WO2020096166A1 - Synchronization method and device for 5g relay system in sa network - Google Patents

Synchronization method and device for 5g relay system in sa network Download PDF

Info

Publication number
WO2020096166A1
WO2020096166A1 PCT/KR2019/008806 KR2019008806W WO2020096166A1 WO 2020096166 A1 WO2020096166 A1 WO 2020096166A1 KR 2019008806 W KR2019008806 W KR 2019008806W WO 2020096166 A1 WO2020096166 A1 WO 2020096166A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
slot
network
switching unit
tdd
Prior art date
Application number
PCT/KR2019/008806
Other languages
French (fr)
Korean (ko)
Inventor
오명익
송명훈
박재서
신희성
정호두
박준우
김정수
Original Assignee
주식회사 에치에프알
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에치에프알 filed Critical 주식회사 에치에프알
Publication of WO2020096166A1 publication Critical patent/WO2020096166A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/08Intermediate station arrangements, e.g. for branching, for tapping-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation

Definitions

  • This embodiment relates to a method and apparatus for synchronizing 5G relay systems of various structures by demodulation in a 5G NR (StandAlone) network structure of 5G NR (New Radio).
  • the service of 5G NR should be operated from a non-standalone (NSA) system structure interworking with LTE (4G) and ultimately a 5G NR network independent structure (Standalone) system.
  • NSA non-standalone
  • 4G LTE
  • 4G LTE
  • 5G NR network independent structure Standalone
  • synchronization must be performed between a 5G base station and a UE by extracting a synchronization signal from a 5G NR single structure in a 5G relay system.
  • the synchronous extraction method in the NSA network structure is not applicable to the SA network structure, which is a 5G NR network single structure.
  • the SA network structure which is a 5G NR network single structure.
  • a demodulation-type synchronization device mounted in a 5G repeater receives a base station signal of 5G NR, and continuously upgrades 5G SA (Standalone) at a minimum cost with only software upgrade on the hardware of a 5G Non-StandAlone (NSA) repeater. ) It is an object to provide a method and apparatus for synchronizing a 5G relay system in an SA network that enables 5G service in a network structure.
  • 5G SA Standalone
  • a PBCH demodulator demodulating a master information block (MIB) to be transmitted using a physical broadcast channel (PBCH) among 5G system information included in a 5G frame received from a 5G NR base station;
  • a SIB1 demodulator which performs SIB1 (System Information Block 1) demodulation on the MIB;
  • a DCI demodulator driving a DCI (Data Control Information) search timer;
  • Cell search is performed using a 5G synchronization signal included in the 5G frame to obtain a carrier frequency for the 5G frame, a subcarrier spacing, and the carrier frequency (CarrierFreqency), the
  • An SA network comprising a subcarrier spacing (5G NR TDD switching unit) that controls TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the DCI discovery timer.
  • a relay device based.
  • a cell search is performed using a 5G synchronization signal included in a 5G frame received from a 5G NR base station to perform a cell search, and a carrier frequency for the 5G frame and a subcarrier space (SubcarrierSpacing) )
  • MIB master information block
  • PBCH physical broadcast channel
  • SIB1 System Information Block 1
  • DCI Data Control Information
  • TDD switching for each of the uplink (UL) and downlink (DL)
  • a demodulation-type synchronization device mounted in a 5G repeater receives a base station signal of 5G NR, and only minimal software upgrade is required on the hardware of a 5G Non-StandAlone (NSA) repeater. It has the effect of enabling 5G service in a continuous 5G standalone (SA) network structure at a cost.
  • SA 5G standalone
  • a signal transmitted from an LTE (4G) network is not demodulated (demodulation), but a signal of 5G NR can be used to synchronize the base station and the terminal alone.
  • the 5G NR signal quality items eg, Cell ID, SNR, RSRP, RSRQ, RSSI
  • Cell can detect a synchronization signal without needing to install additional hardware using a demodulation method.
  • Cell It can be used as a quality measurement tool for the environment.
  • a 5G NR base station and a wired connection type and a wireless connection type 5G relay system are applied to a corresponding synchronization device to improve a user data throughput connected to the 5G relay system and to improve indoor / outdoor network quality. It has the effect.
  • FIG. 1 is a view showing a 5G relay system in the SA network structure according to the present embodiment.
  • FIG. 2 is a diagram illustrating a wireless connection type 5G relay system in an SA network structure according to the present embodiment.
  • FIG 3 is a view showing a wired connection type 5G relay system in the SA network structure according to the present embodiment.
  • FIG 4 is a view showing a synchronization device applied to a wireless connection type 5G relay system in an SA network structure according to the present embodiment.
  • FIG. 5 is a view showing a synchronization device applied to a wired connection type 5G relay system in an SA network structure according to the present embodiment.
  • 6A, 6B, and 6C are flowcharts for explaining a synchronization process for 5G frames of a relay system in an SA network structure according to the present embodiment.
  • FIG. 7 is a view showing a 5G NR SFI table according to the present embodiment.
  • FIG 8 is a view showing the SSB structure according to the present embodiment.
  • FIG. 1 is a view showing a 5G relay system in the SA network structure according to the present embodiment.
  • the 5G relay system in the SA network structure includes a 5G NR base station 110 and a 5G relay system 120.
  • Components included in the 5G relay system in the SA network structure are not necessarily limited thereto.
  • the SA (Standalone) network structure has a structure capable of synchronization using only a 5G NR frame.
  • SA network structure as shown in Figure 1, 5G relay system 120 receives and operates signals from the 5G NR base station 110 alone.
  • the synchronization device 210 applied to the 5G relay system 120 performs synchronization for the 5G NR network.
  • the SA network is capable of coping with the SA network structure of 5G NR by demodulating only 5G NR frames.
  • the 5G service based on the TDD method is suitable for various services and scenarios such as a 5G NR base station 110 and an interface structure such as a wireless connection type (RF repeater), a wired connection type (optical repeater) structure and an indoor type (in-building) outdoor type. Should be operated.
  • RF repeater wireless connection type
  • optical repeater wired connection type
  • indoor type in-building
  • FIG. 2 is a diagram illustrating a wireless connection type 5G relay system in an SA network structure according to the present embodiment.
  • the 5G relay system 120 may be implemented as a wireless connection type 5G relay system 200.
  • the wireless connection type 5G relay system 200 in the SA network structure includes a synchronization device 210 according to the present embodiment.
  • the wireless connection type 5G relay system 200 transmits and receives signals wirelessly with the 5G NR base station 110.
  • the radio-connected 5G relay system 200 in the SA network structure of 5G NR shown in FIG. 2 wirelessly transmits a signal to the 5G NR base station 110.
  • the wireless connection type 5G relay system 200 receives a signal transmitted from the 5G NR base station 110 to the air using a donor antenna.
  • the wireless connection type 5G relay system 200 filters and amplifies the hand signal received from the 5G NR base station 110 and transmits it to the internal synchronization device 210 to respond to synchronous and uplink / downlink changes, and multiples in the inbuilding It transmits to the service antenna to provide 5G service within coverage.
  • the radio-connected 5G relay system 200 in the NSA network structure of 5G NR responds to synchronous and uplink / downlink changes and extends coverage by installing multiple service antennas inside the in-building.
  • FIG 3 is a view showing a wired connection type 5G relay system in the SA network structure according to the present embodiment.
  • the 5G relay system 120 may be implemented as a wired connection type 5G relay system 300.
  • the wired connection type 5G relay system 300 in the SA network structure includes a synchronization device 210 according to the present embodiment.
  • the wired connection type 5G relay system 300 transmits and receives signals to and from the 5G NR base station 110 through a wire (Coaxial & Optic).
  • the 5G NR base station 110 transmits a signal through a wired (Coaxial & Optic) to the wired connection type 5G relay system 300.
  • the wired connection type 5G relay system 300 filters and amplifies the signal received from the 5G NR base station 110 through the wire (Coaxial & Optic) using a donor antenna and transmits it to the synchronization device 210.
  • Wired connection 5G repeater system 300 in SA network structure of 5G NR responds to synchronous and uplink / downlink changes and extends coverage by installing multiple remotes inside the in-building. At this time, the remote is divided into an antenna-integrated structure or an antenna-separated structure.
  • the synchronization device 210 included in the wireless connection type 5G relay system 200 shown in FIG. 2 and the wired connection 5G repeater system 300 shown in FIG. 3 applies the demodulation method of the signal to reduce the instability of the signal strength detection method. Overcome.
  • the synchronization device 210 is mounted in the 5G relay system operated between the base station and the terminal in the SA network structure of the 5G NR to accurately estimate the temporal position of the synchronization signal.
  • the synchronization device 210 is implemented to be able to respond to the dynamic change of the uplink / downlink of the 5G frame, thereby enabling stable operation of the 5G service.
  • the wired connection type 5G relay system 300 includes a donor, an optical module, a remote, a filter, and an antenna block.
  • the remote included in the wired connection type 5G relay system 300 has an antenna-integrated or separate structure.
  • the wired connection type 5G relay system 300 transmits the 5G NR signal received from the 5G NR base station 110 to the synchronization device 210.
  • the wired connection type 5G relay system 300 converts the signal through the synchronization process using the synchronization device 210 into a low voltage TTL (LVTTL) and transmits each to a corresponding remote via an optical cable connected to the optical module.
  • the wired connection type 5G relay system 300 enables 5G service in the SA network by TDD switching of the donor and the remote in the same manner in response to the changing base station signal.
  • the synchronization device 210 is not classified according to the wired connection type 5G relay system 300 and the wireless connection type 5G relay system 200 and is implemented as a field programmable gate array (FPGA) of the same digital board.
  • the synchronization device 210 is implemented by sharing / allocating the FPGA resource required to digitally filter and process the 5G NR signal, thereby reducing additional hardware cost.
  • the 5G NR signal block configuration of the synchronization device 210 is 5G NR signal, analog digital convert (ADC), fast Fourier Transform (FFT), primary synchronous signal (PSS) demodulation, secondary synchronous signal (SSS) demodulation, and PBCH (Physical) Broadcast Channel (DVI) demodulation and DCI (Downlink Control Information) demodulation are performed to extract the starting point of the 5G NR frame.
  • ADC analog digital convert
  • FFT fast Fourier Transform
  • PSS primary synchronous signal
  • SSS secondary synchronous signal
  • PBCH Physical) Broadcast Channel
  • DCI Downlink Control Information
  • FIG 4 is a view showing a synchronization device applied to a wireless connection type 5G relay system in an SA network structure according to the present embodiment.
  • the synchronization device 210 applied to the wireless connection type 5G relay system 200 in the SA network structure according to the present embodiment includes an ADC unit 410, an FFT unit 420, a PSS demodulator 430, and an SSS demodulator ( 440), a PBCH demodulator 450, a SIB1 demodulator 460, a DCI demodulator 470, and a 5G NR TDD switching unit 480.
  • the components included in the synchronization device 210 are not limited thereto.
  • the demodulation method of the synchronization device 210 applied to the SA network structure of 5G NR detects a synchronous signal using a 5G frame received from the 5G NR base station 110 and detects uplink / downlink The switching timing can be matched with the 5G NR base station 110.
  • the synchronization device 210 is applicable to all 5G relay system structures connected to each of the 5G NR base stations 110 by wired or wireless.
  • the wireless connection type 5G relay system 200 includes a donor antenna, a donor filter unit, a switching unit, a low noise amplifier (LNA), a TDD switching unit, a synchronization device 210, an RF unit, and a power amplification unit. , A service filter unit, and a service antenna.
  • LNA low noise amplifier
  • the donor antenna is connected to the donor filter unit and transmits the 5G frame received from the 5G NR base station 110 to the donor filter unit.
  • the donor filter unit is connected between the donor antenna and the switching unit, and filters the 5G frame received from the donor filter unit and transmits it to the switching unit.
  • the switching unit is connected between the donor filter unit and the LNA, and performs switching on the filtered 5G frame.
  • the LNA is connected between the switching unit and the synchronization device 210, and amplifies the 5G frame input from the switching unit with low noise and inputs it to the synchronization device 210.
  • the synchronization device 210 converts to a low voltage TTL (LVTTL) through an internal synchronization process for a 5G frame and transmits it to a TDD switching unit, thereby enabling service in an SA network in response to a changed base station signal.
  • the TDD switching unit is connected between the synchronization device 210 and the switching unit, and transfers the LVTTL received from the synchronization device 210 to the switching unit.
  • the synchronization device 210 applied to the wireless-connected 5G relay system 200 performs Analog Digital Convert (ADC) on the 5G frame and performs Fast Fourier Transform (FFT) conversion on the ADC signal.
  • ADC Analog Digital Convert
  • FFT Fast Fourier Transform
  • the synchronization device 210 applied to the wireless-connected 5G relay system 200 demodulates a Primary Synchronous Signal (PSS) and a Secondary Synchronous Signal (SSS) after performing FFT conversion.
  • PSS Primary Synchronous Signal
  • SSS Secondary Synchronous Signal
  • the synchronization device 210 applied to the wireless connection-type 5G relay system 200 demodulates the SSS, extracts a PBCH (Physical Broadcast Channel), and extracts the starting point of the 5G NR frame using the PBCH.
  • PBCH Physical Broadcast Channel
  • the synchronization device 210 applied to the wireless connection type 5G relay system 200 performs cell search using a 5G synchronization signal (eg, PSS, SSS) included in a 5G frame received from the 5G NR base station 110. Perform to obtain a carrier frequency (CarrierFreqency), subcarrier space (SubcarrierSpacing) for the 5G frame.
  • the 5G synchronization unit 400 controls TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the carrier frequency (CarrierFreqency) and the subcarrier space (SubcarrierSpacing).
  • the synchronization device 210 applied to the wireless connection type 5G relay system 200 includes an ADC unit 410, an FFT unit 420, a PSS demodulator 430, an SSS demodulator 440, a PBCH demodulator 450, and SIB1. It includes a demodulator 460, a DCI demodulator 470, and a 5G NR TDD switching unit 480.
  • the components included in the synchronization device 210 applied to the wireless connection type 5G relay system 200 are not necessarily limited thereto.
  • Each component included in the synchronization device 210 applied to the wireless connection type 5G relay system 200 is connected to a communication path connecting a software module or a hardware module inside the device to operate organically with each other. These components communicate using one or more communication buses or signal lines.
  • Each component of the synchronization device 210 applied to the wireless connection type 5G relay system 200 shown in FIG. 4 refers to a unit that processes at least one function or operation, and is a software module, a hardware module, or software and hardware. It can be implemented as a combination of.
  • the ADC unit 410 performs Analog Digital Convert (ADC) on 5G frames received from the 5G NR base station 110.
  • the FFT unit 420 performs Fast Fourier Transform (FFT) transformation on the signal from the ADC unit 410 for performing the ADC.
  • FFT Fast Fourier Transform
  • the PSS demodulator 430 demodulates a PSS (Primary Synchronous Signal) to a signal that has undergone FFT conversion received from the FFT unit 420.
  • the SSS demodulator 440 demodulates a Secondary Synchronous Signal (SSS) with respect to the signal demodulated PSS received from the PSS demodulator 430.
  • PSS Primary Synchronous Signal
  • the PBCH demodulator 450 demodulates a Master Information Block (MIB) to be transmitted using a PBCH (Physical Broadcast Channel) among 5G system information included in a 5G frame received from the 5G NR base station 110.
  • the PBCH demodulator 450 extracts the PBCH to transmit the MIB.
  • the PBCH demodulator 450 extracts the starting point of the 5G NR frame using the PBCH.
  • MIB Master Information Block
  • the SIB1 demodulator 460 performs SIB1 (System Information Block 1) demodulation on the MIB.
  • the SIB1 demodulator 460 performs PDCCH Search Space Blinding Detection (PDCCH) for 5G frames.
  • the SIB1 demodulator 460 searches a common search space (CSS) for a Physical Downlink Control Channel (PDCCH) for decoding by extracting and decoding System Information Block 1 (SIB1) for 5G frames.
  • SIB1 demodulator 460 extracts the Type0 PDCCH for the CORESET search, which is a control resource set for CSS, and demodulates the SIB1 for the Type0 PDCCH.
  • the DCI demodulator 470 drives a DCI (Data Control Information) search timer.
  • the DCI demodulator 470 is a cell-specific downlink (DL) or uplink (UL) pattern (TDD-UL-DL-Pattern) among semi-static data of a signal demodulated SIB1 To extract.
  • the DCI demodulator 470 extracts a TDD downlink and uplink pattern period (DL-UL-TransmissionPeriodicity) based on a cell-specific downlink and uplink pattern (TDD-UL-DL-Pattern).
  • the DCI demodulator 470 drives a DCI (Data Control Information) search timer for configuring a dynamic Short EF Identifier (SFI).
  • DCI Data Control Information
  • the 5G NR TDD switching unit 480 performs a cell search using a 5G synchronization signal included in a 5G frame to obtain a carrier frequency and a subcarrier space for the 5G frame.
  • the 5G NR TDD switching unit 480 controls TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the carrier frequency, subcarrier spacing, and DCI search timer. .
  • the 5G NR TDD switching unit 480 waits until the TDD downlink and uplink pattern period (DL-UL-TransmissionPeriodicity) arrives, and then the cell radio network temporary identifier C-RNTI (Cell) from the 5G NR base station 110 Radio RNTI (Radio Network Temporary Identifier) is received.
  • DL-UL-TransmissionPeriodicity the TDD downlink and uplink pattern period
  • C-RNTI Cell
  • Radio RNTI Radio Network Temporary Identifier
  • the 5G NR TDD switching unit 480 receives a Radio Resource Control (RRC) connection reconfiguration message (RRCConnectionReconfiguration Message) from the 5G NR base station 110 corresponding to C-RNTI.
  • RRC Radio Resource Control
  • the 5G NR TDD switching unit 480 is a UE-specific search space USS (UE-) for decoding a UE-specific PDCCH Search Space, which is a UE-specific Physical Downlink Control Channel (PDCCH) search space, from a 5G frame based on an RCC connection reset message. specific search space).
  • the 5G NR TDD switching unit 480 extracts a UE specific PDCCH, which is a UE specific PDCCH for CORESET search, which is a set of control resources, from a UE specific search space (USS).
  • the 5G NR TDD switching unit 480 demodulates the USS, which is the UE specific search space, based on the UE Specific PDCCH, which is the UE specific PDCCH.
  • the 5G NR TDD switching unit 480 extracts a common, dedicated uplink (Dedicated UL), and dedicated downlink (Dedicated DL) slot configuration (TDD-UL-DL-SlotConfig) from the demodulated USS signal.
  • the 5G NR TDD switching unit 480 extracts a slot index based on dedicated uplink (Dedicated UL) and dedicated downlink (Dedicated DL) slot configuration (TDD-UL-DL-SlotConfig) information.
  • the 5G NR TDD switching unit 480 checks the position of the Short EF Identifier (SFI) table corresponding to the slot index.
  • SFI Short EF Identifier
  • the 5G NR TDD switching unit 480 checks whether or not predetermined rules are overwritten.
  • the 5G NR TDD switching unit 480 specifies the UE among semi-static data of a signal in which the preset rules are overwritten when the preset rules are overwritten. Downlink (DL), uplink (UL), and slot configuration are reflected for each slot index based on (UE-Specific).
  • the 5G NR TDD switching unit 480 controls 5G NR TDD switching based on the DCI search timer when the preset rules are not overwritten.
  • the 5G NR TDD switching unit 480 transmits the 5G NR base station 110 to the 5G frame based on the carrier frequency, SSB (Synchronization Signal Block), and subcarrier spacing for the 5G frame pre-stored in the system configuration buffer. Search for synchronous raster position.
  • SSB Synchronization Signal Block
  • the 5G NR TDD switching unit 480 detects a subcarrier using a 5G synchronization signal, a PSS (Primary Synchronous Signal), centering on the location of a synchronization raster in the frequency domain.
  • a PSS Primary Synchronous Signal
  • the 5G NR TDD switching unit 480 After demodulating the PSS, the 5G NR TDD switching unit 480 extracts a plurality of cell ID groups (N (2) IDs ) (for example, three) by analyzing a correlation for the PSS. do.
  • N (2) IDs cell ID groups
  • the 5G NR TDD switching unit 480 transmits a 5G synchronization signal (Secondary Synchronous Signal), which is a 5G synchronization signal, based on a (i + 2) th symbol position for a cell ID group (N (2) ID ) and a synchronization raster position in a frequency domain.
  • Subcarrier is detected by using and is generated as a bipolar signal (d ⁇ sss (n)).
  • the 5G NR TDD switching unit 480 has a plurality of bipolar signals (d (0), d (1), d) from the pre-stored SSS sequence calculation table according to the PSS correlation value in the cell ID group (N (2) ID ). (2)).
  • 5G NR TDD switching unit 480 is a plurality of bipolar signals (d (0), d (1), d (2)), SSS, cell ID sector based on the largest value of the correlation value for the SSS (Cell ID Sector) (N (1) ID ).
  • the 5G NR TDD switching unit 480 synchronizes the symbols based on the cell ID group (N (2) ID ) and the cell ID sector (N (1) ID ) and obtains the 5G cell ID and stores it in the system configuration buffer.
  • the 5G NR TDD switching unit 480 calculates the position on the frequency domain in the SS / PBCH block for the 5G frame pre-stored in the system configuration buffer.
  • the 5G NR TDD switching unit 480 detects a plurality of subcarriers based on a synchronization raster position in a plurality of symbol positions and frequency domains.
  • the 5G NR TDD switching unit 480 derives the number (Lmax) of PBCHs according to the carrier frequency.
  • the 5G NR TDD switching unit 480 decodes a DeModulation Reference Signal (DMRS) in the SSB.
  • DMRS DeModulation Reference Signal
  • the 5G NR TDD switching unit 480 demodulates the PBCH having gold-sequence by DMRS.
  • the 5G NR TDD switching unit 480 extracts the SSB index and half frame number from the DMRS and stores them in a system configuration buffer.
  • the 5G NR TDD switching unit 480 derives a number of slots in a subframe and a symbol index using a carrier frequency and a carrier space for a 5G frame. do.
  • the 5G NR TDD switching unit 480 includes a number of subframes in a radio frame, a number of symbols in slot, a subcarrier spacing, and a number of slots in the subframe ( 5G NR synchronization table is constructed by using the number of slots in subframe and the half frame number derived by the decoded PBCH-DMRS and the SSB index.
  • the 5G NR TDD switching unit 480 has a half frame number, a SSB index, and a symbol index for each remaining number of symbols in frame up to the next System Frame Number (SFN). 5G NR by matching at least one of (Symbol index), Subframe number, Remaining number of symbols in slot, and Remaining number of slots in subframe. Construct a synchronous table.
  • the slot number of the SSB is a symbol index (Symbol Index), the number of symbols in the slot (N slot symb ), the number of subframes in the frame (N fame subframe ), the slot in the subframe It is calculated based on the number (N subframe slot ) and the half frame number (Half Frame Number).
  • the 5G NR TDD switching unit 480 calculates the subframe number of the SSB based on the slot number.
  • 5G NR TDD switching unit 480 is based on the number of symbols in the slot (N slot symb ), the symbol index mode (Symbol Index Mod N slot symb ) of the number of symbols in the slot, remaining in the slot until the next SFN (System Frame Number) Calculate the number of symbols (Remaining Number of symbols).
  • the 5G NR TDD switching unit 480 calculates the remaining number of slots in a subframe up to the next System Frame Number (SFN) based on the slot number mod.
  • SFN System Frame Number
  • 5G NR TDD switching unit 480 is the frame number of the sub-frame (N frame subframe) and a subframe number (Subframe Number-1) number of remaining subframes within the frame of the next SFN (System Frame Number) is based on (Remaining Number of subframes in frame).
  • 5G NR TDD switching unit 480 the number of remaining symbols in the slot (Remaining Number of Symbols in Slot), the number of remaining slots in the subframe (Remaining Number of Slots in Subframe), the number of symbols in the slot (N slot symb ), within the frame Remaining Number of Subframes in Frame, N subframe slots , and the number of remaining symbols in a frame up to the next System Frame Number (SFN) based on the number of N slot symbs .
  • SFN System Frame Number
  • FIG. 5 is a view showing a synchronization device applied to a wired connection type 5G relay system in an SA network structure according to the present embodiment.
  • the wired connection type 5G relay system 300 includes a donor unit, a synchronization device 210, a donor optic unit, a remote optic unit, a remote unit, and a filter unit.
  • the donor unit is connected to the synchronization device 210, and transmits the 5G frame received through the wire from the 5G NR base station 110 to the synchronization device 210.
  • the synchronization device 210 converts to a Low Voltage TTL (LVTTL) through an internal synchronization process for a 5G frame and transmits it to a donor optical unit, so it can be serviced in a SA network in response to a changed base station signal.
  • the remote is composed of an antenna-integrated or separate structure.
  • the donor optic unit transmits to each of the corresponding remote optic units through a connected optical cable.
  • the synchronization device 210 can be implemented by utilizing the FPGA of the digital board in the same way as the wireless connection type 5G relay system 200 and the wired connection type 5G relay system 300.
  • the synchronization device 210 implements by sharing and allocating Field Programmable Gate Array (FPGA) resources required for digital filtering and processing of 5G frames, thereby reducing additional hardware cost.
  • FPGA Field Programmable Gate Array
  • the 5G NR signal block configuration of the synchronization device 210 is 5G NR signal, analog digital convert (ADC), fast Fourier Transform (FFT), primary synchronous signal (PSS) demodulation, secondary synchronous signal (SSS) demodulation, and PBCH (Physical) Broadcast Channel) demodulation and DCI (Downlink Control Information) demodulation to extract the starting point of the 5G NR frame.
  • ADC analog digital convert
  • FFT fast Fourier Transform
  • PSS primary synchronous signal
  • SSS secondary synchronous signal
  • PBCH Physical) Broadcast Channel
  • DCI Downlink Control Information
  • 6A, 6B, and 6C are flowcharts for explaining a synchronization process for 5G frames of a relay system in an SA network structure according to the present embodiment.
  • the synchronization device 210 in the 5G relay system 120 turns on the power of the repeater module (S610).
  • the synchronization device 210 in the 5G relay system 120 clears the system configuration buffer (S612). In step S612, the synchronization device 210 in the 5G relay system 120 clears the buffer in which information about the shape, sequence, and short EF identifier (SFI) is temporarily stored.
  • SFI short EF identifier
  • the synchronization device 210 in the 5G relay system 120 selects a 5G NR base station (gNB) 110 based on beam measurement and optimal beam (S614). In step S614, the synchronization device 210 in the 5G relay system 120 selects an optimal signal based on a beam emitted from the 5G NR base station 110.
  • gNB 5G NR base station
  • S614 the synchronization device 210 in the 5G relay system 120 selects an optimal signal based on a beam emitted from the 5G NR base station 110.
  • the synchronization device 210 in the 5G relay system 120 receives a 5G NR base station signal from the selected 5G NR base station 110.
  • the synchronization device 210 in the 5G relay system 120 includes system shape information (frequency (Carrier Frequency), SSB (Synchronization Signal Block), subcarrier space) of the 5G NR base station 110 pre-stored in the system (shape) configuration buffer. Subcarrier Spacing)) to search for a synchronous raster location of the base station.
  • the synchronization device 210 in the 5G relay system 120 detects 127 subcarriers using a 5G synchronization signal, a PSS (Primary Synchronous Signal), centering on the position of the synchronization raster in the frequency domain.
  • the synchronization device 210 in the 5G relay system 120 demodulates the detected PSS and generates 127 m-sequences.
  • the synchronization device 210 in the 5G relay system 120 demodulates the PSS and analyzes the correlation for the PSS, thereby generating a plurality of cell ID groups (N (2) IDs ). 3) Extract (S616).
  • step S616 the synchronization device 210 in the 5G relay system 120 demodulates the PSS from the optimal signal and analyzes correlation.
  • the synchronization device 210 in the 5G relay system 120 demodulates the PSS and analyzes the correlation for the PSS, thereby generating a plurality of cell ID groups (N (2) IDs ). Three (0 ⁇ 2)) are extracted.
  • the synchronization device 210 in the 5G relay system 120 is a 5G synchronization signal SSS (Secondary) centering on the (i + 2) th symbol position for the cell ID group (N (2) ID ) and the synchronization raster position in the frequency domain.
  • SSS Synchronization Signal
  • a subcarrier is detected using a synchronous signal, and is generated as a bipolar signal.
  • the synchronization device 210 in the 5G relay system 120 generates a plurality of bipolar signals from the pre-stored SSS sequence calculation table according to the PSS correlation value in the cell ID group (N (2) ID ).
  • the synchronization device 210 in the 5G relay system 120 extracts a Cell ID Sector (N (1) ID ) based on the largest value among correlation values for a plurality of bipolar signals, SSS, and SSS. (S618).
  • step S618 the synchronization device 210 in the 5G relay system 120 extracts a cell ID group (N (2) ID ), demodulates the SSS, and analyzes correlation to analyze the cell ID. After extracting a sector (Cell ID Sector), a cell ID is obtained.
  • the synchronization device 210 in the 5G relay system 120 can extract 336 SSSs (0 to 335) and check for 1008 cell IDs.
  • the synchronization device 210 in the 5G relay system 120 synchronizes the symbols based on the cell ID group (N (2) ID ) and the cell ID sector (N (1) ID ) and acquires the 5G cell ID to buffer the system configuration. To save.
  • the synchronization device 210 in the 5G relay system 120 calculates the position on the frequency domain in the SS / PBCH block for 5G frames previously stored in the system configuration buffer.
  • the synchronization device 210 in the 5G relay system 120 detects a plurality of subcarriers around a plurality of symbol positions and a synchronization raster position in a frequency domain.
  • the synchronization device 210 in the 5G relay system 120 derives the number (Lmax) of PBCHs according to the carrier frequency.
  • the synchronization device 210 in the 5G relay system 120 decodes the DeModulation Reference Signal (DMRS) in the SSB (S620).
  • DMRS DeModulation Reference Signal
  • the synchronization device 210 in the 5G relay system 120 demodulates a physical broadcast channel (PBCH) having a gold-sequence in DMRS (S622).
  • PBCH physical broadcast channel
  • S622 DMRS
  • the synchronization device 210 in the 5G relay system 120 extracts the SSB index and half frame number from the DMRS and stores them in the system configuration buffer.
  • the synchronization device 210 in the 5G relay system 120 demodulates a master information block (MIB) to be transmitted using a physical broadcast channel (PBCH) among 5G system information included in the 5G frame (S624).
  • MIB master information block
  • PBCH physical broadcast channel
  • the synchronization device 210 in the 5G relay system 120 acquires Master Information Block (MIB) information using the PBCH.
  • MIB means essential information of System Information (SI), and includes downlink bandwidth, System Frame Number (SFN), HARQ, and channel information for the UE to access the 5G NR base station 110.
  • the synchronization device 210 in the 5G relay system 120 performs 5G frame synchronization (frame start point position) (S626).
  • step S626 since the UE provides downlink bandwidth for accessing the 5G NR base station 110, System Frame Number (SFN), HARQ, and channel information, the synchronization device 210 synchronizes the frame with the 5G NR base station 110. Is possible.
  • SFN System Frame Number
  • HARQ Hybrid HARQ
  • the synchronization device 210 in the 5G relay system 120 performs a Physical Downlink Control Channel (PDCCH) blind detection (PDCCH Search Space Blinding Detection) for the 5G frame (S628).
  • PDCH Physical Downlink Control Channel
  • the synchronization device 210 in the 5G relay system 120 searches the common search space (CSS) for the PDCCH to extract and decode SIB1 for the 5G frame (S630).
  • the synchronization device 210 demodulates a System Information Block (SIB1) by extracting a Physical Downlink Control Channel (PDCCH) for CORESET search.
  • SIB1 System Information Block
  • PDCH Physical Downlink Control Channel
  • the synchronization device 210 in the 5G relay system 120 extracts a Type0 PDCCH for CORESET search, which is a set of control resources for CSS (Common Search Space) (S632).
  • the synchronization device 210 in the 5G relay system 120 demodulates System Information Block1 (SIB1) for the Type0 PDCCH (S634).
  • SIB1 System Information Block1
  • the synchronization device 210 in the 5G relay system 120 extracts Physical Downlink Control Channel (PDCCH) for CORESET search, which is a control resource set after frame synchronization of 5G NR after S626, and extracts SIB1 (System Information Block1). Demodulate.
  • SIB1 System Information Block1
  • the synchronization device 210 in the 5G relay system 120 is a cell-specific downlink (DL) or uplink (UL) pattern (TDD-) among semi-static data of a signal demodulating SIB1.
  • DL-DL-Pattern is extracted (S636).
  • the synchronization device 210 in the 5G relay system 120 is a TDD downlink (DL) based on a cell-specific downlink (DL) and an uplink (UL) pattern (TDD-UL-DL-Pattern). , The uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) is extracted (S638).
  • the synchronization device 210 in the 5G relay system 120 drives a DCI (Data Control Information) discovery timer for configuring a dynamic Short EF Identifier (SFI) (S640).
  • the synchronization device 210 in the 5G relay system 120 controls 5G NR TDD switching based on the DCI search timer (S642).
  • the synchronization device 210 in the 5G relay system 120 performs up / down link transmission / reception switching based on the TDD downlink (DL) and uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) extracted in step S638. 110).
  • the synchronization device 210 in the 5G relay system 120 extracts the DL / UL pattern in S636 to control TDD switching of the 5G NR and synchronize with the base station and the terminal.
  • the 5G NR base station 110 receives the TDD downlink (DL) and uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) from the synchronization device 210 in the 5G relay system 120.
  • 5G NR base station 110 performs synchronization to match the timing of the uplink and user equipment (UE) (S646).
  • DL downlink
  • UL uplink
  • UE user equipment
  • the 5G NR base station 110 starts up / down transmission / reception in a TDD downlink (DL) and uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) for each user equipment (UE), slot, and symbol (S648).
  • the 5G NR base station 110 waits until the TDD downlink (DL) and uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) arrives (S650).
  • the synchronization device 210 in the 5G relay system 120 receives the cell radio network temporary identifier C-RNTI (Cell Radio Radio Network Temporary Identifier) (C-RNTI) from the 5G NR base station 110 (S652).
  • C-RNTI Cell Radio Radio Network Temporary Identifier
  • the synchronization device 210 in the 5G relay system 120 receives an RRCConnectionReconfiguration message (Radio Resource Control (RRC) connection reset message) from the 5G NR base station 110 (S654).
  • RRC Radio Resource Control
  • the synchronization device 210 in the 5G relay system 120 is a UE-specific search space (USS), a UE-specific search space for decoding a UE-specific PDCCH Search Space, which is a UE-specific Physical Downlink Control Channel (PDCCH) search space from a 5G frame. ) (S656).
  • USS UE-specific search space
  • PDCCH Physical Downlink Control Channel
  • step S656 the synchronization device 210 in the 5G relay system 120 acquires a cell radio network temporary identifier C-RNTI and receives an RRCConnectionReconfiguration message from the 5G NR base station 110 to search for a UE-specific search space (USS). And demodulate to extract the UL / DL slot configuration.
  • C-RNTI cell radio network temporary identifier
  • USS UE-specific search space
  • the synchronization device 210 in the 5G relay system 120 extracts the UE specific PDCCH, which is the UE specific PDCCH for the CORESET search, which is the control resource set, from the UE specific search space (USS) included in the 5G frame (S658).
  • the UE specific PDCCH which is the UE specific PDCCH for the CORESET search, which is the control resource set
  • the synchronization device 210 in the 5G relay system 120 demodulates the UE-specific discovery space USS based on the UE-specific PDCCH, the UE-specific PDCCH (S660).
  • Synchronization device 210 in the 5G relay system 120 is a common (Common), dedicated uplink (Dedicated UL), dedicated downlink (Dedicated DL) slot configuration from the signal demodulated USS (TDD-UL-DL-SlotConfig) Extract the (S662).
  • the synchronization device 210 in the 5G relay system 120 extracts the slot index based on dedicated uplink and downlink slot configuration (TDD-UL-DL-SlotConfig) information and checks the location of the Short EF Identifier (SFI) table. (S664).
  • TDD-UL-DL-SlotConfig dedicated uplink and downlink slot configuration
  • SFI Short EF Identifier
  • the synchronization device 210 in the 5G relay system 120 checks whether or not predetermined rules are overwritten (S666). As a result of the check in step S666, when the preset rules are overwritten, the synchronization device 210 in the 5G relay system 120 half of the signal in which the preset rules are overwritten. Downlink (DL), uplink (UL), and slot configurations are reflected for each slot index based on UE-specificity among semi-static data (S668). The synchronization device 210 in the 5G relay system 120 returns to step S642 after performing step S668.
  • DL Downlink
  • UL uplink
  • slot configurations are reflected for each slot index based on UE-specificity among semi-static data
  • step S668 if the synchronization device 210 in the 5G relay system 120 checks the SFI (Slot Format Indicator) table position and complies with the overwriting rules, the UE-specific / Semi-static based slot index It reflects DL / UL configuration.
  • the synchronization device 210 in the 5G relay system 120 moves to S642 after step S668 and continuously repeats to respond to the 5G NR signal changing in real time.
  • step S666 when the preset rules are not overwritten, the synchronization device 210 in the 5G relay system 120 returns to step S650. In other words, the synchronization device 210 in the 5G relay system 120 repeatedly repeats the procedure from the point in time corresponding to step S650 if the overwriting rules are not observed.
  • FIGS. 6A, B and C are described as sequentially executing steps S610 to S668, the present invention is not limited thereto. In other words, since the steps described in FIGS. 6A, B, and C may be applied by changing or executing one or more steps in parallel, FIGS. 6A, B, and C are not limited to the time series.
  • a synchronization process for a 5G frame of a relay system may be implemented as a program and recorded in a computer-readable recording medium.
  • a program for implementing a synchronization process for a 5G frame of a relay system is recorded, and a computer-readable recording medium stores all kinds of recording devices that store data that can be read by a computer system. It includes.
  • FIG. 7 is a view showing a 5G NR SFI table according to the present embodiment.
  • 5G NR SFI Slot Format Indicator
  • the 5G NR SFI table consists of the final 256.
  • the synchronization device 210 performs DL (DownLink) / UL (UpLink) using the 5G NR SFI table.
  • FIG 8 is a view showing the SSB structure according to the present embodiment.
  • the Synchronization Signal Block is composed of a PSS (Primary Synchronous Signal), a SSS (Secondary Synchronous Signal), and a PBCH (Physical Broadcast CHannel).
  • the SSB is located on four orthogonal frequency division multiplexing (OFDM) symbols on the time axis.
  • SSB has an area of 20 resource blocks (RBs) on a frequency axis and is composed of 240 subcarriers.
  • PSS detects in SSBs of 16 located in the frame (PSS location of SSB is defined based on the symbol of 5G NR frame as defined in the standard) and analyzes correlation and m-sequence. ) To generate 127 sequences and compare with predefined values for final extraction.
  • the PBCH can be demodulated by using a demodulation-reference signal (DM-RS) between PBCHs to check the half frame number, so that an accurate frame start point of 5G NR can be known.
  • DM-RS demodulation-reference signal
  • the configuration of the synchronization device 210 can be manufactured separately from the digital board, but the integration and configuration of the digital board becomes an economical system than the separation of the synchronization device 210.
  • the location of the synchronization device 210 is configured only in a donor, and it is effective from an economical point of view to transmit a synchronization signal to a remote.
  • 5G NR base station 120 5G relay system
  • PSS demodulator 440 SSS demodulator
  • DCI demodulation unit 480 5G NR TDD switching unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A synchronization method and device for a 5G relay system in an SA network are disclosed. The present embodiment provides a synchronization method and device for a 5G relay system in a standalone (SA) network, which allow a demodulation-scheme synchronization device mounted in a 5G relay to receive a 5G NR base station signal, thereby enabling a 5G service in a continuous 5G SA network structure at minimal costs with only a software upgrade on hardware of a 5G non-standalone (NSA) relay.

Description

SA 네트워크에서 5G 중계 시스템의 동기화 방법 및 장치Method and device for synchronization of 5G relay system in SA network
This work was supported by 'The Cross-Ministry Giga KOREA Project' grant funded by the Korea government(MSIT) (GK19N0300, Development of Indoor DAS Technology based on IFoF for 5G Mobile Communication)This work was supported by 'The Cross-Ministry Giga KOREA Project' grant funded by the Korea government (MSIT) (GK19N0300, Development of Indoor DAS Technology based on IFoF for 5G Mobile Communication)
본 실시예는 5G NR(New Radio)의 SA(StandAlone) 네트워크 구조에서 복조(Demodulation) 방식에 의한 다양한 구조의 5G 중계 시스템의 동기화 방법 및 장치에 관한 것이다. This embodiment relates to a method and apparatus for synchronizing 5G relay systems of various structures by demodulation in a 5G NR (StandAlone) network structure of 5G NR (New Radio).
이하에 기술되는 내용은 단순히 본 실시예와 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.The contents described below merely provide background information related to the present embodiment, and do not constitute a prior art.
5G NR의 서비스는 LTE(4G)와 연동되는 NSA(Non-Standalone) 시스템 구조에서 궁극적으로 5G NR 네트워크 단독 구조인 SA(Standalone) 시스템으로 운용되어야 한다. 5G NR의 서비스를 제공하기 위해서는 5G 중계 시스템에서 5G NR 단독 구조에서 동기 신호를 추출하여 5G 기지국과 단말간(UE) 간에 동기화를 수행해야 한다.The service of 5G NR should be operated from a non-standalone (NSA) system structure interworking with LTE (4G) and ultimately a 5G NR network independent structure (Standalone) system. In order to provide 5G NR service, synchronization must be performed between a 5G base station and a UE by extracting a synchronization signal from a 5G NR single structure in a 5G relay system.
NSA(Non-Standalone) 네트워크 구조에서의 동기 추출 방식이 존재하나, NSA 네트워크 구조에서의 동기 추출 방식은 5G NR 네트워크 단독 구조인 SA 네트워크 구조에 적용이 불가능하다. 다시 말해서, SA 네트워크 구조의 5G 중계시스템에서 기지국과 단말기 사이에서 동기화를 수행할 때, NSA 네트워크 구조에서의 동기화 방식을 적용할 수 없다. 따라서, SA 네트워크구조에서 NSA 네트워크구조와 구별되는 별도의 동기 추출 방식을 필요로 한다.Although there is a synchronous extraction method in the NSA (Non-Standalone) network structure, the synchronous extraction method in the NSA network structure is not applicable to the SA network structure, which is a 5G NR network single structure. In other words, when performing synchronization between a base station and a terminal in a 5G relay system of an SA network structure, a synchronization method in an NSA network structure cannot be applied. Therefore, a separate synchronous extraction method that is distinct from the NSA network structure is required in the SA network structure.
본 실시예는 5G 중계기 내에 탑재된 복조(Demodulation) 방식의 동기화 장치가 5G NR의 기지국 신호를 수신하여, 5G NSA(Non-StandAlone) 중계기의 하드웨어 상에서 소프트웨어 업그레이드만으로 최소한의 비용으로 지속적인 5G SA(Standalone) 네트워크 구조에서 5G 서비스를 가능하도록 하는 SA 네트워크에서 5G 중계 시스템의 동기화 방법 및 장치를 제공하는 데 목적이 있다.In this embodiment, a demodulation-type synchronization device mounted in a 5G repeater receives a base station signal of 5G NR, and continuously upgrades 5G SA (Standalone) at a minimum cost with only software upgrade on the hardware of a 5G Non-StandAlone (NSA) repeater. ) It is an object to provide a method and apparatus for synchronizing a 5G relay system in an SA network that enables 5G service in a network structure.
본 실시예의 일 측면에 의하면, 5G NR 기지국으로부터 수신된 5G 프레임에 포함된 5G 시스템 정보 중 PBCH(Physical Broadcast Channel)를 이용하여 전송할 MIB(Master Information Block)를 복조하는 PBCH 복조부; 상기 MIB에 대해 SIB1(System Information Block1) 복조를 수행하는 SIB1 복조부; DCI(Data Control Information) 탐색 타이머를 구동하는 DCI 복조부; 상기 5G 프레임 내에 포함된 5G 동기 신호를 이용하여 셀 탐색(Cell Search)을 수행하여 상기 5G 프레임에 대한 캐리어 주파수(CarrierFreqency), 서브캐리어 공간(SubcarrierSpacing)을 획득하며, 상기 캐리어 주파수(CarrierFreqency), 상기 서브캐리어 공간(SubcarrierSpacing), 상기 DCI 탐색 타이머를 기반으로 상기 5G 프레임의 업링크(UL) 및 다운링크(DL) 각각에 대한 TDD 스위칭을 제어하는 5G NR TDD 스위칭부를 포함하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치를 제공한다.According to an aspect of the present embodiment, a PBCH demodulator demodulating a master information block (MIB) to be transmitted using a physical broadcast channel (PBCH) among 5G system information included in a 5G frame received from a 5G NR base station; A SIB1 demodulator which performs SIB1 (System Information Block 1) demodulation on the MIB; A DCI demodulator driving a DCI (Data Control Information) search timer; Cell search is performed using a 5G synchronization signal included in the 5G frame to obtain a carrier frequency for the 5G frame, a subcarrier spacing, and the carrier frequency (CarrierFreqency), the An SA network comprising a subcarrier spacing (5G NR TDD switching unit) that controls TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the DCI discovery timer. Provide a relay device based.
본 실시예의 다른 측면에 의하면, 5G NR 기지국으로부터 수신된 5G 프레임 내에 포함된 5G 동기 신호를 이용하여 셀 탐색(Cell Search)을 수행하여 상기 5G 프레임에 대한 캐리어 주파수(CarrierFreqency), 서브캐리어 공간(SubcarrierSpacing)을 획득하는 과정; 상기 5G 프레임에 포함된 5G 시스템 정보 중 PBCH(Physical Broadcast Channel)를 이용하여 전송할 MIB(Master Information Block)를 복조하는 과정; 상기 MIB에 대해 SIB1(System Information Block1) 복조를 수행하는 과정; DCI(Data Control Information) 탐색 타이머를 구동하는 과정; 및 상기 캐리어 주파수(CarrierFreqency), 상기 서브캐리어 공간(SubcarrierSpacing), 상기 DCI 탐색 타이머를 기반으로 상기 5G 프레임의 업링크(UL) 및 다운링크(DL) 각각에 대한 TDD 스위칭을 제어하는 과정을 포함하는 것을 특징으로 하는 SA 네트워크 기반의 중계 방법을 제공한다.According to another aspect of this embodiment, a cell search is performed using a 5G synchronization signal included in a 5G frame received from a 5G NR base station to perform a cell search, and a carrier frequency for the 5G frame and a subcarrier space (SubcarrierSpacing) ) The process of obtaining; Demodulating a master information block (MIB) to be transmitted using a physical broadcast channel (PBCH) among 5G system information included in the 5G frame; A process of demodulating SIB1 (System Information Block 1) for the MIB; Driving a DCI (Data Control Information) search timer; And controlling TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the carrier frequency (CarrierFreqency), the subcarrier space (SubcarrierSpacing), and the DCI search timer. It provides a relay method based on the SA network, characterized in that.
이상에서 설명한 바와 같이 본 실시예에 의하면, 5G 중계기 내에 탑재된 복조(Demodulation) 방식의 동기화 장치가 5G NR의 기지국 신호를 수신하여, 5G NSA(Non-StandAlone) 중계기의 하드웨어 상에서 소프트웨어 업그레이드만으로 최소한의 비용으로 지속적인 5G SA(Standalone) 네트워크 구조에서 5G 서비스를 가능하도록 하는 효과가 있다.As described above, according to the present embodiment, a demodulation-type synchronization device mounted in a 5G repeater receives a base station signal of 5G NR, and only minimal software upgrade is required on the hardware of a 5G Non-StandAlone (NSA) repeater. It has the effect of enabling 5G service in a continuous 5G standalone (SA) network structure at a cost.
본 실시예에 의하면, SA 시스템에서는 LTE(4G) 네트워크에서 전송되는 신호를 복조(Demodulation)하지 않고 5G NR의 신호를 이용하여 단독으로 기지국과 단말의 동기화가 가능한 효과가 있다.According to the present embodiment, in the SA system, a signal transmitted from an LTE (4G) network is not demodulated (demodulation), but a signal of 5G NR can be used to synchronize the base station and the terminal alone.
본 실시예에 의하면, SA 시스템에서 동적으로 변화되는 상향/하향 링크의 TDD 타이밍에 동적으로 대응 가능하고, 기존 신호 세기 방식(RF Power Detector)에 비해 월등히 높은 성능 및 안정성을 확보할 수 있는 효과가 있다.According to this embodiment, it is possible to dynamically respond to the TDD timing of the uplink / downlink that is dynamically changed in the SA system, and has an effect of securing significantly higher performance and stability than the existing signal strength method (RF Power Detector). have.
본 실시예에 의하면, 5G NR 신호 품질 항목(예컨대, Cell ID, SNR, RSRP, RSRQ, RSSI)은 복조(Demodulation) 방식을 이용하여 추가적인 하드웨어를 실장할 필요없이, 동기화 신호를 검출 가능하여 셀(Cell) 환경에 대한 품질측정 도구로 활용이 가능한 효과가 있다.According to this embodiment, the 5G NR signal quality items (eg, Cell ID, SNR, RSRP, RSRQ, RSSI) can detect a synchronization signal without needing to install additional hardware using a demodulation method. Cell) It can be used as a quality measurement tool for the environment.
본 실시예에 의하면, 5G NR 기지국과 유선 연결형, 무선 연결형 5G 중계 시스템에 해당 동기 장치를 적용하여 5G 중계 시스템과 연결된 사용자 데이터 처리율(Throughput)을 향상시키고 인도어/아웃도어의 네트워크 품질향상이 가능하도록 하는 효과가 있다.According to the present embodiment, a 5G NR base station and a wired connection type and a wireless connection type 5G relay system are applied to a corresponding synchronization device to improve a user data throughput connected to the 5G relay system and to improve indoor / outdoor network quality. It has the effect.
도 1은 본 실시예에 따른 SA 네트워크 구조에서의 5G 중계 시스템을 나타낸 도면이다.1 is a view showing a 5G relay system in the SA network structure according to the present embodiment.
도 2는 본 실시예에 따른 SA 네트워크 구조에서의 무선 연결형 5G 중계 시스템을 나타낸 도면이다.2 is a diagram illustrating a wireless connection type 5G relay system in an SA network structure according to the present embodiment.
도 3은 본 실시예에 따른 SA 네트워크 구조에서의 유선 연결형 5G 중계 시스템을 나타낸 도면이다.3 is a view showing a wired connection type 5G relay system in the SA network structure according to the present embodiment.
도 4는 본 실시예에 따른 SA 네트워크 구조에서의 무선 연결형 5G 중계 시스템에 적용되는 동기화 장치를 나타낸 도면이다.4 is a view showing a synchronization device applied to a wireless connection type 5G relay system in an SA network structure according to the present embodiment.
도 5는 본 실시예에 따른 SA 네트워크 구조에서의 유선 연결형 5G 중계 시스템에 적용되는 동기화 장치를 나타낸 도면이다.5 is a view showing a synchronization device applied to a wired connection type 5G relay system in an SA network structure according to the present embodiment.
도 6a,6b,6c는 본 실시예에 따른 SA 네트워크 구조에서 중계 시스템의 5G 프레임에 대한 동기화 과정을 설명하기 위한 순서도이다.6A, 6B, and 6C are flowcharts for explaining a synchronization process for 5G frames of a relay system in an SA network structure according to the present embodiment.
도 7은 본 실시예에 따른 5G NR SFI 테이블을 나타낸 도면이다.7 is a view showing a 5G NR SFI table according to the present embodiment.
도 8은 본 실시예에 따른 SSB 구조를 나타낸 도면이다.8 is a view showing the SSB structure according to the present embodiment.
이하, 본 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, this embodiment will be described in detail with reference to the accompanying drawings.
도 1은 본 실시예에 따른 SA 네트워크 구조에서의 5G 중계 시스템을 나타낸 도면이다.1 is a view showing a 5G relay system in the SA network structure according to the present embodiment.
본 실시예에 따른 SA 네트워크 구조에서의 5G 중계 시스템은 5G NR 기지국(110), 5G 중계 시스템(120)을 포함한다. SA 네트워크 구조에서의 5G 중계 시스템에 포함된 구성요소는 반드시 이에 한정되는 것은 아니다.The 5G relay system in the SA network structure according to the present embodiment includes a 5G NR base station 110 and a 5G relay system 120. Components included in the 5G relay system in the SA network structure are not necessarily limited thereto.
SA(Standalone) 네트워크 구조는 네트워크 가상화를 이용하여 LTE(4G) 네트워크와 5G 네트워크를 단일 네트워크처럼 이용하는 NAS(Non-Standalone) 네트워크와 달리 5G NR 프레임(Frame)만을 이용하여 동기화가 가능한 구조를 갖는다. SA 네트워크 구조는 도 1에 도시된 바와 같이, 5G 중계 시스템(120)은 5G NR 기지국(110)으로부터 단독으로 신호를 수신하여 운용한다. Unlike the NAS (Non-Standalone) network, which uses LTE (4G) network and 5G network as a single network using network virtualization, the SA (Standalone) network structure has a structure capable of synchronization using only a 5G NR frame. SA network structure, as shown in Figure 1, 5G relay system 120 receives and operates signals from the 5G NR base station 110 alone.
5G 중계 시스템(120)에 적용되는 동기화 장치(210)는 5G NR 네트워크에 대하여 동기를 수행한다. SA 네트워크는 반드시 LTE(4G)에서 컨트롤 정보를 전달받는 NSA(Non-Standalone) 네트워크 구조와 달리, 5G NR 프레임만을 복조(Demodulation)하여 5G NR의 SA 네트워크 구조에 대응 가능하다.The synchronization device 210 applied to the 5G relay system 120 performs synchronization for the 5G NR network. Unlike the NSA (Non-Standalone) network structure in which control information is necessarily transmitted in LTE (4G), the SA network is capable of coping with the SA network structure of 5G NR by demodulating only 5G NR frames.
5G의 서비스에서 5G 중계 시스템(120)은 5G NR 기지국(110)과 단말기(UE) 사이에서 상향/하향 링크 타이밍 검출해야하기 때문에, 동기화를 필수적으로 수행해야 한다. 따라서, TDD 방식 기반의 5G 서비스는 5G NR 기지국(110)과 인터페이스 구조가 무선 연결형(RF 중계기), 유선 연결형(광 중계기) 구조와 옥내형(인빌딩)옥외형등 다양한 서비스와 시나리오에 적합하도록 운영되어야 한다.In 5G service, since the 5G relay system 120 needs to detect the uplink / downlink timing between the 5G NR base station 110 and the terminal UE, synchronization must be performed. Therefore, the 5G service based on the TDD method is suitable for various services and scenarios such as a 5G NR base station 110 and an interface structure such as a wireless connection type (RF repeater), a wired connection type (optical repeater) structure and an indoor type (in-building) outdoor type. Should be operated.
도 2는 본 실시예에 따른 SA 네트워크 구조에서의 무선 연결형 5G 중계 시스템을 나타낸 도면이다.2 is a diagram illustrating a wireless connection type 5G relay system in an SA network structure according to the present embodiment.
본 실시예에 따른 5G 중계 시스템(120)은 무선 연결형 5G 중계 시스템(200)으로 구현 가능하다. SA 네트워크 구조에서의 무선 연결형 5G 중계 시스템(200)은 본 실시예에 따른 동기화 장치(210)를 포함한다. 무선 연결형 5G 중계 시스템(200)은 5G NR 기지국(110)과 무선으로 신호를 송수신한다.The 5G relay system 120 according to the present embodiment may be implemented as a wireless connection type 5G relay system 200. The wireless connection type 5G relay system 200 in the SA network structure includes a synchronization device 210 according to the present embodiment. The wireless connection type 5G relay system 200 transmits and receives signals wirelessly with the 5G NR base station 110.
도 2에 도시된 5G NR의 SA 네트워크 구조에서의 무선 연결형 5G 중계 시스템(200)은 5G NR 기지국(110)으로 무선으로 신호를 전송한다. 무선 연결형 5G 중계 시스템(200)은 도너(Donor) 안테나를 이용하여 5G NR 기지국(110)으로부터 무선(Air)으로 전송된 신호를 수신한다.The radio-connected 5G relay system 200 in the SA network structure of 5G NR shown in FIG. 2 wirelessly transmits a signal to the 5G NR base station 110. The wireless connection type 5G relay system 200 receives a signal transmitted from the 5G NR base station 110 to the air using a donor antenna.
무선 연결형 5G 중계 시스템(200)은 5G NR 기지국(110)으로부터 수신한 수신호를 필터링 및 증폭한 후 내부 동기화 장치(210)로 전달하여 동기 및 상향/하향 링크 변화에 대응하고 인빌딩 내부에 다수의 서비스 안테나로 전송하여 커버리지 내로 5G 서비스를 제공한다.The wireless connection type 5G relay system 200 filters and amplifies the hand signal received from the 5G NR base station 110 and transmits it to the internal synchronization device 210 to respond to synchronous and uplink / downlink changes, and multiples in the inbuilding It transmits to the service antenna to provide 5G service within coverage.
5G NR의 NSA 네트워크 구조에서의 무선 연결형 5G 중계 시스템(200)은 동기 및 상향/하향 링크 변화에 대응하고 인빌딩 내부에 서비스 안테나를 다수 설치하여 커버리지를 확장하는 구조를 갖는다.The radio-connected 5G relay system 200 in the NSA network structure of 5G NR responds to synchronous and uplink / downlink changes and extends coverage by installing multiple service antennas inside the in-building.
도 3은 본 실시예에 따른 SA 네트워크 구조에서의 유선 연결형 5G 중계 시스템을 나타낸 도면이다.3 is a view showing a wired connection type 5G relay system in the SA network structure according to the present embodiment.
본 실시예에 따른 5G 중계 시스템(120)은 유선 연결형 5G 중계 시스템(300)으로 구현 가능하다. SA 네트워크 구조에서의 유선 연결형 5G 중계 시스템(300)은 본 실시예에 따른 동기화 장치(210)를 포함한다. 유선 연결형 5G 중계 시스템(300)은 5G NR 기지국(110)과 유선(Coaxial & Optic)으로 신호를 송수신한다.The 5G relay system 120 according to the present embodiment may be implemented as a wired connection type 5G relay system 300. The wired connection type 5G relay system 300 in the SA network structure includes a synchronization device 210 according to the present embodiment. The wired connection type 5G relay system 300 transmits and receives signals to and from the 5G NR base station 110 through a wire (Coaxial & Optic).
5G NR 기지국(110)은 유선 연결형 5G 중계 시스템(300)으로 유선(Coaxial & Optic)으로 신호를 전송한다. 유선 연결형 5G 중계 시스템(300)은 도너(Donor) 안테나를 이용하여 5G NR 기지국(110)으로부터 유선(Coaxial & Optic)으로 수신된 신호를 필터링 및 증폭한 후 동기화 장치(210)로 전달한다.The 5G NR base station 110 transmits a signal through a wired (Coaxial & Optic) to the wired connection type 5G relay system 300. The wired connection type 5G relay system 300 filters and amplifies the signal received from the 5G NR base station 110 through the wire (Coaxial & Optic) using a donor antenna and transmits it to the synchronization device 210.
5G NR의 SA 네트워크 구조에서의 유선 연결 5G 중계기 시스템(300)은 동기 및 상향/하향 링크 변화에 대응하고 인빌딩 내부에 리모트를 다수 설치하여 커버리지를 확장하는 구조를 갖는다. 이때, 리모트는 안테나 일체형 구조 또는 안테나 분리형 구조로 구분된다. Wired connection 5G repeater system 300 in SA network structure of 5G NR responds to synchronous and uplink / downlink changes and extends coverage by installing multiple remotes inside the in-building. At this time, the remote is divided into an antenna-integrated structure or an antenna-separated structure.
도 2에 도시된 무선 연결형 5G 중계 시스템(200)과 도 3에 도시된 유선 연결 5G 중계기 시스템(300)에 포함된 동기화 장치(210)는 신호의 복조 방식을 적용하여 신호세기 검출 방식의 불안정성을 극복한다.The synchronization device 210 included in the wireless connection type 5G relay system 200 shown in FIG. 2 and the wired connection 5G repeater system 300 shown in FIG. 3 applies the demodulation method of the signal to reduce the instability of the signal strength detection method. Overcome.
동기화 장치(210)는 5G NR의 SA 네트워크 구조에서 기지국과 단말 사이에서 운용되는 5G 중계 시스템 내에 탑재되어 동기 신호의 시간적 위치를 정확히 추정한다. 동기화 장치(210)는 5G 프레임의 상향/하향 링크의 동적인 변화에 대응이 가능하도록 구현되어 5G 서비스의 안정적인 운영이 가능하다.The synchronization device 210 is mounted in the 5G relay system operated between the base station and the terminal in the SA network structure of the 5G NR to accurately estimate the temporal position of the synchronization signal. The synchronization device 210 is implemented to be able to respond to the dynamic change of the uplink / downlink of the 5G frame, thereby enabling stable operation of the 5G service.
유선 연결형 5G 중계 시스템(300)은 도너, 옵틱 모듈, 리모트, 필터, 안테나 블록을 포함한다. 유선 연결형 5G 중계 시스템(300)에 포함된 리모트는 안테나 일체형 또는 분리형 구조를 갖는다. 유선 연결형 5G 중계 시스템(300)은 5G NR 기지국(110)으로부터 수신된 5G NR 신호를 동기화 장치(210)로 전송한다. 유선 연결형 5G 중계 시스템(300)은 동기화 장치(210)를 이용한 동기화 과정을 수행한 신호를 LVTTL(Low Voltage TTL)로 변환하여 옵틱 모듈로 연결된 광케이블을 경유하여 해당 리모트로 각각 전송한다. 유선 연결형 5G 중계 시스템(300)은 변화되는 기지국 신호에 대응하여 도너와 리모트가 동일하게 TDD 스위칭하여 SA 네트워크에서 5G 서비스가 가능하도록 한다.The wired connection type 5G relay system 300 includes a donor, an optical module, a remote, a filter, and an antenna block. The remote included in the wired connection type 5G relay system 300 has an antenna-integrated or separate structure. The wired connection type 5G relay system 300 transmits the 5G NR signal received from the 5G NR base station 110 to the synchronization device 210. The wired connection type 5G relay system 300 converts the signal through the synchronization process using the synchronization device 210 into a low voltage TTL (LVTTL) and transmits each to a corresponding remote via an optical cable connected to the optical module. The wired connection type 5G relay system 300 enables 5G service in the SA network by TDD switching of the donor and the remote in the same manner in response to the changing base station signal.
동기화 장치(210)는 유선 연결형 5G 중계 시스템(300), 무선 연결형 5G 중계 시스템(200)에 따라 구분되지 않고 동일한 디지털 보드의 FPGA(Field Programmable Gate Array)로 구현된다. 동기화 장치(210)는 5G NR 신호를 디지털 필터링 및 가공하기 위해 필요한 FPGA 리소스(Resource)를 공유/할당하여 구현되므로 별도의 하드웨어 비용을 절감할 수 있게 된다.The synchronization device 210 is not classified according to the wired connection type 5G relay system 300 and the wireless connection type 5G relay system 200 and is implemented as a field programmable gate array (FPGA) of the same digital board. The synchronization device 210 is implemented by sharing / allocating the FPGA resource required to digitally filter and process the 5G NR signal, thereby reducing additional hardware cost.
동기화 장치(210)의 5G NR 신호 블록 구성은 5G NR 신호에 대해 ADC(Analog Digital Convert), FFT(Fast Fourier Transform), PSS(Primary Synchronous Signal) 복조, SSS(Secondary Synchronous Signal) 복조, PBCH(Physical Broadcast Channel) 복조, DCI(Downlink Control Information) 복조를 수행하여 5G NR 프레임(Frame)의 시작점을 추출한다. The 5G NR signal block configuration of the synchronization device 210 is 5G NR signal, analog digital convert (ADC), fast Fourier Transform (FFT), primary synchronous signal (PSS) demodulation, secondary synchronous signal (SSS) demodulation, and PBCH (Physical) Broadcast Channel (DVI) demodulation and DCI (Downlink Control Information) demodulation are performed to extract the starting point of the 5G NR frame.
도 4는 본 실시예에 따른 SA 네트워크 구조에서의 무선 연결형 5G 중계 시스템에 적용되는 동기화 장치를 나타낸 도면이다.4 is a view showing a synchronization device applied to a wireless connection type 5G relay system in an SA network structure according to the present embodiment.
본 실시예에 따른 SA 네트워크 구조에서의 무선 연결형 5G 중계 시스템(200)에 적용되는 동기화 장치(210)는 ADC부(410), FFT부(420), PSS 복조부(430), SSS 복조부(440), PBCH 복조부(450), SIB1 복조부(460), DCI 복조부(470), 5G NR TDD 스위칭부(480)를 포함한다. 동기화 장치(210)에 포함된 구성요소는 반드시 이에 한정되는 것은 아니다.The synchronization device 210 applied to the wireless connection type 5G relay system 200 in the SA network structure according to the present embodiment includes an ADC unit 410, an FFT unit 420, a PSS demodulator 430, and an SSS demodulator ( 440), a PBCH demodulator 450, a SIB1 demodulator 460, a DCI demodulator 470, and a 5G NR TDD switching unit 480. The components included in the synchronization device 210 are not limited thereto.
본 실시예에 따른 5G NR의 SA 네트워크 구조에 적용된 동기화 장치(210)의 복조 방식은 5G NR 기지국(110)으로부터 수신되는 5G 프레임을 이용하여 동기 신호(Synchronous Signal)를 검출하고 상향/하향 링크의 스위칭 타이밍을 5G NR 기지국(110)과 일치시킬 수 있다.The demodulation method of the synchronization device 210 applied to the SA network structure of 5G NR according to the present embodiment detects a synchronous signal using a 5G frame received from the 5G NR base station 110 and detects uplink / downlink The switching timing can be matched with the 5G NR base station 110.
본 실시예에 따른 동기화 장치(210)는 5G NR 기지국(110) 각각과 유무선으로 연결되는 모든 5G 중계 시스템 구조에 적용 가능하다.The synchronization device 210 according to the present embodiment is applicable to all 5G relay system structures connected to each of the 5G NR base stations 110 by wired or wireless.
도 4에 도시된 바와 같이, 무선 연결형 5G 중계 시스템(200)은 도너 안테나, 도너 필터부, 스위칭부, LNA(Low Noise Amplifier), TDD 스위칭부, 동기화 장치(210), RF부, 전력 증폭부, 서비스 필터부, 서비스 안테나를 포함한다. 4, the wireless connection type 5G relay system 200 includes a donor antenna, a donor filter unit, a switching unit, a low noise amplifier (LNA), a TDD switching unit, a synchronization device 210, an RF unit, and a power amplification unit. , A service filter unit, and a service antenna.
도너 안테나는 도너 필터부와 연결되어, 5G NR 기지국(110)으로부터 수신된 5G 프레임을 도너 필터부로 전송한다. 도너 필터부는 도너 안테나와 스위칭부 사이에 연결되며, 도너 필터부로부터 수신된 5G 프레임을 필터링하여 스위칭부로 전송한다. 스위칭부는 도너 필터부와 LNA 사이에 연결되며, 필터링된 5G 프레임에 대한 스위칭을 수행한다. LNA는 스위칭부와 동기화 장치(210) 사이에 연결되며, 스위칭부로부터 입력된 5G 프레임을 저잡음 증폭하여 동기화 장치(210)로 입력한다. The donor antenna is connected to the donor filter unit and transmits the 5G frame received from the 5G NR base station 110 to the donor filter unit. The donor filter unit is connected between the donor antenna and the switching unit, and filters the 5G frame received from the donor filter unit and transmits it to the switching unit. The switching unit is connected between the donor filter unit and the LNA, and performs switching on the filtered 5G frame. The LNA is connected between the switching unit and the synchronization device 210, and amplifies the 5G frame input from the switching unit with low noise and inputs it to the synchronization device 210.
동기화 장치(210)는 5G 프레임에 대해 내부 동기화 과정을 거쳐 LVTTL(Low Voltage TTL)로 변환하여 TDD 스위칭부로 전달하여 변화되는 기지국 신호에 대응하여 SA 네트워크에서의 서비스가 가능하다. TDD 스위칭부는 동기화 장치(210)와 스위칭부 사이에 연결되어, 동기화 장치(210)로부터 수신된 LVTTL을 스위칭부로 전달한다.The synchronization device 210 converts to a low voltage TTL (LVTTL) through an internal synchronization process for a 5G frame and transmits it to a TDD switching unit, thereby enabling service in an SA network in response to a changed base station signal. The TDD switching unit is connected between the synchronization device 210 and the switching unit, and transfers the LVTTL received from the synchronization device 210 to the switching unit.
무선 연결형 5G 중계 시스템(200)에 적용된 동기화 장치(210)는 5G 프레임에 대해 ADC(Analog Digital Convert)를 수행하고, ADC 신호에 대한 FFT(Fast Fourier Transform) 변환을 수행한다. 무선 연결형 5G 중계 시스템(200)에 적용된 동기화 장치(210)는 FFT 변환을 수행한 후 PSS(Primary Synchronous Signal) 및 SSS(Secondary Synchronous Signal)를 복조한다. 무선 연결형 5G 중계 시스템(200)에 적용된 동기화 장치(210)는 SSS를 복조한 후 PBCH(Physical Broadcast Channel)을 추출하고, PBCH을 이용하여 5G NR 프레임의 시작점을 추출한다. The synchronization device 210 applied to the wireless-connected 5G relay system 200 performs Analog Digital Convert (ADC) on the 5G frame and performs Fast Fourier Transform (FFT) conversion on the ADC signal. The synchronization device 210 applied to the wireless-connected 5G relay system 200 demodulates a Primary Synchronous Signal (PSS) and a Secondary Synchronous Signal (SSS) after performing FFT conversion. The synchronization device 210 applied to the wireless connection-type 5G relay system 200 demodulates the SSS, extracts a PBCH (Physical Broadcast Channel), and extracts the starting point of the 5G NR frame using the PBCH.
무선 연결형 5G 중계 시스템(200)에 적용된 동기화 장치(210)는 5G NR 기지국(110)으로부터 수신된 5G 프레임 내에 포함된 5G 동기 신호(예컨대, PSS, SSS)를 이용하여 셀 탐색(Cell Search)을 수행하여 5G 프레임에 대한 캐리어 주파수(CarrierFreqency), 서브캐리어 공간(SubcarrierSpacing)을 획득한다. 5G 동기화부(400)는 캐리어 주파수(CarrierFreqency), 서브캐리어 공간(SubcarrierSpacing)을 기반으로 5G 프레임의 업링크(UL) 및 다운링크(DL) 각각에 대한 TDD 스위칭을 제어한다. The synchronization device 210 applied to the wireless connection type 5G relay system 200 performs cell search using a 5G synchronization signal (eg, PSS, SSS) included in a 5G frame received from the 5G NR base station 110. Perform to obtain a carrier frequency (CarrierFreqency), subcarrier space (SubcarrierSpacing) for the 5G frame. The 5G synchronization unit 400 controls TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the carrier frequency (CarrierFreqency) and the subcarrier space (SubcarrierSpacing).
무선 연결형 5G 중계 시스템(200)에 적용된 동기화 장치(210)는 ADC부(410), FFT부(420), PSS 복조부(430), SSS 복조부(440), PBCH 복조부(450), SIB1 복조부(460), DCI 복조부(470), 5G NR TDD 스위칭부(480)를 포함한다. The synchronization device 210 applied to the wireless connection type 5G relay system 200 includes an ADC unit 410, an FFT unit 420, a PSS demodulator 430, an SSS demodulator 440, a PBCH demodulator 450, and SIB1. It includes a demodulator 460, a DCI demodulator 470, and a 5G NR TDD switching unit 480.
무선 연결형 5G 중계 시스템(200)에 적용된 동기화 장치(210)에 포함된 구성요소는 반드시 이에 한정되는 것은 아니다.The components included in the synchronization device 210 applied to the wireless connection type 5G relay system 200 are not necessarily limited thereto.
무선 연결형 5G 중계 시스템(200)에 적용된 동기화 장치(210)에 포함된 각 구성요소는 장치 내부의 소프트웨어적인 모듈 또는 하드웨어적인 모듈을 연결하는 통신 경로에 연결되어 상호 간에 유기적으로 동작할 수 있다. 이러한 구성요소는 하나 이상의 통신 버스 또는 신호선을 이용하여 통신한다.Each component included in the synchronization device 210 applied to the wireless connection type 5G relay system 200 is connected to a communication path connecting a software module or a hardware module inside the device to operate organically with each other. These components communicate using one or more communication buses or signal lines.
도 4에 도시된 무선 연결형 5G 중계 시스템(200)에 적용된 동기화 장치(210)의 각 구성요소는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 소프트웨어적인 모듈, 하드웨어적인 모듈 또는 소프트웨어와 하드웨어의 결합으로 구현될 수 있다.Each component of the synchronization device 210 applied to the wireless connection type 5G relay system 200 shown in FIG. 4 refers to a unit that processes at least one function or operation, and is a software module, a hardware module, or software and hardware. It can be implemented as a combination of.
ADC부(410)는 5G NR 기지국(110)으로부터 수신된 5G 프레임에 대해 ADC(Analog Digital Convert)를 수행한다. FFT부(420)는 ADC부(410)로부터 ADC를 수행한 신호에 대한 FFT(Fast Fourier Transform) 변환을 수행한다. The ADC unit 410 performs Analog Digital Convert (ADC) on 5G frames received from the 5G NR base station 110. The FFT unit 420 performs Fast Fourier Transform (FFT) transformation on the signal from the ADC unit 410 for performing the ADC.
PSS 복조부(430)는 FFT부(420)로부터 수신한 FFT 변환을 수행한 신호에 PSS(Primary Synchronous Signal)를 복조한다. SSS 복조부(440)는 PSS 복조부(430)로부터 수신한 PSS를 복조한 신호에 대해 SSS(Secondary Synchronous Signal)를 복조한다. The PSS demodulator 430 demodulates a PSS (Primary Synchronous Signal) to a signal that has undergone FFT conversion received from the FFT unit 420. The SSS demodulator 440 demodulates a Secondary Synchronous Signal (SSS) with respect to the signal demodulated PSS received from the PSS demodulator 430.
PBCH 복조부(450)는 5G NR 기지국(110)으로부터 수신된 5G 프레임에 포함된 5G 시스템 정보 중 PBCH(Physical Broadcast Channel)를 이용하여 전송할 MIB(Master Information Block)를 복조한다. PBCH 복조부(450)는 MIB를 전송할 PBCH을 추출한다. PBCH 복조부(450)는 PBCH을 이용하여 5G NR 프레임의 시작점을 추출한다. The PBCH demodulator 450 demodulates a Master Information Block (MIB) to be transmitted using a PBCH (Physical Broadcast Channel) among 5G system information included in a 5G frame received from the 5G NR base station 110. The PBCH demodulator 450 extracts the PBCH to transmit the MIB. The PBCH demodulator 450 extracts the starting point of the 5G NR frame using the PBCH.
SIB1 복조부(460)는 MIB에 대해 SIB1(System Information Block1) 복조를 수행한다. SIB1 복조부(460)는 5G 프레임에 대한 PDCCH(Physical Downlink Control Channel) 블라인드 검출(PDCCH Search Space Blinding Detection)을 수행한다. SIB1 복조부(460)는 5G 프레임에 대해 SIB1(System Information Block1)를 추출하여 디코딩하기 위한 PDCCH(Physical Downlink Control Channel)에 대한 CSS(Common Search Space)을 탐색한다. SIB1 복조부(460)는 CSS에 대한 제어 자원 셋인 CORESET 탐색을 위한 Type0 PDCCH를 추출하고, Type0 PDCCH에 대한 SIB1을 복조한다.The SIB1 demodulator 460 performs SIB1 (System Information Block 1) demodulation on the MIB. The SIB1 demodulator 460 performs PDCCH Search Space Blinding Detection (PDCCH) for 5G frames. The SIB1 demodulator 460 searches a common search space (CSS) for a Physical Downlink Control Channel (PDCCH) for decoding by extracting and decoding System Information Block 1 (SIB1) for 5G frames. The SIB1 demodulator 460 extracts the Type0 PDCCH for the CORESET search, which is a control resource set for CSS, and demodulates the SIB1 for the Type0 PDCCH.
DCI 복조부(470)는 DCI(Data Control Information) 탐색 타이머를 구동한다.The DCI demodulator 470 drives a DCI (Data Control Information) search timer.
DCI 복조부(470)는 SIB1을 복조한 신호의 반정적(Semi-Static) 데이터 중 셀 특정(Cell-Specific) 다운링크(DL), 업링크(UL) 패턴(TDD-UL-DL-Pattern)을 추출한다. DCI 복조부(470)는 셀 특정 다운링크, 업링크 패턴(TDD-UL-DL-Pattern)을 기반으로 TDD 다운링크, 업링크 패턴 주기(DL-UL-TransmissionPeriodicity)를 추출한다. DCI 복조부(470)는 동적(Dynamic) SFI(Short EF Identifier) 구성을 위한 DCI(Data Control Information) 탐색 타이머를 구동한다.The DCI demodulator 470 is a cell-specific downlink (DL) or uplink (UL) pattern (TDD-UL-DL-Pattern) among semi-static data of a signal demodulated SIB1 To extract. The DCI demodulator 470 extracts a TDD downlink and uplink pattern period (DL-UL-TransmissionPeriodicity) based on a cell-specific downlink and uplink pattern (TDD-UL-DL-Pattern). The DCI demodulator 470 drives a DCI (Data Control Information) search timer for configuring a dynamic Short EF Identifier (SFI).
5G NR TDD 스위칭부(480)는 5G 프레임 내에 포함된 5G 동기 신호를 이용하여 셀 탐색(Cell Search)을 수행하여 5G 프레임에 대한 캐리어 주파수(CarrierFreqency), 서브캐리어 공간(SubcarrierSpacing)을 획득한다. 5G NR TDD 스위칭부(480)는 캐리어 주파수(CarrierFreqency), 서브캐리어 공간(SubcarrierSpacing), DCI 탐색 타이머를 기반으로 5G 프레임의 업링크(UL) 및 다운링크(DL) 각각에 대한 TDD 스위칭을 제어한다.The 5G NR TDD switching unit 480 performs a cell search using a 5G synchronization signal included in a 5G frame to obtain a carrier frequency and a subcarrier space for the 5G frame. The 5G NR TDD switching unit 480 controls TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the carrier frequency, subcarrier spacing, and DCI search timer. .
5G NR TDD 스위칭부(480)는 TDD 다운링크, 업링크 패턴 주기(DL-UL-TransmissionPeriodicity)가 도래할 때까지 대기한 후 5G NR 기지국(110)으로부터 셀 무선 네트워크 임시 식별자인 C-RNTI(Cell Radio RNTI(Radio Network Temporary Identifier))를 수신한다.The 5G NR TDD switching unit 480 waits until the TDD downlink and uplink pattern period (DL-UL-TransmissionPeriodicity) arrives, and then the cell radio network temporary identifier C-RNTI (Cell) from the 5G NR base station 110 Radio RNTI (Radio Network Temporary Identifier) is received.
5G NR TDD 스위칭부(480)는 C-RNTI에 대응하는 5G NR 기지국(110)으로부터 RRC(Radio Resource Control) 연결 재설정 메시지(RRCConnectionReconfiguration Message)를 수신한다. 5G NR TDD 스위칭부(480)는 RCC 연결 재설정 메시지를 기반으로 5G 프레임으로부터 UE 특정 PDCCH(Physical Downlink Control Channel) 탐색 공간인 UE-Specific PDCCH Search Space를 디코딩하기 위한 UE 특정 탐색 공간인 USS(UE-specific search space)를 탐색한다.The 5G NR TDD switching unit 480 receives a Radio Resource Control (RRC) connection reconfiguration message (RRCConnectionReconfiguration Message) from the 5G NR base station 110 corresponding to C-RNTI. The 5G NR TDD switching unit 480 is a UE-specific search space USS (UE-) for decoding a UE-specific PDCCH Search Space, which is a UE-specific Physical Downlink Control Channel (PDCCH) search space, from a 5G frame based on an RCC connection reset message. specific search space).
5G NR TDD 스위칭부(480)는 USS(UE 특정 탐색 공간)으로부터 제어 자원 셋인 CORESET 탐색을 위한 UE 특정 PDCCH인 UE Specific PDCCH를 추출한다. 5G NR TDD 스위칭부(480)는 UE 특정 PDCCH인 UE Specific PDCCH을 기반으로 UE 특정 탐색 공간인 USS를 복조한다.The 5G NR TDD switching unit 480 extracts a UE specific PDCCH, which is a UE specific PDCCH for CORESET search, which is a set of control resources, from a UE specific search space (USS). The 5G NR TDD switching unit 480 demodulates the USS, which is the UE specific search space, based on the UE Specific PDCCH, which is the UE specific PDCCH.
5G NR TDD 스위칭부(480)는 USS를 복조한 신호로부터 공통(Common), 전용 업링크(Dedicated UL), 전용 다운링크(Dedicated DL) 슬롯 구성(TDD-UL-DL-SlotConfig)을 추출한다. 5G NR TDD 스위칭부(480)는 전용 업링크(Dedicated UL), 전용 다운링크(Dedicated DL) 슬롯 구성(TDD-UL-DL-SlotConfig) 정보를 기반으로 슬롯 인덱스를 추출한다. 5G NR TDD 스위칭부(480)는 슬롯 인덱스에 대응하는 SFI(Short EF Identifier) 테이블 위치를 확인한다.The 5G NR TDD switching unit 480 extracts a common, dedicated uplink (Dedicated UL), and dedicated downlink (Dedicated DL) slot configuration (TDD-UL-DL-SlotConfig) from the demodulated USS signal. The 5G NR TDD switching unit 480 extracts a slot index based on dedicated uplink (Dedicated UL) and dedicated downlink (Dedicated DL) slot configuration (TDD-UL-DL-SlotConfig) information. The 5G NR TDD switching unit 480 checks the position of the Short EF Identifier (SFI) table corresponding to the slot index.
5G NR TDD 스위칭부(480)는 기 설정된 룰(Rules)이 오버라이팅(Overwriting)되는 지의 여부를 확인한다. 5G NR TDD 스위칭부(480)는 기 설정된 룰(Rules)이 오버라이팅(Overwriting)되는 경우, 기 설정된 룰(Rules)이 오버라이팅(Overwriting)된 신호의 반정적(Semi-Static) 데이터 중 UE 특정(UE-Specific)을 기반으로 슬롯 인덱스별로 다운링크(DL), 업링크(UL), 슬롯 구성을 반영한다. 5G NR TDD 스위칭부(480)는 기 설정된 룰(Rules)이 오버라이팅(Overwriting)되지 않는 경우, DCI 탐색 타이머를 기반으로 5G NR TDD 스위칭을 제어한다.The 5G NR TDD switching unit 480 checks whether or not predetermined rules are overwritten. The 5G NR TDD switching unit 480 specifies the UE among semi-static data of a signal in which the preset rules are overwritten when the preset rules are overwritten. Downlink (DL), uplink (UL), and slot configuration are reflected for each slot index based on (UE-Specific). The 5G NR TDD switching unit 480 controls 5G NR TDD switching based on the DCI search timer when the preset rules are not overwritten.
5G NR TDD 스위칭부(480)는 시스템 구성 버퍼에 기 저장된 5G 프레임에 대한 캐리어 주파수(Carrier Frequency), SSB(Synchronization Signal Block), 서브캐리어 공간(Subcarrier Spacing)을 기반으로 5G NR 기지국(110)에 대한 동기 래스터 위치를 탐색한다. The 5G NR TDD switching unit 480 transmits the 5G NR base station 110 to the 5G frame based on the carrier frequency, SSB (Synchronization Signal Block), and subcarrier spacing for the 5G frame pre-stored in the system configuration buffer. Search for synchronous raster position.
5G NR TDD 스위칭부(480)는 주파수 도메인에서 동기 래스터의 위치를 중심으로 5G 동기 신호인 PSS(Primary Synchronous Signal)를 이용하여 서브캐리어(Subcarrier)를 검출한다.The 5G NR TDD switching unit 480 detects a subcarrier using a 5G synchronization signal, a PSS (Primary Synchronous Signal), centering on the location of a synchronization raster in the frequency domain.
5G NR TDD 스위칭부(480)는 PSS를 복조한 후 PSS에 대한 상관관계(Correlation)를 분석하여 셀 ID 그룹(Cell ID Group)(N (2) ID)을 복수 개(예컨대, 3개) 추출한다.After demodulating the PSS, the 5G NR TDD switching unit 480 extracts a plurality of cell ID groups (N (2) IDs ) (for example, three) by analyzing a correlation for the PSS. do.
5G NR TDD 스위칭부(480)는 셀 ID 그룹(N (2) ID)에 대한 (i+2) th 심볼 위치와 주파수 도메인에서 동기 래스터 위치를 중심으로 5G 동기 신호인 SSS(Secondary Synchronous Signal)를 이용하여 서브캐리어(Subcarrier)를 검출하고, 바이폴라(Bipolar) 신호(d` sss(n))로 생성한다.The 5G NR TDD switching unit 480 transmits a 5G synchronization signal (Secondary Synchronous Signal), which is a 5G synchronization signal, based on a (i + 2) th symbol position for a cell ID group (N (2) ID ) and a synchronization raster position in a frequency domain. Subcarrier is detected by using and is generated as a bipolar signal (d` sss (n)).
5G NR TDD 스위칭부(480)는 셀 ID 그룹(N (2) ID)에서의 PSS 상관관계 값에 따라 기 저장된 SSS 시퀀스 계산 테이블로부터 복수의 바이폴라 신호(d(0),d(1),d(2))를 생성한다.The 5G NR TDD switching unit 480 has a plurality of bipolar signals (d (0), d (1), d) from the pre-stored SSS sequence calculation table according to the PSS correlation value in the cell ID group (N (2) ID ). (2)).
5G NR TDD 스위칭부(480)는 복수의 바이폴라 신호(d(0),d(1),d(2)), SSS, SSS에 대한 상관관계 값 중 가장 큰 값을 기반으로 셀 ID 섹터(Cell ID Sector)(N (1) ID)를 추출한다. 5G NR TDD switching unit 480 is a plurality of bipolar signals (d (0), d (1), d (2)), SSS, cell ID sector based on the largest value of the correlation value for the SSS (Cell ID Sector) (N (1) ID ).
5G NR TDD 스위칭부(480)는 셀 ID 그룹(N (2) ID) 및 셀 ID 섹터(N (1) ID)를 기반으로 심볼을 동기하고 5G 셀 ID를 획득하여 시스템 구성 버퍼에 저장한다.The 5G NR TDD switching unit 480 synchronizes the symbols based on the cell ID group (N (2) ID ) and the cell ID sector (N (1) ID ) and obtains the 5G cell ID and stores it in the system configuration buffer.
5G NR TDD 스위칭부(480)는 시스템 구성 버퍼에 기 저장된 5G 프레임에 대한 SS/PBCH 블럭 내 주파수 도메인 상에서 위치를 계산한다. 5G NR TDD 스위칭부(480)는 복수의 심볼 위치 및 주파수 도메인에서 동기 래스터 위치를 중심으로 복수 개의 서브캐리어(Subcarrier)를 검출한다. 5G NR TDD 스위칭부(480)는 캐리어 주파수(Carrier Frequency)에 따라 PBCH의 수(Lmax)를 도출한다. 5G NR TDD 스위칭부(480)는 SSB 내의 DMRS(DeModulation Reference Signal)를 디코딩한다. 5G NR TDD 스위칭부(480)는 DMRS로 골드-시퀀스(Gold-Sequence)를 갖는 PBCH를 복조한다. The 5G NR TDD switching unit 480 calculates the position on the frequency domain in the SS / PBCH block for the 5G frame pre-stored in the system configuration buffer. The 5G NR TDD switching unit 480 detects a plurality of subcarriers based on a synchronization raster position in a plurality of symbol positions and frequency domains. The 5G NR TDD switching unit 480 derives the number (Lmax) of PBCHs according to the carrier frequency. The 5G NR TDD switching unit 480 decodes a DeModulation Reference Signal (DMRS) in the SSB. The 5G NR TDD switching unit 480 demodulates the PBCH having gold-sequence by DMRS.
5G NR TDD 스위칭부(480)는 DMRS로부터 SSB 인덱스(Index)와 하프 프레임 수(Half Frame Number)를 추출하여 시스템 구성 버퍼에 저장한다.The 5G NR TDD switching unit 480 extracts the SSB index and half frame number from the DMRS and stores them in a system configuration buffer.
5G NR TDD 스위칭부(480)는 5G 프레임에 대한 캐리어 주파수(Carrier Frequency)와 캐리어 공간(Subcarrier Spacing)을 이용하여 서브프레임 내의 슬롯 수(Number of slots in subframe), 심볼 인덱스(Symbol Index)를 도출한다. The 5G NR TDD switching unit 480 derives a number of slots in a subframe and a symbol index using a carrier frequency and a carrier space for a 5G frame. do.
5G NR TDD 스위칭부(480)는 5G 프레임 내의 서브프레임 수(Number of subframes in radio frame), 슬롯 내 심볼 수(Number of symbols in slot), 서브프레임 공간(Subcarrier spacing), 서브프레임 내 슬롯 수(Number of slots in subframe) 및 디코딩된 PBCH-DMRS로 도출한 하프 프레임 수(Half Frame Number) 및 SSB 인덱스(Index)를 이용하여 5G NR 동기 테이블을 구성한다.The 5G NR TDD switching unit 480 includes a number of subframes in a radio frame, a number of symbols in slot, a subcarrier spacing, and a number of slots in the subframe ( 5G NR synchronization table is constructed by using the number of slots in subframe and the half frame number derived by the decoded PBCH-DMRS and the SSB index.
5G NR TDD 스위칭부(480)는 다음 SFN(System Frame Number)까지의 프레임 내의 잔여 심볼 수(Remaining number of symbols in frame) 별로 하프 프레임 수(Half frame number), SSB 인덱스(SSB index), 심볼 인덱스(Symbol index), 서브프레임 수(Subframe number), 슬롯 내의 잔여 심볼 수(Remaining number of symbols in slot) 및 서브프레임 내의 잔여 슬롯 수(Remaining number of slots in subframe) 중 적어도 하나 이상을 매칭하여 5G NR 동기 테이블을 구성한다.The 5G NR TDD switching unit 480 has a half frame number, a SSB index, and a symbol index for each remaining number of symbols in frame up to the next System Frame Number (SFN). 5G NR by matching at least one of (Symbol index), Subframe number, Remaining number of symbols in slot, and Remaining number of slots in subframe. Construct a synchronous table.
5G NR TDD 스위칭부(480)는 SSB의 슬롯 수(Slot Number)는 심볼 인덱스(Symbol Index), 슬롯 내 심볼 수(N slot symb), 프레임 내 서브프레임 수(N fame subframe), 서브프레임 내 슬롯 수(N subframe slot), 하프 프레임 수(Half Frame Number)를 기반으로 계산한다.5G NR TDD switching unit 480, the slot number of the SSB (Slot Number) is a symbol index (Symbol Index), the number of symbols in the slot (N slot symb ), the number of subframes in the frame (N fame subframe ), the slot in the subframe It is calculated based on the number (N subframe slot ) and the half frame number (Half Frame Number).
5G NR TDD 스위칭부(480)는 SSB의 서브프레임 수(Subframe Number)는 슬롯 수(Slot Number)를 기반으로 계산한다.The 5G NR TDD switching unit 480 calculates the subframe number of the SSB based on the slot number.
5G NR TDD 스위칭부(480)는 슬롯 내 심볼 수(N slot symb), 슬롯 내 심볼 수의 심볼 인덱스 모드(Symbol Index Mod N slot symb)를 기반으로 다음 SFN(System Frame Number)까지의 슬롯 내의 잔여 심볼 수(Remaining Number of symbols in slot)를 계산한다.5G NR TDD switching unit 480 is based on the number of symbols in the slot (N slot symb ), the symbol index mode (Symbol Index Mod N slot symb ) of the number of symbols in the slot, remaining in the slot until the next SFN (System Frame Number) Calculate the number of symbols (Remaining Number of symbols).
5G NR TDD 스위칭부(480)는 슬롯 수 모드(Slot Number mod)를 기반으로 다음 SFN(System Frame Number)까지의 서브프레임 내의 잔여 슬롯 수(Remaining Number of slots in subframe)를 계산한다.The 5G NR TDD switching unit 480 calculates the remaining number of slots in a subframe up to the next System Frame Number (SFN) based on the slot number mod.
5G NR TDD 스위칭부(480)는 프레임 내 서브 프레임 수(N frame subframe)와 서브프레임 수(Subframe Number-1)를 기반으로 다음 SFN(System Frame Number)까지의 프레임 내의 잔여 서브프레임 수(Remaining Number of subframes in frame)를 계산한다.5G NR TDD switching unit 480 is the frame number of the sub-frame (N frame subframe) and a subframe number (Subframe Number-1) number of remaining subframes within the frame of the next SFN (System Frame Number) is based on (Remaining Number of subframes in frame).
5G NR TDD 스위칭부(480)는 슬롯 내의 잔여 심볼 수(Remaining Number of Symbols in Slot), 서브프레임 내의 잔여 슬롯 수(Remaining Number of Slots in Subframe), 슬롯 내 심볼 수(N slot symb), 프레임 내의 잔여 서브프레임 수(Remaining Number of Subframes in Frame), 서브프레임 내 슬롯 수(N subframe slot), 슬롯 내 심볼 수(N slot symb)를 기반으로 다음 SFN(System Frame Number)까지의 프레임 내의 잔여 심볼 수(Remaining Number of Symbols in Frame)를 계산한다.5G NR TDD switching unit 480, the number of remaining symbols in the slot (Remaining Number of Symbols in Slot), the number of remaining slots in the subframe (Remaining Number of Slots in Subframe), the number of symbols in the slot (N slot symb ), within the frame Remaining Number of Subframes in Frame, N subframe slots , and the number of remaining symbols in a frame up to the next System Frame Number (SFN) based on the number of N slot symbs . Calculate (Remaining Number of Symbols in Frame).
도 5는 본 실시예에 따른 SA 네트워크 구조에서의 유선 연결형 5G 중계 시스템에 적용되는 동기화 장치를 나타낸 도면이다.5 is a view showing a synchronization device applied to a wired connection type 5G relay system in an SA network structure according to the present embodiment.
본 실시예에 따른 유선 연결형 5G 중계 시스템(300)은 도너 유닛, 동기화 장치(210), 도너 옵틱 유닛, 리모트 옵틱 유닛, 리모트 유닛, 필터 유닛을 포함한다. 도너 유닛은 동기화 장치(210)와 연결되어, 5G NR 기지국(110)으로부터 유선으로 수신된 5G 프레임을 동기화 장치(210)로 전송한다.The wired connection type 5G relay system 300 according to the present embodiment includes a donor unit, a synchronization device 210, a donor optic unit, a remote optic unit, a remote unit, and a filter unit. The donor unit is connected to the synchronization device 210, and transmits the 5G frame received through the wire from the 5G NR base station 110 to the synchronization device 210.
동기화 장치(210)는 5G 프레임에 대해 내부 동기화 과정을 거쳐 LVTTL(Low Voltage TTL)로 변환하여 도너 옵틱 유닛으로 전달하여 변화되는 기지국 신호에 대응하여 SA 네트워크에서 서비스가 가능하다. 리모트는 안테나 일체형 또는 분리형 구조로 구성된다. 도너 옵틱 유닛은 연결된 광케이블을 통해 해당 리모트 옵틱 유닛 각각으로 전송한다. The synchronization device 210 converts to a Low Voltage TTL (LVTTL) through an internal synchronization process for a 5G frame and transmits it to a donor optical unit, so it can be serviced in a SA network in response to a changed base station signal. The remote is composed of an antenna-integrated or separate structure. The donor optic unit transmits to each of the corresponding remote optic units through a connected optical cable.
본 실시예에 따른 동기화 장치(210)는 무선 연결형 5G 중계 시스템(200), 유선 연결형 5G 중계 시스템(300)에 동일하게 디지털 보드의 FPGA를 활용하여 구현 가능하다. 동기화 장치(210)는 5G 프레임을 디지털 필터링 및 가공하기 위해 필요한 FPGA(Field Programmable Gate Array) 리소스(Resource)를 공유 및 할당하여 구현하므로 별도의 하드웨어 비용을 줄일 수 있다.The synchronization device 210 according to the present exemplary embodiment can be implemented by utilizing the FPGA of the digital board in the same way as the wireless connection type 5G relay system 200 and the wired connection type 5G relay system 300. The synchronization device 210 implements by sharing and allocating Field Programmable Gate Array (FPGA) resources required for digital filtering and processing of 5G frames, thereby reducing additional hardware cost.
동기화 장치(210)의 5G NR 신호 블록 구성은 5G NR 신호에 대해 ADC(Analog Digital Convert), FFT(Fast Fourier Transform), PSS(Primary Synchronous Signal) 복조, SSS(Secondary Synchronous Signal) 복조, PBCH(Physical Broadcast Channel) 복조, DCI(Downlink Control Information) 복조하여 5G NR 프레임의 시작점을 추출한다. The 5G NR signal block configuration of the synchronization device 210 is 5G NR signal, analog digital convert (ADC), fast Fourier Transform (FFT), primary synchronous signal (PSS) demodulation, secondary synchronous signal (SSS) demodulation, and PBCH (Physical) Broadcast Channel) demodulation and DCI (Downlink Control Information) demodulation to extract the starting point of the 5G NR frame.
도 6a,6b,6c는 본 실시예에 따른 SA 네트워크 구조에서 중계 시스템의 5G 프레임에 대한 동기화 과정을 설명하기 위한 순서도이다.6A, 6B, and 6C are flowcharts for explaining a synchronization process for 5G frames of a relay system in an SA network structure according to the present embodiment.
5G 중계 시스템(120) 내의 동기화 장치(210)는 중계기 모듈의 전력을 온(Power-On)시킨다(S610).The synchronization device 210 in the 5G relay system 120 turns on the power of the repeater module (S610).
5G 중계 시스템(120) 내의 동기화 장치(210)는 시스템 구성 버퍼를 클리어한다(S612). 단계 S612에서, 5G 중계 시스템(120) 내의 동기화 장치(210)는 형상, 시퀀스, SFI(Short EF Identifier)에 대한 정보가 임시 저장된 버퍼를 클리어한다.The synchronization device 210 in the 5G relay system 120 clears the system configuration buffer (S612). In step S612, the synchronization device 210 in the 5G relay system 120 clears the buffer in which information about the shape, sequence, and short EF identifier (SFI) is temporarily stored.
5G 중계 시스템(120) 내의 동기화 장치(210)는 빔 측정 및 최적 빔 기반으로 5G NR 기지국(gNB)(110)을 선택한다(S614). 단계 S614에서 5G 중계 시스템(120) 내의 동기화 장치(210)는 5G NR 기지국(110)에서 방사하는 빔(Beam)을 기반으로 최적 신호를 선택한다. The synchronization device 210 in the 5G relay system 120 selects a 5G NR base station (gNB) 110 based on beam measurement and optimal beam (S614). In step S614, the synchronization device 210 in the 5G relay system 120 selects an optimal signal based on a beam emitted from the 5G NR base station 110.
5G 중계 시스템(120) 내의 동기화 장치(210)는 선택된 5G NR 기지국(110)으로부터 5G NR 기지국 신호를 수신한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 시스템(형상) 구성 버퍼에 기 저장된 5G NR 기지국(110)의 시스템 형상 정보(주파수(Carrier Frequency), SSB(Synchronization Signal Block), 서브캐리어 공간(Subcarrier Spacing))를 기반으로 기지국의 동기 래스터 위치를 탐색한다.The synchronization device 210 in the 5G relay system 120 receives a 5G NR base station signal from the selected 5G NR base station 110. The synchronization device 210 in the 5G relay system 120 includes system shape information (frequency (Carrier Frequency), SSB (Synchronization Signal Block), subcarrier space) of the 5G NR base station 110 pre-stored in the system (shape) configuration buffer. Subcarrier Spacing)) to search for a synchronous raster location of the base station.
5G 중계 시스템(120) 내의 동기화 장치(210)는 주파수 도메인에서 동기 래스터의 위치를 중심으로 5G 동기 신호인 PSS(Primary Synchronous Signal)를 이용하여 127개의 서브캐리어(Subcarrier)를 검출한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 검출한 PSS를 복조하고 및 127개의 m-시퀀스(m-sequence)를 생성한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 PSS를 복조한 후 PSS에 대한 상관관계(Correlation)를 분석하여 셀 ID 그룹(Cell ID Group)(N (2) ID)을 복수 개(예컨대, 3개) 추출한다(S616).The synchronization device 210 in the 5G relay system 120 detects 127 subcarriers using a 5G synchronization signal, a PSS (Primary Synchronous Signal), centering on the position of the synchronization raster in the frequency domain. The synchronization device 210 in the 5G relay system 120 demodulates the detected PSS and generates 127 m-sequences. The synchronization device 210 in the 5G relay system 120 demodulates the PSS and analyzes the correlation for the PSS, thereby generating a plurality of cell ID groups (N (2) IDs ). 3) Extract (S616).
단계 S616에서 5G 중계 시스템(120) 내의 동기화 장치(210)는 최적 신호에서 PSS를 복조하고 상관관계(Correlation)를 분석한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 PSS를 복조한 후 PSS에 대한 상관관계(Correlation)를 분석하여 셀 ID 그룹(Cell ID Group)(N (2) ID)을 복수 개(예컨대, 3개(0~2번)) 추출한다.In step S616, the synchronization device 210 in the 5G relay system 120 demodulates the PSS from the optimal signal and analyzes correlation. The synchronization device 210 in the 5G relay system 120 demodulates the PSS and analyzes the correlation for the PSS, thereby generating a plurality of cell ID groups (N (2) IDs ). Three (0 ~ 2)) are extracted.
5G 중계 시스템(120) 내의 동기화 장치(210)는 셀 ID 그룹(N (2) ID)에 대한 (i+2) th 심볼 위치와 주파수 도메인에서 동기 래스터 위치를 중심으로 5G 동기 신호인 SSS(Secondary Synchronous Signal)를 이용하여 서브캐리어(Subcarrier)를 검출하고, 바이폴라(Bipolar) 신호로 생성한다.The synchronization device 210 in the 5G relay system 120 is a 5G synchronization signal SSS (Secondary) centering on the (i + 2) th symbol position for the cell ID group (N (2) ID ) and the synchronization raster position in the frequency domain. A subcarrier is detected using a synchronous signal, and is generated as a bipolar signal.
5G 중계 시스템(120) 내의 동기화 장치(210)는 셀 ID 그룹(N (2) ID)에서의 PSS 상관관계 값에 따라 기 저장된 SSS 시퀀스 계산 테이블로부터 복수의 바이폴라 신호를 생성한다.The synchronization device 210 in the 5G relay system 120 generates a plurality of bipolar signals from the pre-stored SSS sequence calculation table according to the PSS correlation value in the cell ID group (N (2) ID ).
5G 중계 시스템(120) 내의 동기화 장치(210)는 복수의 바이폴라 신호, SSS, SSS에 대한 상관관계 값 중 가장 큰 값을 기반으로 셀 ID 섹터(Cell ID Sector)(N (1) ID)를 추출한다(S618).The synchronization device 210 in the 5G relay system 120 extracts a Cell ID Sector (N (1) ID ) based on the largest value among correlation values for a plurality of bipolar signals, SSS, and SSS. (S618).
단계 S618에서, 5G 중계 시스템(120) 내의 동기화 장치(210)는 셀 ID 그룹(Cell ID Group)(N (2) ID)을 추출하고 SSS를 복조한 후 상관관계(Correlation)를 분석하여 셀 ID 섹터(Cell ID Sector)를 추출 후 셀 ID(Cell ID)를 획득한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 SSS를 336개(0~335번)추출하여 1008개의 셀 ID(Cell ID)에 대해 확인 가능하다.In step S618, the synchronization device 210 in the 5G relay system 120 extracts a cell ID group (N (2) ID ), demodulates the SSS, and analyzes correlation to analyze the cell ID. After extracting a sector (Cell ID Sector), a cell ID is obtained. The synchronization device 210 in the 5G relay system 120 can extract 336 SSSs (0 to 335) and check for 1008 cell IDs.
5G 중계 시스템(120) 내의 동기화 장치(210)는 셀 ID 그룹(N (2) ID) 및 셀 ID 섹터(N (1) ID)를 기반으로 심볼을 동기하고 5G 셀 ID를 획득하여 시스템 구성 버퍼에 저장한다.The synchronization device 210 in the 5G relay system 120 synchronizes the symbols based on the cell ID group (N (2) ID ) and the cell ID sector (N (1) ID ) and acquires the 5G cell ID to buffer the system configuration. To save.
5G 중계 시스템(120) 내의 동기화 장치(210)는 시스템 구성 버퍼에 기 저장된 5G 프레임에 대한 SS/PBCH 블럭 내 주파수 도메인 상에서 위치를 계산한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 복수의 심볼 위치 및 주파수 도메인에서 동기 래스터 위치를 중심으로 복수 개의 서브캐리어(Subcarrier)를 검출한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 캐리어 주파수(Carrier Frequency)에 따라 PBCH의 수(Lmax)를 도출한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 SSB 내의 DMRS(DeModulation Reference Signal)를 디코딩한다(S620).The synchronization device 210 in the 5G relay system 120 calculates the position on the frequency domain in the SS / PBCH block for 5G frames previously stored in the system configuration buffer. The synchronization device 210 in the 5G relay system 120 detects a plurality of subcarriers around a plurality of symbol positions and a synchronization raster position in a frequency domain. The synchronization device 210 in the 5G relay system 120 derives the number (Lmax) of PBCHs according to the carrier frequency. The synchronization device 210 in the 5G relay system 120 decodes the DeModulation Reference Signal (DMRS) in the SSB (S620).
5G 중계 시스템(120) 내의 동기화 장치(210)는 DMRS로 골드-시퀀스(Gold-Sequence)를 갖는 PBCH(Physical Broadcast Channel)를 복조한다(S622).The synchronization device 210 in the 5G relay system 120 demodulates a physical broadcast channel (PBCH) having a gold-sequence in DMRS (S622).
5G 중계 시스템(120) 내의 동기화 장치(210)는 DMRS로부터 SSB 인덱스(Index)와 하프 프레임 수(Half Frame Number)를 추출하여 시스템 구성 버퍼에 저장한다.The synchronization device 210 in the 5G relay system 120 extracts the SSB index and half frame number from the DMRS and stores them in the system configuration buffer.
5G 중계 시스템(120) 내의 동기화 장치(210)는 5G 프레임에 포함된 5G 시스템 정보 중 PBCH(Physical Broadcast Channel)를 이용하여 전송할 MIB(Master Information Block)을 복조한다(S624).The synchronization device 210 in the 5G relay system 120 demodulates a master information block (MIB) to be transmitted using a physical broadcast channel (PBCH) among 5G system information included in the 5G frame (S624).
단계 S624에서 5G 중계 시스템(120) 내의 동기화 장치(210)는 PBCH를 이용하여 MIB(Master Information Block) 정보를 획득한다. MIB는 SI(System Information)의 필수 정보를 의미하며, UE가 5G NR 기지국(110)에 접속하기 위한 다운링크 대역폭, SFN(System Frame Number), HARQ, 채널 정보를 포함한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 5G 프레임 동기화(프레임 시작점 위치)를 수행한다(S626).In step S624, the synchronization device 210 in the 5G relay system 120 acquires Master Information Block (MIB) information using the PBCH. MIB means essential information of System Information (SI), and includes downlink bandwidth, System Frame Number (SFN), HARQ, and channel information for the UE to access the 5G NR base station 110. The synchronization device 210 in the 5G relay system 120 performs 5G frame synchronization (frame start point position) (S626).
단계 S626에서 UE가 5G NR 기지국(110)에 접속하기 위한 하향링크 대역폭, SFN(System Frame Number), HARQ, 채널 정보를 제공하기 때문에, 동기화 장치(210)는 5G NR 기지국(110)과 프레임 동기가 가능하다. In step S626, since the UE provides downlink bandwidth for accessing the 5G NR base station 110, System Frame Number (SFN), HARQ, and channel information, the synchronization device 210 synchronizes the frame with the 5G NR base station 110. Is possible.
5G 중계 시스템(120) 내의 동기화 장치(210)는 5G 프레임에 대한 PDCCH(Physical Downlink Control Channel) 블라인드 검출(PDCCH Search Space Blinding Detection)을 수행한다(S628).The synchronization device 210 in the 5G relay system 120 performs a Physical Downlink Control Channel (PDCCH) blind detection (PDCCH Search Space Blinding Detection) for the 5G frame (S628).
5G 중계 시스템(120) 내의 동기화 장치(210)는 5G 프레임에 대해 SIB1를 추출하여 디코딩하기 위한 PDCCH에 대한 CSS(Common Search Space)을 탐색한다(S630). 단계 S630에서 동기화 장치(210)는 CORESET 탐색을 위한 PDCCH(Physical Downlink Control Channel) 추출하여 SIB1(System Information block)을 복조한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 CSS(Common Search Space)에 대한 제어 자원 셋인 CORESET 탐색을 위한 Type0 PDCCH를 추출한다(S632).The synchronization device 210 in the 5G relay system 120 searches the common search space (CSS) for the PDCCH to extract and decode SIB1 for the 5G frame (S630). In step S630, the synchronization device 210 demodulates a System Information Block (SIB1) by extracting a Physical Downlink Control Channel (PDCCH) for CORESET search. The synchronization device 210 in the 5G relay system 120 extracts a Type0 PDCCH for CORESET search, which is a set of control resources for CSS (Common Search Space) (S632).
5G 중계 시스템(120) 내의 동기화 장치(210)는 Type0 PDCCH에 대한 SIB1(System Information Block1)을 복조한다(S634). 단계 S634에서, 5G 중계 시스템(120) 내의 동기화 장치(210)는 S626 이후 5G NR의 프레임 동기화가 이루어진 후 제어 자원 셋인 CORESET 탐색을 위한 PDCCH(Physical Downlink Control Channel) 추출하여 SIB1(System Information Block1)을 복조한다. The synchronization device 210 in the 5G relay system 120 demodulates System Information Block1 (SIB1) for the Type0 PDCCH (S634). In step S634, the synchronization device 210 in the 5G relay system 120 extracts Physical Downlink Control Channel (PDCCH) for CORESET search, which is a control resource set after frame synchronization of 5G NR after S626, and extracts SIB1 (System Information Block1). Demodulate.
5G 중계 시스템(120) 내의 동기화 장치(210)는 SIB1을 복조한 신호의 반정적(Semi-Static) 데이터 중 셀 특정(Cell-Specific) 다운링크(DL), 업링크(UL) 패턴(TDD-UL-DL-Pattern)을 추출한다(S636).The synchronization device 210 in the 5G relay system 120 is a cell-specific downlink (DL) or uplink (UL) pattern (TDD-) among semi-static data of a signal demodulating SIB1. UL-DL-Pattern) is extracted (S636).
5G 중계 시스템(120) 내의 동기화 장치(210)는 셀 특정(Cell-Specific) 다운링크(DL), 업링크(UL) 패턴(TDD-UL-DL-Pattern)을 기반으로 TDD 다운링크(DL), 업링크(UL) 패턴 주기(DL-UL-TransmissionPeriodicity)를 추출한다(S638).The synchronization device 210 in the 5G relay system 120 is a TDD downlink (DL) based on a cell-specific downlink (DL) and an uplink (UL) pattern (TDD-UL-DL-Pattern). , The uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) is extracted (S638).
5G 중계 시스템(120) 내의 동기화 장치(210)는 동적(Dynamic) SFI(Short EF Identifier) 구성을 위한 DCI(Data Control Information) 탐색 타이머를 구동한다(S640). 5G 중계 시스템(120) 내의 동기화 장치(210)는 DCI 탐색 타이머를 기반으로 5G NR TDD 스위칭을 제어한다(S642).The synchronization device 210 in the 5G relay system 120 drives a DCI (Data Control Information) discovery timer for configuring a dynamic Short EF Identifier (SFI) (S640). The synchronization device 210 in the 5G relay system 120 controls 5G NR TDD switching based on the DCI search timer (S642).
5G 중계 시스템(120) 내의 동기화 장치(210)는 단계 S638에서 추출한 TDD 다운링크(DL), 업링크(UL) 패턴 주기(DL-UL-TransmissionPeriodicity)를 기반으로 업다운 링크 송수신 스위칭을 5G NR 기지국(110)과 동기화한다(S644). 단계 S644에서, 5G 중계 시스템(120) 내의 동기화 장치(210)는 S636에서 DL/UL 패턴을 추출하여 5G NR의 TDD 스위칭 제어하고 기지국과 단말기와 동기화가 가능하다.The synchronization device 210 in the 5G relay system 120 performs up / down link transmission / reception switching based on the TDD downlink (DL) and uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) extracted in step S638. 110). In step S644, the synchronization device 210 in the 5G relay system 120 extracts the DL / UL pattern in S636 to control TDD switching of the 5G NR and synchronize with the base station and the terminal.
5G NR 기지국(110)은 5G 중계 시스템(120) 내의 동기화 장치(210)로부터 TDD 다운링크(DL), 업링크(UL) 패턴 주기(DL-UL-TransmissionPeriodicity)를 수신한다. 5G NR 기지국(110)은 UE(User Equipment)와 업다운 링크의 타이밍을 일치시키는 동기화를 수행한다(S646).The 5G NR base station 110 receives the TDD downlink (DL) and uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) from the synchronization device 210 in the 5G relay system 120. 5G NR base station 110 performs synchronization to match the timing of the uplink and user equipment (UE) (S646).
5G NR 기지국(110)은 UE(User Equipment)와 슬롯별, 심볼별로 TDD 다운링크(DL), 업링크(UL) 패턴 주기(DL-UL-TransmissionPeriodicity)으로 상하향 송수신을 시작한다(S648). 5G NR 기지국(110)은 TDD 다운링크(DL), 업링크(UL) 패턴 주기(DL-UL-TransmissionPeriodicity)가 도래할 때까지 대기한다(S650).The 5G NR base station 110 starts up / down transmission / reception in a TDD downlink (DL) and uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) for each user equipment (UE), slot, and symbol (S648). The 5G NR base station 110 waits until the TDD downlink (DL) and uplink (UL) pattern period (DL-UL-TransmissionPeriodicity) arrives (S650).
5G 중계 시스템(120) 내의 동기화 장치(210)는 5G NR 기지국(110)으로부터 셀 무선 네트워크 임시 식별자인 C-RNTI(Cell Radio RNTI(Radio Network Temporary Identifier))를 수신한다(S652). 5G 중계 시스템(120) 내의 동기화 장치(210)는 5G NR 기지국(110)으로부터 RRCConnectionReconfiguration 메시지(RRC(Radio Resource Control) 연결 재설정 메시지)를 수신한다(S654). The synchronization device 210 in the 5G relay system 120 receives the cell radio network temporary identifier C-RNTI (Cell Radio Radio Network Temporary Identifier) (C-RNTI) from the 5G NR base station 110 (S652). The synchronization device 210 in the 5G relay system 120 receives an RRCConnectionReconfiguration message (Radio Resource Control (RRC) connection reset message) from the 5G NR base station 110 (S654).
5G 중계 시스템(120) 내의 동기화 장치(210)는 5G 프레임으로부터 UE 특정 PDCCH(Physical Downlink Control Channel) 탐색 공간인 UE-Specific PDCCH Search Space를 디코딩하기 위한 UE 특정 탐색 공간인 USS(UE-specific search space)를 탐색한다(S656).The synchronization device 210 in the 5G relay system 120 is a UE-specific search space (USS), a UE-specific search space for decoding a UE-specific PDCCH Search Space, which is a UE-specific Physical Downlink Control Channel (PDCCH) search space from a 5G frame. ) (S656).
단계 S656에서 5G 중계 시스템(120) 내의 동기화 장치(210)는 셀 무선 네트워크 임시 식별자인 C-RNTI를 획득한 후 5G NR 기지국(110)으로부터 RRCConnectionReconfiguration 메시지를 수신하여 USS(UE-specific Search Space) 탐색하고 복조하여 UL/DL 슬롯 구성을 추출한다.In step S656, the synchronization device 210 in the 5G relay system 120 acquires a cell radio network temporary identifier C-RNTI and receives an RRCConnectionReconfiguration message from the 5G NR base station 110 to search for a UE-specific search space (USS). And demodulate to extract the UL / DL slot configuration.
5G 중계 시스템(120) 내의 동기화 장치(210)는 5G 프레임에 포함된 UE 특정 탐색 공간(USS)으로부터 제어 자원 셋인 CORESET 탐색을 위한 UE 특정 PDCCH인 UE Specific PDCCH를 추출한다(S658).The synchronization device 210 in the 5G relay system 120 extracts the UE specific PDCCH, which is the UE specific PDCCH for the CORESET search, which is the control resource set, from the UE specific search space (USS) included in the 5G frame (S658).
5G 중계 시스템(120) 내의 동기화 장치(210)는 UE 특정 PDCCH인 UE Specific PDCCH을 기반으로 UE 특정 탐색 공간인 USS를 복조한다(S660). 5G 중계 시스템(120) 내의 동기화 장치(210)는 USS를 복조한 신호로부터 공통(Common), 전용 업링크(Dedicated UL), 전용 다운링크(Dedicated DL) 슬롯 구성(TDD-UL-DL-SlotConfig)을 추출한다(S662).The synchronization device 210 in the 5G relay system 120 demodulates the UE-specific discovery space USS based on the UE-specific PDCCH, the UE-specific PDCCH (S660). Synchronization device 210 in the 5G relay system 120 is a common (Common), dedicated uplink (Dedicated UL), dedicated downlink (Dedicated DL) slot configuration from the signal demodulated USS (TDD-UL-DL-SlotConfig) Extract the (S662).
5G 중계 시스템(120) 내의 동기화 장치(210)는 전용 업링크, 다운링크 슬롯 구성(TDD-UL-DL-SlotConfig) 정보를 기반으로 슬롯 인덱스를 추출하고 SFI(Short EF Identifier) 테이블 위치를 확인한다(S664).The synchronization device 210 in the 5G relay system 120 extracts the slot index based on dedicated uplink and downlink slot configuration (TDD-UL-DL-SlotConfig) information and checks the location of the Short EF Identifier (SFI) table. (S664).
5G 중계 시스템(120) 내의 동기화 장치(210)는 기 설정된 룰(Rules)이 오버라이팅(Overwriting)되는 지의 여부를 확인한다(S666). 단계 S666의 확인 결과, 기 설정된 룰(Rules)이 오버라이팅(Overwriting)되는 경우, 5G 중계 시스템(120) 내의 동기화 장치(210)는 기 설정된 룰(Rules)이 오버라이팅(Overwriting)된 신호의 반정적(Semi-Static) 데이터 중 UE 특정(UE-Specific)을 기반으로 슬롯 인덱스별로 다운링크(DL), 업링크(UL), 슬롯 구성을 반영한다(S668). 5G 중계 시스템(120) 내의 동기화 장치(210)는 단계 S668을 수행한 후 단계 S642로 돌아간다.The synchronization device 210 in the 5G relay system 120 checks whether or not predetermined rules are overwritten (S666). As a result of the check in step S666, when the preset rules are overwritten, the synchronization device 210 in the 5G relay system 120 half of the signal in which the preset rules are overwritten. Downlink (DL), uplink (UL), and slot configurations are reflected for each slot index based on UE-specificity among semi-static data (S668). The synchronization device 210 in the 5G relay system 120 returns to step S642 after performing step S668.
단계 S668에서, 5G 중계 시스템(120) 내의 동기화 장치(210)는 SFI(Slot Format Indicator) 테이블 위치를 확인하고 오버라이팅 룰(Overwriting Rules)을 준수하면 UE-specific/Semi-static 기반의 슬롯 인덱스별 DL/UL 구성을 반영한다. 5G 중계 시스템(120) 내의 동기화 장치(210)는 단계 S668 이후에 S642로 넘어가 실시간으로 변화하는 5G NR 신호에 대응하기 위해 지속적으로 반복 수행한다.In step S668, if the synchronization device 210 in the 5G relay system 120 checks the SFI (Slot Format Indicator) table position and complies with the overwriting rules, the UE-specific / Semi-static based slot index It reflects DL / UL configuration. The synchronization device 210 in the 5G relay system 120 moves to S642 after step S668 and continuously repeats to respond to the 5G NR signal changing in real time.
단계 S666의 확인 결과, 기 설정된 룰(Rules)이 오버라이팅(Overwriting)되지 않는 경우, 5G 중계 시스템(120) 내의 동기화 장치(210)는 단계 S650으로 돌아간다. 다시 말해, 5G 중계 시스템(120) 내의 동기화 장치(210)는 오버라이팅 룰(Overwriting Rules)을 미준수하면 단계 S650에 대응하는 시점부터 다시 프로시져를 반복 수행한다.As a result of checking in step S666, when the preset rules are not overwritten, the synchronization device 210 in the 5G relay system 120 returns to step S650. In other words, the synchronization device 210 in the 5G relay system 120 repeatedly repeats the procedure from the point in time corresponding to step S650 if the overwriting rules are not observed.
도 6a,b,c에서는 단계 S610 내지 단계 S668을 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 다시 말해, 도 6a,b,c에 기재된 단계를 변경하여 실행하거나 하나 이상의 단계를 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 6a,b,c는 시계열적인 순서로 한정되는 것은 아니다.Although FIGS. 6A, B and C are described as sequentially executing steps S610 to S668, the present invention is not limited thereto. In other words, since the steps described in FIGS. 6A, B, and C may be applied by changing or executing one or more steps in parallel, FIGS. 6A, B, and C are not limited to the time series.
전술한 바와 같이 도 6a,b,c에 기재된 본 실시예에 따른 SA 네트워크 구조에서 중계 시스템의 5G 프레임에 대한 동기화 과정은 프로그램으로 구현되고 컴퓨터로 읽을 수 있는 기록매체에 기록될 수 있다. 본 실시예에 따른 SA 네트워크 구조에서 중계 시스템의 5G 프레임에 대한 동기화 과정을 구현하기 위한 프로그램이 기록되고 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다.As described above, in the SA network structure according to the present embodiment described in FIGS. 6A, B and C, a synchronization process for a 5G frame of a relay system may be implemented as a program and recorded in a computer-readable recording medium. In the SA network structure according to the present embodiment, a program for implementing a synchronization process for a 5G frame of a relay system is recorded, and a computer-readable recording medium stores all kinds of recording devices that store data that can be read by a computer system. It includes.
도 7은 본 실시예에 따른 5G NR SFI 테이블을 나타낸 도면이다.7 is a view showing a 5G NR SFI table according to the present embodiment.
도 7은 동기화 장치(210) 내에 기 저장된 5G NR SFI(Slot Format Indicator) 테이블이다. 5G NR SFI 테이블은 도 7에 도시된 바와 같이, 최종 256개로 이루어져 있다. 동기화 장치(210)는 5G NR SFI 테이블을 이용하여 DL(DownLink)/UL(UpLink)를 수행한다.7 is a 5G NR SFI (Slot Format Indicator) table pre-stored in the synchronization device 210. As shown in FIG. 7, the 5G NR SFI table consists of the final 256. The synchronization device 210 performs DL (DownLink) / UL (UpLink) using the 5G NR SFI table.
도 8은 본 실시예에 따른 SSB 구조를 나타낸 도면이다.8 is a view showing the SSB structure according to the present embodiment.
SSB(Synchronization Signal Block)는 PSS(Primary Synchronous Signal), SSS(Secondary Synchronous Signal), PBCH(Physical Broadcast CHannel)로 구성되어 있다. SSB는 시간 축으로 4개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(Symbol)에 위치한다. SSB는 주파수 축으로 20개의 RB(Resource Block)의 영역을 갖고 240개의 서브캐리어(Subcarrier)로 구성된다. The Synchronization Signal Block (SSB) is composed of a PSS (Primary Synchronous Signal), a SSS (Secondary Synchronous Signal), and a PBCH (Physical Broadcast CHannel). The SSB is located on four orthogonal frequency division multiplexing (OFDM) symbols on the time axis. SSB has an area of 20 resource blocks (RBs) on a frequency axis and is composed of 240 subcarriers.
PSS는 프레임에 위치한 16개(표준에 정의된 내용으로 5G NR 프레임의 심볼(Symbol) 기준으로 SSB의 PSS 위치가 정의됨)의 SSB에서 검출하여 상관관계(Correlation)를 분석하고 m-시퀀스(Sequence)로 127개의 시퀀스를 생성하여 사전에 정의된 값과 비교하여 최종 추출한다. PSS detects in SSBs of 16 located in the frame (PSS location of SSB is defined based on the symbol of 5G NR frame as defined in the standard) and analyzes correlation and m-sequence. ) To generate 127 sequences and compare with predefined values for final extraction.
SSS 역시 16개의 SSB에서 검출하여 상관관계(Correlation)를 분석하여 최종 추출한다. 이후 PBCH 사이에 존재하는 DM-RS(Demodulation-Reference Signal)를 이용하여 PBCH 복조하여 하프 프레임 수(Half Frame Number)를 확인할 수 있어 정확한 5G NR의 프레임 시작 지점을 알 수 있다. (예컨대, 조건 FR1: 주파수 6 GHz 이하, Subcarrier Spacing: 30 kHz)SSS is also detected from 16 SSBs, and correlation is analyzed for final extraction. After that, the PBCH can be demodulated by using a demodulation-reference signal (DM-RS) between PBCHs to check the half frame number, so that an accurate frame start point of 5G NR can be known. (For example, condition FR1: frequency 6 GHz or less, Subcarrier Spacing: 30 kHz)
전술한 과정을 거쳐 5G NR의 상향/하향 링크 변화를 위한 TDD 스위칭 동기화가 가능해지고 5G NR 기지국과 중계 시스템에 연결된 단말기(UE와의 동기화가 완료되어 SA(Standalone) 네트워크 구상에서 5G 중계 시스템의 5G 서비스가 가능하게 된다.Through the above-described process, TDD switching synchronization for uplink / downlink change of 5G NR is possible, and a terminal connected to a 5G NR base station and a relay system (synchronization with a UE is completed, and 5G service of a 5G relay system in a standalone (SA) network concept Becomes possible.
동기화 장치(210)의 구성은 디지털 보드와 별도로 제작이 가능하나, 디지털 보드와 통합하여 구성하는 것이 동기화 장치(210)를 분리하는 것보다 경제적인 시스템이 된다. 유선 연결형 장치의 5G 중계 시스템의 경우, 동기화 장치(210)의 위치는 도너(Donor)에만 구성하여 동기 신호를 리모트(Remote)로 전송하는 것이 경제적인 측면에서 효과적이다.The configuration of the synchronization device 210 can be manufactured separately from the digital board, but the integration and configuration of the digital board becomes an economical system than the separation of the synchronization device 210. In the case of a 5G relay system of a wired connection type device, the location of the synchronization device 210 is configured only in a donor, and it is effective from an economical point of view to transmit a synchronization signal to a remote.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which this embodiment belongs may be capable of various modifications and variations without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical spirit of the present embodiment, but to explain, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The scope of protection of the present embodiment should be interpreted by the claims below, and all technical spirits within the equivalent range should be interpreted as being included in the scope of the present embodiment.
110: 5G NR 기지국 120: 5G 중계 시스템110: 5G NR base station 120: 5G relay system
200: 무선 연결형 5G 중계 시스템200: 5G relay system with wireless connection
210: 동기화 장치210: synchronization device
300: 유선 연결형 5G 중계 시스템300: 5G relay system with wired connection
410: ADC부 420: FFT부410: ADC unit 420: FFT unit
430: PSS 복조부 440: SSS 복조부430: PSS demodulator 440: SSS demodulator
450: PBCH 복조부 460: SIB1 복조부450: PBCH demodulator 460: SIB1 demodulator
470: DCI 복조부 480: 5G NR TDD 스위칭부470: DCI demodulation unit 480: 5G NR TDD switching unit
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2018. 11. 06.에 한국에 출원한 특허출원번호 제10-2018-0134922호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.If this patent application claims priority in accordance with U.S. Patent Act 119 (a) (35 USC § 119 (a)) with respect to Korean Patent Application No. 10-2018-0134922 filed in Korea on November 6, 2018, All of the contents are incorporated into this patent application as a reference. In addition, if this patent application claims priority to countries other than the United States for the same reason as above, all the contents are incorporated into this patent application as a reference.

Claims (19)

  1. 5G NR 기지국으로부터 수신된 5G 프레임에 포함된 5G 시스템 정보 중 PBCH(Physical Broadcast Channel)를 이용하여 전송할 MIB(Master Information Block)를 복조하는 PBCH 복조부;A PBCH demodulator demodulating a master information block (MIB) to be transmitted using a physical broadcast channel (PBCH) among 5G system information included in a 5G frame received from a 5G NR base station;
    상기 MIB에 대해 SIB1(System Information Block1) 복조를 수행하는 SIB1 복조부;A SIB1 demodulator which performs SIB1 (System Information Block 1) demodulation on the MIB;
    DCI(Data Control Information) 탐색 타이머를 구동하는 DCI 복조부;A DCI demodulator driving a DCI (Data Control Information) search timer;
    상기 5G 프레임 내에 포함된 5G 동기 신호를 이용하여 셀 탐색(Cell Search)을 수행하여 상기 5G 프레임에 대한 캐리어 주파수(CarrierFreqency), 서브캐리어 공간(SubcarrierSpacing)을 획득하며, 상기 캐리어 주파수(CarrierFreqency), 상기 서브캐리어 공간(SubcarrierSpacing), 상기 DCI 탐색 타이머를 기반으로 상기 5G 프레임의 업링크(UL) 및 다운링크(DL) 각각에 대한 TDD 스위칭을 제어하는 5G NR TDD 스위칭부A cell search is performed using a 5G synchronization signal included in the 5G frame to obtain a carrier frequency for the 5G frame, a subcarrier spacing, and the carrier frequency (CarrierFreqency), the 5G NR TDD switching unit for controlling TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the subcarrier spacing and the DCI search timer
    를 포함하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.SA network-based relay device comprising a.
  2. 제 1 항에 있어서,According to claim 1,
    상기 SIB1 복조부는,The SIB1 demodulator,
    상기 5G 프레임에 대한 PDCCH(Physical Downlink Control Channel) 블라인드 검출(PDCCH Search Space Blinding Detection)을 수행하고, 상기 5G 프레임에 대해 상기 SIB1(System Information Block1)를 추출하여 디코딩하기 위한 상기 PDCCH(Physical Downlink Control Channel)에 대한 CSS(Common Search Space)을 탐색하고, 상기 CSS에 대한 제어 자원 셋인 CORESET 탐색을 위한 Type0 PDCCH를 추출하고, 상기 Type0 PDCCH에 대한 상기 SIB1을 복조하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.The PDCCH (Physical Downlink Control Channel) blind detection (PDCCH Search Space Blinding Detection) for the 5G frame, the PDCCH (Physical Downlink Control Channel) for extracting and decoding the System Information Block 1 (SIB1) for the 5G frame ) For searching for a common search space (CSS), extracting a Type0 PDCCH for a CORESET search, which is a set of control resources for the CSS, and demodulating the SIB1 for the Type0 PDCCH. .
  3. 제 2 항에 있어서,According to claim 2,
    상기 DCI 복조부는,The DCI demodulator,
    상기 SIB1을 복조한 신호의 반정적(Semi-Static) 데이터 중 셀 특정(Cell-Specific) 다운링크(DL), 업링크(UL) 패턴(TDD-UL-DL-Pattern)을 추출하고, 상기 셀 특정 다운링크, 업링크 패턴(TDD-UL-DL-Pattern)을 기반으로 TDD 다운링크, 업링크 패턴 주기(DL-UL-TransmissionPeriodicity)를 추출하고, 상기 동적(Dynamic) SFI(Short EF Identifier) 구성을 위한 상기 DCI(Data Control Information) 탐색 타이머를 구동하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.Cell-specific downlink (DL) and uplink (UL) patterns (TDD-UL-DL-Pattern) are extracted from the semi-static data of the demodulated signal of the SIB1, and the cells TDD downlink and uplink pattern period (DL-UL-TransmissionPeriodicity) are extracted based on a specific downlink and uplink pattern (TDD-UL-DL-Pattern), and the dynamic (Short EF Identifier) SFI SA network-based relay device, characterized in that for driving the DCI (Data Control Information) search timer.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    상기 TDD 다운링크, 업링크 패턴 주기(DL-UL-TransmissionPeriodicity)가 도래할 때까지 대기한 후 상기 5G NR 기지국으로부터 셀 무선 네트워크 임시 식별자인 C-RNTI(Cell Radio RNTI(Radio Network Temporary Identifier))를 수신하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.After waiting until the TDD downlink and uplink pattern period (DL-UL-TransmissionPeriodicity) arrives, the cell radio network temporary identifier C-RNTI (Cell Radio Radio Network Temporary Identifier) (C-RNTI) is received from the 5G NR base station. SA network-based relay device, characterized in that for receiving.
  5. 제 4 항에 있어서,The method of claim 4,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    상기 C-RNTI에 대응하는 상기 5G NR 기지국으로부터 RRC(Radio Resource Control) 연결 재설정 메시지(RRCConnectionReconfiguration Message)를 수신하고, 상기 RCC 연결 재설정 메시지를 기반으로 상기 5G 프레임으로부터 UE 특정 PDCCH(Physical Downlink Control Channel) 탐색 공간인 UE-Specific PDCCH Search Space를 디코딩하기 위한 UE 특정 탐색 공간인 USS(UE-specific search space)를 탐색하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.A Radio Resource Control (RRC) connection reconfiguration message (RRCConnectionReconfiguration Message) is received from the 5G NR base station corresponding to the C-RNTI, and a UE-specific Physical Downlink Control Channel (PDCCH) from the 5G frame based on the RCC connection reconfiguration message SA network-based relay device characterized in that it searches for a UE-specific search space (USS), which is a UE-specific search space for decoding a UE-Specific PDCCH Search Space, which is a search space.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    상기 USS로부터 제어 자원 셋인 CORESET 탐색을 위한 UE 특정 PDCCH인 UE Specific PDCCH를 추출하고, 상기 UE 특정 PDCCH인 UE Specific PDCCH을 기반으로 UE 특정 탐색 공간인 USS를 복조하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.SA network-based relay, characterized in that the UE-specific PDCCH, which is a UE-specific PDCCH for the CORESET search, which is a control resource set, is extracted from the USS, and the UE-specific discovery space, USS, is demodulated based on the UE-specific PDCCH, the UE-specific PDCCH Device.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    상기 USS를 복조한 신호로부터 공통(Common), 전용 업링크(Dedicated UL), 전용 다운링크(Dedicated DL) 슬롯 구성(TDD-UL-DL-SlotConfig)을 추출하고, 상기 전용 업링크(Dedicated UL), 전용 다운링크(Dedicated DL) 슬롯 구성(TDD-UL-DL-SlotConfig) 정보를 기반으로 슬롯 인덱스를 추출하고, 상기 슬롯 인덱스에 대응하는 SFI(Short EF Identifier) 테이블 위치를 확인하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.The common, dedicated uplink (Dedicated UL), and dedicated downlink (Dedicated DL) slot configuration (TDD-UL-DL-SlotConfig) is extracted from the demodulated signal of the USS, and the dedicated uplink (Dedicated UL) , Dedicated DL (Dedicated DL) slot configuration based on (TDD-UL-DL-SlotConfig) information, extracting a slot index, characterized in that to check the SFI (Short EF Identifier) table position corresponding to the slot index SA network based relay device.
  8. 제 7 항에 있어서,The method of claim 7,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    기 설정된 룰(Rules)이 오버라이팅(Overwriting)되는 지의 여부를 확인하고, 기 설정된 룰(Rules)이 오버라이팅(Overwriting)되는 경우, 기 설정된 룰(Rules)이 오버라이팅(Overwriting)된 신호의 반정적(Semi-Static) 데이터 중 UE 특정(UE-Specific)을 기반으로 슬롯 인덱스별로 다운링크(DL), 업링크(UL), 슬롯 구성을 반영하고, 기 설정된 룰(Rules)이 오버라이팅(Overwriting)되지 않는 경우, 상기 DCI 탐색 타이머를 기반으로 5G NR TDD 스위칭을 제어하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.It is checked whether or not the preset rules are overwritten, and when the preset rules are overwritten, half of the signal in which the preset rules are overwritten. Downlink (DL), uplink (UL), and slot configuration are reflected for each slot index based on UE-specificity among semi-static data, and preset rules are overwritten. ), The 5G NR TDD switching is controlled based on the DCI search timer.
  9. 제 1 항에 있어서,According to claim 1,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    시스템 구성 버퍼에 기 저장된 상기 5G 프레임에 대한 캐리어 주파수(Carrier Frequency), SSB(Synchronization Signal Block), 서브캐리어 공간(Subcarrier Spacing)을 기반으로 상기 5G NR 기지국에 대한 동기 래스터 위치를 탐색하고, Search for a synchronous raster position for the 5G NR base station based on a carrier frequency, a synchronization signal block (SSB), and a subcarrier spacing for the 5G frame pre-stored in a system configuration buffer,
    주파수 도메인에서 상기 동기 래스터의 위치를 중심으로 상기 5G 동기 신호인 PSS(Primary Synchronous Signal)를 이용하여 서브캐리어(Subcarrier)를 검출하고, A subcarrier is detected by using the 5G synchronization signal, a PSS (Primary Synchronous Signal) based on the position of the synchronization raster in the frequency domain,
    상기 PSS를 복조한 후 상기 PSS에 대한 상관관계(Correlation)를 분석하여 셀 ID 그룹(Cell ID Group)(N (2) ID)을 복수 개 추출하며, After demodulating the PSS, a plurality of Cell ID Groups (N (2) IDs ) are extracted by analyzing a correlation for the PSS,
    상기 셀 ID 그룹(N (2) ID)에 대한 (i+2) th 심볼 위치와 상기 주파수 도메인에서 상기 동기 래스터 위치를 중심으로 상기 5G 동기 신호인 SSS(Secondary Synchronous Signal)를 이용하여 서브캐리어(Subcarrier)를 검출하고, 바이폴라(Bipolar) 신호로 생성하고, A subcarrier using the 5G synchronization signal Secondary Synchronous Signal (SSS) based on the (i + 2) th symbol position for the cell ID group (N (2) ID ) and the synchronization raster position in the frequency domain Subcarrier) is detected, and a bipolar signal is generated,
    상기 셀 ID 그룹(N (2) ID)에서의 PSS 상관관계 값에 따라 기 저장된 SSS 시퀀스 계산 테이블로부터 복수의 바이폴라 신호를 생성하고,Generating a plurality of bipolar signals from a pre-stored SSS sequence calculation table according to the PSS correlation value in the cell ID group (N (2) ID ),
    상기 복수의 바이폴라 신호, 상기 SSS, 상기 SSS에 대한 상관관계 값 중 가장 큰 값을 기반으로 셀 ID 섹터(Cell ID Sector)(N (1) ID)를 추출하며, Cell ID Sector (N (1) ID ) is extracted based on the plurality of bipolar signals, the SSS, and the largest correlation value for the SSS,
    상기 셀 ID 그룹(N (2) ID) 및 상기 셀 ID 섹터(N (1) ID)를 기반으로 심볼을 동기하고 5G 셀 ID를 획득하여 시스템 구성 버퍼에 저장하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.Based on the cell ID group (N (2) ID ) and the cell ID sector (N (1) ID ), a symbol is synchronized, and a 5G cell ID is obtained and stored in a system configuration buffer. Relay device.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    시스템 구성 버퍼에 기 저장된 상기 5G 프레임에 대한 SS/PBCH 블럭 내 주파수 도메인 상에서 위치를 계산하고, 복수의 심볼 위치 및 상기 주파수 도메인에서 동기 래스터 위치를 중심으로 복수 개의 서브캐리어(Subcarrier)를 검출하고, 캐리어 주파수(Carrier Frequency)에 따라 PBCH의 수(Lmax)를 도출하고, 상기 SSB 내의 DMRS(DeModulation Reference Signal)를 디코딩하고, 상기 DMRS로 골드-시퀀스(Gold-Sequence)를 갖는 PBCH를 복조하며, 상기 DMRS로부터 SSB 인덱스(Index)와 하프 프레임 수(Half Frame Number)를 추출하여 시스템 구성 버퍼에 저장하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.Calculate a position on the frequency domain in the SS / PBCH block for the 5G frame pre-stored in a system configuration buffer, detect a plurality of subcarriers based on a plurality of symbol positions and a synchronization raster position in the frequency domain, Deriving the number (Lmax) of the PBCH according to the carrier frequency (Carrier Frequency), decoding the DeModulation Reference Signal (DMRS) in the SSB, demodulating the PBCH having a gold-sequence (Gold-Sequence) to the DMRS, the SA network-based relay device characterized by extracting SSB index and half frame number from DMRS and storing them in a system configuration buffer.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    상기 5G 프레임에 대한 캐리어 주파수(Carrier Frequency)와 캐리어 공간(Subcarrier Spacing)을 이용하여 서브프레임 내의 슬롯 수(Number of slots in subframe), 심볼 인덱스(Symbol Index)를 도출하고, A number of slots in a subframe and a symbol index are derived by using a carrier frequency and a subcarrier spacing for the 5G frame,
    상기 5G 프레임 내의 서브프레임 수(Number of subframes in radio frame), 슬롯 내 심볼 수(Number of symbols in slot), 서브프레임 공간(Subcarrier spacing), 서브프레임 내 슬롯 수(Number of slots in subframe) 및 디코딩된 PBCH-DMRS로 도출한 하프 프레임 수(Half Frame Number) 및 SSB 인덱스(Index)를 이용하여 5G NR 동기 테이블을 구성하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.Number of subframes in the 5G frame (Number of subframes in radio frame), Number of symbols in slot (Number of symbols in slot), Subframe space (Subcarrier spacing), Number of slots in Subframe (Number of slots in subframe) and decoding SA network-based relay device comprising a 5G NR synchronization table using a half frame number and SSB index derived by PBCH-DMRS.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    다음 SFN(System Frame Number)까지의 프레임 내의 잔여 심볼 수(Remaining number of symbols in frame) 별로 하프 프레임 수(Half frame number), SSB 인덱스(SSB index), 심볼 인덱스(Symbol index), 서브프레임 수(Subframe number), 슬롯 내의 잔여 심볼 수(Remaining number of symbols in slot) 및 서브프레임 내의 잔여 슬롯 수(Remaining number of slots in subframe) 중 적어도 하나 이상을 매칭하여 상기 5G NR 동기 테이블을 구성하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.Half frame number, SSB index, symbol index, and number of subframes per Remaining number of symbols in frame until the next System Frame Number (SFN) Characterized in that the 5G NR synchronization table is configured by matching at least one of a subframe number, a remaining number of symbols in slot, and a remaining number of slots in a subframe. SA network-based relay device.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    상기 SSB의 슬롯 수(Slot Number)는 심볼 인덱스(Symbol Index), 슬롯 내 심볼 수(N slot symb), 프레임 내 서브프레임 수(N fame subframe), 서브프레임 내 슬롯 수(N subframe slot), 하프 프레임 수(Half Frame Number)를 기반으로 계산하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.The number of slots (Slot Number) of the SSB is a symbol index, a number of symbols in a slot (N slot symb ), a number of subframes in a frame (N fame subframe ), a number of slots in a subframe (N subframe slot ), a half SA network-based relay device, characterized in that it is calculated based on the number of frames (Half Frame Number).
  14. 제 11 항에 있어서,The method of claim 11,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    상기 SSB의 서브프레임 수(Subframe Number)는 슬롯 수(Slot Number)를 기반으로 계산하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.The subframe number (Subframe Number) of the SSB is calculated based on the number of slots (Slot Number) SA network-based relay device.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    슬롯 내 심볼 수(N slot symb), 슬롯 내 심볼 수의 심볼 인덱스 모드(Symbol Index Mod N slot symb)를 기반으로 다음 SFN(System Frame Number)까지의 상기 슬롯 내의 잔여 심볼 수(Remaining Number of symbols in slot)를 계산하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.Remaining Number of symbols in the slot until the next System Frame Number (SFN) based on the number of symbols in the slot (N slot symb ) and the symbol index mode of the number of symbols in the slot (Symbol Index Mod N slot symb ) slot), characterized in that the SA network-based relay device.
  16. 제 11 항에 있어서,The method of claim 11,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    슬롯 수 모드(Slot Number mod)를 기반으로 다음 SFN(System Frame Number)까지의 상기 서브프레임 내의 잔여 슬롯 수(Remaining Number of slots in subframe)를 계산하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.SA network-based relay device, characterized in that the remaining number of slots (Remaining Number of slots in subframe) up to the next System Frame Number (SFN) based on the slot number mode (Slot Number mod) is calculated.
  17. 제 11 항에 있어서,The method of claim 11,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    프레임 내 서브 프레임 수(N frame subframe)와 서브프레임 수(Subframe Number-1)를 기반으로 다음 SFN(System Frame Number)까지의 프레임 내의 잔여 서브프레임 수(Remaining Number of subframes in frame)를 계산하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.Frame to calculate the sub-frames (N frame subframe) and a subframe number (Subframe Number-1) number of the remaining subframes within the frame of the next SFN (System Frame Number) is based on (Remaining Number of subframes in frame) Features SA network based relay device.
  18. 제 11 항에 있어서,The method of claim 11,
    상기 5G NR TDD 스위칭부는,The 5G NR TDD switching unit,
    상기 슬롯 내의 잔여 심볼 수(Remaining Number of Symbols in Slot), 상기 서브프레임 내의 잔여 슬롯 수(Remaining Number of Slots in Subframe) 슬롯 내 심볼 수(N slot symb), 프레임 내의 잔여 서브프레임 수(Remaining Number of Subframes in Frame), 서브프레임 내 슬롯 수(N subframe slot), 슬롯 내 심볼 수(N slot symb)를 기반으로 상기 다음 SFN(System Frame Number)까지의 프레임 내의 잔여 심볼 수(Remaining Number of Symbols in Frame)를 계산하는 것을 특징으로 하는 SA 네트워크 기반의 중계 장치.Remaining Number of Symbols in Slot, Remaining Number of Slots in Subframe, N slot symb , Remaining Number of Frames Remaining Number of Symbols in Frame up to the next System Frame Number (SFN) based on Subframes in Frame, N subframe slots , and N slot symbs SA network-based relay device, characterized in that for calculating.
  19. 5G NR 기지국으로부터 수신된 5G 프레임 내에 포함된 5G 동기 신호를 이용하여 셀 탐색(Cell Search)을 수행하여 상기 5G 프레임에 대한 캐리어 주파수(CarrierFreqency), 서브캐리어 공간(SubcarrierSpacing)을 획득하는 과정;Performing a cell search using a 5G synchronization signal included in a 5G frame received from a 5G NR base station to obtain a carrier frequency and subcarrier spacing for the 5G frame;
    상기 5G 프레임에 포함된 5G 시스템 정보 중 PBCH(Physical Broadcast Channel)를 이용하여 전송할 MIB(Master Information Block)를 복조하는 과정;Demodulating a master information block (MIB) to be transmitted using a physical broadcast channel (PBCH) among 5G system information included in the 5G frame;
    상기 MIB에 대해 SIB1(System Information Block1) 복조를 수행하는 과정;A process of demodulating SIB1 (System Information Block 1) for the MIB;
    DCI(Data Control Information) 탐색 타이머를 구동하는 과정; 및Driving a DCI (Data Control Information) search timer; And
    상기 캐리어 주파수(CarrierFreqency), 상기 서브캐리어 공간(SubcarrierSpacing), 상기 DCI 탐색 타이머를 기반으로 상기 5G 프레임의 업링크(UL) 및 다운링크(DL) 각각에 대한 TDD 스위칭을 제어하는 과정A process of controlling TDD switching for each of the uplink (UL) and downlink (DL) of the 5G frame based on the carrier frequency (CarrierFreqency), the subcarrier space (SubcarrierSpacing), and the DCI discovery timer
    을 포함하는 것을 특징으로 하는 SA 네트워크 기반의 중계 방법.SA network based relaying method comprising a.
PCT/KR2019/008806 2018-11-06 2019-07-17 Synchronization method and device for 5g relay system in sa network WO2020096166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180134922A KR102351213B1 (en) 2018-11-06 2018-11-06 Method And Apparatus for Synchronizing 5G Relay System
KR10-2018-0134922 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020096166A1 true WO2020096166A1 (en) 2020-05-14

Family

ID=70611048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008806 WO2020096166A1 (en) 2018-11-06 2019-07-17 Synchronization method and device for 5g relay system in sa network

Country Status (2)

Country Link
KR (1) KR102351213B1 (en)
WO (1) WO2020096166A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112738717A (en) * 2021-01-22 2021-04-30 广东以诺通讯有限公司 Method for improving network searching efficiency of 5G SA and NSA terminals
EP3651388A4 (en) * 2018-07-05 2021-05-05 SOLiD, INC. Repeater and operating method thereof
CN117240322A (en) * 2023-11-10 2023-12-15 中国核电工程有限公司 Nuclear power plant 5G private network signal transmission system and communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401513B1 (en) * 2020-11-24 2022-05-24 숙명여자대학교산학협력단 System for detecting blindly SSB index using machine learning and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087189A (en) * 2012-12-28 2014-07-09 (주)에프알텍 Relay system for mobile communication service based on TDD
WO2017194218A1 (en) * 2016-05-13 2017-11-16 Nokia Solutions And Networks Oy Wireless relay operation on top of 5g frame structure
WO2018199461A1 (en) * 2017-04-28 2018-11-01 주식회사 케이티 Radio relay apparatus and operating method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087189A (en) * 2012-12-28 2014-07-09 (주)에프알텍 Relay system for mobile communication service based on TDD
WO2017194218A1 (en) * 2016-05-13 2017-11-16 Nokia Solutions And Networks Oy Wireless relay operation on top of 5g frame structure
WO2018199461A1 (en) * 2017-04-28 2018-11-01 주식회사 케이티 Radio relay apparatus and operating method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "System information structure and content", 3GPP DRAFT; R2-1800283, 26 January 2018 (2018-01-26), Vancouver, Canada, pages 1 - 13, XP051385641 *
INTEL CORPORATION: "PHY layer enhancement for NR IAB", 3GPP DRAFT; R1-1806551, 25 May 2018 (2018-05-25), Busan, South Korea, pages 1 - 17, XP051462610 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651388A4 (en) * 2018-07-05 2021-05-05 SOLiD, INC. Repeater and operating method thereof
US11240087B2 (en) 2018-07-05 2022-02-01 Solid, Inc. Repeater and method of operation thereof
CN112738717A (en) * 2021-01-22 2021-04-30 广东以诺通讯有限公司 Method for improving network searching efficiency of 5G SA and NSA terminals
CN117240322A (en) * 2023-11-10 2023-12-15 中国核电工程有限公司 Nuclear power plant 5G private network signal transmission system and communication system
CN117240322B (en) * 2023-11-10 2024-01-23 中国核电工程有限公司 Nuclear power plant 5G private network signal transmission system and communication system

Also Published As

Publication number Publication date
KR102351213B1 (en) 2022-01-14
KR20200052471A (en) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2020096166A1 (en) Synchronization method and device for 5g relay system in sa network
WO2020145671A1 (en) Method and apparatus for transmitting synchronization signal in wireless communication system
EP2342927B1 (en) Downlink network synchronization mechanism for femtocell in cellular ofdm systems
WO2018030847A1 (en) Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system
WO2010120097A2 (en) Apparatus and method for transmitting system information block in a broadband wireless communication system
WO2014054867A1 (en) Methods and devices for transmitting and receiving synchronous channels and broadcasting channels
WO2014092475A1 (en) Discovery signal transmission/reception method and apparatus for use in mobile communication system
WO2012134156A2 (en) Method and device for handover in mobile communication system
WO2011108880A2 (en) Apparatus for transmitting and receiving signal in distributed antenna system
WO2016032202A2 (en) Method for transmitting and receiving synchronization signal in wireless communication system and device for performing same
WO2010013962A2 (en) Relay station in radio communication system and operating method for the relay station
WO2012096535A2 (en) Method and device for muting positioning reference signal in heterogeneous communication environment and method and device for measuring position using same
WO2016182288A1 (en) Apparatus and mehtod for synchronization signal detection
WO2016137308A1 (en) Method for performing otdoa-related operations in wireless communication system
WO2010147445A2 (en) Cell searching method and apparatus in multi-carrier system
WO2017123053A1 (en) Method and device for performing synchronization by d2d terminal in wireless communication system
WO2013133599A1 (en) Method and device for receiving signal in wireless communication system
WO2014109615A1 (en) Method and device for detecting discovery signal
WO2020022755A1 (en) Repeater and method for operating same
WO2014178664A1 (en) New tdd frame structure for uplink centralized transmission
KR20200017711A (en) Method And Apparatus for Synchronizing 5G Relay System
EP3497872A1 (en) Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system
WO2013191385A1 (en) Method of determining sub frame in wireless communication system
WO2014003308A1 (en) Method for determining radio resource by terminal in wireless communication system
WO2014098509A1 (en) Method for transmitting/receiving cell identifying information and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881167

Country of ref document: EP

Kind code of ref document: A1