WO2020098402A1 - 一种高架温室草莓生产智能设施虚拟仿真平台 - Google Patents

一种高架温室草莓生产智能设施虚拟仿真平台 Download PDF

Info

Publication number
WO2020098402A1
WO2020098402A1 PCT/CN2019/108961 CN2019108961W WO2020098402A1 WO 2020098402 A1 WO2020098402 A1 WO 2020098402A1 CN 2019108961 W CN2019108961 W CN 2019108961W WO 2020098402 A1 WO2020098402 A1 WO 2020098402A1
Authority
WO
WIPO (PCT)
Prior art keywords
strawberry
model
module
growth
simulation
Prior art date
Application number
PCT/CN2019/108961
Other languages
English (en)
French (fr)
Inventor
严方
吴刚山
冯祥
刘晓宇
Original Assignee
江苏农林职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏农林职业技术学院 filed Critical 江苏农林职业技术学院
Publication of WO2020098402A1 publication Critical patent/WO2020098402A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to a virtual simulation platform for intelligent facilities, and in particular to a virtual simulation platform for intelligent facilities for elevated greenhouse strawberry production.
  • the smart agricultural Internet of Things system has triggered a new round of rural information technology revolution and industrial revolution, which is the commanding height of future competition in the field of agricultural information industry and the core driving force of agricultural industry upgrade.
  • the development of a smart agricultural Internet of Things system that is easy to operate, powerful, and energy-saving is a hot topic in the field of agricultural information industry.
  • Elevated strawberry cultivation is a new type of cultivation method, which refers to a method of using a series of equipment and measures to plant strawberries in elevated planting beds for cultivation management.
  • the use of greenhouses for elevated strawberry cultivation facilitates the production of out-of-season production, which can extend the picking period and increase economic efficiency.
  • the greenhouse is used for strawberry elevated cultivation.
  • the environment temperature, humidity, moisture and CO2 are easy to control, which is beneficial to the use of the smart agricultural Internet of Things system. Using scientific management methods to fine-tune the acidity and sweetness of strawberry fruits is beneficial to the improvement of strawberry fruits.
  • the contradiction in the promotion of intelligent facilities for strawberry production in elevated greenhouses in China is mainly manifested in two points: one is the contradiction between the relatively expensive intelligent facilities for strawberry production in elevated greenhouses and relatively low-value agricultural products; the second is the high-tech equipment and relative technical knowledge Contradictions among agricultural workers with insufficient reserves.
  • the added value of strawberry products grown in elevated facilities is relatively high, especially in off-season production. Therefore, the promotion of intelligent facilities for strawberry production in elevated greenhouses has good engineering and economic value.
  • the first method is pure theoretical training. This method has the advantage of low cost, but the teaching effect is relatively low for agricultural practitioners with relatively insufficient knowledge reserves.
  • the second method is the actual learning of demonstration promotion points. This method has the advantage of strong sense of the scene, but each demonstration promotion point is affected by seasonality, area, etc., the price is high, the capacity is limited, and the promotion is slow.
  • the present invention discloses a virtual simulation platform for an intelligent greenhouse strawberry production intelligent facility.
  • the platform provides a visual virtual simulation platform for an elevated greenhouse strawberry production intelligent facility.
  • a 1: 1 visual model is established.
  • the basic use skills such as the replacement of the intelligent modules of these strawberry production facilities and the setting of basic parameters provide trainees with realistic intelligent module regulation selection training for strawberry production facilities.
  • the training is an online application simulation training.
  • the training environment can be changed at will, without any damage to the real elevated greenhouse strawberry production intelligent facility system, and it is not restricted by seasons, teachers, and space.
  • the virtual simulation platform of the elevated greenhouse strawberry production intelligent facility adopts visual component modeling technology, which consists of the matrix and environment simulation module, strawberry growth simulation module, morphology visualization 3D module, Internet of Things system visualization 3D module, and elevated greenhouse strawberry
  • the process simulation module for production virtual simulation and the strawberry intelligent control simulation module are composed of the matrix and environment simulation module and the strawberry growth simulation module as the data source of the platform, which are the substrate in the elevated structure, the temperature and humidity in the greenhouse, and the strawberry growth
  • the illumination of the IoT actuator provides simulation data, and under the support of these simulation data provides a data source for strawberry growth simulation.
  • Each 3D model is created under the 3DS MAX environment and then imported into the Unity 3D engine. It is dynamically presented using C # script programming, and the database is Mysql.
  • the strawberry intelligent control simulation module is used to display the production data and growth data calculated by the strawberry growth model simulation module, receive the data from the visual three-dimensional module of the Internet of Things and the Internet of Things system, and after calculation and analysis, issue the control strategy and instructions to
  • the IoT system visualization 3D module changes the dynamic form of the IoT actuator model in the IoT system visualization 3D module; after the IoT actuator model moves, it will be fed back to the substrate and environment simulation module to make the substrate and environment simulation Module data changes; matrix and environment simulation module data changes are fed back to the strawberry growth model simulation module to affect the strawberry growth and production in the strawberry growth model simulation module.
  • the strawberry growth model simulation module calculates strawberry growth data and Production data; strawberry growth data and production data calculated by the strawberry growth model simulation module are fed back to the Internet of Things system visualization 3D module on the one hand, and on the other hand to the morphology visualization 3D module; the morphology visualization 3D module receives strawberry growth After the data fed back by the model simulation module, adjust the strawberry growth morphology model and the greenhouse and climate environment morphology model and feed back the corresponding data to the IoT system visualization 3D module; the IoT system visualization 3D module receives the strawberry growth model simulation The data information fed back by the module and shape visualization three-dimensional module is then fed back to the strawberry intelligent control simulation module, the process evaluation module and the matrix and environment simulation module of the virtual simulation of strawberry production in the elevated greenhouse.
  • the IoT system visualization 3D module is composed of the IoT sensor model, the IoT actuator model, the IoT transmission model, and the intelligent strategy controller;
  • the IoT sensor model simulates the conventional overhead greenhouse strawberry production intelligent facility information collection equipment , Used to collect data information sent by the morphological visualization 3D module and strawberry production model simulation module and send the data information to the Internet of Things transmission model, matrix and environment simulation module, and process evaluation module for virtual simulation of elevated greenhouse strawberry production;
  • the IoT transmission model simulates the IoT communication node or gateway device, and uses transparent transmission to simulate the communication protocol. It is used to collect the data information sent by the IoT sensor model and the IoT execution mechanism model and feed it back to the strawberry intelligent control simulation module.
  • the IoT actuator model includes a sprinkler system and drip irrigation system , Dehumidifier, negative pressure fan, wet curtain system, heater, sunshade, water and fertilizer machine, CO2 application equipment, fill light, used to provide students with visual three-dimensional action vision, while providing the platform with the equipment to the substrate
  • the validity of the model in the environmental simulation module to calculate the data source, and send the calculated data source to the process evaluation module and substrate and environmental simulation module of the virtual simulation of strawberry production in the elevated greenhouse through the Internet of Things transmission model and the Internet of Things sensor model.
  • the intelligent strategy controller receives the control strategy and instruction issued from the strawberry intelligent control simulation module through the Internet of Things transmission model and sends the control strategy and instruction to the Internet of Things execution mechanism model.
  • the process evaluation module for virtual simulation of strawberry production in elevated greenhouses is composed of modules such as strawberry flower bud prediction, strawberry fruit prediction, strawberry yield prediction, and strawberry plant growth prediction. These data are monitored by advanced IoT visual processing equipment. On the one hand Can provide students with the latest agricultural equipment experience training, and the estimated data of these sensors also provides visual results and important evaluation indicators for the process evaluation of the virtual simulation of elevated greenhouse strawberry production.
  • the matrix and environment simulation module mainly includes a matrix water and fertilizer grid model, a leaf transpiration and absorption grid model, a light radiation grid model, and a greenhouse temperature and humidity field effect model.
  • the matrix water and fertilizer grid model adopts the methods of grid division and centralized parameter modeling in the grid area to establish a centralized distribution model of moisture and important elements in the grid to provide the moisture model and trace amount required for the growth of strawberries in the grid. Element model.
  • the leaf transpiration and absorption grid model also uses grid division and centralized parameter modeling methods in the grid area to determine the transpiration and absorption area of strawberries in the whole facility under different growth cycles and growth states through statistical methods, and then Carry on meshing and centralized parameter modeling of mesh area.
  • the leaf transpiration mainly provides the calculation data source for the grid water and fertilizer changes in the matrix, and provides the corresponding calculation data source for the strawberry growth model simulation module, especially for the acidity of the strawberry.
  • the grid modeling of the leaf absorption function mainly provides the calculation data source for the absorption of foliar fertilizer, and provides the corresponding calculation data source for the strawberry growth model simulation module of strawberry, especially provides the corresponding calculation for the acidity, result rate and distortion rate of strawberry data source.
  • the greenhouse temperature and humidity field effect model provides corresponding calculation data sources for strawberry growth and plant diseases and insect pests.
  • the light radiation grid model provides the corresponding calculation data source for the strawberry growth model simulation module, especially for the sweetness of the strawberry.
  • the strawberry growth model simulation module is composed of a strawberry disease and insect probability model, a strawberry water growth model, a strawberry fertilizer growth model, a strawberry sugar model, and a strawberry light growth model.
  • the probability model of strawberry pests and diseases uses the occurrence probability of pests and diseases in the environment to describe strawberry pests and diseases.
  • the growth model part of strawberry adopts the limiting factor model, that is, the development of strawberry root system, plant height, leaf thickness and size, and the number of flower buds are restricted by the limiting factor, and its value is limited by the smallest factor that affects its development.
  • Part of the growth model uses superimposed effects, such as strawberry fruit size, degree of distortion, sugar accumulation, acidity accumulation, etc., based on light time, trace element application, and water application in the appropriate growth period.
  • the strawberry water growth model is the limiting factor effect model during normal application, and the appropriate growth period is the cumulative effect model.
  • Strawberry fertilizer growth model base fertilizer is the limiting factor effect model, and special fertilizer effect is the cumulative effect model.
  • the basic sugar of the strawberry sugar model is divided into the limiting factor effect model, and the supplementary light part is the cumulative effect model.
  • the basic growth of the strawberry light growth model is the limiting factor effect model, and the leaf thickness and size are the cumulative effect model.
  • the strawberry growth model simulation module provides a calculation data source for the process evaluation module of the virtual simulation of strawberry production in the elevated greenhouse, and at the same time provides a calculation data source for the three-dimensional rendering of the morphology visualization 3D module, as well as the substrate and the blades of the environment simulation module
  • the transpiration and absorption grid model provides a source of calculation data.
  • the morphology of the three-dimensional module of morphology visualization is presented in the form of a panoramic view and a partial landscape of the observation window.
  • Panoramic view refers to the establishment of a five-level model of strawberry leaf luxuriant, flower bud luxuriant, and fruit quantity at different stages of strawberry seedling stage, flower bud stage, fruit setting stage, fruiting stage, and picking stage through 3DMAX.
  • the strawberry grows Periodic regulatory factors are manifested.
  • the local landscape of the observation window uses Scriptable Render Pipeline (SRP for short) to independently render three strawberry models at seedling stage, flower bud stage, fruit setting stage, fruiting stage, and picking stage, forming a visual presentation of diseases and insect pests, dynamic flowering, and dynamic growth.
  • SRP Scriptable Render Pipeline
  • the rendering design of the separation of panoramic and local landscape is mainly to reduce the computational cost of the 3D model while ensuring the visual rendering effect as much as possible.
  • the strawberry intelligent control simulation module is composed of the strawberry intelligent Internet of Things management and control module, a WEB-side human-computer interaction module, and an Android-like human-computer interaction module.
  • the Strawberry Smart Internet of Things management and control module is the core module of the Strawberry Smart Control Simulation Module. It is mainly used for intelligent control strategy planning of the simulated strawberry growth process based on the data collected by the virtual Internet of Things sensor module.
  • the WEB-side human-computer interaction module is used to train students the skills of selecting and issuing intelligent control strategies for the strawberry growth process according to actual growth conditions.
  • the Android-like human-computer interaction module mainly trains students to actually control the strawberry growth process according to the monitoring and operation of the mobile phone APP terminal, mainly how to conduct relevant equipment operation processing skills training in case of system abnormalities.
  • the present invention discloses a virtual simulation platform for intelligent facilities of strawberry production in elevated greenhouses.
  • the platform provides trainees with realistic module control selection training of intelligent strawberry production facilities. It not only trains students in application skills of intelligent facilities for strawberry production in elevated greenhouses.
  • it can also be used as a virtual simulation platform for improving the research of intelligent facilities for strawberry production in elevated greenhouses; the platform adopts the design of separate presentation of panoramic and local landscapes, and uses Scriptable Render Pipeline to independently render the strawberry blossoms, results, growth, and pests of local landscapes
  • it conforms to human observation thinking, which guarantees the 3D visualization effect, on the other hand, it reduces the calculation cost.
  • Figure 1 The general principle framework of the virtual simulation platform
  • Figure 2 Data flow chart of the virtual simulation platform module
  • the invention discloses a virtual simulation platform for an elevated greenhouse strawberry production intelligent facility.
  • the platform provides a visualized virtual simulation platform for an elevated greenhouse strawberry production intelligent facility.
  • the simulation platform is mainly aimed at the elevated strawberry production after the elevated strawberry production facility acts.
  • the simulation platform provides a three-dimensional visualization virtual simulation foundation for the control strategy design of the entire elevated greenhouse strawberry production intelligent facility and the application training of the elevated greenhouse strawberry production intelligent facility.
  • the present invention is to establish a three-dimensional model with 3DS MAX, a Unity3D engine as a basic development platform, and a Mysql database as a real-time database to establish an IoT sensor model, an IoT actuator model, a greenhouse and climate environment model, and a strawberry growth morphology model , Local landscape) Three-dimensional model library, which is imported into the Unity3D engine to form a component library.
  • the component library includes three parts: 3D dynamic characteristic description, 3D dynamic characteristic calculation description and physical or physiological performance model description of each component.
  • the 3D dynamic characteristic description mainly refers to selection, operation light indication, fault light indication, rotation, illumination, atomization, growth, flowering, fruit expansion and other visual three-dimensional indications.
  • 3D dynamic characteristic calculation description refers to the judgment of the working state of the device.
  • the physical or physiological performance model refers to the impact of the facility's facility environment or the facility environment on strawberry growth.
  • the establishment of a visual three-dimensional module first use 3DS MAX software to establish a sprinkler system, drip irrigation system, dehumidifier, negative pressure fan, wet curtain system, heater, sunshade, water and fertilizer integrated machine, CO2 application equipment, fill light, facility 3D physical models of sheds, elevated troughs, panoramic strawberries, and local strawberries are generated in 3DS format. There are three steps in the establishment of the 3DS MAX model:
  • the use of lights makes the material in the equipment model of the intelligent greenhouse strawberry production intelligent facility established more realistic.
  • the three-dimensional model of each elevated greenhouse strawberry production smart facility equipment is a 1: 1 model based on the equipment of an actual manufacturer.
  • the material and texture of the model are consistent with the real equipment, and the three-dimensional model of the rotating equipment is established. It contains 10 three-dimensional models of different shapes presented during the rotation of a visual position.
  • the digital display uses a digital tube to build a three-dimensional model of each number. The decimal point position is short and vertical in the digital display.
  • the virtual simulation platform for the intelligent facility of strawberry production in the elevated greenhouse includes a matrix and environment simulation module, a strawberry growth simulation module, a morphology visualization 3D module, an Internet of Things system visualization 3D module, and an elevated greenhouse strawberry production virtual simulation.
  • Process evaluation module and strawberry intelligent control simulation module are included in the elevated greenhouse.
  • the strawberry intelligent control simulation module is used to display the production data and growth data calculated by the strawberry growth model simulation module, receive the data from the visualization 3D module of the Internet of Things IoT system, and after calculation and analysis, issue control strategies and instructions to the Internet of Things
  • the system visualization 3D module changes the dynamic form of the IoT actuator model in the IoT system visualization 3D module; after the IoT actuator model moves, the post-action information is fed back to the IoT transmission model.
  • the IoT transmission model will The data is sent to the IoT sensor model, and the IoT sensor model is further fed back to the matrix and environment simulation module, so that the matrix and environment simulation module data changes; the matrix and environment simulation module data changes are fed back to the strawberry growth model simulation module.
  • the strawberry growth model simulation module affects the growth and production of strawberries.
  • the strawberry growth model simulation module calculates the strawberry growth data and production data; the strawberry growth model simulation module calculates the strawberry growth data and production data.
  • the networked system visualization 3D module feedback to the morphology visualization 3D module; after receiving the data from the strawberry growth model simulation module, the morphology visualization 3D module adjusts the strawberry growth morphology model and the greenhouse and climate environment morphology model and The corresponding data is fed back to the IoT system visualization 3D module; the IoT system visualization 3D module receives the data information from the strawberry growth model simulation module and the morphology visualization 3D module, and then feeds it back to the strawberry intelligent control simulation module Process evaluation module for virtual simulation of strawberry production in elevated greenhouses.
  • the IoT system visualization 3D module is composed of the IoT sensor model, the IoT actuator model, the IoT transmission model, and the intelligent strategy controller;
  • the IoT sensor model simulates the conventional overhead greenhouse strawberry production intelligent facility information collection equipment , Used to collect data information sent by the morphological visualization 3D module and strawberry production model simulation module and send the data information to the Internet of Things transmission model, matrix and environment simulation module, and process evaluation module for virtual simulation of elevated greenhouse strawberry production;
  • the IoT transmission model simulates the IoT communication node or gateway device, and uses transparent transmission to simulate the communication protocol. It is used to collect the data information sent by the IoT sensor model and the IoT execution mechanism model and feed it back to the strawberry intelligent control simulation module.
  • the IoT actuator model includes a sprinkler system and drip irrigation system , Dehumidifier, negative pressure fan, wet curtain system, heater, sunshade, water and fertilizer machine, CO2 application equipment, fill light, used to provide students with visual three-dimensional action vision, while providing the platform with the equipment to the substrate
  • the validity of the model in the environmental simulation module to calculate the data source, and send the calculated data source to the process evaluation module and substrate and environmental simulation module of the virtual simulation of strawberry production in the elevated greenhouse through the Internet of Things transmission model and the Internet of Things sensor model.
  • the intelligent strategy controller receives the control strategy and instruction issued from the strawberry intelligent control simulation module through the Internet of Things transmission model and sends the control strategy and instruction to the Internet of Things execution mechanism model.
  • the Internet of Things sensor model library mainly simulates environmental temperature and humidity, air pressure, light intensity, CO2 concentration, substrate temperature and humidity, substrate EC value, substrate PH value and other conventional overhead greenhouse strawberry production intelligent facility information collection equipment, and its static characteristics are the 3D of its corresponding sensors
  • the appearance model, its dynamic characteristic is the working indicator of the sensor, which is green in the power-on state and dark green in the power-off state
  • the data format of the sensor is MODBUS RTU
  • the parameter setting adopts a common dialog box, which mainly sets the sensor Range, unit, display digits, baud rate, device address, storage address, data format, parity category.
  • the actuator model of the Internet of Things is sprinkler system, drip irrigation system, dehumidifier, negative pressure fan, wet curtain system, heater, shader, water and fertilizer integrated machine, CO2 application equipment, fill light, and its static characteristics are the corresponding actuator 3D appearance model.
  • the dynamic characteristics of the spray system use unity3d's particle system to make falling spray water droplets, and the atomization effect uses unity3d's particle system to create the atomization special effects.
  • the dynamic characteristics of the dehumidifier, negative pressure fan and heater are the rotation animation effects of the fan.
  • the dynamic characteristics of the drip irrigation system and the water and fertilizer integrated machine are indicated by the pressure gauge of the pipeline.
  • the dynamic characteristics of the CO2 application equipment are expressed by the effect of flame particles.
  • the dynamic characteristics of the fill light are described by Unity3d's Realtime Lighting technology.
  • the sprinkler system and the drip irrigation system adopt the grid lumped modeling method, that is, without considering the pressure loss of the pipe network, the default outlet pressure of each sprinkler is constant, and the flow rate of each sprinkler is only It is proportional to the time of application.
  • the water and fertilizer integrated machine defaults that the frequency conversion voltage regulator works stably, and also does not consider the pipeline loss, nor does it consider the crystallization of the fertilizer in the transportation process, that is, the water and fertilizer ratio in the pipeline with the same fertilizer ratio is uniform. In this way, only the characteristic equation of the pump and the output equation of the inverter need to be established in the pipeline network of fertilizer and water.
  • the output head of the pump is multiplied by a fixed pressure loss coefficient as the fixed output head of each nozzle, and then passed through the fluid interception.
  • the area obtains the spraying amount of water for each nozzle, and then obtains the spraying amount of water and fertilizer for each nozzle according to the ratio of water and fertilizer.
  • Pure spraying can be regarded as a fertilizer-water application with a fertilizer-water ratio of 0.
  • the mathematical model of the negative pressure fan, wet curtain system, and heater is carried out using a combination of lumped model and field effect model.
  • the lumped model refers to the heat exchange between the negative pressure fan, wet curtain system, heater, and the outside world.
  • the simulation value and the environmental value of the greenhouse boundary under the field effect distribution are used as the initial conditions.
  • the air volume of the heater and the negative pressure fan are used as the total medium.
  • the total heat exchange is calculated according to the lumped model.
  • the propagation experience curve superimposes the field distribution of the total energy exchange fields. This superimposed effect is then superimposed on the thermal field distribution effect of solar radiation, blade transpiration, and natural convection of air to obtain the temperature and humidity field in the entire facility.
  • the dynamic characteristics of the shade machine are realized by gradually displaying the shade, and the area of the shade is calculated according to the design grid, regardless of the angle of incidence of the sun, nor the imbalance of the visible light absorption of the shade, only the radiant energy of the sun Attenuation, that is, the attenuation rate of the solar radiation entering the same grid through the shade is consistent.
  • the dynamic display effect of the shade on the facility is simulated by parallel light sources.
  • the process evaluation module of the virtual simulation of strawberry production in the elevated greenhouse is composed of modules such as strawberry flower bud prediction, strawberry fruit prediction, strawberry yield prediction, and strawberry plant growth prediction. These data are monitored by advanced IoT visual processing equipment for virtual simulation.
  • the strawberry plant growth prediction model consists of the strawberry plant growth restriction factor model, the superposition factor model and the time model, that is, the strawberry growth cycle is set according to the time series, and the restriction factor model and the superposition factor model are established for the growth factors in the cycle.
  • the model passes the environmental
  • the change and the change of water and fertilizer comprehensively calculate the seven-level fuzzy probability model of the extremely poor, inferior, inferior, inferior, moderate, suboptimal, superior and extremely excellent strawberry growth conditions.
  • the probability distribution is Poisson distribution.
  • Strawberry bud prediction is a branch model of the strawberry plant growth prediction model, which is mainly to extract the growth status of each grid of strawberries in the bud period, calculate the probability of the number of strawberry buds of each grid through the bud number factor fuzzy probability model, and then multiply it by the number of plants To obtain the number of flower buds, the model is also a seven-level fuzzy probability model of extremely poor, inferior, sub-inferior, medium, sub-optimal, excellent, and extremely excellent, and the probability distribution is a Poisson distribution.
  • the strawberry fruit-bearing prediction model is a probability model built on the basis of strawberry flower bud prediction, and the application of special fruit-bearing fertilizers is regarded as a superimposed influence factor.
  • Strawberry yield prediction is a model built on the basis of the strawberry fruit prediction model.
  • the probability model of fruit size is established through the theory of nutrient limiting factor, and the yield is obtained by multiplying the number of fruits.
  • the probability model is extremely poor and poor .
  • Productivity can be used for statistics of qualified size fruits and aberrant fruits.
  • the aberration probability model of fruits is established by limiting factor theory, and special anti-distortion fruit fertilizer application is a superimposed influence factor.
  • the matrix and environment simulation module mainly includes matrix water and fertilizer grid model, leaf transpiration and absorption grid model, light radiation grid model, greenhouse temperature and humidity field effect model.
  • the matrix water and fertilizer grid model adopts the methods of grid division and centralized parameter modeling in the grid area to establish a centralized distribution model of moisture and important elements in the grid to provide the moisture model and trace amount required for the growth of strawberries in the grid. Element model.
  • the leaf transpiration and absorption grid model also uses grid division and centralized parameter modeling methods in the grid area to determine the transpiration and absorption area of strawberries in the whole facility under different growth cycles and growth states through statistical methods, and then Carry on meshing and centralized parameter modeling of mesh area.
  • the leaf transpiration mainly provides the calculation data source for the grid water and fertilizer changes in the matrix, and provides the corresponding calculation data source for the strawberry growth model simulation module, especially for the acidity of the strawberry.
  • the grid modeling of the leaf absorption function mainly provides the calculation data source for the absorption of foliar fertilizer, and provides the corresponding calculation data source for the strawberry growth model simulation module of strawberry, especially provides the corresponding calculation for the acidity, result rate and distortion rate of strawberry data source.
  • the greenhouse temperature and humidity field effect model provides corresponding calculation data sources for strawberry growth and plant diseases and insect pests.
  • the light radiation grid model provides the corresponding calculation data source for the strawberry growth model simulation module, especially for the sweetness of the strawberry.
  • the strawberry growth model simulation module is composed of a strawberry disease and insect probability model, a strawberry water growth model, a strawberry fertilizer growth model, a strawberry sugar model, and a strawberry light growth model.
  • the probability model of strawberry pests and diseases uses the occurrence probability of pests and diseases in the environment to describe strawberry pests and diseases.
  • the growth model part of strawberry adopts the limiting factor model, that is, the development of strawberry root system, plant height, leaf thickness and size, and the number of flower buds are restricted by the limiting factor, and its value is limited by the smallest factor that affects its development.
  • Part of the growth model uses superimposed effects, such as strawberry fruit size, degree of distortion, sugar accumulation, acidity accumulation, etc., based on light time, application of microelements, and application of water in the appropriate growth period.
  • the strawberry water growth model is the limiting factor effect model during normal application, and the appropriate growth period is the cumulative effect model.
  • Strawberry fertilizer growth model base fertilizer is the limiting factor effect model, and special fertilizer effect is the cumulative effect model.
  • the basic sugar of the strawberry sugar model is divided into the limiting factor effect model, and the supplementary light part is the cumulative effect model.
  • the basic growth of the strawberry light growth model is the limiting factor effect model, and the leaf thickness and size are the cumulative effect model.
  • the strawberry growth model simulation module provides a calculation data source for the process evaluation module of the virtual simulation of strawberry production in the elevated greenhouse, and at the same time provides a calculation data source for the three-dimensional rendering of the morphology visualization 3D module, as well as the substrate and the blades of the environment simulation module
  • the transpiration and absorption grid model provides a source of calculation data.
  • the shape of the shape visualization three-dimensional module is presented in the form of a panoramic view and a partial landscape of the observation window.
  • Panoramic view refers to the establishment of a five-level model of strawberry leaf luxuriant, flower bud luxuriant, and fruit quantity at different stages of strawberry seedling stage, flower bud stage, fruit setting stage, fruiting stage, and picking stage through 3DMAX.
  • the local landscape of the observation window uses Scriptable Render Pipeline (SRP for short) to independently render three strawberry models at seedling stage, flower bud stage, fruit setting stage, fruiting stage, and picking stage, forming a visual presentation of diseases and insect pests, dynamic flowering, and dynamic growth.
  • SRP Scriptable Render Pipeline
  • the rendering design of the separation of panoramic and local landscape is mainly to reduce the computational cost of the 3D model while ensuring the visual rendering effect as much as possible.
  • the strawberry intelligent control simulation module is composed of the strawberry intelligent Internet of Things management and control module, the WEB-side human-computer interaction module, and the Android-like human-computer interaction module.
  • the Strawberry Smart Internet of Things management and control module is the core module of the Strawberry Smart Control Simulation Module. It is mainly used for intelligent control strategy planning of the simulated strawberry growth process based on the data collected by the virtual Internet of Things sensor module.
  • the WEB-side human-computer interaction module is used to train students the skills of selecting and issuing intelligent control strategies for the strawberry growth process according to actual growth conditions.
  • the Android-like human-computer interaction module mainly trains students to actually control the strawberry growth process according to the monitoring and operation of the mobile phone APP terminal, mainly how to conduct relevant equipment operation processing skills training in case of system abnormalities.
  • the 3D model of the 3D visualization module of the Internet of Things system and the 3D model of the 3D visualization module of the morphology are completed in 3DMAX.
  • These 3D models include: IoT execution mechanism, intelligent strategy controller, IoT sensor, and IoT Visualized three-dimensional modules of Internet of Things systems such as networked transmission modules; greenhouse morphology models of greenhouse infrastructure, water pipelines, cables and cables, control cabinets, elevated troughs, soil, etc .; strawberry growth and growth patterns such as strawberry panorama and observation window partial landscape Three-dimensional model.
  • the user can use the strawberry growth model simulation module, substrate and environment simulation module to display the production data and growth data calculated by the strawberry smart control simulation module, and then issue the control strategies and instructions corresponding to the intelligent strategy controller.
  • This process completely simulates IoT sensors-> IoT transmission module-> Strawberry intelligent control simulation module, strawberry intelligent control simulation module-> IoT transmission module-> intelligent policy controller-> IoT execution mechanism model, IoT Model status of networked actuators-> Internet of Things transmission module-> Strawberry intelligent control simulation module information transmission path, the protocol uses transparent transmission protocol.
  • the signal indicator light and power light of the IoT transmission module express the blinking and operation of the indicator light by switching the display of the 3DMAX basic model.
  • the 3DMAX basic model consists of the closed model and the running model. Blinking means that the model switches the display at a certain frequency. Close the model and run the model.
  • the dynamic form of the IoT actuator includes the expression of the rotating form of the fan and the motor and the expression of the color of the running indicator, the atomization of the atomizing nozzle, the water droplets of the dropper head, the illumination of the fill light and the flame of the CO2 applicator.
  • the expressions of the rotation patterns of fans and motors are realized through Unity's 3D periodic switching display of 10 3DMAX basic form models of rotating blades. Atomization, water droplets, and flame are expressed dynamically through Unity's 3D particle system. Lighting is dynamically expressed through Unity's 3D light source system.
  • the IoT actuator After the IoT actuator executes, it will feed back to the substrate and the environment simulation module to change the environmental temperature distribution, light distribution, environmental humidity distribution, environmental CO2 distribution, and soil fertility and moisture in the elevated greenhouse strawberry production smart facility. Changes in the matrix and environmental simulation module data will affect strawberry growth and production.
  • This calculation model is the strawberry growth model simulation module.
  • the growth state of strawberries is composed of basic morphology and special morphologies of diseases and insects.
  • the basic morphology is modeled by 3DMAX. A total of 35 basic morphological models are expressed for seven fuzzy morphological expressions in five growth periods. Special forms such as diseases and insect pests, dynamic flowering, and dynamic growth are formed by rendering in the partial window through Unity 3D Scriptable Render Pipeline.
  • All the simulation process data is provided to the process evaluation module of the virtual simulation of strawberry production in the elevated greenhouse through the data simulation collection type, which is used to make the simulation training evaluation results of the students.
  • the main evaluation basis is: strawberry flower bud prediction, strawberry fruit prediction, strawberry production Forecast, strawberry plant growth forecast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Cultivation Of Plants (AREA)

Abstract

一种高架温室草莓生产智能设施虚拟仿真平台,该仿真平台包括基质及环境仿真模组、草莓生长仿真模组、形态可视化三维模组、物联网系统可视化三维模组、高架温室草莓生产虚拟仿真的过程评价模组以及草莓智慧控制仿真模组,该仿真平台主要针对高架草莓生产设施动作后对高架草莓生产设施环境部分的影响,以及高架草莓生产设施环境部分发生变化后对草莓的根系发育程度、根茎健壮程度、叶片多寡、叶片面积与厚度、花蕾数目、结果数目、果实直径概率分布、糖分概率分布、酸度概率分布等带来的影响,该仿真平台为整个高架温室草莓生产智能设施的控制策略设计、高架温室草莓生产智能设施的应用培训提供一个三维可视化虚拟仿真的基础。

Description

一种高架温室草莓生产智能设施虚拟仿真平台 技术领域
本发明涉及智能设施虚拟仿真平台,尤其涉及一种高架温室草莓生产智能设施虚拟仿真平台。
背景技术
智慧农业物联网系统引发了新一轮农村信息技术革命和产业革命,是农业信息产业领域未来竞争的制高点和农业产业升级的核心驱动力。研制操作简便、功能强大、节能减施的智慧农业物联网系统是当前农业信息产业领域的热点。
草莓高架栽培是一种新型的栽培方式,是指利用一系列设备和措施将草莓定植在高架栽植床进行栽培管理的一种方式。采用温室进行草莓高架栽培,方便开展错季生产,可以延长采摘期,提高经济效益。采用温室进行草莓高架栽培,环境温湿度、水分、CO2易于控制,有利于智慧农业物联网系统的投入使用。采用科学的管理手段对草莓果实的酸甜度进行微调整,有利于草莓果品提升。当前我国高架温室草莓生产智能设施推广的矛盾主要表现为两点:一是价格相对昂贵的高架温室草莓生产智能设施与价值相对较低的农产品之间的矛盾;二是高技术设备与相对技术知识储备不足的农业从业人员之间的矛盾。高架设施栽培草莓产品附加值相对较高,尤其是错季生产,因此高架温室草莓生产智能设施推广具有很好的工程价值和经济价值。
当前高架温室草莓生产智能设施的应用培训方式有两种:第一种方式是纯理论培训,该方式优点是成本低,但对于知识储备相对不足的农业从业人员显得教学效果相对较低。第二种方式就是示范推广点的实际学习,该方式优点是现场感强,但每个示范推广点受到季节性、面积等影响,价格高、容纳人员有限,推广较慢。
发明内容
发明目的:本发明公开了一种高架温室草莓生产智能设施虚拟仿真平台,该平台为一种高架温室草莓生产智能设施提供一个可视化的虚拟仿真平台,建立了1:1的可视化模型,培训学员对这些草莓生产设施的智能模块的更换与基础参数设置等基础使用技能,为学员提供逼真的草莓生产设施的智能模块调控选择训练。该培训为在线的应用模拟培训,该培训的环境可以随意变化,不会对真实高架温室草莓生产智能设施系统造成任何损坏,并且不受季节、师资、空间等制约。
技术方案:高架温室草莓生产智能设施虚拟仿真平台采用可视化组件建模技术,由基质及环境仿真模组、草莓生长仿真模组、形态可视化三维模组、物联网 系统可视化三维模组、高架温室草莓生产虚拟仿真的过程评价模组以及草莓智慧控制仿真模组组成,其中基质及环境仿真模组、草莓生长仿真模组为平台的数据源,为高架内的基质、温室内的温湿度、草莓生长的光照在物联网执行机构的提供仿真数据,并在这些仿真数据的支撑下提供草莓生长仿真的数据源。每一个三维模型在3DS MAX环境下建立后导入Unity 3D引擎后采用C#脚本编程动态呈现,数据库采用Mysql。
其中,草莓智慧控制仿真模组用于显示草莓生长模型仿真模组计算的生产数据和生长数据,接收来自物联网物联网系统可视化三维模组的数据,并经过计算分析之后下达控制策略和指令至物联网系统可视化三维模组,改变物联网系统可视化三维模组中的物联网执行机构模型的动态形态;物联网执行机构模型动作后,会反馈到基质及环境仿真模组,使得基质及环境仿真模组数据变化;基质及环境仿真模组数据变化反馈至草莓生长模型仿真模组会对草莓生长模型仿真模组中草莓的生长与生产产生影响,草莓生长模型仿真模组计算草莓的生长数据与生产数据;草莓生长模型仿真模组计算的草莓的生长数据与生产数据一方面反馈至物联网系统可视化三维模组,另一方面反馈至形态可视化三维模组;形态可视化三维模组接收到草莓生长模型仿真模组反馈的数据后,调整草莓生长形态模型和大棚及气候环境形态模型并将相应的数据反馈至物联网系统可视化三维模组;物联网系统可视化三维模组接收到来自草莓生长模型仿真模组和形态可视化三维模组反馈的数据信息之后将其反馈至草莓智慧控制仿真模组、高架温室草莓生产虚拟仿真的过程评价模组及基质及环境仿真模组。
具体的,物联网系统可视化三维模组由物联网传感器模型、物联网执行机构模型、物联网传输模型、智能策略控制器组成;所述物联网传感器模型模拟常规高架温室草莓生产智能设施信息采集设备,用于采集形态可视化三维模组和草莓生产模型仿真模组发出的数据信息并将数据信息发送至物联网传输模型、基质及环境仿真模组以及高架温室草莓生产虚拟仿真的过程评价模组;物联网传输模型模拟物联网通讯节点或网关设备,采用透传方式进行通讯协议仿真,用于采集物联网传感器模型以及物联网执行机构模型发出的数据信息并反馈至草莓智慧控制仿真模组,同时接收来自草莓智慧控制仿真模组下达的控制策略和指令,将控制策略和指令发送至物联网传感器模型和智能策略控制器,形成控制负反馈闭环;物联网执行机构模型包括喷淋系统、滴灌系统、去湿机、负压风机、湿帘系统、暖风机、遮阳机、水肥一体机、CO2施用设备、补光灯,用于为学员提供可视化的三维动作视觉,同时为平台提供该设备对基质及环境仿真模组中的模型的影响效度计算数据源,并将计算数据源通过物联网传输模型和物联网传感器模型发送 至高架温室草莓生产虚拟仿真的过程评价模组及基质及环境仿真模组;智能策略控制器通过物联网传输模型接收从草莓智慧控制仿真模组下达的控制策略和指令并将控制策略及指令发送至物联网执行机构模型。
具体的,高架温室草莓生产虚拟仿真的过程评价模组由草莓花蕾预测、草莓挂果预测、草莓产量预测、草莓植株生长预测等模块组成,这些数据由先进的物联网视觉处理设备仿真监测,一方面可以为学员提供最新的农业设备的体验培训,同时这些传感器的预估数据也为高架温室草莓生产虚拟仿真的过程评价提供可视化成果和重要评价指标。
具体的,基质及环境仿真模组主要包括基质水肥网格模型、叶片蒸腾与吸收网格模型、光照辐射网格模型、大棚温湿度场效模型。基质水肥网格模型采用网格划分、网格区域集中参数建模的方法,建立网格中的水分、重要元素的集中分布模型,为网格中的草莓提供生长所需要的水份模型和微量元素模型。叶片蒸腾与吸收网格模型也采用网格划分、网格区域集中参数建模的方法,通过统计方法确定整个设施内的草莓在不同生长周期和生长状态下的蒸腾与吸收作用面积,然后对其进行网格划分和网格区域集中参数建模。叶片蒸腾作用主要为基质中的网格水肥变化提供计算数据源,同时为草莓生长模型仿真模组提供相应计算数据源,特别为草莓的酸度提供计算数据源。叶片的吸收作用网格建模主要为叶面肥的吸收提供计算数据源,同时为草莓的草莓生长模型仿真模组提供相应计算数据源,特别为草莓的酸度、结果率、畸变率提供相应计算数据源。大棚温湿度场效模型为草莓的生长及病虫害提供相应计算数据源。光照辐射网格模型为草莓生长模型仿真模组提供相应计算数据源,特别为草莓的甜度提供计算数据源。
具体的,草莓生长模型仿真模组由草莓病虫概率模型、草莓水分生长模型、草莓肥效生长模型、草莓糖分模型、草莓光照生长模型组成。草莓病虫概率模型采用环境状态下的病虫害发生概率描述草莓病虫害。草莓的生长模型部分采用限制因子模型,即草莓根系的发育、植株的高度、叶片的厚度与大小、花蕾数的多寡由限制因子制约,其值取影响其发育的最小因子限制。生长模型部分采用叠加影响,如草莓果实的大小、畸变程度、糖分累积、酸度累积等,根据光照时间、微量元素施用、水分在合适生长期的施用计算。草莓水分生长模型正常施用期间为限制因子影响模型,合适生长期为累积影响模型。草莓肥效生长模型基肥为限制因子影响模型,特殊肥效为累积影响模型。草莓糖分模型的基础糖分为限制因子影响模型,补光部分为累积影响模型。草莓光照生长模型的基础生长为限制因子影响模型,叶片厚度和大小为累积影响模型。草莓生长模型仿真模组为高架温室草莓生产虚拟仿真的过程评价模组提供计算数据源,同时为形态可视化三维模 组的三维立体呈现提供计算数据源,同时也为基质及环境仿真模组的叶片蒸腾与吸收网格模型提供计算数据源。
具体的,形态可视化三维模组的形态采用全景和观测窗局部景观的方式呈现。全景是指通过3DMAX建立草莓在幼苗期、花蕾期、坐果期、结果期、采摘期在不同时期的叶片茂盛、花蕾繁茂、果实多寡的五个等级的模型,导入Unity 3D后再通过草莓的生长期调控因子进行显化。观测窗局部景观采用Scriptable Render Pipeline(简称SRP)对幼苗期、花蕾期、坐果期、结果期、采摘期的三株草莓模型进行独立渲染,形成病虫害、动态开花、动态生长的可视化呈现。全景和局部景观分离的呈现设计主要是在尽量保障可视化呈现效果的同时减少3D模型的计算开销。
具体的,草莓智慧控制仿真模组是由草莓智慧物联网管控模块、仿WEB端人机交互模块、仿安卓人机交互模块组成。草莓智慧物联网管控模块是草莓智慧控制仿真模组的核心模块,主要用于根据虚拟的物联网传感器模块所采集的数据,对仿真的草莓生长过程进行智能控制策略规划。仿WEB端人机交互模块用于培训学员按实际生长情况对草莓生长过程进行智能控制策略进行选择、下发的技能。仿安卓人机交互模块主要培训学员根据手机APP终端的监视与操作对草莓生长过程进行实际管控,主要是出现系统异常情况下如何进行相关的设备操作处理技能培训。
有益效果:本发明公开了一种高架温室草莓生产智能设施虚拟仿真平台,该平台为学员提供逼真的草莓生产设施的智能模块调控选择训练,不仅培训了学员的高架温室草莓生产智能设施应用技能,同时也可以作为高架温室草莓生产智能设施改进研究的虚拟仿真平台;平台采用全景和局部景观分离呈现的设计,利用Scriptable Render Pipeline对局部景观的草莓的开花、结果、生长以及病虫害做独立渲染,一方面符合人的观察思维,保障了3D可视化呈现效果,另一方面又减少了计算代价。
附图说明
图1虚拟仿真平台总原理框架图;
图2虚拟仿真平台模组数据流程图;
图3草莓生长状况七级模糊概率模型。
具体实施方式
本发明公开了一种高架温室草莓生产智能设施虚拟仿真平台,该平台为一种高架温室草莓生产智能设施提供一个可视化的虚拟仿真平台,该仿真平台主要针对高架草莓生产设施动作后对高架草莓生产设施环境部分(生产设施内的温湿度 场、光照、CO2浓度、高架槽内的水、主要肥力元素)的影响,以及高架草莓生产设施环境部分(生产设施内的温湿度场、光照、CO2浓度、高架槽内的水、主要肥力元素)发生变化后对草莓的根系发育程度、根茎健壮程度、叶片多寡、叶片面积与厚度、花蕾数目、结果数目、果实直径概率分布、糖分概率分布、酸度概率分布等带来的影响,该仿真平台为整个高架温室草莓生产智能设施的控制策略设计、高架温室草莓生产智能设施的应用培训提供一个三维可视化虚拟仿真的基础。
本发明是在以3DS MAX建立三维模型,以Unity3D引擎作为基础开发平台,以Mysql数据库作为实时数据库,建立物联网传感器模型、物联网执行机构模型、大棚及气候环境模型、草莓生长形态模型(全景、局部景观)三维立体模型库,导入Unity3D引擎后形成组件库,组件库包括各个组件的3D动态特性描述、3D动态特性计算描述和物理或生理性能模型描述三个部分。3D动态特性描述主要指选择,运行灯指示、故障灯指示、旋转、光照、雾化、生长、开花、果实膨胀等可视化三维立体指示。3D动态特性计算描述是指设备的工作状态判断。物理或生理性能模型是指设备的设施环境的影响或设施环境对草莓生长的影响。
可视化三维模块的建立:首先利用3DS MAX软件建立喷淋系统、滴灌系统、去湿机、负压风机、湿帘系统、暖风机、遮阳机、水肥一体机、CO2施用设备、补光灯、设施棚、高架槽、全景草莓、局景草莓的三维实物模型后生成3DS格式的文件。在3DS MAX模型的建立中分三步:
1、根据高架温室草莓生产智能设施设备的实体模型的特征选用基本体构建(长方体、圆柱体等)、运算方式模型的构建(放样、布尔运算等)、修改可编辑多边形实现模型的构建(部分模型需要将基本体转换为可编辑多边形,通过选择顶点、边和多边形进行拉伸、挤压,缩放等操作)。
2、高架温室草莓生产智能设施模型由于材质等的不同分别赋予不同的材质和贴图。
3、灯光使用使建立的高架温室草莓生产智能设施设备模型中的材质更加逼真。在3DS MAX中每一种高架温室草莓生产智能设施设备的三维模型都是根据一个实际厂家的设备建立的1:1模型,模型的材质、贴图与真实设备保持一致,其中旋转设备的三维模型建立中包含在一个视觉位置转动过程中所呈现的不同形状共10个三维模型。数字显示采用数码管方式建立每个数字的三维模型,小数点位置在数码显示中为短竖。
现结合附图,具体阐述本发明的高架温室草莓生产智能设施虚拟仿真平台具体组成结构:
如图1所示,高架温室草莓生产智能设施虚拟仿真平台包括基质及环境仿真 模组、草莓生长仿真模组、形态可视化三维模组、物联网系统可视化三维模组、高架温室草莓生产虚拟仿真的过程评价模组以及草莓智慧控制仿真模组。
草莓智慧控制仿真模组用于显示草莓生长模型仿真模组计算的生产数据和生长数据,接收来自物联网物联网系统可视化三维模组的数据,并经过计算分析之后下达控制策略和指令至物联网系统可视化三维模组,改变物联网系统可视化三维模组中的物联网执行机构模型的动态形态;物联网执行机构模型动作后,将动作后的信息反馈至物联网传输模型,物联网传输模型将数据发送至物联网传感器模型,物联网传感器模型进一步反馈到基质及环境仿真模组,使得基质及环境仿真模组数据变化;基质及环境仿真模组数据变化反馈至草莓生长模型仿真模组会对草莓生长模型仿真模组中草莓的生长与生产产生影响,草莓生长模型仿真模组计算草莓的生长数据与生产数据;草莓生长模型仿真模组计算的草莓的生长数据与生产数据一方面反馈至物联网系统可视化三维模组,另一方面反馈至形态可视化三维模组;形态可视化三维模组接收到草莓生长模型仿真模组反馈的数据后,调整草莓生长形态模型和大棚及气候环境形态模型并将相应的数据反馈至物联网系统可视化三维模组;物联网系统可视化三维模组接收到来自草莓生长模型仿真模组和形态可视化三维模组反馈的数据信息之后将其反馈至草莓智慧控制仿真模组和高架温室草莓生产虚拟仿真的过程评价模组。
具体的,物联网系统可视化三维模组由物联网传感器模型、物联网执行机构模型、物联网传输模型、智能策略控制器组成;所述物联网传感器模型模拟常规高架温室草莓生产智能设施信息采集设备,用于采集形态可视化三维模组和草莓生产模型仿真模组发出的数据信息并将数据信息发送至物联网传输模型、基质及环境仿真模组以及高架温室草莓生产虚拟仿真的过程评价模组;物联网传输模型模拟物联网通讯节点或网关设备,采用透传方式进行通讯协议仿真,用于采集物联网传感器模型以及物联网执行机构模型发出的数据信息并反馈至草莓智慧控制仿真模组,同时接收来自草莓智慧控制仿真模组下达的控制策略和指令,将控制策略和指令发送至物联网传感器模型和智能策略控制器,形成控制负反馈闭环;物联网执行机构模型包括喷淋系统、滴灌系统、去湿机、负压风机、湿帘系统、暖风机、遮阳机、水肥一体机、CO2施用设备、补光灯,用于为学员提供可视化的三维动作视觉,同时为平台提供该设备对基质及环境仿真模组中的模型的影响效度计算数据源,并将计算数据源通过物联网传输模型和物联网传感器模型发送至高架温室草莓生产虚拟仿真的过程评价模组及基质及环境仿真模组;智能策略控制器通过物联网传输模型接收从草莓智慧控制仿真模组下达的控制策略和指令并将控制策略及指令发送至物联网执行机构模型。
物联网传感器模型库主要模拟环境温湿度、气压、光照度、CO2浓度、基质温湿度、基质EC值、基质PH值等常规高架温室草莓生产智能设施信息采集设备,其静态特性是其相应传感器的3D外观模型,其动态特性是传感器的工作指示灯,分别为通电状态下的绿色和失电状态下的暗绿色,传感器的数据格式为MODBUS RTU,参数设定采用通用的对话框,主要设定传感器的量程、单位、显示位数、波特率、设备地址、存储地址、数据格式、奇偶校验类别。
物联网执行机构模型为喷淋系统、滴灌系统、去湿机、负压风机、湿帘系统、暖风机、遮阳机、水肥一体机、CO2施用设备、补光灯,其静态特性为相应执行机构的3D外观模型。喷淋系统的动态特性使用unity3d的粒子系统制作下落的喷淋水滴,雾化效果采用unity3d的粒子系统制作下的雾化特效。去湿机、负压风机、暖风机的动态特性为风机的旋转动画特效。滴灌系统、水肥一体机的动态特性由管路的压力表指示。CO2施用设备的动态特性由火焰粒子效果表达。补光灯的动态特性由unity3d的Realtime Lighting技术描述。在数理模型中,喷淋系统、滴灌系统采用网格化集总建模方式,也就是不考虑管网的压损情况下,默认每个喷头的出口压力是恒定的,每个喷头的流量只与施用的时间成正比。水肥一体机默认变频调压器工作稳定,同样不考虑管路损失,也不考虑肥料在输送过程中的结晶,也就是同一肥比的管路中输送的水肥比是均匀的。这样在肥水的管网中只需建立泵的特性方程和变频器的输出方程即可,采用泵的输出压头乘以固定的压损系数作为每个喷头的固定输出压头,再通过流体截面积获得每个喷头的水的喷施量,再根据水肥比例获得各个喷头的水肥喷施量。纯喷淋可以看做肥水比为0的肥水施用。负压风机、湿帘系统、暖风机的数学模型采用集总模型和场效模型相结合的型式进行,集总模型是指负压风机、湿帘系统、暖风机与外界的热交换以环境的仿真值、场效应分布下的温室边界环境值作为初始条件,暖风机、负压风机的通风量作为总介质量,按集总模型计算热交换总量,热交换总量再按湿度温度场的传播经验曲线进行总个能量交换场的场分布叠加。这种叠加效果再与太阳辐射、叶片蒸腾、空气自然对流的热场分布效果进行叠加,从而获得整个设施内的温湿度场。遮阳机的动态特性采用逐步显示遮阳帘实现,其遮阳的面积按设计网格进行计算,不考虑太阳的入射角度,也不考虑遮阳帘对可见光的吸收不均衡性,只考虑太阳的辐射能的衰减,也就是同一网格进入的太阳辐射能通过遮阳帘的衰减率是一致的。遮阳帘对设施的动态显示效果由平行光源模拟。
其中,高架温室草莓生产虚拟仿真的过程评价模组由草莓花蕾预测、草莓挂果预测、草莓产量预测、草莓植株生长预测等模块组成,这些数据由先进的物联网视觉处理设备进行虚拟仿真监测。草莓植株生长预测模型由草莓植株生长限制 因子模型和叠加因子模型及时间模型,也就是按时间序列设置草莓的生长周期,并对周期内生长要素建立限制因子模型和叠加因子模型,模型通过环境的变化和水肥的变化综合计算出草莓的生长状况的极劣、劣、次劣、中、次优、优、极优七级模糊概率模型,概率分布为泊松分布。草莓花蕾预测是草莓植株生长预测模型的一个分支模型,主要是提取花蕾期各个网格草莓的生长状态,通过花蕾数因子模糊概率模型计算各个网格草莓花蕾数的概率,再乘以植株数目计算获得花蕾数,模型同样为极劣、劣、次劣、中、次优、优、极优七级模糊概率模型,概率分布为泊松分布。草莓挂果预测模型是在草莓花蕾预测基础上建立的概率模型,施用特殊挂果肥料视为叠加影响因子。草莓产量预测是在草莓挂果预测模型基础上建立的模型,结合草莓的生长状况和挂果数,通过营养限制因子理论建立果实大小概率模型,再乘以果实数获得产量,概率模型为极劣、劣、次劣、中、次优、优、极优七级模糊概率模型,概率分布为泊松分布。产能可以对合格大小的果实、畸变果实等进行统计,果实的畸变概率模型由限制因子理论建立,特殊的防畸变果实肥施用为叠加影响因子。
其中,基质及环境仿真模组主要包括基质水肥网格模型、叶片蒸腾与吸收网格模型、光照辐射网格模型、大棚温湿度场效模型。基质水肥网格模型采用网格划分、网格区域集中参数建模的方法,建立网格中的水分、重要元素的集中分布模型,为网格中的草莓提供生长所需要的水份模型和微量元素模型。叶片蒸腾与吸收网格模型也采用网格划分、网格区域集中参数建模的方法,通过统计方法确定整个设施内的草莓在不同生长周期和生长状态下的蒸腾与吸收作用面积,然后对其进行网格划分和网格区域集中参数建模。叶片蒸腾作用主要为基质中的网格水肥变化提供计算数据源,同时为草莓生长模型仿真模组提供相应计算数据源,特别为草莓的酸度提供计算数据源。叶片的吸收作用网格建模主要为叶面肥的吸收提供计算数据源,同时为草莓的草莓生长模型仿真模组提供相应计算数据源,特别为草莓的酸度、结果率、畸变率提供相应计算数据源。大棚温湿度场效模型为草莓的生长及病虫害提供相应计算数据源。光照辐射网格模型为草莓生长模型仿真模组提供相应计算数据源,特别为草莓的甜度提供计算数据源。
其中,草莓生长模型仿真模组由草莓病虫概率模型、草莓水分生长模型、草莓肥效生长模型、草莓糖分模型、草莓光照生长模型组成。草莓病虫概率模型采用环境状态下的病虫害发生概率描述草莓病虫害。草莓的生长模型部分采用限制因子模型,即草莓根系的发育、植株的高度、叶片的厚度与大小、花蕾数的多寡由限制因子制约,其值取影响其发育的最小因子限制。生长模型部分采用叠加影响,如草莓果实的大小、畸变程度、糖分累积、酸度累积等,根据光照时间、微 量元素施用、水分在合适生长期的施用计算。草莓水分生长模型正常施用期间为限制因子影响模型,合适生长期为累积影响模型。草莓肥效生长模型基肥为限制因子影响模型,特殊肥效为累积影响模型。草莓糖分模型的基础糖分为限制因子影响模型,补光部分为累积影响模型。草莓光照生长模型的基础生长为限制因子影响模型,叶片厚度和大小为累积影响模型。草莓生长模型仿真模组为高架温室草莓生产虚拟仿真的过程评价模组提供计算数据源,同时为形态可视化三维模组的三维立体呈现提供计算数据源,同时也为基质及环境仿真模组的叶片蒸腾与吸收网格模型提供计算数据源。
其中,形态可视化三维模组的形态采用全景和观测窗局部景观的方式呈现。全景是指通过3DMAX建立草莓在幼苗期、花蕾期、坐果期、结果期、采摘期在不同时期的叶片茂盛、花蕾繁茂、果实多寡的五个等级的模型,导入Unity 3D后再通过草莓的生长期调控因子进行显化。观测窗局部景观采用Scriptable Render Pipeline(简称SRP)对幼苗期、花蕾期、坐果期、结果期、采摘期的三株草莓模型进行独立渲染,形成病虫害、动态开花、动态生长的可视化呈现。全景和局部景观分离的呈现设计主要是在尽量保障可视化呈现效果的同时减少3D模型的计算开销。
其中,草莓智慧控制仿真模组是由草莓智慧物联网管控模块、仿WEB端人机交互模块、仿安卓人机交互模块组成。草莓智慧物联网管控模块是草莓智慧控制仿真模组的核心模块,主要用于根据虚拟的物联网传感器模块所采集的数据,对仿真的草莓生长过程进行智能控制策略规划。仿WEB端人机交互模块用于培训学员按实际生长情况对草莓生长过程进行智能控制策略进行选择、下发的技能。仿安卓人机交互模块主要培训学员根据手机APP终端的监视与操作对草莓生长过程进行实际管控,主要是出现系统异常情况下如何进行相关的设备操作处理技能培训。
下面具体阐述上述
如图1所示,在3DMAX中完成物联网系统可视化三维模组的三维模型以及形态可视化三维模组的三维模型,这些三维模型包括:物联网执行机构、智能策略控制器、物联网传感器、物联网传输模块等物联网系统可视化三维模组;大棚基础结构、水管路、电缆线缆管线、控制箱体、高架槽、土壤等大棚环境形态模型;草莓全景和观测窗局部景观等草莓生长生长形态三维模型。
模型导入Unity 3D后,用户通过草莓智慧控制仿真模组所显示的草莓生长模型仿真模组、基质及环境仿真模组计算的生产数据和生长数据,下达智能策略控制器对应的控制策略和指令,改变物联网执行机构的动态形态。这一过程完全模 拟物联网传感器->物联网传输模块->草莓智慧控制仿真模组、草莓智慧控制仿真模组->物联网传输模块->智能策略控制器->物联网执行机构模型、物联网执行机构模型状态->物联网传输模块->草莓智慧控制仿真模组的信息传递途径,协议采用透传协议。这一过程中物联网传输模块的信号指示灯、电源灯通过切换3DMAX基础模型的显示表达指示灯的闪烁和运行,3DMAX基础模型由关闭模型和运行模型组成,闪烁是指模型按一定频率切换显示关闭模型和运行模型。物联网执行机构的动态形态包括风机和电机的旋转形态表达和运行指示灯的颜色形态表达、雾化喷头的雾化、滴管头的水滴、补光灯的光照、CO2施用机的火焰。风机和电机的旋转形态表达是通过Unity 3D周期切换显示旋转叶片的10种3DMAX基础形态模型实现的。雾化、水滴、火焰是通过Unity 3D的粒子系统实现动态表达的。光照是通过Unity 3D的光源系统实现动态表达的。
物联网执行机构动作后,会反馈到基质及环境仿真模组,对高架温室草莓生产智能设施的环境温度分布、光照分布、环境湿度分布、环境CO2分布以及土壤中的肥力和水分产生变化。基质及环境仿真模组数据变化会对草莓的生长与生产产生影响,这一计算模型为草莓生长模型仿真模组。草莓的生长状态由基础形态和病虫特殊形态组成,基础形态由3DMAX完成建模,一共为五个生长期的七种模糊形态表达合计35个基础形态模型。病虫害、动态开花、动态生长等特殊形态是通过Unity 3D的Scriptable Render Pipeline在局部窗口中渲染形成的。
所有仿真过程数据都通过数据仿真采集型式提供给高架温室草莓生产虚拟仿真的过程评价模组,用于做学员的仿真训练评价结果,主要的评价依据有:草莓花蕾预测、草莓挂果预测、草莓产量预测、草莓植株生长预测。

Claims (9)

  1. 一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:包括基质及环境仿真模组、草莓生长仿真模组、形态可视化三维模组、物联网系统可视化三维模组、高架温室草莓生产虚拟仿真的过程评价模组以及草莓智慧控制仿真模组;
    所述草莓智慧控制仿真模组用于显示草莓生长模型仿真模组计算的生产数据和生长数据,接收来自物联网物联网系统可视化三维模组的数据,并经过计算分析之后下达控制策略和指令至物联网系统可视化三维模组,改变物联网系统可视化三维模组中的物联网执行机构模型的动态形态;
    所述物联网执行机构模型动作后,会反馈到基质及环境仿真模组,使得基质及环境仿真模组数据变化;
    所述基质及环境仿真模组数据变化反馈至草莓生长模型仿真模组会对草莓生长模型仿真模组中草莓的生长与生产产生影响,草莓生长模型仿真模组计算草莓的生长数据与生产数据;
    所述草莓生长模型仿真模组计算的草莓的生长数据与生产数据一方面反馈至物联网系统可视化三维模组,另一方面反馈至形态可视化三维模组;
    所述形态可视化三维模组接收到草莓生长模型仿真模组反馈的数据后,调整草莓生长形态模型和大棚及气候环境形态模型并将相应的数据反馈至物联网系统可视化三维模组;
    所述物联网系统可视化三维模组接收到来自草莓生长模型仿真模组和形态可视化三维模组反馈的数据信息之后将其反馈至草莓智慧控制仿真模组、高架温室草莓生产虚拟仿真的过程评价模组及基质及环境仿真模组。
  2. 根据权利要求1所述的一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:所述物联网系统可视化三维模组由物联网传感器模型、物联网执行机构模型、物联网传输模型、智能策略控制器组成;所述物联网传感器模型模拟常规高架温室草莓生产智能设施信息采集设备,用于采集形态可视化三维模组和草莓生产模型仿真模组发出的数据信息并将数据信息发送至物联网传输模型、基质及环境仿真模组以及高架温室草莓生产虚拟仿真的过程评价模组;物联网传输模型模拟物联网通讯节点或网关设备,采用透传方式进行通讯协议仿真,用于采集物联网传感器模型以及物联网执行机构模型发出的数据信息并反馈至草莓智慧控制仿真模组,同时接收来自草莓智慧控制仿真模组下达的控制策略和指令,将控制策略和指令发送至物联网传感器模型和智能策略控制器,形成控制负反馈闭环;物联网执行机构模型包括喷淋系统、滴灌系统、去湿机、负压风机、湿帘系统、暖风机、遮阳机、水肥一体机、CO2施用设备、补光灯,用于为学员提供可 视化的三维动作视觉,同时为平台提供该设备对基质及环境仿真模组中的模型的影响效度计算数据源,并将计算数据源通过物联网传输模型和物联网传感器模型发送至高架温室草莓生产虚拟仿真的过程评价模组及基质及环境仿真模组;智能策略控制器通过物联网传输模型接收从草莓智慧控制仿真模组下达的控制策略和指令并将控制策略及指令发送至物联网执行机构模型。
  3. 根据权利要求1所述的一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:所述高架温室草莓生产虚拟仿真的过程评价模组包括草莓花蕾预测模块、草莓挂果预测模块、草莓产量预测模块、草莓植株生长预测模块。
  4. 根据权利要求1所述的一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:所基质及环境仿真模组包括基质水肥网格模型、叶片蒸腾与吸收网格模型、光照辐射网格模型、大棚温湿度场效模型,所述基质水肥网格模型为网格中的草莓提供生长所需要的水份模型和微量元素模型;所述叶片蒸腾与吸收网格模型通过统计方法确定整个设施内的草莓在不同生长周期和生长状态下的蒸腾与吸收作用面积;所述大棚温湿度场效模型为草莓的生长及病虫害提供相应计算数据源;所述光照辐射网格模型为草莓生长模型仿真模组提供相应计算数据源。
  5. 根据权利要求1所述的一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:所述草莓生长模型仿真模组包括草莓病虫概率模型、草莓水分生长模型、草莓肥效生长模型、草莓糖分模型、草莓光照生长模型。
  6. 根据权利要求5所述的一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:所述草莓病虫概率模型采用环境状态下的病虫害发生概率描述草莓病虫害;所述草莓水分生长模型正常施用期间为限制因子影响模型,合适生长期为累积影响模型;所述草莓肥效生长模型基肥为限制因子影响模型,特殊肥效为累积影响模型;所述草莓糖分模型的基础糖分为限制因子影响模型,补光部分为累积影响模型;所述草莓光照生长模型的基础生长为限制因子影响模型,叶片厚度和大小为累积影响模型。
  7. 根据权利要求1所述的一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:所述形态可视化三维模组的形态采用全景和观测窗局部景观的方式呈现。
  8. 根据权利要求7所述的一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:所述全景是指通过3DMAX建立草莓在幼苗期、花蕾期、坐果期、结果期、采摘期在不同时期的叶片茂盛、花蕾繁茂、果实多寡的五个等级的模型,导入Unity 3D后再通过草莓的生长期调控因子进行显化;所述观测窗局部景观对幼苗期、花蕾期、坐果期、结果期、采摘期的三株草莓模型进行独立渲染,形成病 虫害、动态开花、动态生长的可视化呈现。
  9. 根据权利要求1所述的一种高架温室草莓生产智能设施虚拟仿真平台,其特征在于:所述草莓智慧控制仿真模组包括草莓智慧物联网管控模块、仿WEB端人机交互模块、仿安卓人机交互模块;草莓智慧物联网管控模块用于根据虚拟的物联网传感器模块所采集的数据,对仿真的草莓生长过程进行智能控制策略规划;仿WEB端人机交互模块用于培训学员按实际生长情况对草莓生长过程进行智能控制策略进行选择、下发的技能;仿安卓人机交互模块培训学员根据手机APP终端的监视与操作对草莓生长过程进行实际管控,以及出现系统异常情况下如何进行相关的设备操作处理技能培训。
PCT/CN2019/108961 2018-11-15 2019-09-29 一种高架温室草莓生产智能设施虚拟仿真平台 WO2020098402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811361937.6 2018-11-15
CN201811361937.6A CN109635347B (zh) 2018-11-15 2018-11-15 一种高架温室草莓生产智能设施虚拟仿真平台

Publications (1)

Publication Number Publication Date
WO2020098402A1 true WO2020098402A1 (zh) 2020-05-22

Family

ID=66067976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108961 WO2020098402A1 (zh) 2018-11-15 2019-09-29 一种高架温室草莓生产智能设施虚拟仿真平台

Country Status (2)

Country Link
CN (1) CN109635347B (zh)
WO (1) WO2020098402A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109635347B (zh) * 2018-11-15 2020-10-02 江苏农林职业技术学院 一种高架温室草莓生产智能设施虚拟仿真平台
CN111508059B (zh) * 2020-03-24 2023-09-12 深圳市天天学农网络科技有限公司 基于3d模型的农作物采摘演示方法、装置、系统及介质
CN111680927A (zh) * 2020-06-13 2020-09-18 南京柯姆威科技有限公司 一种ai人工智能训练装置及其训练方法
CN114935372A (zh) * 2022-07-01 2022-08-23 博纳智联(宁波)科技有限公司 一种基于智联网数字驱动的温室草莓种植系统
CN115167586B (zh) * 2022-08-02 2023-11-03 四川轻化工大学 一种基于Unity3D的温室大棚仿真与环境数据监测系统
CN116050861B (zh) * 2022-12-21 2023-07-25 浙江甲骨文超级码科技股份有限公司 一种农业物联网草莓产业服务运维系统及方法
CN117148903B (zh) * 2023-10-31 2024-01-12 北京乾景园林股份有限公司 一种温室环境调控管理方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314546A (zh) * 2011-06-01 2012-01-11 福州大学 基于虚拟植物的植物生长生物量变化估算方法
CN104965997A (zh) * 2015-06-05 2015-10-07 浙江工业大学 一种基于植物功能与结构模型的作物虚拟育种方法
US20170270616A1 (en) * 2014-12-05 2017-09-21 Board Of Trustees Of Michigan State University Methods and systems for precision crop management
CN109635347A (zh) * 2018-11-15 2019-04-16 江苏农林职业技术学院 一种高架温室草莓生产智能设施虚拟仿真平台

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584399B (zh) * 2012-02-23 2013-11-13 北京中科鸿正农业科技有限公司 肥料配制方法及系统
CN103473964A (zh) * 2013-09-03 2013-12-25 无锡市七芯物联科技有限公司 物联网教学综合实训台
CN103914591B (zh) * 2014-03-19 2017-01-18 北京农业信息技术研究中心 一种甘蔗种植3d交互虚拟教学实训系统及其建模方法
WO2017024254A1 (en) * 2015-08-05 2017-02-09 Iteris, Inc. Customized land surface modeling for irrigation decision support in a crop and agronomic advisory service in precision agriculture
CN107491127B (zh) * 2017-09-15 2019-08-02 中国农业大学 一种基于虚拟现实的种植环境控制系统和方法
CN107991969A (zh) * 2017-12-25 2018-05-04 云南五佳生物科技有限公司 一种基于物联网的智慧烟草种植管理系统
CN207937783U (zh) * 2018-02-05 2018-10-02 蚌埠学院 基于物联网的家居生态环境监控系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314546A (zh) * 2011-06-01 2012-01-11 福州大学 基于虚拟植物的植物生长生物量变化估算方法
US20170270616A1 (en) * 2014-12-05 2017-09-21 Board Of Trustees Of Michigan State University Methods and systems for precision crop management
CN104965997A (zh) * 2015-06-05 2015-10-07 浙江工业大学 一种基于植物功能与结构模型的作物虚拟育种方法
CN109635347A (zh) * 2018-11-15 2019-04-16 江苏农林职业技术学院 一种高架温室草莓生产智能设施虚拟仿真平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, SHANGFENG ET AL.: "Research on Modeling, Simulation and Control for Controlled Environment Production Systems", SCIENTIA SINICA INFORMATIONIS, vol. 40, 20 October 2010 (2010-10-20), pages 54 - 70 *

Also Published As

Publication number Publication date
CN109635347B (zh) 2020-10-02
CN109635347A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020098402A1 (zh) 一种高架温室草莓生产智能设施虚拟仿真平台
CN105159257B (zh) 一种植物工厂集成控制系统及方法
CN106171835B (zh) 一种园林用节能型花圃浇水装置
CN110347127A (zh) 基于云服务的农作物种植托管系统及方法
CN109874477B (zh) 一种农业园区施肥机托管方法及系统
CN204634606U (zh) 一种数字化精准育苗系统
CN104737896A (zh) 一种数字化精准育苗系统
CN107318495A (zh) 一种基于物联网的多个立体农业种植棚共同管理系统
CN108781926A (zh) 基于神经网络预测的大棚灌溉系统及方法
CN102736596A (zh) 基于作物信息融合的多尺度温室环境控制系统
CN104267674A (zh) 一种作物认种认养服务系统和方法
CN106651149A (zh) 一种植物生长行为分析方法
Pala et al. Aeroponic greenhouse as an autonomous system using intelligent space for agriculture robotics
CN105786058B (zh) 一种基于电商预售模式的智能温室控制系统及方法
CN107242054A (zh) 一种适用于室内的智能种菜机器人系统
CN114859734A (zh) 一种基于改进sac算法的温室环境参数优化决策方法
CN103823976B (zh) 日光温室光热环境计算方法
CN201974687U (zh) 农林环境智能控制装置
CN103444418A (zh) 基于植物生长特性和规律的流水线式植物工厂的实现方法
CN202472406U (zh) 温室自动化控制用嵌入式系统
CN108181956A (zh) 集智能化生产与养生功能于一体的温室大棚的建设方法
CN105487582A (zh) 一种基于云计算的花卉栽培系统
CN109601350A (zh) 机插硬地硬盘全基质育秧水分智能管理系统和控制方法
CN104067924A (zh) 智能人工双调控炼苗器
Gao et al. Application of Artificial Intelligence System Design Based on Genetic Algorithm In Horticultural Cultivation

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021113902

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 19883681

Country of ref document: EP

Kind code of ref document: A1