WO2020097805A1 - Uplink data resource pre-configuration - Google Patents

Uplink data resource pre-configuration Download PDF

Info

Publication number
WO2020097805A1
WO2020097805A1 PCT/CN2018/115282 CN2018115282W WO2020097805A1 WO 2020097805 A1 WO2020097805 A1 WO 2020097805A1 CN 2018115282 W CN2018115282 W CN 2018115282W WO 2020097805 A1 WO2020097805 A1 WO 2020097805A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink resource
preconfigured uplink
regions
candidate time
preconfigured
Prior art date
Application number
PCT/CN2018/115282
Other languages
French (fr)
Inventor
Hua Chao
Srinivasan Selvaganapathy
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201880099472.3A priority Critical patent/CN113016206B/en
Priority to PCT/CN2018/115282 priority patent/WO2020097805A1/en
Publication of WO2020097805A1 publication Critical patent/WO2020097805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to the field of communications, and in particular, to devices, methods, apparatuses and computer readable storage media of uplink (UL) data resource pre-configuration.
  • UL uplink
  • UL EDT allows UL data to be transmitted in Message 3 (Msg3) during a random access (RA) procedure.
  • Msg3 Message 3
  • UE user equipment
  • eNB eNodeB
  • RA random access
  • UE user equipment
  • eNB eNodeB
  • the eNB allocates Msg3 resources for EDT upon the reception of the reserved preamble.
  • the UE uses the allocated resources to transmit Msg3 which carries the UL data.
  • UL EDT may reduce UE power consumption and improve UL transmission efficiency.
  • UL EDT involves two steps of UL transmission: one step of transmitting the reserved preamble, and one step of transmitting the UL data.
  • one-step UL data transmission is proposed where the UL data transmission may be initiated using preconfigured UL resources (PURs) .
  • PURs preconfigured UL resources
  • the eNB does not know when the UL data transmission will occur and which frequency resource will be used. As a result, the eNB may have to perform blind decoding for all possibilities, which is not feasible and waste of time.
  • example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage media of UL data resource pre-configuration.
  • a device comprising at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the device to broadcast, at a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission.
  • Each of the plurality of preconfigured uplink resource regions is predefined for one of a plurality of coverage enhancement levels associated with terminal devices.
  • the device is further caused to detect uplink data in the plurality of preconfigured uplink resource regions.
  • a device comprising at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the device to receive, at a terminal device from a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission.
  • Each of the plurality of preconfigured uplink resource regions is predefined for one of a plurality of coverage enhancement levels.
  • the device is also caused to select a coverage enhancement level from the plurality of coverage enhancement levels and select a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level.
  • the device is further caused to transmit uplink data in the selected preconfigured uplink resource region.
  • a method is provided.
  • a network device broadcasts an indication of a plurality of preconfigured uplink resource regions for uplink data transmission.
  • Each of the plurality of preconfigured uplink resource regions is predefined for one of a plurality of coverage enhancement levels associated with terminal devices.
  • the network device detects uplink data in the plurality of preconfigured uplink resource regions.
  • a method is provided.
  • a terminal device receives from a network device an indication of a plurality of preconfigured uplink resource regions for uplink data transmission.
  • Each of the plurality of preconfigured uplink resource regions is predefined for one of a plurality of coverage enhancement levels.
  • the terminal device selects a coverage enhancement level from the plurality of coverage enhancement levels.
  • the terminal device also selects a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level. Then, the terminal device transmits uplink data in the selected preconfigured uplink resource region.
  • an apparatus comprising means for performing the method according to the third or fourth aspect.
  • a computer readable storage medium that stores a computer program thereon.
  • the computer program when executed by a processor of a device, causes the device to perform the method according to the third or fourth aspect.
  • FIG. 1 illustrates an example uplink early data transmission process during a random access procedure
  • FIG. 2 illustrates an example environment in which embodiments of the present disclosure can be implemented
  • FIG. 3 illustrates a flowchart of an example method in accordance with some example embodiments of the present disclosure
  • FIG. 4 illustrates example pre-configuration of different PUR regions for different CE levels in accordance to some example embodiments of the present disclosure
  • FIG. 5 illustrates example pre-configuration of a PUR region for a CE level in accordance to some other embodiments of the present disclosure
  • FIG. 6 illustrates a flowchart of an example process in accordance with some example embodiments of the present disclosure
  • FIG. 7 illustrates a flowchart of an example method in accordance with some other embodiments of the present disclosure.
  • FIG. 8 illustrates a flowchart of an example process in accordance with some example embodiments of the present disclosure
  • FIG. 9 illustrates an example process of information exchange between the network device and the terminal device in accordance with some example embodiments of the present disclosure.
  • FIG. 10 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • the term “network device” refers to a device capable of providing services to a terminal device in a communication network.
  • the network device may include an access network device via which the terminal device can access the communication network.
  • Examples of the access network device include a relay, an access point (AP) , a transmission point (TRP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a New Radio (NR) NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
  • AP access point
  • TRP transmission point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB New Radio
  • RRU Remote Radio Module
  • RH radio header
  • RRH remote radio head
  • the network device may also include a core network device capable of communicating with the access network device and providing services to the terminal device in a core network.
  • the core network device may include Mobile Switching Centers (MSCs) , MMEs, Operation and Management (O&M) nodes, Operation Support System (OSS) nodes, Self-Organization Network (SON) nodes, positioning nodes, such as Enhanced Serving Mobile Location Centers (E-SMLCs) , and/or Mobile Data Terminals (MDTs) .
  • MSCs Mobile Switching Centers
  • MMEs Mobility Management Entity nodes
  • O&M Operation Support System
  • SON Self-Organization Network
  • positioning nodes such as Enhanced Serving Mobile Location Centers (E-SMLCs)
  • E-SMLCs Enhanced Serving Mobile Location Centers
  • MDTs Mobile Data Terminals
  • the term “terminal device” or “user equipment” refers to any device capable of wireless communications with each other or with the network device.
  • the communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air.
  • the terminal device may be configured to transmit and/or receive information without direct human interaction.
  • the terminal device may transmit information to the network device on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
  • Examples of the terminal device include, but are not limited to, user equipment (UE) such as smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , and/or wireless customer-premises equipment (CPE) .
  • UE user equipment
  • LME laptop-embedded equipment
  • CPE wireless customer-premises equipment
  • circuitry may refer to one or more or all of the following:
  • combinations of hardware circuits and software such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in a server, a cellular network device, or other computing or network device.
  • first As used herein, the terms “first” , “second” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
  • FIG. 1 shows an example UL EDT process 100 during a RA procedure.
  • the UE sends (105) a reserved preamble to a NR nodeB (or gNB) in Message 1 (Msg1) to request EDT.
  • the gNB sends (110) a random access response (RAR) in Message 2 (Msg2) which carries resources allocated for EDT.
  • the UE transmits (115) UL data in Msg3 using the allocated resources.
  • the gNB sends (120) acknowledgement (for example, ACK) for the UL data.
  • the EDT process 100 conventionally involves two steps of UL transmission in both Msg1 and Msg3.
  • the eNB For UL data transmission, the eNB (or gNB) typically preconfigures a set of Transmission Block Sizes (TBSs) for use by the UE. In particular, the eNB preconfigures the maximum TBS for UL EDT. Based on the amount of data to be transmitted, the UE may select a TBS from the set of TBSs which is smaller than the maximum TBS, to implement less padding, for example. Due to unawareness of the UE selection, the eNB has to perform blind decoding attempts for all candidate values of the TBSs.
  • TBSs Transmission Block Sizes
  • Specify support for UL transmission in preconfigured resources in idle and/or connected mode based on Single Carrier Frequency Division Multiple Access (SC-FDMA) waveform for UEs with a valid timing advance.
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Both shared resources and dedicated resources may be preconfigured.
  • one-step UL data transmission is one promising candidate to further improve the efficiency.
  • the eNB may not know in advance that the UE will send the UL data in the very first message. That is, the eNB may not know when the UL data transmission will occur.
  • the eNB is also unaware of which frequency resource to be used by the UE. In this case, the eNB may have to perform blind decoding for all possibilities. This is not feasible and waste of time. As a result, the decoding operations are more difficult in the one-step UL data transmission compared to UL EDT.
  • the decoding complexity is too high at the eNB.
  • PUR preconfigured UL resource
  • a dedicated PUR is defined as a Narrow-band Physical Uplink Shared Channel (NPUSCH) resource used by a single UE.
  • NPUSCH Narrow-band Physical Uplink Shared Channel
  • the NPUSCH resource is a time-frequency resource.
  • the dedicated PUR is contention-free.
  • a contention-free shared PUR is defined as an NPUSCH resource simultaneously used by more than one UE.
  • the NPUSCH resource is at least a time-frequency resource
  • the CFS PUR is contention-free.
  • a contention-based shared PUR is defined as an NPUSCH resource simultaneously used by more than one UE.
  • the NPUSCH resource is at least a time-frequency resource.
  • the CBS PUR is contention-based (that is, the CBS PUR may require contention resolution) .
  • the eNB still has to perform the heavy blind decoding in the resource pool. This is because any slot can be a start slot and any repetition number may be used by the UE in the UL data transmission. The eNB cannot identify which slot (s) has collision since the UEs may use different repetitions with unknown start slots.
  • Embodiments of the present disclosure provide a PUR pre-configuration scheme.
  • different PUR regions are predefined for different coverage enhancement (CE) levels associated with a terminal device.
  • CE coverage enhancement
  • One of the PUR regions can be shared by one category of terminal devices with the same CE level.
  • the PUR regions may be predefined to avoid transmission collisions between different categories of terminal devices with different CE levels.
  • the predefined PUR regions are indicated by a network device to terminal devices by broadcasting. If a terminal device has UL data to be transmitted, the terminal device determines a CE level and uses a PUR region predefine for the CE level to transmit the UL data. Accordingly, the network device detects UL data from terminal devices in these PUR regions. By reducing the number of candidate UL data transmission opportunities or time slots shared for multiple terminal devices in the PUR regions, the decoding complexity within the PUR regions may be reduced. In this way, system capacity and transmission efficiency may be improved.
  • FIG. 2 shows an example environment 200 in which embodiments of the present disclosure can be implemented.
  • the environment 200 which is a part of a communication network, includes a network device 210 and a terminal device 220. It is to be understood that one network device and one terminal device are shown in FIG. 2 only for the purpose of illustration without suggesting any limitation to the scope of the present disclosure.
  • the environment 200 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure.
  • the terminal device 220 can communicate with the network device 210 or via the network device 210 with a further terminal device.
  • the communications between the terminal device 220 and the network device 210 may follow any suitable wireless communication standards or protocols such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) NR, Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) and ultra-reliable low latency communication (uRLLC)
  • a plurality of PUR regions are predefined for a plurality of CE levels associated with terminal devices.
  • the PUR regions may be configured by the network device 210 or another network device or entity (not shown) .
  • the network device 210 broadcasts an indication of the predefined PUR regions. Based on the indication, when the terminal device 220 is to transmit UL data, the terminal device 220 selects a PUR region based on its own CE level to initiate the UL data transmission.
  • FIG. 3 shows a flowchart of an example method 300 in accordance with some other embodiments of the present disclosure.
  • the method 300 can be implemented at the network device 210 as shown in FIG. 2. For the purpose of discussion, the method 300 will be described with reference to FIG. 2.
  • the network device 210 broadcasts an indication of a plurality of PUR regions predefined for UL data transmission.
  • Each PUR region is predefined for one of a plurality of CE levels associated with terminal devices. Accordingly, a PUR region may be a time and frequency resource that can be shared by a category of terminal devices with the same CE level based on contention.
  • the division of the CE levels may be based on received signal strength at the terminal devices. Moreover, the association between CE levels and the received signal strength may be predefined and known to both the network device 210 and the terminal device 220. Accordingly, the terminal devices may select the respective CE levels based on the received signal measurements. For example, the terminal device with lower received signal strength may select a CE level, and the terminal device with higher received signal strength may select a further CE level, to ensure the probability of successfully decoding UL data from the terminal devices in different radio link conditions. Any other CE level division rules may be utilized that are already known or will be developed in the future.
  • PUR regions may be predefined based on any suitable rule or criterion.
  • the PUR regions for different CE levels may be separated from each other to further reduce the collisions and interferences between different categories of terminal devices.
  • a PUR region may comprise a set of resource units (RUs) . These RUs have the same RU size and are continuous in the time domain.
  • the RU may be one of predefined RUs that can be allocated by the network device 210.
  • the PUR regions for different CE levels may be defined using the different sizes of RUs in a non-overlapping manner. For example, the different sizes of RUs for different CE levels may be non-overlapping in the frequency domain to separate these PUR regions from each other in the frequency domain.
  • Example pre-configuration of the PUR regions composed of RUs for different CE levels will be discussed with reference to FIG. 4.
  • only one RU size is configured for one CE level.
  • the RU sizes associated with different CE levels may be determined based on any suitable criterion.
  • the RU size may be minimum RU that can be used by the terminal devices to support the transmission of all the candidate TBSs for the CE level in the PUR region.
  • RUs 405-1, 405-2 and 405-3 are predefined for three CE levels, respectively represented as CE level 1, CE level 2 and CE level 3.
  • the RU 405-1 for CE level 1 occupies 8ms in the time domain and 15KHz in the frequency domain.
  • the RU 405-2 for CE level 2 occupies 4ms in the time domain and 45KHz in the frequency domain.
  • the RU 405-3 for CE level 3 occupies 2ms in the time domain and 90KHz in the frequency domain.
  • These RUs 405-1, 405-2 and 405-3 are separated from each other in the frequency domain.
  • the PUR region per CE level comprises the limited number of candidate UL data transmission time slots shared by terminal devices in the same CE level. As such, the collision between different terminal devices in different CE levels may be further avoided.
  • the PUR region per CE level may be configured periodically.
  • a PUR region may be configured with a period indicating the time duration of the PUR region.
  • the PUR region may be configured repeatedly and periodically in the period.
  • the period may be represented by the number of RUs, subframes or slots. Each period may limit the size of the PUR region per CE level.
  • a period for a CE level may be determined based on a set of transmission block sizes (TBSs) associated with the CE level for UL data transmission. For example, the period may be predefined to accommodate the maximum TBS in the CE level to allow the data with this TBS to be transmitted in the PUR region.
  • TBSs transmission block sizes
  • a reference start time point may also be configured for a PUR region.
  • the reference start time point may be predefined to satisfy the following equation (1) :
  • N represents a system frame number which may be an integer in a rage of 0 ⁇ 1023
  • P represents a period composed of a number of system frames.
  • any system frame satisfying the equation (1) may be determined as a reference start time point.
  • resources for the terminal devices with different TBS options may be separated in the time domain.
  • one or more candidate time offsets relative to a reference start time point may be configured for a CE level.
  • the reference start time point may be considered as a candidate start time point having a zero time offset.
  • the candidate time offset may be indicated by the number of RUs, subframes or slots. If the period is determined based on the maximum TBS associated with the CE level, the candidate time offsets may be determined based on the minimum TBS allowed by the network device 210 to allow the data with this TBS to be transmitted in the PUR region.
  • the transmission time of the UL data may be scattered for different terminal devices with different TBSs for a certain CE level.
  • the interferences from the collision between different terminal devices with the same TBS may be easily removed by the network device 210 for example by Successive Interference Cancelation (SIC) to thereby improve the performance, as the signals from different terminal devices might collide with each other in the very first slot.
  • SIC Successive Interference Cancelation
  • a PUR region 505 for the CE level is configured with a period 510 includes a plurality of RUs 405.
  • the period 510 is defined based on the maximum TBS for the CE level. That is, the UL data with the maximum TBS can be transmitted during the period 510.
  • the reference start time point 515 is determined based on the period 510 based on the equation (1) , for example.
  • a candidate start time point 520 (collectively referred to as a candidate start time point 520, where M is a positive integer greater than 3) are defined based on the minimum TBS for the CE level.
  • Each of the candidate start time points 520 has a non-zero time offset relative to the reference start time point 515.
  • the pre-configuration of the PUR regions for the different CE levels such as the periods, the reference start time points and the candidate time offsets may be broadcast by the network device 210 in system information such as a system information block (SIB) .
  • SIB system information block
  • the network device 210 may use any other broadcast messages to broadcast the indication of the PUR regions, and the scope of the present disclosure will not be limited in this regard. As such, all the terminal devices within the coverage of the network device 210 may be aware of the PUR regions.
  • a period and a reference start time point for a PUR region may be indicated if the PUR region is configured periodically. If a PUR region comprises a size of RUs, the size may be indicated to the terminal devices. A set of candidate time offsets relative to the reference start time point predefined for a PUR region may also be indicated if these candidate time offsets are configured. It is also possible for the network device 210 to broadcast other information related to the PUR region configuration such that the terminal devices can be aware of the PUR region configuration.
  • the network device 210 detects uplink data in the plurality of PUR regions.
  • the network device 210 can only perform blind decoding in these PUR regions, and therefore the decoding complexity may be reduced.
  • the network device 210 may only perform blind decoding at the reference start time point and all the candidate start time points having the candidate time offsets relative to the reference start time point, to thereby further reduce the decoding complexity.
  • the network device 210 may update configuration of a PUR region based on the detecting (for example, the decoding results) in the PUR region. For example, the network device 210 may allocate more resources for a certain CE level if the decoding failure rate keeps high in the configured PUR region for the CE level. In this way, the transmission collision from the terminal devices with one CE level may be further reduced, and the system capacity and the transmission efficiency may be further improved.
  • FIG. 6 shows a flowchart of an example process 600 in accordance with some other embodiments of the present disclosure.
  • the process 600 can be an example implementation of the method 300 as shown in FIG. 3.
  • the operations or actions in blocks 605 and 610 of the process 600 are the detailed implementations of the operations or actions in blocks 305 and 310 in FIG. 3.
  • the network device 210 broadcasts the PUR regions to the terminal devices in SIB.
  • the indication includes the preconfigured reference start time point and all the candidate start time points for each PUR region.
  • the network device 210 performs the blind decoding at the reference start time point and the candidate start time points.
  • the network device 210 detects the UL data from the terminal device 220.
  • the network device 210 feeds the decoding results back to the terminal device 220.
  • the network device 210 determines whether to update the pre-configuration of the PUR regions based on the decoding results. If yes, the process 600 proceeds to block 605 where the network device 210 broadcasts the updated PUR regions. If no, the process 600 proceeds to block 610 where the network device 210 continues the blind decoding at the reference start time point and the candidate start time points.
  • the terminal device 220 can perform UL data transmission in a PUR region based on its CE level.
  • the operations and processes at the terminal device 220 will be discussed with reference to FIGS. 7 and 8.
  • FIG. 7 shows a flowchart of an example method 700 in accordance with some other example embodiments of the present disclosure.
  • the method 700 can be implemented at the terminal device 220 as shown in FIG. 2.
  • the method 700 will be described with reference to FIG. 2.
  • the terminal device 220 receives, from the network device 210, an indication of a plurality of PUR regions for UL data transmission, and each of the PUR regions is predefined for one of a plurality of CE levels.
  • the terminal device 220 may receive a broadcast message, such as SIB, from the network device 210 that carries the indication.
  • SIB broadcast message
  • the terminal device 220 may be aware of the related configuration of the PUR region based on the indication. As such, the terminal device 220 will be aware of the resource configuration for a PUR region per CE level.
  • the terminal device 220 selects a CE level from the plurality of CE levels.
  • the CE level may be selected by the terminal device 220 in any suitable way. In some example embodiments, the selection of the CE levels may be based on the received signal length. For example, the terminal device 220 may measure the strength of a broadcast signal from the network device 210. If the strength is relatively small, the terminal device 220 may determine a CE level with the configuration that may enhance the signal transmission robust.
  • the terminal device 220 selects a PUR region from the plurality of PUR regions associated with the selected CE level.
  • the terminal device 220 transmits UL data in the selected PUR region. For example, in the case that the indication indicates the RU size, the period and a reference start time point for the selected PUR region, the terminal device 220 may transmit the UL data using the size of RUs during the period starting from the reference start time point.
  • the terminal device 220 may select a candidate time offset from the set of candidate time offsets based on the TBS to be used for the UL data.
  • the reference start time point may be considered as a candidate start time point having a zero time offset.
  • the terminal device 220 may select a TBS from a set of TBSs associated with the selected CE level based on the amount of UL data to be transmitted (or the pending UL data size) . Based on the selected TBS, the terminal device 220 may select the candidate time offset to allow the UL data with the selected TBS to be transmitted within the PUR region. In this way, the transmission collision for different terminal devices in the same CE level may be reduced because the UL resources used by different terminal devices may be scattered in the time domain based on different amount of data to be transmitted.
  • the data may be transmitted repeatedly in the selected PUR region.
  • the candidate time offset may be selected to allow all number of repetitions of the data with the selected TBS to be transmitted before the end of the selected PUR. If multiple candidate time offsets are determined, the terminal device 220 may select a candidate time offset with equal probability to initiate the UL data transmission.
  • FIG. 8 shows a flowchart of an example process 800 in accordance with some other embodiments of the present disclosure.
  • the process 800 can be an example implementation of the method 700 as shown in FIG. 7.
  • the operations or actions in blocks 805, 810, 815 and 835 of the process 800 are the detailed implementations of blocks 705-720 in FIG. 7, respectively.
  • the terminal device 220 receives the indication of the preconfigured PUR regions in SIB.
  • the terminal device 220 selects a CE level based on the received signal measurements, selects a TBS based on the pending UL data size to be transmitted and selects a repetition number based on the selected TBS.
  • the terminal device 220 selects a PUR region based on the selected CE level.
  • the UL data is repeatedly transmitted in the selected TBS.
  • the terminal device 220 calculates candidate time offsets based on the selected TBS.
  • the terminal device 220 determines whether more than one candidate time offsets exist.
  • the terminal device 220 selects one of the candidate time offset randomly with equal probability.
  • the terminal device 220 sends UL data in the selected PUR region starting from the selected candidate time offset. If it is determined at block 825 that there is only one candidate time offset, the process 800 proceeds to block 835 where the UL data is sent starting from this candidate time offset.
  • FIG. 9 illustrates an example process 900 of information exchange between the network device 210 and the terminal device 220 in accordance with some example embodiments of the present disclosure.
  • the network device 210 broadcasts (905) PUR region configuration information in SIB.
  • the terminal device 220 selects (910) a CE level, a TBS and a repetition number.
  • the terminal device 220 also selects (915) a CBS PUR region based on the selected CE level.
  • the terminal device 220 further selects (920) a time offset.
  • the terminal device 220 sends (925) UL data using the determined resource.
  • the network device 210 sends (930) acknowledgement (for example, ACK) to the terminal device 220.
  • ACK acknowledgement
  • an apparatus capable of performing the method 300 or 700 may comprise means for performing the respective steps of the method 300 or 700.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus capable of performing the method 300 comprises: means for broadcasting, at a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels associated with terminal devices; and means for detecting uplink data in the plurality of preconfigured uplink resource regions.
  • At least one of the plurality of the preconfigured uplink resource regions may be configured periodically.
  • the indication may indicate at least a period and a reference start time point for the at least one of the plurality of preconfigured uplink resource regions.
  • At least one of the plurality of preconfigured uplink resource regions may comprise a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain.
  • the indication may indicate at least the resource unit size for the at least one of the plurality of preconfigured uplink resource regions.
  • the plurality of preconfigured uplink resource regions may be separated from each other.
  • the indication may indicate at least a reference start time point and a set of candidate time offsets relative to the reference start time point predefined for a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions.
  • the means for detecting the uplink data may comprise: means for detecting the uplink data in the preconfigured uplink resource region starting from each of the reference start time point and the set of candidate time offsets.
  • the preconfigured uplink resource region may comprise a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain. At least one candidate time offset in the set of candidate time offsets may be indicated by the number of resource units.
  • At least one candidate time offset in the set of candidate time offsets may be indicated by the number of subframes or slots.
  • the set of candidate time offsets may be predefined based on a set of transmission block sizes associated with the coverage enhancement level of the plurality of coverage enhancement levels related to the preconfigured uplink resource region of the plurality of preconfigured uplink resource regions.
  • the indication may be broadcast in system information.
  • At least one of the plurality of preconfigured uplink resource regions may be contention based.
  • the apparatus may further comprise: means for updating configuration of a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the detecting in the preconfigured uplink resource region.
  • the apparatus capable of performing the method 700 comprises: means for receiving, at a terminal device from a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels; means for selecting a coverage enhancement level from the plurality of coverage enhancement levels; means for selecting a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level; and means for transmitting uplink data in the selected preconfigured uplink resource region.
  • At least one of the plurality of the preconfigured uplink resource regions may be configured periodically.
  • the indication may indicate at least a period and a reference start time point for the at least one of the plurality of preconfigured uplink resource regions.
  • At least one of the plurality of preconfigured uplink resource regions may comprise a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain.
  • the indication may indicate at least the resource unit size for the at least one of the plurality of preconfigured uplink resource regions.
  • the plurality of preconfigured uplink resource regions may be separated from each other.
  • the indication may indicate at least a reference start time point and a set of candidate time offsets relative to the reference start time point predefined for the selected preconfigured uplink resource region.
  • the means for transmitting the uplink data may comprise: means for selecting, based on amount of uplink data to be transmitted, a transmission block size from a set of transmission block sizes associated with the selected coverage enhancement level; means for selecting a candidate start time point from the set of candidate start time points based on the selected transmission block size; and means for transmitting the uplink data with the selected transmission block size in the selected preconfigured uplink resource region starting from the selected candidate start time point.
  • the selected preconfigured uplink resource region may comprise a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain. At least one candidate time offset in the set of candidate time offsets may be indicated by the number of resource units.
  • At least one candidate time offset in the set of candidate time offsets may be indicated by the number of subframes or slots.
  • means for transmitting the uplink data with the selected transmission block size may comprise means for transmitting a number of repetitions of the uplink data with the selected transmission block size in the selected preconfigured uplink resource region starting from the selected candidate time offset.
  • means for selecting the candidate time offset from the set of candidate time offsets may comprise: means for selecting a plurality of candidate time offsets from the set of candidate time offsets based on the selected transmission block size; and means for selecting one of the plurality of candidate time offsets with equal probability.
  • the indication may be broadcast in system information.
  • At least one of the plurality of preconfigured uplink resource regions may be contention based.
  • FIG. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure.
  • the device 1000 can be implemented at the network device 210 or the terminal device 220 as shown in FIG. 2.
  • the device 1000 includes a processor 1010, a memory 1020 coupled to the processor 1010, a communication module 1030 coupled to the processor 1010, and a communication interface (not shown) coupled to the communication module 1030.
  • the memory 1020 stores at least a program 1040.
  • the communication module 1030 is for bidirectional communications, for example, via multiple antennas.
  • the communication interface may represent any interface that is necessary for communication.
  • the program 1040 is assumed to include program instructions that, when executed by the associated processor 1010, enable the device 1000 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 2-9.
  • the embodiments herein may be implemented by computer software executable by the processor 1010 of the device 1000, or by hardware, or by a combination of software and hardware.
  • the processor 1010 may be configured to implement various embodiments of the present disclosure.
  • the memory 1020 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1020 is shown in the device 1000, there may be several physically distinct memory modules in the device 1000.
  • the processor 1010 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the processor 1010 and the communication module 1030 may cooperate to implement the method 300 and the process 600 as described above with reference to FIGS. 3-6.
  • the processor 1010 and the communication module 1030 may cooperate to implement the method 700 and the process 800 as described above with reference to FIGS. 7 and 8. All operations and features as described above with reference to FIGS. 2-9 are likewise applicable to the device 1000 and have similar effects. For the purpose of simplification, the details will be omitted.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 300 and 700 and the processes 600 and 800 as described above with reference to FIGS. 3-8.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , Digital Versatile Disc (DVD) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • DVD Digital Versatile Disc
  • an optical storage device a magnetic storage device, or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media of uplink (UL) data resource pre-configuration. In example embodiments, a network device broadcasts an indication of a plurality of preconfigured uplink resource (PUR) regions for UL data transmission. Each of the plurality of PUR regions is predefined for one of a plurality of coverage enhancement (CE) levels associated with terminal devices. The network device detects UL data in the plurality of PUR regions.

Description

UPLINK DATA RESOURCE PRE-CONFIGURATION FIELD
Embodiments of the present disclosure generally relate to the field of communications, and in particular, to devices, methods, apparatuses and computer readable storage media of uplink (UL) data resource pre-configuration.
BACKGROUND
In the 3rd Generation Partnership Project (3GPP) Release (Rel-15) , UL Early Data Transmission (EDT) is supported by Narrow Band Internet of Things (NB-IoT) . UL EDT allows UL data to be transmitted in Message 3 (Msg3) during a random access (RA) procedure. For example, if user equipment (UE) is to perform EDT, the UE may send a reserved preamble to an eNodeB (eNB) to initiate a RA procedure. The eNB allocates Msg3 resources for EDT upon the reception of the reserved preamble. The UE then uses the allocated resources to transmit Msg3 which carries the UL data. Thus, UL EDT may reduce UE power consumption and improve UL transmission efficiency.
Conventionally, UL EDT involves two steps of UL transmission: one step of transmitting the reserved preamble, and one step of transmitting the UL data. In order to further improve UE power efficiency, one-step UL data transmission is proposed where the UL data transmission may be initiated using preconfigured UL resources (PURs) . However, in the one-step UL data transmission, the eNB does not know when the UL data transmission will occur and which frequency resource will be used. As a result, the eNB may have to perform blind decoding for all possibilities, which is not feasible and waste of time.
SUMMARY
In general, example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage media of UL data resource pre-configuration.
In a first aspect, a device is provided comprising at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the device  to broadcast, at a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission. Each of the plurality of preconfigured uplink resource regions is predefined for one of a plurality of coverage enhancement levels associated with terminal devices. The device is further caused to detect uplink data in the plurality of preconfigured uplink resource regions.
In a second aspect, a device is provided comprising at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the device to receive, at a terminal device from a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission. Each of the plurality of preconfigured uplink resource regions is predefined for one of a plurality of coverage enhancement levels. The device is also caused to select a coverage enhancement level from the plurality of coverage enhancement levels and select a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level. The device is further caused to transmit uplink data in the selected preconfigured uplink resource region.
In a third aspect, a method is provided. In the method, a network device broadcasts an indication of a plurality of preconfigured uplink resource regions for uplink data transmission. Each of the plurality of preconfigured uplink resource regions is predefined for one of a plurality of coverage enhancement levels associated with terminal devices. The network device detects uplink data in the plurality of preconfigured uplink resource regions.
In a fourth aspect, a method is provided. In the method, a terminal device receives from a network device an indication of a plurality of preconfigured uplink resource regions for uplink data transmission. Each of the plurality of preconfigured uplink resource regions is predefined for one of a plurality of coverage enhancement levels. The terminal device selects a coverage enhancement level from the plurality of coverage enhancement levels. The terminal device also selects a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level. Then, the terminal device transmits uplink data in the selected preconfigured uplink resource region.
In a fifth aspect, there is provided an apparatus comprising means for performing  the method according to the third or fourth aspect.
In a sixth aspect, there is provided a computer readable storage medium that stores a computer program thereon. The computer program, when executed by a processor of a device, causes the device to perform the method according to the third or fourth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
FIG. 1 illustrates an example uplink early data transmission process during a random access procedure;
FIG. 2 illustrates an example environment in which embodiments of the present disclosure can be implemented;
FIG. 3 illustrates a flowchart of an example method in accordance with some example embodiments of the present disclosure;
FIG. 4 illustrates example pre-configuration of different PUR regions for different CE levels in accordance to some example embodiments of the present disclosure;
FIG. 5 illustrates example pre-configuration of a PUR region for a CE level in accordance to some other embodiments of the present disclosure;
FIG. 6 illustrates a flowchart of an example process in accordance with some example embodiments of the present disclosure;
FIG. 7 illustrates a flowchart of an example method in accordance with some other embodiments of the present disclosure;
FIG. 8 illustrates a flowchart of an example process in accordance with some example embodiments of the present disclosure;
FIG. 9 illustrates an example process of information exchange between the network device and the terminal device in accordance with some example embodiments of  the present disclosure; and
FIG. 10 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “network device” refers to a device capable of providing services to a terminal device in a communication network. The network device may include an access network device via which the terminal device can access the communication network. Examples of the access network device include a relay, an access point (AP) , a transmission point (TRP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a New Radio (NR) NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
The network device may also include a core network device capable of communicating with the access network device and providing services to the terminal device in a core network. As an example, the core network device may include Mobile Switching Centers (MSCs) , MMEs, Operation and Management (O&M) nodes, Operation Support System (OSS) nodes, Self-Organization Network (SON) nodes, positioning nodes, such as Enhanced Serving Mobile Location Centers (E-SMLCs) , and/or Mobile Data Terminals (MDTs) .
As used herein, the term “terminal device” or “user equipment” (UE) refers to any  device capable of wireless communications with each other or with the network device. The communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air. In some example embodiments, the terminal device may be configured to transmit and/or receive information without direct human interaction. For example, the terminal device may transmit information to the network device on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
Examples of the terminal device include, but are not limited to, user equipment (UE) such as smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , and/or wireless customer-premises equipment (CPE) . For the purpose of discussion, some example embodiments will be described with reference to UEs as examples of the terminal devices, and the terms “terminal device” and “user equipment” (UE) may be used interchangeably in the context of the present disclosure.
As used herein, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and  if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in a server, a cellular network device, or other computing or network device.
As used herein, the singular forms “a” , “an” , and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” . The term “based on” is to be read as “based at least in part on” . The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
As used herein, the terms “first” , “second” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
In order to initiate UL EDT, the UE may send a reserved preamble to the eNB, and then the eNB will allocate Msg3 resources. FIG. 1 shows an example UL EDT process 100 during a RA procedure. In the process 100, the UE sends (105) a reserved preamble to a NR nodeB (or gNB) in Message 1 (Msg1) to request EDT. The gNB sends (110) a random access response (RAR) in Message 2 (Msg2) which carries resources allocated for EDT. The UE transmits (115) UL data in Msg3 using the allocated resources. The gNB sends (120) acknowledgement (for example, ACK) for the UL data. As shown, the EDT process 100 conventionally involves two steps of UL transmission in both Msg1 and Msg3.
For UL data transmission, the eNB (or gNB) typically preconfigures a set of Transmission Block Sizes (TBSs) for use by the UE. In particular, the eNB preconfigures the maximum TBS for UL EDT. Based on the amount of data to be transmitted, the UE may select a TBS from the set of TBSs which is smaller than the maximum TBS, to implement less padding, for example. Due to unawareness of the UE selection, the eNB has to perform blind decoding attempts for all candidate values of the TBSs.
In 3GPP Release 16 (Rel-16) , some objectives are proposed to further improve the system performance in terms of transmission efficiency and delay and like, which, for  example, include:
- Improved UL transmission efficiency and/or UE power consumption:
○ Specify support for UL transmission in preconfigured resources in idle and/or connected mode based on Single Carrier Frequency Division Multiple Access (SC-FDMA) waveform for UEs with a valid timing advance.
● Both shared resources and dedicated resources may be preconfigured.
● Note: This is limited to orthogonal (multi) access schemes.
Compared with the two-step UL data transmission of UL EDT, one-step UL data transmission is one promising candidate to further improve the efficiency. However, in the one-step UL data transmission, the eNB may not know in advance that the UE will send the UL data in the very first message. That is, the eNB may not know when the UL data transmission will occur. The eNB is also unaware of which frequency resource to be used by the UE. In this case, the eNB may have to perform blind decoding for all possibilities. This is not feasible and waste of time. As a result, the decoding operations are more difficult in the one-step UL data transmission compared to UL EDT. The decoding complexity is too high at the eNB.
In order to improve the one-step UL data transmission, it is proposed to predefine a preconfigured UL resource (PUR) for the UE to initiate the UL data transmission. Multiple options are agreed for the definition of PURs as below:
Option 1. A dedicated PUR is defined as a Narrow-band Physical Uplink Shared Channel (NPUSCH) resource used by a single UE.
- The NPUSCH resource is a time-frequency resource.
- The dedicated PUR is contention-free.
Option 2. A contention-free shared PUR (CFS PUR) is defined as an NPUSCH resource simultaneously used by more than one UE.
- The NPUSCH resource is at least a time-frequency resource
- The CFS PUR is contention-free.
Option 3. A contention-based shared PUR (CBS PUR) is defined as an NPUSCH resource simultaneously used by more than one UE.
- The NPUSCH resource is at least a time-frequency resource.
- The CBS PUR is contention-based (that is, the CBS PUR may require contention resolution) .
How to configure the PUR is still under discussion. If a big resource pool is defined to allow all the UEs to select a resource from the resource pool, the eNB still has to perform the heavy blind decoding in the resource pool. This is because any slot can be a start slot and any repetition number may be used by the UE in the UL data transmission. The eNB cannot identify which slot (s) has collision since the UEs may use different repetitions with unknown start slots.
It is desirable to have an enhanced UL data resource pre-configuration scheme that may reduce the decoding complexity at the eNB. Moreover, collision from different UEs sharing the same PUR is also a challenge.
Embodiments of the present disclosure provide a PUR pre-configuration scheme. With this scheme, different PUR regions are predefined for different coverage enhancement (CE) levels associated with a terminal device. One of the PUR regions can be shared by one category of terminal devices with the same CE level. The PUR regions may be predefined to avoid transmission collisions between different categories of terminal devices with different CE levels.
The predefined PUR regions are indicated by a network device to terminal devices by broadcasting. If a terminal device has UL data to be transmitted, the terminal device determines a CE level and uses a PUR region predefine for the CE level to transmit the UL data. Accordingly, the network device detects UL data from terminal devices in these PUR regions. By reducing the number of candidate UL data transmission opportunities or time slots shared for multiple terminal devices in the PUR regions, the decoding complexity within the PUR regions may be reduced. In this way, system capacity and transmission efficiency may be improved.
FIG. 2 shows an example environment 200 in which embodiments of the present disclosure can be implemented. The environment 200, which is a part of a communication network, includes a network device 210 and a terminal device 220. It is to be understood that one network device and one terminal device are shown in FIG. 2 only for the purpose of illustration without suggesting any limitation to the scope of the present disclosure. The environment 200 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure.
The terminal device 220 can communicate with the network device 210 or via the network device 210 with a further terminal device. The communications between the terminal device 220 and the network device 210 may follow any suitable wireless communication standards or protocols such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) NR, Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) and ultra-reliable low latency communication (uRLLC) technologies.
In the environment 200, a plurality of PUR regions are predefined for a plurality of CE levels associated with terminal devices. The PUR regions may be configured by the network device 210 or another network device or entity (not shown) . The network device 210 broadcasts an indication of the predefined PUR regions. Based on the indication, when the terminal device 220 is to transmit UL data, the terminal device 220 selects a PUR region based on its own CE level to initiate the UL data transmission.
FIG. 3 shows a flowchart of an example method 300 in accordance with some other embodiments of the present disclosure. The method 300 can be implemented at the network device 210 as shown in FIG. 2. For the purpose of discussion, the method 300 will be described with reference to FIG. 2.
At block 305, the network device 210 broadcasts an indication of a plurality of PUR regions predefined for UL data transmission. Each PUR region is predefined for one of a plurality of CE levels associated with terminal devices. Accordingly, a PUR region may be a time and frequency resource that can be shared by a category of terminal devices with the same CE level based on contention.
The division of the CE levels may be based on received signal strength at the terminal devices. Moreover, the association between CE levels and the received signal strength may be predefined and known to both the network device 210 and the terminal device 220. Accordingly, the terminal devices may select the respective CE levels based  on the received signal measurements. For example, the terminal device with lower received signal strength may select a CE level, and the terminal device with higher received signal strength may select a further CE level, to ensure the probability of successfully decoding UL data from the terminal devices in different radio link conditions. Any other CE level division rules may be utilized that are already known or will be developed in the future.
These PUR regions (or, resource pool or RP) may be predefined based on any suitable rule or criterion. In some example embodiments, the PUR regions for different CE levels may be separated from each other to further reduce the collisions and interferences between different categories of terminal devices. For example, in some example embodiments, a PUR region may comprise a set of resource units (RUs) . These RUs have the same RU size and are continuous in the time domain. The RU may be one of predefined RUs that can be allocated by the network device 210. The PUR regions for different CE levels may be defined using the different sizes of RUs in a non-overlapping manner. For example, the different sizes of RUs for different CE levels may be non-overlapping in the frequency domain to separate these PUR regions from each other in the frequency domain.
Example pre-configuration of the PUR regions composed of RUs for different CE levels will be discussed with reference to FIG. 4. In this example, only one RU size is configured for one CE level. The RU sizes associated with different CE levels may be determined based on any suitable criterion. For example, the RU size may be minimum RU that can be used by the terminal devices to support the transmission of all the candidate TBSs for the CE level in the PUR region.
As shown, three sizes of RUs 405-1, 405-2 and 405-3 (collectively referred to as a RU 405) are predefined for three CE levels, respectively represented as CE level 1, CE level 2 and CE level 3. The RU 405-1 for CE level 1 occupies 8ms in the time domain and 15KHz in the frequency domain. The RU 405-2 for CE level 2 occupies 4ms in the time domain and 45KHz in the frequency domain. The RU 405-3 for CE level 3 occupies 2ms in the time domain and 90KHz in the frequency domain. These RUs 405-1, 405-2 and 405-3 are separated from each other in the frequency domain. The PUR region per CE level comprises the limited number of candidate UL data transmission time slots shared by terminal devices in the same CE level. As such, the collision between different terminal devices in different CE levels may be further avoided.
In some example embodiments, the PUR region per CE level may be configured periodically. In some example embodiments, a PUR region may be configured with a period indicating the time duration of the PUR region. The PUR region may be configured repeatedly and periodically in the period. The period may be represented by the number of RUs, subframes or slots. Each period may limit the size of the PUR region per CE level.
The period may be determined by considering any suitable factors. In some example embodiments, a period for a CE level may be determined based on a set of transmission block sizes (TBSs) associated with the CE level for UL data transmission. For example, the period may be predefined to accommodate the maximum TBS in the CE level to allow the data with this TBS to be transmitted in the PUR region.
In addition to a period, a reference start time point may also be configured for a PUR region. For example, the reference start time point may be predefined to satisfy the following equation (1) :
N mod P = 0           (1)
where N represents a system frame number which may be an integer in a rage of 0~1023, and P represents a period composed of a number of system frames. In this example, any system frame satisfying the equation (1) may be determined as a reference start time point.
In order to further reduce the collisions of one category of terminal devices in the same CE level, in some example embodiments, within a PUR region per a CE level, resources for the terminal devices with different TBS options may be separated in the time domain. For example, one or more candidate time offsets relative to a reference start time point may be configured for a CE level. The reference start time point may be considered as a candidate start time point having a zero time offset. The candidate time offset may be indicated by the number of RUs, subframes or slots. If the period is determined based on the maximum TBS associated with the CE level, the candidate time offsets may be determined based on the minimum TBS allowed by the network device 210 to allow the data with this TBS to be transmitted in the PUR region.
Depending on the pre-configured candidate time offsets, the transmission time of the UL data may be scattered for different terminal devices with different TBSs for a certain CE level. In addition, the interferences from the collision between different terminal devices with the same TBS may be easily removed by the network device 210 for example  by Successive Interference Cancelation (SIC) to thereby improve the performance, as the signals from different terminal devices might collide with each other in the very first slot.
Example pre-configuration of a PUR region for a CE level will be discussed below with reference to FIG. 5. In this example, a PUR region 505 for the CE level is configured with a period 510 includes a plurality of RUs 405. The period 510 is defined based on the maximum TBS for the CE level. That is, the UL data with the maximum TBS can be transmitted during the period 510. The reference start time point 515 is determined based on the period 510 based on the equation (1) , for example. During the period 510, multiple candidate start time points 520-1, 520-2, 520-3... 520-M (collectively referred to as a candidate start time point 520, where M is a positive integer greater than 3) are defined based on the minimum TBS for the CE level. Each of the candidate start time points 520 has a non-zero time offset relative to the reference start time point 515. A shown, there are two RUs 405 between two candidate start time points 520 for accommodating the UL data with the minimum TBS.
The pre-configuration of the PUR regions for the different CE levels such as the periods, the reference start time points and the candidate time offsets may be broadcast by the network device 210 in system information such as a system information block (SIB) . The network device 210 may use any other broadcast messages to broadcast the indication of the PUR regions, and the scope of the present disclosure will not be limited in this regard. As such, all the terminal devices within the coverage of the network device 210 may be aware of the PUR regions.
A period and a reference start time point for a PUR region may be indicated if the PUR region is configured periodically. If a PUR region comprises a size of RUs, the size may be indicated to the terminal devices. A set of candidate time offsets relative to the reference start time point predefined for a PUR region may also be indicated if these candidate time offsets are configured. It is also possible for the network device 210 to broadcast other information related to the PUR region configuration such that the terminal devices can be aware of the PUR region configuration.
Still with reference to FIG. 3, at block 310, the network device 210 detects uplink data in the plurality of PUR regions. The network device 210 can only perform blind decoding in these PUR regions, and therefore the decoding complexity may be reduced. In the embodiments where a reference start time point and a set of candidate time offsets  are pre-configured for a PUR, the network device 210 may only perform blind decoding at the reference start time point and all the candidate start time points having the candidate time offsets relative to the reference start time point, to thereby further reduce the decoding complexity.
In some example embodiments, the network device 210 may update configuration of a PUR region based on the detecting (for example, the decoding results) in the PUR region. For example, the network device 210 may allocate more resources for a certain CE level if the decoding failure rate keeps high in the configured PUR region for the CE level. In this way, the transmission collision from the terminal devices with one CE level may be further reduced, and the system capacity and the transmission efficiency may be further improved.
FIG. 6 shows a flowchart of an example process 600 in accordance with some other embodiments of the present disclosure. The process 600 can be an example implementation of the method 300 as shown in FIG. 3. In particular, the operations or actions in  blocks  605 and 610 of the process 600 are the detailed implementations of the operations or actions in  blocks  305 and 310 in FIG. 3.
As shown in FIG. 6, at block 605, the network device 210 broadcasts the PUR regions to the terminal devices in SIB. The indication includes the preconfigured reference start time point and all the candidate start time points for each PUR region. At block 610, the network device 210 performs the blind decoding at the reference start time point and the candidate start time points. In this example, the network device 210 detects the UL data from the terminal device 220. At block 615, the network device 210 feeds the decoding results back to the terminal device 220.
At block 620, the network device 210 determines whether to update the pre-configuration of the PUR regions based on the decoding results. If yes, the process 600 proceeds to block 605 where the network device 210 broadcasts the updated PUR regions. If no, the process 600 proceeds to block 610 where the network device 210 continues the blind decoding at the reference start time point and the candidate start time points.
Based on the indication of the PUR region per CE level from the network device 210, the terminal device 220 can perform UL data transmission in a PUR region based on its CE level. The operations and processes at the terminal device 220 will be discussed  with reference to FIGS. 7 and 8.
FIG. 7 shows a flowchart of an example method 700 in accordance with some other example embodiments of the present disclosure. The method 700 can be implemented at the terminal device 220 as shown in FIG. 2. For the purpose of discussion, the method 700 will be described with reference to FIG. 2.
At block 705, the terminal device 220 receives, from the network device 210, an indication of a plurality of PUR regions for UL data transmission, and each of the PUR regions is predefined for one of a plurality of CE levels. For example, the terminal device 220 may receive a broadcast message, such as SIB, from the network device 210 that carries the indication. In the embodiments where a RU size, a period and/or a reference start time point is configured for a PUR region, the terminal device 220 may be aware of the related configuration of the PUR region based on the indication. As such, the terminal device 220 will be aware of the resource configuration for a PUR region per CE level.
At block 710, the terminal device 220 selects a CE level from the plurality of CE levels. The CE level may be selected by the terminal device 220 in any suitable way. In some example embodiments, the selection of the CE levels may be based on the received signal length. For example, the terminal device 220 may measure the strength of a broadcast signal from the network device 210. If the strength is relatively small, the terminal device 220 may determine a CE level with the configuration that may enhance the signal transmission robust.
At block 715, the terminal device 220 selects a PUR region from the plurality of PUR regions associated with the selected CE level. At block 720, the terminal device 220 transmits UL data in the selected PUR region. For example, in the case that the indication indicates the RU size, the period and a reference start time point for the selected PUR region, the terminal device 220 may transmit the UL data using the size of RUs during the period starting from the reference start time point.
In some example embodiments, if the indication indicates a set of candidate time offsets relative to the reference start time point for the selected PUR region, the terminal device 220 may select a candidate time offset from the set of candidate time offsets based on the TBS to be used for the UL data. The reference start time point may be considered as a candidate start time point having a zero time offset. For example, the terminal device 220 may select a TBS from a set of TBSs associated with the selected CE level based on the  amount of UL data to be transmitted (or the pending UL data size) . Based on the selected TBS, the terminal device 220 may select the candidate time offset to allow the UL data with the selected TBS to be transmitted within the PUR region. In this way, the transmission collision for different terminal devices in the same CE level may be reduced because the UL resources used by different terminal devices may be scattered in the time domain based on different amount of data to be transmitted.
In some example embodiments, the data may be transmitted repeatedly in the selected PUR region. In this case, the candidate time offset may be selected to allow all number of repetitions of the data with the selected TBS to be transmitted before the end of the selected PUR. If multiple candidate time offsets are determined, the terminal device 220 may select a candidate time offset with equal probability to initiate the UL data transmission.
FIG. 8 shows a flowchart of an example process 800 in accordance with some other embodiments of the present disclosure. The process 800 can be an example implementation of the method 700 as shown in FIG. 7. In particular, the operations or actions in  blocks  805, 810, 815 and 835 of the process 800 are the detailed implementations of blocks 705-720 in FIG. 7, respectively.
At block 805, the terminal device 220 receives the indication of the preconfigured PUR regions in SIB. At block 810, the terminal device 220 selects a CE level based on the received signal measurements, selects a TBS based on the pending UL data size to be transmitted and selects a repetition number based on the selected TBS. At block 815, the terminal device 220 selects a PUR region based on the selected CE level. In this example, the UL data is repeatedly transmitted in the selected TBS. At block 820, the terminal device 220 calculates candidate time offsets based on the selected TBS. At block 825, the terminal device 220 determines whether more than one candidate time offsets exist. If yes, at block 830, the terminal device 220 selects one of the candidate time offset randomly with equal probability. At block 835, the terminal device 220 sends UL data in the selected PUR region starting from the selected candidate time offset. If it is determined at block 825 that there is only one candidate time offset, the process 800 proceeds to block 835 where the UL data is sent starting from this candidate time offset.
All operations and features as described above with reference to FIGS. 2 to 6 are likewise applicable to the method 700 and the process 800 and have similar effects. For  the purpose of simplification, the details will be omitted.
FIG. 9 illustrates an example process 900 of information exchange between the network device 210 and the terminal device 220 in accordance with some example embodiments of the present disclosure.
In the process 900, the network device 210 (for example, gNB) broadcasts (905) PUR region configuration information in SIB. The terminal device 220 selects (910) a CE level, a TBS and a repetition number. The terminal device 220 also selects (915) a CBS PUR region based on the selected CE level. The terminal device 220 further selects (920) a time offset. Then, the terminal device 220 sends (925) UL data using the determined resource. The network device 210 sends (930) acknowledgement (for example, ACK) to the terminal device 220.
In some example embodiments, an apparatus capable of performing the  method  300 or 700 may comprise means for performing the respective steps of the  method  300 or 700. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus capable of performing the method 300 comprises: means for broadcasting, at a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels associated with terminal devices; and means for detecting uplink data in the plurality of preconfigured uplink resource regions.
In some example embodiments, at least one of the plurality of the preconfigured uplink resource regions may be configured periodically.
In some example embodiments, the indication may indicate at least a period and a reference start time point for the at least one of the plurality of preconfigured uplink resource regions.
In some example embodiments, at least one of the plurality of preconfigured uplink resource regions may comprise a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain. The indication may indicate at least the resource unit size for the at least one of the plurality of preconfigured uplink resource regions.
In some example embodiments, the plurality of preconfigured uplink resource regions may be separated from each other.
In some example embodiments, the indication may indicate at least a reference start time point and a set of candidate time offsets relative to the reference start time point predefined for a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions. The means for detecting the uplink data may comprise: means for detecting the uplink data in the preconfigured uplink resource region starting from each of the reference start time point and the set of candidate time offsets.
In some example embodiments, the preconfigured uplink resource region may comprise a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain. At least one candidate time offset in the set of candidate time offsets may be indicated by the number of resource units.
In some example embodiments, at least one candidate time offset in the set of candidate time offsets may be indicated by the number of subframes or slots.
In some example embodiments, the set of candidate time offsets may be predefined based on a set of transmission block sizes associated with the coverage enhancement level of the plurality of coverage enhancement levels related to the preconfigured uplink resource region of the plurality of preconfigured uplink resource regions.
In some example embodiments, the indication may be broadcast in system information.
In some example embodiments, at least one of the plurality of preconfigured uplink resource regions may be contention based.
In some example embodiments, the apparatus may further comprise: means for updating configuration of a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the detecting in the preconfigured uplink resource region.
In some example embodiments, the apparatus capable of performing the method 700 comprises: means for receiving, at a terminal device from a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for  one of a plurality of coverage enhancement levels; means for selecting a coverage enhancement level from the plurality of coverage enhancement levels; means for selecting a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level; and means for transmitting uplink data in the selected preconfigured uplink resource region.
In some example embodiments, at least one of the plurality of the preconfigured uplink resource regions may be configured periodically.
In some example embodiments, the indication may indicate at least a period and a reference start time point for the at least one of the plurality of preconfigured uplink resource regions.
In some example embodiments, at least one of the plurality of preconfigured uplink resource regions may comprise a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain. The indication may indicate at least the resource unit size for the at least one of the plurality of preconfigured uplink resource regions.
In some example embodiments, the plurality of preconfigured uplink resource regions may be separated from each other.
In some example embodiments, the indication may indicate at least a reference start time point and a set of candidate time offsets relative to the reference start time point predefined for the selected preconfigured uplink resource region. The means for transmitting the uplink data may comprise: means for selecting, based on amount of uplink data to be transmitted, a transmission block size from a set of transmission block sizes associated with the selected coverage enhancement level; means for selecting a candidate start time point from the set of candidate start time points based on the selected transmission block size; and means for transmitting the uplink data with the selected transmission block size in the selected preconfigured uplink resource region starting from the selected candidate start time point.
In some example embodiments, the selected preconfigured uplink resource region may comprise a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain. At least one candidate time offset in the set of candidate time offsets may be indicated by the number of resource units.
In some example embodiments, at least one candidate time offset in the set of candidate time offsets may be indicated by the number of subframes or slots.
In some example embodiments, means for transmitting the uplink data with the selected transmission block size may comprise means for transmitting a number of repetitions of the uplink data with the selected transmission block size in the selected preconfigured uplink resource region starting from the selected candidate time offset.
In some example embodiments, means for selecting the candidate time offset from the set of candidate time offsets may comprise: means for selecting a plurality of candidate time offsets from the set of candidate time offsets based on the selected transmission block size; and means for selecting one of the plurality of candidate time offsets with equal probability.
In some example embodiments, the indication may be broadcast in system information.
In some example embodiments, at least one of the plurality of preconfigured uplink resource regions may be contention based.
FIG. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure. The device 1000 can be implemented at the network device 210 or the terminal device 220 as shown in FIG. 2.
As shown, the device 1000 includes a processor 1010, a memory 1020 coupled to the processor 1010, a communication module 1030 coupled to the processor 1010, and a communication interface (not shown) coupled to the communication module 1030. The memory 1020 stores at least a program 1040. The communication module 1030 is for bidirectional communications, for example, via multiple antennas. The communication interface may represent any interface that is necessary for communication.
The program 1040 is assumed to include program instructions that, when executed by the associated processor 1010, enable the device 1000 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 2-9. The embodiments herein may be implemented by computer software executable by the processor 1010 of the device 1000, or by hardware, or by a combination of software and hardware. The processor 1010 may be configured to implement various embodiments of the present disclosure.
The memory 1020 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1020 is shown in the device 1000, there may be several physically distinct memory modules in the device 1000. The processor 1010 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
When the device 1000 acts as the network device 210 or a part of the network device 210, the processor 1010 and the communication module 1030 may cooperate to implement the method 300 and the process 600 as described above with reference to FIGS. 3-6. When the device 1000 acts as the terminal device 220 or a part of the terminal device 220, the processor 1010 and the communication module 1030 may cooperate to implement the method 700 and the process 800 as described above with reference to FIGS. 7 and 8. All operations and features as described above with reference to FIGS. 2-9 are likewise applicable to the device 1000 and have similar effects. For the purpose of simplification, the details will be omitted.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer  program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the  methods  300 and 700 and the  processes  600 and 800 as described above with reference to FIGS. 3-8. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable media.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , Digital Versatile Disc (DVD) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Various embodiments of the techniques have been described. In addition to or as an alternative to the above, the following examples are described. The features described in any of the following examples may be utilized with any of the other examples described herein.

Claims (52)

  1. A device comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the device to:
    broadcast, at a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels associated with terminal devices; and
    detect uplink data in the plurality of preconfigured uplink resource regions.
  2. The device of claim 1, wherein at least one of the plurality of the preconfigured uplink resource regions is configured periodically.
  3. The device of claim 1, wherein the indication indicates at least a period and a reference start time point for the at least one of the plurality of preconfigured uplink resource regions.
  4. The device of claim 1, wherein at least one of the plurality of preconfigured uplink resource regions comprises a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain, and
    wherein the indication indicates at least the resource unit size for the at least one of the plurality of preconfigured uplink resource regions.
  5. The device of claim 1, wherein the plurality of preconfigured uplink resource regions are separated from each other.
  6. The device of claim 1, wherein the indication indicates at least a reference start time point and a set of candidate time offsets relative to the reference start time point predefined for a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions, and the device is caused to detect the uplink data by:
    detecting the uplink data in the preconfigured uplink resource region starting from each of the reference start time point and the set of candidate time offsets.
  7. The device of claim 6, wherein the preconfigured uplink resource region comprises a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain, and
    wherein at least one candidate time offset in the set of candidate time offsets is indicated by the number of resource units.
  8. The device of claim 6, wherein at least one candidate time offset in the set of candidate time offsets is indicated by the number of subframes or slots.
  9. The device of claim 6, wherein the set of candidate time offsets is predefined based on a set of transmission block sizes associated with the coverage enhancement level of the plurality of coverage enhancement levels related to the preconfigured uplink resource region of the plurality of preconfigured uplink resource regions.
  10. The device of claim 1, wherein the indication is broadcast in system information.
  11. The device of claim 1, wherein at least one of the plurality of preconfigured uplink resource regions is contention based.
  12. The device of claim 1, wherein the device is further caused to:
    update configuration of a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the detecting in the preconfigured uplink resource region.
  13. A device comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the device to:
    receive, at a terminal device from a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels;
    select a coverage enhancement level from the plurality of coverage enhancement levels;
    select a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level; and
    transmit uplink data in the selected preconfigured uplink resource region.
  14. The device of claim 13, wherein at least one of the plurality of the preconfigured uplink resource regions is configured periodically.
  15. The device of claim 13, wherein the indication indicates at least a period and a reference start time point for the at least one of the plurality of preconfigured uplink resource regions.
  16. The device of claim 13, wherein at least one of the plurality of preconfigured uplink resource regions comprises a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain, and
    wherein the indication indicates at least the resource unit size for the at least one of the plurality of preconfigured uplink resource regions.
  17. The device of claim 13, wherein the plurality of preconfigured uplink resource regions are separated from each other.
  18. The device of claim 13, wherein the indication indicates at least a reference start time point and a set of candidate time offsets relative to the reference start time point predefined for the selected preconfigured uplink resource region, and the device is caused to transmit the uplink data by:
    selecting, based on amount of uplink data to be transmitted, a transmission block size from a set of transmission block sizes associated with the selected coverage enhancement level;
    selecting a candidate time offset from the set of candidate time offsets based on the selected transmission block size; and
    transmitting the uplink data with the selected transmission block size in the selected preconfigured uplink resource region starting from the selected candidate time offset.
  19. The device of claim 18, wherein the selected preconfigured uplink resource region comprises a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain, and
    wherein at least one candidate time offset in the set of candidate time offsets is indicated by the number of resource units.
  20. The device of claim 18, wherein at least one candidate time offset in the set of candidate time offsets is indicated by the number of subframes or slots.
  21. The device of claim 18, wherein transmitting the uplink data with the selected transmission block size comprises:
    transmitting a number of repetitions of the uplink data with the selected transmission block size in the selected preconfigured uplink resource region starting from the selected candidate time offset.
  22. The device of claim 18, wherein the device is caused to select the candidate time offset from the set of candidate time offsets by:
    selecting a plurality of candidate time offsets from the set of candidate time offsets based on the selected transmission block size; and
    selecting one of the plurality of candidate time offsets with equal probability.
  23. The device of claim 13, wherein the indication is broadcast in system information.
  24. The device of claim 13, wherein at least one of the plurality of preconfigured uplink resource regions is contention based.
  25. A method comprising:
    broadcasting, at a network device, an indication of a plurality of preconfigured  uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels associated with terminal devices; and
    detecting uplink data in the plurality of preconfigured uplink resource regions.
  26. The method of claim 25, wherein at least one of the plurality of the preconfigured uplink resource regions is configured periodically.
  27. The method of claim 25, wherein the indication indicates at least a period and a reference start time point for the at least one of the plurality of preconfigured uplink resource regions.
  28. The method of claim 25, wherein at least one of the plurality of preconfigured uplink resource regions comprises a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain, and
    wherein the indication indicates at least the size of the resource unit set for the at least one of the plurality of preconfigured uplink resource regions.
  29. The method of claim 25, wherein the plurality of preconfigured uplink resource regions are separated from each other.
  30. The method of claim 25, wherein the indication indicates at least a reference start time point and a set of candidate time offsets relative to the reference start time point predefined for a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions, and detecting the uplink data comprises:
    detecting the uplink data in the preconfigured uplink resource region starting from each of the reference start time point and the set of candidate time offsets.
  31. The method of claim 30, wherein the preconfigured uplink resource region comprises a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain, and
    wherein at least one candidate time offset in the set of candidate time offsets is indicated by the number of resource units.
  32. The method of claim 30, wherein at least one candidate time offset in the set of candidate time offsets is indicated by the number of subframes or slots.
  33. The method of claim 30, wherein the set of candidate time offsets is predefined based on a set of transmission block sizes associated with the coverage enhancement level of the plurality of coverage enhancement levels related to the preconfigured uplink resource region of the plurality of preconfigured uplink resource regions.
  34. The method of claim 25, wherein the indication is broadcast in system information.
  35. The method of claim 25, wherein at least one of the plurality of preconfigured uplink resource regions is contention based.
  36. The method of claim 25, further comprising:
    updating configuration of a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the detecting in the preconfigured uplink resource region.
  37. A method comprising:
    receiving, at a terminal device from a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels;
    selecting a coverage enhancement level from the plurality of coverage enhancement levels;
    selecting a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level; and
    transmitting uplink data in the selected preconfigured uplink resource region.
  38. The method of claim 37, wherein at least one of the plurality of the preconfigured uplink resource regions is configured periodically.
  39. The method of claim 37, wherein the indication indicates at least a period and a reference start time point for the at least one of the plurality of preconfigured uplink resource regions.
  40. The method of claim 37, wherein at least one of the plurality of preconfigured uplink resource regions comprises a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain, and
    wherein the indication indicates at least the resource unit size for the at least one of the plurality ofpreconfigured uplink resource regions.
  41. The method of claim 37, wherein the plurality of preconfigured uplink resource regions are separated from each other.
  42. The method of claim 37, wherein the indication indicates at least a reference start time point and a set of candidate time offsets relative to the reference start time point predefined for the selected preconfigured uplink resource region, and transmitting the uplink data comprises:
    selecting, based on amount of uplink data to be transmitted, a transmission block size from a set of transmission block sizes associated with the selected coverage enhancement level;
    selecting a candidate time offset from the set of candidate time offsets based on the selected transmission block size; and
    transmitting the uplink data with the selected transmission block size in the selected preconfigured uplink resource region starting from the selected candidate time offset.
  43. The method of claim 42, wherein the selected preconfigured uplink resource region comprises a set of resource units, the resource units in the set of resource units having the same resource unit size and being continuous in a time domain, and
    wherein at least one candidate time offset in the set of candidate time offsets is indicated by the number of resource units.
  44. The method of claim 42, wherein at least one candidate time offset in the  set of candidate time offsets is indicated by the number of subframes or slots.
  45. The method of claim 42, wherein transmitting the uplink data with the selected transmission block size comprises:
    transmitting a number of repetitions of the uplink data with the selected transmission block size in the selected preconfigured uplink resource region starting from the selected candidate time offset.
  46. The method of claim 42, wherein selecting the candidate time offset from the set of candidate time offsets comprises:
    selecting a plurality of candidate time offsets from the set of candidate time offsets based on the selected transmission block size; and
    selecting one of the plurality of candidate time offsets with equal probability.
  47. The method of claim 37, wherein the indication is broadcast in system information.
  48. The method of claim 37, wherein at least one of the plurality of preconfigured uplink resource regions is contention based.
  49. An apparatus comprising:
    means for broadcasting, at a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels associated with terminal devices; and
    means for detecting uplink data in the plurality of preconfigured uplink resource regions.
  50. An apparatus comprising:
    means for receiving, at a terminal device from a network device, an indication of a plurality of preconfigured uplink resource regions for uplink data transmission, each of the plurality of preconfigured uplink resource regions predefined for one of a plurality of coverage enhancement levels associated with a terminal device;
    means for selecting a coverage enhancement level from the plurality of coverage  enhancement levels;
    means for selecting a preconfigured uplink resource region of the plurality of preconfigured uplink resource regions based on the selected coverage enhancement level; and
    means for transmitting uplink data in the selected preconfigured uplink resource region.
  51. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method of any of claims 25-36.
  52. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method of any of claims 37-48.
PCT/CN2018/115282 2018-11-13 2018-11-13 Uplink data resource pre-configuration WO2020097805A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880099472.3A CN113016206B (en) 2018-11-13 2018-11-13 Apparatus, method, device and storage medium for pre-configuration of uplink data resources
PCT/CN2018/115282 WO2020097805A1 (en) 2018-11-13 2018-11-13 Uplink data resource pre-configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115282 WO2020097805A1 (en) 2018-11-13 2018-11-13 Uplink data resource pre-configuration

Publications (1)

Publication Number Publication Date
WO2020097805A1 true WO2020097805A1 (en) 2020-05-22

Family

ID=70730199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115282 WO2020097805A1 (en) 2018-11-13 2018-11-13 Uplink data resource pre-configuration

Country Status (2)

Country Link
CN (1) CN113016206B (en)
WO (1) WO2020097805A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160135013A (en) * 2015-05-14 2016-11-24 주식회사 케이티 Apparatus and method of UL physical channel transmission and reception for MTC UEs
CN108023706A (en) * 2016-11-03 2018-05-11 夏普株式会社 Response message feedback method, base station and user equipment without authorized transmissions
WO2018170924A1 (en) * 2017-03-24 2018-09-27 华为技术有限公司 Resource scheduling method, terminal device, and network device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160135013A (en) * 2015-05-14 2016-11-24 주식회사 케이티 Apparatus and method of UL physical channel transmission and reception for MTC UEs
CN108023706A (en) * 2016-11-03 2018-05-11 夏普株式会社 Response message feedback method, base station and user equipment without authorized transmissions
WO2018170924A1 (en) * 2017-03-24 2018-09-27 华为技术有限公司 Resource scheduling method, terminal device, and network device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Physical uplink control channels (Rl-157024", 3GPP TSG RAN WGI #83, 22 November 2015 (2015-11-22) *

Also Published As

Publication number Publication date
CN113016206B (en) 2023-04-25
CN113016206A (en) 2021-06-22

Similar Documents

Publication Publication Date Title
US10182457B2 (en) Methods for transmitting and receiving physical random access channel (PRACH), base station and user equipment
RU2687033C1 (en) Transmitting a random access response message
EP3639588B1 (en) Uplink carrier selection for prach transmission between a nr dedicated carrier and a lte/nr shared carrier
US11844109B2 (en) Controlling AUL transmissions when coexisting with scheduled UEs
US20160174083A1 (en) Coverage-deficient terminal connection procedures
US10419185B2 (en) System and method for listen before talk-based random access with partial subframes
WO2019241978A1 (en) Transport block size for contention free random access in random access procedure
JP2020523883A (en) Method performed by user equipment and method performed by base station
US20210329692A1 (en) Repetitive random access transmissions
EP3457789B1 (en) User terminal and wireless communication method
US20230006799A1 (en) Communication system
WO2020029070A1 (en) Method, apparatus and computer readable media for resource allocation
CN114846824A (en) Counting of devices
CN111096030B (en) Method, apparatus and computer readable storage medium for unlicensed band communication
US20220338273A1 (en) Methods, ue and network node for handling prach configurations
US10694391B2 (en) Device and method for controlling use of a frequency band shared by a cellular system and wireless system among multiple base stations
WO2020097805A1 (en) Uplink data resource pre-configuration
WO2021250574A1 (en) Resource collision avoidance in sidelink for discontinuous reception (drx)
JP2023534172A (en) COMMUNICATION METHOD, COMMUNICATION DEVICE AND COMPUTER STORAGE MEDIUM FOR COMMUNICATION
WO2024031408A1 (en) Efficient positioning referece signal detection for sidelink positioning in unlicensed spectrum
US20220400514A1 (en) Controlling transmission medium access in an open spectrum
CN117597995A (en) Method, apparatus and computer readable medium for communication
CN116647885A (en) Demodulation performance degradation for autonomous reception beam switching by a UE
CN116097873A (en) Improved monitoring of random access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940430

Country of ref document: EP

Kind code of ref document: A1