WO2020096114A1 - Wind lidar calibration device using optical trap, and calibration method using same - Google Patents

Wind lidar calibration device using optical trap, and calibration method using same Download PDF

Info

Publication number
WO2020096114A1
WO2020096114A1 PCT/KR2018/014402 KR2018014402W WO2020096114A1 WO 2020096114 A1 WO2020096114 A1 WO 2020096114A1 KR 2018014402 W KR2018014402 W KR 2018014402W WO 2020096114 A1 WO2020096114 A1 WO 2020096114A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
laser
rotating body
wind speed
optical trap
Prior art date
Application number
PCT/KR2018/014402
Other languages
French (fr)
Korean (ko)
Inventor
유동훈
임채욱
조준열
Original Assignee
한국산업기술시험원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국산업기술시험원 filed Critical 한국산업기술시험원
Publication of WO2020096114A1 publication Critical patent/WO2020096114A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • G01P13/045Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W2201/00Weather detection, monitoring or forecasting for establishing the amount of global warming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a device for calibrating a wind dryer using an optical trap and a calibration method using the same.
  • Wind Dryer is a device that irradiates laser to particles floating in the air and measures wind direction and wind speed by using the Doppler frequency change of the laser signal reflected by the particles.
  • a pinwheel-type anemometer is installed in the weather tower, and the wind-dryer is calibrated based on the anemometer installed in the weather tower.
  • the principle of wind speed measurement of wind dry is received from the five beams emitted at approximately 30 ° intervals from the ground lidar 10, and the wind speed in the line of sight direction is received from the center of the beam.
  • the wind speed is calculated.
  • an error in the measurement point may occur from hundreds of meters to several kilometers between the wind component measured by the emitted beam and the wind component received from the anemometer of the weather tower 20. This increases the uncertainty in wind speed measurement.
  • Windrida's wind speed measurement method is based on outdoor experiments. Unlike indoors, artificial wind cannot be generated outdoors, so only wind data from nature is used. Therefore, it is necessary to continue measuring wind speed of the wind dryer until all wind direction and wind speed data values necessary for measurement are collected. It can take as short as 20 days to several months. Considering the effect of the effective sector and monsoons depending on the terrain, there is a disadvantage that it takes a lot of time. Because it is tested outdoors, it is difficult to accurately compare the wind speed measurement of a wind dryer. In addition, all data outside 4 ⁇ 16m / s based on the anemometer measurement value are excluded. Since the anemometer calculates the rotation speed (rpm) as wind speed, measurement data when the temperature drops below zero is excluded. This is because freezing can affect rotation.
  • rpm rotation speed
  • An object of the present invention is to provide a windbreaker calibration technology using a light trap that absorbs both a rotating body generating a reference wind speed and an unnecessary laser signal in order to calibrate a winddryer indoors.
  • a rotating body rotating to generate a reference wind speed includes a laser irradiation unit for irradiating the laser in the direction in which the rotating body rotates, and a calculation unit for calculating a peak wind speed value by detecting a laser that is reflected back on the circumferential surface of the rotating body, and located on the side of the rotating body It is a wind-drier; And a light trap that is not reflected on the circumferential surface of the rotating body and absorbs the laser passing through the air, and is located on the opposite side of the rotating body. Windrider's calibration device for correcting peak wind speed is provided.
  • a wind tunnel that generates a reference wind speed; And a laser irradiation unit that irradiates a laser to the microparticles existing in the wind tunnel, and a calculation unit that detects a laser that is reflected back to the microparticles and calculates a peak wind speed value, and is located on the side of the wind tunnel.
  • a windbreaker correction device is provided for correcting the wind speed of the wind dryer based on the reference wind speed value of the wind tunnel.
  • Windrider's calibration technology includes an optical trap, and can prevent unnecessary laser signals from being reflected back. Accordingly, there is an effect of improving the precision of wind speed measurement of the wind dryer.
  • the windbreaker's calibration technology can reduce the detection area of the winddryer, including the optical trap, it is possible to transmit an accurate wind signal to the winddryer even if a reference wind speed is generated only in a specific section.
  • the windbreaker's calibration technology can generate desired wind speed data by using a rotating body or wind tunnel that generates a reference wind speed indoors, the windbreaker's calibration time can be shortened.
  • FIG. 1 is a view showing a conventional weather tower and a ground lidar.
  • FIG. 2 is a cross-sectional view of the windbreaker calibration device according to the first embodiment of the present invention.
  • FIG 3 is a schematic diagram of a wind dryer according to the first and second embodiments of the present invention.
  • FIG. 4 is a view showing the operation mechanism of the operation unit according to the first and second embodiments of the present invention.
  • 5 and 6 are graphs showing weight data according to the first and second embodiments of the present invention.
  • FIG 7 to 9 are views showing the principle of the rotating body according to the first embodiment of the present invention.
  • FIG. 10 is a photograph of an optical trap according to a first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of FIG. 10.
  • FIG. 12 is a flow chart showing a method of calibrating a wind dryer according to a first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of the orthodontic appliance of a wind dry according to a second embodiment of the present invention.
  • FIG. 14 is a perspective view of an optical trap according to a second embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of FIG. 14.
  • 16 is a flow chart showing a method of calibrating a wind dryer according to a second embodiment of the present invention.
  • any component in the "upper (or lower)” or “upper (or lower)” of the component means that any component is disposed in contact with the upper surface (or lower surface) of the component.
  • each component when a component is described as being “connected”, “coupled” or “connected” to another component, the components may be directly connected to or connected to each other, but other components may be “interposed” between each component. It should be understood that “or, each component may be” connected “,” coupled “or” connected “through other components.
  • Windrider's calibration technology is to calibrate the peak wind speed of Windrider based on a reference wind speed value using a rotating body or wind tunnel that generates a reference wind speed.
  • FIG. 2 is a cross-sectional view of the windbreaker calibration device according to the first embodiment of the present invention.
  • the straightening apparatus 100 of a wind-drier includes a wind-drier 110, a rotating body 120, and an optical trap 130.
  • the wind dryer 110 is located on the side of the rotating body 120, which will be described later.
  • the wind dryer 110 includes a laser irradiation unit and a calculation unit.
  • the laser irradiation unit irradiates the laser in a direction in which the rotating body 120 rotates.
  • the laser hits the circumferential surface of the rotating body 120, and the laser contacting the circumferential surface of the rotating body 120 is reflected and returns to the wind-drier.
  • the calculation unit calculates a peak wind speed value by detecting a laser that is reflected back on the circumferential surface of the rotating body 120 and returns.
  • the numbering is 1 pulse laser (f lo ), 2 optical element for separating the received and emitted light, 3 telescope, 4 scatterer, 5 local oscillator laser (original signal), 6 frequency controller, 7 local oscillator laser beam Is an optical element that aligns and mixes the aligned beams, 8 a quadratic detector, and 9 transducer.
  • 1 to 9 except for 4 are components included in the wind dryers 110 and 210.
  • the operation unit includes 9.
  • the laser emitted from 5 is emitted to 1 through 6.
  • the laser beam emitted from 1 is divided into two beams through 2.
  • One beam goes into the air through 3 (f t ), and the other beam enters 7 and becomes the reference value f lo .
  • the beam that has gone into the air is reflected by 4 and returns to the state of being doppler shifted ( ⁇ f + f t ), and returns to 7 by 2.
  • the reference value (f lo ) that came in first and the reflected signal ( ⁇ f + f t ) are combined.
  • the combined signal (optical signal) is converted into an electrical signal by the secondary detector of 8.
  • the analog signal converted in 8 is converted into a digital signal (ADC), and the peak wind speed is calculated from the peak frequency through a signal process as shown in FIG.
  • FIG. 4 shows a state in which a pulse laser is generated from a local oscillator laser, the reflected laser signal ( ⁇ f + f t ) is converted into an electrical signal at 8, and this signal is converted into a digital signal.
  • the number 1 in the horizontal direction is No.
  • 2 is a time series
  • 3 is a spectrum (converted from a time domain to a frequency domain)
  • 4 is a wind speed calculated by calculating how much Doppler shift is from the peak signal.
  • the laser signal reflected and returned to the circumferential surface of the rotating body 120 is converted from an optical signal to an electrical signal by a secondary detector 8 inside the wind dryer.
  • Analog data converted to electrical signals are converted to digital signals by an analog to digital converter (ADC) and the signals converted to digital signals are listed in chronological order.
  • ADC analog to digital converter
  • the distance from time is calculated to extract signals within a desired range.
  • the probe length (x in FIG. 2) of the wind-drier 110 is 40 m ( ⁇ 20 m), and the range of the section for measuring wind speed is 60 m.
  • the probe length x is the length from the laser irradiation unit to the center of the rotating body 120.
  • the laser signal included in [the section to be measured] ⁇ [the length from the laser irradiation section to the center of the rotating body] is extracted.
  • the wind-drier 110 extracts the laser signal included in the 60m ⁇ 20m section among the reflected and return signals.
  • each of the extracted laser signals is multiplied and multiplied by a weighting function. As shown in FIG. 5, the weight represents a different value according to the distance.
  • the peak frequency is found from the summed value, and how much the peak frequency is shifted compared to the original signal (Local oscillator laser) is calculated and converted into a peak wind speed value. If the weighted peak wind speed value is correct, the reference wind speed value and the peak wind speed value agree. Then, when the peak wind speed value to which the weight is applied does not match the reference wind speed value, the peak wind speed value is corrected based on the reference wind speed value.
  • the rotating body 120 is located on the side of the wind dryer 110.
  • the rotating body 120 rotates to generate a reference wind speed.
  • a tangential speed is generated, and the tangential speed is used as a reference wind speed value.
  • the tangential velocity is equal to the velocity of particles in the air hitting the laser.
  • the tangential velocity occurs at the outermost part of the rotating body 120.
  • the tangential speed generation point can be said to be a point where the laser and the rotating body 120 meet vertically.
  • the tangential speed generated at this point can be referred to as a reference wind speed, and the tangential speed calculated from Equations 1 and 2 below is compared with the wind speed indication values indicated by Windrider to calculate calibration data.
  • the reference wind speed value of the rotating body 120 is the tangential speed (v) of the rotating body represented by [Equation 1].
  • the tangential speed may be represented by [Equation 2].
  • the 2 ⁇ r is the circumference of the rotating body.
  • the product of the circumference of the rotating body and the rotational speed of the rotating body divided by time may be referred to as a tangential velocity.
  • the rotational speed N (rpm) of the rotating body when the diameter is 1 m and the tangential speed is 4 m / s is as follows.
  • 1 and 2 are lasers emitted from the wind dryer. Since the laser 1 is in contact with the rotating body 120 exactly vertically, the tangential speed generated at this point can be referred to as a reference wind speed. At this time, if the tangential speed and the indication value of the wind-drier are compared, the correct calibration of the wind-drier can be achieved.
  • the laser 2 is not in contact with the rotating body 120 vertically, but is in contact with the lower position.
  • the optical trap 130 is located on the opposite side of the rotating body 120. It is preferable that the position of the laser and the circumferential surface of the rotator 120 are horizontally positioned so that the contact (a ') between the irradiated laser and the circumferential surface of the rotator is generated.
  • the contact point a ' means a point where the laser and the circumferential surface of the rotating body share at least one point.
  • the optical trap 130 absorbs the laser passing through the air without being reflected on the circumferential surface of the rotating body 120.
  • FIG. 10 is a photograph of an optical trap according to a first embodiment of the present invention
  • FIG. 10 is a cross-sectional view of FIG. 10.
  • the shape of the light trap 130 may be a cylinder including a hollow.
  • the optical trap 130 may have a rectangular or spherical shape.
  • the light trap 130 has an opening facing the rotating body 120.
  • a cone shape 132 is included inside the laser so that it can be absorbed by being reflected into the light trap 130 several times.
  • the cone shape 132 has a narrower diameter as it goes toward the opening.
  • the optical trap 130 is preferably formed of a material having a lower surface reflectance than the peripheral surface of the rotating body 120.
  • a material having a low surface reflectance refers to a material having a laser reflectivity of approximately 1% or less. Materials having low surface reflectivity may include Ag, Ni, Cr, MgF 2 , and the like, but are not limited thereto.
  • the light trap 130 may be formed of magnesium fluoride (MgF 2 ), or may be coated with magnesium fluoride on at least a surface.
  • the peak wind speed value of the wind-drier 110 is corrected based on the reference wind speed value of the rotating body 120. Accordingly, the measurement accuracy of the wind speed of the wind-drier 110 can be improved.
  • the method for correcting wind dryer according to the first embodiment includes generating a reference wind speed by rotating a rotating body (S110), irradiating a laser at wind dry (S120), and a peak wind speed value And calculating a peak wind speed value based on the reference wind speed value (S130).
  • the calibration of the wind dryer 110 is performed. At this time, the laser irradiation unit and the rotating body of the wind dryer 110 are positioned horizontally.
  • a reference wind speed is generated by rotating the rotating body 120. Details of the rotating body 120 are as described above in the calibration device.
  • the laser irradiation unit of the wind-drier 110 irradiates the laser in the direction in which the rotating body 120 rotates.
  • the irradiated laser beam is reflected on the circumferential surface of the rotating body 120 and returns.
  • the calculation unit of the wind dryer 110 detects the returned laser and calculates the peak wind speed value.
  • the laser that does not reflect on the circumferential surface of the rotating body 120, that is, the laser passing through the air is absorbed by the optical trap 110 located on the side surface of the rotating body 120. Accordingly, the optical trap 110 is to reflect only the laser coincident with the point where the tangential speed of the rotating body occurs. In addition, the optical trap 110 prevents unnecessary laser signals from being reflected and rotating.
  • the peak wind speed value is calculated to match the reference wind speed value of the rotating body, it means that the measurement error is close to 0%. Conversely, when the peak wind speed value does not coincide with the reference wind speed value, the wind speed of the wind dryer is corrected based on the reference wind speed value.
  • FIG. 13 is a cross-sectional view of the orthodontic appliance of a wind dry according to a second embodiment of the present invention.
  • the straightening device 200 for a wind-drier includes a wind-drier 210, a wind tunnel 220, and a light trap 230.
  • the wind dryer 210 is located on the side of the wind tunnel 220 which will be described later.
  • the wind dryer 210 includes a laser irradiation unit and a calculation unit.
  • the laser irradiation unit irradiates the laser to the fine particles existing inside the wind tunnel 220.
  • the microparticles include particles of several nm, particles of several ⁇ m, and the like.
  • the laser is reflected back by the fine particles.
  • the calculation unit detects a laser reflected back to the fine particles and calculates a peak wind speed value.
  • the method for calculating the peak wind speed value from the laser signal in the wind dryer 210 is as follows.
  • the laser signal reflected and returned to the fine particles is converted from the optical signal to the electrical signal by the secondary detector inside the windshield.
  • Analog data converted to electrical signals are converted to digital signals by an analog to digital converter (ADC) and the signals converted to digital signals are listed in chronological order.
  • ADC analog to digital converter
  • the distance from time is calculated to extract signals within a desired range.
  • the probe length (y) of Windrider is 40 m ( ⁇ 20 m), and the range of the section to measure wind speed is 60 m.
  • the probe length (y) is the length of the wind tunnel (220).
  • the distance between the wind-drier 210 and the wind tunnel 220 may be at least 20 m.
  • the wind-drier 210 extracts a laser signal included in a 60m ⁇ 20m section among reflected and return signals.
  • each of the extracted laser signals is multiplied by a weight and summed. Find the peak frequency from the summed value, calculate how much the peak frequency has shifted compared to the original signal (Local oscillator laser), and convert it to the peak wind speed value.
  • the wind tunnel 220 is located on the side of the wind dryer 210.
  • the wind tunnel 220 is preferably positioned horizontally with respect to the ground so that the laser can be irradiated into the wind tunnel 220.
  • the wind tunnel 220 has a constant length to generate a reference wind speed.
  • the reference wind speed is measured by a thermo-linear flowmeter or a laser-Doppler wind speed meter (LDA).
  • the length of the wind tunnel 220 may be approximately 8 to 20 m, but is not limited thereto.
  • the wind tunnel 220 includes a fog machine (222) for supplying a reference wind speed.
  • the nebulizer 222 supplies a constant wind inside the wind tunnel 220.
  • fine particles are supplied inside the wind tunnel 220 to sufficiently measure the wind speed signal.
  • the laser is reflected on the fine particles moving at the same speed as the supplied wind.
  • the wind speed of the wind-drier 210 is calculated from the reflected and returned laser signal.
  • the wind tunnel 220 has a structure in which front and rear surfaces have openings.
  • the laser is irradiated to the fine particles existing inside the wind tunnel 220 through the opening in the front.
  • the wind is supplied from the nebulizer 222 through the rear opening.
  • a passage part 224 having an opening may be further included at an upper portion of the wind tunnel 220.
  • the wind tunnel 220 may be formed of a transparent material such as glass, but is not limited thereto.
  • the optical trap 230 is located on the side of the wind tunnel 220.
  • the optical trap 230 absorbs all lasers that pass through without being reflected by the fine particles. 11 and 12, in order to absorb a laser, the shape of the light trap 230 may be a cylinder including a hollow. In addition, the optical trap 230 may have a quadrangular or spherical shape. In order to absorb the laser, the light trap 230 has an opening facing the wind tunnel 220.
  • the other side includes a support 234.
  • the support 234 serves to support the optical trap 230 having a cone shape 232 inside the wind tunnel 220 that causes strong wind.
  • a cone shape 232 is included inside the laser so that the laser may enter the inside of the light trap 230 and be reflected and absorbed several times.
  • the cone shape 232 has a narrower diameter as it goes toward the opening.
  • the optical trap 230 is preferably formed of a material having a lower surface reflectivity than the fine particles.
  • a material having a low surface reflectance refers to a material having a laser reflectivity of approximately 1% or less. Materials having low surface reflectivity may include Ag, Ni, Cr, MgF 2 , and the like, but are not limited thereto.
  • the light trap 230 may be formed of magnesium fluoride (MgF 2 ), or may be coated with magnesium fluoride on at least a surface.
  • the light trap 230 may be installed in a direction where the laser is expected to be irradiated, thereby preventing unnecessary signals from being reflected and rotating. Therefore, the utilization of the optical trap 230 can improve the measurement precision.
  • a method for calibrating a wind dryer according to a second embodiment includes generating a reference wind speed inside the wind tunnel (S210), irradiating a laser at the wind dryer (S220), and calculating a peak wind speed value. Then, the step of correcting the peak wind speed value based on the reference wind speed value (S230).
  • the calibration of the wind dryer 210 is performed.
  • a reference wind speed is generated inside the wind tunnel 220 having a predetermined length.
  • the reference wind speed is supplied to the inside of the wind tunnel 220 using the nebulizer 222. Matters for the wind tunnel 220 are as described above in the calibration device.
  • the laser irradiation unit of the wind dryer 210 irradiates the laser into the wind tunnel 220.
  • the irradiated laser beam is reflected back by the fine particles existing inside the wind tunnel 220.
  • the calculating unit of the wind dryer 210 detects the returned laser and calculates the peak wind speed value.
  • the laser that does not reflect on the fine particles and proceeds, that is, the laser passing through the air is all absorbed by the light trap 230. Accordingly, the light trap 230 reflects only the laser contacting the fine particles.
  • the optical trap 230 prevents unnecessary laser signals from being reflected and rotating.
  • the peak wind speed value is calculated and matches the reference wind speed value of the wind tunnel 220, it means that the measurement error is close to 0%. Conversely, when the peak wind speed value does not match the reference wind speed value, the peak wind speed value of the wind dryer 210 is corrected based on the reference wind speed value.
  • the windrider's calibration technology enables the calibration of the winddrider indoors, using the optical trap that absorbs unnecessary laser signals, and a rotating body or wind tunnel that generates a reference wind speed. It has the effect of shortening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Disclosed is a wind LIDAR calibration device using an optical trap, and a calibration method using same. A wind LIDAR calibration technique according to the present invention comprises: an optical trap which absorbs an unnecessary laser signal; and a rotating body or a wind tunnel generating a reference wind speed indoors, and thus the technique has an effect of improving the accuracy of wind speed measurement of a wind LIDAR. The wind LIDAR calibration device according to the present invention comprises: a rotating body rotating to generate a reference wind speed; a wind LIDAR positioned on the side of the rotating body and including a laser irradiation unit irradiating a laser in the direction in which the rotating body rotates and a computation unit calculating the peak wind speed value by detecting a laser reflected back from the circumferential surface of the rotating body; and an optical trap located on the opposite side of the rotating body and absorbing a laser not reflected by the circumferential surface of the rotating body and passing through the air. The calibration device is characterized by correcting the peak wind speed value of the wind LIDAR on the basis of the reference wind speed value of the rotating body.

Description

광트랩을 이용한 윈드라이다의 교정장치 및 이를 이용한 교정방법Wind Dryer's calibration device using optical trap and calibration method using same
본 발명은 광트랩을 이용한 윈드라이다의 교정장치 및 이를 이용한 교정방법 에 관한 것이다. The present invention relates to a device for calibrating a wind dryer using an optical trap and a calibration method using the same.
윈드라이다는 공기 중에 부유하는 입자에 레이저를 조사하고, 입자에 반사된 레이저 신호의 도플러 주파수 변화를 이용하여 풍향 및 풍속을 측정하는 장비이다.Wind Dryer is a device that irradiates laser to particles floating in the air and measures wind direction and wind speed by using the Doppler frequency change of the laser signal reflected by the particles.
윈드라이다를 교정하기 위해서는 바람개비형 풍속계를 기상탑에 설치하고, 기상탑에 설치된 풍속계를 기준으로 윈드라이다를 교정한다. To calibrate the wind-drier, a pinwheel-type anemometer is installed in the weather tower, and the wind-dryer is calibrated based on the anemometer installed in the weather tower.
도 1에 도시한 바와 같이, 윈드라이다의 풍속 측정원리는 지상라이다(10)에서 대략 30° 간격으로 방사한 5개의 빔으로부터 LOS(Line Of Sight) 방향의 풍속을 받아와서 빔 중심에서의 풍속을 계산하게 된다. 이때, 방사된 빔이 측정하는 바람성분과 기상탑(20)의 풍속계에서 받아오는 바람성분 간에는 수백 미터에서 수 킬로미터까지 측정점의 오차가 발생할 수 있다. 이에 따라, 풍속 측정의 불확실성이 증가한다.As shown in FIG. 1, the principle of wind speed measurement of wind dry is received from the five beams emitted at approximately 30 ° intervals from the ground lidar 10, and the wind speed in the line of sight direction is received from the center of the beam. The wind speed is calculated. At this time, an error in the measurement point may occur from hundreds of meters to several kilometers between the wind component measured by the emitted beam and the wind component received from the anemometer of the weather tower 20. This increases the uncertainty in wind speed measurement.
윈드라이다의 풍속을 측정하기 위해서는 80m 이상의 기상탑 설치가 필요하며, 설치에 필요한 부지확보도 중요하다. 또한, 바람 데이터값이 왜곡되지 않도록 평탄한 지형이 필요하다. 평탄하지 않은 방향에서 불어오는 바람은 균질성에 대한 가정이 어려우므로 풍향에 대한 필터링을 통해 제외시킨다.In order to measure the wind speed of Windrider, it is necessary to install a weather tower of 80m or more, and securing the site required for installation is also important. In addition, it is necessary to have a flat terrain so that the wind data values are not distorted. Wind blowing from an uneven direction is difficult to make assumptions about homogeneity, so it is excluded through filtering on wind direction.
윈드라이다의 풍속 측정 방법은 야외 실험을 전제로 한다. 실내와 다르게 야외에서는 인공적인 바람을 생성시킬 수 없으므로, 자연에서 불어오는 바람 데이터값만을 사용한다. 따라서, 측정에 필요한 풍향 및 풍속 데이터값이 모두 모일 때까지 윈드라이다의 풍속 측정이 계속 되어야 한다. 짧게는 20일에서 길게는 몇 달이 걸리기도 한다. 지형에 따른 유효섹터와 계절풍 영향을 고려하면, 많은 시간이 소요되는 단점이 있다. 야외에서 시험하기 때문에 윈드라이다의 풍속 측정의 정확한 비교가 어렵다. 그리고, 풍속계 측정값을 기준으로 4~16m/s를 벗어난 데이터는 모두 제외한다. 풍속계는 회전수(rpm)를 풍속으로 계산하기 때문에, 온도가 영하로 떨어진 경우의 측정 데이터는 제외한다. 결빙으로 인해 회전에 영향을 줄 수 있기 때문이다.Windrida's wind speed measurement method is based on outdoor experiments. Unlike indoors, artificial wind cannot be generated outdoors, so only wind data from nature is used. Therefore, it is necessary to continue measuring wind speed of the wind dryer until all wind direction and wind speed data values necessary for measurement are collected. It can take as short as 20 days to several months. Considering the effect of the effective sector and monsoons depending on the terrain, there is a disadvantage that it takes a lot of time. Because it is tested outdoors, it is difficult to accurately compare the wind speed measurement of a wind dryer. In addition, all data outside 4 ~ 16m / s based on the anemometer measurement value are excluded. Since the anemometer calculates the rotation speed (rpm) as wind speed, measurement data when the temperature drops below zero is excluded. This is because freezing can affect rotation.
본 발명에 관련된 배경기술로는 대한민국 등록특허공보 제10-1853122호(2018.04.23. 등록)가 있으며, 상기 문헌에는 지상 기반 라이다, 라이다 측정오차 보정 장치 및 방법이 기재되어 있다.Background art related to the present invention includes Republic of Korea Patent Registration No. 10-1853122 (registered on April 23, 2018), the above document describes a ground-based lidar, a lidar measurement error correction device and method.
본 발명의 목적은 실내에서 윈드라이다를 교정하기 위해, 기준 풍속을 발생시키는 회전체와 불필요한 레이저 신호를 모두 흡수하는 광트랩을 이용한 윈드라이다의 교정 기술을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a windbreaker calibration technology using a light trap that absorbs both a rotating body generating a reference wind speed and an unnecessary laser signal in order to calibrate a winddryer indoors.
또한, 본 발명의 목적은 실내에서 윈드라이다를 교정하기 위해, 기준 풍속을 발생시키는 풍동과 불필요한 레이저 신호를 모두 흡수하는 광트랩을 이용한 윈드라이다의 교정 기술을 제공하는 것이다. In addition, it is an object of the present invention to provide a calibration technique for wind-driers using a wind trap that generates a reference wind speed and an optical trap that absorbs all unnecessary laser signals in order to calibrate the wind-driers indoors.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned can be understood by the following description, and will be more clearly understood by embodiments of the present invention. In addition, it will be readily appreciated that the objects and advantages of the present invention can be realized by means of the appended claims and combinations thereof.
본 발명에서는 기준 풍속을 발생시키기 위해 회전하는 회전체; 상기 회전체가 회전하는 방향으로 레이저를 조사하는 레이저 조사부와, 상기 회전체의 둘레 표면에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산하는 연산부를 포함하고, 상기 회전체의 측면에 위치하는 윈드라이다; 및 상기 회전체의 둘레 표면에 반사되지 않고 허공을 통과하는 레이저를 흡수하며, 상기 회전체의 반대편 측면에 위치하는 광트랩;을 포함하고, 상기 회전체의 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는 윈드라이다의 교정장치가 제공된다.In the present invention, a rotating body rotating to generate a reference wind speed; It includes a laser irradiation unit for irradiating the laser in the direction in which the rotating body rotates, and a calculation unit for calculating a peak wind speed value by detecting a laser that is reflected back on the circumferential surface of the rotating body, and located on the side of the rotating body It is a wind-drier; And a light trap that is not reflected on the circumferential surface of the rotating body and absorbs the laser passing through the air, and is located on the opposite side of the rotating body. Windrider's calibration device for correcting peak wind speed is provided.
본 발명에서는 기준 풍속을 발생시키는 풍동; 및 상기 풍동 내부에 존재하는 미세입자에 레이저를 조사하는 레이저 조사부와, 상기 미세입자에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산하는 연산부를 포함하고, 상기 풍동의 측면에 위치하는 윈드라이다; 상기 미세입자에 반사되지 않고 통과하는 레이저를 흡수하는 광트랩;을 포함하고, 상기 풍동의 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는 윈드라이다의 교정장치가 제공된다.In the present invention, a wind tunnel that generates a reference wind speed; And a laser irradiation unit that irradiates a laser to the microparticles existing in the wind tunnel, and a calculation unit that detects a laser that is reflected back to the microparticles and calculates a peak wind speed value, and is located on the side of the wind tunnel. to be; It includes; a light trap that absorbs a laser that passes through the microparticles without being reflected. A windbreaker correction device is provided for correcting the wind speed of the wind dryer based on the reference wind speed value of the wind tunnel.
본 발명에서는 (a) 회전체를 회전시켜 기준 풍속을 발생시키는 단계; (b) 윈드라이다의 레이저 조사부는 회전체가 회전하는 방향으로 레이저를 조사하는 단계; 및 (c) 윈드라이다의 연산부는 회전체의 둘레 표면에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산하는 단계;를 포함하고, 상기 회전체의 둘레 표면에 반사되지 않고 허공을 통과하는 레이저는 광트랩에 흡수되며, 상기 회전체의 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는 윈드라이다의 교정방법이 제공된다.In the present invention (a) rotating the rotating body to generate a reference wind speed; (b) a step of irradiating the laser in the direction in which the rotating body rotates the laser irradiation unit of the wind-drier; And (c) calculating the peak wind speed by detecting the laser beam reflected by the circumferential surface of the rotating body and returning, and passing through the air without being reflected by the circumferential surface of the rotating body. The laser is absorbed by the optical trap, and a method for calibrating the wind speed is provided to correct the wind speed of the wind dryer based on the reference wind speed value of the rotating body.
본 발명에서는 (a) 풍동 내부에 기준 풍속을 발생시키는 단계; 및 (b) 윈드라이다의 레이저 조사부는 상기 풍동 내부에 존재하는 미세입자에 레이저를 조사하는 단계; (c) 윈드라이다의 연산부는 상기 미세입자에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산하는 단계;를 포함하고, 상기 미세입자에 반사되지 않고 허공을 통과하는 레이저는 광트랩에 흡수되며, 상기 풍동의 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는 윈드라이다의 교정방법이 제공된다.In the present invention (a) generating a reference wind speed inside the wind tunnel; And (b) irradiating the laser with the fine particles existing inside the wind tunnel. (c) calculating the peak wind speed by detecting the laser returning reflected by the microparticles and returning to the microparticles; and the laser passing through the air without being reflected by the microparticles is absorbed by the optical trap. And, based on the wind speed reference wind speed value of the wind dryer is provided a method for calibrating the wind speed of the wind dryer.
본 발명에 따른 윈드라이다의 교정기술은 광트랩을 포함하여, 불필요한 레이저 신호가 반사되어 되돌아가는 것을 방지할 수 있다. 이에 따라, 윈드라이다의 풍속 측정의 정밀도를 향상시키는 효과가 있다. 그리고, 윈드라이다의 교정기술은 광트랩을 포함하여, 윈드라이다의 검출 영역을 축소시킬 수 있기 때문에, 특정 구간에서만 기준 풍속을 발생시켜도 윈드라이다에 정확한 바람신호를 전달할 수 있다. Windrider's calibration technology according to the present invention includes an optical trap, and can prevent unnecessary laser signals from being reflected back. Accordingly, there is an effect of improving the precision of wind speed measurement of the wind dryer. In addition, since the windbreaker's calibration technology can reduce the detection area of the winddryer, including the optical trap, it is possible to transmit an accurate wind signal to the winddryer even if a reference wind speed is generated only in a specific section.
또한, 윈드라이다의 교정기술은 실내에서 기준 풍속을 발생시키는 회전체 또는 풍동을 이용함에 따라, 원하는 풍속 데이터를 생성할 수 있으므로, 윈드라이다의 교정 시간을 단축시킬 수 있다.In addition, since the windbreaker's calibration technology can generate desired wind speed data by using a rotating body or wind tunnel that generates a reference wind speed indoors, the windbreaker's calibration time can be shortened.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, the concrete effects of the present invention will be described together while describing the specific matters for carrying out the invention.
도 1은 종래의 기상탑과 지상라이다를 나타낸 도면이다.1 is a view showing a conventional weather tower and a ground lidar.
도 2는 본 발명의 제1실시예에 따른 윈드라이다의 교정장치의 단면도이다.2 is a cross-sectional view of the windbreaker calibration device according to the first embodiment of the present invention.
도 3은 본 발명의 제1실시예와 제2실시예에 따른 윈드라이다를 도식화한 것이다.3 is a schematic diagram of a wind dryer according to the first and second embodiments of the present invention.
도 4는 본 발명의 제1실시예와 제2실시예에 따른 연산부의 작동 메커니즘을 나타낸 도면이다.4 is a view showing the operation mechanism of the operation unit according to the first and second embodiments of the present invention.
도 5 및 도 6은 본 발명의 제1실시예와 제2실시예에 따른 가중치 데이터를 나타낸 그래프이다.5 and 6 are graphs showing weight data according to the first and second embodiments of the present invention.
도 7 내지 도 9는 본 발명의 제1실시예에 따른 회전체 원리를 나타낸 도면이다.7 to 9 are views showing the principle of the rotating body according to the first embodiment of the present invention.
도 10은 본 발명의 제1실시예에 따른 광트랩의 사진이다.10 is a photograph of an optical trap according to a first embodiment of the present invention.
도 11은 도 10의 단면도이다.11 is a cross-sectional view of FIG. 10.
도 12는 본 발명의 제1실시예에 따른 윈드라이다의 교정방법을 나타낸 순서도이다.12 is a flow chart showing a method of calibrating a wind dryer according to a first embodiment of the present invention.
도 13은 본 발명의 제2실시예에 따른 윈드라이다의 교정장치의 단면도이다.13 is a cross-sectional view of the orthodontic appliance of a wind dry according to a second embodiment of the present invention.
도 14는 본 발명의 제2실시예에 따른 광트랩의 사시도이다.14 is a perspective view of an optical trap according to a second embodiment of the present invention.
도 15는 도 14의 단면도이다.15 is a cross-sectional view of FIG. 14.
도 16은 본 발명의 제2실시예에 따른 윈드라이다의 교정방법을 나타낸 순서도이다.16 is a flow chart showing a method of calibrating a wind dryer according to a second embodiment of the present invention.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features, and advantages will be described in detail below with reference to the accompanying drawings, and accordingly, a person skilled in the art to which the present invention pertains can easily implement the technical spirit of the present invention. In the description of the present invention, when it is determined that detailed descriptions of known technologies related to the present invention may unnecessarily obscure the subject matter of the present invention, detailed descriptions will be omitted. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same reference numerals in the drawings are used to indicate the same or similar components.
이하에서 구성요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성요소와 상기 구성요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다. In the following, the arrangement of any component in the "upper (or lower)" or "upper (or lower)" of the component means that any component is disposed in contact with the upper surface (or lower surface) of the component. In addition, it may mean that other components may be interposed between the component and any component disposed on (or under) the component.
또한 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 상기 구성요소들은 서로 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성요소 사이에 다른 구성요소가 "개재"되거나, 각 구성요소가 다른 구성요소를 통해 "연결", "결합" 또는 "접속"될 수도 있는 것으로 이해되어야 할 것이다. Also, when a component is described as being "connected", "coupled" or "connected" to another component, the components may be directly connected to or connected to each other, but other components may be "interposed" between each component. It should be understood that "or, each component may be" connected "," coupled "or" connected "through other components.
이하에서는, 본 발명의 몇몇 실시예에 따른 광트랩을 이용한 윈드라이다의 교정장치 및 이를 이용한 교정방법을 설명하도록 한다.Hereinafter, a device for correcting a wind dry using a light trap according to some embodiments of the present invention and a calibration method using the same will be described.
본 발명에 따른 윈드라이다의 교정 기술은 기준 풍속을 발생시키는 회전체 또는 풍동을 이용하여, 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는 것이다.Windrider's calibration technology according to the present invention is to calibrate the peak wind speed of Windrider based on a reference wind speed value using a rotating body or wind tunnel that generates a reference wind speed.
제1실시예 Embodiment 1
도 2는 본 발명의 제1실시예에 따른 윈드라이다의 교정장치의 단면도이다.2 is a cross-sectional view of the windbreaker calibration device according to the first embodiment of the present invention.
도 2를 참조하면, 제1실시예에 따른 윈드라이다의 교정장치(100)는 윈드라이다(110), 회전체(120) 및 광트랩(130)을 포함한다.Referring to FIG. 2, the straightening apparatus 100 of a wind-drier according to the first embodiment includes a wind-drier 110, a rotating body 120, and an optical trap 130.
제1실시예에서 윈드라이다(110)는 후술할 회전체(120)의 측면에 위치한다. 상기 윈드라이다(110)는 레이저 조사부와 연산부를 포함한다. In the first embodiment, the wind dryer 110 is located on the side of the rotating body 120, which will be described later. The wind dryer 110 includes a laser irradiation unit and a calculation unit.
상기 레이저 조사부는 회전체(120)가 회전하는 방향으로 레이저를 조사한다. 레이저는 회전체(120)의 둘레 표면에 닿게 되고, 회전체(120)의 둘레 표면에 접촉되는 레이저는 반사되어 윈드라이다 쪽으로 되돌아온다. 상기 연산부는 회전체(120)의 둘레 표면에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산한다. The laser irradiation unit irradiates the laser in a direction in which the rotating body 120 rotates. The laser hits the circumferential surface of the rotating body 120, and the laser contacting the circumferential surface of the rotating body 120 is reflected and returns to the wind-drier. The calculation unit calculates a peak wind speed value by detecting a laser that is reflected back on the circumferential surface of the rotating body 120 and returns.
상기 윈드라이다(110)에서 레이저 신호로부터 피크 풍속값을 계산하는 방법은 도 3을 참조하여 설명하기로 한다.The method of calculating the peak wind speed value from the laser signal in the wind-drier 110 will be described with reference to FIG. 3.
도 3에서 넘버링은 ① 펄스 레이저(flo), ② 수광 및 출사광을 분리하는 광학소자, ③ 망원경, ④ 산란체, ⑤ Local oscillator laser(원래 신호), ⑥ 주파수 제어기, ⑦ Local oscillator laser의 빔을 정렬하고, 정렬된 빔들을 혼합하는 광학 요소, ⑧ 2차 검출기(quadratic detector), ⑨ 변환기이다. 상기 ④를 제외한 ① 내지 ⑨는 윈드라이다(110, 210)에 포함되는 구성 요소이다. 상기 연산부는 ⑨를 포함한다. In Figure 3, the numbering is ① pulse laser (f lo ), ② optical element for separating the received and emitted light, ③ telescope, ④ scatterer, ⑤ local oscillator laser (original signal), ⑥ frequency controller, ⑦ local oscillator laser beam Is an optical element that aligns and mixes the aligned beams, ⑧ a quadratic detector, and ⑨ transducer. ① to ⑨ except for ④ are components included in the wind dryers 110 and 210. The operation unit includes ⑨.
먼저, ⑤에서 방출된 레이저가 ⑥을 거쳐 ①로 방출된다. ①에서 방출된 레이저 빔은 ②를 통해 2개의 빔으로 나눠진다. 하나의 빔은 ③을 통해 공기 중으로 나아가고(ft), 나머지 하나의 빔은 ⑦로 들어가서 기준값(flo)이 된다. 공기 중으로 나아간 빔은 ④에 반사되어 도플러 쉬프트가 된 상태(Δf + ft)가 되어 돌아오고, ②에 의해 ⑦로 들어간다.First, the laser emitted from ⑤ is emitted to ① through ⑥. The laser beam emitted from ① is divided into two beams through ②. One beam goes into the air through ③ (f t ), and the other beam enters ⑦ and becomes the reference value f lo . The beam that has gone into the air is reflected by ④ and returns to the state of being doppler shifted (Δf + f t ), and returns to ⑦ by ②.
⑦에서는 처음에 들어온 기준값(flo)과 반사되어 돌아온 신호(Δf + ft)가 합쳐지게 된다. 합쳐진 신호(광 신호)는 ⑧의 2차 검출기에서 전기 신호로 변환된다. 그리고 ⑨에서는 ⑧에서 변환된 아날로그 신호를 디지털 신호로 변환(ADC)하고, 도 4에서와 같이 신호 과정을 거쳐 피크 주파수로부터 피크 풍속을 산출하게 된다.In ⑦, the reference value (f lo ) that came in first and the reflected signal (Δf + f t ) are combined. The combined signal (optical signal) is converted into an electrical signal by the secondary detector of ⑧. And in ⑨, the analog signal converted in ⑧ is converted into a digital signal (ADC), and the peak wind speed is calculated from the peak frequency through a signal process as shown in FIG.
도 4는 ⑤ Local oscillator laser로부터 펄스 레이저를 발생시키고, 반사되어 돌아오는 레이저(Δf + ft) 신호를 ⑧에서 전기적 신호로 변환하고, 이 신호를 디지털 신호로 변환한 상태를 나타낸 것이다. 도 4에서 가로 방향에 기재된 숫자 1은 No. of lidar pulses, 2는 시계열(time series), 3은 스펙트럼(시간 도메인에서 주파수 도메인으로 변환), 4는 피크 신호로부터 도플러 쉬프트가 얼마나 되었는지 계산하여 풍속을 산출한 것이다. FIG. 4 shows a state in which a pulse laser is generated from a local oscillator laser, the reflected laser signal (Δf + f t ) is converted into an electrical signal at ⑧, and this signal is converted into a digital signal. In Figure 4, the number 1 in the horizontal direction is No. Of lidar pulses, 2 is a time series, 3 is a spectrum (converted from a time domain to a frequency domain), and 4 is a wind speed calculated by calculating how much Doppler shift is from the peak signal.
따라서, 회전체(120)의 둘레 표면에 반사되어 돌아오는 레이저 신호는 윈드라이다 내부의 ⑧ 2차 검출기에 의해 광 신호에서 전기적 신호로 변환된다. 전기적 신호로 변환된 아날로그 데이터들은 ADC(Analog To Digital Converter)에 의해 디지털 신호로 변환되고 디지털 신호로 변환된 신호들을 시간 순서대로 나열한다. Accordingly, the laser signal reflected and returned to the circumferential surface of the rotating body 120 is converted from an optical signal to an electrical signal by a secondary detector ⑧ inside the wind dryer. Analog data converted to electrical signals are converted to digital signals by an analog to digital converter (ADC) and the signals converted to digital signals are listed in chronological order.
이어서, 시간으로부터 거리를 계산하여 원하는 범위에 들어온 신호들을 추출한다. 예를 들어, 윈드라이다(110)의 프로브 길이(probe length, 도 2의 x)가 40m(±20m)이고, 풍속을 측정하고자 하는 구간의 범위가 60m라고 가정한다. 상기 프로브 길이(x)는 레이저 조사부에서 회전체(120)의 중심까지의 길이이다. [측정하고자 하는 구간]±[레이저 조사부에서 회전체 중심까지의 길이]에 포함되는 레이저 신호를 추출한다. 윈드라이다(110)는 반사되어 돌아오는 신호 중에 60m±20m 구간에 포함되는 레이저 신호를 추출한다. Subsequently, the distance from time is calculated to extract signals within a desired range. For example, it is assumed that the probe length (x in FIG. 2) of the wind-drier 110 is 40 m (± 20 m), and the range of the section for measuring wind speed is 60 m. The probe length x is the length from the laser irradiation unit to the center of the rotating body 120. The laser signal included in [the section to be measured] ± [the length from the laser irradiation section to the center of the rotating body] is extracted. The wind-drier 110 extracts the laser signal included in the 60m ± 20m section among the reflected and return signals.
이어서, 추출된 레이저 신호 각각에 가중치(weighting function)를 곱하여 합산한다. 상기 가중치는 도 5에 도시한 바와 같이, 거리에 따라 다른 값을 나타낸다.Subsequently, each of the extracted laser signals is multiplied and multiplied by a weighting function. As shown in FIG. 5, the weight represents a different value according to the distance.
이어서, 합산된 값에서 피크 주파수를 찾아, 원래 신호 (Local oscillator laser) 대비, 피크 주파수가 얼마만큼 이동되었는지 계산하여 피크 풍속값으로 변환한다. 가중치를 적용한 피크 풍속값이 정확하다면, 기준 풍속값과 피크 풍속값은 일치한다. 그리고, 가중치를 적용한 피크 풍속값이 기준 풍속값과 일치하지 않는 경우에는, 기준 풍속값을 기준으로 피크 풍속값을 교정한다.Subsequently, the peak frequency is found from the summed value, and how much the peak frequency is shifted compared to the original signal (Local oscillator laser) is calculated and converted into a peak wind speed value. If the weighted peak wind speed value is correct, the reference wind speed value and the peak wind speed value agree. Then, when the peak wind speed value to which the weight is applied does not match the reference wind speed value, the peak wind speed value is corrected based on the reference wind speed value.
상기 회전체(120)는 윈드라이다(110)의 측면에 위치한다. 상기 회전체(120)는 기준 풍속을 발생시키기 위해 회전한다. The rotating body 120 is located on the side of the wind dryer 110. The rotating body 120 rotates to generate a reference wind speed.
도 7 내지 도 9에 도시한 바와 같이, 회전체(120)가 회전하면서 접선 속도가 발생하는데, 이 접선 속도를 기준 풍속값으로 사용한다. 상기 접선 속도는 레이저에 부딪히는 공기 중의 입자의 속도와 같다. 상기 접선 속도는 회전체(120)의 가장 바깥부분에서 발생한다. 상기 회전체(120)의 회전 속도가 일정하고, 회전체(120)가 완벽한 원형일 경우, 회전체(120)의 가장 바깥부분에서 모두 동일한 접선 속도를 만들 수 있다. 접선 속도 발생 지점은 레이저와 회전체(120)가 수직으로 만나는 지점이라 할 수 있다. 이 지점에서 발생하는 접선 속도를 기준 풍속이라 할 수 있고, 하기 식 1, 식 2로부터 산출된 접선 속도와 윈드라이다가 지시하는 풍속 지시값을 서로 비교하여 교정 데이터를 산출하게 된다.7 to 9, as the rotating body 120 rotates, a tangential speed is generated, and the tangential speed is used as a reference wind speed value. The tangential velocity is equal to the velocity of particles in the air hitting the laser. The tangential velocity occurs at the outermost part of the rotating body 120. When the rotational speed of the rotating body 120 is constant and the rotating body 120 is perfectly circular, the same tangential speed can be made at the outermost part of the rotating body 120. The tangential speed generation point can be said to be a point where the laser and the rotating body 120 meet vertically. The tangential speed generated at this point can be referred to as a reference wind speed, and the tangential speed calculated from Equations 1 and 2 below is compared with the wind speed indication values indicated by Windrider to calculate calibration data.
상기 회전체(120)의 기준 풍속값은 [식 1]로 표시되는 회전체의 접선 속도(v)이다.The reference wind speed value of the rotating body 120 is the tangential speed (v) of the rotating body represented by [Equation 1].
[식 1][Equation 1]
v = r Ⅹ ωv = r Ⅹ ω
r = 회전체의 반지름, ω = θ/t (θ= 2πN이고, N = 회전체의 회전속도, t = 시간이다.)r = radius of the rotator, ω = θ / t ( θ = 2πN, N = rotational speed of the rotator, t = time.)
상기 접선 속도는 [식 2]로 표시될 수도 있다.The tangential speed may be represented by [Equation 2].
[식 2][Equation 2]
v = 2 Ⅹ π Ⅹ r Ⅹ N / tv = 2 Ⅹ π Ⅹ r Ⅹ N / t
상기 2πr은 회전체의 둘레이다. 상기 회전체의 둘레와 회전체의 회전 속도의 곱한 값을 시간으로 나눈 것이 접선 속도라 할 수 있다. 예를 들어, 지름이 1m이고, 접선 속도가 4m/s일 때의 회전체의 회전속도 N(rpm)는 다음과 같다.The 2πr is the circumference of the rotating body. The product of the circumference of the rotating body and the rotational speed of the rotating body divided by time may be referred to as a tangential velocity. For example, the rotational speed N (rpm) of the rotating body when the diameter is 1 m and the tangential speed is 4 m / s is as follows.
v = r Ⅹ ω = r Ⅹ (2πN / 60s) v = r Ⅹ ω = r Ⅹ (2πN / 60s)
N = 60 Ⅹ v / (2πr) = (60s Ⅹ 4m/s) / (2πⅩ 0.5m) = 76.43 rpm이 된다.N = 60 Ⅹ v / (2πr) = (60s Ⅹ 4m / s) / (2π Ⅹ 0.5m) = 76.43 rpm.
도 7 및 도 9에 도시한 바와 같이, 레이저의 조사면적이 넓은 경우, 회전체에 레이저가 닿는 면적이 넓어지게 된다. 이에 따라, 회전체의 접선 속도(v) 발생 지점과 레이저가 일치하지 않는 면적이 발생하게 된다. 이런 경우, 회전체의 크기를 크게 하여, 회전체의 접선 속도 발생 지점과 레이저가 일치하도록 할 수도 있다. 그러나, 회전체의 반지름이 커질수록 일정한 회전수를 유지하기 힘들어진다. 그만큼 풍속 측정에 대한 불확실성이 커지게 되므로 상당한 제한이 발생하게 된다.7 and 9, when the irradiation area of the laser is large, the area where the laser hits the rotating body is widened. Accordingly, an area where the tangential velocity (v) of the rotating body and the laser do not coincide is generated. In this case, the size of the rotating body may be increased to make the laser coincide with the tangential speed generation point of the rotating body. However, the larger the radius of the rotating body, the more difficult it is to maintain a constant rotational speed. As such, uncertainty about wind speed measurement increases, resulting in significant limitations.
도 9에서, ①과 ②는 윈드라이다에서 방출된 레이저이다. 레이저 ①은 회전체(120)와 정확하게 수직으로 접하고 있기 때문에, 이 지점에서 발생하는 접선 속도를 기준 풍속이라 할 수 있다. 이때 접선 속도와 윈드라이다의 지시값을 맞비교하면 윈드라이다의 정확한 교정이 이루어질 수 있다.In Fig. 9, ① and ② are lasers emitted from the wind dryer. Since the laser ① is in contact with the rotating body 120 exactly vertically, the tangential speed generated at this point can be referred to as a reference wind speed. At this time, if the tangential speed and the indication value of the wind-drier are compared, the correct calibration of the wind-drier can be achieved.
그러나 레이저 ②는 회전체(120)와 수직으로 접하지 않고, 상대적으로 아래 위치에 접하고 있다. 이때 기준 풍속은 v = r Ⅹ ωⅩ cosθ가 된다. 즉, cosθ값을 정확히 알 수 없기 때문에, 레이저가 회전체에 접하는 면적이 넓어지는 경우, 측정에 대한 불확실성이 증가하게 된다. 따라서, 측정에 대한 불확실성을 최소화하기 위해서는 도 8 및 도 9의 ①과 같이 레이저가 회전체에 접하는 면적을 최소화시켜야 한다. However, the laser ② is not in contact with the rotating body 120 vertically, but is in contact with the lower position. At this time, the reference wind speed becomes v = r Ⅹ ωⅩ cos θ . That is, since the cos θ value cannot be accurately known, when the area where the laser contacts the rotating body is increased, the uncertainty about the measurement increases. Therefore, in order to minimize the uncertainty of the measurement, it is necessary to minimize the area where the laser contacts the rotating body as shown in ① of FIGS. 8 and 9.
그리고 도 8에 도시한 바와 같이, 접선속도가 발생하는 지점의 신호를 온전히 받을 수 있는 부분의 레이저만 반사시키도록 하여, 풍속 측정의 정밀도를 크게 향상시키는 것이 바람직하다. 레이저가 조사될 것으로 예상되는 방향에 광트랩(130)을 설치하여 불필요한 신호가 반사되어 돌아가는 것도 방지할 수 있기 때문에, 광트랩(130)의 활용은 측정 정밀도를 향상시킬 수 있다. And, as shown in Figure 8, it is preferable to significantly improve the accuracy of the wind speed measurement by reflecting only the laser of the portion that can receive the signal at the point where the tangential velocity occurs. By installing the optical trap 130 in a direction where the laser is expected to be irradiated, it is also possible to prevent unnecessary signals from being reflected and returning, so that the utilization of the optical trap 130 can improve the measurement precision.
따라서, 상기 회전체에 접하지 않고 허공으로 나아가는 레이저, 즉, 불필요한 레이저는 광트랩(130)에 모두 흡수시켜 측정에 대한 불확실성을 최소화할 수 있다.Therefore, a laser that goes into the air without contacting the rotating body, that is, an unnecessary laser can be absorbed by the optical trap 130 to minimize uncertainty in measurement.
이를 위해, 광트랩(130)은 회전체(120)의 반대편 측면에 위치한다. 상기 조사되는 레이저와 회전체의 둘레 표면의 접점(a')이 발생하도록, 상기 레이저의 위치와 회전체(120)의 둘레 표면이 수평으로 위치하는 것이 바람직하다. 접점(a')은 레이저와 회전체의 둘레표면이 적어도 한 점을 공유해서 접하는 점을 의미한다. To this end, the optical trap 130 is located on the opposite side of the rotating body 120. It is preferable that the position of the laser and the circumferential surface of the rotator 120 are horizontally positioned so that the contact (a ') between the irradiated laser and the circumferential surface of the rotator is generated. The contact point a 'means a point where the laser and the circumferential surface of the rotating body share at least one point.
따라서, 상기 광트랩(130)은 상기 회전체(120)의 둘레 표면에 반사되지 않고 허공을 통과하는 레이저를 흡수한다.Therefore, the optical trap 130 absorbs the laser passing through the air without being reflected on the circumferential surface of the rotating body 120.
도 10은 본 발명의 제1실시예에 따른 광트랩의 사진이고, 도 10은 도 10의 단면도이다. 도 10 및 도 11에 도시한 바와 같이, 광트랩(130)의 형상은 중공을 포함하는 원기둥일 수 있다. 광트랩(130)은 이외에도 사각형 또는 구 형상일 수도 있다. 상기 광트랩(130)은 레이저를 흡수하기 위해서, 상기 회전체(120)와 마주보는 면이 개구부를 가진다. 그리고, 레이저가 광트랩(130) 내부로 들어와 여러 번 반사되어 흡수될 수 있도록 내부에 콘 형상(132)을 포함한다. 상기 콘 형상(132)은 개구부로 갈수록 관경이 좁아진다.10 is a photograph of an optical trap according to a first embodiment of the present invention, and FIG. 10 is a cross-sectional view of FIG. 10. 10 and 11, the shape of the light trap 130 may be a cylinder including a hollow. In addition, the optical trap 130 may have a rectangular or spherical shape. In order to absorb the laser, the light trap 130 has an opening facing the rotating body 120. In addition, a cone shape 132 is included inside the laser so that it can be absorbed by being reflected into the light trap 130 several times. The cone shape 132 has a narrower diameter as it goes toward the opening.
상기 광트랩(130)은 회전체(120)의 둘레 표면보다 표면 반사율이 낮은 물질로 형성되는 것이 바람직하다. 표면 반사율이 낮은 물질은 레이저의 반사도가 대략 1% 이하인 물질을 가리킨다. 표면 반사율이 낮은 물질은 Ag, Ni, Cr, MgF2 등을 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 광트랩(130)은 플루오르화 마그네슘(MgF2)으로 형성되거나, 적어도 표면에 플로오르화 마그네슘으로 코팅될 수 있다.The optical trap 130 is preferably formed of a material having a lower surface reflectance than the peripheral surface of the rotating body 120. A material having a low surface reflectance refers to a material having a laser reflectivity of approximately 1% or less. Materials having low surface reflectivity may include Ag, Ni, Cr, MgF 2 , and the like, but are not limited thereto. For example, the light trap 130 may be formed of magnesium fluoride (MgF 2 ), or may be coated with magnesium fluoride on at least a surface.
이처럼, 상기 회전체(120)의 기준 풍속값을 기준으로 윈드라이다(110)의 피크 풍속값을 교정한다. 이에 따라, 윈드라이다(110)의 풍속에 대한 측정 정밀도를 향상시킬 수 있다.As such, the peak wind speed value of the wind-drier 110 is corrected based on the reference wind speed value of the rotating body 120. Accordingly, the measurement accuracy of the wind speed of the wind-drier 110 can be improved.
도 12는 본 발명의 제1실시예에 따른 윈드라이다의 교정방법을 나타낸 순서도이다. 도 12를 참조하면, 제1실시예에 따른 윈드라이다의 교정방법은 회전체를 회전시켜 기준 풍속을 발생시키는 단계(S110), 윈드라이다에서 레이저를 조사하는 단계(S120) 및 피크 풍속값을 계산하여, 기준 풍속값을 기준으로 피크 풍속값을 교정하는 단계(S130)를 포함한다.12 is a flow chart showing a method of calibrating a wind dryer according to a first embodiment of the present invention. Referring to FIG. 12, the method for correcting wind dryer according to the first embodiment includes generating a reference wind speed by rotating a rotating body (S110), irradiating a laser at wind dry (S120), and a peak wind speed value And calculating a peak wind speed value based on the reference wind speed value (S130).
윈드라이다(110), 회전체(120) 및 광트랩(130)이 순차적으로 위치하는 상태에서 윈드라이다(110)의 교정이 진행된다. 이때, 윈드라이다(110)의 레이저 조사부와 회전체는 수평으로 위치한다.In the state in which the wind dryer 110, the rotating body 120, and the light trap 130 are sequentially positioned, the calibration of the wind dryer 110 is performed. At this time, the laser irradiation unit and the rotating body of the wind dryer 110 are positioned horizontally.
먼저, 회전체(120)를 회전시켜 기준 풍속을 발생시킨다. 회전체(120)에 대한 사항은 교정장치에서 전술한 바와 같다.First, a reference wind speed is generated by rotating the rotating body 120. Details of the rotating body 120 are as described above in the calibration device.
회전체(120)가 회전하는 상태에서, 윈드라이다(110)의 레이저 조사부는 회전체(120)가 회전하는 방향으로 레이저를 조사한다. 조사되는 레이저는 회전체(120)의 둘레 표면에 반사되어 되돌아온다. 윈드라이다(110)의 연산부는 되돌아온 레이저를 감지하여 피크 풍속값을 계산하게 된다. 이때, 회전체(120)의 둘레 표면에 반사되지 않고 나아가는 레이저, 즉, 허공을 통과하는 레이저는 회전체(120)의 측면에 위치하는 광트랩(110)에 모두 흡수된다. 이에 따라, 광트랩(110)은 회전체의 접선속도가 발생하는 지점과 일치하는 레이저만 반사시키도록 한다. 또한, 광트랩(110)은 불필요한 레이저 신호가 반사되어 돌아가는 것을 방지한다.In the state where the rotating body 120 rotates, the laser irradiation unit of the wind-drier 110 irradiates the laser in the direction in which the rotating body 120 rotates. The irradiated laser beam is reflected on the circumferential surface of the rotating body 120 and returns. The calculation unit of the wind dryer 110 detects the returned laser and calculates the peak wind speed value. At this time, the laser that does not reflect on the circumferential surface of the rotating body 120, that is, the laser passing through the air is absorbed by the optical trap 110 located on the side surface of the rotating body 120. Accordingly, the optical trap 110 is to reflect only the laser coincident with the point where the tangential speed of the rotating body occurs. In addition, the optical trap 110 prevents unnecessary laser signals from being reflected and rotating.
상기 피크 풍속값을 계산하여 회전체의 기준 풍속값과 일치하는 경우, 측정오차가 0%에 가깝다는 것을 의미한다. 반대로, 피크 풍속값이 기준 풍속값과 일치하지 않는 경우, 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정한다.When the peak wind speed value is calculated to match the reference wind speed value of the rotating body, it means that the measurement error is close to 0%. Conversely, when the peak wind speed value does not coincide with the reference wind speed value, the wind speed of the wind dryer is corrected based on the reference wind speed value.
제2실시예Example 2
도 13은 본 발명의 제2실시예에 따른 윈드라이다의 교정장치의 단면도이다.13 is a cross-sectional view of the orthodontic appliance of a wind dry according to a second embodiment of the present invention.
도 13을 참조하면, 제2실시예에 따른 윈드라이다의 교정장치(200)는 윈드라이다(210), 풍동(220) 및 광트랩(230)을 포함한다.Referring to FIG. 13, the straightening device 200 for a wind-drier according to the second embodiment includes a wind-drier 210, a wind tunnel 220, and a light trap 230.
제2실시예에서 윈드라이다(210)는 후술할 풍동(220)의 측면에 위치한다. 상기 윈드라이다(210)는 레이저 조사부와 연산부를 포함한다.In the second embodiment, the wind dryer 210 is located on the side of the wind tunnel 220 which will be described later. The wind dryer 210 includes a laser irradiation unit and a calculation unit.
상기 레이저 조사부는 풍동(220) 내부에 존재하는 미세입자에 레이저를 조사한다. 상기 미세입자는 수 nm의 입자, 수 ㎛의 입자 등을 포함한다. The laser irradiation unit irradiates the laser to the fine particles existing inside the wind tunnel 220. The microparticles include particles of several nm, particles of several μm, and the like.
레이저는 미세입자에 반사되어 되돌아온다. 상기 연산부는 미세입자에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산한다.The laser is reflected back by the fine particles. The calculation unit detects a laser reflected back to the fine particles and calculates a peak wind speed value.
상기 윈드라이다(210)에서 레이저 신호로부터 피크 풍속값을 계산하는 방법은 다음과 같다.The method for calculating the peak wind speed value from the laser signal in the wind dryer 210 is as follows.
먼저, 미세입자에 반사되어 돌아오는 레이저 신호는 윈드라이다 내부의 ⑧ 2차 검출기에 의해 광 신호에서 전기적 신호로 변환된다. 전기적 신호로 변환된 아날로그 데이터들은 ADC(Analog To Digital Converter)에 의해 디지털 신호로 변환되고 디지털 신호로 변환된 신호들을 시간 순서대로 나열한다. First, the laser signal reflected and returned to the fine particles is converted from the optical signal to the electrical signal by the secondary detector inside the windshield. Analog data converted to electrical signals are converted to digital signals by an analog to digital converter (ADC) and the signals converted to digital signals are listed in chronological order.
이어서, 시간으로부터 거리를 계산하여 원하는 범위에 들어온 신호들을 추출한다. 예를 들어, 윈드라이다의 프로브 길이(probe length, y)가 40m(±20m)이고, 풍속을 측정하고자 하는 구간의 범위가 60m라고 가정한다. 상기 프로브 길이(y)는 풍동(220)의 길이이다. 이때, 윈드라이다(210)와 풍동(220) 사이의 거리는 최소 20m일 수 있다. Subsequently, the distance from time is calculated to extract signals within a desired range. For example, it is assumed that the probe length (y) of Windrider is 40 m (± 20 m), and the range of the section to measure wind speed is 60 m. The probe length (y) is the length of the wind tunnel (220). At this time, the distance between the wind-drier 210 and the wind tunnel 220 may be at least 20 m.
이어서, [측정하고자 하는 구간]±[풍동의 길이]에 포함되는 레이저 신호를 추출한다. 도 4에 도시한 바와 같이, 윈드라이다(210)는 반사되어 돌아오는 신호 중에 60m±20m 구간에 포함되는 레이저 신호를 추출한다. Subsequently, a laser signal included in [the section to be measured] ± [length of wind tunnel] is extracted. As shown in FIG. 4, the wind-drier 210 extracts a laser signal included in a 60m ± 20m section among reflected and return signals.
이어서, 추출된 레이저 신호 각각에 가중치를 곱하여 합산한다. 합산된 값에서 피크 주파수를 찾아, 원래 신호 (Local oscillator laser) 대비, 피크 주파수가 얼마만큼 이동되었는지 계산하여 피크 풍속값으로 변환한다.Subsequently, each of the extracted laser signals is multiplied by a weight and summed. Find the peak frequency from the summed value, calculate how much the peak frequency has shifted compared to the original signal (Local oscillator laser), and convert it to the peak wind speed value.
상기 풍동(220)은 윈드라이다(210)의 측면에 위치한다. 상기 풍동(220)은 레이저가 풍동(220) 내부로 조사될 수 있도록 지면에 대하여 수평으로 위치하는 것이 바람직하다. 상기 풍동(220)은 기준 풍속을 발생시키기 위해 일정한 길이를 갖는다. 상기 기준 풍속은 열선형 유속계 또는 레이저-도플러 풍속 측정기(LDA)로 측정한다. 풍동(220)의 길이는 대략 8~20m일 수 있으나, 이에 제한되는 것은 아니다. The wind tunnel 220 is located on the side of the wind dryer 210. The wind tunnel 220 is preferably positioned horizontally with respect to the ground so that the laser can be irradiated into the wind tunnel 220. The wind tunnel 220 has a constant length to generate a reference wind speed. The reference wind speed is measured by a thermo-linear flowmeter or a laser-Doppler wind speed meter (LDA). The length of the wind tunnel 220 may be approximately 8 to 20 m, but is not limited thereto.
상기 풍동(220)은 기준 풍속을 공급하기 위한 연무기(fog machine, 222)를 포함한다. 연무기(222)는 풍동(220) 내부에 일정한 바람을 공급한다. 바람이 공급되면서, 풍동(220) 내부에 미세입자가 공급되어 풍속 신호를 충분히 측정할 수 있게 된다. 공급되는 바람과 동일한 속도로 이동하는 미세입자에 레이저가 반사된다. 반사되어 되돌아가는 레이저 신호로부터 윈드라이다(210)의 피크 풍속을 계산한다.The wind tunnel 220 includes a fog machine (222) for supplying a reference wind speed. The nebulizer 222 supplies a constant wind inside the wind tunnel 220. As the wind is supplied, fine particles are supplied inside the wind tunnel 220 to sufficiently measure the wind speed signal. The laser is reflected on the fine particles moving at the same speed as the supplied wind. The wind speed of the wind-drier 210 is calculated from the reflected and returned laser signal.
상기 풍동(220)은 전면과 후면이 개구부를 갖는 구조이다. 전면의 개구부를 통해 풍동(220) 내부에 존재하는 미세입자에 레이저를 조사한다. 후면의 개구부를 통해 연무기(222)로부터 바람을 공급받는다. 자연바람처럼 풍속 및 풍향이 원활하게 진행되기 위해, 상기 풍동(220)의 상부에는 개구부를 가지는 통로부(224)가 더 포함될 수 있다. 상기 풍동(220)은 유리와 같은 투명한 재질로 형성될 수 있으나, 이에 제한되는 것은 아니다.The wind tunnel 220 has a structure in which front and rear surfaces have openings. The laser is irradiated to the fine particles existing inside the wind tunnel 220 through the opening in the front. The wind is supplied from the nebulizer 222 through the rear opening. In order for the wind speed and the wind direction to proceed smoothly like a natural wind, a passage part 224 having an opening may be further included at an upper portion of the wind tunnel 220. The wind tunnel 220 may be formed of a transparent material such as glass, but is not limited thereto.
상기 광트랩(230)은 풍동(220)의 측면에 위치한다. 상기 광트랩(230)은 미세입자에 반사되지 않고 통과하는 레이저를 모두 흡수한다. 도 11 및 도 12에 도시한 바와 같이, 레이저를 흡수하기 위해, 상기 광트랩(230)의 형상은 중공을 포함하는 원기둥일 수 있다. 광트랩(230)은 이외에도 사각형 또는 구 형상일 수도 있다. 상기 광트랩(230)은 레이저를 흡수하기 위해, 상기 풍동(220)과 마주보는 면이 개구부를 가진다. 다른 일면은 지지대(234)를 포함한다. 상기 지지대(234)는 강풍을 일으키는 풍동(220) 내부에 콘 형상(232)을 구비한 광트랩(230)이 고정될 수 있도록 지지하는 역할을 한다.The optical trap 230 is located on the side of the wind tunnel 220. The optical trap 230 absorbs all lasers that pass through without being reflected by the fine particles. 11 and 12, in order to absorb a laser, the shape of the light trap 230 may be a cylinder including a hollow. In addition, the optical trap 230 may have a quadrangular or spherical shape. In order to absorb the laser, the light trap 230 has an opening facing the wind tunnel 220. The other side includes a support 234. The support 234 serves to support the optical trap 230 having a cone shape 232 inside the wind tunnel 220 that causes strong wind.
그리고, 레이저가 광트랩(230) 내부로 들어와 여러 번 반사되어 흡수될 수 있도록 내부에 콘 형상(232)을 포함한다. 상기 콘 형상(232)은 개구부로 갈수록 관경이 좁아진다.In addition, a cone shape 232 is included inside the laser so that the laser may enter the inside of the light trap 230 and be reflected and absorbed several times. The cone shape 232 has a narrower diameter as it goes toward the opening.
상기 광트랩(230)은 미세입자보다 표면 반사율이 낮은 물질로 형성되는 것이 바람직하다. 표면 반사율이 낮은 물질은 레이저의 반사도가 대략 1% 이하인 물질을 가리킨다. 표면 반사율이 낮은 물질은 Ag, Ni, Cr, MgF2 등을 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 광트랩(230)은 플루오르화 마그네슘(MgF2)으로 형성되거나, 적어도 표면에 플로오르화 마그네슘으로 코팅될 수 있다.The optical trap 230 is preferably formed of a material having a lower surface reflectivity than the fine particles. A material having a low surface reflectance refers to a material having a laser reflectivity of approximately 1% or less. Materials having low surface reflectivity may include Ag, Ni, Cr, MgF 2 , and the like, but are not limited thereto. For example, the light trap 230 may be formed of magnesium fluoride (MgF 2 ), or may be coated with magnesium fluoride on at least a surface.
이처럼, 레이저가 조사될 것으로 예상되는 방향에 광트랩(230)을 설치하여 불필요한 신호가 반사되어 돌아가는 것을 방지할 수 있다. 따라서, 광트랩(230)의 활용은 측정 정밀도를 향상시킬 수 있다.As described above, the light trap 230 may be installed in a direction where the laser is expected to be irradiated, thereby preventing unnecessary signals from being reflected and rotating. Therefore, the utilization of the optical trap 230 can improve the measurement precision.
도 13은 본 발명의 제2실시예에 따른 윈드라이다의 교정방법을 나타낸 순서도이다. 도 13을 참조하면, 제2실시예에 따른 윈드라이다의 교정방법은 풍동 내부에 기준 풍속을 발생시키는 단계(S210), 윈드라이다에서 레이저를 조사하는 단계(S220) 및 피크 풍속값을 계산하여, 기준 풍속값을 기준으로 피크 풍속값을 교정하는 단계(S230)를 포함한다.13 is a flow chart showing a method of calibrating a wind dryer according to a second embodiment of the present invention. Referring to FIG. 13, a method for calibrating a wind dryer according to a second embodiment includes generating a reference wind speed inside the wind tunnel (S210), irradiating a laser at the wind dryer (S220), and calculating a peak wind speed value. Then, the step of correcting the peak wind speed value based on the reference wind speed value (S230).
윈드라이다(210), 풍동(220) 및 광트랩(230)이 순차적으로 위치하는 상태에서 윈드라이다(210)의 교정이 진행된다. In the state in which the wind dryer 210, the wind tunnel 220, and the light trap 230 are sequentially positioned, the calibration of the wind dryer 210 is performed.
먼저, 일정한 길이를 갖는 풍동(220) 내부에 기준 풍속을 발생시킨다. 연무기(222)를 이용하여 풍동(220) 내부에 기준 풍속을 공급한다. 풍동(220)에 대한 사항은 교정장치에서 전술한 바와 같다.First, a reference wind speed is generated inside the wind tunnel 220 having a predetermined length. The reference wind speed is supplied to the inside of the wind tunnel 220 using the nebulizer 222. Matters for the wind tunnel 220 are as described above in the calibration device.
풍동(220) 내부로 바람이 공급되는 상태에서, 윈드라이다(210)의 레이저 조사부는 풍동(220) 내부로 레이저를 조사한다. 조사되는 레이저는 풍동(220) 내부에 존재하는 미세입자에 반사되어 되돌아온다. 윈드라이다(210)의 연산부는 되돌아온 레이저를 감지하여 피크 풍속값을 계산하게 된다. 이때, 미세입자에 반사되지 않고 나아가는 레이저, 즉, 허공을 통과하는 레이저는 광트랩(230)에 모두 흡수된다. 이에 따라, 광트랩(230)은 미세입자에 접촉하는 레이저만 반사시키도록 한다. 또한, 광트랩(230)은 불필요한 레이저 신호가 반사되어 돌아가는 것을 방지한다.In a state in which wind is supplied into the wind tunnel 220, the laser irradiation unit of the wind dryer 210 irradiates the laser into the wind tunnel 220. The irradiated laser beam is reflected back by the fine particles existing inside the wind tunnel 220. The calculating unit of the wind dryer 210 detects the returned laser and calculates the peak wind speed value. At this time, the laser that does not reflect on the fine particles and proceeds, that is, the laser passing through the air is all absorbed by the light trap 230. Accordingly, the light trap 230 reflects only the laser contacting the fine particles. In addition, the optical trap 230 prevents unnecessary laser signals from being reflected and rotating.
상기 피크 풍속값을 계산하여, 풍동(220)의 기준 풍속값과 일치하는 경우, 측정오차가 0%에 가깝다는 것을 의미한다. 반대로, 피크 풍속값이 기준 풍속값과 일치하지 않는 경우, 기준 풍속값을 기준으로 윈드라이다(210)의 피크 풍속값을 교정한다.When the peak wind speed value is calculated and matches the reference wind speed value of the wind tunnel 220, it means that the measurement error is close to 0%. Conversely, when the peak wind speed value does not match the reference wind speed value, the peak wind speed value of the wind dryer 210 is corrected based on the reference wind speed value.
따라서, 본 발명에 따른 윈드라이다의 교정기술은 불필요한 레이저 신호를 흡수하는 광트랩, 및 기준 풍속을 발생시키는 회전체 또는 풍동을 이용하여, 실내에서 윈드라이다의 교정이 가능하고, 교정 시간을 단축시키는 효과가 있다. Therefore, the windrider's calibration technology according to the present invention enables the calibration of the winddrider indoors, using the optical trap that absorbs unnecessary laser signals, and a rotating body or wind tunnel that generates a reference wind speed. It has the effect of shortening.
또한, 윈드라이다의 풍속 측정 정밀도를 향상시키는 효과가 있다.In addition, there is an effect of improving the wind speed measurement precision of the wind dryer.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the exemplified drawings, but the present invention is not limited by the examples and drawings disclosed in the present specification, and can be varied by a person skilled in the art within the scope of the technical idea of the present invention. It is obvious that modifications can be made. In addition, although the operation and effect according to the configuration of the present invention has not been explicitly described while explaining the embodiments of the present invention, it is natural that the predictable effect by the configuration should also be recognized.
[부호의 설명][Description of codes]
100, 200 : 윈드라이다의 교정장치100, 200: Windrider's calibration device
110, 210 : 윈드라이다110, 210: wind dry
120, 220 : 회전체120, 220: rotating body
130, 230 : 광트랩 130, 230: Optical trap
233 : 콘 형상233: cone shape
234 : 지지대234: support

Claims (18)

  1. 기준 풍속을 발생시키기 위해 회전하는 회전체;A rotating body rotating to generate a reference wind speed;
    상기 회전체가 회전하는 방향으로 레이저를 조사하는 레이저 조사부와, 상기 회전체의 둘레 표면에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산하는 연산부를 포함하고, 상기 회전체의 측면에 위치하는 윈드라이다; 및It includes a laser irradiation unit for irradiating the laser in the direction in which the rotating body rotates, and a calculation unit for calculating a peak wind speed value by detecting a laser that is reflected back on the circumferential surface of the rotating body, and located on the side of the rotating body It is a wind-drier; And
    상기 회전체의 둘레 표면에 반사되지 않고 허공을 통과하는 레이저를 흡수하며, 상기 회전체의 반대편 측면에 위치하는 광트랩;을 포함하고, Includes a light trap that is not reflected on the circumferential surface of the rotating body and absorbs the laser passing through the air, and is located on the opposite side of the rotating body.
    상기 회전체의 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는The wind speed of the wind-drier is corrected based on the reference wind speed value of the rotating body.
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  2. 제1항에 있어서,According to claim 1,
    상기 회전체의 기준 풍속값은 [식 1]로 표시되는 회전체의 접선 속도(v)인The reference wind speed value of the rotating body is the tangential speed (v) of the rotating body represented by [Equation 1].
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
    [식 1][Equation 1]
    v = r Ⅹ ωv = r Ⅹ ω
    r = 회전체의 반지름, ω = θ/t (Θ= 2πN이고, N = 회전체의 회전속도, t = 시간이다.)r = radius of the rotating body, ω = θ / t ( Θ = 2πN, N = rotating speed of the rotating body, t = time.)
  3. 제1항에 있어서,According to claim 1,
    상기 조사되는 레이저와 회전체의 둘레 표면의 접점이 발생하도록, 상기 레이저 조사부와 회전체가 수평으로 위치하는 The laser irradiation part and the rotating body are positioned horizontally so that the contact point between the irradiated laser and the circumferential surface of the rotating body is generated.
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  4. 제1항에 있어서,According to claim 1,
    상기 연산부는The operation unit
    반사되어 되돌아오는 레이저 신호를 시간 순서대로 나열하고, [측정하고자 하는 구간]±[레이저 조사부에서 회전체 중심까지의 길이]에 포함되는 레이저 신호를 추출한 후, 추출된 레이저 신호 각각에 가중치(weighting function)를 곱하여 합산하고, 합산된 값으로 피크 풍속값을 계산하는The laser signals reflected and returned are listed in chronological order, and after extracting the laser signals included in [Interval to be measured] ± [Length from the laser irradiation section to the center of the rotating body], the weighting function is applied to each of the extracted laser signals. Multiply) to calculate the peak wind speed value.
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  5. 제1항에 있어서,According to claim 1,
    상기 광트랩은 The optical trap
    중공을 포함하고, 상기 회전체와 마주보는 면이 개구부를 가지며, 내부에 개구부로 갈수록 관경이 좁아지는 콘 형상을 포함하는 It includes a hollow, the surface facing the rotating body has an opening, and includes a cone shape in which the diameter of the tube narrows toward the opening.
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  6. 제1항에 있어서,According to claim 1,
    상기 광트랩은 회전체의 둘레 표면보다 표면 반사율이 낮은 물질로 형성된The optical trap is formed of a material having a lower surface reflectance than the peripheral surface of the rotating body.
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  7. 기준 풍속을 발생시키는 풍동; 및A wind tunnel that generates a reference wind speed; And
    상기 풍동 내부에 존재하는 미세입자에 레이저를 조사하는 레이저 조사부와, 상기 미세입자에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산하는 연산부를 포함하고, 상기 풍동의 측면에 위치하는 윈드라이다;It includes a laser irradiation unit for irradiating a laser to the microparticles existing inside the wind tunnel, and a calculation unit for calculating a peak wind speed value by detecting a laser that is reflected back to the microparticles, and is located on the side of the wind tunnel. ;
    상기 미세입자에 반사되지 않고 통과하는 레이저를 흡수하는 광트랩;을 포함하고,Includes; a light trap that absorbs a laser passing through without being reflected by the fine particles,
    상기 풍동의 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는The wind speed of the wind-drier is corrected based on the wind speed of the wind tunnel.
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  8. 제7항에 있어서,The method of claim 7,
    상기 풍동은 기준 풍속을 공급하기 위한 연무기를 포함하는The wind tunnel includes a nebulizer for supplying a reference wind speed
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  9. 제7항에 있어서,The method of claim 7,
    상기 연산부는The operation unit
    반사되어 되돌아오는 레이저 신호를 시간 순서대로 나열하고, [측정하고자 하는 구간]±[풍동의 길이]에 포함되는 레이저 신호를 추출한 후, 추출된 레이저 신호 각각에 가중치를 곱하여 합산하고, 합산된 값으로 피크 풍속값을 계산하는The laser signals reflected and returned are listed in chronological order, and after extracting the laser signals included in [section to measure] ± [length of wind tunnel], each of the extracted laser signals is multiplied by a weight and added to the summed value. To calculate peak wind speed
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  10. 제7항에 있어서,The method of claim 7,
    상기 광트랩은 The optical trap
    중공을 포함하고, 상기 풍동과 마주보는 일면은 개구부를 가지며, 내부에 개구부로 갈수록 관경이 좁아지는 콘 형상을 포함하며, 다른 일면은 지지대를 포함하는It includes a hollow, and one surface facing the wind tunnel has an opening, and includes a cone shape in which the diameter of the tube narrows toward the opening, and the other surface includes a support.
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  11. 제7항에 있어서,The method of claim 7,
    상기 광트랩은 상기 미세입자보다 표면 반사율이 낮은 물질로 형성된The optical trap is formed of a material having a lower surface reflectance than the fine particles
    광트랩을 이용한 윈드라이다의 교정장치.Windrider's calibration device using optical trap.
  12. (a) 회전체를 회전시켜 기준 풍속을 발생시키는 단계;(A) rotating the rotating body to generate a reference wind speed;
    (b) 윈드라이다의 레이저 조사부는 회전체가 회전하는 방향으로 레이저를 조사하는 단계; 및(b) a step of irradiating the laser in the direction in which the rotating body rotates the laser irradiation unit of the wind-drier; And
    (c) 윈드라이다의 연산부는 회전체의 둘레 표면에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산하는 단계;를 포함하고, (c) calculating the peak wind speed by detecting the returning laser reflected on the circumferential surface of the rotating body;
    상기 회전체의 둘레 표면에 반사되지 않고 허공을 통과하는 레이저는 광트랩에 흡수되며, The laser that does not reflect on the circumferential surface of the rotating body and passes through the air is absorbed by the light trap,
    상기 회전체의 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는The wind speed of the wind-drier is corrected based on the reference wind speed value of the rotating body.
    광트랩을 이용한 윈드라이다의 교정방법.How to calibrate the wind dryer using an optical trap.
  13. 제12항에 있어서,The method of claim 12,
    상기 회전체의 기준 풍속값은 [식 1]로 표시되는 회전체의 접선 속도(v)인The reference wind speed value of the rotating body is the tangential speed (v) of the rotating body represented by [Equation 1].
    광트랩을 이용한 윈드라이다의 교정방법.How to calibrate the wind dryer using an optical trap.
    [식 1][Equation 1]
    v = r Ⅹ ωv = r Ⅹ ω
    r = 회전체의 반지름, ω = θ/t (θ= 2πN이고, N = 회전체의 회전속도, t = 시간이다.)r = radius of the rotator, ω = θ / t ( θ = 2πN, N = rotational speed of the rotator, t = time.)
  14. 제12항에 있어서,The method of claim 12,
    상기 레이저 조사부와 회전체가 수평으로 위치하여, 상기 조사되는 레이저와 회전체의 둘레 표면의 접점이 발생하는The laser irradiation part and the rotating body are positioned horizontally, so that the contact point between the irradiated laser and the rotating body is generated.
    광트랩을 이용한 윈드라이다의 교정방법.How to calibrate the wind dryer using an optical trap.
  15. 제12항에 있어서,The method of claim 12,
    상기 연산부는The operation unit
    반사되어 되돌아오는 레이저 신호를 시간 순서대로 나열하고, [측정하고자 하는 구간]±[레이저 조사부에서 회전체 중심까지의 길이]에 포함되는 레이저 신호를 추출한 후, 추출된 레이저 신호 각각에 가중치를 곱하여 합산하고, 합산된 값으로 피크 풍속값을 계산하는The laser signals reflected and returned are listed in chronological order, and after extracting the laser signals included in [Interval to be measured] ± [Length from the laser irradiation section to the center of the rotating body], each of the extracted laser signals is multiplied by a weight and summed. And calculate the peak wind speed value using the summed value.
    광트랩을 이용한 윈드라이다의 교정방법.How to calibrate the wind dryer using an optical trap.
  16. (a) 풍동 내부에 기준 풍속을 발생시키는 단계; 및(a) generating a reference wind speed inside the wind tunnel; And
    (b) 윈드라이다의 레이저 조사부는 상기 풍동 내부에 존재하는 미세입자에 레이저를 조사하는 단계; (b) the laser irradiation unit of the wind-drier is irradiated with a laser to the fine particles existing inside the wind tunnel;
    (c) 윈드라이다의 연산부는 상기 미세입자에 반사되어 되돌아오는 레이저를 감지하여 피크 풍속값을 계산하는 단계;를 포함하고, (c) calculating the peak wind speed by detecting the laser beam reflected by the fine particles and returning to the operation unit of the wind dryer.
    상기 미세입자에 반사되지 않고 허공을 통과하는 레이저는 광트랩에 흡수되며, The laser that is not reflected by the fine particles and passes through the air is absorbed by the optical trap,
    상기 풍동의 기준 풍속값을 기준으로 윈드라이다의 피크 풍속값을 교정하는The wind speed of the wind-drier is corrected based on the wind speed of the wind tunnel.
    광트랩을 이용한 윈드라이다의 교정방법.How to calibrate the wind dryer using an optical trap.
  17. 제16항에 있어서,The method of claim 16,
    연무기를 이용하여, 상기 풍동 내부에 기준 풍속을 공급하는To supply a standard wind speed inside the wind tunnel using a nebulizer
    광트랩을 이용한 윈드라이다의 교정방법.How to calibrate the wind dryer using an optical trap.
  18. 제16항에 있어서,The method of claim 16,
    상기 연산부는The operation unit
    반사되어 되돌아오는 레이저 신호를 시간 순서대로 나열하고, [측정하고자 하는 구간]±[풍동의 길이]에 포함되는 레이저 신호를 추출한 후, 추출된 레이저 신호 각각에 가중치를 곱하여 합산하고, 합산된 값으로 피크 풍속값을 계산하는The laser signals reflected and returned are listed in chronological order, and after extracting the laser signals included in [section to measure] ± [length of wind tunnel], each of the extracted laser signals is multiplied by a weight and added to the summed value. To calculate peak wind speed
    광트랩을 이용한 윈드라이다의 교정방법.How to calibrate the wind dryer using an optical trap.
PCT/KR2018/014402 2018-11-06 2018-11-22 Wind lidar calibration device using optical trap, and calibration method using same WO2020096114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0135321 2018-11-06
KR1020180135321A KR102028606B1 (en) 2018-11-06 2018-11-06 Windlidar calibration system and calibration method using the same

Publications (1)

Publication Number Publication Date
WO2020096114A1 true WO2020096114A1 (en) 2020-05-14

Family

ID=68208051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014402 WO2020096114A1 (en) 2018-11-06 2018-11-22 Wind lidar calibration device using optical trap, and calibration method using same

Country Status (2)

Country Link
KR (1) KR102028606B1 (en)
WO (1) WO2020096114A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516320B (en) * 2021-09-14 2021-12-10 国能日新科技股份有限公司 Wind speed correction and predicted wind speed optimization method and device based on multi-objective genetic algorithm
CN113721040A (en) * 2021-11-03 2021-11-30 菏泽天顺新能源设备有限公司 Device for calibrating micro anemometer by using laser measurement and use method
CN115184909B (en) * 2022-07-11 2023-04-07 中国人民解放军国防科技大学 Vehicle-mounted multi-spectral laser radar calibration system and method based on target detection
CN116859374B (en) * 2023-08-31 2023-11-14 山东省科学院海洋仪器仪表研究所 Laser radar wind measurement calibration method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758039B1 (en) * 2006-03-13 2007-09-11 한국표준과학연구원 A portable anemometer calibrating apparatus and anemometer calibrating method thereby
JP2016119495A (en) * 2013-04-01 2016-06-30 三菱電機株式会社 Optical device and air blowing method
KR101800217B1 (en) * 2017-01-06 2017-11-23 주식회사 로맥스인싸이트코리아 Correction method for yaw alignment error of wind turbine
KR101853122B1 (en) * 2017-09-27 2018-04-30 제주대학교 산학협력단 GROUNDED-BASED LiDAR, APPARATUS AND METHOD FOR CORRECTING MEASUREMENT ERROR FOR LIDAR
US20180188361A1 (en) * 2016-12-30 2018-07-05 Panosense, Inc. Lidar sensor assembly calibration based on reference surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499642B1 (en) * 2013-10-16 2015-03-09 한국원자력연구원 Method for Error Compensation in Doppler Lidar for Wind Field Measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758039B1 (en) * 2006-03-13 2007-09-11 한국표준과학연구원 A portable anemometer calibrating apparatus and anemometer calibrating method thereby
JP2016119495A (en) * 2013-04-01 2016-06-30 三菱電機株式会社 Optical device and air blowing method
US20180188361A1 (en) * 2016-12-30 2018-07-05 Panosense, Inc. Lidar sensor assembly calibration based on reference surface
KR101800217B1 (en) * 2017-01-06 2017-11-23 주식회사 로맥스인싸이트코리아 Correction method for yaw alignment error of wind turbine
KR101853122B1 (en) * 2017-09-27 2018-04-30 제주대학교 산학협력단 GROUNDED-BASED LiDAR, APPARATUS AND METHOD FOR CORRECTING MEASUREMENT ERROR FOR LIDAR

Also Published As

Publication number Publication date
KR102028606B1 (en) 2019-10-04

Similar Documents

Publication Publication Date Title
WO2020096114A1 (en) Wind lidar calibration device using optical trap, and calibration method using same
CN103033523B (en) Novel positron annihilation spectrometer and measurement method thereof
Shibata et al. Laser speckle velocimeter using self-mixing laser diode
CN101472796A (en) Position detector
CA3042452A1 (en) Measuring system and a measuring method for the measurement of a stator of a gearless wind turbine
CN103019261A (en) Method for calibrating and detecting azimuth angle of double-shaft tracking heliostat
US3855864A (en) Radiation pyrometers
Aharonian et al. Calibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experiment
WO2019022548A1 (en) Non-rotary type omnidirectional lidar device
Bäuml Measurement of the optical properties of the auger fluorescence telescopes
CN211038930U (en) Wind power plant thunder and lightning positioning system and wind power plant
Angelou et al. UniTTe WP3/MC1: Measuring the inflow towards a Nordtank 500kW turbine using three short-range WindScanners and one SpinnerLidar
CN109974627A (en) A kind of calibration grating monitoring system of linear array images formula angle displacement measuring device
CN103115890B (en) Synchronous sampling method for GFC (gas filter correlation) wheels
Yeh et al. Airspeed calibration service
CN201476771U (en) Device for measuring angle position of rotating element
Oertel et al. Bistatic wind lidar system for traceable wind vector measurements with high spatial and temporal resolution
CN208203481U (en) Wind-driven generator and its transmission shaft speed measuring device
CN101655390B (en) Laser absolute radiation transfer standard device
Lindelöw-Marsden UpWind D1. Uncertainties in wind assessment with LIDAR
JPH04193047A (en) Monitor for rotor coil end
Müller et al. Time resolved DGV based on laser frequency modulation
TWI820721B (en) fluid monitoring device
Shinpaugh et al. A rapidly scanning two-velocity component laser Doppler velocimeter
JPH06186325A (en) Lightning locator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939203

Country of ref document: EP

Kind code of ref document: A1