedestrian crossing PC1, the signal control device 151 walks to the effect that it is dangerous. The person Tgt2 is warned by voice.
 信号制御装置151は、電波センサ101から受信した検知結果に基づいて、安全運転支援に関する情報を作成し、無線送信装置152へ送信する。 The signal control device 151 creates information regarding safe driving support based on the detection result received from the radio wave sensor 101, and transmits the information to the wireless transmission device 152.
 無線送信装置152は、信号制御装置151から受信した当該情報を含む電波を送信する。 The wireless transmission device 152 transmits a radio wave including the information received from the signal control device 151.
 一例として、信号制御装置151は、電波センサ101から受信した検知結果に基づいて自動車Tgt1に対してサービスを提供する。 As an example, the signal control device 151 provides a service to the automobile Tgt1 based on the detection result received from the radio wave sensor 101.
 具体的には、信号制御装置151は、歩行者Tgt2が横断歩道PC1に存在することを検知結果が示すとき、横断歩道PC1における歩行者Tgt2に注意すべき旨を示す歩行者警戒情報を作成し、作成した歩行者警戒情報を無線送信装置152へ送信する。 Specifically, when the detection result indicates that the pedestrian Tgt2 exists at the pedestrian crossing PC1, the signal control device 151 creates pedestrian warning information indicating that the pedestrian Tgt2 at the pedestrian crossing PC1 should be noted. , And transmits the created pedestrian warning information to the wireless transmission device 152.
 無線送信装置152は、信号制御装置151から歩行者警戒情報を受信すると、受信した歩行者警戒情報を含む電波を生成し、生成した電波をアンテナ153経由で送信することにより、交差点CS1周辺に位置する自動車Tgt1へ歩行者警戒情報を報知する。 When the wireless transmission device 152 receives the pedestrian warning information from the signal control device 151, the wireless transmission device 152 generates a radio wave including the received pedestrian warning information, and transmits the generated radio wave via the antenna 153. The pedestrian warning information is notified to the automobile Tgt1.
 たとえば、交差道路Rd2から右折または左折して横断歩道PC1を通過しようとする図示しない自動車Tgt1は、無線送信装置152から送信された電波を受信すると、受信した電波に含まれる歩行者警戒情報を取得し、取得した歩行者警戒情報に基づいて、横断歩道PC1における横断対象物に注意すべき旨を当該自動車Tgt1の運転者に通知する。 For example, when the vehicle Tgt1 (not shown) turning right or left from the intersection road Rd2 and trying to pass the pedestrian crossing PC1 receives the radio wave transmitted from the wireless transmission device 152, it acquires the pedestrian warning information included in the received radio wave. Then, based on the acquired pedestrian warning information, the driver of the automobile Tgt1 is notified that the crossing target on the pedestrian crossing PC1 should be noted.
 [課題]
 たとえば、近距離に複数の電波センサが設置されている場合、複数の電波センサが同じタイミングにおいて電波を送信すると、電波の干渉が生じ、検知精度が劣化することがある。
[Task]
For example, when a plurality of radio wave sensors are installed in a short distance and the radio wave sensors transmit radio waves at the same timing, radio wave interference may occur and the detection accuracy may deteriorate.
 電波の干渉を回避するための技術の一例として、特開2011-199689号公報(特許文献2)には、以下のような、送信側が自己の送信タイミング等を受信側へ送信することにより、送信側と受信側とを同期させる無線通信システムが開示されている。 As an example of a technique for avoiding radio wave interference, Japanese Patent Laying-Open No. 2011-199689 (Patent Document 2) discloses that a transmitting side transmits its own transmission timing and the like to a receiving side as follows. A wireless communication system for synchronizing a receiving side and a receiving side is disclosed.
 すなわち、無線通信システムは、送信機と受信機とを備えた無線通信システムであって、前記送信機は、タイムスタンプを付したPDUを生成するPDU生成部と、前記PDUにより搬送波を変調して送信アンテナから電波送信する変調送信部と、次の「タイムスタンプのセット時から電波送信時までの送信遅延時間」の送信遅延時間を自身のローカル時刻に加算して前記タイムスタンプを求める第1の時刻補正部と、を有しており、前記受信機は、受信アンテナに到達した電波信号から前記PDUを取り出す復調受信部と、前記PDUからSDUと前記タイムスタンプとを再生するSDU再生部と、次の「電波受信時からSDU再生部へのプリアンブルの到達時までの受信遅延時間」の受信遅延時間と「SDU再生部へのプリアンブルの到達時からタイムスタンプの取得時までの再生遅延時間」の再生遅延時間との合計値を前記タイムスタンプに加算して補正時刻値を求める第2の時刻補正部とを有する。 That is, the wireless communication system is a wireless communication system including a transmitter and a receiver, and the transmitter modulates a carrier wave by the PDU generation unit that generates a PDU with a time stamp. A modulation transmitting unit that transmits a radio wave from a transmitting antenna, and a transmission delay time of the following "transmission delay time from the time of setting the time stamp to the time of transmitting the radio wave" is added to its own local time to obtain the time stamp. A time correction unit, and the receiver includes a demodulation reception unit that extracts the PDU from a radio signal that reaches a reception antenna, an SDU reproduction unit that reproduces the SDU and the time stamp from the PDU, The following "Reception delay time from reception of radio wave to arrival of preamble to SDU playback unit" and "Reception delay time from arrival of preamble to SDU playback unit to acquisition of time stamp" And a second time correction unit for adding the reproduction delay time to the time stamp to obtain a correction time value.
 しかしながら、ミリ波を用いたレーダセンサ等の電波センサは、受信した電波に基づく信号を復調する機能を有しない場合が多い。このため、特許文献2に記載の方法は、たとえばミリ波を用いたレーダセンサ等において、実現が困難である。 However, radio wave sensors such as radar sensors that use millimeter waves often do not have the function of demodulating signals based on received radio waves. Therefore, the method described in Patent Document 2 is difficult to realize, for example, in a radar sensor using a millimeter wave.
 これに対して、本発明の実施の形態に係る電波センサでは、以下のような構成および動作により、上記課題を解決する。 On the other hand, the radio wave sensor according to the embodiment of the present invention solves the above problem by the following configuration and operation.
 [電波センサの構成]
 図3は、本発明の実施の形態に係る安全運転支援システムにおける電波センサの構成を示す図である。
[Radio sensor configuration]
FIG. 3 is a diagram showing the configuration of the radio wave sensor in the safe driving support system according to the embodiment of the present invention.
 図3を参照して、電波センサ101は、送信部1と、受信部2と、差分信号生成部3と、制御部(調整部および設定部)4と、信号処理部5と、クロック生成回路6と、検知処理部(検知部)7とを備える。電波センサ101は、電波を変復調する機能を有しない。
 
Referring to FIG. 3, a radio wave sensor 101 includes a transmitter 1, a receiver 2, a difference signal generator 3, a controller (adjustment unit and setting unit) 4, a signal processor 5, and a clock generator. 6 and a detection processing unit (detection unit) 7. The radio wave sensor 101 does not have a function of modulating / demodulating radio waves.
 送信部1は、送信アンテナ21と、パワーアンプ22と、方向性結合器23と、VCO(Voltage-Controlled Oscillator)24と、電圧発生部25と、スイッチ26とを含む。受信部2は、受信アンテナ31と、ローノイズアンプ32とを含む。 The transmitting unit 1 includes a transmitting antenna 21, a power amplifier 22, a directional coupler 23, a VCO (Voltage-Controlled Oscillator) 24, a voltage generating unit 25, and a switch 26. The reception unit 2 includes a reception antenna 31 and a low noise amplifier 32.
 差分信号生成部3は、ミキサ33と、IF(Intermediate Frequency)アンプ34と、ローパスフィルタ35と、A/Dコンバータ(ADC)36とを含む。 The differential signal generator 3 includes a mixer 33, an IF (Intermediate Frequency) amplifier 34, a low-pass filter 35, and an A / D converter (ADC) 36.
 電波センサ101は、たとえば、非特許文献1(四分一 浩二、外2名、”拡大するミリ波技術の応用”、[online]、[平成28年5月22日検索]、インターネット〈URL:http://www.spc.co.jp/spc/pdf/giho21_09.pdf〉)および非特許文献2(稲葉 敬之、桐本 哲郎、”車載用ミリ波レーダ”、自動車技術、2010年2月、第64巻、第2号、P.74-79)に記載された、FM-CW方式を用いて対象物Tgtを検知するレーダである。 The radio wave sensor 101 is, for example, Non-Patent Document 1 (Koji Yoichi, 2 persons, “Expanding application of millimeter wave technology”, [online], [search on May 22, 2016], Internet <URL: http: //Www.spc.co.jp/spc/pdf/giho21_09.pdf>) and Non-Patent Document 2 (Takayuki Inaba, Tetsuro Kirimoto, "In-vehicle millimeter-wave radar", Automotive Technology, February 2010, 64th) Vol. 2, No. 2, p. 74-79), which is a radar for detecting an object Tgt using the FM-CW method.
 図4は、本発明の実施の形態に係る電波センサにおける制御部が設定する検知期間および各シーケンスの一例を示す図である。なお、図4において、横軸は時間を示す。 FIG. 4 is a diagram showing an example of the detection period and each sequence set by the control unit in the radio wave sensor according to the embodiment of the present invention. In addition, in FIG. 4, the horizontal axis represents time.
 検知処理部7は、受信部2によって受信された電波である受信電波に基づいて、対象物を検知する検知処理を行う。 The detection processing unit 7 performs a detection process of detecting an object based on the received radio wave that is the radio wave received by the reception unit 2.
 詳細には、図4を参照して、電波センサ101における制御部4は、たとえば、自己の電波センサ101が対象物Tgtの検知結果を1回出力する、検知期間を設定する。 Specifically, with reference to FIG. 4, the control unit 4 in the radio wave sensor 101 sets a detection period in which the radio wave sensor 101 of its own outputs the detection result of the target Tgt once, for example.
 より詳細には、制御部4は、たとえば、対象物Tgtの移動速度に基づいて、長さPmを有する検知期間を設定する。長さPmは、たとえば可変である。検知期間の長さPmの設定方法の詳細については、後述する。 More specifically, the control unit 4 sets the detection period having the length Pm, for example, based on the moving speed of the object Tgt. The length Pm is variable, for example. Details of the setting method of the detection period length Pm will be described later.
 検知期間には、たとえばSeq1~SeqMのM個のシーケンスが含まれる。ここで、Mは、2以上の整数である。1つのシーケンスにおいて、1つのパターンの電波または1つのサブパターンの電波が送信部1から送信される。 The detection period includes, for example, M sequences of Seq1 to SeqM. Here, M is an integer of 2 or more. In one sequence, one pattern of radio waves or one sub-pattern of radio waves is transmitted from the transmission unit 1.
 図5は、本発明の実施の形態に係る電波センサにおける制御部およびクロック生成回路がそれぞれ生成するトリガ信号および分周クロック信号の各波形の一例を示す図である。なお、図5において、横軸は時間を示し、縦軸は各信号のレベルを示す。 FIG. 5 is a diagram showing an example of each waveform of a trigger signal and a divided clock signal generated by the control unit and the clock generation circuit in the radio wave sensor according to the embodiment of the present invention. In FIG. 5, the horizontal axis represents time and the vertical axis represents the level of each signal.
 クロック生成回路6は、たとえばクロック信号および分周クロック信号を生成する。具体的には、クロック生成回路6は、たとえば、周期Tckを有する矩形波のクロック信号CLKを生成する。また、クロック生成回路6は、生成したクロック信号CLKをたとえば10分周することにより、周期Tcを有する分周クロック信号CSを生成する。 The clock generation circuit 6 generates, for example, a clock signal and a divided clock signal. Specifically, the clock generation circuit 6 generates, for example, a rectangular wave clock signal CLK having a cycle Tck. Further, the clock generation circuit 6 generates the divided clock signal CS having the cycle Tc by dividing the generated clock signal CLK by, for example, 10.
 そして、クロック生成回路6は、生成したクロック信号CLKを差分信号生成部3へ出力し、生成した分周クロック信号CSを制御部4および差分信号生成部3へ出力する。 Then, the clock generation circuit 6 outputs the generated clock signal CLK to the differential signal generation unit 3, and outputs the generated divided clock signal CS to the control unit 4 and the differential signal generation unit 3.
 制御部4は、各シーケンスを設定する。より詳細には、制御部4は、各シーケンスの開始タイミングごとにトリガ信号TSを生成し、生成したトリガ信号TSを送信部1および信号処理部5へ出力する。 The control unit 4 sets each sequence. More specifically, the control unit 4 generates the trigger signal TS at each start timing of each sequence, and outputs the generated trigger signal TS to the transmission unit 1 and the signal processing unit 5.
 具体的には、制御部4は、たとえば、クロック生成回路6から受ける分周クロック信号CSの立ち上がりエッジの個数をカウントし、当該エッジをNs個カウントするごとにトリガ信号TSを生成して出力する。ここで、Nsは、2以上の整数であり、所定値であってもよいし、可変であってもよい。また、周期TcにNsを乗じた値が、1シーケンスの周期Ttである。この例では、周期Ttが、たとえば0.1ミリ秒~100ミリ秒になるようにNsの値が設定される。 Specifically, for example, the control unit 4 counts the number of rising edges of the divided clock signal CS received from the clock generation circuit 6 and generates and outputs the trigger signal TS every Ns of the edges. .. Here, Ns is an integer of 2 or more, and may be a predetermined value or may be variable. A value obtained by multiplying the cycle Tc by Ns is the cycle Tt of one sequence. In this example, the value of Ns is set so that the cycle Tt is, for example, 0.1 ms to 100 ms.
 図6は、本発明の実施の形態に係る電波センサにおける送信部および差分信号生成部がそれぞれ生成する送信波および差分信号の各波形の一例を示す図である。なお、図6において、横軸は時間を示し、縦軸は、紙面の上側から順に、送信電波および受信電波の周波数Ft,Fr、差分信号の周波数Fb、ならびに差分信号の振幅Abを示す。また、送信電波の周波数Ftは実線で表され、受信電波の周波数Frは破線で表されている。図6では、送信電波に対する受信電波の遅延が示されている。 FIG. 6 is a diagram showing an example of respective waveforms of a transmission wave and a difference signal generated by the transmission unit and the difference signal generation unit in the radio wave sensor according to the embodiment of the present invention. In FIG. 6, the horizontal axis represents time, and the vertical axis represents the frequencies Ft and Fr of the transmitted and received radio waves, the frequency Fb of the differential signal, and the amplitude Ab of the differential signal in order from the top of the paper. The frequency Ft of the transmitted radio wave is represented by the solid line, and the frequency Fr of the received radio wave is represented by the broken line. In FIG. 6, the delay of the received radio wave with respect to the transmitted radio wave is shown.
 図3および図6を参照して、送信部1は、所定のパターンの電波を間欠的に送信する。具体的には、送信部1は、たとえば、FM-CW方式の変調方式を用いて生成した電波を対象エリアA1へ繰り返し送信する。より詳細には、送信部1は、たとえば、図6に示すように、周波数Ftが単位時間あたりで所定量増加するパターンPt1の電波を対象エリアA1へ繰り返し送信する。なお、送信部1は、電波を周期的に送信する構成に限らず、電波を不定期に送信する構成であってもよい。 With reference to FIGS. 3 and 6, the transmission unit 1 intermittently transmits radio waves of a predetermined pattern. Specifically, the transmission unit 1 repeatedly transmits, for example, a radio wave generated using the FM-CW modulation method to the target area A1. More specifically, for example, as shown in FIG. 6, the transmission unit 1 repeatedly transmits a radio wave of a pattern Pt1 in which the frequency Ft increases by a predetermined amount per unit time to the target area A1. The transmitting unit 1 is not limited to the configuration that periodically transmits radio waves, but may have a configuration that irregularly transmits radio waves.
 なお、送信部1は、周波数Ftが単位時間あたりで所定量減少するパターンの電波を送信してもよい。また、送信部1が送信する電波のパターンは、図6に示すように周波数の時間変化により定められる構成に限らず、振幅の時間変化により定められる構成であってもよい。 Note that the transmitter 1 may transmit radio waves in a pattern in which the frequency Ft decreases by a predetermined amount per unit time. The pattern of the radio wave transmitted by the transmitter 1 is not limited to the configuration determined by the time change of the frequency as shown in FIG. 6, but may be the configuration determined by the time change of the amplitude.
 制御部4は、FM-CW方式において用いる送信パラメータを送信部1、信号処理部5および検知処理部7へたとえば検知期間ごとに出力する。ここで、送信パラメータには、掃引開始周波数F2、周波数掃引方向、周波数掃引幅Δf、1シーケンスの長さである周期Tt、掃引時間Ts、分周クロック信号CSの周期Tcおよび検知期間の長さPmが含まれる。 The control unit 4 outputs the transmission parameters used in the FM-CW method to the transmission unit 1, the signal processing unit 5, and the detection processing unit 7, for example, for each detection period. Here, the transmission parameters include the sweep start frequency F2, the frequency sweep direction, the frequency sweep width Δf, the period Tt which is the length of one sequence, the sweep time Ts, the period Tc of the divided clock signal CS, and the length of the detection period. Pm is included.
 また、制御部4は、トリガ信号TSを生成してから掃引時間Ts経過したタイミングにおいて、送信部1から電波が送信されないガード期間Gpの開始タイミングを示すガード信号GSを生成して送信部1へ出力する。 Further, the control unit 4 generates the guard signal GS indicating the start timing of the guard period Gp in which the radio wave is not transmitted from the transmission unit 1 at the timing when the sweep time Ts has elapsed after the generation of the trigger signal TS, and transmits the guard signal GS to the transmission unit 1. Output.
 ガード信号GSは、分周クロック信号CSと同期している。ガード期間Gpは、たとえば各シーケンスの後部に設けられ、ガード信号GSが出力されてから次のシーケンスの開始タイミングを示すトリガ信号TSが出力されるまで継続する。なお、ガード期間Gpは、各シーケンスの前部に設けられてもよい。 The guard signal GS is synchronized with the divided clock signal CS. The guard period Gp is provided, for example, at the rear of each sequence, and continues after the guard signal GS is output until the trigger signal TS indicating the start timing of the next sequence is output. The guard period Gp may be provided in the front part of each sequence.
 送信部1における電圧発生部25は、制御部4からトリガ信号TSを受けると、送信パラメータとして予め制御部4から受けた掃引開始周波数F2、周波数掃引方向、周波数掃引幅Δfおよび掃引時間Tsを用いて、送信期間Tpにおいて、大きさが一定の割合で増加する電圧(以下、FM変調電圧とも称する。)を生成してVCO24へ出力する。 Upon receiving the trigger signal TS from the control unit 4, the voltage generation unit 25 in the transmission unit 1 uses the sweep start frequency F2, the frequency sweep direction, the frequency sweep width Δf, and the sweep time Ts received from the control unit 4 in advance as transmission parameters. Then, in the transmission period Tp, a voltage whose magnitude increases at a constant rate (hereinafter, also referred to as FM modulation voltage) is generated and output to the VCO 24.
 送信期間Tpは、送信部1から電波が送信される期間であり、具体的には、電圧発生部25が制御部4からトリガ信号TSを受けてから掃引時間Tsが経過してガード信号GSを受けるまでの期間である。 The transmission period Tp is a period during which a radio wave is transmitted from the transmission unit 1. Specifically, the sweep time Ts elapses after the voltage generation unit 25 receives the trigger signal TS from the control unit 4, and the guard signal GS is transmitted. It is the period until receiving.
 VCO24は、電圧発生部25から受ける電圧の大きさに応じた周波数を有する送信波RFtを生成する。 The VCO 24 generates a transmission wave RFt having a frequency according to the magnitude of the voltage received from the voltage generator 25.
 より詳細には、VCO24は、電圧発生部25から受けるFM変調電圧に応じて、周波数掃引幅がΔfである24GHz帯の送信波RFtを生成して方向性結合器23へ出力する。 More specifically, the VCO 24 generates a transmission wave RFt in the 24 GHz band having a frequency sweep width of Δf and outputs it to the directional coupler 23 in accordance with the FM modulation voltage received from the voltage generator 25.
 方向性結合器23は、VCO24から受ける送信波RFtをスイッチ26および差分信号生成部3へ分配する。 The directional coupler 23 distributes the transmission wave RFt received from the VCO 24 to the switch 26 and the differential signal generator 3.
 スイッチ26は、方向性結合器23に接続された第1端と、パワーアンプ22に接続された第2端とを有する。スイッチ26は、制御部4からトリガ信号TSを受けると、オン状態へ遷移し、第1端および第2端を電気的に接続する。一方、スイッチ26は、制御部4からガード信号GSを受けると、オフ状態へ遷移し、第1端および第2端を電気的に絶縁する。これにより、VCO24が出力する送信波RFtは、ガード期間Gpにおいてパワーアンプ22へ伝送されず、かつガード期間Gpと異なる期間である送信期間Tpにおいてパワーアンプ22へ伝送される。 The switch 26 has a first end connected to the directional coupler 23 and a second end connected to the power amplifier 22. When the switch 26 receives the trigger signal TS from the control unit 4, the switch 26 transitions to the ON state and electrically connects the first end and the second end. On the other hand, when the switch 26 receives the guard signal GS from the control unit 4, the switch 26 transitions to the off state and electrically insulates the first end and the second end. As a result, the transmission wave RFt output by the VCO 24 is not transmitted to the power amplifier 22 in the guard period Gp, but is transmitted to the power amplifier 22 in the transmission period Tp that is a period different from the guard period Gp.
 パワーアンプ22は、スイッチ26から受ける送信波RFtを増幅し、増幅後の送信波RFtを送信アンテナ21経由で対象エリアA1へ送信する。 The power amplifier 22 amplifies the transmission wave RFt received from the switch 26 and transmits the amplified transmission wave RFt to the target area A1 via the transmission antenna 21.
 受信部2は、対象エリアA1等からの電波、すなわち送信部1によって送信された電波の反射波を含む電波を受信する。より詳細には、受信部2における受信アンテナ31は、対象エリアA1における対象物Tgt、具体的には、歩行者Tgt2および自動車Tgt1等の移動可能な物体、ならびにガードレールおよび支柱PV等の停止している物体によって反射された電波を受信することが可能である。以下では、対象物Tgtが移動可能な物体である場合に適した、電波センサ101の動作を説明する。 The receiving unit 2 receives an electric wave from the target area A1 or the like, that is, an electric wave including a reflected wave of the electric wave transmitted by the transmitting unit 1. More specifically, the receiving antenna 31 in the receiving unit 2 stops the target object Tgt in the target area A1, specifically, a movable object such as a pedestrian Tgt2 and an automobile Tgt1, and a guardrail and a pillar PV. It is possible to receive the radio waves reflected by an object that is present. Hereinafter, the operation of the radio wave sensor 101, which is suitable when the target Tgt is a movable object, will be described.
 また、受信アンテナ31は、干渉波を送信する干渉物体が送信した電波を受信することもある。干渉物体は、たとえば、対象エリアA1内または対象エリアA1外に位置する自動車Tgt1に搭載された電子走査型ミリ波レーダ装置等である。 Also, the receiving antenna 31 may receive a radio wave transmitted by an interfering object that transmits an interference wave. The interfering object is, for example, an electronic scanning type millimeter-wave radar device mounted on the automobile Tgt1 located in the target area A1 or outside the target area A1.
 ローノイズアンプ32は、受信アンテナ31が受信した電波である受信電波を増幅し、差分信号生成部3へ出力する。 The low noise amplifier 32 amplifies the received radio wave, which is the radio wave received by the reception antenna 31, and outputs the amplified radio wave to the difference signal generation unit 3.
 差分信号生成部3は、送信部1によって送信される電波の周波数成分と受信部2によって受信される電波の周波数成分との差の周波数成分を有する差分信号を生成する。 The difference signal generation unit 3 generates a difference signal having a frequency component that is the difference between the frequency component of the radio wave transmitted by the transmission unit 1 and the frequency component of the radio wave received by the reception unit 2.
 より詳細には、差分信号生成部3におけるミキサ33は、送信部1から受ける送信波RFtとローノイズアンプ32から受ける受信電波との差の周波数成分を有するアナログの差分信号Ba1を生成する。 More specifically, the mixer 33 in the difference signal generation unit 3 generates an analog difference signal Ba1 having a frequency component of the difference between the transmission wave RFt received from the transmission unit 1 and the reception radio wave received from the low noise amplifier 32.
 差分信号Ba1の周波数Fbおよび振幅Abの時間変化は、図6に示される。ミキサ33は、生成した差分信号Ba1をIFアンプ34へ出力する。 The time change of the frequency Fb and the amplitude Ab of the differential signal Ba1 is shown in FIG. The mixer 33 outputs the generated difference signal Ba1 to the IF amplifier 34.
 IFアンプ34は、ミキサ33から受ける差分信号Ba1を増幅し、ローパスフィルタ35へ出力する。 The IF amplifier 34 amplifies the differential signal Ba1 received from the mixer 33 and outputs it to the low-pass filter 35.
 ローパスフィルタ35は、IFアンプ34において増幅された差分信号Ba1の周波数成分のうち、所定の周波数以上の成分を減衰させる。 The low-pass filter 35 attenuates a frequency component of a predetermined frequency or higher among the frequency components of the differential signal Ba1 amplified by the IF amplifier 34.
 A/Dコンバータ36は、たとえばクロック信号CLKの周期Tckで差分信号Ba1のサンプリング処理を行う。より詳細には、A/Dコンバータ36は、クロック生成回路6から受けるクロック信号CLKの立ち上がりエッジのタイミングに従って、ローパスフィルタ35を通過した差分信号Ba1をサンプリング周期Tckごとにqビット(qは2以上の整数)のデジタルの差分信号Bd1に変換する。 The A / D converter 36 performs sampling processing of the differential signal Ba1 at the cycle Tck of the clock signal CLK, for example. More specifically, the A / D converter 36 sets the difference signal Ba1 that has passed through the low-pass filter 35 by q bits (q is 2 or more) every sampling cycle Tck in accordance with the timing of the rising edge of the clock signal CLK received from the clock generation circuit 6. To the digital difference signal Bd1.
 図6では、シーケンスSeq1,Seq2における各サンプリングタイミングのうち、分周クロック信号CSの周期Tcごとのサンプリングタイミングが白丸で示されている。各シーケンスにおける周期Tcごとのサンプリングタイミングには、サンプリング順を示す1~12のサンプリング番号が割り当てられている。A/Dコンバータ36は、変換後の差分信号Bd1を信号処理部5へ出力する。 In FIG. 6, among the sampling timings in the sequences Seq1 and Seq2, the sampling timings for each cycle Tc of the divided clock signal CS are indicated by white circles. Sampling numbers 1 to 12 indicating the sampling order are assigned to the sampling timing for each cycle Tc in each sequence. The A / D converter 36 outputs the converted differential signal Bd1 to the signal processing unit 5.
 図7は、本発明の実施の形態に係る電波センサにおける信号処理部の構成を示す図である。 FIG. 7 is a diagram showing a configuration of a signal processing unit in the radio wave sensor according to the embodiment of the present invention.
 図7を参照して、信号処理部5は、メモリ41と、FFT(Fast Fourier Transform)処理部42と、FMCW処理部43と、パターン信号取得部44と、加算部45と、判断部46とを含む。 With reference to FIG. 7, the signal processing unit 5 includes a memory 41, an FFT (Fast Fourier Transform) processing unit 42, an FMCW processing unit 43, a pattern signal acquisition unit 44, an addition unit 45, and a determination unit 46. including.
 信号処理部5におけるメモリ41は、A/Dコンバータ36から受ける差分信号Bd1を蓄積する。 The memory 41 in the signal processing unit 5 stores the differential signal Bd1 received from the A / D converter 36.
 パターン信号取得部44は、制御部4から受ける周期Tcに基づいて、パターンPt1に対応する、周期Tcごとの差分信号Bd1の組(以下、パターン信号とも称する。)を生成する。より詳細には、パターン信号取得部44は、制御部4から受けるトリガ信号TSに基づいて、1つのシーケンスの開始タイミングおよび終了タイミングを認識する。 The pattern signal acquisition unit 44 generates a set of difference signals Bd1 for each cycle Tc (hereinafter, also referred to as pattern signal) corresponding to the pattern Pt1 based on the cycle Tc received from the control unit 4. More specifically, the pattern signal acquisition unit 44 recognizes the start timing and the end timing of one sequence based on the trigger signal TS received from the control unit 4.
 そして、パターン信号取得部44は、たとえば、あるシーケンスが終了するごとに、当該シーケンスにおいてサンプリング周期Tckでサンプリングされた時系列の差分信号Bd1のうち、周期Tcごとの差分信号Bd1すなわちパターン信号をメモリ41から取り出す。パターン信号取得部44は、取り出したパターン信号を加算部45へ出力する。 Then, the pattern signal acquisition unit 44 stores the difference signal Bd1 for each cycle Tc, that is, the pattern signal, among the time-series difference signals Bd1 sampled at the sampling cycle Tck in the sequence, for example, every time a sequence ends. Take out from 41. The pattern signal acquisition unit 44 outputs the extracted pattern signal to the addition unit 45.
 加算部45は、パターンPt1における複数のタイミングについて、複数のパターンPt1における対応のタイミングの差分信号を加算する。具体的には、加算部45は、パターンPt1における1~12のサンプリング番号により示される各サンプリングタイミングについて、複数のパターンPt1における同じサンプリング番号の差分信号を加算する。 The adding unit 45 adds the difference signals at the corresponding timings in the plurality of patterns Pt1 with respect to the plurality of timings in the pattern Pt1. Specifically, the addition unit 45 adds the differential signals having the same sampling number in the plurality of patterns Pt1 at each sampling timing indicated by the sampling numbers 1 to 12 in the pattern Pt1.
 より詳細には、加算部45は、たとえば、検知期間ごとに、加算対象とすべき複数のパターンの個数Mを決定する。 More specifically, the adding unit 45 determines the number M of a plurality of patterns to be added, for example, for each detection period.
 たとえば、加算部45は、制御部4から受ける送信パラメータに含まれる検知期間の長さPmおよび周期Ttに基づいて個数Mを決定する。 For example, the addition unit 45 determines the number M based on the detection period length Pm and the cycle Tt included in the transmission parameter received from the control unit 4.
 具体的には、加算部45は、検知期間の長さPmを周期Ttで除した値を個数Mとして決定する。 Specifically, the addition unit 45 determines the value obtained by dividing the length Pm of the detection period by the cycle Tt as the number M.
 加算部45は、パターン信号取得部44からパターン信号を繰り返し受ける。具体的には、たとえば、加算部45は、図6に示すシーケンスSeq1が満了したタイミングにおいて、パターン信号をパターン信号取得部44から受けると、受けたパターン信号を対象パターン信号として蓄積する。パターン信号には、サンプリング番号1~12により示される各サンプリングタイミングにおいてサンプリングされた振幅Abが含まれる。 The addition unit 45 repeatedly receives the pattern signal from the pattern signal acquisition unit 44. Specifically, for example, when the addition unit 45 receives the pattern signal from the pattern signal acquisition unit 44 at the timing when the sequence Seq1 shown in FIG. 6 has expired, the addition unit 45 accumulates the received pattern signal as the target pattern signal. The pattern signal includes the amplitude Ab sampled at each sampling timing indicated by the sampling numbers 1 to 12.
 そして、加算部45は、シーケンスSeq2が満了したタイミングにおいてパターン信号をパターン信号取得部44から受けると、以下の処理を行う。 Then, when the pattern signal is received from the pattern signal acquisition unit 44 at the timing when the sequence Seq2 is completed, the addition unit 45 performs the following processing.
 すなわち、加算部45は、対象パターン信号に含まれる各振幅AbとシーケンスSeq2のパターン信号に含まれる各振幅Abとをサンプリング番号が同じ振幅Ab同士で加算することにより対象パターン信号を更新する。 That is, the addition unit 45 updates the target pattern signal by adding the amplitudes Ab included in the target pattern signal and the amplitudes Ab included in the pattern signal of the sequence Seq2 between the amplitudes Ab having the same sampling number.
 加算部45は、シーケンスSeq3~SeqMがそれぞれ満了したタイミングにおいて、対象パターン信号を同様に更新する。加算部45は、更新後の対象パターン信号をFFT処理部42へ出力する。 The adding unit 45 similarly updates the target pattern signal at the timing when each of the sequences Seq3 to SeqM expires. The addition unit 45 outputs the updated target pattern signal to the FFT processing unit 42.
 FFT処理部42は、加算部45から対象パターン信号を受けると、受けた対象パターン信号に対してFFT処理を行うことにより、パワースペクトルFS1および位相スペクトルPS1を生成する。ここで、パワースペクトルFS1は、検知期間において蓄積された差分信号Bd1に含まれる各周波数成分の振幅を示す。また、位相スペクトルPS1は、検知期間において蓄積された差分信号Bd1に含まれる各周波数成分の位相を示す。 When the FFT processing unit 42 receives the target pattern signal from the adding unit 45, the FFT processing unit 42 performs the FFT process on the received target pattern signal to generate the power spectrum FS1 and the phase spectrum PS1. Here, the power spectrum FS1 indicates the amplitude of each frequency component included in the difference signal Bd1 accumulated in the detection period. In addition, the phase spectrum PS1 indicates the phase of each frequency component included in the difference signal Bd1 accumulated in the detection period.
 FFT処理部42は、生成したパワースペクトルFS1および位相スペクトルPS1をFMCW処理部43へ出力する。 The FFT processing unit 42 outputs the generated power spectrum FS1 and phase spectrum PS1 to the FMCW processing unit 43.
 図8は、本発明の実施の形態に係る電波センサにおけるFMCW処理部が生成する処理スペクトルの一例を示す図である。なお、図8において、縦軸は強度を示し、横軸は電波センサ101から物体までの距離を示す。 FIG. 8 is a diagram showing an example of a processing spectrum generated by the FMCW processing unit in the radio wave sensor according to the embodiment of the present invention. In FIG. 8, the vertical axis represents intensity and the horizontal axis represents the distance from the radio wave sensor 101 to the object.
 FMCW処理部43は、受信部2によって受信された電波に基づいて、物体が存在するか否かを判定する。 The FMCW processing unit 43 determines whether or not an object is present based on the radio wave received by the receiving unit 2.
 具体的には、FMCW処理部43は、たとえば、対象エリアA1において歩行者Tgt2および自動車Tgt1等の移動可能な物体が存在しないとした状態におけるパワースペクトルである背景スペクトルを保持している。 Specifically, the FMCW processing unit 43 holds a background spectrum that is a power spectrum in a state where there are no movable objects such as a pedestrian Tgt2 and a car Tgt1 in the target area A1, for example.
 FMCW処理部43は、パワースペクトルFS1および位相スペクトルPS1をFFT処理部42から受けると、受けたパワースペクトルFS1の各周波数成分から背景スペクトルの各周波数成分をそれぞれ差し引くことにより処理スペクトルを生成する。 Upon receiving the power spectrum FS1 and the phase spectrum PS1 from the FFT processing unit 42, the FMCW processing unit 43 generates a processed spectrum by subtracting each frequency component of the background spectrum from each frequency component of the received power spectrum FS1.
 また、FMCW処理部43は、生成した処理スペクトルの周波数Fbおよび位相スペクトルPS1の周波数Fbを距離Lに換算する。 Further, the FMCW processing unit 43 converts the frequency Fb of the generated processing spectrum and the frequency Fb of the phase spectrum PS1 into the distance L.
 より詳細には、周波数Fbと距離Lとの関係は、非特許文献1における式(1)に基づいて、以下の式(1)により表される。
Figure JPOXMLDOC01-appb-M000001
More specifically, the relationship between the frequency Fb and the distance L is expressed by the following expression (1) based on the expression (1) in Non-Patent Document 1.
Figure JPOXMLDOC01-appb-M000001
 ここで、cは光速である。vrは、電波センサ101に対して近づくかまたは遠ざかる方向に沿った物体の移動速度(以下、検出対象速度とも称する。)である。f0は、掃引開始周波数F2と掃引開始周波数F2に周波数掃引幅Δfを加えた掃引終了周波数F1との平均である。 Where c is the speed of light. vr is a moving speed of the object along a direction approaching or moving away from the radio wave sensor 101 (hereinafter, also referred to as a detection target speed). f0 is an average of the sweep start frequency F2 and the sweep end frequency F1 obtained by adding the frequency sweep width Δf to the sweep start frequency F2.
 たとえば、式(1)において、1シーケンスにおいて電波の送信される期間の長さすなわち掃引時間Tsに対して周波数掃引幅Δfが大きい場合、距離Lは、以下の式(2)のように近似して表すことが可能である。
Figure JPOXMLDOC01-appb-M000002
For example, in the equation (1), when the frequency sweep width Δf is large with respect to the length of the period in which the radio wave is transmitted in one sequence, that is, the sweep time Ts, the distance L is approximated by the following equation (2). Can be expressed as
Figure JPOXMLDOC01-appb-M000002
 FMCW処理部43は、制御部4から受けた送信パラメータに含まれる周波数掃引幅Δfおよび掃引時間Tsと式(2)とを用いて処理スペクトルおよび位相スペクトルPS1の横軸の周波数Fbを距離Lに換算する。図8には、横軸が周波数から距離に換算された処理スペクトルが示される。 The FMCW processing unit 43 sets the frequency Fb on the horizontal axis of the processing spectrum and the phase spectrum PS1 to the distance L by using the frequency sweep width Δf and the sweep time Ts included in the transmission parameter received from the control unit 4 and the equation (2). Convert. FIG. 8 shows a processed spectrum in which the horizontal axis is converted from frequency to distance.
 FMCW処理部43は、生成した処理スペクトルに対してピーク検出処理を行う。より詳細には、FMCW処理部43は、処理スペクトルを解析し、所定のしきい値Thfm以上の強度を有するピークの検出を試みる。 The FMCW processing unit 43 performs peak detection processing on the generated processing spectrum. More specifically, the FMCW processing unit 43 analyzes the processed spectrum and tries to detect a peak having an intensity equal to or higher than a predetermined threshold value Thfm.
 FMCW処理部43は、しきい値Thfm以上の強度を有するピークを検出できた場合、物体が存在すると判定する。この例では、FMCW処理部43は、1つのピークPn1を検出し、物体が存在すると判定する。一方、FMCW処理部43は、しきい値Thfm以上の強度を有するピークを検出できなかった場合、物体が存在しないと判定する。 The FMCW processing unit 43 determines that an object exists when a peak having an intensity equal to or higher than the threshold Thfm can be detected. In this example, the FMCW processing unit 43 detects one peak Pn1 and determines that an object exists. On the other hand, when the FMCW processing unit 43 cannot detect a peak having an intensity equal to or higher than the threshold Thfm, the FMCW processing unit 43 determines that there is no object.
 FMCW処理部43は、判定結果、検出したピークPn1の強度、およびピークPn1に対応する距離Lを示す結果情報を検知処理部7へ出力する。 The FMCW processing unit 43 outputs result information indicating the determination result, the intensity of the detected peak Pn1 and the distance L corresponding to the peak Pn1 to the detection processing unit 7.
 再び図3を参照して、検知処理部7は、加算部45によってそれぞれ加算された、複数のタイミングの差分信号に基づいて対象物Tgtを検知する。 Referring again to FIG. 3, the detection processing unit 7 detects the target Tgt based on the difference signals of the plurality of timings added by the adding unit 45.
 詳細には、検知処理部7は、FMCW処理部43から受ける結果情報に基づいて、対象物Tgtを検知する。 Specifically, the detection processing unit 7 detects the target Tgt based on the result information received from the FMCW processing unit 43.
 より詳細には、検知処理部7は、たとえば、結果情報の示す判定結果が物体の不存在を示す場合、対象物Tgtが存在しないと判定する。 More specifically, the detection processing unit 7 determines that the target Tgt does not exist, for example, when the determination result indicated by the result information indicates the absence of the object.
 一方、検知処理部7は、たとえば、結果情報の示す判定結果が物体の存在を示す場合、結果情報の示すピーク強度の大きさに基づいて、対象物Tgtの種類として歩行者Tgt2または自動車Tgt1を特定する。具体的には、検知処理部7は、ピーク強度が大きい場合、対象物Tgtの種類を自動車Tgt1と判定し、また、ピーク強度が小さい場合、対象物の種類を歩行者Tgt2と判定する。 On the other hand, for example, when the determination result indicated by the result information indicates the presence of an object, the detection processing unit 7 selects the pedestrian Tgt2 or the automobile Tgt1 as the type of the object Tgt based on the magnitude of the peak intensity indicated by the result information. Identify. Specifically, the detection processing unit 7 determines that the type of the target object Tgt is the automobile Tgt1 when the peak intensity is large, and determines the type of the target object is the pedestrian Tgt2 when the peak intensity is small.
 再び図7を参照して、判断部46は、受信電波の周期性に関する判断を行う。たとえば、判断部46は、送信部1による電波の非送信期間すなわちガード期間Gpにおいて受信部2によって受信された電波の、周期性に関する判断を行う。 Referring again to FIG. 7, the determination unit 46 determines the periodicity of received radio waves. For example, the determination unit 46 determines the periodicity of the radio wave received by the reception unit 2 during the non-transmission period of the radio wave by the transmission unit 1, that is, the guard period Gp.
 図9は、本発明の実施の形態に係る電波センサにおける受信部によって受信された受信電波および差分信号の各波形の一例を示す図である。図9において、横軸は時間を示し、縦軸は、紙面の上側から順に、送信電波および受信電波の周波数Ft,Frおよび差分信号の周波数Fbを示す。また、送信電波の周波数Ftは実線で表され、受信電波の周波数Frは破線で表されている。 FIG. 9 is a diagram showing an example of respective waveforms of a reception radio wave and a differential signal received by the receiving unit in the radio wave sensor according to the embodiment of the present invention. In FIG. 9, the horizontal axis represents time, and the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper. The frequency Ft of the transmitted radio wave is represented by the solid line, and the frequency Fr of the received radio wave is represented by the broken line.
 また、図9では、各シーケンス各サンプリングタイミングのうち、分周クロック信号CSの周期Tcごとのサンプリングタイミングにおけるデジタルの差分信号Bd1が白丸で示されている。各シーケンスにおける周期Tcごとのサンプリングタイミングは、サンプリング順を示す1~12のサンプリング番号により表されている。 Further, in FIG. 9, among the sampling timings of each sequence, the digital difference signal Bd1 at the sampling timing for each cycle Tc of the divided clock signal CS is indicated by a white circle. The sampling timing for each cycle Tc in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
 図9は、電波センサ101における、ガード期間Gpにおいて、自己の送信電波が反射された電波である対象反射波以外の電波が受信電波に含まれる場合の、送信電波および受信電波の周波数Ft,Frおよび差分信号の周波数Fbを示す。 FIG. 9 shows the frequencies Ft and Fr of the transmission radio wave and the reception radio wave when the reception radio wave includes a radio wave other than the target reflected wave, which is the radio wave in which the self transmission radio wave is reflected, in the guard period Gp in the radio wave sensor 101. And the frequency Fb of the difference signal.
 たとえば、判断部46は、送信部1によって送信される電波と受信電波との相関を算出し、算出した相関に基づいて、受信電波に含まれる電波の周期性に関する判断を行う。 For example, the determination unit 46 calculates the correlation between the radio wave transmitted by the transmission unit 1 and the received radio wave, and determines the periodicity of the radio wave included in the received radio wave based on the calculated correlation.
 詳細には、判断部46は、差分信号Bd1に基づいて、受信部2によって受信された電波に含まれる対象反射波の検出を行う。 Specifically, the determination unit 46 detects the target reflected wave included in the radio wave received by the reception unit 2 based on the difference signal Bd1.
 より詳細には、判断部46は、たとえば、掃引時間Tsに相当するサンプリング番号が1~4である差分信号Bd1を含む、サンプリング番号が12~5の期間における周期Tckごとの差分信号Bd1を、メモリ41から取得する。 More specifically, the determination unit 46 determines, for example, the difference signal Bd1 for each cycle Tck in the period of the sampling numbers 12 to 5 including the difference signal Bd1 having the sampling numbers 1 to 4 corresponding to the sweep time Ts, It is acquired from the memory 41.
 そして、判断部46は、たとえば、取得した各差分信号Bd1のうち、サンプリング番号1~4にそれぞれ対応する差分信号Bd1ごとに、当該差分信号Bd1および当該差分信号Bd1の前後の10個の差分信号Bd1に対してFFT処理を行うことにより、当該サンプリング番号の差分信号Bd1に対応するスペクトルFS0を生成する。そして、判断部46は、サンプリング番号ごとに、生成したスペクトルFS0に基づいて、対応の各差分信号Bd1に含まれる周波数成分の値を得る。 Then, the determination unit 46, for example, among the acquired difference signals Bd1, for each difference signal Bd1 corresponding to the sampling numbers 1 to 4, the difference signal Bd1 and ten difference signals before and after the difference signal Bd1. By performing FFT processing on Bd1, a spectrum FS0 corresponding to the differential signal Bd1 of the sampling number is generated. Then, the determination unit 46 obtains the value of the frequency component included in each corresponding difference signal Bd1 based on the generated spectrum FS0 for each sampling number.
 再び図6を参照して、判断部46は、たとえば、取得した各差分信号Bd1のうち、サンプリング番号が1である差分信号Bd1の周波数成分の値がゼロであり、サンプリング番号が2~4である差分信号Bd1の周波数成分の値がいずれも所定の正の閾値F3未満であり、かつ同程度の大きさ、たとえば最大値と最小値との差が所定の閾値未満である場合、当該各差分信号Bd1を対象反射波に基づく差分信号であると判断する。 Referring again to FIG. 6, the determination unit 46 determines that, for example, among the acquired difference signals Bd1, the value of the frequency component of the difference signal Bd1 having the sampling number 1 is zero, and the sampling numbers are 2 to 4. When the values of the frequency components of a certain difference signal Bd1 are all less than a predetermined positive threshold value F3, and the magnitudes thereof are the same, for example, the difference between the maximum value and the minimum value is less than the predetermined threshold value, each difference It is determined that the signal Bd1 is a differential signal based on the target reflected wave.
 また、判断部46は、差分信号Bd1に基づいて、受信部2によって受信された電波に対象反射波以外の電波である干渉波が含まれているか否かを判断する。 The determination unit 46 also determines whether the radio wave received by the reception unit 2 includes an interference wave that is a radio wave other than the target reflected wave, based on the difference signal Bd1.
 ガード期間Gpにおいて、差分信号Bd1の周波数成分の値は、受信部2によって受信された電波に対象反射波以外の電波である干渉波が含まれている場合、送信部1からの送信波が存在しないことからマイナスの値となる。このため、判断部46は、ガード期間Gpにおいて、差分信号Bd1の符号を確認することにより、受信部2によって受信された電波に対象反射波以外の電波である干渉波が含まれているか否かを判断する。 In the guard period Gp, the value of the frequency component of the differential signal Bd1 indicates that the transmission wave from the transmission unit 1 is present when the radio wave received by the reception unit 2 includes an interference wave that is a radio wave other than the target reflected wave. Not doing so will result in a negative value. Therefore, the determination unit 46 confirms the sign of the differential signal Bd1 during the guard period Gp to determine whether the radio wave received by the reception unit 2 includes an interference wave that is a radio wave other than the target reflected wave. To judge.
 より詳細には、判断部46は、たとえば、ガード期間に相当する連続した複数の差分信号Bd1の組をメモリ41から取得し、取得した組における差分信号Bd1にマイナスの値の差分信号Bd1が含まれる場合、受信部2によって受信された電波に干渉波が含まれていると判断する。すなわち、判断部46は、自己の電波センサ101以外の、電波を送信する装置の存在を検知する。 More specifically, the determination unit 46 acquires, for example, a set of a plurality of continuous difference signals Bd1 corresponding to the guard period from the memory 41, and the difference signal Bd1 in the acquired set includes a difference signal Bd1 having a negative value. If the radio wave is received, it is determined that the radio wave received by the receiving unit 2 includes an interference wave. That is, the determination unit 46 detects the presence of a device that transmits a radio wave, other than its own radio wave sensor 101.
 判断部46は、たとえば、自己の電波センサ101以外の、電波を送信する装置の存在を検知した場合、干渉波検出処理を行う。 The determination unit 46 performs an interference wave detection process, for example, when it detects the presence of a device that transmits a radio wave other than its own radio wave sensor 101.
 [干渉波検出処理1]
 たとえば、図2に示す支柱PVに他の電波センサ101である電波センサ101Bがさらに設置されている場合、支柱PWに設置された電波センサ101である電波センサ101Aは、電波センサ101Bからの送信電波を受信する。
[Interference wave detection processing 1]
For example, when a radio wave sensor 101B, which is another radio wave sensor 101, is further installed on the pole PV shown in FIG. 2, the radio wave sensor 101A, which is the radio wave sensor 101 installed on the pole PW, transmits the radio wave transmitted from the radio wave sensor 101B. To receive.
 たとえば、電波センサ101Aおよび電波センサ101Bの管理者は、たとえば、電波センサ101Bからの送信電波を電波センサ101Aにおいて受信した場合における、受信電波に基づく差分信号Pd2の波形を推測し、推測した波形を電波センサ101Aにおけるメモリ41に登録することができる。 For example, the administrator of the radio wave sensor 101A and the radio wave sensor 101B estimates the waveform of the differential signal Pd2 based on the received radio wave when the radio wave sensor 101A receives the transmission radio wave from the radio wave sensor 101B, and uses the estimated waveform. It can be registered in the memory 41 of the radio wave sensor 101A.
 図10は、本発明の実施の形態に係る電波センサにおけるメモリに保存された差分信号の波形の一例を示す図である。図10において、縦軸は差分信号Pd2の周波数Fbを示し、横軸は時間を示す。 FIG. 10 is a diagram showing an example of the waveform of the differential signal stored in the memory of the radio wave sensor according to the embodiment of the present invention. In FIG. 10, the vertical axis represents the frequency Fb of the difference signal Pd2, and the horizontal axis represents time.
 図10を参照して、電波センサ101Aにおけるメモリ41には、たとえば、管理者の操作に従い、差分信号Pd2の波形として、周期Tcの間隔で連続する4つのサンプリングタイミングにおいてアナログ/デジタル変換された差分信号Pd2の組(以下、比較波形Wd2とも称する。)が保存される。 With reference to FIG. 10, in the memory 41 of the radio wave sensor 101A, for example, in accordance with the operation of the administrator, as the waveform of the difference signal Pd2, the difference analog-digital converted at four consecutive sampling timings at intervals of the cycle Tc. A set of signals Pd2 (hereinafter, also referred to as comparison waveform Wd2) is stored.
 判断部46は、比較波形Wd2と差分信号Bd1の波形との相関を算出し、算出した相関に基づいて、干渉波の送信タイミングが周期的であるか否かを判断する。 The determination unit 46 calculates the correlation between the comparison waveform Wd2 and the waveform of the difference signal Bd1, and determines whether the transmission timing of the interference wave is periodic based on the calculated correlation.
 より詳細には、判断部46は、たとえば、比較波形Wd2をメモリ41から取得する。また、判断部46は、たとえば、あるシーケンスにおけるサンプリング番号が1~4である差分信号Bd1の組をメモリ41から取得する。 More specifically, the determination unit 46 acquires the comparison waveform Wd2 from the memory 41, for example. Further, the determination unit 46 acquires from the memory 41, for example, a set of difference signals Bd1 having sampling numbers 1 to 4 in a certain sequence.
 そして、判断部46は、取得した比較波形Wd2と差分信号Bd1の組との相関を算出する。 Then, the determination unit 46 calculates the correlation between the acquired comparison waveform Wd2 and the pair of difference signals Bd1.
 次に、判断部46は、サンプリング番号が2~5である差分信号Bd1の組をメモリ41から取得し、取得した差分信号Bd1の組と比較波形Wd2との相関を算出する。 Next, the determination unit 46 acquires a set of difference signals Bd1 having sampling numbers 2 to 5 from the memory 41, and calculates a correlation between the acquired set of difference signals Bd1 and the comparison waveform Wd2.
 判断部46は、同様に、サンプリング番号を1ずつシフトさせながら差分信号Bd1の組をメモリ41から取得し、取得した差分信号Bd1の組と比較波形Wd2との相関を算出する。判断部46は、最初のサンプリング番号が10~12のいずれかである場合、次のシーケンスにまたがって連続する4つの差分信号Bd1を取得する。 Similarly, the determination unit 46 similarly acquires the set of difference signals Bd1 from the memory 41 while shifting the sampling number by 1, and calculates the correlation between the acquired set of difference signals Bd1 and the comparison waveform Wd2. When the first sampling number is any of 10 to 12, the determination unit 46 acquires four differential signals Bd1 that are continuous over the next sequence.
 判断部46は、算出した相関値が所定の閾値Y1より大きい場合、対応の上記組が電波センサ101Bからの送信電波に基づく差分信号であると判断し、当該差分信号Bd1の組における先頭のサンプリング番号(以下、開始番号とも称する。)および末尾のサンプリング番号(以下、終了番号とも称する。)を記憶する。 When the calculated correlation value is larger than the predetermined threshold value Y1, the determination unit 46 determines that the corresponding pair is a differential signal based on the radio wave transmitted from the radio wave sensor 101B, and the first sampling in the pair of the differential signal Bd1. A number (hereinafter, also referred to as a start number) and a sampling number at the end (hereinafter, also referred to as an end number) are stored.
 そして、判断部46は、干渉波検出処理1において記憶した複数組の開始番号および終了番号が複数のシーケンスにわたってそれぞれ一致する場合、自己の電波センサ101Aが電波センサ101Bからの電波を受信していると判断し、当該電波の存在を示す情報と記憶した各サンプリング番号とを含む判断結果を制御部4へ出力する。 Then, when a plurality of sets of start numbers and end numbers stored in the interference wave detection process 1 match in each of a plurality of sequences, the determination unit 46 receives its own radio wave from the radio wave sensor 101B. And outputs the determination result including the information indicating the existence of the radio wave and each stored sampling number to the control unit 4.
 図11は、本発明の実施の形態に係る電波センサにおいて算出された相関値の一例を示す図である。図11において、横軸は末尾のサンプリング番号を示し、縦軸は、紙面の上側から順に、差分信号の周波数Fbおよび相関値を示す。 FIG. 11 is a diagram showing an example of correlation values calculated in the radio wave sensor according to the embodiment of the present invention. In FIG. 11, the horizontal axis represents the last sampling number, and the vertical axis represents the frequency Fb and the correlation value of the differential signal in order from the top of the paper.
 図11を参照して、判断部46は、複数のシーケンスにおいて、終了番号が10である差分信号Bd1の組の相関値が所定の閾値Y1より大きいことから、電波センサ101Bからの電波の存在を示す情報と開始番号7および終了番号10とを含む判断結果を制御部4へ出力する。 With reference to FIG. 11, the determination unit 46 determines that there is a radio wave from the radio wave sensor 101B because the correlation value of the pair of difference signals Bd1 having the end number of 10 is larger than the predetermined threshold value Y1 in the plurality of sequences. The judgment result including the information and the start number 7 and the end number 10 is output to the control unit 4.
 判断部46は、毎回のシーケンスにおいて閾値Y1より大きい相関値が算出される場合、干渉波の送信タイミングが周期的であると判断する構成に限らず、閾値Y1より大きい相関値が、1または複数回のシーケンスおきに算出されたり、1または複数の検知期間おきに算出されたりする場合に、干渉波の送信タイミングが周期的であると判断する構成であってもよい。 When the correlation value larger than the threshold value Y1 is calculated in each sequence, the determination unit 46 is not limited to the configuration in which the transmission timing of the interference wave is periodic, and the correlation value larger than the threshold value Y1 is one or more. A configuration may be used in which the transmission timing of the interference wave is determined to be periodic when it is calculated for every sequence or once for every one or more detection periods.
 このように、判断部46は、干渉波の送信タイミングが周期的であるか否かを判断することにより、干渉波の送信元である装置が、固定して接地された装置であるか否かを判断することができる。 In this way, the determination unit 46 determines whether or not the transmission timing of the interference wave is periodic, thereby determining whether or not the device that is the transmission source of the interference wave is a device that is fixedly grounded. Can be judged.
 [干渉波検出処理1の変形例]
 たとえば、判断部46は、送信部1によって送信された電波に対する干渉波となる電波を送信する他の装置に関する所定条件を受信電波が満たすか否かに基づいて、受信電波に含まれる電波の周期性に関する判断を行う。
[Modification of interference wave detection processing 1]
For example, the determination unit 46 determines the cycle of the radio wave included in the received radio wave based on whether the received radio wave satisfies a predetermined condition regarding another device that transmits the radio wave that is the interference wave with respect to the radio wave transmitted by the transmission unit 1. Make sex decisions.
 具体的には、たとえば、管理者は、電波センサ101Bから送信される電波のタイミング、および電波センサ101Aと電波センサ101Bとの距離等の情報を予めメモリ41に登録する。 Specifically, for example, the administrator registers information such as the timing of the radio wave transmitted from the radio wave sensor 101B and the distance between the radio wave sensor 101A and the radio wave sensor 101B in the memory 41 in advance.
 判断部46は、たとえば、メモリ41に登録された当該情報に基づいて、受信電波に含まれる電波の周期性に関する判断を行う。 The judgment unit 46 judges the periodicity of the radio waves included in the received radio waves, based on the information registered in the memory 41, for example.
 判断部46は、電波センサ101Bから送信される電波のタイミング、および電波センサ101Aと電波センサ101Bとの距離に基づいて、電波センサ101Bから送信される電波の、自己の電波センサ101Aにおける受信タイミングを推定する。 The determination unit 46 determines the reception timing of the radio wave transmitted from the radio wave sensor 101B in its own radio wave sensor 101A based on the timing of the radio wave transmitted from the radio wave sensor 101B and the distance between the radio wave sensor 101A and the radio wave sensor 101B. presume.
 判断部46は、たとえば、あるシーケンスに対応するサンプリング番号が1~12の差分信号Bd1の組をメモリ41から取得する。 The judgment unit 46 acquires from the memory 41, for example, a set of difference signals Bd1 having sampling numbers 1 to 12 corresponding to a certain sequence.
 判断部46は、取得した各差分信号Bd1のうち、推定した受信タイミングに対応するサンプリング番号の差分信号Bd1の周波数成分の値がマイナスである場合、当該差分信号Bd1を、電波センサ101Bから送信された電波に基づく差分信号であると判断する。 When the value of the frequency component of the difference signal Bd1 of the sampling number corresponding to the estimated reception timing is negative among the acquired difference signals Bd1, the determination unit 46 transmits the difference signal Bd1 from the radio wave sensor 101B. It is determined that the difference signal is based on the radio wave.
 なお、判断部46は、取得した各差分信号Bd1のうち、推定した当該受信タイミングに対応するサンプリング番号と異なるサンプリング番号の差分信号Bd1の周波数成分の値がマイナスである場合、自己のクロック信号CSの周波数の誤差が大きい旨の情報を制御部4へ出力してもよい。 In addition, when the value of the frequency component of the difference signal Bd1 having a sampling number different from the sampling number corresponding to the estimated reception timing is a negative value among the acquired difference signals Bd1, the determination unit 46 has its own clock signal CS. Information indicating that the frequency error is large may be output to the control unit 4.
 制御部4は、判断部46から受けた当該情報に従って、クロック信号CSの周波数を調整するための調整指示を作成してクロック生成回路6へ出力する。 The control unit 4 creates an adjustment instruction for adjusting the frequency of the clock signal CS according to the information received from the determination unit 46, and outputs the adjustment instruction to the clock generation circuit 6.
 クロック生成回路6は、制御部4から受けた調整指示に従って、クロック信号CSの周波数を調整する。 The clock generation circuit 6 adjusts the frequency of the clock signal CS according to the adjustment instruction received from the control unit 4.
 また、制御部4は、上述のタイミングおよび距離等に限らず、周波数掃引方向および周波数掃引幅等の受信電波の特性に基づいて、受信電波に含まれる電波の周期性に関する判断を行う構成であってもよい。 Further, the control unit 4 is not limited to the above-described timing, distance, and the like, and is configured to make a determination regarding the periodicity of the radio wave included in the received radio wave based on the characteristics of the received radio wave such as the frequency sweep direction and the frequency sweep width. May be.
 [干渉波検出処理2]
 図12は、本発明の実施の形態に係る電波センサにおける受信電波および差分信号の各波形の他の例を示す図である。図12において、横軸は時間を示し、縦軸は、紙面の上側から順に、送信電波および受信電波の周波数Ft,Frおよび差分信号の周波数Fbを示す。また、送信電波の周波数Ftは実線で表され、受信電波の周波数Frは破線で表されている。
[Interference wave detection processing 2]
FIG. 12 is a diagram showing another example of each waveform of the received radio wave and the differential signal in the radio wave sensor according to the embodiment of the present invention. In FIG. 12, the horizontal axis represents time, and the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper. The frequency Ft of the transmitted radio wave is represented by the solid line, and the frequency Fr of the received radio wave is represented by the broken line.
 また、図12では、各シーケンスの各サンプリングタイミングのうち、分周クロック信号CSの周期Tcごとのサンプリングタイミングにおけるデジタルの差分信号Bd1が白丸で示されている。各シーケンスにおける周期Tcごとのサンプリングタイミングは、サンプリング順を示す1~12のサンプリング番号により表されている。 Further, in FIG. 12, among the sampling timings of each sequence, the digital difference signal Bd1 at the sampling timing for each cycle Tc of the divided clock signal CS is indicated by a white circle. The sampling timing for each cycle Tc in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
 図12は、電波センサ101において、ガード期間における、受信電波に干渉波が含まれる場合の、送信電波および受信電波の周波数Ft,Frおよび差分信号の周波数Fbを示す。 FIG. 12 shows the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal when the reception radio wave contains an interference wave in the guard period in the radio wave sensor 101.
 図12を参照して、電波センサ101は、たとえば、ガード期間Gpにおいて自己に登録されていない波形の電波を受信している。 With reference to FIG. 12, the radio wave sensor 101 receives, for example, a radio wave having a waveform that is not registered with itself during the guard period Gp.
 判断部46は、たとえば、干渉波検出処理1において、算出した各組の相関値が所定の閾値Y1以下である場合、干渉波検出処理2を行う。 The determining unit 46 performs the interference wave detection process 2 when the calculated correlation value of each set in the interference wave detection process 1 is less than or equal to a predetermined threshold value Y1, for example.
 すなわち、判断部46は、たとえば、シーケンスSeq1において、取得したガード期間に相当する連続した複数の差分信号Bd1の組に含まれる、マイナスの周波数成分の値が連続する差分信号Bd1の組を比較波形Wd3としてメモリ41に保存する。 That is, for example, the determination unit 46 compares, in the sequence Seq1, a set of differential signals Bd1 having consecutive negative frequency component values included in a set of a plurality of consecutive differential signals Bd1 corresponding to the acquired guard period with a comparison waveform. It is saved in the memory 41 as Wd3.
 具体的には、判断部46は、たとえば、図12に示すサンプリング番号が7~10の差分信号Bd1の組をメモリ41に保存することにより、当該各差分信号Bd1の組を比較波形Wd3として登録する。 Specifically, the determination unit 46 stores the set of differential signals Bd1 with sampling numbers 7 to 10 shown in FIG. 12, for example, in the memory 41 to register each set of differential signals Bd1 as the comparison waveform Wd3. To do.
 そして、判断部46は、登録した比較波形Wd3を用いて、シーケンスSeq2以降の差分信号Bd1の組における差分信号Bd1の波形との相関を算出し、算出した相関に基づいて、受信電波に含まれる電波の周期性に関する判断を行う。 Then, the determination unit 46 uses the registered comparison waveform Wd3 to calculate the correlation with the waveform of the differential signal Bd1 in the set of differential signals Bd1 after the sequence Seq2, and the correlation is included in the received radio wave based on the calculated correlation. Determines the periodicity of radio waves.
 具体的には、たとえば、判断部46は、サンプリング番号を1ずつシフトさせながら4つの連続する差分信号Bd1の組をメモリ41から取得し、取得した差分信号Bd1の組と比較波形Wd3との相関を算出する。 Specifically, for example, the determination unit 46 acquires a set of four consecutive differential signals Bd1 from the memory 41 while shifting the sampling number by 1, and correlates the acquired set of differential signals Bd1 with the comparison waveform Wd3. To calculate.
 図13は、本発明の実施の形態に係る電波センサにおいて算出された相関値の他の例を示す図である。図13において、横軸は末尾のサンプリング番号を示し、縦軸は、紙面の上側から順に、差分信号の周波数Fbおよび相関値を示す。 FIG. 13 is a diagram showing another example of the correlation value calculated by the radio wave sensor according to the embodiment of the present invention. In FIG. 13, the horizontal axis represents the last sampling number, and the vertical axis represents the frequency Fb and the correlation value of the differential signal in order from the top of the paper.
 図13を参照して、判断部46は、シーケンスSeq2以降の複数のシーケンスにおいて、終了番号が10である差分信号Bd1の波形の相関値が所定の閾値Y2より大きいことから、干渉波の存在を示す情報と開始番号7および終了番号10とを含む判断結果を制御部4へ出力する。 With reference to FIG. 13, the determination unit 46 determines that there is an interference wave because the correlation value of the waveform of the difference signal Bd1 having the end number of 10 is larger than the predetermined threshold value Y2 in a plurality of sequences after the sequence Seq2. The judgment result including the information and the start number 7 and the end number 10 is output to the control unit 4.
 [干渉波検出処理2の変形例]
 図14は、本発明の実施の形態に係る電波センサにおける受信電波および差分信号の各波形の一例を示す図である。図14において、横軸は時間を示し、縦軸は、紙面の上側から順に、送信電波および受信電波の周波数Ft,Frおよび差分信号の周波数Fbを示す。また、送信電波の周波数Ftは実線で表され、受信電波の周波数Frは破線で表されている。
[Modification of interference wave detection processing 2]
FIG. 14 is a diagram showing an example of each waveform of a received radio wave and a differential signal in the radio wave sensor according to the embodiment of the present invention. In FIG. 14, the horizontal axis represents time, and the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper. The frequency Ft of the transmitted radio wave is represented by the solid line, and the frequency Fr of the received radio wave is represented by the broken line.
 また、図14では、各シーケンスのサンプリングタイミングのうち、分周クロック信号CSの周期Tcごとのサンプリングタイミングにおけるデジタルの差分信号Bd1が白丸で示されている。各シーケンスにおける周期Tcごとのサンプリングタイミングは、サンプリング順を示す1~12のサンプリング番号により表されている。 Also, in FIG. 14, among the sampling timings of each sequence, the digital difference signal Bd1 at the sampling timing for each cycle Tc of the divided clock signal CS is shown by a white circle. The sampling timing for each cycle Tc in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
 図14を参照して、電波センサ101は、送信期間Tpにおいて対象反射波および干渉波を受信している。 Referring to FIG. 14, the radio wave sensor 101 receives the target reflected wave and the interference wave in the transmission period Tp.
 図14では、対象反射波および干渉波を同じタイミングにおいて受信していることから、1つのサンプリング番号の差分信号Bd1について2つの周波数成分が得られる。 In FIG. 14, since the target reflected wave and the interference wave are received at the same timing, two frequency components are obtained for the differential signal Bd1 having one sampling number.
 判断部46は、たとえば、メモリ41から取得した各差分信号Bd1のうちサンプリング番号が1である差分信号Bd1の周波数成分の値がゼロでないことから、受信部2によって受信された電波に対象反射波以外の電波である干渉波が含まれていると判断し、たとえば干渉波検出処理2を行う。 The determination unit 46, for example, because the value of the frequency component of the difference signal Bd1 whose sampling number is 1 in each difference signal Bd1 acquired from the memory 41 is not zero, the target reflected wave is included in the radio wave received by the reception unit 2. It is determined that an interference wave that is a radio wave other than the above is included, and, for example, interference wave detection processing 2 is performed.
 より詳細には、判断部46は、サンプリング番号が1~3である差分信号Bd1の周波数成分の値がマイナスあることから、サンプリング番号が12~3である期間に干渉波が含まれていると判断する。 More specifically, the determining unit 46 determines that the interference signal is included in the period of the sampling numbers 12 to 3 because the value of the frequency component of the differential signal Bd1 having the sampling numbers of 1 to 3 is negative. to decide.
 そして、判断部46は、サンプリング番号が12の差分信号Bd1から次のシーケンスにおけるサンプリング番号が3の差分信号Bd1までをメモリ41に保存することにより、当該差分信号Bd1の組を比較波形Wd4として登録し、登録した比較波形Wd4を用いて、次のシーケンス以降の差分信号Bd1の組との相関を算出する。 The determining unit 46 stores the difference signal Bd1 having the sampling number 12 to the difference signal Bd1 having the sampling number 3 in the next sequence in the memory 41, thereby registering the set of the difference signals Bd1 as the comparison waveform Wd4. Then, the registered comparison waveform Wd4 is used to calculate the correlation with the set of difference signals Bd1 of the next sequence and thereafter.
 具体的には、たとえば、判断部46は、サンプリング番号を1ずつシフトさせながら5つの連続する差分信号Bd1の組をメモリ41から取得し、取得した差分信号Bd1の組と比較波形Wd4との相関を算出する。 Specifically, for example, the determination unit 46 acquires a set of five consecutive difference signals Bd1 from the memory 41 while shifting the sampling number by 1, and correlates the acquired set of difference signals Bd1 with the comparison waveform Wd4. To calculate.
 そして、判断部46は、算出した相関に基づいて、受信電波に含まれる電波が周期性を有すると判断した場合、干渉波の存在を示す情報と記憶したサンプリング番号すなわち開始番号12および終了番号4とを含む判断結果を制御部4へ出力する。 When the determination unit 46 determines that the radio waves included in the received radio waves have periodicity based on the calculated correlation, the information indicating the existence of the interference wave and the stored sampling number, that is, the start number 12 and the end number 4 are stored. The determination result including and is output to the control unit 4.
 なお、判断部46は、受信部2によって受信された電波に対象反射波以外の電波である干渉波が含まれていると判断した場合、干渉波検出処理1を行う構成であってもよい。 Note that the determination unit 46 may be configured to perform the interference wave detection processing 1 when it determines that the radio wave received by the reception unit 2 includes an interference wave that is a radio wave other than the target reflected wave.
 また、判断部46は、干渉波検出処理1および干渉波検出処理2を行わない構成であってもよい。より詳細には、判断部46は、たとえば、メモリ41から取得した差分信号Bd1の値の示す信号強度が所定の閾値より小さい場合、干渉波検出処理1および干渉波検出処理2を行わなくてもよい。 The determination unit 46 may be configured not to perform the interference wave detection process 1 and the interference wave detection process 2. More specifically, for example, when the signal strength indicated by the value of the difference signal Bd1 acquired from the memory 41 is smaller than a predetermined threshold value, the determination unit 46 does not have to perform the interference wave detection process 1 and the interference wave detection process 2. Good.
 [送信タイミングの調整]
 制御部4は、判断部46の判断結果に基づいて、送信部1による電波の送信タイミングを調整する。たとえば、制御部4は、干渉波の送信期間と異なるタイミングにおいて送信部1から電波が送信されるように当該送信タイミングを調整する。
[Adjustment of transmission timing]
The control unit 4 adjusts the transmission timing of radio waves by the transmission unit 1 based on the determination result of the determination unit 46. For example, the control unit 4 adjusts the transmission timing so that the radio wave is transmitted from the transmission unit 1 at a timing different from the transmission period of the interference wave.
 より詳細には、制御部4は、判断部46から受けた判断結果に含まれる開始番号および終了番号を取得する。 More specifically, the control unit 4 acquires the start number and the end number included in the determination result received from the determination unit 46.
 一例として、制御部4は、判断部46から、開始番号12および終了番号3を含む判断結果と受けたものとする。 As an example, it is assumed that the control unit 4 receives the determination result including the start number 12 and the end number 3 from the determination unit 46.
 そして、制御部4は、取得した開始番号および終了番号に基づいて、送信部1による電波の送信タイミングを変更するか否かを決定する。 Then, the control unit 4 determines whether to change the transmission timing of the radio wave by the transmission unit 1 based on the acquired start number and end number.
 制御部4は、たとえば、サンプリング番号が1~4に相当する送信期間Tpに開始番号12および終了番号3の期間が含まれることから、送信期間Tpが、開始番号12から終了番号3までの期間と重複しない期間となるように決定する。 The control unit 4 determines that the transmission period Tp is the period from the start number 12 to the end number 3 because the transmission period Tp corresponding to the sampling numbers 1 to 4 includes the periods of the start number 12 and the end number 3, for example. It is decided to be a period that does not overlap with.
 図15は、本発明の実施の形態に係る電波センサにおける、新たな送信タイミングとして変更可能な期間の一例を示す図である。図15において、横軸は時間を示し、縦軸は、紙面の上側から順に、送信電波および受信電波の周波数Ft,Frおよび差分信号の周波数Fbを示す。また、送信電波の周波数Ftは実線で表され、受信電波の周波数Frは破線で表されている。 FIG. 15 is a diagram showing an example of a period that can be changed as a new transmission timing in the radio wave sensor according to the embodiment of the present invention. In FIG. 15, the horizontal axis represents time, and the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper. The frequency Ft of the transmitted radio wave is represented by the solid line, and the frequency Fr of the received radio wave is represented by the broken line.
 また、図15では、あるシーケンスにおける各シーケンスの各サンプリングタイミングにおけるデジタルの差分信号Bd1が白丸で示されている。各サンプリングタイミングは、サンプリング順を示す1~12のサンプリング番号により表されている。 Further, in FIG. 15, the digital difference signal Bd1 at each sampling timing of each sequence in a certain sequence is indicated by a white circle. Each sampling timing is represented by a sampling number of 1 to 12 indicating the sampling order.
 図15を参照して、送信期間Tpが開始番号12から終了番号3までの期間と重複しないためには、変更後の送信電波の掃引開始を、サンプリング番号が4~9のいずれかのタイミングに設定すればよい。 Referring to FIG. 15, in order that the transmission period Tp does not overlap with the period from the start number 12 to the end number 3, the sweep start of the changed transmission radio wave is performed at any timing of the sampling numbers 4 to 9. Just set it.
 制御部4は、たとえば、送信電波の掃引開始を、サンプリング番号が5または9のタイミングに変更する。 The control unit 4, for example, changes the start of the sweep of the transmitted radio wave to the timing of the sampling number 5 or 9.
 具体的には、制御部4は、送信部1による電波の送信タイミングをクロック信号CSの4パルス分または8パルス分遅らせる。 Specifically, the control unit 4 delays the transmission timing of the radio wave by the transmission unit 1 by 4 pulses or 8 pulses of the clock signal CS.
 図16は、本発明の実施の形態に係る電波センサにおける、電波の送信タイミングを変更する様子の一例を示す図である。図16において、横軸は時間を示し、縦軸は各信号のレベルを示す。 FIG. 16 is a diagram showing an example of how the radio wave transmission timing is changed in the radio wave sensor according to the embodiment of the present invention. In FIG. 16, the horizontal axis represents time and the vertical axis represents the level of each signal.
 図16を参照して、制御部4は、ある検知期間における最後のシーケンスSeqMの終了後、次の検知期間の開始を示すトリガ信号TSを生成せずに、当該シーケンスSeqMの終了後からクロック信号CSの立ち上がりエッジを4回カウントした後、トリガ信号TSを生成し、生成したトリガ信号TSを送信部1および信号処理部5へ出力する。これにより、次の検知期間の開始タイミングが、5サイクル分後へシフトする。 With reference to FIG. 16, the control unit 4 does not generate the trigger signal TS indicating the start of the next detection period after the end of the last sequence SeqM in a certain detection period, and then outputs the clock signal after the end of the sequence SeqM. After counting the rising edges of CS four times, the trigger signal TS is generated, and the generated trigger signal TS is output to the transmission unit 1 and the signal processing unit 5. As a result, the start timing of the next detection period is shifted to 5 cycles later.
 図17は、本発明の実施の形態に係る電波センサにおける、電波の送信タイミングの変更後の対象反射波および干渉波の一例を示す図である。図17において、横軸は時間を示し、縦軸は、紙面の上側から順に、送信電波および受信電波の周波数Ft,Frおよび差分信号の周波数Fbを示す。また、送信電波の周波数Ftは実線で表され、受信電波の周波数Frは破線で表されている。 FIG. 17 is a diagram showing an example of a target reflected wave and an interference wave after changing the transmission timing of the radio wave in the radio wave sensor according to the embodiment of the present invention. In FIG. 17, the horizontal axis represents time, and the vertical axis represents the frequencies Ft and Fr of the transmission radio wave and the reception radio wave and the frequency Fb of the differential signal in order from the upper side of the paper. The frequency Ft of the transmitted radio wave is represented by the solid line, and the frequency Fr of the received radio wave is represented by the broken line.
 また、図17では、各シーケンスの各サンプリングタイミングにおけるデジタルの差分信号Bd1が白丸で示されている。各シーケンスにおけるサンプリングタイミングは、サンプリング順を示す1~12のサンプリング番号により表されている。 Also, in FIG. 17, the digital difference signal Bd1 at each sampling timing of each sequence is indicated by a white circle. The sampling timing in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
 図17を参照して、電波センサ101において、送信電波の送信タイミングの変更により、干渉波を受信するタイミングが、サンプリング番号12~3の期間からサンプリング番号8~11の期間に変更される。 Referring to FIG. 17, in the radio sensor 101, the timing of receiving the interference wave is changed from the period of sampling numbers 12 to 3 to the period of sampling numbers 8 to 11 by changing the transmission timing of the transmission radio wave.
 別の例として、制御部4は、送信期間Tpと重複する開始番号12および終了番号4を含む判断結果とともに、ガード期間Gpに含まれる開始番号8および終了番号11を示す判断結果を判断部46から受けている場合、開始番号12から終了番号4までの期間および開始番号8から終了番号11までの期間と重複しない期間に送信期間Tpを設定する。 As another example, the control unit 4 determines the determination result including the start number 12 and the end number 4 that overlap with the transmission period Tp and the determination result indicating the start number 8 and the end number 11 included in the guard period Gp. , The transmission period Tp is set to a period that does not overlap the period from the start number 12 to the end number 4 and the period from the start number 8 to the end number 11.
 具体的には、たとえば、制御部4は、送信電波の掃引開始を、サンプリング番号が5~7の期間に変更する。 Specifically, for example, the control unit 4 changes the start of sweeping the transmission radio wave to a period in which the sampling number is 5 to 7.
 また、制御部4は、電波の送信タイミングの調整として、掃引開始のタイミングを変更する構成に限らず、たとえば、掃引時間Tsを短縮することにより送信期間Tpを変更してもよい。 Further, the control unit 4 is not limited to the configuration of changing the sweep start timing as the adjustment of the radio wave transmission timing, and may change the transmission period Tp by shortening the sweep time Ts, for example.
 [非検知期間]
 たとえば、制御部4は、さらに、検知処理を行う1または複数の検知期間、および検知処理を行わず、かつ送信部1から電波を送信しない非検知期間を設定する。
[Non-detection period]
For example, the control unit 4 further sets one or a plurality of detection periods in which the detection process is performed and a non-detection period in which the detection process is not performed and radio waves are not transmitted from the transmission unit 1.
 より詳細には、制御部4は、たとえば、1または複数の検知期間の終了後、検知処理を行わず、かつ送信部1から電波を送信しない非検知期間Tnを設定する。 More specifically, for example, the control unit 4 sets a non-detection period Tn in which no detection process is performed and no radio wave is transmitted from the transmission unit 1 after the end of one or more detection periods.
 これにより、判断部46は、検出することが困難な、検知期間における対象反射波と同じタイミングにおいて受信する干渉波、および電力の小さい干渉波等を容易に検出することができる。 With this, the determination unit 46 can easily detect an interference wave that is difficult to detect, an interference wave received at the same timing as the target reflected wave in the detection period, an interference wave with low power, and the like.
 具体的には、制御部4は、検知期間を所定回繰り替えした後、次のシーケンスの開始タイミングにおいて生成したトリガ信号TSを信号処理部5へ出力する。すなわち、制御部4は、生成したトリガ信号TSを送信部1へ出力しない。これにより、送信部1からの電波の送信が停止されることから、電波センサ101は、対象反射波を受信することなく、干渉波の検知をより効率的に行うことができる。 Specifically, after repeating the detection period a predetermined number of times, the control unit 4 outputs the trigger signal TS generated at the start timing of the next sequence to the signal processing unit 5. That is, the controller 4 does not output the generated trigger signal TS to the transmitter 1. As a result, the transmission of the radio wave from the transmitter 1 is stopped, so that the radio wave sensor 101 can more efficiently detect the interference wave without receiving the target reflected wave.
 そして、制御部4は、非検知期間Tnが経過した後、生成したトリガ信号TSの送信部1への出力を再開する。 Then, the control unit 4 restarts the output of the generated trigger signal TS to the transmission unit 1 after the non-detection period Tn has elapsed.
 判断部46は、非検知期間Tnにおいて、受信部2によって受信された電波の周期性に関する判断を行う。 The judgment unit 46 judges the periodicity of the radio wave received by the reception unit 2 in the non-detection period Tn.
 より詳細には、判断部46は、非検知期間Tnにおいて、干渉波検出処理1および干渉波検出処理2の少なくともいずれか一方を行い、受信電波に含まれる電波が周期性を有すると判断した場合、判断結果を制御部4へ出力する。 More specifically, the determination unit 46 performs at least one of the interference wave detection process 1 and the interference wave detection process 2 in the non-detection period Tn, and determines that the radio wave included in the received radio wave has periodicity. , And outputs the determination result to the control unit 4.
 図18は、本発明の実施の形態に係る電波センサにおける受信電波および差分信号の各波形の一例を示す図である。図18において、横軸は時間を示し、縦軸は、紙面の上側から順に、受信電波の周波数Frおよび差分信号の周波数Fbを示す。 FIG. 18 is a diagram showing an example of each waveform of a received radio wave and a differential signal in the radio wave sensor according to the embodiment of the present invention. 18, the horizontal axis represents time, and the vertical axis represents the frequency Fr of the received radio wave and the frequency Fb of the differential signal in order from the upper side of the paper.
 また、図18では、各シーケンスの各サンプリングタイミングにおけるデジタルの差分信号Bd1が白丸で示されている。各シーケンスにおけるサンプリングタイミングは、サンプリング順を示す1~12のサンプリング番号により表されている。 Further, in FIG. 18, the digital difference signal Bd1 at each sampling timing of each sequence is indicated by a white circle. The sampling timing in each sequence is represented by sampling numbers 1 to 12 indicating the sampling order.
 図18を参照して、電波センサ101は、非検知期間Tnにおいて、送信期間Tpに相当するサンプリング番号が1~4の期間において干渉波を受信している。判断部46は、たとえば、上述の差分信号Pd2の波形と当該干渉波に基づく差分信号Bd1の波形との相関を算出することにより、当該期間において受信した電波に干渉波が含まれると判断することができる。 Referring to FIG. 18, the radio wave sensor 101 receives the interference wave during the non-detection period Tn during the period of sampling numbers 1 to 4 corresponding to the transmission period Tp. The determining unit 46 determines that the radio wave received during the period includes an interference wave, for example, by calculating the correlation between the waveform of the above-described difference signal Pd2 and the waveform of the difference signal Bd1 based on the interference wave. You can
 制御部4は、非検知期間Tnにおいて、判断部46から受けた判断結果に基づいて、送信部1による電波の送信タイミングを調整する。 The control unit 4 adjusts the transmission timing of the radio wave by the transmission unit 1 based on the determination result received from the determination unit 46 in the non-detection period Tn.
 [動作の流れ]
 安全運転支援システム301における各装置は、メモリを含むコンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートの各ステップの一部または全部を含むプログラムを当該メモリからそれぞれ読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
[Operation flow]
Each device in the safe driving support system 301 includes a computer including a memory, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including some or all of the steps of the following flowchart from the memory. To do. The programs of these plural devices can be installed from the outside. The programs of these plural devices are distributed in a state of being stored in a recording medium.
 図19は、本発明の実施の形態に係る電波センサが受信電波の周期性に関する判断を行い、自己の電波の送信タイミングを調整する際の動作手順を定めたフローチャートである。 FIG. 19 is a flowchart that defines an operation procedure when the radio wave sensor according to the embodiment of the present invention determines the periodicity of received radio waves and adjusts the transmission timing of its own radio waves.
 図19を参照して、まず、電波センサ101は、検知期間へ遷移し(ステップS101)、干渉波を受信しているか否かを判断する(ステップS102)。 Referring to FIG. 19, first, the radio wave sensor 101 transits to the detection period (step S101) and determines whether or not an interference wave is received (step S102).
 電波センサ101は、干渉波を受信していない場合(ステップS102でNO)、次の検知期間まで待機する(ステップS105)。 When the radio wave sensor 101 does not receive the interference wave (NO in step S102), it waits until the next detection period (step S105).
 一方、電波センサ101は、干渉波を受信していると判断した場合(ステップS102でYES)、自己の送信電波の送信期間Tpにおいて当該干渉波を受信しているか否かを判断する(ステップS103)。 On the other hand, when the radio wave sensor 101 determines that the interference wave is received (YES in step S102), the radio wave sensor 101 determines whether or not the interference wave is received in the transmission period Tp of its own transmission radio wave (step S103). ).
 電波センサ101は、送信期間Tpと異なるタイミングにおいて干渉波を受信している場合(ステップS103でNO)、次の検知期間まで待機する(ステップS105)。 When the radio wave sensor 101 receives an interference wave at a timing different from the transmission period Tp (NO in step S103), the radio wave sensor 101 waits until the next detection period (step S105).
 一方、電波センサ101は、送信期間Tpにおいて干渉波を受信している場合(ステップS103でYES)、自己の送信電波の送信タイミングを調整し(ステップS104)、次の検知期間まで待機する(ステップS105)。 On the other hand, when the radio wave sensor 101 receives the interference wave in the transmission period Tp (YES in step S103), it adjusts the transmission timing of its own transmission radio wave (step S104) and waits until the next detection period (step S104). S105).
 電波センサ101は、所定回数の検知期間が経過するまで(ステップS105でNO)、次の検知期間まで待機する(ステップS105)。 The radio wave sensor 101 waits until the next detection period (NO in step S105) until the predetermined number of detection periods elapses (step S105).
 一方、電波センサ101は、所定回数の検知期間が経過すると(ステップS105でYES)、非検知期間Tnへ遷移する(ステップS106)。 On the other hand, the radio wave sensor 101 transitions to the non-detection period Tn (step S106) when a predetermined number of detection periods have passed (YES in step S105).
 次に、電波センサ101は、非検知期間Tnにおいて、干渉波を受信しているか否かを判断する(ステップS107)。 Next, the radio wave sensor 101 determines whether or not an interference wave is received in the non-detection period Tn (step S107).
 電波センサ101は、干渉波を受信していない場合(ステップS107でNO)、干渉波の監視を継続する(ステップS110)。 When the interference wave is not received (NO in step S107), the radio wave sensor 101 continues to monitor the interference wave (step S110).
 一方、電波センサ101は、干渉波を受信していると判断した場合(ステップS107でYES)、自己の電波の送信タイミングにおいて当該干渉波を受信しているか否かを判断する(ステップS108)。 On the other hand, when the radio wave sensor 101 determines that the interference wave is received (YES in step S107), the radio wave sensor 101 determines whether the interference wave is received at the transmission timing of its own radio wave (step S108).
 電波センサ101は、送信期間Tpと異なるタイミングにおいて干渉波を受信している場合(ステップS108でNO)、干渉波の監視を継続する(ステップS110)。 The radio wave sensor 101 continues to monitor the interference wave when the interference wave is received at a timing different from the transmission period Tp (NO in step S108) (step S110).
 一方、電波センサ101は、送信期間Tpに相当する期間において干渉波を受信している場合(ステップS108でYES)、自己の電波の送信タイミングを調整し(ステップS109)、干渉波の監視を継続する(ステップS110)。 On the other hand, when the radio wave sensor 101 is receiving the interference wave in the period corresponding to the transmission period Tp (YES in step S108), the radio wave sensor 101 adjusts the transmission timing of its own radio wave (step S109) and continues to monitor the interference wave. (Step S110).
 そして、電波センサ101は、非検知期間Tnが終了すると(ステップS110でYES)、検知期間へ遷移する(ステップS101)。 Then, when the non-detection period Tn ends (YES in step S110), the radio wave sensor 101 transitions to the detection period (step S101).
 図20は、本発明の実施の形態に係る電波センサにおける判断部が受信電波の周期性に関する判断を行う際の動作手順を定めたフローチャートである。図20は、図19のステップS102およびステップS107の動作を詳細に示している。 FIG. 20 is a flow chart that defines an operation procedure when the determination unit in the radio wave sensor according to the embodiment of the present invention determines the periodicity of the received radio wave. FIG. 20 shows in detail the operation of steps S102 and S107 of FIG.
 図20を参照して、まず、判断部46は、各差分信号Bd1の組をメモリ41から取得し(ステップS201)、取得した組に干渉波に基づく差分信号Bd1が含まれるか否かを判断する(ステップS202)。 Referring to FIG. 20, first, the determination unit 46 acquires a set of each differential signal Bd1 from the memory 41 (step S201), and determines whether the acquired set includes the differential signal Bd1 based on the interference wave. Yes (step S202).
 判断部46は、取得した組に干渉波に基づく差分信号が含まれると判断した場合(ステップS202でYES)、メモリ41に登録されている比較波形と、当該差分信号Bd1の波形との相関を算出する(ステップS203)。 When the determination unit 46 determines that the acquired pair includes the differential signal based on the interference wave (YES in step S202), the correlation between the comparative waveform registered in the memory 41 and the waveform of the differential signal Bd1 is determined. It is calculated (step S203).
 次に、判断部46は、算出した相関値が所定の閾値以下である場合(ステップS204でNO)、差分信号Bd1の波形を比較波形としてメモリ41に登録する(ステップS208)。 Next, when the calculated correlation value is less than or equal to the predetermined threshold value (NO in step S204), the determination unit 46 registers the waveform of the difference signal Bd1 as a comparison waveform in the memory 41 (step S208).
 一方、判断部46は、算出した相関値が所定の閾値より大きく(ステップS204でYES)、かつ当該閾値より大きい相関値を算出する状態が周期的に発生する場合(ステップS205でYES)、取得した差分信号Bd1の組に干渉波に基づく差分信号が含まれると判断する(ステップS206)。 On the other hand, when the calculated correlation value is larger than the predetermined threshold value (YES in step S204) and the state of calculating the correlation value larger than the threshold value periodically occurs (YES in step S205), the determination unit 46 acquires It is determined that the set of difference signals Bd1 includes the difference signal based on the interference wave (step S206).
 また、判断部46は、閾値より大きい相関値を算出する状態が周期的に発生しない場合(ステップS205でNO)、差分信号Bd1の組に干渉波に基づく差分信号が含まれないと判断する(ステップS207)。 Further, when the state of calculating the correlation value larger than the threshold value does not occur periodically (NO in step S205), the determination unit 46 determines that the differential signal Bd1 does not include the differential signal based on the interference wave (step S205). Step S207).
 なお、発明の実施の形態に係る電波センサでは、制御部4は、非検知期間Tnを設定する構成であるとしたが、これに限定するものではない。制御部4は、非検知期間Tnを設けない構成であってもよい。 In the radio wave sensor according to the embodiment of the invention, the control unit 4 is configured to set the non-detection period Tn, but the configuration is not limited to this. The control unit 4 may have a configuration in which the non-detection period Tn is not provided.
 また、発明の実施の形態に係る電波センサでは、判断部46は、受信電波に含まれる電波の送信タイミングが周期的であるか否かを判断する構成であるとしたが、これに限定するものではない。判断部46は、受信電波に含まれる電波の送信タイミングが周期的である可能性を判断する構成であってもよい。 In the radio wave sensor according to the embodiment of the invention, the determination unit 46 is configured to determine whether the transmission timing of the radio wave included in the received radio wave is periodic, but the configuration is not limited to this. is not. The determination unit 46 may be configured to determine the possibility that the transmission timing of the radio waves included in the received radio waves is periodic.
 また、本発明の実施の形態に係る電波センサでは、判断部46は、ガード期間Gpにおいて受信された電波の周期性に関する判断を行う構成であるとしたが、これに限定するものではない。判断部46は、送信期間Tpにおいて受信された電波のみの周期性に関する判断を行う構成であってもよい。 Further, in the radio wave sensor according to the embodiment of the present invention, the determination unit 46 is configured to make a determination regarding the periodicity of the radio wave received in the guard period Gp, but the configuration is not limited to this. The determination unit 46 may be configured to make a determination regarding the periodicity of only the radio waves received in the transmission period Tp.
 ところで、特許文献1に記載の技術を超えて、電波の干渉を回避して対象物をより良好に検知することが可能な技術が望まれる。 By the way, beyond the technology described in Patent Document 1, a technology capable of avoiding radio wave interference and detecting a target object better is desired.
 そこで、本発明の実施の形態に係る電波センサでは、送信部1は、電波を送信する。受信部2は、送信部1によって送信された電波の反射波を含む電波を受信する。検知処理部7は、受信部2によって受信された電波である受信電波に基づいて、対象物を検知する。判断部46は、受信電波の周期性に関する判断を行う。制御部4は、判断部46の判断結果に基づいて、送信部1による電波の送信タイミングを調整する。 Therefore, in the radio wave sensor according to the embodiment of the present invention, the transmission unit 1 transmits a radio wave. The receiver 2 receives a radio wave including a reflected wave of the radio wave transmitted by the transmitter 1. The detection processing unit 7 detects an object based on the received radio wave that is the radio wave received by the reception unit 2. The determination unit 46 determines the periodicity of received radio waves. The control unit 4 adjusts the transmission timing of radio waves by the transmission unit 1 based on the determination result of the determination unit 46.
 また、本発明の実施の形態に係る安全運転支援システムでは、信号制御装置151は、電波センサ101から受信した検知結果に基づいて、安全運転支援に関する情報を作成し、無線送信装置152へ送信する。無線送信装置152は、信号制御装置151から受信した当該情報を含む電波を送信する。 Further, in the safe driving support system according to the embodiment of the present invention, the signal control device 151 creates information regarding safe driving support based on the detection result received from the radio wave sensor 101, and transmits the information to the wireless transmission device 152. .. The wireless transmission device 152 transmits a radio wave including the information received from the signal control device 151.
 このように、受信電波の周期性に関する判断を行う構成により、受信電波の送信元である機器が、固定して設置された機器であるか否か等を判断することができるため、車載機等の固定されていない機器からの電波の影響を抑制し、より正確な送信タイミング制御を行うことができる。また、受信電波に含まれる信号を復調することなく受信電波の周期性を判断することができる。 In this way, by the configuration that makes the determination regarding the periodicity of the received radio wave, it is possible to determine whether or not the device that is the transmission source of the received radio wave is a device that is fixedly installed. The influence of radio waves from non-fixed devices can be suppressed, and more accurate transmission timing control can be performed. Further, the periodicity of the received radio wave can be determined without demodulating the signal included in the received radio wave.
 したがって、本発明の実施の形態に係る電波センサおよび安全運転支援システムでは、電波の干渉を回避して対象物をより良好に検知することができる。具体的には、他の電波センサ等が自己の電波センサの付近に存在する場合、双方が送信する電波の干渉を回避して、対象物をより良好に検知することができる。 Therefore, the radio wave sensor and the safe driving support system according to the embodiment of the present invention can avoid the radio wave interference and detect the object better. Specifically, when another radio wave sensor or the like is present near its own radio wave sensor, it is possible to avoid the interference of the radio waves transmitted by the both radio wave sensors and detect the target object better.
 また、本発明の実施の形態に係る電波センサでは、送信部1は、電波を間欠的に送信する。判断部46は、送信部1による電波の非送信期間において受信部2によって受信された電波の、周期性に関する判断を行う。 Moreover, in the radio wave sensor according to the embodiment of the present invention, the transmission unit 1 transmits radio waves intermittently. The determination unit 46 determines the periodicity of the radio wave received by the reception unit 2 during the non-transmission period of the radio wave by the transmission unit 1.
 このような構成により、対象物を検知する通常の動作を行いながら非送信期間において他の機器からの電波を容易に検出することができる。また、送信タイミングの正しい変更先を容易に得ることができる。 With such a configuration, it is possible to easily detect radio waves from other devices during the non-transmission period while performing the normal operation of detecting an object. Further, it is possible to easily obtain the correct change destination of the transmission timing.
 また、本発明の実施の形態に係る電波センサでは、制御部4は、検知処理を行う検知期間、および検知処理を行わず、送信部1から電波を送信しない非検知期間を設定する。判断部46は、非検知期間において受信部2によって受信された電波の、周期性に関する判断を行う。 Further, in the radio wave sensor according to the embodiment of the present invention, the control unit 4 sets a detection period in which the detection process is performed and a non-detection period in which the transmission unit 1 does not transmit the radio wave. The determination unit 46 determines the periodicity of the radio wave received by the reception unit 2 during the non-detection period.
 このように、非検知期間Tnを設ける構成により、検知期間において検出することが困難な、たとえば、自己の送信電波が対象物に反射された電波を受信するタイミングにおいて受信する他の機器からの電波を、容易に検出することができる。 As described above, due to the configuration in which the non-detection period Tn is provided, it is difficult to detect in the detection period, for example, radio waves from other devices that receive at the timing when the radio wave reflected by the target object is received. Can be easily detected.
 また、本発明の実施の形態に係る電波センサでは、判断部46は、送信部1によって送信される電波と受信電波との相関を算出し、算出した相関に基づいて、周期性に関する判断を行う。 Further, in the radio wave sensor according to the embodiment of the present invention, the determination unit 46 calculates the correlation between the radio wave transmitted by the transmission unit 1 and the received radio wave, and makes the determination regarding the periodicity based on the calculated correlation. ..
 このような構成により、受信電波の波形に基づいて周期性を容易に判断することができる。 With this configuration, it is possible to easily determine the periodicity based on the waveform of the received radio wave.
 また、本発明の実施の形態に係る電波センサでは、判断部46は、送信部1によって送信された電波に対する干渉波となる電波を送信する他の装置に関する所定条件を受信電波が満たすか否かに基づいて、周期性に関する判断を行う。 Further, in the radio wave sensor according to the embodiment of the present invention, the determination unit 46 determines whether the received radio wave satisfies a predetermined condition regarding another device that transmits a radio wave that becomes an interference wave with respect to the radio wave transmitted by the transmission unit 1. Based on the above, the judgment regarding the periodicity is made.
 このように、たとえば、電波センサ101が、受信電波の干渉波となる電波を送信する他の装置の電波の送信タイミングおよび当該装置までの距離等の、受信電波の波形以外の特徴に基づいて周期性を判断する構成により、より少ない回数の受信電波の測定結果を用いて、受信電波の周期性を判断することができる。これにより、より短い時間で受信電波の周期性を判断することができる。 As described above, for example, the radio wave sensor 101 performs a cycle based on characteristics other than the waveform of the received radio wave, such as the transmission timing of the radio wave of another device that transmits an electric wave that becomes an interference wave of the received radio wave and the distance to the device. With the configuration for determining the sex, it is possible to determine the periodicity of the received radio waves by using the measurement results of the received radio waves that are received less frequently. Thereby, the periodicity of the received radio wave can be determined in a shorter time.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The above embodiments should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 電波を送信する送信部と、
 電波を受信する受信部と、
 前記受信部によって受信された電波である受信電波に基づいて、対象物を検知する検知処理を行う検知部と、
 前記受信電波の周期性に関する判断を行う判断部と、
 前記判断部の判断結果に基づいて、前記送信部による電波の送信タイミングを調整する調整部とを備え、
 前記判断部は、前記受信電波の送信タイミングが周期的であるか否かを判断し、
 前記調整部は、前記受信電波の送信期間と異なるタイミングにおいて前記送信部から電波が送信されるように前記送信タイミングを調整し、
 前記電波センサは、電波を変復調する機能を有しない、電波センサ。
The above description includes the following additional features.
[Appendix 1]
A transmitter that transmits radio waves,
A receiver that receives radio waves,
A detection unit that performs a detection process of detecting an object based on a received radio wave that is a radio wave received by the reception unit,
A determination unit that determines the periodicity of the received radio wave,
An adjusting unit that adjusts the transmission timing of the radio wave by the transmitting unit based on the determination result of the determining unit,
The determination unit determines whether the transmission timing of the received radio wave is periodic,
The adjustment unit adjusts the transmission timing so that the radio wave is transmitted from the transmission unit at a timing different from the transmission period of the reception radio wave,
The radio wave sensor does not have a function of modulating and demodulating radio waves.
 1 送信部
 2 受信部
 3 差分信号生成部
 4 制御部(調整部および設定部)
 5 信号処理部
 6 クロック生成回路
 7 検知処理部(検知部および移動速度取得部)
 21 送信アンテナ
 22 パワーアンプ
 23 方向性結合器
 24 VCO
 25 電圧発生部
 26 スイッチ
 31 受信アンテナ
 32 ローノイズアンプ
 33 ミキサ
 34 IFアンプ
 35 ローパスフィルタ
 36 A/Dコンバータ(ADC)
 41 メモリ
 42 FFT処理部
 43 FMCW処理部
 44 パターン信号取得部
 45 加算部
 46 判断部
 101 電波センサ
 141 中継装置
 151 信号制御装置
 152 無線送信装置
 153 アンテナ
 161 歩行者用信号灯器
 301 安全運転支援システム
1 transmitter 2 receiver 3 differential signal generator 4 controller (adjustment unit and setting unit)
5 signal processing unit 6 clock generation circuit 7 detection processing unit (detection unit and moving speed acquisition unit)
21 transmitting antenna 22 power amplifier 23 directional coupler 24 VCO
25 voltage generator 26 switch 31 receiving antenna 32 low noise amplifier 33 mixer 34 IF amplifier 35 low pass filter 36 A / D converter (ADC)
41 memory 42 FFT processing unit 43 FMCW processing unit 44 pattern signal acquisition unit 45 addition unit 46 judgment unit 101 radio wave sensor 141 relay device 151 signal control device 152 wireless transmission device 153 antenna 161 pedestrian traffic light 301 safe driving support system

Claims (6)

  1.  電波を送信する送信部と、
     前記送信部によって送信された電波の反射波を含む電波を受信する受信部と、
     前記受信部によって受信された電波である受信電波に基づいて、対象物を検知する検知処理を行う検知部と、
     前記受信電波の周期性に関する判断を行う判断部と、
     前記判断部の判断結果に基づいて、前記送信部による電波の送信タイミングを調整する調整部とを備える、電波センサ。
    A transmitter that transmits radio waves,
    A receiver for receiving radio waves including reflected waves of the radio waves transmitted by the transmitter,
    A detection unit that performs a detection process of detecting an object based on a received radio wave that is a radio wave received by the reception unit,
    A determination unit that determines the periodicity of the received radio wave,
    A radio wave sensor, comprising: an adjustment unit that adjusts the transmission timing of the radio wave by the transmission unit based on the determination result of the determination unit.
  2.  前記送信部は、電波を間欠的に送信し、
     前記判断部は、前記送信部による電波の非送信期間における前記受信電波の、周期性に関する判断を行う、請求項1に記載の電波センサ。
    The transmitting unit transmits radio waves intermittently,
    The radio wave sensor according to claim 1, wherein the determination unit makes a determination regarding periodicity of the received radio wave in a non-transmission period of the radio wave by the transmission unit.
  3.  前記電波センサは、さらに、
     前記検知処理を行う検知期間、および前記検知処理を行わず、前記送信部から電波を送信しない非検知期間を設定する設定部を備え、
     前記判断部は、前記非検知期間における前記受信電波の、周期性に関する判断を行う、請求項1または請求項2に記載の電波センサ。
    The radio wave sensor further includes
    A detection period for performing the detection process, and a setting unit for setting a non-detection period in which the detection unit is not performed and radio waves are not transmitted from the transmission unit,
    The radio wave sensor according to claim 1, wherein the determination unit makes a determination regarding periodicity of the received radio wave in the non-detection period.
  4.  前記判断部は、前記送信部によって送信される電波と前記受信電波との相関を算出し、算出した前記相関に基づいて、前記周期性に関する判断を行う、請求項1から請求項3のいずれか1項に記載の電波センサ。 The determination unit calculates the correlation between the radio wave transmitted by the transmission unit and the reception radio wave, and makes a determination regarding the periodicity based on the calculated correlation. The radio wave sensor according to item 1.
  5.  前記判断部は、前記送信部によって送信された電波に対する干渉波となる電波を送信する他の装置に関する所定条件を前記受信電波が満たすか否かに基づいて、前記周期性に関する判断を行う、請求項1から請求項4のいずれか1項に記載の電波センサ。 The determination unit determines the periodicity based on whether or not the received radio wave satisfies a predetermined condition regarding another device that transmits a radio wave that becomes an interference wave with respect to the radio wave transmitted by the transmission unit, The radio wave sensor according to any one of claims 1 to 4.
  6.  電波センサと、
     前記電波センサの検知結果に基づいて、安全運転支援に関する情報を作成して送信する信号制御装置と、
     前記信号制御装置から受信した前記情報を含む電波を送信する無線送信装置とを備え、
     前記電波センサは、
     電波を送信する送信部と、
     前記送信部によって送信された電波の反射波を含む電波を受信する受信部と、
     前記受信部によって受信された電波である受信電波に基づいて、対象物を検知する検知処理を行う検知部と、
     前記受信電波の周期性に関する判断を行う判断部と、
     前記判断部の判断結果に基づいて、前記送信部による電波の送信タイミングを調整する調整部とを含む、安全運転支援システム。
    Radio sensor,
    Based on the detection result of the radio wave sensor, a signal control device that creates and transmits information regarding safe driving support,
    A wireless transmission device that transmits a radio wave including the information received from the signal control device,
    The radio wave sensor is
    A transmitter that transmits radio waves,
    A receiver for receiving radio waves including reflected waves of the radio waves transmitted by the transmitter,
    A detection unit that performs a detection process of detecting an object based on a received radio wave that is a radio wave received by the reception unit,
    A determination unit that determines the periodicity of the received radio wave,
    A safe driving support system, comprising: an adjusting unit that adjusts the transmission timing of radio waves by the transmitting unit based on the determination result of the determining unit.
PCT/JP2019/035903 2018-11-12 2019-09-12 Radio wave sensor and safe-driving assistance system WO2020100401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-211984 2018-11-12
JP2018211984 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020100401A1 true WO2020100401A1 (en) 2020-05-22

Family

ID=70731129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035903 WO2020100401A1 (en) 2018-11-12 2019-09-12 Radio wave sensor and safe-driving assistance system

Country Status (1)

Country Link
WO (1) WO2020100401A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047380U (en) * 1990-05-02 1992-01-23
JP2002168947A (en) * 2000-11-30 2002-06-14 Matsushita Electric Works Ltd Fm-cw radar system
JP2007085999A (en) * 2005-09-26 2007-04-05 Fujitsu Ten Ltd Electric wave interference avoiding device in electric wave transceiver
JP2008281517A (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corp Identification device of pulse modulation signal string
JP2009008452A (en) * 2007-06-26 2009-01-15 Toyota Motor Corp Wide band radar device
JP2014126391A (en) * 2012-12-25 2014-07-07 Pal Giken:Kk Installation sensor
JP2017203736A (en) * 2016-05-13 2017-11-16 住友電気工業株式会社 Radio wave sensor and detection program
EP3306339A1 (en) * 2016-10-07 2018-04-11 Autoliv Development AB A vehicle radar system arranged for interference reduction

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047380U (en) * 1990-05-02 1992-01-23
JP2002168947A (en) * 2000-11-30 2002-06-14 Matsushita Electric Works Ltd Fm-cw radar system
JP2007085999A (en) * 2005-09-26 2007-04-05 Fujitsu Ten Ltd Electric wave interference avoiding device in electric wave transceiver
JP2008281517A (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corp Identification device of pulse modulation signal string
JP2009008452A (en) * 2007-06-26 2009-01-15 Toyota Motor Corp Wide band radar device
JP2014126391A (en) * 2012-12-25 2014-07-07 Pal Giken:Kk Installation sensor
JP2017203736A (en) * 2016-05-13 2017-11-16 住友電気工業株式会社 Radio wave sensor and detection program
EP3306339A1 (en) * 2016-10-07 2018-04-11 Autoliv Development AB A vehicle radar system arranged for interference reduction

Similar Documents

Publication Publication Date Title
US7339518B2 (en) FMCW radar device and method for detecting interference
JP4871104B2 (en) Radar apparatus and signal processing method
JP3753652B2 (en) Mispairing judgment and signal processing method of FM-CW radar
JPH08189965A (en) Radar apparatus for vehicle
US10712429B2 (en) Radar device and signal processing method
JP2013195257A (en) Radar device and signal processing method
JP2010112937A (en) Signal processing device and radar device
JP5524803B2 (en) In-vehicle radar device and radio wave interference detection method for in-vehicle radar device
JP2016038319A (en) Precipitation determination device
JP6267531B2 (en) Radio wave sensor and detection method
JP6798164B2 (en) Radio sensor and detection program
JP2011232055A (en) Moving body periphery monitoring system
JP2010014488A (en) Signal processing device for fmcw radar device, signal processing method for the fmcw radar device, and the fmcw radar device
JP2017203736A (en) Radio wave sensor and detection program
JP2015075387A (en) Electric wave sensor and detection method
WO2020100401A1 (en) Radio wave sensor and safe-driving assistance system
JP6740594B2 (en) Radio wave sensor and detection program
JP2017194385A (en) Radio wave sensor and detection method
JP2013053946A (en) Rader device
JP2014139567A (en) FMCW radar device
JP4899352B2 (en) In-vehicle radar system
JP6716956B2 (en) Radio wave sensor and detection program
JP5116746B2 (en) Radar equipment
JP2008089388A (en) Fm-cw radar device and distance/speed detection method for moving object
JP2021092585A (en) Radio wave sensor and detection program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP