WO2020098337A1 - 一种最大功率点跟踪方法及设备 - Google Patents

一种最大功率点跟踪方法及设备 Download PDF

Info

Publication number
WO2020098337A1
WO2020098337A1 PCT/CN2019/103789 CN2019103789W WO2020098337A1 WO 2020098337 A1 WO2020098337 A1 WO 2020098337A1 CN 2019103789 W CN2019103789 W CN 2019103789W WO 2020098337 A1 WO2020098337 A1 WO 2020098337A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
input
power
input power
adjustment
Prior art date
Application number
PCT/CN2019/103789
Other languages
English (en)
French (fr)
Inventor
徐志武
吴志清
顾桂磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19883573.8A priority Critical patent/EP3780314B1/en
Priority to EP23188481.8A priority patent/EP4293896A3/en
Priority to ES19883573T priority patent/ES2964490T3/es
Publication of WO2020098337A1 publication Critical patent/WO2020098337A1/zh
Priority to US17/114,991 priority patent/US11218000B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to the field of photovoltaic power generation technology, in particular to a method and equipment for tracking maximum power points.
  • PV Photovoltaic
  • the photovoltaic array in the photovoltaic power generation system is installed outdoors and is affected by external factors such as light intensity and the environment. For example, the photovoltaic components in the photovoltaic array are blocked, and the output power thereof changes.
  • MPPT maximum power point tracking
  • the output power of the photovoltaic module is the maximum power point of the photovoltaic module, and the photovoltaic module is maintained at the maximum power point to maximize the photovoltaic power generation. The efficiency of the system.
  • the present application provides a maximum power point tracking method and equipment to solve the problem of low conversion efficiency of the converter and the inverter in the scenario where all photovoltaic components in the photovoltaic power generation system of the prior art are configured with converters.
  • the present application provides a maximum power point tracking method, which is applied to a photovoltaic power generation system.
  • the photovoltaic power generation system includes a control device and at least one photovoltaic component.
  • the method includes: the control device adjusting an input voltage of the control device, the input voltage generated by one or more of the photovoltaic components and transmitted to the control device; determining the first input of the control device Whether the difference between the power and the second input power is less than or equal to a set value; wherein, the first input power is the input power of the control device before the input voltage of the control device is adjusted, and the second input power is After the input voltage of the control device is adjusted, the input power of the control device; when the difference between the first input power and the second input power is less than or equal to the set value, increase the control device Input voltage and return to execute to determine whether the difference between the first input power and the second input power of the control device is less than or equal to the set value; when the difference between the first input power and the second input power When it
  • the control device adjusts its own input voltage and determines whether the input power before and after the adjustment of the input voltage of the control device is equal or approximately equal. If so, increase the input voltage of the control device and continue to judge Whether the input power before and after the adjustment of the input voltage of the control device is equal or approximately equal, otherwise, continue to adjust the input voltage of the control device so that the control device works at the maximum input power point, and the control device works at the maximum When the power point is input, the input voltage of the control device is large, which can maximize the conversion efficiency of the control device and reduce the power generation loss of the photovoltaic power generation system.
  • the control device may adjust the input voltage of the control device by the following method:
  • the input voltage before adjustment by the control device is greater than the input voltage after adjustment by the control device, the input voltage of the control device is reduced; If the input voltage before adjustment by the control device is less than the input voltage after adjustment by the control device, increase the input voltage of the control device; or,
  • the input voltage before adjustment by the control device is greater than the input voltage after adjustment by the control device, increase the input voltage of the control device;
  • the input voltage before adjustment by the control device is less than the input voltage after adjustment by the control device, then the input voltage of the control device is reduced.
  • control device is an inverter or a solar charger.
  • the photovoltaic power generation system further includes at least one converter, one of the converters is connected to one of the photovoltaic modules, that is, some or all of the at least one photovoltaic module included in the photovoltaic power generation system is configured with
  • the converter is used to adjust the output voltage or current of the photovoltaic component connected to the converter, so that the photovoltaic component connected to the converter works at the maximum output power point and under the control of the control device To adjust the output voltage or output current of the converter.
  • the present application provides another maximum power point tracking method, which is applied to a photovoltaic power generation system.
  • the photovoltaic power generation system includes a control device and at least one photovoltaic component.
  • the method includes: the control device adjusting an input current of the control device, the input current generated by one or more of the photovoltaic components and transmitted to the control device; determining the first input of the control device Whether the difference between the power and the second input power is less than or equal to a set value; wherein, the first input power is the input power of the control device before the input current of the control device is adjusted, and the second input power is After the input current of the control device is adjusted, the input power of the control device; when the difference between the first input power and the second input power is less than or equal to the set value, reduce the control device Input current, and return to execute to determine whether the difference between the first input power and the second input power of the control device is less than or equal to the set value; when the difference between the first input power and the second input power When it
  • the control device adjusts its own input current, and judges whether the input power before and after the adjustment of the input current of the control device is equal or approximately equal, and if so, increases the input current of the control device and continues to judge Whether the input power before and after the adjustment of the input current of the control device is equal or approximately equal, otherwise, continue to adjust the input current of the control device so that the control device works at the maximum input power point, and the control device works at the maximum When the power point is input, the input current of the control device is small, which can maximize the conversion efficiency of the control device and reduce the power generation loss of the photovoltaic power generation system.
  • the control device may adjust the input current of the control device by the following method: When the first input power is less than the second input power, if the input current before adjustment by the control device is greater than the input current after adjustment by the control device, the input current of the control device is reduced; If the input current before adjustment by the control device is smaller than the input current after adjustment by the control device, increase the input current of the control device; or,
  • the input current before adjustment by the control device is greater than the input current after adjustment by the control device, increase the input current of the control device; If the input current before adjustment by the control device is smaller than the input current after adjustment by the control device, the input current of the control device is reduced.
  • control device is an inverter or a solar charger.
  • the photovoltaic power generation system further includes at least one converter, one of the converters is connected to one of the photovoltaic components, and the converter is used to adjust the output voltage of the photovoltaic components connected to the converter or The current makes the photovoltaic module connected to the converter work at the maximum output power point, and under the control of the control device, adjusts the output voltage or output current of the converter.
  • the present application provides a control device, the control device having a function of implementing the control device behavior in the method example of the first aspect described above.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the control device includes an adjustment unit and a judgment unit, and these units can perform the corresponding functions in the method example of the first aspect described above. For details, refer to the detailed description in the method example. Repeat.
  • the structure of the control device includes a processor, a memory, and a power conversion circuit, and the processor is configured to support the control device to perform the corresponding function in the method provided in the first aspect.
  • the memory is coupled to the processor, which stores necessary program instructions and data of the control device.
  • the present application provides another control device, the control device having a function of implementing the control device behavior in the method example of the second aspect described above.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the control device includes an adjustment unit and a judgment unit, and these units can perform the corresponding functions in the method example of the second aspect described above.
  • these units can perform the corresponding functions in the method example of the second aspect described above. For details, refer to the detailed description in the method example. Repeat.
  • the structure of the control device includes a processor, a memory, and a power conversion circuit, and the processor is configured to support the control device to perform the corresponding function in the method provided in the second aspect above.
  • the memory is coupled to the processor, which stores necessary program instructions and data of the control device.
  • the present application further provides a photovoltaic power generation system, the photovoltaic power generation system including the control device described in the first aspect and at least one photovoltaic component.
  • the present application further provides a photovoltaic power generation system, the photovoltaic power generation system including the control device described in the second aspect and at least one photovoltaic component.
  • the present application also provides a computer storage medium that stores computer-executable instructions, and when the computer-executable instructions are called by the computer, causes the computer to execute the first The method provided in any one aspect of the aspect or the second aspect.
  • the present application also provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the method provided in any one of the implementation manners of the first aspect or the second aspect.
  • the present application further provides a chip, the chip is connected to a memory or the chip includes the memory, and is used to read and execute a software program stored in the memory to implement the first aspect or The method provided in any one embodiment of the second aspect.
  • Figure 1 is a schematic diagram of the output characteristics of the photovoltaic module in the scenario where the photovoltaic module is not configured with a converter;
  • Figure 2 is a schematic diagram of the output characteristics of the photovoltaic module in the scenario where the photovoltaic module is configured with a converter;
  • FIG. 3 is a schematic structural diagram of a photovoltaic power generation system provided by an embodiment of the present application.
  • FIG. 4 is one of specific structural schematic diagrams of a photovoltaic power generation system provided by an embodiment of the present application.
  • FIG. 5 is a second schematic structural diagram of a photovoltaic power generation system provided by an embodiment of the present application.
  • FIG. 6 is a third schematic structural diagram of a photovoltaic power generation system provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a maximum power point tracking method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another maximum power point tracking method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another control device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a photovoltaic grid-connected inverter provided by an embodiment of the present application.
  • the output characteristics of the photovoltaic module are shown in FIG. 1, in the scenario where all photovoltaic modules are configured with a converter, the output characteristics of the converter are shown in FIG. 2, the horizontal axis in FIG. 1 Represents the output voltage of the photovoltaic module, the vertical axis represents the output power of the photovoltaic module, and the horizontal axis in FIG. 2 represents the output voltage of the converter, and the vertical axis represents the output power of the converter, where the converter is configured in all photovoltaic modules In, all the converters connected to the photovoltaic modules are buck converters, and the current limit output is 15A.
  • the existing MPPT method usually uses the disturbance observation method (disturbance observation method is also called mountain climbing method), which refers to disturbing (adjusting) the output voltage of the photovoltaic module, and calculating the output power of the photovoltaic module before and after the disturbance, and carrying out the two output powers before and after the disturbance Compare. If the output power of the photovoltaic module increases after the disturbance compared to the output power of the photovoltaic module before the disturbance, it means that the disturbance can increase the output power of the photovoltaic module.
  • the disturbance observation method is also called mountain climbing method
  • the photovoltaic module when the photovoltaic module works at the maximum output power point, the converter connected to the photovoltaic module works in constant power mode, and the output voltage of the converter corresponds to the output in constant power mode When the voltage range fluctuates, the photovoltaic module can work at the maximum output power point.
  • the output voltage of the converter is the smaller output voltage in the output voltage range corresponding to the constant power mode (such as point C in FIG. 2), that is, photovoltaic
  • the converter connected with the component works at a smaller output voltage and a larger output current.
  • the inverter works at a smaller input voltage and a larger input current, the conversion efficiency of the converter and the inverter is more Low, which in turn leads to a loss of photovoltaic power generation capacity.
  • the present application provides a method and a device for tracking the maximum power point, wherein the method and the device described in the embodiments of the present application are based on the same inventive concept, because the method and the device solve The principle of the problem is similar, so the implementation of the device and method can be referred to each other, and the repetition is not repeated here.
  • the photovoltaic power generation system 300 includes at least one photovoltaic component 301 and a control device 302.
  • the photovoltaic module 301 is a module composed of multiple (two or more) single solar battery strings, connected in parallel and tightly sealed, and is the core part of the photovoltaic power generation system, which is used to convert solar energy into electrical energy
  • the control device 302 is used to adjust the input voltage or input current of the control device 302, so that the control device 302 can convert the electrical energy generated by the photovoltaic module 301 with higher conversion efficiency, for example, the The electrical energy generated by the photovoltaic module 301 is converted into alternating current and input into the power grid.
  • control device 302 may be an inverter, a solar charger, or the like.
  • the input voltage or input current of the control device 302 is generated by one or more of the photovoltaic components 301 and is directly or indirectly transmitted to the control device 302.
  • the at least one photovoltaic component 301 may be connected in series, parallel, or mixed manner to form one or more photovoltaic sub-arrays 303, and the output ends of the photovoltaic sub-arrays 303 are respectively connected to the control device 302. It should be noted that, in FIG. 3, only the at least one photovoltaic component 301 is connected in series to form a plurality of photovoltaic sub-arrays as an example, which does not limit the present application.
  • the photovoltaic power generation system 300 may further include at least one converter 304, one converter 304 is connected to one photovoltaic assembly 301, and is used to adjust the output voltage of the photovoltaic assembly 301 connected to the converter 304 or The current makes the photovoltaic module 301 connected to the converter 304 work at the maximum output power, which can increase the output power of the photovoltaic sub-array 303 where the photovoltaic module 301 connected to the converter 304 is located, thereby improving the overall photovoltaic power generation system 300 The amount of power generation; and under the control of the control device 302, adjust the output voltage or output current of the converter 304.
  • the converter 304 may be a direct current (DC) / DC converter.
  • the specific circuit topology of the converter 304 may be an upgrade circuit, a buck circuit, or a boost circuit, and may be an isolation structure. It can be a non-isolated structure.
  • the photovoltaic power generation system 300 may be a power generation system in which all photovoltaic modules 301 are not configured with the converter 304, for example, a photovoltaic power generation system as shown in 4, or all photovoltaic modules 301 may be configured
  • the power generation system of the converter 304 for example, the photovoltaic power generation system shown in FIG. 5, may also be a power generation system in which part of the photovoltaic module 301 is configured with the converter 304, for example, the photovoltaic power generation system shown in FIG.
  • the photovoltaic power generation system shown in FIGS. 4 to 6 includes a plurality of photovoltaic sub-arrays 303, and each photovoltaic sub-array 303 is composed of a plurality of photovoltaic modules 301 connected in series, also called a photovoltaic string.
  • the present application provides a maximum power point tracking method, which is applied to the photovoltaic power generation system 300 shown in FIGS. 2 to 6, and the method is executed by the control device 302 in the photovoltaic power generation system 300 , Including the following steps:
  • the input voltage is generated by one or more of the photovoltaic components 301 and transmitted to the control device 302.
  • the input voltage is directly or indirectly output to the control device 302 by one or more of the photovoltaic components 301.
  • the control device 302 mainly performs power conversion in the power generation system 300 and can control its own output power.
  • the control device 302 can adjust the power of the control device 302 by adjusting its own output power.
  • Input voltage For example, when the control device 302 is an inverter, the inverter can adjust the output power of the inverter by adjusting the duty ratio of the signal used to control the switch tube in the inverter, thereby adjusting the inverter The purpose of the input voltage.
  • step S702 Determine whether the difference between the first input power and the second input power of the control device 302 is less than or equal to the set value, and if so, perform step S703; otherwise, return to step S701.
  • the first input power is the input power of the control device before the input voltage of the control device is adjusted
  • the second input power is the input power of the control device after the input voltage of the control device is adjusted.
  • the set value may be determined according to factors such as power generation efficiency requirements and control accuracy of the photovoltaic power generation system 300, when the difference between the first input power and the second input power of the control device 302 is less than or equal to the set value Value, the first input power is equal to or approximately equal to the second input power.
  • S703 Increase the input voltage of the control device 302, and return to step S702.
  • the input voltage of the control device may be adjusted by the following method:
  • the control device 302 is reduced. If the input voltage can increase the input power of the control device 302, then the input voltage of the control device is reduced; if the input voltage before adjustment by the control device is less than the input voltage after adjustment by the control device, it means that increasing the The input voltage of the control device 302 can increase the input power of the control device 302, then increase the input voltage of the control device;
  • the control device 302 When the first input power is greater than the second input power, if the input voltage before adjustment by the control device 302 is greater than the input voltage after adjustment by the control device 302, it means that the control device 302 is reduced. If the input voltage is not conducive to increasing the input power of the control device 302, increase the input voltage of the control device 302; if the input voltage before adjustment of the control device 302 is less than the input voltage after adjustment of the control device 302, Increasing the input voltage of the control device 302 is not conducive to increasing the input power of the control device 302, and then decreasing the input voltage of the control device 302.
  • the control device 302 samples the input voltage and input current of the control device 302 to obtain the current input voltage and input current of the control device 302, and according to The current input voltage and input current determine the input power of the control device 302, and the determined input power is used as the first input power.
  • the control device 302 adjusts the input voltage of the control device 302
  • the The input voltage and input current of the control device 302 are sampled to obtain the current input voltage and input current of the control device 302, and the input power of the control device 302 is determined according to the obtained input voltage and input current, and the determined input The power is used as the second input power.
  • the control device 302 needs to continue to adjust the input voltage of the control device 302.
  • the control device 302 Updating the first input power to the input power of the control device 302 after the input voltage of the control device 302 was last adjusted (that is, the second input obtained after the input voltage of the control device 302 was last adjusted Power), continue to adjust the input voltage of the control device 302, sample the input voltage and input current of the control device 302, obtain the current input voltage and input current of the control device 302, and according to the obtained input voltage and The input current determines the input power of the control device 302, and the determined input power is used as the second input power.
  • the control device 302 adjusts its own input voltage, and determines whether the input power before and after the adjustment of the input voltage of the control device 302 is equal or approximately equal, and if so, increases the input voltage of the control device 302, And continue to determine whether the input power before and after the adjustment of the input voltage of the control device 302 is equal or approximately equal, otherwise, continue to adjust the input voltage of the control device 302 so that the control device 302 works at the maximum input power point, and the When the control device 302 works at the maximum input power point, the input voltage of the control device 3002 is relatively large, which can maximize the conversion efficiency of the control device 302 and reduce the power generation loss of the photovoltaic power generation system.
  • the present application provides another maximum power point tracking method, which is applied to the photovoltaic power generation system 300 shown in FIGS. 2 to 6.
  • the method is controlled by the control device 302 in the photovoltaic power generation system 300 Implementation, including the following steps:
  • the input current is generated by one or more of the photovoltaic components 301 and transmitted to the control device 302.
  • the input current is one or more of the photovoltaic components 301 directly or indirectly output to the control device 302.
  • S802 Determine whether the difference between the first input power and the second input power of the control device 302 is less than or equal to the set value. If yes, perform step S803; otherwise, return to perform S801.
  • the first input power is the input power of the control device before the input current of the control device is adjusted
  • the second input power is the input power of the control device after the input current of the control device is adjusted.
  • the control device 302 mainly performs power conversion in the power generation system 300 and can control its own output power.
  • the control device 302 can adjust the power of the control device 302 by adjusting its own output power.
  • Input voltage For example, when the control device 302 is an inverter, the inverter can adjust the output power of the inverter by adjusting the duty ratio of the signal used to control the switch tube in the inverter, thereby adjusting the inverter The purpose of the input current.
  • the set value may be determined according to factors such as power generation efficiency requirements and control accuracy of the photovoltaic power generation system 300, when the difference between the first input power and the second input power of the control device 302 is less than or equal to the set value Value, the first input power is equal to or approximately equal to the second input power.
  • S803 Reduce the input current of the control device, and return to execute S802.
  • control device 302 adjusts the input current of the control device 302 by the following method:
  • the control device 302 samples the input current and input voltage of the control device 302 to obtain the current input current and input voltage of the control device 302, and The input power of the control device 302 is determined according to the current input current and input voltage, and the determined input power is used as the first input power.
  • the control device 302 adjusts the input current of the control device 302
  • the The input current and input voltage of the control device 302 are sampled to obtain the current input current and input voltage of the control device 302, and the input power of the control device 302 is determined according to the obtained input current and input voltage, and the determined The input power is used as the second input power.
  • the control device 302 needs to continue to adjust the input current of the control device 302.
  • the control device 302 Update the first input power to the input power of the control device 302 after the input current of the control device 302 was last adjusted (that is, the second input obtained after the input current of the control device 302 was last adjusted Power), continue to adjust the input current of the control device 302, sample the input current and input voltage of the control device 302, obtain the current input current and input voltage of the control device 302, and according to the obtained input current and The input voltage determines the input power of the control device 302, and the determined input power is used as the second input power.
  • the control device 302 adjusts its own input current, and determines whether the input power before and after the adjustment of the input current of the control device 302 is equal or approximately equal, and if so, reduces the input current of the control device 302, And continue to determine whether the input power before and after the adjustment of the input current of the control device 302 is equal or approximately equal, otherwise, continue to adjust the input current of the control device 302 so that the control device 302 works at the maximum input power point, and the When the control device 302 works at the maximum input power point, the input current of the control device 302 is small, which can maximize the conversion efficiency of the control device 302 and reduce the power generation loss of the photovoltaic power generation system.
  • the present application also provides a control device, which is applied to a photovoltaic power generation system.
  • the photovoltaic power generation system includes the control device and at least one photovoltaic component.
  • the control device 900 includes an adjustment unit 901 and a judgment unit 902.
  • control device 900 is used to execute the maximum power point tracking method shown in FIG. 7, wherein,
  • the adjusting unit 901 is configured to adjust the input voltage of the control device 900, and the input voltage is generated by one or more of the photovoltaic components and transmitted to the control device;
  • the determining unit 902 is configured to determine whether the difference between the first input power and the second input power of the control device 900 is less than or equal to a set value; wherein, the first input power is the value of the control device 900 The input power of the control device 900 before the input voltage is adjusted, and the second input power is the input power of the control device 900 after the input voltage of the control device 900 is adjusted;
  • the adjustment unit 901 is further used to: increase the input voltage of the control device and trigger the
  • the judging unit 902 executes judging whether the difference between the first input power and the second input power of the control device is less than or equal to the set value;
  • the judgment unit 902 is further configured to: trigger the adjustment unit 901 to perform adjustment of the input voltage of the control device 900 .
  • the adjustment unit 901 is specifically configured to:
  • the input voltage before adjustment by the control device 900 is greater than the input voltage after adjustment by the control device 900, the input voltage of the control device 900 is reduced ; If the input voltage before adjustment by the control device 900 is less than the input voltage after adjustment by the control device 900, increase the input voltage of the control device 900; or,
  • the input voltage before adjustment by the control device 900 is greater than the input voltage after adjustment by the control device 900, the input voltage of the control device 900 is increased ; If the input voltage before adjustment by the control device 900 is less than the input voltage after adjustment by the control device 900, reduce the input voltage of the control device 900.
  • control device 900 is used to execute the maximum power point tracking method shown in FIG. 8, wherein,
  • the adjusting unit 901 is configured to adjust the input current of the control device 900, and the input current is generated by one or more of the photovoltaic components and transmitted to the control device;
  • the determining unit 902 is configured to determine whether the difference between the first input power and the second input power of the control device 900 is less than or equal to a set value; wherein, the first input power is the value of the control device 900 The input power of the control device 900 before the input current is adjusted, and the second input power is the input power of the control device 900 after the input current of the control device 900 is adjusted;
  • the adjustment unit 901 is further used to: reduce the input current of the control device 900 and trigger the
  • the judging unit 902 executes judging whether the difference between the first input power and the second input power of the control device is less than or equal to the set value;
  • the judgment unit 902 is further configured to: trigger the adjustment unit 901 to perform adjustment of the input current of the control device 900 .
  • the adjustment unit 901 is specifically configured to:
  • the input current before adjustment by the control device 900 is greater than the input current after adjustment by the control device 900, the input current of the control device 900 is reduced ; If the input current before the control device 900 is adjusted is less than the input current after the control device 900 is adjusted, increase the input current of the control device 900; or,
  • the input current before adjustment by the control device 900 is greater than the input current after adjustment by the control device 900, the input current of the control device 900 is increased ; If the input current before adjustment by the control device 900 is less than the input current after adjustment by the control device 900, reduce the input current of the control device 900.
  • the division of the units in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a mobile hard disk, read-only memory (ROM) or random access memory (RAM).
  • the present application also provides a control device, which is applied to a photovoltaic power generation system.
  • the photovoltaic power generation system includes the control device and at least one photovoltaic component.
  • the control device 1000 includes a processor 1001 and a power conversion circuit 1002.
  • the processor 1001 may be a central processing unit (central processing unit, CPU) or a micro control unit (microcontroller unit, MCU). Further, the control device 1000 may further include a memory 1003 for storing program instructions, so that the processor 1001 implements the program instructions stored in the memory 1003 and the power conversion circuit 1002, as shown in FIG. 7 Or the maximum power point tracking method shown in FIG. 8.
  • the memory 1003 may include volatile memory (volatile memory), such as random-access memory (RAM); the memory 1003 may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory, also known as flash memory), hard disk drive (HDD) or solid-state drive (SSD); memory 1003 may also include a combination of the aforementioned types of memory.
  • control device is used to implement the above maximum power point tracking method shown in FIG. 7, and has the function of the control device 900 shown in FIG. 9. among them,
  • the processor 1001 is configured to control the power conversion circuit 1002 to adjust the input voltage of the control device 1000, and the input voltage is generated by one or more of the photovoltaic components and transmitted to the control device;
  • the first input power is the control before the input voltage of the control device 1000 is adjusted
  • the input power of the device 1000 is the input power of the control device 1000 after the input voltage of the control device 1000 is adjusted; when the difference between the first input power and the second input power is less than Or equal to the set value, control the power conversion circuit 1002 to increase the input voltage of the control device 1000, and return to execute to determine whether the difference between the first input power and the second input power of the control device 1000 Less than or equal to the set value; when the difference between the first input power and the second input power is greater than the set value, return to execute control of the power conversion circuit 1002 to adjust the input voltage of the control device 1000 .
  • the power conversion circuit 1002 is used to adjust the input voltage of the control device 1000 under the control of the processor 1001.
  • the power conversion circuit 1002 adjusts the input voltage of the control device 1000, including:
  • the input voltage before adjustment by the control device 1000 is greater than the input voltage after adjustment by the control device 1000, the input voltage of the control device 1000 is reduced ; If the input voltage of the control device 1000 before adjustment is less than the input voltage of the control device 1000 after adjustment, increase the input voltage of the control device 1000; or,
  • the input voltage of the control device 1000 is increased ; If the input voltage before the control device 1000 is adjusted is less than the adjusted input voltage of the control device 1000, then reduce the input voltage of the control device 1000.
  • control device is used to implement the above-described maximum power point tracking method shown in FIG. 8, and has the function of the control device 900 shown in FIG. 9. among them,
  • the processor 1001 is configured to control the power conversion circuit 1002 to adjust the input current of the control device 1000, and the input current is generated by one or more of the photovoltaic components and transmitted to the control device;
  • the power conversion circuit 1002 is used to adjust the input current of the control device 1000 under the control of the processor 1001.
  • the power conversion circuit 1002 adjusts the input current of the control device 1000, including:
  • the input current before adjustment by the control device 1000 is greater than the input current after adjustment by the control device 1000, the input current of the control device 1000 is reduced ; If the input current before the control device 1000 is adjusted is less than the input current after the control device 1000 is adjusted, increase the input current of the control device 1000; or,
  • the input current of the control device 1000 is increased ; If the input current before the control device 1000 is adjusted is smaller than the input current after the control device 1000 is adjusted, then reduce the input current of the control device 1000.
  • the control device 1000 as a photovoltaic grid-connected inverter as an example.
  • the photovoltaic grid-connected inverter 1100 mainly includes a CPU 1110, a boost DC-DC converter 1120, an H-bridge inverter circuit 1130, and a pulse width modulation (PWM) drive The circuit 1140, the input signal detection circuit 1150, the output signal detection circuit 1160, and the grid voltage detection circuit 1170.
  • PWM pulse width modulation
  • the CPU 1110 is configured to obtain corresponding detection signals through the input signal detection circuit 1150, the output signal detection circuit 1160, and the grid voltage detection circuit 1170, and determine the photovoltaic grid-connected inverse according to the obtained detection signals
  • the operating state of the converter 1100, and then according to the operating state of the photovoltaic grid-connected inverter 1100, the step-up DC-DC converter 1120 and the H-bridge inverter circuit 1130 are controlled by the PWM driving circuit 1140 .
  • the step-up DC-DC converter 1120 is connected to the output terminal of the photovoltaic module through a DC-link capacitor, and is used to step up the voltage obtained from the photovoltaic module under the control of the CPU 1110, and Output to the H-bridge inverter circuit 1130.
  • the CPU 1110 controls the switching tube in the boost DC-DC converter 1120 by controlling the duty ratio of the pulse signal output by the PWM driving circuit 1140 to control the boost DC-DC converter 1120
  • the voltage obtained by the photovoltaic module is boosted.
  • the H-bridge inverter circuit 1130 is used to convert the output voltage of the step-up DC-DC converter 1120 into an AC voltage under the control of the CPU 1110, and input the converted AC voltage into the power grid.
  • the CPU 1110 controls the switching tube in the H-bridge inverter circuit 1130 by controlling the duty ratio of the pulse signal output by the PWM driving circuit 1140, and controls the H-bridge inverter circuit 1130 to convert the The voltage output from the step-up DC-DC converter 1120 is converted into an alternating voltage.
  • the PWM driving circuit 1140 is configured to output a pulse signal with a corresponding duty ratio under the control of the CPU 1110 to control the boost DC-DC converter 1120 and the H-bridge inverter circuit 1130.
  • the input signal detection circuit 1150 is used to detect the voltage and current output by the photovoltaic module, the voltage of the DC-link capacitor and the voltage of the capacitor in the boost converter 1120, and feed back to the CPU 1110.
  • the output signal detection circuit 1160 is used to detect the current (voltage) output by the H-bridge inverter circuit 1130 and feed it back to the CPU 1110.
  • the grid voltage detection circuit 1170 is used to detect the voltage of the grid and feed it back to the CPU 1100.
  • the photovoltaic grid-connected inverter 1100 may further include a direct current electromagnetic interference (EMI) filter 1181, an EMI filter 1181, and a protection signal detection circuit 1190.
  • EMI direct current electromagnetic interference
  • the DC EMI filter 1181 is used to filter out the high-frequency interference signal in the output signal of the photovoltaic module
  • the AC EMI filter 1181 is used to filter out the high Frequency interference signal
  • the protection signal detection circuit 11901 is used to detect the protection signal output when the photovoltaic grid-connected inverter 1100 performs a protection action, and feed it back to the CPU 1100.
  • the CPU 1110 is used to implement the functions of the processor 1001, the PWM drive circuit 1140, the boost DC-DC converter 1120, and the H-bridge inverter circuit 1130 are used to implement the power conversion The function of the circuit 1002.
  • the CPU 1110 controls the output signals of the boost DC-DC converter 1120 and the H-bridge inverter circuit 1130 by controlling the duty ratio of the pulse signal output by the PWM driving circuit 1140 to adjust the The output power of the photovoltaic grid-connected inverter 1100, and thereby adjusting the input voltage or input circuit of the photovoltaic grid-connected inverter 1100; the CPU 1110 obtains the photovoltaic grid through the input signal detection circuit 1150
  • the input voltage of the grid inverter 1100 or the voltage and current before the input circuit is adjusted, the first input power is calculated according to the obtained voltage and circuit, and the photovoltaic grid-connected inverter is obtained through the input signal detection circuit 1150
  • the input voltage of 1100 or the adjusted voltage and current of the input circuit are
  • the present application provides a maximum power point tracking method and device, which are applied to a photovoltaic power generation system.
  • the photovoltaic power generation system includes a control device and at least one photovoltaic component.
  • the control device adjusts its own input signal (input voltage or input current), and determines whether the input power before and after the adjustment by the control device 302 is equal or approximately equal, and if so, increases the input voltage of the control device 302 or decreases Reduce the input current of the control device 302, and continue to determine whether the input power before and after the adjustment of the control device 302 is equal or approximately equal, otherwise, continue to adjust the input signal of the control device 302, so that the control device 302 works in The maximum input power point, and when the control device 302 is operating at the maximum input power point, the input voltage of the control device 3002 is large, and the input current of the control device 3002 is small, which can maximize the control The conversion efficiency of the device 302 reduces the power generation loss of the photovoltaic power generation system.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本申请提供了一种最大功率点跟踪方法及设备,以提高光伏发电系统中控制设备的转换效率,减少发电量的损失。所述方法包括:所述控制设备调整所述控制设备的输入电压,所述输入电压为一个或多个所述光伏组件产生并传输到所述控制设备的;判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备的输入电压调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电压调整之后所述控制设备的输入功率;若是,增大所述控制设备的输入电压,并返回执行判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;否则,返回执行调整所述控制设备的输入电压。

Description

一种最大功率点跟踪方法及设备
相关申请的交叉引用
本申请要求在2018年11月15日提交中国国家知识产权局、申请号为201811357673.7、申请名称为“一种最大功率点跟踪方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏发电技术领域,尤其涉及一种最大功率点跟踪方法及设备。
背景技术
太阳能是一种巨量的可再生能源,每天到达地球表面的辐射能量相当于数亿万桶石油燃烧的能量,开发和利用太阳能对环境的污染较小,甚至不污染环境。光伏(photovoltaic,PV)发电是最常见的一种太阳能利用方式,能够直接将光能转变为电能,具有可靠性高、使用寿命长以及绿色环保等优点。
光伏发电系统中的光伏阵列安装于室外,受到光强以及环境等外界因素的影响,例如光伏阵列中的光伏组件被遮挡,其输出功率是变化的。现有技术通过在光伏阵列中的光伏组件上增加变换器,以及在光伏组件连接的逆变器中采用最大功率点跟踪(maximum power point tracking,MPPT)方法,即扰动光伏组件的输出电压,比较扰动前后的光伏组件输出功率,当扰动前后光伏组件的输出功率不变时,光伏组件的输出功率即为光伏组件的最大功率点,并维持光伏组件工作在最大功率点,最大限度地提高光伏发电系统的效率。
但是,对于光伏阵列中所有光伏组件均配置变换器的场景,变换器的引入改变了原有光伏组件的输出特性,变换器的输出特性中存在恒功率区间,尽管逆变器采用上述MPPT方法可以控制变换器工作在恒功率区间,此时变换器连接的光伏组件工作在最大功率点,但变换器的输出电压不稳定,即逆变器的输入电压不稳定,当逆变器工作在低电压大电流输入时,变换器和逆变器的转换效率均会降低,进而导致发电量的损失。
发明内容
本申请提供了一种最大功率点跟踪方法及设备,以解决现有技术中光伏发电系统中所有光伏组件均配置变换器的场景下,变换器和逆变器的转换效率较低的问题。
第一方面,本申请提供了一种最大功率点跟踪方法,应用于光伏发电系统,所述光伏发电系统包括控制设备以及至少一个光伏组件。所述方法包括:所述控制设备调整所述控制设备的输入电压,所述输入电压为一个或多个所述光伏组件产生并传输到所述控制设备的;判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备的输入电压调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电压调整之后所述控制设备的输入功率;当所述第一输入功率与所述第二输入功率的差值小于或等于所述设定值时,增大所述控制设备的输入电压,并返回执行判断所述控制设备的第一输入功 率与第二输入功率的差值是否小于或等于设定值;当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,返回执行调整所述控制设备的输入电压。
通过上述方法,所述控制设备调整自身的输入电压,并判断所述控制设备的输入电压调整前后的输入功率是否相等或近似相等,若是,则增大所述控制设备的输入电压,并继续判断所述控制设备的输入电压调整前后的输入功率是否相等或近似相等,否则,继续调整所述控制设备的输入电压,使得所述控制设备工作在最大输入功率点,并且所述控制设备工作在最大输入功率点时,所述控制设备的输入电压较大,进而能够最大限度的提高所述控制设备的转换效率,减少光伏发电系统的发电量损失。
一个可能的实施方式中,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述控制设备可以通过以下方法调整所述控制设备的输入电压:
当所述第一输入功率小于所述第二输入功率时,若所述控制设备调整前的输入电压大于所述控制设备调整后的输入电压,则减小所述控制设备的输入电压;若所述控制设备调整前的输入电压小于所述控制设备调整后的输入电压,则增大所述控制设备的输入电压;或者,
当所述第一输入功率大于所述第二输入功率时,若所述控制设备调整前的输入电压大于所述控制设备调整后的输入电压,则增大所述控制设备的输入电压;若所述控制设备调整前的输入电压小于所述控制设备调整后的输入电压,则减小所述控制设备的输入电压。
一个可能的实施方式中,所述控制设备为逆变器或太阳能充电器。
一个可能的实施方式中,所光伏发电系统还包括至少一个变换器,一个所述变换器与一个所述光伏组件连接,即所述光伏发电系统包括的至少一个光伏组件中的部分或者全部配置有所述变换器,所述变换器用于调整所述变换器连接的光伏组件的输出电压或电流,使得所述变换器连接的光伏组件工作在最大输出功率点,以及在所述控制设备的控制下,调整所述变换器的输出电压或输出电流。
第二方面,本申请提供了另一种最大功率点跟踪方法,应用于光伏发电系统,所述光伏发电系统包括控制设备以及至少一个光伏组件。所述方法包括:所述控制设备调整所述控制设备的输入电流,所述输入电流为一个或多个所述光伏组件产生并传输到所述控制设备的;判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备的输入电流调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电流调整之后所述控制设备的输入功率;当所述第一输入功率与所述第二输入功率的差值小于或等于所述设定值时,减小所述控制设备的输入电流,并返回执行判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,返回执行调整所述控制设备的输入电流。
通过上述方法,所述控制设备调整自身的输入电流,并判断所述控制设备的输入电流调整前后的输入功率是否相等或近似相等,若是,则增大所述控制设备的输入电流,并继续判断所述控制设备的输入电流调整前后的输入功率是否相等或近似相等,否则,继续调整所述控制设备的输入电流,使得所述控制设备工作在最大输入功率点,并且所述控制设备工作在最大输入功率点时,所述控制设备的输入电流较小,进而能够最大限度的提高所述控制设备的转换效率,减少光伏发电系统的发电量损失。
一种可能的实施方式中,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述控制设备可以通过下方法调整所述控制设备的输入电流:当所述第一输入功率小于所述第二输入功率时,若所述控制设备调整前的输入电流大于所述控制设备调整后的输入电流,则减小所述控制设备的输入电流;若所述控制设备调整前的输入电流小于所述控制设备调整后的输入电流,则增大所述控制设备的输入电流;或者,
当所述第一输入功率大于所述第二输入功率时,若所述控制设备调整前的输入电流大于所述控制设备调整后的输入电流,则增大所述控制设备的输入电流;若所述控制设备调整前的输入电流小于所述控制设备调整后的输入电流,则减小所述控制设备的输入电流。
一种可能的实施方式中,所述控制设备为逆变器或太阳能充电器。
一种可能的实施方式中,所光伏发电系统还包括至少一个变换器,一个所述变换器与一个所述光伏组件连接,所述变换器用于调整所述变换器连接的光伏组件的输出电压或电流,使得所述变换器连接的光伏组件工作在最大输出功率点,以及在所述控制设备的控制下,调整所述变换器的输出电压或输出电流。
第三方面,本申请提供了一种控制设备,所述控制设备具有实现上述第一方面方法实例中控制设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实施方式中,所述控制设备的结构中包括调整单元和判断单元,这些单元可以执行上述第一方面的方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
一种可能的实施方式中,所述控制设备的结构中包括处理器、存储器和功率变换电路,所述处理器被配置为支持所述控制设备执行上述第一方面提供的方法中相应的功能。所述存储器与所述处理器耦合,其保存所述控制设备必要的程序指令和数据。
第四方面,本申请提供了另一种控制设备,所述控制设备具有实现上述第二方面方法实例中控制设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实施方式中,所述控制设备的结构中包括调整单元和判断单元,这些单元可以执行上述第二方面的方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
一种可能的实施方式中,所述控制设备的结构中包括处理器、存储器和功率变换电路,所述处理器被配置为支持所述控制设备执行上述第二方面提供的方法中相应的功能。所述存储器与所述处理器耦合,其保存所述控制设备必要的程序指令和数据。
第五方面,本申请还提供了一种光伏发电系统,所述光伏发电系统包括上述第一方面所述的控制设备以及至少一个光伏组件。
第六方面,本申请还提供了一种光伏发电系统,所述光伏发电系统包括上述第二方面所述的控制设备以及至少一个光伏组件。
第七方面,本申请还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,当所述计算机可执行指令在被所述计算机调用时,使得所述计算机执行上述第一方面或第二方面中任意一种实施方式提供的方法。
第八方面,本申请还提供了一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得计算机执行上述第一方面或第二方面中任意一种实施方式所提供的方法。
第九方面,本申请还提供了一种芯片,所述芯片与存储器相连或者所述芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面或第二方面中任意一种实施方式所提供的方法。
附图说明
图1为光伏组件未配置变换器的场景下,光伏组件的输出特性示意图;
图2为光伏组件配置变换器的场景下,光伏组件的输出特性示意图;
图3为本申请实施例提供的一种光伏发电系统的结构示意图;
图4为本申请实施例提供的一种光伏发电系统的具体结构示意图之一;
图5为本申请实施例提供的一种光伏发电系统的具体结构示意图之二;
图6为本申请实施例提供的一种光伏发电系统的具体结构示意图之三;
图7为本申请实施例提供的一种最大功率点跟踪方法的流程示意图;
图8为本申请实施例提供的另一种最大功率点跟踪方法的流程示意图;
图9为本申请实施例提供的一种控制设备的结构示意图;
图10为本申请实施例提供的另一种控制设备的结构示意图;
图11为本申请实施例提供的一种光伏并网逆变器的结构示意图。
具体实施方式
在光伏发电系统中的所有光伏组件均未配置变换器的场景下,光伏组件的输出特性中不存在恒功率区间,当所有光伏组件均配置变换器时,变换器的输出特性中存在恒功率区间,并且在该恒功率区间内,光伏组件的输出功率均处于最大输出功率。例如,当光伏阵列中的光伏组串包括10个串联的光伏组件,每个光伏组件参数如表1所示:
表1光伏组件的参数
参数
开路电压Voc 38.25V
短路电流Isc 9.95A
MPP电压Vmp 30.6V
MPP电流Imp 8.5A
MPP功率Pmp 260.1W
所有光伏组件均未配置变换器的场景下,光伏组件的输出特性如图1所示,所有光伏组件均配置变换器的场景下,变换器的输出特性如图2所示,图1中横轴表示光伏组件的输出电压,纵轴表示光伏组件的输出功率,和图2中横轴表示变换器的输出电压,纵轴表示变换器的输出功率,其中,在所有光伏组件均配置变换器的场景中,所有光伏组件连接的变换器为降压变换器,限流输出15A。如图1所示,对于所有光伏组件均未配置变换器的场景,当光伏组件开路时,光伏组件工作在A点,A点的电压为光伏组件的开路电压,当光伏组件短路时,光伏组件工作在D点,光伏组件的最大输出功率为B点。由图2可知, 对于所有光伏组件均配置变换器的场景,当光伏组件开路时,变换器工作在A点,A点的电压为光伏组件的开路电压;当变换器的输出电压在A~B区间时,光伏组件工作在非最大输出功率点,变换器工作在直通模式;当变换器的输出电压在B~C区间时,光伏组件工作在最大输出功率点,变换器工作在恒功率模式;当变换器的输出电压在C~D区间时,光伏组件工作在非最大输出功率点,变换器工作在恒流模式;当光伏组件短路时,变换器工作在D点。
现有MPPT方法通常使用扰动观察法(扰动观察法又称爬山法),是指扰动(调整)光伏组件的输出电压,并计算扰动前后光伏组件的输出功率,将扰动前后的两个输出功率进行比较。若相较于扰动前光伏组件的输出功率,扰动后光伏组件的输出功率增加,则说明该扰动能够提高光伏组件的输出功率,下一次继续向与当前扰动相同的方向扰动光伏组件的输出电压;若相较于扰动前光伏组件的输出功率,扰动后光伏组件输出功率减小,则说明该扰动不利于提高光伏组件的输出功率,下一次向与当前扰动相反的方向扰动光伏组件的输出电压;如果扰动前后光伏组件输出功率不变,则说明光伏组件的输出功率为最大输出功率点,并且稳定工作于该最大输出功率点。由图2可知,对于所有光伏组件均配置变换器的场景,光伏组件工作在最大输出功率点时,光伏组件连接的变换器工作在恒功率模式,变换器的输出电压在恒功率模式对应的输出电压区间内波动时,光伏组件均可以工作在最大输出功率点,当变换器的输出电压为恒功率模式对应的输出电压区间中较小的输出电压(例如图2中的C点),即光伏组件连接的变换器工作在较小的输出电压,较大的输出电流,逆变器工作在较小的输入电压,较大的输入电流的场景下时,变换器和逆变器的转换效率较低,进而导致光伏发电系统发电量的损失。
为了解决现有技术中存在的上述问题,本申请提供了一种最大功率点追踪方法及设备,其中,本申请实施例所述方法和设备基于同一发明构思,由于所述方法和所述设备解决问题的原理相似,因此所述设备与方法的实施可以相互参见,重复之处不再赘述。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请提供了一种最大功率点追踪方法,应用于光伏发电系统,如图3所示,所述光伏发电系统300包括至少一个光伏组件301和控制设备302。其中,所述光伏组件301是由多个(两个或两个以上)单体太阳能电池串、并联连接和严密封装成的组件,是光伏发电系统中的核心部分,用于将太阳能转化为电能;所述控制设备302,用于调整所述控制设备302的输入电压或输入电流,使得所述控制设备302能够以较高的转换效率对所述光伏组件301产生的电能进行转换,例如将所述光伏组件301产生的电能转换为交流电输入到电网中。具体地,所述控制设备302可以为逆变器或者太阳能充电器等设备。其中,所述控制设备302的输入电压或输入电流为一个或多个所述光伏组件301产生,直接或间接传输到所述控制设备302的。
进一步地,所述至少一个光伏组件301可以通过串联、并联或者混合连接的方式组成一个或者多个光伏子阵列303,所述光伏子阵列303的输出端分别与所述控制设备302连接。需要说明的是,图3中仅以所述至少一个光伏组件301以串联的方式组成多个光伏子阵列为例,并不对本申请构成限定。
进一步地,所述光伏发电系统300还可以包括至少一个变换器304,一个所述变换器304与一个所述光伏组件301连接,用于调整所述变换器304连接的光伏组件301的输出 电压或电流,使得所述变换器304连接的光伏组件301工作在最大输出功率,进而可以提高所述变换器304连接的光伏组件301所在的光伏子阵列303的输出功率,进而提高整个光伏发电系统300的发电量;以及在所述控制设备302的控制下,调整所述变换器304的输出电压或输出电流。其中,所述变换器304可以为直流(direct current,DC)/DC变换器,所述变换器304的具体电路拓扑结构可以为升级电路、降压电路或升压电路,可以为隔离结构,也可以为非隔离结构。
也就是说,所述光伏发电系统300可以为所有光伏组件301均不配置所述变换器304的发电系统,例如,如4所示的光伏发电系统,也可以是所有光伏组件301均配置所述变换器304的发电系统,例如,如图5所示的光伏发电系统,还可以是部分所述光伏组件301配置所述变换器304的发电系统,例如,如图6所示的光伏发电系统。其中,图4至图6所示的光伏发电系统中包括多个光伏子阵列303,每个光伏子阵列303由多个光伏组件301串联构成,也称为光伏组串。
如图7所示,本申请提供了一种最大功率点跟踪方法,应用于如图2至图6所示的光伏发电系统300,所述方法由所述光伏发电系统300中的控制设备302执行,具体包括以下步骤:
S701:调整所述控制设备302的输入电压。
其中,所述输入电压为一个或多个所述光伏组件301产生并传输到所述控制设备302的。所述输入电压为一个或多个所述光伏组件301直接或间接输出到所述控制设备302。
所述控制设备302在所述发电系统300的主要进行功率转换,能够控制自身的输出功率,当所述控制设备302的输出功率发生变化时,所述控制设备302的输入功率也会随之发生变化,并且所述控制设备302的输入功率发生变化时,所述控制设备302的输入电压也会发生变化,因此,所述控制设备302可以通过调整自身的输出功率,调整所述控制设备302的输入电压。例如,当所述控制设备302为逆变器时,逆变器可以通过调整用于控制逆变器中开关管的信号的占空比,调整逆变器的输出功率,进而达到调整逆变器的输入电压的目的。
S702:判断所述控制设备302的第一输入功率与第二输入功率的差值是否小于或等于设定值,若是,执行步骤S703,否则,返回执行步骤S701。
其中,所述第一输入功率为所述控制设备的输入电压调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电压调整之后所述控制设备的输入功率。所述控制设备302的第一输入功率与第二输入功率的差值为所述第一输入功率与所述第二输入功率之差的绝对值,即ΔP=|P1-P2|,其中,ΔP为所述第一输入功率与第二输入功率的差值,P1为所述第一输入功率,P2为所述第二输入功率。
所述设定值可以根据所述光伏发电系统300的发电效率要求、控制精度等因素确定,当所述控制设备302的第一输入功率与第二输入功率的差值小于或等于所述设定值时,所述第一输入功率等于或者近似等于所述第二输入功率。
S703:增大所述控制设备302的输入电压,并返回执行步骤S702。
具体实施中,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,可以通过以下方法调整所述控制设备的输入电压:
i、当所述第一输入功率小于所述第二输入功率时,若所述控制设备302调整前的 输入电压大于所述控制设备302调整后的输入电压,说明减小所述控制设备302的输入电压能够提高所述控制设备302的输入功率,则减小所述控制设备的输入电压;若所述控制设备调整前的输入电压小于所述控制设备调整后的输入电压,说明增大所述控制设备302的输入电压能够提高所述控制设备302的输入功率,则增大所述控制设备的输入电压;
ii、当所述第一输入功率大于所述第二输入功率时,若所述控制设备302调整前的输入电压大于所述控制设备302调整后的输入电压,说明减小所述控制设备302的输入电压不利于提高所述控制设备302的输入功率,则增大所述控制设备302的输入电压;若所述控制设备302调整前的输入电压小于所述控制设备302调整后的输入电压,说明增大所述控制设备302的输入电压不利于提高所述控制设备302的输入功率,则减小所述控制设备302的输入电压。
具体地,所述控制设备302调整所述控制设备302的输入电压之前,对所述控制设备302的输入电压和输入电流进行采样,获得所述控制设备302当前的输入电压和输入电流,并根据当前的输入电压和输入电流确定所述控制设备302的输入功率,将所确定的输入功率作为所述第一输入功率,所述控制设备302调整所述控制设备302的输入电压之后,对所述控制设备302的输入电压和输入电流进行采样,获得所述控制设备302当前的输入电压和输入电流,并根据获得的输入电压和输入电流确定所述控制设备302的输入功率,将所确定的输入功率作为所述第二输入功率。当所述控制设备302的第一输入功率与第二输入功率的差值大于设定值时,所述控制设备302需要继续调整所述控制设备302的输入电压,此时,所述控制设备302将所述第一输入功率更新为上一次调整所述控制设备302的输入电压后所述控制设备302的输入功率(即上一次调整所述控制设备302的输入电压后得到的所述第二输入功率),继续调整所述控制设备302的输入电压,对所述控制设备302的输入电压和输入电流进行采样,获得所述控制设备302当前的输入电压和输入电流,并根据获得的输入电压和输入电流确定所述控制设备302的输入功率,将所确定的输入功率作为所述第二输入功率。
通过上述方法,所述控制设备302调整自身的输入电压,并判断所述控制设备302的输入电压调整前后的输入功率是否相等或近似相等,若是,则增大所述控制设备302的输入电压,并继续判断所述控制设备302的输入电压调整前后的输入功率是否相等或近似相等,否则,继续调整所述控制设备302的输入电压,使得所述控制设备302工作在最大输入功率点,并且所述控制设备302工作在最大输入功率点时,所述控制设备3002的输入电压较大,进而能够最大限度的提高所述控制设备302的转换效率,减少光伏发电系统的发电量损失。
如图8所示,本申请提供了另一种最大功率点跟踪方法,应用于如图2至图6所示的光伏发电系统300,所述方法由所述光伏发电系统300中的控制设备302执行,具体包括以下步骤:
S801:调整所述控制设备302的输入电流。
其中,所述输入电流为一个或多个所述光伏组件301产生并传输到所述控制设备302的。所述输入电流为一个或多个所述光伏组件301直接或间接输出到所述控制设备302。
S802:判断所述控制设备302的第一输入功率与第二输入功率的差值是否小于或等于设定值,若是,则执行步骤S803,否则,返回执行S801。
其中,所述第一输入功率为所述控制设备的输入电流调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电流调整之后所述控制设备的输入功率。所述控制设备302的第一输入功率与第二输入功率的差值为所述第一输入功率与所述第二输入功率之差的绝对值,即ΔP=|P1-P2|,其中,ΔP为所述第一输入功率与第二输入功率的差值,P1为所述第一输入功率,P2为所述第二输入功率。
所述控制设备302在所述发电系统300的主要进行功率转换,能够控制自身的输出功率,当所述控制设备302的输出功率发生变化时,所述控制设备302的输入功率也会随之发生变化,并且所述控制设备302的输入功率发生变化时,所述控制设备302的输入电流也会发生变化,因此,所述控制设备302可以通过调整自身的输出功率,调整所述控制设备302的输入电压。例如,当所述控制设备302为逆变器时,逆变器可以通过调整用于控制逆变器中开关管的信号的占空比,调整逆变器的输出功率,进而达到调整逆变器的输入电流的目的。
所述设定值可以根据所述光伏发电系统300的发电效率要求、控制精度等因素确定,当所述控制设备302的第一输入功率与第二输入功率的差值小于或等于所述设定值时,所述第一输入功率等于或者近似等于所述第二输入功率。
S803:减小所述控制设备的输入电流,并返回执行S802。
具体实施中,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述控制设备302通过以下方法调整所述控制设备302的输入电流:
(1)当所述第一输入功率小于所述第二输入功率时,若所述控制设备302调整前的输入电流大于所述控制设备302调整后的输入电流,说明减小所述控制设备302的输入电流能够提高所述控制设备302的输入功率,则减小所述控制设备302的输入电流;若所述控制设备302调整前的输入电流小于所述控制设备302调整后的输入电流,说明增大所述控制设备302的输入电流能够提高所述控制设备302的输入功率,则增大所述控制设备302的输入电流;或者,
(2)当所述第一输入功率大于所述第二输入功率时,若所述控制设备302调整前的输入电流大于所述控制设备302调整后的输入电流,说明减小所述控制设备302的输入电流不利于提高所述控制设备302的输入功率,则增大所述控制设备302的输入电流;若所述控制设备302调整前的输入电流小于所述控制设备302调整后的输入电流,说明增大所述控制设备302的输入电流不利于提高所述控制设备302的输入功率,则减小所述控制设备302的输入电流。
具体地,所述控制设备302首次调整所述控制设备302的输入电流之前,对所述控制设备302的输入电流和输入电压进行采样,获得所述控制设备302当前的输入电流和输入电压,并根据当前的输入电流和输入电压确定所述控制设备302的输入功率,将所确定的输入功率作为所述第一输入功率,所述控制设备302调整所述控制设备302的输入电流之后,对所述控制设备302的输入电流和输入电压进行采样,获得所述控制设备302当前的输入电流和输入电压,并根据获得的输入电流和输入电压确定所述控制设备302的输入功率,将所确定的输入功率作为所述第二输入功率。当所述控制设备302的第一输入功率与第二输入功率的差值大于设定值时,所述控制设备302需 要继续调整所述控制设备302的输入电流,此时,所述控制设备302将所述第一输入功率更新为上一次调整所述控制设备302的输入电流后所述控制设备302的输入功率(即上一次调整所述控制设备302的输入电流后得到的所述第二输入功率),继续调整所述控制设备302的输入电流,对所述控制设备302的输入电流和输入电压进行采样,获得所述控制设备302当前的输入电流和输入电压,并根据获得的输入电流和输入电压确定所述控制设备302的输入功率,将所确定的输入功率作为所述第二输入功率。
通过上述方法,所述控制设备302调整自身的输入电流,并判断所述控制设备302的输入电流调整前后的输入功率是否相等或近似相等,若是,则减小所述控制设备302的输入电流,并继续判断所述控制设备302的输入电流调整前后的输入功率是否相等或近似相等,否则,继续调整所述控制设备302的输入电流,使得所述控制设备302工作在最大输入功率点,并且所述控制设备302工作在最大输入功率点时,所述控制设备302的输入电流较小,进而能够最大限度的提高所述控制设备302的转换效率,减少光伏发电系统的发电量损失。
基于同一发明构思,本申请还提供了一种控制设备,所述控制设备应用于光伏发电系统所述光伏发电系统包括所述控制设备和至少一个光伏组件。如图9所示,所述控制设备900包括:调整单元901和判断单元902。
一个可能的实施方式中,所述控制设备900用于执行如图7所示的最大功率点跟踪方法,其中,
所述调整单元901,用于调整所述控制设备900的输入电压,所述输入电压为一个或多个所述光伏组件产生并传输到所述控制设备的;
所述判断单元902,用于判断所述控制设备900的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备900的输入电压调整之前所述控制设备900的输入功率,所述第二输入功率为所述控制设备900的输入电压调整之后所述控制设备900的输入功率;
当所述控制设备900的第一输入功率与第二输入功率的差值小于或等于设定值时,所述调整单元901还用于:增大所述控制设备的输入电压,并触发所述判断单元902执行判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;
当所述控制设备900的第一输入功率与第二输入功率的差值大于设定值时,所述判断单元902还用于:触发所述调整单元901执行调整所述控制设备900的输入电压。
可选地,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述调整单元901具体用于:
当所述第一输入功率小于所述第二输入功率时,若所述控制设备900调整前的输入电压大于所述控制设备900调整后的输入电压,则减小所述控制设备900的输入电压;若所述控制设备900调整前的输入电压小于所述控制设备900调整后的输入电压,则增大所述控制设备900的输入电压;或者,
当所述第一输入功率大于所述第二输入功率时,若所述控制设备900调整前的输入电压大于所述控制设备900调整后的输入电压,则增大所述控制设备900的输入电压;若所述控制设备900调整前的输入电压小于所述控制设备900调整后的输入电压,则减小所述控制设备900的输入电压。
另一个可能的实施方式中,所述控制设备900用于执行如图8所示的最大功率点跟踪方法,其中,
所述调整单元901,用于调整所述控制设备900的输入电流,所述输入电流为一个或多个所述光伏组件产生并传输到所述控制设备的;
所述判断单元902,用于判断所述控制设备900的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备900的输入电流调整之前所述控制设备900的输入功率,所述第二输入功率为所述控制设备900的输入电流调整之后所述控制设备900的输入功率;
当所述控制设备900的第一输入功率与第二输入功率的差值小于或等于设定值时,所述调整单元901还用于:减小所述控制设备900的输入电流,并触发所述判断单元902执行判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;
当所述控制设备900的第一输入功率与第二输入功率的差值大于设定值时,所述判断单元902还用于:触发所述调整单元901执行调整所述控制设备900的输入电流。
可选地,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述调整单元901具体用于:
当所述第一输入功率小于所述第二输入功率时,若所述控制设备900调整前的输入电流大于所述控制设备900调整后的输入电流,则减小所述控制设备900的输入电流;若所述控制设备900调整前的输入电流小于所述控制设备900调整后的输入电流,则增大所述控制设备900的输入电流;或者,
当所述第一输入功率大于所述第二输入功率时,若所述控制设备900调整前的输入电流大于所述控制设备900调整后的输入电流,则增大所述控制设备900的输入电流;若所述控制设备900调整前的输入电流小于所述控制设备900调整后的输入电流,则减小所述控制设备900的输入电流。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:移动硬盘、只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
基于同一发明构思,本申请还提供了一种控制设备,所述控制设备应用于光伏发电系统所述光伏发电系统包括所述控制设备和至少一个光伏组件。如图10所示,所述控制设备1000包括:处理器1001和功率变换电路1002。
其中,所述处理器1001可以是中央处理器(central processing unit,CPU)或微控制单元(microcontroller unit,MCU)。进一步地,所述控制设备1000还可以包括存储器1003,用于存储程序指令,使得所述处理器1001通过调用所述存储器1003中存储的程序指令,以及所述功率变换电路1002,实现如图7或图8所示的最大功率点跟踪方法。所述存储器1003可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器1003也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory,也称闪存),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器1003还可以包括上述种类的存储器的组合。
一个可能的实施方式中,所述控制设备用于实现上述图7所示的最大功率点跟踪方法,具有如图9所示的控制设备900的功能。其中,
所述处理器1001,用于控制所述功率变换电路1002调整所述控制设备1000的输入电压,所述输入电压为一个或多个所述光伏组件产生并传输到所述控制设备的;
以及,判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备1000的输入电压调整之前所述控制设备1000的输入功率,所述第二输入功率为所述控制设备1000的输入电压调整之后所述控制设备1000的输入功率;当所述第一输入功率与所述第二输入功率的差值小于或等于所述设定值时,控制所述功率变换电路1002增大所述控制设备1000的输入电压,并返回执行判断所述控制设备1000的第一输入功率与第二输入功率的差值是否小于或等于设定值;当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,返回执行控制所述功率变换电路1002调整所述控制设备1000的输入电压。
所述功率变换电路1002,用于在所述处理器1001的控制下调整所述控制设备1000的输入电压。
可选地,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述功率变换电路1002调整所述控制设备1000的输入电压,包括:
当所述第一输入功率小于所述第二输入功率时,若所述控制设备1000调整前的输入电压大于所述控制设备1000调整后的输入电压,则减小所述控制设备1000的输入电压;若所述控制设备1000调整前的输入电压小于所述控制设备1000调整后的输入电压,则增大所述控制设备1000的输入电压;或者,
当所述第一输入功率大于所述第二输入功率时,若所述控制设备1000调整前的输入电压大于所述控制设备1000调整后的输入电压,则增大所述控制设备1000的输入电压;若所述控制设备1000调整前的输入电压小于所述控制设备1000调整后的输入电压,则减小所述控制设备1000的输入电压。
一个可能的实施方式中,所述控制设备用于实现上述图8所示的最大功率点跟踪方法,具有如图9所示的控制设备900的功能。其中,
所述处理器1001,用于控制所述功率变换电路1002调整所述控制设备1000的输入电流,所述输入电流为一个或多个所述光伏组件产生并传输到所述控制设备的;
以及,判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备1000的输入电流调整之前所述控制设备1000的输入功率,所述第二输入功率为所述控制设备1000的输入电流调整之后 所述控制设备1000的输入功率;当所述第一输入功率与所述第二输入功率的差值小于或等于所述设定值时,控制所述功率变换电路1002减小所述控制设备1000的输入电流,并返回执行判断所述控制设备1000的第一输入功率与第二输入功率的差值是否小于或等于设定值;当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,返回执行控制所述功率变换电路1002调整所述控制设备1000的输入电流。
所述功率变换电路1002,用于在所述处理器1001的控制下调整所述控制设备1000的输入电流。
可选地,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述功率变换电路1002调整所述控制设备1000的输入电流,包括:
当所述第一输入功率小于所述第二输入功率时,若所述控制设备1000调整前的输入电流大于所述控制设备1000调整后的输入电流,则减小所述控制设备1000的输入电流;若所述控制设备1000调整前的输入电流小于所述控制设备1000调整后的输入电流,则增大所述控制设备1000的输入电流;或者,
当所述第一输入功率大于所述第二输入功率时,若所述控制设备1000调整前的输入电流大于所述控制设备1000调整后的输入电流,则增大所述控制设备1000的输入电流;若所述控制设备1000调整前的输入电流小于所述控制设备1000调整后的输入电流,则减小所述控制设备1000的输入电流。
下面以所述控制设备1000为光伏并网逆变器为例,对所述控制设备1000的具体结构进行详细说明。如图11所示,所述光伏并网逆变器1100主要包括CPU 1110、升压(boost)DC-DC变换器1120、H桥逆变电路1130、脉宽调制(pulse width modulation,PWM)驱动电路1140、输入信号检测电路1150、输出信号检测电路1160以及电网电压检测电路1170。
其中,所述CPU1110,用于通过所述输入信号检测电路1150、所述输出信号检测电路1160以及所述电网电压检测电路1170获取相应的检测信号,根据获得的检测信号确定所述光伏并网逆变器1100的运行状态,进而根据所述光伏并网逆变器1100的运行状态,通过所述PWM驱动电路1140,控制所述升压DC-DC变换器1120以及所述H桥逆变电路1130。
所述升压DC-DC变换器1120,与光伏组件的输出端之间通过DC-link电容连接,用于在所述CPU 1110的控制下,将从光伏组件获得的电压进行升压处理,并输出到所述H桥逆变电路1130。具体地,所述CPU 1110通过控制所述PWM驱动电路1140输出的脉冲信号的占空比,控制所述升压DC-DC变换器1120中的开关管,控制所述升压DC-DC变换器1120对光伏组件获得的电压进行升压处理。
所述H桥逆变电路1130,用于在所述CPU 1110的控制下,将所述升压DC-DC变换器1120输出的电压转换为交流电压,将转换得到的交流电压输入到电网中。具体地,所述CPU 1110通过控制所述PWM驱动电路1140输出的脉冲信号的占空比,控制所述H桥逆变电路1130中的开关管,控制所述H桥逆变电路1130将所述升压DC-DC变换器1120输出的电压转换为交流电压。
所述PWM驱动电路1140,用于在所述CPU 1110的控制下输出相应占空比的脉冲信号,对所述升压DC-DC变换器1120以及所述H桥逆变电路1130进行控制。
所述输入信号检测电路1150,用于检测光伏组件输出的电压和电流,以及所述 DC-link电容的电压和所述升压变换器1120中电容的电压,并反馈给所述CPU 1110。
所述输出信号检测电路1160,用于检测所述H桥逆变电路1130输出的电流(电压),并反馈给所述CPU 1110。
所述电网电压检测电路1170,用于检测电网的电压,并反馈给所述CPU 1100。
进一步地,所述光伏并网逆变器1100还可以包括直流电磁干扰(electromagnetic interference,EMI)滤波器1181、EMI滤波器1181和保护信号检测电路1190。其中,所述直流EMI滤波器1181用于滤除光伏组件的输出信号中的高频干扰信号;所述交流EMI滤波器1181用于滤除所述H桥逆变电路1130的输出信号中的高频干扰信号;所述保护信号检测电路11901用于检测所述光伏并网逆变器1100执行保护动作时输出的保护信号,并反馈给所述CPU 1100。
具体实施中,所述CPU 1110用于实现上述处理器1001的功能,所述PWM驱动电路1140、所述升压DC-DC变换器1120以及所述H桥逆变电路1130用于实现上述功率变换电路1002的功能。其中,所述CPU 1110通过控制所述PWM驱动电路1140输的脉冲信号的占空比,控制所述升压DC-DC变换器1120以及所述H桥逆变电路1130的输出信号,以调整所述光伏并网逆变器1100的输出功率,进而实现对所述光伏并网逆变器1100的输入电压或输入电路的调整;所述CPU 1110通过所述输入信号检测电路1150获得所述光伏并网逆变器1100的输入电压或输入电路调整前的电压、电流,根据获得的电压和电路计算得到所述第一输入功率,通过所述输入信号检测电路1150获得所述光伏并网逆变器1100的输入电压或输入电路调整后的电压、电流,根据获得的电压和电路计算得到所述第二输入功率。
综上所述,本申请提供了一种最大功率点跟踪方法及设备,应用于光伏发电系统,所述光伏发电系统包括控制设备和至少一个光伏组件。所述控制设备调整自身的输入信号(输入电压或输入电流),并判断所述控制设备302调整前后的输入功率是否相等或近似相等,若是,则增大所述控制设备302的输入电压或减小所述控制设备302的输入电流,并继续判断所述控制设备302调整前后的输入功率是否相等或近似相等,否则,继续调整所述控制设备302的输入信号,使得所述控制设备302工作在最大输入功率点,并且所述控制设备302工作在最大输入功率点时,所述控制设备3002的输入电压较大,所述控制设备3002的输入电流较小,进而能够最大限度的提高所述控制设备302的转换效率,减少光伏发电系统的发电量损失。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种最大功率点跟踪方法,应用于光伏发电系统,所述光伏发电系统包括控制设备以及至少一个光伏组件,其特征在于,所述方法包括:
    所述控制设备调整所述控制设备的输入电压,所述输入电压为一个或多个所述光伏组件产生并传输到所述控制设备的;
    判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备的输入电压调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电压调整之后所述控制设备的输入功率;
    当所述第一输入功率与所述第二输入功率的差值小于或等于所述设定值时,增大所述控制设备的输入电压,并返回执行判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;
    当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,返回执行调整所述控制设备的输入电压。
  2. 如权利要求1所述的方法,其特征在于,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,调整所述控制设备的输入电压,包括:
    当所述第一输入功率小于所述第二输入功率时,若所述控制设备调整前的输入电压大于所述控制设备调整后的输入电压,则减小所述控制设备的输入电压;若所述控制设备调整前的输入电压小于所述控制设备调整后的输入电压,则增大所述控制设备的输入电压;或者,
    当所述第一输入功率大于所述第二输入功率时,若所述控制设备调整前的输入电压大于所述控制设备调整后的输入电压,则增大所述控制设备的输入电压;若所述控制设备调整前的输入电压小于所述控制设备调整后的输入电压,则减小所述控制设备的输入电压。
  3. 如权利要求1或2所述的方法,其特征在于,所述控制设备为逆变器或太阳能充电器。
  4. 一种最大功率点跟踪方法,应用于光伏发电系统,所述光伏发电系统包括控制设备以及至少一个光伏组件,其特征在于,所述方法包括:
    所述控制设备调整所述控制设备的输入电流,所述输入电流为一个或多个所述光伏组件产生并传输到所述控制设备的;
    判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备的输入电流调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电流调整之后所述控制设备的输入功率;
    当所述第一输入功率与所述第二输入功率的差值小于或等于所述设定值时,减小所述控制设备的输入电流,并返回执行判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;
    当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,返回执行调整所述控制设备的输入电流。
  5. 如权利要求4所述的方法,其特征在于,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,调整所述控制设备的输入电流,包括:
    当所述第一输入功率小于所述第二输入功率时,若所述控制设备调整前的输入电流大于所述控制设备调整后的输入电流,则减小所述控制设备的输入电流;若所述控制设备调整前的输入电流小于所述控制设备调整后的输入电流,则增大所述控制设备的输入电流;或者,
    当所述第一输入功率大于所述第二输入功率时,若所述控制设备调整前的输入电流大于所述控制设备调整后的输入电流,则增大所述控制设备的输入电流;若所述控制设备调整前的输入电流小于所述控制设备调整后的输入电流,则减小所述控制设备的输入电流。
  6. 如权利要求4或5所述的方法,其特征在于,所述控制设备为逆变器或太阳能充电器。
  7. 一种控制设备,应用于光伏发电系统,所述光伏发电系统包括所述控制设备以及至少一个光伏组件,其特征在于,所述控制设备包括调整单元和判断单元;
    所述调整单元,用于调整所述控制设备的输入电压,所述输入电压为一个或多个所述光伏组件产生并传输到所述控制设备的;
    所述判断单元,用于判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备的输入电压调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电压调整之后所述控制设备的输入功率;
    当所述控制设备的第一输入功率与第二输入功率的差值小于或等于设定值时,所述调整单元还用于:增大所述控制设备的输入电压,并触发所述判断单元判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;
    当所述控制设备的第一输入功率与第二输入功率的差值大于设定值时,所述判断单元还用于:触发所述调整单元调整所述控制设备的输入电压。
  8. 如权利要求7所述的控制设备,其特征在于,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述调整单元具体用于:
    当所述第一输入功率小于所述第二输入功率时,若所述控制设备调整前的输入电压大于所述控制设备调整后的输入电压,则减小所述控制设备的输入电压;若所述控制设备调整前的输入电压小于所述控制设备调整后的输入电压,则增大所述控制设备的输入电压;或者,
    当所述第一输入功率大于所述第二输入功率时,若所述控制设备调整前的输入电压大于所述控制设备调整后的输入电压,则增大所述控制设备的输入电压;若所述控制设备调整前的输入电压小于所述控制设备调整后的输入电压,则减小所述控制设备的输入电压。
  9. 一种控制设备,应用于光伏发电系统,所述光伏发电系统包括所述控制设备以及至少一个光伏组件,其特征在于,所述控制设备包括调整单元和判断单元;
    所述调整单元,用于调整所述控制设备的输入电流,所述输入电流为一个或多个所述光伏组件产生并传输到所述控制设备的;
    所述判断单元,用于判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;其中,所述第一输入功率为所述控制设备的输入电流调整之前所述控制设备的输入功率,所述第二输入功率为所述控制设备的输入电流调整之后所 述控制设备的输入功率;
    当所述控制设备的第一输入功率与第二输入功率的差值小于或等于设定值时,所述调整单元还用于:减小所述控制设备的输入电流,并触发所述判断单元判断所述控制设备的第一输入功率与第二输入功率的差值是否小于或等于设定值;
    当所述控制设备的第一输入功率与第二输入功率的差值大于设定值时,所述判断单元还用于:触发所述调整单元调整所述控制设备的输入电流。
  10. 如权利要求9所述的控制设备,其特征在于,当所述第一输入功率与所述第二输入功率的差值大于所述设定值时,所述调整单元具体用于:
    当所述第一输入功率小于所述第二输入功率时,若所述控制设备调整前的输入电流大于所述控制设备调整后的输入电流,则减小所述控制设备的输入电流;若所述控制设备调整前的输入电流小于所述控制设备调整后的输入电流,则增大所述控制设备的输入电流;或者,
    当所述第一输入功率大于所述第二输入功率时,若所述控制设备调整前的输入电流大于所述控制设备调整后的输入电流,则增大所述控制设备的输入电流;若所述控制设备调整前的输入电流小于所述控制设备调整后的输入电流,则减小所述控制设备的输入电流。
  11. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行权利要求1-6任一项所述的方法。
  12. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求1-6任一项所述的方法。
  13. 一种光伏发电系统,其特征在于,所述发电系统包括至少一个光伏组件,以及如权利要求7-10任一项所述的控制设备。
PCT/CN2019/103789 2018-11-15 2019-08-30 一种最大功率点跟踪方法及设备 WO2020098337A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19883573.8A EP3780314B1 (en) 2018-11-15 2019-08-30 Method and device for tracking maximum power point
EP23188481.8A EP4293896A3 (en) 2018-11-15 2019-08-30 Method and device for tracking maximum power point
ES19883573T ES2964490T3 (es) 2018-11-15 2019-08-30 Método y dispositivo para hacer seguimiento del punto de potencia máxima
US17/114,991 US11218000B2 (en) 2018-11-15 2020-12-08 Maximum power point tracking method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811357673.7A CN109713714B (zh) 2018-11-15 2018-11-15 一种最大功率点跟踪方法及设备
CN201811357673.7 2018-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/114,991 Continuation US11218000B2 (en) 2018-11-15 2020-12-08 Maximum power point tracking method and device

Publications (1)

Publication Number Publication Date
WO2020098337A1 true WO2020098337A1 (zh) 2020-05-22

Family

ID=66254807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103789 WO2020098337A1 (zh) 2018-11-15 2019-08-30 一种最大功率点跟踪方法及设备

Country Status (5)

Country Link
US (1) US11218000B2 (zh)
EP (2) EP4293896A3 (zh)
CN (1) CN109713714B (zh)
ES (1) ES2964490T3 (zh)
WO (1) WO2020098337A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713714B (zh) * 2018-11-15 2020-12-25 华为技术有限公司 一种最大功率点跟踪方法及设备
KR102245969B1 (ko) * 2019-11-21 2021-04-29 연세대학교 산학협력단 태양광 발전 시스템의 일정 출력 제어를 위한 장치 및 방법
CN112332661A (zh) * 2020-10-26 2021-02-05 东南大学 一种波浪发电系统的双扰动mppt方法
CN113452082B (zh) * 2021-06-17 2023-02-28 南方电网科学研究院有限责任公司 组串式光伏电站多层级功率控制方法
CN113452071A (zh) * 2021-06-25 2021-09-28 江苏领充创享新能源科技有限公司 光伏发电系统控制方法、装置、功率优化器及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064460A (zh) * 2013-01-04 2013-04-24 深圳市晶福源电子技术有限公司 光伏逆变器的mppt控制装置及方法
CN104578134A (zh) * 2013-10-12 2015-04-29 南京南瑞继保电气有限公司 一种最大功率点跟踪方法和系统
CN105159388A (zh) * 2015-09-02 2015-12-16 广东明阳龙源电力电子有限公司 一种用于光伏微网系统中的最大功率点跟踪的方法
CN109713714A (zh) * 2018-11-15 2019-05-03 华为技术有限公司 一种最大功率点跟踪方法及设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994657B2 (en) * 2006-12-22 2011-08-09 Solarbridge Technologies, Inc. Modular system for unattended energy generation and storage
CN201029220Y (zh) * 2007-02-06 2008-02-27 艾默生网络能源有限公司 一种太阳能逆变器电路
US9342088B2 (en) * 2009-12-31 2016-05-17 Sunpower Corporation Power point tracking
WO2014124672A1 (en) * 2013-02-14 2014-08-21 Abb Technology Ltd Method of controlling a solar power plant, a power conversion system, a dc/ac inverter and a solar power plant
CN104102270A (zh) * 2014-06-20 2014-10-15 北京京东方能源科技有限公司 最大功率点跟踪方法及装置、光伏发电系统
CN105138065B (zh) * 2015-07-29 2017-03-08 三峡大学 一种基于电压预估法的光伏发电系统最大功率点追踪方法
CN105227045A (zh) * 2015-09-11 2016-01-06 西安交通大学 一种光伏dmppt系统最大功率跟踪区域的优化设计方法
CN106300433B (zh) * 2016-11-10 2019-08-13 阳光电源股份有限公司 一种光伏优化器与光伏逆变器的协调控制方法和装置
CN108336758A (zh) * 2018-02-26 2018-07-27 天津大学 一种基于纹波关联法的光伏组件mppt算法
CN108493994B (zh) * 2018-03-28 2021-08-20 深圳市伊力科电源有限公司 馈网型逆变电源控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064460A (zh) * 2013-01-04 2013-04-24 深圳市晶福源电子技术有限公司 光伏逆变器的mppt控制装置及方法
CN104578134A (zh) * 2013-10-12 2015-04-29 南京南瑞继保电气有限公司 一种最大功率点跟踪方法和系统
CN105159388A (zh) * 2015-09-02 2015-12-16 广东明阳龙源电力电子有限公司 一种用于光伏微网系统中的最大功率点跟踪的方法
CN109713714A (zh) * 2018-11-15 2019-05-03 华为技术有限公司 一种最大功率点跟踪方法及设备

Also Published As

Publication number Publication date
EP3780314A4 (en) 2021-05-12
ES2964490T3 (es) 2024-04-08
EP4293896A3 (en) 2024-02-14
CN109713714A (zh) 2019-05-03
EP3780314A1 (en) 2021-02-17
US11218000B2 (en) 2022-01-04
CN109713714B (zh) 2020-12-25
US20210119454A1 (en) 2021-04-22
EP4293896A2 (en) 2023-12-20
EP3780314B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2020098337A1 (zh) 一种最大功率点跟踪方法及设备
EP3751731B1 (en) Current-voltage curve scanning method for photovoltaic string, converter
Du et al. A novel solar panel optimizer with self-compensation for partial shadow condition
Fahad et al. Particle swarm optimization based DC-link voltage control for two stage grid connected PV inverter
CN104102270A (zh) 最大功率点跟踪方法及装置、光伏发电系统
CN108258718B (zh) 逆变器、集散式汇流箱、限功率控制系统和方法
CN103488239A (zh) 一种光伏并网逆变器中的最大功率点跟踪方法
CN107453403B (zh) 一种光伏发电系统及其控制方法
CN109270982A (zh) 一种太阳能光伏最大功率跟踪控制方法
CN104536509B (zh) 一种光伏组件电能输出控制方法
CN104104112A (zh) 用于两级拓扑结构的光伏并网逆变器的mppt控制方法
Morales-Acevedo et al. Improved MPPT adaptive incremental conductance algorithm
Azab DC power optimizer for PV modules using SEPIC converter
Sangeetha et al. Design and implementation of SEPIC converter based PV system using modified incremental conductance algorithm
Phan-Tan et al. A P&O MPPT method for photovoltaic applications based on binary-searching
Altamimi et al. A DC-DC buck converter with maximum power point tracking implementation for photovoltaic module application
Ünlü et al. A new maximum power point tracking method for PV systems under partially shaded conditions
Kumar et al. A voltage controller in photo-voltaic system without battery storage for stand-alone applications
CN108512451B (zh) 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置
JP2019144953A (ja) 太陽電池制御システム
Zhang et al. An advanced maximum power point capturing technique with supercapacitor for PV system
Agrawal et al. A novel converter using MPPT algorithm and acceleration factor for standalone PV system
Sabaripandiyan et al. A Novel Hybrid MPPT Control Strategy for Isolated Solar PV Power System.
Ahmad et al. A variable step size perturb and observe method based MPPT for partially shaded photovoltaic arrays
Khadka et al. Comparative analysis of mppt methods for pv system with dc-dc three-level converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19883573.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019883573

Country of ref document: EP

Effective date: 20201105

NENP Non-entry into the national phase

Ref country code: DE