WO2020096473A1 - Connector for explosion protection system for constructions - Google Patents

Connector for explosion protection system for constructions Download PDF

Info

Publication number
WO2020096473A1
WO2020096473A1 PCT/PT2019/050042 PT2019050042W WO2020096473A1 WO 2020096473 A1 WO2020096473 A1 WO 2020096473A1 PT 2019050042 W PT2019050042 W PT 2019050042W WO 2020096473 A1 WO2020096473 A1 WO 2020096473A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
outer body
inner body
protection
explosion
Prior art date
Application number
PCT/PT2019/050042
Other languages
French (fr)
Portuguese (pt)
Inventor
Gabriel De Jesus GOMES
Vitor Manuel Martins PEREIRA
Eduardo Nuno Brito Santos JÚLIO
Original Assignee
Instituto Superior Técnico
Academia Militar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Superior Técnico, Academia Militar filed Critical Instituto Superior Técnico
Publication of WO2020096473A1 publication Critical patent/WO2020096473A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/04Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against air-raid or other war-like actions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/88Curtain walls
    • E04B2/90Curtain walls comprising panels directly attached to the structure
    • E04B2/94Concrete panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/121Vibration-dampers; Shock-absorbers using plastic deformation of members the members having a cellular, e.g. honeycomb, structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/125Units with a telescopic-like action as one member moves into, or out of a second member
    • F16F7/126Units with a telescopic-like action as one member moves into, or out of a second member against the action of shear pins; one member having protuberances, e.g. dimples, ball bearings which cause the other member to deform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0208Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0241Fibre-reinforced plastics [FRP]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape
    • F16F2234/02Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/124Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by their special construction from fibre-reinforced plastics

Definitions

  • the present disclosure inserted in the technical field of civil engineering, refers to a system of protection of buildings, in particular buildings, against explosions that comprises a prefabricated reinforced concrete facade panel or other material with adequate capacity to deform by dissipating energy, connected to the building structure through connectors capable of absorbing energy from explosions, thus significantly reducing the actions transmitted to the structure and redistributing them at the floor level.
  • FRPs offer great benefits as a masonry reinforcement technique, allowing to increase the flexural strength outside the plane.
  • the problem is that none of these systems truly solves the issue of vulnerability, possible local collapse and the potential global collapse of the structure.
  • the achievements presented here allow to absorb part of the energy of the explosion and to redistribute the remainder by the overall structure, at the floor level. In this way, it transforms it into an action equivalent to seismic or wind action, regulatory actions for which the structures are already dimensioned, protecting the supporting elements and ensuring structural stability. In addition, and not least, they also allow to mitigate the projection of fragments resulting from fragile elements normally contained in façades, as it functions as an encapsulation system.
  • the present disclosure refers to a system that dissipates energy from explosions that falls within the technical domain of Civil Engineering.
  • a connector for a building protection system against explosions comprising: a heatsink to absorb the energy of the explosion by plastic deformation; an interior body comprising a base and one or more side surfaces for containing the heatsink; an outer body comprising a base and side surface for containing and enveloping the inner body; wherein the inner body and the outer body are fitted in a linearly slidable way and are blocked from separating the inner body and the outer body.
  • the connector for protecting buildings from explosions comprises a guide for linear fitting of the inner body to the outer body.
  • said guide comprises a groove in the inner body or in the outer body and a pin to slide linearly in said groove, respectively, in the outer body or in the inner body so that the inner body and the outer body fit together. linearly sliding and blocked form to separate the interior and exterior body.
  • the heatsink is tubes arranged transversely to the linearly sliding fitting movement between the inner body and the outer body.
  • said heatsink is thin-walled tubes with a circular, hexagonal or equivalent section.
  • the sections can be filled with foam, preferably metallic foam.
  • Said tubes may have a tubular section, open or closed, with a thin, empty wall or filled with metal foams or other material with plastic deformation capacity.
  • Said tubes may contain additional tubes inside, with the same or different diameter, which in turn, they may contain other tubes, with the same or different diameter.
  • the heatsink is metallic, in particular aluminum alloys, mild steel (from English: mild Steel), or fiber reinforced composites (FRC).
  • the connector comprises one or more holes for fixing.
  • the connector comprises a cutting element to drive the metal structure.
  • a system for protecting buildings against explosions which comprises a facade panel and a plurality of connectors in which the panel is coupled to the plurality of connectors for supporting said panel.
  • the building protection system against explosions comprises the reinforced concrete facade panel.
  • Figure 1 represents an embodiment of an exemplary detail of the energy absorption connector in which:
  • Figure 2 perspective of an embodiment of the present invention in which:
  • Figure 3 schematic representation of realizations with possible combinations of tubes for placement in the connector housing, in which the figures in the figure correspond to the size of the tubes in mm.
  • Figure 4 schematic representation of realizations of types of boxes.
  • Table 1 Projects with the dimensions of each type of box
  • Table 2 Main properties of the materials used in the present invention (according to the supplier).
  • the present disclosure makes it possible to keep the cladding panel without direct contact with the elements to be protected, using dissipating supports at floor level, with a sufficient stroke to accommodate (by compression) the intensity of a given explosion.
  • the advantages of the present realizations are evident, both in the protection of critical elements, and because it allows the use of the space between the cladding panel and the structure for thermal and / or acoustic insulation.
  • the cladding panel acts on the supports, which by compression begin to deform the material contained within. This process allows the partial or total absorption of the energy transmitted by the explosion, depending on its magnitude and the
  • the connectors are formed by a metallic box, with two parts (1,3), thin-walled tubular elements, metallic or other ductile material, in number and variable geometry (5) , placed inside said box.
  • the shortening of the box without dimensional variation in the orthogonal directions is guaranteed by a guide system (2,4) whose linear dimension represents the available stroke for dissipation.
  • the shortening of the connector exploits the plastic deformation capacity of the preferably tubular elements, confined by the box.
  • the aforementioned guide system also limits the maximum widening, preventing the facade panel from falling out of the building due to the negative phase of the shock wave (suction).
  • the connector preferably also includes a hole for placing a retaining pin (6), dimensioned to work by cutting, when a certain level of stress is exceeded. Its insertion in the connector prevents it from shortening due to actions other than explosion. Together with the guide screw (4), it simultaneously maintains the exterior alignment of the facade panels. Finally, the connector preferably has a hole for fixing it to the facade panel (7), ensuring the cohesion of the system.
  • SP Protection System
  • CAE Energy Absorption Connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

A connector for protecting buildings against explosions, comprising: a dissipator (5) for absorbing the energy of the explosion by plastic deformation; an inner body (3) that includes a base and one or more lateral surfaces to contain the dissipator; an outer body (1) that includes a base and a lateral surface to contain and envelop the inner body; in which the inner body (3) and the outer body (1) are engaged linearly and slidingly, and locked apart from the inner body and outer body. The connector also includes a guide (2) for linearly engaging the inner body (3) in the outer body (1). The guide (2) includes a slot in the inner body (3) or in the outer body (1) and a pin (4) for sliding linearly in said slot of the outer body (1) or inner body (3) respectively. The connector also has one or more fastening orifices (7) and a cutting element (6).

Description

D E S C R I Ç Ã O  DESCRIPTION
CONECTOR PARA SISTEMA DE PROTEÇÃO CONTRA EXPLOSÕESCONNECTOR FOR EXPLOSION PROTECTION SYSTEM
PARA CONSTRUÇÕES FOR CONSTRUCTIONS
D OM Í N I O TÉ CN I C O D OM I N I T CN I C O
[0001] A presente divulgação, inserida no domínio técnico da engenharia civil, refere-se a um sistema de proteção de construções, em particular edifícios, contra explosões que compreende um painel de fachada prefabricado em betão armado ou noutro material com adequada capacidade de se deformar dissipando energia, ligado à estrutura do edifício através de conectores com capacidade de absorção da energia proveniente de explosões, reduzindo assim significativamente as ações transmitidas à estrutura e redistribuindo-as ao nível dos pisos. [0001] The present disclosure, inserted in the technical field of civil engineering, refers to a system of protection of buildings, in particular buildings, against explosions that comprises a prefabricated reinforced concrete facade panel or other material with adequate capacity to deform by dissipating energy, connected to the building structure through connectors capable of absorbing energy from explosions, thus significantly reducing the actions transmitted to the structure and redistributing them at the floor level.
AN TE CE D E N TE S AN E CE D E N TE S
[0002] A análise de diversos casos de edifícios atingidos diretamente por explosões bem como de muitos estudos desenvolvidos sobre o tema permitiram, entre outras constatações, perceber que: 1) os elementos de revestimento de fachadas (alvenarias, caixilharias, painéis, outros) apresentam uma resistência muito inferior à dos elementos de suporte, resultando no seu colapso antes que existam consequências mais gravosas na estrutura portante; 2) a projeção de fragmentos de elementos das fachadas para o interior das construções pode ser letal, sendo um problema premente a controlar; 3) numa explosão convencional pelo exterior, o dano é primeiramente local (e.g. num pilar) podendo traduzir-se contudo num colapso global (colapso progressivo) . [0003] Por esta razão, uma série de soluções de proteção referidas na literatura são baseadas em encamisamento dos elementos com betão de alto desempenho reforçado com fibras. No entanto, essas intervenções são muito intrusivas e onerosas, sendo por isso raramente aplicadas a instalações existentes, além de não solucionarem os problemas anteriormente descritos em 1) e 2) . A fim de reduzir o peso das soluções de proteção sem prejudicar a sua capacidade de absorção de energia, vários investigadores focaram-se em barreiras anti-explosão fabricadas em painéis de aço perfilado, designadamente painéis sanduíche. O problema da fragmentação de paredes (especialmente de alvenaria não reforçada) e dos vãos envidraçados e a consequente possibilidade de lesão dos ocupantes das infraestruturas , foram alvo de inúmeros estudos, que são geralmente dedicados a: a) adicionar massa ao sistema, aumentando a espessura com paredes internas em alvenaria, betão ou elementos metálicos; b) adição de elementos verticais em aço, como forma de reduzir substancialmente o espaço livre para o sistema de parede; c) uso de polímeros reforçados com fibras (do inglês FRP - Fiber Reinforced Polymers) , colados à superfície para melhor suportar as elevadas tensões induzidas pelas explosões. Os dois primeiros têm a desvantagem de envolver perturbações significativas aos ocupantes da instalação em termos de tempo requerido para intervenção e perda de espaço interior. O uso de FRPs oferece grandes benefícios como técnica de reforço de alvenaria, permitindo aumentar a resistência à flexão fora do plano. Apesar do incremento de resistência obtido pelas soluções anteriormente apresentadas, o problema é que verdadeiramente nenhum destes sistemas resolve a questão da vulnerabilidade, do possível colapso local e do potencial colapso global da estrutura. [0002] The analysis of several cases of buildings directly affected by explosions as well as of many studies developed on the subject allowed, among other findings, to realize that: 1) the elements of facade cladding (masonry, window frames, panels, others) present a much lower resistance than that of the supporting elements, resulting in their collapse before there are more serious consequences on the supporting structure; 2) the projection of fragments of elements from the facades into the interior of the buildings can be lethal, being an urgent problem to be controlled; 3) in a conventional explosion from the outside, the damage is primarily local (eg on a pillar) but can be translated into a global collapse (progressive collapse). [0003] For this reason, a series of protection solutions referred to in the literature are based on jacketing the elements with high performance concrete reinforced with fibers. However, these interventions are very intrusive and costly, so they are rarely applied to existing installations, in addition to not solving the problems previously described in 1) and 2). In order to reduce the weight of the protection solutions without impairing their energy absorption capacity, several researchers have focused on explosion barriers made of profiled steel panels, namely sandwich panels. The problem of fragmentation of walls (especially of unreinforced masonry) and glazed spans and the consequent possibility of injury to the occupants of the infrastructure, have been the subject of numerous studies, which are generally dedicated to: a) adding mass to the system, increasing the thickness with internal walls in masonry, concrete or metallic elements; b) addition of vertical steel elements, as a way to substantially reduce the free space for the wall system; c) use of fiber reinforced polymers (from English FRP - Fiber Reinforced Polymers), glued to the surface to better withstand the high stresses induced by the explosions. The first two have the disadvantage of involving significant disturbances to the occupants of the installation in terms of the time required for intervention and loss of interior space. The use of FRPs offers great benefits as a masonry reinforcement technique, allowing to increase the flexural strength outside the plane. Despite the increase in resistance obtained by the solutions presented above, the problem is that none of these systems truly solves the issue of vulnerability, possible local collapse and the potential global collapse of the structure.
[0004] Em contrapartida, as realizações aqui apresentadas permitem absorver parte da energia da explosão e redistribuir a remanescente pela estrutura global, ao nível dos pisos. Deste modo, transforma-a numa ação equivalente à ação sísmica ou à ação do vento, ações regulamentares para as quais as estruturas já se encontram dimensionadas, protegendo os elementos portantes e assegurando a estabilidade estrutural. Para além disso, e não menos importante, permitem ainda mitigar a projeção de fragmentos resultantes de elementos frágeis normalmente contidos em fachadas, porquanto funciona como um sistema de encapsulamento. [0004] On the other hand, the achievements presented here allow to absorb part of the energy of the explosion and to redistribute the remainder by the overall structure, at the floor level. In this way, it transforms it into an action equivalent to seismic or wind action, regulatory actions for which the structures are already dimensioned, protecting the supporting elements and ensuring structural stability. In addition, and not least, they also allow to mitigate the projection of fragments resulting from fragile elements normally contained in façades, as it functions as an encapsulation system.
[0005] Estes factos são aqui apresentados de forma a melhor ilustrar o problema técnico resolvido pelas presentes realizações . [0005] These facts are presented here in order to better illustrate the technical problem solved by the present achievements.
DE S CRI ÇÃO GE RAL GENERAL DESCRIPTION
[0006] A presente divulgação refere-se a um sistema dissipador de energia proveniente das explosões que se insere no domínio técnico da Engenharia Civil. [0006] The present disclosure refers to a system that dissipates energy from explosions that falls within the technical domain of Civil Engineering.
[0007] As estruturas correntes não são dimensionadas para suportar cargas devidas a explosões razão pela qual o colapso de certos elementos mais vulneráveis e/ou na proximidade da explosão tem elevada probabilidade de ocorrência, com um elevado potencial de se formarem, na sequência do primeiro, mecanismos de colapso progressivo, podendo conduzir ao colapso total da estrutura. Em contrapartida, as presentes realizações permitem a absorção da maior parte da ação gerada pela explosão e a redistribuição do valor remanescente ao nível dos pisos da estrutura, solicitando-a assim como se de uma ação dinâmica regulamentar (e.g. sismo, vento) se tratasse, dotando-a deste modo da capacidade para resistir à ação da onda de choque originada pela explosão. [0007] Current structures are not designed to withstand charges due to explosions, which is why the collapse of certain more vulnerable elements and / or in the vicinity of the explosion has a high probability of occurrence, with a high potential to form, following the first , progressive collapse mechanisms, which can lead to the total collapse of the structure. In contrast, the present achievements allow the absorption of most of the action generated by the explosion and the redistribution of the remaining value at the level of the structure's floors, thus requesting it as if it were a dynamic regulatory action (eg earthquake, wind), thus endowing it with the ability to resist the action of the shock wave caused by the explosion.
[0008] Descreve-se um conector para um sistema de proteção de construções contra explosões que compreende: um dissipador para absorção da energia da explosão por deformação plástica; um corpo interior que compreende uma base e uma ou mais superfícies laterais para conter o dissipador; um corpo exterior que compreende uma base e superfície lateral para conter e envolver o corpo interior; em que o corpo interior e o corpo exterior estão encaixados de forma linearmente deslizável e bloqueada à separação do corpo interior e do corpo exterior. [0008] A connector for a building protection system against explosions is described, comprising: a heatsink to absorb the energy of the explosion by plastic deformation; an interior body comprising a base and one or more side surfaces for containing the heatsink; an outer body comprising a base and side surface for containing and enveloping the inner body; wherein the inner body and the outer body are fitted in a linearly slidable way and are blocked from separating the inner body and the outer body.
[0009] Numa realização preferencial, o conector para proteção de construções contra explosões compreende uma guia para encaixe linear do corpo interior no corpo exterior. [0009] In a preferred embodiment, the connector for protecting buildings from explosions comprises a guide for linear fitting of the inner body to the outer body.
[0010] Numa realização preferencial, a referida guia compreende uma ranhura no corpo interior ou no corpo exterior e um pino para deslizar linearmente na referida ranhura, respetivamente, no corpo exterior ou no corpo interior para que o corpo interior e o corpo exterior encaixem de forma linearmente deslizável e bloqueada à separação do corpo interior e exterior. [0010] In a preferred embodiment, said guide comprises a groove in the inner body or in the outer body and a pin to slide linearly in said groove, respectively, in the outer body or in the inner body so that the inner body and the outer body fit together. linearly sliding and blocked form to separate the interior and exterior body.
[0011] Numa realização preferencial, o dissipador são tubos dispostos transversalmente ao movimento de encaixe linearmente deslizável entre o corpo interior e o corpo exterior . [0011] In a preferred embodiment, the heatsink is tubes arranged transversely to the linearly sliding fitting movement between the inner body and the outer body.
[0012] Numa realização preferencial, o referido dissipador são tubos de parede fina com secção circular, hexagonal ou equivalente . [0012] In a preferred embodiment, said heatsink is thin-walled tubes with a circular, hexagonal or equivalent section.
[0013] Numa realização preferencial, as secções podem ser preenchidas com espuma, de preferência espuma metálica. [0013] In a preferred embodiment, the sections can be filled with foam, preferably metallic foam.
[0014] Os referidos tubos podem ter secção tubular, aberta ou fechada, de parede fina, vazia ou preenchida com espumas metálicas ou outro material com capacidade de deformação plástica. Os referidos tubos podem conter tubos adicionais no seu interior, com o mesmo ou diferente diâmetro, que por sua vez, podem conter outros tubos, com o mesmo ou diferente diâmetro . [0014] Said tubes may have a tubular section, open or closed, with a thin, empty wall or filled with metal foams or other material with plastic deformation capacity. Said tubes may contain additional tubes inside, with the same or different diameter, which in turn, they may contain other tubes, with the same or different diameter.
[0015] Numa realização preferencial, o dissipador é metálico, em particular ligas de alumínio, aço macio (do inglês: mild Steel), ou compósitos reforçados com fibras ( FRC ) . [0015] In a preferred embodiment, the heatsink is metallic, in particular aluminum alloys, mild steel (from English: mild Steel), or fiber reinforced composites (FRC).
[0016] Numa realização preferencial, o conector compreende um ou mais orifícios para fixação. [0016] In a preferred embodiment, the connector comprises one or more holes for fixing.
[0017] Numa realização preferencial, o conector compreende um elemento de corte para acionar a estrutura metálica. [0017] In a preferred embodiment, the connector comprises a cutting element to drive the metal structure.
[0018] Descreve-se ainda um sistema de proteção de construções contra explosões, que compreende painel de fachada e uma pluralidade de conectores em que o painel está acoplado à pluralidade de conectores para suporte do referido painel . [0018] Also described is a system for protecting buildings against explosions, which comprises a facade panel and a plurality of connectors in which the panel is coupled to the plurality of connectors for supporting said panel.
[0019] Numa realização preferencial, o sistema de proteção de construções contra explosões compreende o painel de fachada em betão armado. [0019] In a preferred embodiment, the building protection system against explosions comprises the reinforced concrete facade panel.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
[0020] Para uma mais fácil compreensão da presente divulgação juntam-se em anexo as figuras, as quais, representam realizações preferenciais que, contudo, não pretendem limitar o objeto da presente divulgação. [0020] For an easier understanding of the present disclosure, the figures are attached, which represent preferential realizations that, however, do not intend to limit the object of this disclosure.
[0021] Figura 1: representa uma realização de um pormenor exemplificativo do conector de absorção de energia em que:  [0021] Figure 1: represents an embodiment of an exemplary detail of the energy absorption connector in which:
( 1 ) Representa a parte superior da caixa metálica;  (1) Represents the upper part of the metal box;
( 2 ) Representa o sistema de guia;  (2) Represents the guidance system;
( 3 ) Representa a parte inferior da caixa metálica;  (3) Represents the bottom of the metal box;
( 4 ) Representa o parafuso de guia;  (4) Represents the guide screw;
( 5 ) Representa os elementos tubulares de paredes finas; (5) Represents thin-walled tubular elements;
( 6 ) Representa a cavilha de retenção; ( 7 ) Representa o orifício para fixação. (6) Represents the retaining pin; (7) Represents the fixing hole.
[0022] Figura 2: perspetiva de uma realização da presente invenção em que : [0022] Figure 2: perspective of an embodiment of the present invention in which:
( 8 ) Representa o conector;  (8) Represents the connector;
( 9 ) Representa o painel de fachada;  (9) Represents the facade panel;
( 10 ) Representa um pilar;  (10) Represents a pillar;
( 11 ) Representa uma laje.  (11) Represents a slab.
[0023] Figura 3: representação esquemática de realizações com combinações possíveis de tubos para colocação na caixa do conector, em que os valores da figura correspondem ao tamanho dos tubos em mm.  [0023] Figure 3: schematic representation of realizations with possible combinations of tubes for placement in the connector housing, in which the figures in the figure correspond to the size of the tubes in mm.
[0024] Figura 4: representação esquemática de realizações de tipos de caixas.  [0024] Figure 4: schematic representation of realizations of types of boxes.
[0025] As seguintes tabelas representam realizações com dimensões de cada tipo de caixa, e realizações com as principais propriedades dos materiais utilizados na presente invenção . [0025] The following tables represent realizations with dimensions of each type of box, and realizations with the main properties of the materials used in the present invention.
[0026] Tabela 1: Realizações com as dimensões de cada tipo de caixa  [0026] Table 1: Projects with the dimensions of each type of box
Figure imgf000008_0001
Figure imgf000008_0001
[0027] Tabela 2: Principais propriedades dos materiais utilizados na presente invenção (segundo o fornecedor) .
Figure imgf000009_0001
Figure imgf000009_0002
[0027] Table 2: Main properties of the materials used in the present invention (according to the supplier).
Figure imgf000009_0001
Figure imgf000009_0002
1
Figure imgf000010_0001
1
Figure imgf000010_0001
DE S CRI ÇÃO DE TALHADA DETAILED DESCRIPTION
[0028] A utilização de painéis pré-fabricados em revestimentos de fachada não é nova e apresenta-se como uma solução de aplicação rápida e eficiente. Contudo, os painéis tradicionais são aplicados ou sobrepostos, nas faces expostas de elementos de suporte e pisos, e ligados rigidamente à estrutura. A solução referida, ao transferir todas as cargas impostas para os elementos em contacto, não protege verdadeiramente os elementos críticos nem impede o colapso local. As soluções protetivas empregues de forma mais recorrente assentam na adição de elementos planares (núcleos dissipativos em soluções tipo sanduíche ou elementos metálicos) com o objetivo de mitigar a transferência de cargas, mas assim que a capacidade dissipativa é excedida o problema persiste. [0028] The use of prefabricated panels in facade coverings is not new and presents itself as a fast and efficient application solution. However, traditional panels are applied or overlaid, on the exposed faces of support elements and floors, and rigidly attached to the structure. The referred solution, when transferring all the imposed loads to the elements in contact, does not truly protect the critical elements or prevent the local collapse. The protective solutions employed more frequently are based on the addition of planar elements (dissipative cores in sandwich solutions or metallic elements) in order to mitigate the transfer of loads, but once the dissipative capacity is exceeded, the problem persists.
[0029] A presente divulgação permite manter o painel de revestimento sem contacto direto com os elementos a proteger, empregando apoios dissipadores ao nível dos pisos, com um curso suficiente para acomodar (por compressão) a intensidade de uma dada explosão. As vantagens das presentes realizações são evidentes, quer na proteção dos elementos críticos, quer porque permite o aproveitamento do espaço entre o painel de revestimento e a estrutura para isolamento térmico e/ou acústico. Assim que o painel de revestimento é solicitado, este atua sobre os apoios, que por compressão começam a deformar o material contido no seu interior. Este processo permite a absorção parcial ou total da energia transmitida pela explosão, dependendo da sua magnitude e do [0029] The present disclosure makes it possible to keep the cladding panel without direct contact with the elements to be protected, using dissipating supports at floor level, with a sufficient stroke to accommodate (by compression) the intensity of a given explosion. The advantages of the present realizations are evident, both in the protection of critical elements, and because it allows the use of the space between the cladding panel and the structure for thermal and / or acoustic insulation. As soon as the cladding panel is requested, it acts on the supports, which by compression begin to deform the material contained within. This process allows the partial or total absorption of the energy transmitted by the explosion, depending on its magnitude and the
2 dimensionamento do conector. A parte residual será transmitida à estrutura ao nivel dos pisos, mobilizando assim a sua capacidade resistente às ações horizontais. 2 connector sizing. The residual part will be transmitted to the structure at the level of the floors, thus mobilizing its capacity resistant to horizontal actions.
[0030] Os conectores, de acordo com as presentes realizações, são formados por uma caixa metálica, com duas partes (1,3), elementos tubulares de parede fina, metálicos ou de outro material dúctil, em número e geometria variável (5), colocados no interior da referida caixa. O encurtamento da caixa sem variação dimensional nas direções ortogonais é garantido por um sistema de guia (2,4) cuja dimensão linear representa o curso disponível para dissipação. O encurtamento do conector explora a capacidade de deformação plástica dos elementos preferencialmente tubulares, confinados pela caixa. O referido sistema de guia limita ainda o alargamento máximo, impedindo que o painel de fachada caia para o exterior do edifício por ação da fase negativa da onda de choque (sucção) . O conector inclui ainda preferencialmente um orifício para colocação de uma cavilha de retenção (6), dimensionada para funcionar por corte, quando excedido um determinado nível de solicitação. A sua inserção no conector impede que este encurte em razão de outras ações que não a de explosão. Em conjunto com o parafuso guia (4) mantém simultaneamente o alinhamento exterior dos painéis de fachada. Finalmente, o conector dispõe preferencialmente de um orifício para a sua fixação ao painel de fachada (7), garantido a coesão do sistema. [0030] The connectors, according to the present realizations, are formed by a metallic box, with two parts (1,3), thin-walled tubular elements, metallic or other ductile material, in number and variable geometry (5) , placed inside said box. The shortening of the box without dimensional variation in the orthogonal directions is guaranteed by a guide system (2,4) whose linear dimension represents the available stroke for dissipation. The shortening of the connector exploits the plastic deformation capacity of the preferably tubular elements, confined by the box. The aforementioned guide system also limits the maximum widening, preventing the facade panel from falling out of the building due to the negative phase of the shock wave (suction). The connector preferably also includes a hole for placing a retaining pin (6), dimensioned to work by cutting, when a certain level of stress is exceeded. Its insertion in the connector prevents it from shortening due to actions other than explosion. Together with the guide screw (4), it simultaneously maintains the exterior alignment of the facade panels. Finally, the connector preferably has a hole for fixing it to the facade panel (7), ensuring the cohesion of the system.
[0031] De seguida, descrevem-se resultados obtidos com realizações preferenciais cujos resultados estão documentados nas figuras 3-4 e nas tabelas da presente divulgação . [0031] Below, the results obtained with preferred realizations are described, the results of which are documented in figures 3-4 and in the tables of the present disclosure.
[0032] A resposta em regime quase-estático dos diferentes arranjos de tubos elegíveis para colocação na caixa do conector foi estudada. Os ensaios de compressão em regime [0032] The quasi-static response of the different tube arrangements eligible for placement in the connector housing has been studied. Compression tests in steady state
3 quase-estático foram realizados numa máquina universal de ensaios Instron 8800D com sistema de garras de aperto hidráulico regulável e 250 kN de capacidade de carga. O carregamento foi aplicado com controlo de deslocamentos, tendo sido prescrita uma velocidade de 0,4 mm/ s . Tanto a carga aplicada como o deslocamento relativo entre cabeçotes foram registados por intermédio de um data logger, com uma taxa de aquisição de dados de 10 Hz. Os espécimes foram ensaiados até a um nivel de deslocamento que antecedeu o limite de fecho da caixa, evitando-se esgotar o curso deformável máximo do conector que corresponde a um crescimento abrupto na carga aplicada - susceptivel de danificar o instrumento de ensaio. Tendo por objectivo determinar o arranjo com melhores caracteristicas de absorção de energia, optou-se por proceder ao ensaio das configurações constantes da primeira linha da Figura 3, selecionando nesta a mais vantajosa. Uma vez que as linhas evoluem com a introdução das mesmas alterações para todos os seus elementos, o passo seguinte foi analisar a coluna que lhe corresponde e escolher o elemento que reúne as melhores caracteristicas de absorção energética. 3 quasi-static tests were carried out on an Instron 8800D universal testing machine with an adjustable hydraulic clamping system and 250 kN of load capacity. The load was applied with displacement control, and a speed of 0.4 mm / s was prescribed. Both the applied load and the relative displacement between heads were recorded using a data logger, with a data acquisition rate of 10 Hz. The specimens were tested up to a displacement level that preceded the box's closing limit, avoiding - the maximum deformable stroke of the connector is exhausted, which corresponds to an abrupt increase in the applied load - likely to damage the test instrument. In order to determine the arrangement with the best energy absorption characteristics, it was decided to test the configurations in the first line of Figure 3, selecting the most advantageous one. Once the lines evolve with the introduction of the same changes for all its elements, the next step was to analyze the column that corresponds to it and choose the element that brings together the best energy absorption characteristics.
[0033] O desempenho energético foi avaliado através de indicadores como a absorção de energia total ( TEA) , a absorção de energia especifica ( SEA) , a força média de esmagamento ( MCF) , a eficiência da força de esmagamento ( CFE ) , a eficiência do esmagamento ( CE ) , o trabalho efectivo (Wef ) e a energia absorvida por unidade de altura ( EHL) , que são referenciados em vários artigos publicados neste âmbito. Em termos de absorção de energia, de acordo com a tabela 3, o arranjo 1E apresentou o melhor comportamento e, de acordo com a tabela 4, o arranjo 1E seria a pior opção. No entanto, este foi o arranjo escolhido para colocar na caixa do conector avaliado na fase de ensaios com recurso a [0033] Energy performance was assessed using indicators such as total energy absorption (TEA), specific energy absorption (SEA), average crushing force (MCF), crushing force efficiency (CFE), crushing efficiency (CE), effective work (W ef) and energy absorbed per unit height (EHL), which are referenced in several articles published in this area. In terms of energy absorption, according to table 3, arrangement 1E presented the best behavior and, according to table 4, arrangement 1E would be the worst option. However, this was the arrangement chosen to place in the connector box evaluated in the testing phase using
4 explosivos, em virtude da sua configuração simples, curso deformável e capacidade resistente perante as condições de ensaio com explosivos prescritas. 4 explosives, due to its simple configuration, deformable stroke and resistant capacity under the prescribed explosive test conditions.
[0034] Tabela 3: Caracteristicas de absorção de energia de ensaios de compressão em regime quase-estático - Ia linha [0034] Table 3: Energy absorption characteristics of compression tests on quasi-static regime - the line I
Figure imgf000013_0001
Figure imgf000013_0001
[0035] Tabela 4: Caracteristicas de absorção de energia de ensaios de compressão em regime quase-estático - coluna E [0035] Table 4: Energy absorption characteristics of quasi-static compression tests - column E
Figure imgf000013_0002
[0036] Quando submetido aos ensaios com recurso a explosivos, cujo plano e síntese de resultados se apresenta na tabela 5, verificou-se que:
Figure imgf000013_0002
[0036] When submitted to the tests using explosives, whose plan and synthesis of results are shown in table 5, it was found that:
5 • O Sistema de Protecção (SP) apresentou um óptimo comportamento em termos de distribuição do carregamento proveniente das explosões e posterior encaminhamento para os Conectores de Absorção de Energia (CAE) , não se registando qualquer fenómeno de deformação localizada;5 • The Protection System (SP) showed an excellent behavior in terms of distribution of the load from the explosions and subsequent routing to the Energy Absorption Connectors (CAE), with no localized deformation phenomenon;
• A deformação registada nos elementos tubulares das camadas inferiores dos CAE foi muito reduzida e permite concluir que o emprego deste tipo de SP materializa um meio de reduzir a transmissão do carregamento aplicado à estrutura que se pretende proteger; a deformação dos CAE indiciou ainda a adequada relação de rigidez entre o painel e os CAE, possibilitando que ambos se deformassem, absorvendo a energia proveniente da explosão ; • The deformation recorded in the tubular elements of the lower layers of the PPAs was very low and allows us to conclude that the use of this type of SP materializes a means of reducing the transmission of the load applied to the structure to be protected; the deformation of the PPAs also indicated the adequate stiffness ratio between the panel and the PPAs, allowing both to be deformed, absorbing the energy from the explosion;
• Os modos de deformação obtidos foram semelhantes aos do ensaio de compressão em regime quase-estático ; considera-se assim que o ensaio de compressão reúne condições para reproduzir os efeitos de um ensaio com explosivos nos CAE desenvolvidos no presente estudo; • The obtained deformation modes were similar to those of the quasi-static compression test; thus, it is considered that the compression test meets the conditions to reproduce the effects of an explosive test on the PPAs developed in the present study;
• A redução da flecha máxima do painel de fachada com a introdução dos CAE foi superior a 25 % - estimando-se que possa ascender a 30 % em condições óptimas de ensaio; o emprego deste tipo de CAE indicia, claramente, a possibilidade de tirar maior partido da capacidade de deformação dos painéis de betão armado utilizados, e o aumento do nivel de protecção conferido às estruturas; para o nivel de carga (NC) inferior, o SP absorveu energia sobretudo através da deformação por flexão do painel de fachada; para o NC superior (superior em cerca de 54 % em relação ao NC inferior) , a deformação do painel aumentou residualmente relativamente à registada no ensaio de referência (10 %) e o deslocamento máximo do SP sofreu um aumento considerável (75 %) ; o incremento no deslocamento máximo foi absorvido na sua grande • The reduction in the maximum arrow of the façade panel with the introduction of the PPAs was greater than 25% - it is estimated that it can reach 30% under optimal test conditions; the use of this type of CAE clearly indicates the possibility of taking better advantage of the deformation capacity of the reinforced concrete panels used, and the increase in the level of protection given to the structures; for the lower load level (NC), the SP absorbed energy mainly through the flexural deformation of the facade panel; for the upper NC (about 54% higher than the lower NC), the panel deformation increased residually compared to the reference test (10%) and the maximum displacement of the SP increased considerably (75%); the increase in maximum displacement was absorbed in its great
6 maioria pela deformação dos conectores; os CAE revelaram-se eficazes na absorção do acréscimo de energia associado ao aumento do NC . [0037] Tabela 5: Síntese de resultados de ensaios com recurso a explosivos. 6 most due to the deformation of the connectors; PPAs proved to be effective in absorbing the increase in energy associated with the increase in NC. [0037] Table 5: Synthesis of test results using explosives.
Figure imgf000015_0001
Figure imgf000015_0001
7 [0038] As realizações descritas são combináveis entre si. A presente invenção não é, naturalmente, de modo algum restrita às realizações descritas neste documento e uma pessoa com conhecimentos médios da área poderá prever muitas possibilidades de modificação da mesma e de substituições de caracteristicas técnicas por outros equivalentes, dependendo dos requisitos de cada situação, tal como definido nas reivindicações anexas. As seguintes reivindicações definem realizações adicionais da presente descrição. 7 [0038] The achievements described are combinable with each other. The present invention is not, of course, in any way restricted to the achievements described in this document and a person with average knowledge of the area will be able to foresee many possibilities for modifying it and replacing technical characteristics with equivalent ones, depending on the requirements of each situation, as defined in the appended claims. The following claims define additional realizations of the present description.
04.11.2019 11.4.2019
8 8

Claims

R E I V I N D I C A Ç Õ E S
1. Conector para sistema de proteção de construções contra explosões caracterizado por compreender: um dissipador (5) para absorção da energia da explosão por deformação plástica; um corpo interior (3) que compreende uma base e uma ou mais superfícies laterais para conter o dissipador; um corpo exterior (1) que compreende uma base e superfície lateral para conter e envolver o corpo interior; em que o corpo interior (3) e o corpo exterior (1) estão encaixados de forma linearmente deslizável e bloqueada à separação do corpo interior e exterior. 1. Connector for building protection system against explosions characterized by comprising: a heatsink (5) to absorb the energy of the explosion by plastic deformation; an inner body (3) comprising a base and one or more side surfaces for containing the heatsink; an outer body (1) comprising a base and side surface for containing and enveloping the inner body; wherein the inner body (3) and the outer body (1) are fitted in a linearly slidable manner and are blocked from separating the inner and outer body.
2. Conector para proteção de construções contra explosões de acordo com a reivindicação anterior caracterizado por compreender uma guia (2) para encaixe linear do corpo interior (3) no corpo exterior (1) . 2. Connector for protection of buildings against explosions according to the previous claim, characterized in that it comprises a guide (2) for linear fitting of the inner body (3) in the outer body (1).
3. Conector para proteção de construções contra explosões de acordo com qualquer uma das reivindicações anteriores caracterizado por a referida guia (2) compreender uma ranhura num no corpo interior (3) ou corpo exterior (1) e um pino (4) para deslizar linearmente na referida ranhura, respetivamente, no corpo exterior (1) ou no corpo interior (1) para que o corpo interior (1) e o corpo exterior (3) encaixem de forma linearmente deslizável e bloqueada à separação do corpo interior (3) e do corpo exterior (1) . Connector for protection of buildings against explosions according to any one of the preceding claims, characterized in that said guide (2) comprises a groove in the inner body (3) or outer body (1) and a pin (4) to slide linearly in said groove, respectively, in the outer body (1) or in the inner body (1) so that the inner body (1) and the outer body (3) fit in a linearly slidable and blocked way to separate from the inner body (3) and the outer body (1).
1 1
4. Conector para proteção de construções contra explosões de acordo com qualquer uma das reivindicações anteriores caracterizado por o dissipador (5) serem tubos dispostos transversalmente ao movimento de encaixe linearmente deslizável entre o corpo interior (3) e o corpo exterior (D · Connector for protection of buildings against explosion according to any one of the preceding claims, characterized in that the heatsink (5) is a tube arranged transversely to the linearly sliding fitting movement between the inner body (3) and the outer body (D ·
5. Conector para proteção de construções contra explosões de acordo com qualquer uma das reivindicações anteriores caracterizado por o dissipador (5) serem tubos de parede fina com secção circular. Connector for protection of buildings against explosions according to any one of the preceding claims, characterized in that the heatsink (5) is thin-walled tubes with a circular cross-section.
6. Conector para proteção de construções contra explosões de acordo com qualquer uma das reivindicações anteriores caracterizado por o dissipador (5) ser metálico, em particular em ligas de alumínio e de aço, aço macio, ou compósitos reforçados com fibras. Connector for the protection of buildings against explosion according to any one of the preceding claims, characterized in that the heatsink (5) is metallic, in particular in aluminum and steel alloys, mild steel, or fiber-reinforced composites.
7. Conector para proteção de construções contra explosões de acordo com qualquer uma das reivindicações anteriores caracterizado por o conector compreender um ou mais orifícios para fixação (7) . Connector for the protection of buildings against explosion according to any one of the preceding claims, characterized in that the connector comprises one or more fixing holes (7).
8. Conector para proteção de construções contra explosões de acordo com qualquer uma das reivindicações anteriores caracterizado por o conector compreender um elemento de corte (6) para acionar a estrutura metálica. Connector for protection of buildings against explosions according to any one of the preceding claims, characterized in that the connector comprises a cutting element (6) to drive the metal structure.
9. Sistema de proteção de construções contra explosões, caracterizado por compreender um painel de fachada e uma pluralidade de conectores de acordo com qualquer uma das reivindicações anteriores, em que o painel está acoplado à pluralidade de conectores para suporte do referido painel . 9. Explosion protection system for buildings, characterized in that it comprises a facade panel and a plurality of connectors according to any one of the preceding claims, in which the panel is coupled to the plurality of connectors for supporting said panel.
2 2
10. Sistema de proteção de construções contra explosões de acordo com a reivindicação anterior caracterizado por o painel de fachada ser em betão armado. 10. Explosion protection system for buildings according to the previous claim, characterized in that the facade panel is made of reinforced concrete.
04.11.2019 11.4.2019
3 3
PCT/PT2019/050042 2018-11-07 2019-11-05 Connector for explosion protection system for constructions WO2020096473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT115138A PT115138B (en) 2018-11-07 2018-11-07 CONNECTOR FOR BUILDING PROTECTION SYSTEM AGAINST EXPLOSIONS AND SUCH SYSTEM
PT115138 2018-11-07

Publications (1)

Publication Number Publication Date
WO2020096473A1 true WO2020096473A1 (en) 2020-05-14

Family

ID=69024575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PT2019/050042 WO2020096473A1 (en) 2018-11-07 2019-11-05 Connector for explosion protection system for constructions

Country Status (2)

Country Link
PT (1) PT115138B (en)
WO (1) WO2020096473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038582A1 (en) * 2020-08-21 2022-02-24 Universidade Nova De Lisboa Explosive energy dissipating connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2280752A1 (en) * 1974-08-01 1976-02-27 Saint Gobain Building section fixing system - with fixtures on panels locking into recesses in floors
GB2201183A (en) * 1987-02-20 1988-08-24 Heinrich Salzer Explosion-resistant glazing
KR101697753B1 (en) * 2016-07-12 2017-01-18 주식회사 힐 엔지니어링 Rigidity control type hysteresis damper with protect cover
CN108583485A (en) * 2018-05-25 2018-09-28 大连理工大学 A kind of more born of the same parents' metal-based carbon fiber composite thin wall endergonic structures and its preparation process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2280752A1 (en) * 1974-08-01 1976-02-27 Saint Gobain Building section fixing system - with fixtures on panels locking into recesses in floors
GB2201183A (en) * 1987-02-20 1988-08-24 Heinrich Salzer Explosion-resistant glazing
KR101697753B1 (en) * 2016-07-12 2017-01-18 주식회사 힐 엔지니어링 Rigidity control type hysteresis damper with protect cover
CN108583485A (en) * 2018-05-25 2018-09-28 大连理工大学 A kind of more born of the same parents' metal-based carbon fiber composite thin wall endergonic structures and its preparation process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038582A1 (en) * 2020-08-21 2022-02-24 Universidade Nova De Lisboa Explosive energy dissipating connector

Also Published As

Publication number Publication date
PT115138A (en) 2020-05-07
PT115138B (en) 2021-12-06

Similar Documents

Publication Publication Date Title
Wu et al. Blast testing of aluminum foam–protected reinforced concrete slabs
Constantinou et al. Seismic response of structures with supplemental damping
US7707788B2 (en) Buckling restrained brace for structural reinforcement and seismic energy dissipation and method of producing same
Vargas et al. Experimental response of buildings designed with metallic structural fuses. II
US20120204509A1 (en) Method and structure for damping movement in buildings
CN108894360A (en) Assembled double-steel-plate concrete combined shear wall with embedded damping interlayer and mounting method thereof
ITRM960729A1 (en) INTEGRATED SEISMIC ISOLATION SUPPORT IN THE HORIZONTAL AND VERTICAL DIRECTION
US8857111B2 (en) Composite damper
KR101297416B1 (en) Damping system and construction method of that
BR112016022350B1 (en) APPARATUS AND METHOD FOR PROTECTING A MODULE USED IN A WELL
US8464477B2 (en) Seismic base isloation and energy dissipation device
Lee et al. Seismic retrofit of structures using steel honeycomb dampers
WO2020096473A1 (en) Connector for explosion protection system for constructions
Lian et al. Seismic testing and numerical analysis of Y‐shaped eccentrically braced frame made of high‐strength steel
Madsen et al. Seismic response of building structures with dampers in shear walls
Mahjoubi et al. Pipe dampers as passive devices for seismic control of isolated bridges
Aye et al. Comparative Study on Seismic Response of RC Structure Using Viscous Dampers and Viscoelastic Dampers
Aghlara et al. Comparative study of eight metallic yielding dampers
Ziyaeifar Method of mass isolation in seismic design of structures
Constantinou Principles of Friction, Viscoelastic., Yielding Steel and Fluid Viscous DAMPERS: Properties and Design
WO2022038582A1 (en) Explosive energy dissipating connector
VASEGHI et al. Effect of the height increasing on steel buildings retrofitted by buckling restrained bracing systems and TTD damper
Krauthammer et al. Blast-induced response of moment connections
KR101478660B1 (en) Seismic Load Resisting Diagrid System using Bearing type Damping Devices
Shiram et al. Energy Dissipation in Buildings using Buckling Restrained Bracings.(BRB)–A Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19828348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19828348

Country of ref document: EP

Kind code of ref document: A1