WO2020096046A1 - Senescent t cell-targeting vaccine for preventing or treating abnormal sugar metabolism - Google Patents

Senescent t cell-targeting vaccine for preventing or treating abnormal sugar metabolism Download PDF

Info

Publication number
WO2020096046A1
WO2020096046A1 PCT/JP2019/043886 JP2019043886W WO2020096046A1 WO 2020096046 A1 WO2020096046 A1 WO 2020096046A1 JP 2019043886 W JP2019043886 W JP 2019043886W WO 2020096046 A1 WO2020096046 A1 WO 2020096046A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
vaccine
acid sequence
antibody
polypeptide
Prior art date
Application number
PCT/JP2019/043886
Other languages
French (fr)
Japanese (ja)
Inventor
啓徳 中神
翔太 吉田
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2020096046A1 publication Critical patent/WO2020096046A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs

Definitions

  • the present invention includes a vaccine for preventing or treating abnormal glucose metabolism, which comprises a specific partial amino acid sequence of CD153 as an immunogen, and an antibody that inhibits senescence-related T cells by recognizing the partial amino acid sequence of CD153, a sugar.
  • the present invention relates to a preventive or therapeutic agent for metabolic disorders.
  • Glucose metabolism abnormality represented by diabetes is caused by insufficient amount of insulin or lack of action of insulin in the body, resulting in an increase in blood glucose as compared with that of a healthy person, and as a result, microangiopathy and arteries in the kidney, retina, nerves, etc. It is a metabolic disease that significantly impairs a healthy life due to macrovascular disorders such as hardening.
  • hypoglycemic agents such as insulin, insulin secretagogues, insulin sensitizers, and ⁇ -glucosidase inhibitors have been widely applied as clinical treatments.
  • hypoglycemic agents have been found to be useful, each has many problems. For example, insulin has the risk of causing hypoglycemia when administered in an inappropriate manner and dose.
  • the effectiveness of insulin secretagogues and insulin sensitizers decreases in patients whose pancreatic insulin secretory capacity is markedly reduced. Alternatively, the effectiveness of insulin and insulin secretagogues decreases in patients with marked insulin resistance.
  • the adaptive immune system plays a role of protecting the living body by distinguishing self-originating substances from non-self-originating substances, preventing and eliminating infections such as bacteria and viruses.
  • the function of the adaptive immune system decreases with age (immune senescence). Immune aging is characterized by reduced adaptive immune response, increased inflammatory predisposition, and increased autoimmune risk.
  • immune senescence is also based on the inflammatory-promoting trait, which causes chronic inflammation and metabolic disorders such as arteriosclerosis and diabetes. ..
  • SASPs cellular senescence-associated secretory traits
  • Non-Patent Document 1 senescence-related T cells are also significantly increased in the visceral adipose tissue of mice loaded with a high-fat diet and contribute to the formation of pathological conditions of type 2 diabetes such as insulin resistance by causing chronic inflammation.
  • the present invention provides a vaccine for use in the prevention or treatment of dysmetabolism related to aging-related T cells, and an agent for preventing or treating dysmetabolism, which comprises an antibody that inhibits aging-related T cells. It is an issue.
  • the inventors predicted the three-dimensional structure of CD153 expressed in senescence-related T cells, deduced multiple partial amino acid sequences predicted to have high antigenicity from the amino acid sequence of CD153, and determined the amino acid sequence from senescence-related T It was designed as an antigen candidate capable of inducing an antibody that inhibits cells.
  • an antigen candidate capable of inducing an antibody that inhibits cells.
  • a plurality of the synthesized antigen candidates were conjugated to a carrier protein and administered to mice with an adjuvant, one kind of antigen candidate capable of inducing an antibody that strongly binds to CD153 was identified.
  • the inventors have found an effect of improving obesity and glucose metabolism in mice immunized with the antigen.
  • the present inventors have completed the present invention as a result of further studies based on these findings.
  • a vaccine for preventing or treating abnormal glucose metabolism which comprises any of the following (1) to (3): (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2; (2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 A polypeptide comprising a sequence, (3) An expression vector capable of expressing the polypeptide of (1) or (2) above.
  • the vaccine according to [4], wherein the carrier protein is keyhole limpet hemocyanin.
  • the abnormal glucose metabolism is selected from the group consisting of diabetes, impaired glucose tolerance, obesity, hyperinsulinemia, diabetic neuropathy, diabetic nephropathy and diabetic retinopathy, [1] to [7] ] Vaccine according to any one of.
  • a prophylactic or therapeutic agent for glucose metabolism disorder which comprises an antibody that recognizes the following polypeptide (1) or (2) and inhibits senescence-related T cells: (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2; (2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 A polypeptide comprising a sequence.
  • the prophylactic or therapeutic agent according to [9] which comprises an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 and inhibits senescence-related T cells.
  • the abnormal glucose metabolism is selected from the group consisting of diabetes, impaired glucose tolerance, obesity, hyperinsulinemia, diabetic neuropathy, diabetic nephropathy, and diabetic retinopathy, [9] to [12]. ] The preventive or therapeutic agent as described in any one of these.
  • an antibody that inhibits senescence-related T cells expressing CD153 on the cell surface is induced, and thereby an inflammatory protein or inflammatory protein from senescence-related T cells is induced. It can reduce chemokine secretion and improve glucose metabolism disorders.
  • the above effects can be directly obtained by using an antibody that recognizes the partial amino acid sequence of CD153. Furthermore, since the half-life of the antibody is longer than that of conventional hypoglycemic agents, it can be expected to reduce the frequency of drug administration to patients.
  • CD153-alum vaccine (Alum) vaccine (#A, #B, #C, #D and #E) on days 0 and 14 or Immunized with the KLH-alum vaccine.
  • the CD153-Alum vaccine consisted of 30 ⁇ g of CD153 peptide (# A- # E) and 200-300 ⁇ g of KLH, and the KLH-Alum vaccine consisted of 200-300 ⁇ g of KLH.
  • the titer to CD153-BSA was expressed as the dilution ratio (OD 50%) of the serum that gave half the maximum binding on days 14 and 28 after immunization.
  • (B) Time course of R848 (TLR7 ligand) administration and injection of vaccine. R848 was intraperitoneally administered to 12-week-old female C57BL / 6N mice (N 3, each group) three times a week. Mice treated with 5 ⁇ g of R848 for 4 weeks were sacrificed at 16 weeks of age, and mice treated with 10 ⁇ g of R848 for 2 weeks were sacrificed at 18 weeks of age.
  • mice All immunized mice were vaccinated with CD153 # D-CpG vaccine or KLH-CpG vaccine at 8, 10 and 12 weeks of age.
  • the PBS control group was not vaccinated and PBS was administered instead of R848.
  • the R848 control group was not vaccinated, and R848 was administered as in the vaccine group.
  • mice Seven-week-old male C57BL / 6J mice were vaccinated multiple times with the alum conjugate vaccine or the CpG conjugate vaccine.
  • Mice immunized with the CD153 # D-CpG vaccine or the KLH-CpG vaccine (n 6, each group) were vaccinated at 7, 9, 11, and 16 weeks of age, and were given HFD from 11 weeks of age.
  • the ND (normal diet) control group (n 5) was not vaccinated and continued to receive ND.
  • the ND control group and the HFD control group were subjected to metabolic analysis and sacrificed in the same manner as the CpG conjugate vaccine group.
  • (B) Titer against CD153-BSA during HFD challenge in mice immunized with CD153 # D-alum vaccine and CD153 # D-CpG vaccine. Titers were expressed as the dilution of serum that gave half maximal binding (OD 50%).
  • C Pre-metabolic body weight of mice immunized with CD153 # D-CpG vaccine or KLH-CpG vaccine. All mice except the ND control group were given HFD from the age of 11 weeks.
  • C Area under the curve (AUC) of blood glucose level against ITT. The AUC was estimated using the trapezoidal formula.
  • D and E Blood glucose concentration during oral glucose tolerance test (OGTT) in mice immunized with alum conjugate vaccine (D) or CpG conjugate vaccine (E). *; CD153 # D-CpG group vs. KLH-CpG group. ⁇ ; CD153 # D-CpG group versus HFD control group.
  • F AUC of blood glucose for OGTT.
  • the AUC was estimated using the trapezoidal formula. ⁇ ; versus HFD control group.
  • G HOMA-IR index 6 hours after fasting. All data are expressed as mean ⁇ standard error. * p ⁇ 0.05; ** p ⁇ 0.01; *** p ⁇ 0.001; ⁇ p ⁇ 0.0001. Effect of CD153 # D-CpG vaccine on CD153-positive senescence-related T cells induced by HFD loading.
  • a and B Percentage of age-related T cells induced by HFD loading in spleen tissues (A) and VAT (B) of mice immunized with alum conjugate vaccine or CpG conjugate vaccine.
  • PD-1 + , CD153 + cells in CD4 + , CD44 + , CD62L ⁇ cells were defined as senescence-associated T cells. ⁇ ; versus HFD control group.
  • N No antibody stimulation
  • P 100 ⁇ g / ml anti-mouse MHC Class I (H-2Kd / H-2Dd) antibody
  • filled right triangle concentration of purified IgG antibody (30, 100, 300 ⁇ g / ml)
  • Open triangles anti-mouse CD153 antibody concentration (10, 30, 100 ⁇ g / ml). All data are expressed as mean ⁇ standard error. * p ⁇ 0.05; ⁇ p ⁇ 0.05. Histological analysis of VAT, kidney and lung tissues in HFD-loaded mice immunized with the CD153 # D-CpG vaccine.
  • A VAT weight between 4 groups.
  • B Photomicrograph of mean surface area of adipocytes between four groups and fat accumulation stained with hematoxylin and eosin (HE). Scale bar: 100 ⁇ m.
  • C Quantification of macrophages in crown-like structures among 4 groups. The average of the ND control group was set to 100%. Scale bar: 100 ⁇ m. All data are expressed as mean ⁇ standard error.
  • Mouse CD153 # D-alum vaccine and human CD153 # D-alum vaccine were conjugated with KLH (200-300 ⁇ g) and consisted of 30 ⁇ g of CD153 peptide mixed with alum.
  • A Amino acid sequence of mouse CD153 # D peptide (76-85aa) and human CD153 # D peptide (71-80aa).
  • the titer of the human CD153 antibody against human or mouse CD153-BSA was expressed as the dilution ratio (OD50%) of the serum that gave half the maximum binding at 42 days after immunization.
  • C The titer of human CD153 antibody against recombinant human (rh) or recombinant mouse (rm) CD153 was expressed as OD 450 nm at 42 days after immunization.
  • D The titer of mouse CD153 antibody against rhCD153 was expressed as OD 450 nm at 42 days after immunization. All data are expressed as mean ⁇ standard error. N.D., not detected.
  • Vaccine for preventing or treating abnormal glucose metabolism provides a vaccine for preventing or treating abnormal glucose metabolism (hereinafter referred to as the vaccine of the present invention).
  • Glucose metabolism disorder that is prevented or treated by the vaccine of the present invention is a condition in which glucose uptake into muscle, liver and adipose tissue and conversion to glycogen are reduced due to decreased insulin secretion or insulin sensitivity, and blood glucose is high.
  • abnormal glucose metabolism include diabetes (type 1 diabetes, type 2 diabetes), impaired glucose tolerance, obesity, hyperinsulinemia, diabetic neuropathy, diabetic nephropathy and diabetic retinopathy.
  • the subject of administration of the vaccine of the present invention may be any mammal, but it is a mammal that develops glucose metabolism abnormality or a mammal that may develop glucose metabolism abnormality.
  • mammals for example, mice, rats, hamsters, experimental animals such as rodents and rabbits such as guinea pigs, pets such as dogs and cats, livestock such as cattle, pigs, goats, horses and sheep, humans, monkeys, Examples thereof include primates such as orangutans and chimpanzees, and humans are particularly preferable.
  • the administration subject may or may not be treated for glucose metabolism abnormality.
  • the polypeptide is a substance derived from an administration subject (that is, when administered to humans, the vaccine is a human-derived polypeptide, and when administered to mice, the vaccine is Is a mouse-derived polypeptide).
  • the vaccine of the present invention comprises the following (1) to (3): (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2; (2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2; A polypeptide comprising a sequence, (3) It includes either an expression vector capable of expressing the polypeptide of (1) or (2) above.
  • the vaccine of the present invention preferably has the following (1 ′) or (2 ′): (1 ') a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2, (2 ′) An expression vector capable of expressing the polypeptide of (1 ′) above, or The following (1 '') or (2 ''): (1 '') a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4, (2 ′′) An expression vector capable of expressing the polypeptide of (1 ′′) above is included.
  • the above-mentioned polypeptide (1) contained in the vaccine of the present invention is a partial sequence of the amino acid sequence constituting CD153.
  • CD153 is a known gene, and its nucleotide sequence and amino acid sequence are also known.
  • the amino acid sequence represented by SEQ ID NO: 2 contained in the above polypeptide (1) corresponds to amino acid numbers 71 to 80 of human CD153 (SEQ ID NO: 5).
  • the partial sequence is encoded by the nucleotide sequence shown in SEQ ID NO: 1, for example.
  • the non-human mammal-derived amino acid sequence corresponding to SEQ ID NO: 2 contained in the above-mentioned polypeptide (1) includes information on the amino acid sequence represented by SEQ ID NO: 2 in the present specification and known sequences.
  • non-human mammals Using the nucleotide sequence information of the genome or mRNA of non-human mammals disclosed in the database, design appropriate primers and probes derived from the nucleotide sequence information of non-human mammals, such as RT-PCR and plaque hybridization It can be easily obtained using ordinary genetic engineering techniques.
  • the partial sequence of the mouse CD153 amino acid sequence corresponding to SEQ ID NO: 2 which is a partial sequence of human CD153 is shown in SEQ ID NO: 4 corresponding to amino acid numbers 76 to 85 of mouse CD153 (SEQ ID NO: 6).
  • An amino acid sequence can be mentioned, and the partial sequence is encoded by, for example, the nucleotide sequence shown in SEQ ID NO: 3.
  • non-human mammal as used herein means a mammal excluding humans from the above-mentioned mammals.
  • the above-mentioned polypeptide (1) contained in the vaccine of the present invention is preferably a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 for human and the amino acid sequence represented by SEQ ID NO: 4 for mouse. (The polypeptides of (1 ′) and (1 ′′) above).
  • polypeptide of (2) contained in the vaccine of the present invention one or several (preferably 1 to several (2 to 5)) amino acids are deleted or substituted in the partial sequence of the CD153 amino acid sequence, The amino acid sequence inserted or added.
  • polypeptide in the case of human, one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence shown in SEQ ID NO: 2 are deleted, substituted, inserted or added. Included amino acid sequences.
  • amino acid sequence examples include (1) an amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence represented by SEQ ID NO: 2 are deleted, (2 ) An amino acid sequence having 1 or several (preferably 1 to several (2 to 5)) amino acids added to the amino acid sequence represented by SEQ ID NO: 2, (3) the amino acid sequence represented by SEQ ID NO: 2. An amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids are inserted, (4) 1 or several (preferably 1 to several) in the amino acid sequence shown in SEQ ID NO: 2.
  • amino acid sequence in which (2 to 5) amino acids are substituted with other amino acids, or (5) an amino acid sequence in which the mutations in (1) to (4) above are combined in this case, the sum of the mutated amino acids is 1 or several (preferably 1 to several (2 to 5)).
  • the amino acid sequence contained in the polypeptide of (2) above is 1 or several (preferably 1 to several (2 to 5)) in the amino acid sequence derived from the non-human mammal corresponding to SEQ ID NO: 2.
  • An amino acid sequence in which the amino acid of is deleted, substituted, inserted or added can also be preferably mentioned.
  • polypeptide in the case of mouse, one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence shown in SEQ ID NO: 4 are deleted, substituted, inserted or added. Included amino acid sequences.
  • the amino acid sequence include (1) an amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence represented by SEQ ID NO: 4 are deleted, (2 ) An amino acid sequence having 1 or several (preferably 1 to several (2 to 5)) amino acids added to the amino acid sequence shown in SEQ ID NO: 4, (3) to the amino acid sequence shown in SEQ ID NO: 4.
  • “Conservative amino acid substitutions” are examples of “substitution of amino acid residues”.
  • the conservative amino acid substitution means substitution of a specific amino acid with an amino acid having a side chain having the same property as that of the amino acid. Specifically, in a conservative amino acid substitution, a particular amino acid is replaced with another amino acid that belongs to the same group as that amino acid.
  • Groups of amino acids with side chains of similar nature are known in the art. For example, such groups of amino acids include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having neutral side chains.
  • glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan an amino acid having a neutral side chain
  • an amino acid having a polar side chain for example, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • an amino acid having a non-polar side chain for example, alanine, Valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan.
  • an amino acid having an aromatic side chain eg, phenylalanine, tryptophan, tyrosine
  • an amino acid having a side chain containing a hydroxyl group alcoholic hydroxyl group, phenolic hydroxyl group
  • serine, threonine, Tyrosine an amino acid having a side chain containing a hydroxyl group
  • the “deletion of amino acid residue” includes, for example, selecting and deleting an arbitrary amino acid residue from the amino acid sequence shown in SEQ ID NO: 2.
  • “Insertion of amino acid residue” or “addition of amino acid residue” means, for example, insertion or addition of an amino acid residue inside, N-terminal side or C-terminal side of the amino acid sequence shown in SEQ ID NO: 2. can give.
  • one or two residues of a basic amino acid, arginine (Arg) or lysine (Lys) may be added to the N-terminal side or C-terminal side of the amino acid sequence.
  • polypeptide (2) contained in the vaccine of the present invention preferably has one or several amino acid residues substituted in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence shown in SEQ ID NO: 4. , A polypeptide consisting of a deleted, inserted, or added amino acid sequence.
  • polypeptides (1), (2), (1 '), and (1' ') may contain additional amino acids. Such amino acid additions are permissible as long as the polypeptide induces a specific immune response against CD153.
  • the amino acid sequence to be added is not particularly limited, and examples thereof include a tag for facilitating detection and purification of the polypeptide. As the tag, Flag tag, histidine tag, c-Myc tag, HA tag, AU1 tag, GST tag, MBP tag, fluorescent protein tag (for example, GFP, YFP, RFP, CFP, BFP, etc.), immunoglobulin Fc tag, etc. It can be illustrated.
  • the position where the amino acid sequence is added is the N-terminal and / or the C-terminal of the polypeptide of the present invention.
  • the amino acids used in the polypeptide of the present invention include L-form, D-form and DL-form, but usually L-form is preferred.
  • These polypeptides can be used in the present invention after being synthesized by an ordinary polypeptide synthesis method, but the production method, the synthesis method, the procurement method and the like are not particularly limited in the present invention.
  • the polynucleotide (DNA encoding the polypeptide of (1), (2), (1 ′) or (1 ′′) above is used.
  • RNA preferably DNA
  • the expression vector of (3), (2 ′) or (2 ′′) is a transcription product of (1), (2), (1 ′) or (1 ′′) under the control of a promoter. Can be expressed.
  • the expression vector of (3), (2 ′) or (2 ′′) By administering the expression vector of (3), (2 ′) or (2 ′′) to a mammal, the above-mentioned (1), (2), (1 ′) or (1 ′) in the body of the mammal.
  • the polypeptide of ') is produced, and a specific immune response to the polypeptide of (1), (2), (1') or (1 '') is induced in the mammal.
  • the promoter used is not particularly limited as long as it can function in the cells of the mammal to be administered.
  • a polI type promoter, a polII type promoter, a polIII type promoter and the like can be used.
  • SV40-derived early promoters, viral promoters such as cytomegalovirus LTR, and mammalian constitutive protein gene promoters such as ⁇ -actin gene promoter are used.
  • the expression vector of (3), (2 ′) or (2 ′′) is preferably a polynucleotide encoding the polypeptide of (1), (2), (1 ′) or (1 ′′) above. It contains a transcription termination signal, that is, a terminator region, downstream. Furthermore, a selectable marker gene for selecting transformed cells (a gene that imparts resistance to drugs such as tetracycline, ampicillin, and kanamycin, a gene that complements an auxotrophic mutation, and the like) can be included.
  • the type of vector used as an expression vector in the present invention is not particularly limited, but examples of vectors suitable for administration to mammals such as humans include viral vectors and plasmid vectors.
  • examples of viral vectors include retrovirus, adenovirus, adeno-associated virus and the like.
  • a plasmid vector is preferably used in consideration of easiness of production and handling and economical efficiency.
  • the vaccine of the present invention is encoded by the polypeptide of (1), (2), (1 ′) or (1 ′′) above or the expression vector of (3), (2 ′) or (2 ′′) above.
  • a carrier protein is a substance that imparts immunogenicity by binding to a molecule (hapten) that does not have immunogenicity due to its small molecular weight, and is known in the art.
  • carrier proteins include bovine serum albumin (BSA), rabbit serum albumin (RSA), ovalbumin (OVA), keyhole limpet hemocyanin (KLH), thyroglobulin (TG), immunoglobulin and the like.
  • a particularly preferred carrier protein is keyhole limpet hemocyanin (KLH).
  • KLH keyhole limpet hemocyanin
  • the carrier protein is (1), (2), (1 ′) or ( 1 ′′) may be conjugated to the N-terminus or C-terminus of the polypeptide.
  • a cysteine residue is introduced into the polypeptide of (1), (2), (1 ′) or (1 ′′), and the carrier is introduced via the SH group which is the side chain of the cysteine. It can be conjugated by binding to an amino group of a protein (MBS method).
  • conjugation can also be achieved by linking the ⁇ -amino group of the lysine residue of the protein and the amino groups such as ⁇ -amino group (glutaraldehyde method).
  • the vaccine of the present invention is the expression vector of (3), (2 ′) or (2 ′′) above
  • the polynucleotide encoding the carrier protein may be linked to the 5'side or 3'side of the polynucleotide encoding the carrier protein.
  • the vaccine of the present invention preferably further contains an adjuvant which is pharmaceutically acceptable and compatible with the active ingredient.
  • Adjuvants are generally substances that nonspecifically enhance the immune response of the host and numerous adjuvants are known in the art.
  • the adjuvant used in the vaccine of the present invention is not particularly limited as long as it can nonspecifically enhance the immune response, but includes, for example, alum, CpG oligodeoxynucleotide, dsRNA, montanide, cervarix, etc., and is preferable. Is a CpG oligodeoxynucleotide.
  • the vaccine of the present invention comprises the polypeptide of (1), (2), (1 ′) or (1 ′′) or the expression vector of (3), (2 ′) or (2 ′′) , And can be provided as a pharmaceutical composition containing any carrier, for example, a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier may be appropriately selected depending on the dosage form, for example, sucrose, an excipient such as starch, cellulose, a binder such as methyl cellulose, starch, a disintegrating agent such as carboxymethyl cellulose, magnesium stearate, Lubricants such as Aerosil, fragrances such as citric acid and menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspending agents such as methylcellulose and polyvinylpyrrolide, surface active agents Examples thereof include, but are not limited to, dispersants such as agents, diluents such as water and physiological saline, base waxes, and the like.
  • the vaccine of the present invention when the vaccine of the present invention is the expression vector of (3), (2 ′) or (2 ′′) above, the vaccine of the present invention further comprises a nucleic acid in order to promote introduction of the expression vector into cells.
  • a transfer reagent can be included.
  • retronectin, fibronectin, polybrene or the like can be used as the gene transfer reagent.
  • a plasmid vector is used as the expression vector, lipofectin, lipofectamine, DOGS (transfectam), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, poly (ethyleneimine) (PEI), etc. Cationic lipids can be used.
  • the vaccine of the present invention can be orally or parenterally administered to mammals.
  • the polypeptide and expression vector are preferably administered parenterally because they can be degraded in the stomach.
  • Suitable formulations for oral administration include solutions, capsules, sachets, tablets, suspensions, emulsions and the like.
  • Suitable formulations for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants.
  • a buffer solution, a bacteriostatic agent, a tonicity agent, etc. may be contained.
  • Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • the preparation can be enclosed in a container such as an ampoule or a vial in a unit dose or multiple doses.
  • the active ingredient and a pharmaceutically acceptable carrier may be lyophilized and stored in a state in which they may be dissolved or suspended in an appropriate sterile vehicle immediately before use.
  • the content of the active ingredient in the pharmaceutical composition is usually about 0.1 to 100% by weight, preferably about 1 to 99% by weight, more preferably about 10 to 90% by weight, based on the whole pharmaceutical composition.
  • the dose of the vaccine of the present invention varies depending on the administration subject, administration method, administration form, etc., but when the active ingredient is the above-mentioned polypeptide (1), (2), (1 ′) or (1 ′′) Is usually administered in the range of 1 ⁇ g to 1000 ⁇ g per adult, preferably 20 ⁇ g to 100 ⁇ g per adult, usually 2 to 3 times over 4 to 12 weeks, and the antibody titer is decreased. If this is the case, an additional dose will be given each time.
  • the expression vector per adult is usually in the range of 1 ⁇ g to 1000 ⁇ g, preferably 20 ⁇ g to 100 ⁇ g. Usually, it is administered 2 to 3 times over 4 to 12 weeks, and if the antibody titer decreases, additional administration is performed once each time.
  • Senescence-related T cells that express CD153 on the cell surface are inhibited.
  • Senescence-related T cells have the characteristic of not proliferating or producing cytokines in response to stimulation of T cell receptors, and secreting large amounts of inflammatory proteins and chemokines, and increase systemically with age. Is. Chronic inflammation is caused by an increase in age-related T cells, and abnormal glucose metabolism such as insulin resistance and impaired glucose tolerance is induced.
  • the senescence-related T cells are not particularly limited as long as they are T cells having the above characteristics, for example, CD4 positive PD-1 positive CD153 positive T cells, preferably, CD4 positive CD44 positive CD62L negative PD-1 positive CD153 positive. Examples include T cells.
  • the present invention also provides a kit comprising one or more containers containing one or more components of the vaccine of the present invention.
  • a kit comprising one or more containers containing one or more components of the vaccine of the present invention.
  • the present invention also provides a preventive or therapeutic agent for glucose metabolism disorders (the preventive or therapeutic agent of the present invention).
  • Glucose metabolism disorders that are prevented or treated by the prophylactic or therapeutic agent of the present invention, administration targets of the prophylactic or therapeutic agent of the present invention are glucose metabolism disorders that are prevented or treated by the vaccine of the present invention, and administration targets of the vaccine of the present invention May be similar to.
  • the preventive or therapeutic agent of the present invention has the following (1) or (2): (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2; (2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 It includes an antibody that recognizes a polypeptide comprising the sequence and inhibits senescence-associated T cells.
  • the preventive or therapeutic agent of the present invention is preferably (1 ′) an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 and inhibits senescence-related T cells, or (1 ′′) It includes an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4 and inhibits senescence-related T cells.
  • the above polypeptide (1) is preferably a polypeptide having the amino acid sequence represented by SEQ ID NO: 2 for human and the amino acid sequence represented by SEQ ID NO: 4 for mouse.
  • an antibody that recognizes the polypeptide of (1), (2), (1 ′) or (1 ′′) (hereinafter, the antibody of the present invention) binds to CD153 expressed on the surface of senescence-related T cells. Since it can inhibit aging-related T cells and reduce the secretion of inflammatory proteins and chemokines, it can be an effective preventive or therapeutic agent for glucose metabolism abnormality. That is, administration of the antibody can be expected to have a therapeutic effect on a patient who has developed a glucose metabolism disorder and a preventive effect on a subject who may develop the disorder.
  • the antibody of the present invention a natural antibody such as a polyclonal antibody or a monoclonal antibody, a chimeric antibody that can be produced by using a transgenic mouse or gene recombination technology, a humanized antibody and a single chain antibody, and a human antibody-producing gene are introduced. Human antibodies produced by the mouse and phage display, and fragments thereof are included.
  • the antibody of the present invention is not particularly limited as long as it is an antibody that recognizes the polypeptide of the present invention and inhibits senescence-related T cells, but is preferably a monoclonal antibody from the viewpoint of specificity for the polypeptide of the present invention.
  • the antibody of the present invention is preferably a humanized antibody or a human antibody.
  • the above antibody fragment means a region of a part of the above-mentioned antibody, and specifically, for example, F (ab ') 2 , Fab', Fab, an antibody fragment containing an Fc region, Fv (variable fragment of antibody), Examples include sFv, dsFv (disulphide stabilized Fv), dAb (single domain antibody) and the like (Exp. Opin. Ther. Patents, Vol. 6, No. 5, p. 441-456, 1996).
  • the above-mentioned humanized antibody refers to an antibody produced by gene recombination technology in which only the antigen recognition site is derived from a gene other than human and the remaining site is derived from a human gene.
  • the above-mentioned human antibody is a human antibody produced by a transgenic mouse into which a human antibody-producing gene has been introduced (eg, TransChromoMouse (trademark)), VH gene and VL gene derived from human B lymphocyte mRNA or genome. It refers to an antibody prepared from a library constructed by randomly combining the above-mentioned antibodies based on a human antibody library expressing an antibody variable region by a display technique such as a phage display method.
  • the class of antibody is not particularly limited, and the antibody of the present invention includes antibodies having any isotype such as IgG, IgM, IgA, IgD or IgE. IgG or IgM is preferable, and IgG is more preferable in view of easiness of antibody purification.
  • a polyclonal antibody or a monoclonal antibody can be produced by a method known per se. That is, the immunogen (polypeptide of the present invention), optionally with Freund's adjuvant (Freund's Adjuvant), mammals, for example, in the case of a polyclonal antibody, mouse, rat, hamster, guinea pig, rabbit, cat, dog, pig, Immunize preferably a mouse, rat, hamster, guinea pig, goat, horse or rabbit, such as goat, horse or cow.
  • mice, rats, hamsters, etc. are immunized in the same manner.
  • the polypeptide of the present invention can be used as an immunogen as it is, but it is desirable to immunize it as a complex with a high molecular weight compound having a molecular weight of 10,000 or more. Therefore, when used as an immunogen, the polypeptide of the present invention may be formed into a complex with a high molecular compound (eg, carrier protein etc.) by a method known per se.
  • a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 was synthesized according to the method described above, and bovine serum albumin (BSA), rabbit serum albumin (RSA), ovalbumin (OVA), keyhole limpet hemocyanin (KLH). ), Thyroglobulin (TG), immunoglobulins and other carrier proteins.
  • BSA bovine serum albumin
  • RSA rabbit serum albumin
  • OVA ovalbumin
  • KLH keyhole limpet hemocyanin
  • TG Thyroglobulin
  • immunoglobulins and other carrier proteins The complex can
  • 1 amino acid can be added to the polypeptide of the present invention for the purpose of forming a complex between the polypeptide and a carrier protein.
  • the position of the added amino acid may be any position of the polypeptide and is not particularly limited, but the N-terminal or C-terminal of the polypeptide is preferable.
  • known methods can be applied without limitation as long as the antigenicity of the polypeptide of the present invention can be maintained.
  • MBS method the side chain of the cysteine
  • ⁇ -amino groups of lysine residues of proteins and amino groups such as ⁇ -amino groups can also be bound to each other (glutaraldehyde method).
  • the polyclonal antibody can be produced as follows. That is, the immunogen is administered to a mouse, rat, hamster, guinea pig, goat, horse or rabbit, preferably goat, horse or rabbit, more preferably rabbit subcutaneously, intramuscularly, intravenously, in a hood pad or intraperitoneally. Immunizations are given by several injections. Usually, about 1 to 14 days after the initial immunization, immunization is performed 1 to 5 times, and serum is obtained from the immunized mammal about 1 to 5 days after the final immunization.
  • serum itself can be used as a polyclonal antibody
  • ultrafiltration ammonium sulfate fractionation, euglobulin precipitation method, caproic acid method, caprylic acid method, ion exchange chromatography (DEAE or DE52, etc.), anti-immunoglobulin column
  • the purified antibody obtained by isolating and / or purifying the antibody by affinity column chromatography using a protein A / G column, a column obtained by crosslinking an immunogen, or the like can be used.
  • Examples of the method for producing a monoclonal antibody include the following methods. First, a hybridoma is prepared from the antibody-producing cells obtained from the immunized animal and myeloma cells (myeloma cells) having no autoantibody-producing ability, and the hybridoma is cloned. That is, using a culture supernatant of a hybridoma as a sample, an immunological method is used to produce a monoclonal antibody that exhibits a specific affinity for the peptide of the present invention used for immunization of mammals and does not show cross-reactivity with a carrier protein. Select a clone. Then, an antibody can be produced from the culture supernatant of the hybridoma by a method known per se.
  • a monoclonal antibody can be produced as follows. That is, the immunogen is subcutaneously, intramuscularly, or intravenously in a mouse, rat, or hamster (including a transgenic animal produced to produce an antibody derived from another animal such as a human antibody-producing transgenic mouse). Immunization is carried out by injecting 1 to several times in the foot pad or intraperitoneal cavity, or by transplantation. Usually, about 1 to 14 days after the first immunization, immunization is performed 1 to 4 times, and antibody-producing cells are obtained from the spleen of the immunized mammal about 1 to 5 days after the final immunization.
  • Hybridomas that secrete monoclonal antibodies can be prepared according to the method of Kohler and Milstein et al. (Nature, Vol. 256, p. 495-497, 1975) and modification methods similar to them. That is, antibody-producing cells contained in spleen, lymph node, bone marrow or tonsil, etc., preferably spleen, obtained from a mammal immunized as described above, and preferably mouse, rat, guinea pig, hamster, rabbit or human.
  • a hybridoma is obtained by cell fusion with a myeloma cell having no autoantibody-producing ability derived from a mammal such as, for example, a mouse, rat or human.
  • myeloma cells used for cell fusion include mouse-derived myeloma P3 / X63-AG8.653 (653; ATCC No. CRL1580), P3 / NSI / 1-Ag4-1 (NS-1), P3 / X63-Ag8. .U1 (P3U1), SP2 / 0-Ag14 (Sp2 / 0, Sp2), PAI, F0 or BW5147, rat-derived myeloma 210RCY3-Ag.2.3., Human-derived myeloma U-266AR1, GM1500-6TG-A1-2, UC729-6, CEM-AGR, D1R11 or CEM-T15.
  • P3 / X63-AG8.653 (653; ATCC No. CRL1580
  • P3 / NSI / 1-Ag4-1 NS-1
  • P3 / X63-Ag8. .U1 P3U1
  • the screening of hybridomas producing a monoclonal antibody is carried out by culturing the obtained hybridomas in, for example, a microtiter plate, and the culture supernatant of the wells in which the proliferation is observed. And the carrier protein of the supernatant can be measured and compared by an immunoassay such as ELISA.
  • Hybridomas cloned by screening are cultured in a medium (eg, DMEM containing 10% fetal bovine serum). Then, the centrifugation supernatant of the culture can be used as a monoclonal antibody solution. Further, the hybridoma can be injected into the abdominal cavity of an animal derived from the hybridoma to cause ascites in the animal, and the ascites obtained from the animal can be used as a monoclonal antibody solution. Monoclonal antibodies are preferably isolated and / or purified in a manner similar to the polyclonal antibodies described above.
  • Chimeric antibodies are, for example, “Experimental Medicine (Extra special issue), Vol. 6, No. 10, 1988”, Japanese Patent Publication No. 3-73280, and humanized antibodies are, for example, Japanese Patent Publication No. 4-506458. Publication, JP-A-62-296890, etc., human antibodies, for example, "Nature Genetics, Vol.15, P.146-156, 1997", “Nature Genetics, Vol.7, P.13-21, 1994 , Special Publication No. 4-504365, International Publication WO94 / 25585, "Nikkei Science, June issue, 40 to 50 pages, 1995", "Nature, Vol.368, p.856-859, 1994 ”and Japanese Patent Publication No. 6-500233.
  • Antibody production by phage display can be carried out, for example, by recovering and concentrating phage having an affinity for an antigen by biopanning from a phage library prepared for human antibody screening, thereby producing antibodies such as Fab. Can be easily obtained.
  • For preferable antibody libraries and antibody screening methods see ⁇ Science, 228: 4075, p.1315-1317 (1985), '' ⁇ Nature, 348 :, p.552-554, (1990), '' ⁇ Curr. Protein Pept.Sci. ., Sep; 1 (2): 155-169 (2000) ”, international publication WO01 / 062907, etc. can be referred to.
  • the antibody can be prepared by using the antibody fragment thus obtained or by utilizing the DNA of the phage.
  • the amount of the antibody contained in the prophylactic or therapeutic agent of the present invention is not particularly limited as long as the above effects are exhibited, but is usually 0.001 to 90% by weight of the total prophylactic or therapeutic agent of the present invention. , Preferably 0.005 to 50% by weight, more preferably 0.01 to 10% by weight.
  • the prophylactic or therapeutic agent of the present invention may contain a pharmaceutically acceptable carrier in addition to the antibody as the active ingredient.
  • a carrier usually used in the field of formulation can be used.
  • excipients such as sucrose, starch, mannitol, sorbit, lactose, glucose, calcium phosphate, calcium carbonate, sodium benzoate, and sulfite.
  • Preservatives such as sodium hydrogen, methylparaben, propylparaben, stabilizers such as citric acid, sodium citrate, acetic acid, suspending agents such as methylcellulose, polyvinylpyrrolidone, aluminum stearate, dispersants such as surfactants, water, physiological Examples thereof include diluents such as saline, base waxes such as glycerin and polyethylene glycol, but are not limited thereto.
  • Examples of the dosage form of the prophylactic or therapeutic agent of the present invention include, but are not limited to, solutions and injection preparations.
  • the prophylactic or therapeutic agent of the present invention may be in the form of controlled release preparation such as immediate release preparation or sustained release preparation. Since an antibody is generally soluble in an aqueous solvent, it is easily absorbed by any of the above dosage forms. Furthermore, the solubility of the antibody can be increased by a method known per se.
  • the preventive or therapeutic agent of the present invention which can be used for the prevention, treatment or alleviation of glucose metabolism abnormality, can be produced by using the above-mentioned antibody as an active ingredient according to a means known per se as a pharmaceutical production method. ..
  • the prophylactic or therapeutic agent of the present invention suitable for systemic administration may be produced by dissolving an effective amount of the antibody of the present invention in an aqueous or non-aqueous isotonic sterile injection solution (eg, injection preparation). it can. It may be produced by freeze-drying the antibody of the present invention (eg, freeze-dried preparation) and dissolving it in an aqueous or non-aqueous isotonic sterile diluent.
  • the prophylactic or therapeutic agent of the present invention suitable for topical administration can be produced by dissolving the antibody of the present invention in a diluent such as water or physiological saline (eg, liquid preparation).
  • the liquid agent can also be used by inhalation therapy to the bronchus or lungs using a nebulizer.
  • these agents may contain an antioxidant, a buffer solution, a bacteriostatic agent, an isotonicity agent and the like.
  • These prophylactic or therapeutic agents of the present invention like ampoules and vials, can be enclosed in a container in a unit dose or multiple doses.
  • the dose of the prophylactic or therapeutic agent of the present invention can be appropriately set depending on the activity, type or amount of the antibody contained as an active ingredient, administration subject, administration route, age and weight of administration subject, and the like. (60 kg body weight)
  • the daily dose (effective amount) is 0.1 mg to 1000 mg, preferably 0.1 mg to 500 mg, and more preferably 0.1 mg to 300 mg as the amount of antibody.
  • the prophylactic or therapeutic agent of the present invention can be administered once or in several divided doses per day as needed, or can be administered in divided doses for several days.
  • the preventive or therapeutic agent of the present invention can be used in combination with a known preventive or therapeutic agent for abnormal glucose metabolism.
  • known preventive or therapeutic agents for abnormal glucose metabolism include antidiabetic agents such as insulin, tolbutamide, glyclopyramide, glibenclamide, metformin, epalrestat, voglibose, acarbose, troglitazone. These may be used alone or in combination of a plurality of types.
  • the term “combination” means that the prophylactic or therapeutic agent of the present invention is used in combination with the known prophylactic or therapeutic agent for abnormal glucose metabolism, and its form of use is not particularly limited.
  • Vaccine Design and Peptide Synthesis Five different antigenic peptides were selected from the amino acid sequence of mouse CD153 based on three-dimensional predicted structure and high antigenicity analysis of epitope information (Table 1). The N-terminal of the peptide was conjugated to KLH (Enzo Life Sciences Inc., Farmingdale, NY, USA) as a carrier protein, and the synthetic peptide was purified by reverse phase HPLC (> 98% purity) (Peptide Institute Inc., Osaka, Japan). The CD153 peptide vaccine was reconstituted with 0.5-1 mg / ml CD153 peptide and 5-10 mg / ml KLH in sterile phosphate buffered saline (PBS).
  • PBS sterile phosphate buffered saline
  • mice All animal experiment procedures have been evaluated and approved by the Animal Experiment Committee of Osaka University. Basic guidelines for animal experiments in research facilities (MEXT, Japan), Basic guidelines for animal experiments in institutions (Ministry of Health, Labor and Welfare, Japan), animals followed the recommendations of the guidelines (Science Council of Japan, Japan) for the proper implementation of experiments. Seven-week-old male C57BL / 6J mice and eight-week-old female C57BL / 6N mice were purchased from CLEA Japan Inc. and kept in a temperature and light cycle control facility. The mice had free access to food and water.
  • C57BL / 6J mice were fed with normal diet (ND) (MF, 12.8 kcal% fat; Oriental Yeast Co., LTD.) Or high-fat diet (HFD) (D12492, 60 kcal% fat; Research Diets Inc.) to give C57BL. / 6N mice received ND.
  • ND normal diet
  • HFD high-fat diet
  • CD153 vaccine was prepared as a mixture of CD153-KLH peptide solution (30 ⁇ g CD153 peptide and 200-300 ⁇ g KLH) and adjuvant solution.
  • KLH vaccine was prepared as a mixture of 200-300 ⁇ g KLH and adjuvant solution.
  • the adjuvant solution contained 30 ⁇ l Alhydrogel (CD153-Alum, KLH-Alum; Invivogen) or 30 ⁇ g CpG ODN 1585 (CD153-CpG, KLH-CpG; Invivogen).
  • mice were vaccinated subcutaneously with the CD153-CpG vaccine or the KLH-CpG vaccine at 8, 10 and 12 weeks of age.
  • males were given D153-alum vaccine or KLH-alum vaccine at 7, 9, 11, 13, 15 weeks of age, or D153-CpG vaccine or KLH-CpG vaccine at 7, 9, 11, 16 weeks of age.
  • C57BL / 6J mice were vaccinated subcutaneously. Serum was collected from the tail vein and anti-CD153 antibody titer was measured by enzyme-linked immunosorbent assay (ELISA).
  • ELISA enzyme-linked immunosorbent assay
  • TLR7 ligand administration R848 (TLR7 ligand; InvivoGen) was intraperitoneally injected into 12-week-old female C57BL / 6N mice three times a week. Mice sacrificed at 16 weeks of age were injected with 5 ⁇ g of R848 for 4 weeks. Mice sacrificed at 18 weeks of age were injected with 5 ⁇ g of R848 for 4 weeks and 10 ⁇ g of R848 for another 2 weeks.
  • Mouse macrophage cell line RAW 264.7 was obtained from American Type Culture Collection (ATCC). RAW 264.7 was grown in Dulbecco's modified Eagle medium (DMEM; Nacalai Tesque, Kyoto, Japan) supplemented with 10% (v / v) heat-inactivated FBS (Sigma Aldrich, MO, USA), and RAW 264.7 was grown before recovery. The cells were stimulated with ⁇ g / ml of LPS (from L4391, E. coli O111: B4; Sigma Aldrich, MO, USA) for 24 hours. The cell line was cultured at 37 ° C in 5% CO 2 according to the ATCC animal cell culture guide.
  • DMEM Dulbecco's modified Eagle medium
  • FBS heat-inactivated FBS
  • LPS from L4391, E. coli O111: B4; Sigma Aldrich, MO, USA
  • Serum anti-CD153 antibody titers were quantified by enzyme-linked immunosorbent assay ELISA. 96 wells with CD153-BSA conjugate (Peptide Institute Inc., Osaka, Japan) or recombinant mouse CD153 protein (no carrier; R & D Systems, Minneapolis, MN, USA) diluted in 50 mM carbonate buffer at 10 ⁇ g / ml. ELISA plates were coated overnight at 4 ° C. After blocking with PBS containing 5% skim milk, serum was serially diluted 100 to 325,000-fold in blocking buffer, added to each well, and incubated overnight at 4 ° C.
  • Complement-dependent cytotoxicity assay Total IgG from pooled sera from immunized mice using 50% saturated ammonium sulfate, Zeba spin desalting columns and Melon gel IgG spin purification kit (Thermo Scientific, Rockford, IL, USA). The antibody was purified.
  • complement-dependent cytotoxicity (CDC) assay LPS-stimulated RAW 264.7 cell suspension containing 2 x 10 4 cells in DMEM supplemented with 1% FBS at various concentrations (30, 100, 300 ⁇ g). (ml / ml) was mixed with purified IgG antibody or positive control antibody and incubated at 4 ° C for 1 hour.
  • the positive control antibodies used were anti-mouse CD153 antibody (functional grade, RM153; eBioscience) and anti-mouse MHC Class I (H-2Kd / H-2Dd) antibody (functional grade, 34-1-2S; eBioscience). .. Low-Tox-M rabbit complement (Cedarlane, Hornby, Canada) was then added to the resuspension. Cell death was assessed as a percentage of 7-AAD positive cells using flow cytometric analysis.
  • Metabolic measurement Insulin sensitivity was assessed by an intraperitoneal insulin tolerance test (ipITT) after a 4-hour fast. Blood glucose levels were measured before, 30, 60, and 120 minutes after intraperitoneal injection of 0.75 U / kg of recombinant human insulin (Humulin R; Eli Lilly Japan KK, Japan). Glucose tolerance was assessed by the oral glucose tolerance test (OGTT) after a 6-hour fast. Blood glucose levels were measured before, 15, 30, 60, and 120 minutes after oral administration of 2.0 g / kg glucose. A homeostatic model assessment of insulin resistance (HOMA-IR) was calculated as an indicator of insulin resistance: fasting serum glucose (mmol / L) x fasting serum insulin (pmol / L) /22.5.
  • ipITT intraperitoneal insulin tolerance test
  • Glucose tolerance was assessed by the oral glucose tolerance test (OGTT) after a 6-hour fast. Blood glucose levels were measured before, 15, 30, 60, and 120 minutes after oral administration of 2.0 g / kg glucose.
  • Oxygen consumption was measured with an O 2 / CO 2 metabolism measuring system (MK-5000RQ; Muromachi Kikai, Tokyo, Japan) for small animals. Each mouse was placed in an airtight chamber maintained at 25 ° C with an airflow of 0.50 L / min for 24 hours or more, and oxygen consumption was standardized by a kilogram 0.75 body weight.
  • O 2 / CO 2 metabolism measuring system MK-5000RQ; Muromachi Kikai, Tokyo, Japan
  • Red blood cells were removed from a suspension of splenocytes and the interstitial vascular fraction of fat (SVF) using ACK red blood cell lysis buffer (Gibco, Grand Island, NY, USA). After red blood cell lysis, suspended splenocytes and SVF were filtered through a 70- ⁇ m filter, centrifuged at 1000 xg, 4 ° C for 10 minutes and resuspended in staining buffer. Block the Fc receptor with anti-mouse CD16 / 32 antibody (mouse Fc receptor inhibitor; BD Biosciences) at 4 ° C for 20 minutes, and then stain the cells with a mixture of fluorescent-labeled antibodies at 4 ° C for 40 minutes in the dark. did.
  • ACK red blood cell lysis buffer Gibco, Grand Island, NY, USA.
  • the antibodies used were specific for CD4 (RM4-4), CD44 (IM7), CD153 (RM153) (BD Biosciences), CD62L (MEL-14) and PD-1 (29F.1A12) (Bio Legend). It was 7-AAD viability staining solution was added to exclude dead cells. Flow cytometric analysis was performed using BD FACS Canto II (BD Biosciences) and analyzed using BD FACS Diva software and FCAP Array software (BD Biosciences).
  • F4 / 80 and IgG staining were incubated with proteinase K (Agilent Technologies) for 5 minutes, and CD153 staining was incubated with HistoVT One (Nacalai Tesque) at 90 ° C. for 30 minutes.
  • F4 / 80 and IgG staining were incubated with proteinase K (Agilent Technologies) for 5 minutes, and CD153 staining was incubated with HistoVT One (Nacalai Tesque) at 90 ° C. for 30 minutes.
  • MAX-PO M
  • Nichirei Bioscience Nichirei Bioscience
  • avidin-biotin for CD153 staining according to the manufacturer's recommendations.
  • a complex kit VECTASTAIN Elite ABC kit, Vector Laboratories was used. Inhibition of endogenous peroxidase was performed with 0.3-0.6% H 2 O 2 in methanol prior to enzymatic detection.
  • Example 1 CD153-specific IgG induced by the CD153 # D vaccine recognized the rmCD153 protein, and CD153-CpG vaccination tended to induce a Th1 immune response.
  • the CD153 vaccine consists of an antigenic peptide and a carrier protein and induces specific antibodies against CD153. According to the epitope information of mouse CD153, the present inventors have developed five peptides as antigens (#A, 116-125 aa; #B, 182-189 aa; #C, 101-108 aa; #D, 76-85 aa; # E, 234-239 aa; Table 1) was designed.
  • peptide vaccines (30 ⁇ g dose CD153 peptide / mouse) were conjugated with keyhole limpet hemocyanin (KLH) as a carrier protein and administered to 7-week-old male C57BL / 6J mice twice at 2 week intervals together with alum adjuvant.
  • KLH keyhole limpet hemocyanin
  • the titer against mouse CD153-BSA first increased on day 14 in mice immunized with #A or #C vaccine, and on day 28 immunized with each of the 5 vaccines. It was successfully increased in mice (Fig. 1A).
  • rmCD153 recombinant mouse CD153
  • the antibody induced by the CD153 # D vaccine strongly reacted with rmCD153 (FIG.
  • the inventors selected the CD153 # D vaccine as the vaccine to be used in Examples 2 to 5 below. Moreover, alum adjuvant can induce Th2 immune response and CpG adjuvant can induce Th1 immune response. Therefore, the inventors have evaluated serum IgG subclass antibody against CD153 (IgG1; Th2 immune response, IgG2b, IgG2c and IgG3; Th1 immune response) by ELISA, CD153 # D-CpG vaccination is CD153 # D-Alum vaccine. It was confirmed whether the Th1 immune response can be further induced by inoculation.
  • CD153 # D-CpG vaccination induced more IgG2b, IgG2c and IgG3 than CD153 # D-alum vaccination (FIG. 1D).
  • the CD153 # D-CpG vaccine was administered to 8-week-old female C57BL / 6N mice three times at 2-week intervals, and then R848 three times a week for 4-6 weeks. ..
  • the anti-CD153 antibody titer induced by the CD153 # D-CpG vaccine was maintained at a high level during the administration period of R848 (FIG. 2C).
  • the proportion of CD153-positive senescence-related T cells in the pancreas showed almost no difference between the PBS control group and the R848-administered group at 16 weeks of age, but compared with the PBS control group of 18 weeks of age.
  • mice immunized with the CD153 # D-CpG vaccine were significantly increased by continuous R848 stimulation, and spleen weight was decreased in mice immunized with the CD153 # D-CpG vaccine as compared to the R848-administered group (FIG. 2E).
  • Example 3 HFD-induced insulin resistance and impaired glucose tolerance are ameliorated by CD153 # D-CpG vaccination.
  • Recent studies have reported that CD153-positive senescence-associated T cells accumulate in adipose tissue of HFD-fed mice, exacerbating glucose and insulin resistance. Therefore, the inventors next investigated whether CD153 # D-CpG vaccination of HFD-loaded mice could reduce CD153-positive senescence-associated T cells in VAT and improve glucose and insulin resistance.
  • CD153 # D-Alum vaccine or CD153 # D-CpG vaccine was administered multiple times to 7-week-old male C57BL / 6J mice according to the experimental HFD challenge study protocol (Figure 3A), followed by 10-11 weeks of HFD challenge. went.
  • mice immunized with the CD153 # D-CpG vaccine were decreased in mice immunized with the CD153 # D-CpG vaccine as compared to the HFD control group and the KLH-CpG vaccine group (Fig. 3D).
  • oxygen consumption was estimated as an indirect measure of metabolism.
  • the inventors next evaluated the intraperitoneal insulin tolerance test (ipITT) and the oral glucose tolerance test (OGTT). Insulin sensitivity did not differ between the CD153 # D-alum vaccinated and KLH-alum vaccinated groups (Fig.
  • CD153-CpG vaccination ameliorates obesity-induced metabolic abnormalities such as glucose tolerance and insulin resistance.
  • Example 4 CD153 # D-CpG Vaccine-Induced Antibody Reduces CD153-Positive Senescence-Associated T Cells Induced by HFD Loading.
  • the inventors analyzed the proportion of obesity-induced CD153-positive senescence-related T cells by flow cytometry. Flow cytometric analysis showed that the proportion of CD153-positive senescence-related T cells in the pancreas did not change between the ND control group and the HFD control group.
  • the inventors also found that neither CD153 # D-alum vaccination nor CD153 # D-CpG vaccination affected the proportion of CD153-positive senescence-associated T cells in the pancreas (FIG. 5A).
  • CD153-positive senescence-related T cells in VAT in the HFD control group was significantly increased compared to that in the ND control group. Furthermore, the inventors found that, unlike CD153 # D-alum vaccination, CD153 # D-CpG vaccination reduced the proportion of CD153-positive senescence-associated T cells in VAT (Fig. 5B). These results show that in HFD-loaded obese mice, CD153 # D-CpG vaccination locally improves, if not systemically, CD153-positive senescence-related T cells. An antibody-mediated complement dependent cytotoxicity (CDC) assay was performed to determine whether the CD153 # D-CpG vaccine-induced antibody was able to eliminate immune cells that overexpress CD153.
  • CDC complement dependent cytotoxicity
  • LPS-stimulated RAW264.7 cells were subjected to CDC. Selected as target cells for the assay.
  • the CDC assay was supplemented with purified IgG (30, 100, 300 ⁇ g / ml) from mice immunized with the CD153 # D-CpG vaccine, similar to the commercially available anti-mouse CD153 antibody (10, 30, 100 ⁇ g / ml).
  • Example 5 CD153 # D-CpG Vaccine Reduces Accumulation of Macrophages and CD153 Positive Senescence-Associated T Cells in Adipose Crown-Like Structures Histological analysis of VAT, kidney tissue and lung tissue was performed.
  • VAT weight Figure 6-1A
  • mean adipocyte surface area Figure 6-1B
  • Obesity results in the accumulation of macrophages in the crown-like structure (CLS) surrounding adipocytes, which is associated with chronic inflammation of VAT.
  • CD153-positive senescence-associated T cells are also localized in CLS.
  • Immunohistochemical staining for F4 / 80 showed less accumulation of F4 / 80 + cells in the CLS of mice immunized with the CD153 # D-CpG vaccine than in HFD control mice ( Figure 6-1C). Immunohistochemical staining for CD153 also showed that the accumulation of CD153-positive senescence-related T cells in the CLS of F4 / 80 + cells in the CD153 # D-CpG vaccinated group was improved over the HFD control group (Fig. 6-2D). Furthermore, the inventors stained VAT, kidney tissue and lung tissue with an anti-mouse IgG antibody and evaluated whether or not autoreactive antibody was present (FIG. 6-2E).
  • VAT had no positive staining for IgG except for a slight positive staining for IgG in CLD of mice immunized with the CD153 # D-CpG vaccine.
  • IgG antibody deposition on the alveolar wall was present in mice immunized with KLH-CpG vaccine or CD153 # D-CpG vaccine, but alveolar wall thickness and inflammatory cells among 4 groups There was no obvious difference in the infiltration of the.
  • renal tissues there was IgG antibody deposition to the glomerulus in mice immunized with the KLH-CpG vaccine or the CD153 # D-CpG vaccine, but glomerular capillary loop thickness and fragility among the 4 groups was present. There was no obvious difference.
  • Anti-human CD153 antibody is not cross-reactive with mouse CD153 and anti-mouse CD153 antibody is not cross-reactive with human CD153.
  • the inventors designed a human CD153 # D vaccine homologous to the CD153 # D vaccine (mouse CD153 # D vaccine) from the human CD153 amino acid sequence in order to verify the cross-reactivity of the anti-human CD153 antibody and the anti-mouse CD153 antibody.
  • Fig. 7A The mouse CD153 # D-alum vaccine and the human CD153 # D-alum vaccine were each administered to 7-week-old male C57BL / 6J mice three times for two weeks, and the production of mouse or human CD153 antibody was evaluated by ELISA.
  • an antibody that inhibits senescence-related T cells expressing CD153 on the cell surface is induced, and thereby an inflammatory protein or inflammatory protein from senescence-related T cells is induced. It can reduce chemokine secretion and improve glucose metabolism disorders. Since the antibody induced by the vaccine has a long half-life, it does not require frequent administration unlike conventional therapeutic agents for abnormal glucose metabolism.
  • This application is based on Japanese Patent Application No. 2018-211771 (filed on: Nov. 9, 2018) filed in Japan, the contents of which are incorporated in full herein.

Abstract

Provided is a vaccine for preventing or treating abnormal sugar metabolism, said vaccine comprising any of (1) to (3): (1) a polypeptide containing the amino acid sequence represented by SEQ ID NO: 2 or a nonhuman mammal-derived amino acid sequence corresponding to SEQ ID NO: 2; (2) a polypeptide containing an amino acid sequence which is derived from the amino acid sequence represented by SEQ ID NO: 2 or from a nonhuman mammal-derived amino acid sequence corresponding to SEQ ID NO: 2 by substitution, deletion, insertion or addition of one to several amino acid residues; and (3) an expression vector capable of expressing the aforesaid polypeptide (1) or (2).

Description

老化関連T細胞を標的とした糖代謝異常の予防または治療用ワクチンVaccine for targeting aging-related T cells to prevent or treat abnormal glucose metabolism
 本発明は、CD153の特定の部分アミノ酸配列を免疫原として含む糖代謝異常の予防または治療用ワクチン、および前記CD153の部分アミノ酸配列を認識することによって老化関連T細胞を阻害する抗体を含む、糖代謝異常の予防または治療剤に関する。 The present invention includes a vaccine for preventing or treating abnormal glucose metabolism, which comprises a specific partial amino acid sequence of CD153 as an immunogen, and an antibody that inhibits senescence-related T cells by recognizing the partial amino acid sequence of CD153, a sugar. The present invention relates to a preventive or therapeutic agent for metabolic disorders.
 糖尿病に代表される糖代謝異常はインスリンの体内での量的不足あるいは作用不足に起因して、血糖が健常人に比べ上昇し、その結果として腎臓、網膜、神経などにおける細小血管障害や、動脈硬化などの大血管障害により著しく健康な生活が損なわれる代謝性疾患である。これまでインスリン、インスリン分泌促進剤、インスリン抵抗性改善剤、α-グルコシダーゼ阻害剤などの血糖降下剤が臨床治療法として広く適用されている。しかしこれらの血糖降下剤は有用性が認められているものの、それぞれが多くの問題点を抱えている。例えば、インスリンは不適切な用法、用量で投与した場合、低血糖を招く危険性がある。また、膵臓のインスリン分泌能が著しく低下した患者ではインスリン分泌促進剤やインスリン抵抗性改善剤の有効性は減少する。あるいは、インスリン抵抗性が著しい患者ではインスリンやインスリン分泌促進剤の有効性は減少する。 Glucose metabolism abnormality represented by diabetes is caused by insufficient amount of insulin or lack of action of insulin in the body, resulting in an increase in blood glucose as compared with that of a healthy person, and as a result, microangiopathy and arteries in the kidney, retina, nerves, etc. It is a metabolic disease that significantly impairs a healthy life due to macrovascular disorders such as hardening. Until now, hypoglycemic agents such as insulin, insulin secretagogues, insulin sensitizers, and α-glucosidase inhibitors have been widely applied as clinical treatments. However, although these hypoglycemic agents have been found to be useful, each has many problems. For example, insulin has the risk of causing hypoglycemia when administered in an inappropriate manner and dose. In addition, the effectiveness of insulin secretagogues and insulin sensitizers decreases in patients whose pancreatic insulin secretory capacity is markedly reduced. Alternatively, the effectiveness of insulin and insulin secretagogues decreases in patients with marked insulin resistance.
 獲得免疫系は自己由来の物質と非自己由来の物質を識別することによって、細菌やウイルスなどの感染を防ぎ、排除することによって生体を防御する役割を負っている。様々な抗原に対応するT細胞が体内に存在し、抗原の感染によって刺激を受けた対応するT細胞は当該抗原を排除するとともに、その一部はメモリーT細胞として体内に残ることによって次回以降の感染に迅速に応答可能となる。しかし、最近、獲得免疫系の機能は加齢と共に低下する(免疫老化)ことが知られてきた。免疫老化は、獲得免疫応答能の低下、炎症性素因の増大、自己免疫リスクの増大により特徴づけられる。従って、他の老化細胞における細胞老化関連分泌形質(SASP)と同様、免疫老化もまた炎症が亢進する形質が土台となり、動脈硬化症、糖尿病などのような慢性炎症および代謝性疾患の原因となる。最近の研究では、獲得免疫系において主要な役割を果たすCD4陽性T細胞のうちPD-1陽性CD153陽性であるサブ集団(老化関連T細胞(SA-T細胞))が加齢と共に次第に全身性に増加することが報告され、免疫老化の実体であることが示唆されてきた。さらに最近、老化関連T細胞は高脂肪食を負荷されたマウスの内臓脂肪組織においても顕著に増加し、慢性炎症を起こすことによりインスリン耐性など2型糖尿病の病態の形成にも寄与することが報告された(非特許文献1)。これらの報告は、老化関連T細胞が、糖代謝異常に関与することを示唆するものである。しかし、これまでに、老化関連T細胞を標的とした糖代謝異常の予防または治療方法が提供された報告はない。 The adaptive immune system plays a role of protecting the living body by distinguishing self-originating substances from non-self-originating substances, preventing and eliminating infections such as bacteria and viruses. There are T cells corresponding to various antigens in the body, and the corresponding T cells stimulated by the infection of the antigens eliminate the antigens, and part of them remain in the body as memory T cells, so that Be able to respond quickly to infections. However, it has recently been known that the function of the adaptive immune system decreases with age (immune senescence). Immune aging is characterized by reduced adaptive immune response, increased inflammatory predisposition, and increased autoimmune risk. Thus, like other cellular senescence-associated secretory traits (SASPs) in other senescent cells, immune senescence is also based on the inflammatory-promoting trait, which causes chronic inflammation and metabolic disorders such as arteriosclerosis and diabetes. .. In a recent study, a subpopulation of CD4-positive T cells that play a major role in the adaptive immune system that is PD-1-positive and CD153-positive (aging-related T cells (SA-T cells)) gradually becomes systemic with aging. It has been reported to increase and has been suggested to be a substance of immune senescence. More recently, it has been reported that senescence-related T cells are also significantly increased in the visceral adipose tissue of mice loaded with a high-fat diet and contribute to the formation of pathological conditions of type 2 diabetes such as insulin resistance by causing chronic inflammation. (Non-Patent Document 1). These reports suggest that senescence-related T cells are involved in abnormal glucose metabolism. However, there has been no report to date that provides a method for preventing or treating abnormal glucose metabolism by targeting senescence-related T cells.
 本発明は、老化関連T細胞を標的とした糖代謝異常の予防または治療に用いるためのワクチン、および老化関連T細胞を阻害する抗体を含む、糖代謝異常の予防または治療剤を提供することを課題とする。 The present invention provides a vaccine for use in the prevention or treatment of dysmetabolism related to aging-related T cells, and an agent for preventing or treating dysmetabolism, which comprises an antibody that inhibits aging-related T cells. It is an issue.
 発明者らは、老化関連T細胞に発現するCD153の3次元構造を予測し、CD153のアミノ酸配列から高抗原性を有すると予想される部分アミノ酸配列を複数推測し、該アミノ酸配列を老化関連T細胞を阻害する抗体を誘導できる抗原候補として設計した。合成した複数の前記抗原候補をキャリアタンパク質にコンジュゲートし、アジュバントとともにマウスに投与したところ、CD153と強く結合する抗体を誘導できる抗原候補を1種類特定した。そして、発明者らは、当該抗原によって免疫されたマウスにおいて、肥満や糖代謝の改善効果を見出した。
 発明者らは、これらの知見に基づいてさらに検討を重ねた結果、本発明を完成するに至った。
The inventors predicted the three-dimensional structure of CD153 expressed in senescence-related T cells, deduced multiple partial amino acid sequences predicted to have high antigenicity from the amino acid sequence of CD153, and determined the amino acid sequence from senescence-related T It was designed as an antigen candidate capable of inducing an antibody that inhibits cells. When a plurality of the synthesized antigen candidates were conjugated to a carrier protein and administered to mice with an adjuvant, one kind of antigen candidate capable of inducing an antibody that strongly binds to CD153 was identified. Then, the inventors have found an effect of improving obesity and glucose metabolism in mice immunized with the antigen.
The present inventors have completed the present invention as a result of further studies based on these findings.
 すなわち、本発明は、以下を提供する。
[1]以下の(1)~(3)のいずれかを含む、糖代謝異常の予防または治療用ワクチン:
(1)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド、
(2)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド、
(3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター。
[2]以下の(1’)または(2’)を含む、[1]に記載のワクチン:
(1’)配列番号:2に示されるアミノ酸配列からなるポリペプチド、
(2’)上記(1’)のポリペプチドを発現し得る発現ベクター。
[3]以下の(1’’)または(2’’)を含む、[1]に記載のワクチン:
(1’’)配列番号:4に示されるアミノ酸配からなるポリペプチド、
(2’’)上記(1’’)のポリペプチドを発現し得る発現ベクター。
[4]キャリアタンパク質をさらに含む、[1]~[3]のいずれか1つに記載のワクチン。
[5]キャリアタンパク質がスカシ貝ヘモシアニンである、[4]に記載のワクチン。
[6]アジュバントをさらに含む、[1]~[5]のいずれか1つに記載のワクチン。
[7]アジュバントがCpGオリゴデオキシヌクレオチドである、[6]に記載のワクチン。
[8]糖代謝異常が、糖尿病、耐糖能異常、肥満症、高インスリン血症、糖尿病性神経障害、糖尿病性腎症および糖尿病性網膜症からなる群から選択される、[1]~[7]のいずれか1つに記載のワクチン。
[9]以下の(1)または(2)のポリペプチドを認識し、老化関連T細胞を阻害する抗体を含む、糖代謝異常の予防または治療剤:
(1)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド。
[10]配列番号:2に示されるアミノ酸配列からなるポリペプチドを認識し、老化関連T細胞を阻害する抗体を含む、[9]に記載の予防または治療剤。
[11]配列番号:4に示されるアミノ酸配列からなるポリペプチドを認識し、老化関連T細胞を阻害する抗体を含む、[9]に記載の予防または治療剤。
[12]老化関連T細胞は、CD4陽性PD-1陽性CD153陽性T細胞である、[9]~[11]のいずれか1つに記載の予防または治療剤。
[13]糖代謝異常が、糖尿病、耐糖能異常、肥満症、高インスリン血症、糖尿病性神経障害、糖尿病性腎症および糖尿病性網膜症からなる群から選択される、[9]~[12]のいずれか1つに記載の予防または治療剤。
That is, the present invention provides the following.
[1] A vaccine for preventing or treating abnormal glucose metabolism, which comprises any of the following (1) to (3):
(1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2;
(2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 A polypeptide comprising a sequence,
(3) An expression vector capable of expressing the polypeptide of (1) or (2) above.
[2] The vaccine according to [1], which comprises the following (1 ′) or (2 ′):
(1 ') a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2,
(2 ′) An expression vector capable of expressing the polypeptide of (1 ′) above.
[3] The vaccine according to [1], which comprises the following (1 ″) or (2 ″):
(1 '') a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4,
(2 ″) An expression vector capable of expressing the polypeptide of (1 ″) above.
[4] The vaccine according to any one of [1] to [3], which further comprises a carrier protein.
[5] The vaccine according to [4], wherein the carrier protein is keyhole limpet hemocyanin.
[6] The vaccine according to any one of [1] to [5], which further comprises an adjuvant.
[7] The vaccine according to [6], wherein the adjuvant is CpG oligodeoxynucleotide.
[8] The abnormal glucose metabolism is selected from the group consisting of diabetes, impaired glucose tolerance, obesity, hyperinsulinemia, diabetic neuropathy, diabetic nephropathy and diabetic retinopathy, [1] to [7] ] Vaccine according to any one of.
[9] A prophylactic or therapeutic agent for glucose metabolism disorder, which comprises an antibody that recognizes the following polypeptide (1) or (2) and inhibits senescence-related T cells:
(1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2;
(2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 A polypeptide comprising a sequence.
[10] The prophylactic or therapeutic agent according to [9], which comprises an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 and inhibits senescence-related T cells.
[11] The prophylactic or therapeutic agent according to [9], which comprises an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4 and inhibits senescence-related T cells.
[12] The preventive or therapeutic agent according to any one of [9] to [11], wherein the senescence-related T cells are CD4 positive PD-1 positive CD153 positive T cells.
[13] The abnormal glucose metabolism is selected from the group consisting of diabetes, impaired glucose tolerance, obesity, hyperinsulinemia, diabetic neuropathy, diabetic nephropathy, and diabetic retinopathy, [9] to [12]. ] The preventive or therapeutic agent as described in any one of these.
 本発明のCD153の部分アミノ酸配列をワクチンとして用いることにより、細胞表面にCD153を発現している老化関連T細胞を阻害する抗体を誘導し、それによって老化関連T細胞からの炎症性タンパク質、炎症性ケモカインの分泌を低減させ、糖代謝異常を改善することができる。また、CD153の部分アミノ酸配列を認識する抗体を用いることによって、直接的に上記の効果を得ることができる。さらに抗体の半減期は、従来の血糖降下剤よりも長いため、患者への薬の投与回数を下げることを期待できる。 By using the partial amino acid sequence of CD153 of the present invention as a vaccine, an antibody that inhibits senescence-related T cells expressing CD153 on the cell surface is induced, and thereby an inflammatory protein or inflammatory protein from senescence-related T cells is induced. It can reduce chemokine secretion and improve glucose metabolism disorders. In addition, the above effects can be directly obtained by using an antibody that recognizes the partial amino acid sequence of CD153. Furthermore, since the half-life of the antibody is longer than that of conventional hypoglycemic agents, it can be expected to reduce the frequency of drug administration to patients.
CD153ワクチンで誘導される抗体の評価。7週齢C57BL/6Jマウス(n = 3-6, 各群)を0日目および14日目にCD153-ミョウバン(Alum)ワクチン(#A、#B、#C、#Dおよび#E)またはKLH-ミョウバンワクチンで免疫した。CD153-ミョウバンワクチンは30 μgのCD153ペプチド(#A-#E)および200-300 μgのKLHからなり、KLH-ミョウバンワクチンは200-300 μgのKLHからなった。 (A) CD153-BSAに対する力価は、免疫後14日目および28日目における最大半量の結合を与える血清の希釈率(OD 50%)で表した。(B) 組換えマウスCD153に対する力価は、免疫後28日目におけるOD 450nmで表した。(C) CD153#D-ミョウバンワクチンによって28日目に誘導される抗体のrmCD153タンパク質を認識する能力のウェスタンブロット解析。CD153#D-ミョウバンワクチンまたはKLHワクチンで免疫されたマウス由来の血清を500倍に希釈した。市販の抗CD153抗体を0.05 μg/mlに希釈した。100 ngのrmOPNを陰性コントロールとしてレーン1にアプライした。30 ngのrmCD153および100 ngのrmCD153をレーン2および3にそれぞれアプライした。プレシジョンPlusプロテイン2色スタンダード(Bio-Rad)をマーカーとして各メンブレンの両端にアプライした。(D) CD153#D-ミョウバンワクチン(n = 3)またはCD153#D-CpGワクチン(n = 6)で免疫したマウスにおける0日目、14日目および28日目のIgG1 (Th2応答)ならびにIgG2b、IgG2cおよびIgG3 (Th1応答)のレベル。血清は42日目に回収した。CD153-BSAに対する力価はOD 50%で表した。全データは平均値±標準誤差で表した。N.D., 未検出。Evaluation of antibodies induced by the CD153 vaccine. 7-week-old C57BL / 6J mice (n = 3-6, each group) were treated with CD153-alum (Alum) vaccine (#A, #B, #C, #D and #E) on days 0 and 14 or Immunized with the KLH-alum vaccine. The CD153-Alum vaccine consisted of 30 μg of CD153 peptide (# A- # E) and 200-300 μg of KLH, and the KLH-Alum vaccine consisted of 200-300 μg of KLH. (A) The titer to CD153-BSA was expressed as the dilution ratio (OD 50%) of the serum that gave half the maximum binding on days 14 and 28 after immunization. (B) The titer against recombinant mouse CD153 was expressed as OD 450 nm at 28 days after immunization. (C) Western blot analysis of the ability of the antibody induced on day 28 by the CD153 # D-alum vaccine to recognize the rmCD153 protein. Serum from mice immunized with CD153 # D-alum vaccine or KLH vaccine was diluted 500-fold. A commercially available anti-CD153 antibody was diluted to 0.05 μg / ml. 100 ng of rmOPN was applied to lane 1 as a negative control. 30ng rmCD153 and 100ng rmCD153 were applied to lanes 2 and 3, respectively. Precision Plus protein two-color standard (Bio-Rad) was applied as a marker to both ends of each membrane. (D) IgG153 (Th2 response) and IgG2b on day 0, 14 and 28 in mice immunized with CD153 # D-alum vaccine (n = 3) or CD153 # D-CpG vaccine (n = 6). , IgG2c and IgG3 (Th1 response) levels. Serum was collected on day 42. The titer against CD153-BSA is expressed as OD50%. All data are expressed as mean ± standard error. N.D., not detected. TLR7リガンド投与によって誘導される脾臓のCD153陽性老化関連T細胞に対するCD153#D-CpGワクチンの効果。(A)20か月齢および3か月齢における脾臓組織およびVATにおける老化関連T細胞の割合。マウスに通常食を与えた。CD4+、CD44+、CD62L-細胞中のPD-1+、CD153+細胞を老化関連T細胞として定義した。(B)ワクチンのR848 (TLR7リガンド)投与および注射の時間経過。12週齢雌C57BL/6Nマウス(N =3、各群)にR848を週3回腹腔内投与した。5 μgのR848を4週間投与したマウスは16週齢時に犠死させ、さらに10 μgのR848を2週間投与したマウスは18週齢で犠死させた。免疫された全てのマウスを8、10、12週齢時にCD153#D-CpGワクチンまたはKLH-CpGワクチンでワクチン接種した。PBSコントロール群はワクチン接種せず、R848の代わりにPBSを投与した。R848コントロール群はワクチン接種せず、ワクチン群と同様にR848を投与した。(C) CD153#D-CpGワクチンで免疫されたマウスにおけるR848投与期間中のCD153-BSAに対する力価(n=6; 8、10、12、14週齢; n = 3; 16、18週齢)。力価は最大半量の結合を与える血清の希釈率(OD 50%)で表した。(D) CD153#D-CpGワクチンまたはKLH-CpGワクチンの有無の下、脾臓組織においてR848投与によって誘導される老化関連T細胞の割合。(E) CD153#D-CpGワクチンまたはKLH-CpGワクチンの有無の下、18週齢におけるR848を投与されたマウスの脾重量。全データは平均値±標準誤差で表した。*p < 0.05; **p < 0.01; ***p < 0.001。Effect of CD153 # D-CpG vaccine on CD153-positive senescence-associated T cells in the spleen induced by TLR7 ligand administration. (A) Percentage of senescence-related T cells in spleen tissue and VAT at 20 and 3 months of age. Mice were fed a normal diet. PD-1 + , CD153 + cells in CD4 + , CD44 + , CD62L cells were defined as senescence-associated T cells. (B) Time course of R848 (TLR7 ligand) administration and injection of vaccine. R848 was intraperitoneally administered to 12-week-old female C57BL / 6N mice (N = 3, each group) three times a week. Mice treated with 5 μg of R848 for 4 weeks were sacrificed at 16 weeks of age, and mice treated with 10 μg of R848 for 2 weeks were sacrificed at 18 weeks of age. All immunized mice were vaccinated with CD153 # D-CpG vaccine or KLH-CpG vaccine at 8, 10 and 12 weeks of age. The PBS control group was not vaccinated and PBS was administered instead of R848. The R848 control group was not vaccinated, and R848 was administered as in the vaccine group. (C) Titer against CD153-BSA during R848 administration in mice immunized with the CD153 # D-CpG vaccine (n = 6; 8, 10, 12, 14 weeks old; n = 3; 16, 18 weeks old) ). Titers were expressed as the dilution of serum that gave half maximal binding (OD 50%). (D) Percentage of senescence-related T cells induced by R848 administration in spleen tissue in the presence or absence of CD153 # D-CpG vaccine or KLH-CpG vaccine. (E) Spleen weight of mice administered with R848 at 18 weeks of age in the presence or absence of CD153 # D-CpG vaccine or KLH-CpG vaccine. All data are expressed as mean ± standard error. * p <0.05; ** p <0.01; *** p <0.001. CD153#D-ミョウバンワクチンまたはCD153#D-CpGワクチンで免疫されたHFD負荷マウスにおける代謝解析。(A) HFD(高脂肪食)負荷とワクチン注射のタイムコース。ミョウバンコンジュゲートワクチンまたはCpGコンジュゲートワクチンで7週齢雄C57BL/6Jマウスに複数回ワクチン接種した。CD153#D-ミョウバンワクチンまたはCD153#D-CpGワクチンで免疫されたマウス(n = 3, 各群)を、7、9、11、13、15週齢時にワクチン接種し、15週齢時からHFDを与えた。CD153#D-CpGワクチンまたはKLH-CpGワクチンで免疫されたマウス(n = 6, 各群)は、7、9、11、16週齢時にワクチン接種し、11週齢時からHFDを与えた。ND(通常食)コントロール群(n = 5)はワクチン接種せず、NDを与え続けた。HFDコントロール群(n = 6)はワクチン接種せず、11週齢時からHFDを与えた。NDコントロール群およびHFDコントロール群に代謝解析を実施し、CpGコンジュゲートワクチン群と同様に犠死させた。(B) CD153#D-ミョウバンワクチンおよびCD153#D-CpGワクチンで免疫されたマウスにおけるHFD負荷期間中のCD153-BSAに対する力価。力価は最大半量の結合を与える血清の希釈率(OD 50%)で表した。(C) CD153#D-CpGワクチンまたはKLH-CpGワクチンで免疫されたマウスの代謝測定前体重。NDコントロール群を除く全マウスは、11週齢時からHFDを与えた。*; for CD153#D-CpG群 versus KLH-CpG群。(D) CD153#D-CpGワクチンまたはKLH-CpGワクチンで免疫されたマウスにおけるHFD負荷期間中のマウスごとのHFD摂取の週平均量(g/週/マウス)。 期間は11週齢から19週齢であった。(E) CD153#D-CpGワクチンまたはKLH-CpGワクチンで免疫されたマウスにおける21-22週齢時の明期(8:00-20:00)および暗期(20:00-8:00)における平均VO2(g/週/マウス)。全データは平均値±標準誤差で表した。*p < 0.05; **p < 0.01; ***p < 0.001。Metabolic analysis in HFD-loaded mice immunized with CD153 # D-alum vaccine or CD153 # D-CpG vaccine. (A) HFD (high fat diet) loading and vaccination time course. Seven-week-old male C57BL / 6J mice were vaccinated multiple times with the alum conjugate vaccine or the CpG conjugate vaccine. Mice (n = 3, each group) immunized with the CD153 # D-alum vaccine or the CD153 # D-CpG vaccine were vaccinated at 7, 9, 11, 13, and 15 weeks of age, and HFD was started at 15 weeks of age. Was given. Mice immunized with the CD153 # D-CpG vaccine or the KLH-CpG vaccine (n = 6, each group) were vaccinated at 7, 9, 11, and 16 weeks of age, and were given HFD from 11 weeks of age. The ND (normal diet) control group (n = 5) was not vaccinated and continued to receive ND. The HFD control group (n = 6) was not vaccinated and was given HFD from 11 weeks of age. The ND control group and the HFD control group were subjected to metabolic analysis and sacrificed in the same manner as the CpG conjugate vaccine group. (B) Titer against CD153-BSA during HFD challenge in mice immunized with CD153 # D-alum vaccine and CD153 # D-CpG vaccine. Titers were expressed as the dilution of serum that gave half maximal binding (OD 50%). (C) Pre-metabolic body weight of mice immunized with CD153 # D-CpG vaccine or KLH-CpG vaccine. All mice except the ND control group were given HFD from the age of 11 weeks. *; for CD153 # D-CpG group versus KLH-CpG group. (D) Weekly average amount of HFD uptake per mouse (g / week / mouse) during the HFD challenge period in mice immunized with CD153 # D-CpG vaccine or KLH-CpG vaccine. The period was 11 to 19 weeks old. (E) Light period (8: 00-20: 00) and dark period (20: 00-8: 00) at 21-22 weeks of age in mice immunized with the CD153 # D-CpG vaccine or the KLH-CpG vaccine. VO 2 (g / week / mouse) in. All data are expressed as mean ± standard error. * p <0.05; ** p <0.01; *** p <0.001. CD153#D-ミョウバンワクチンまたはCD153#D-CpGワクチンで免疫されたHFD負荷マウスにおける耐糖能およびインスリン感受性の評価。(AおよびB)ミョウバンコンジュゲートワクチン(CD153#D-ミョウバンまたはKLH-ミョウバン)(A; n = 3, 各群)またはCpGコンジュゲートワクチン(CD153#D-CpGまたはKLH-CpG)(B; n = 6, 各群)で免疫されたマウスにおける腹腔内インスリン負荷試験(ipITT)期間中の血中グルコース濃度および基礎グルコースの割合。NDコントロール群(n = 5)およびHFD(高脂肪食)コントロール群(n = 6)をワクチン接種群と同様に処理した。*; CD153#D-CpG群 versus KLH-CpG群。(C)ITTに対する血中グルコースレベルの曲線下面積(AUC)。台形公式を用いてAUCを見積もった。(DおよびE) ミョウバンコンジュゲートワクチン(D)またはCpGコンジュゲートワクチン(E)で免疫されたマウスにおける経口的グルコース負荷試験(OGTT)期間中の血中グルコース濃度。*; CD153#D-CpG群 versus KLH-CpG群。†; CD153#D-CpG群 versus HFDコントロール群。(F) OGTTに対する血中グルコースのAUC。台形公式を用いてAUCを見積もった。†; versus HFD コントロール群。(G) 絶食6時間後のHOMA-IR指標。全データは平均値±標準誤差で表した。*p < 0.05; **p < 0.01; ***p < 0.001; ††††p < 0.0001。Assessment of glucose tolerance and insulin sensitivity in HFD-loaded mice immunized with the CD153 # D-alum vaccine or the CD153 # D-CpG vaccine. (A and B) Alum conjugate vaccine (CD153 # D-Alum or KLH-Alum) (A; n = 3, Each group) or CpG conjugate vaccine (CD153 # D-CpG or KLH-CpG) (B; n) = 6, 6, each group), blood glucose concentration and basal glucose ratio during the intraperitoneal insulin tolerance test (ipITT). The ND control group (n = 5) and the HFD (high fat diet) control group (n = 6) were treated in the same manner as the vaccination group. *; CD153 # D-CpG group vs. KLH-CpG group. (C) Area under the curve (AUC) of blood glucose level against ITT. The AUC was estimated using the trapezoidal formula. (D and E) Blood glucose concentration during oral glucose tolerance test (OGTT) in mice immunized with alum conjugate vaccine (D) or CpG conjugate vaccine (E). *; CD153 # D-CpG group vs. KLH-CpG group. †; CD153 # D-CpG group versus HFD control group. (F) AUC of blood glucose for OGTT. The AUC was estimated using the trapezoidal formula. †; versus HFD control group. (G) HOMA-IR index 6 hours after fasting. All data are expressed as mean ± standard error. * p <0.05; ** p <0.01; *** p <0.001; †††† p <0.0001. HFD負荷によって誘導されたCD153陽性老化関連T細胞に対するCD153#D-CpGワクチンの効果。(AおよびB) ミョウバンコンジュゲートワクチンまたはCpGコンジュゲートワクチンで免疫されたマウスの脾臓組織(A)およびVAT(B)におけるHFD負荷によって誘導される老化関連T細胞の割合。CD4+、CD44+、CD62L-細胞中のPD-1+、CD153+細胞を老化関連T細胞として定義した。†; versus HFDコントロール群。(C) 10%補体血清の存在下、2 x 104のLPS刺激されたRAW 264.7細胞でCD153#Dワクチン誘導抗体のCDC活性を評価した(n = 3, 各サンプル)。CD153#D-ミョウバンワクチン、CD153#D-CpGワクチン、KLH-ミョウバンワクチンまたはKLH-CpGワクチンで免疫されたHFD負荷マウスにおける22-25週齢時の血清から、使用されたワクチン誘導IgG抗体を精製した。N, 抗体による刺激なし; P, 100 μg/ml 抗マウスMHC Class I (H-2Kd/H-2Dd)抗体; 黒塗り直角三角形, 精製IgG抗体の濃度 (30, 100, 300 μg/ml); 白抜き三角形, 抗マウスCD153抗体の濃度 (10, 30, 100 μg/ml)。全データは平均値±標準誤差で表した。*p < 0.05; †p < 0.05。Effect of CD153 # D-CpG vaccine on CD153-positive senescence-related T cells induced by HFD loading. (A and B) Percentage of age-related T cells induced by HFD loading in spleen tissues (A) and VAT (B) of mice immunized with alum conjugate vaccine or CpG conjugate vaccine. PD-1 + , CD153 + cells in CD4 + , CD44 + , CD62L cells were defined as senescence-associated T cells. †; versus HFD control group. (C) CDC activity of CD153 # D vaccine-induced antibody was assessed in 2 x 10 4 LPS-stimulated RAW 264.7 cells in the presence of 10% complement serum (n = 3, each sample). Purification of used vaccine-derived IgG antibody from serum at 22-25 weeks of age in HFD-loaded mice immunized with CD153 # D-alum vaccine, CD153 # D-CpG vaccine, KLH-alum vaccine or KLH-CpG vaccine did. N, No antibody stimulation; P, 100 μg / ml anti-mouse MHC Class I (H-2Kd / H-2Dd) antibody; filled right triangle, concentration of purified IgG antibody (30, 100, 300 μg / ml); Open triangles, anti-mouse CD153 antibody concentration (10, 30, 100 μg / ml). All data are expressed as mean ± standard error. * p <0.05; † p <0.05. CD153#D-CpGワクチンで免疫されたHFD負荷マウスにおけるVAT、腎臓組織および肺組織の組織学的解析。4群のマウス(ND(通常食)コントロール群、HFD(高脂肪食)コントロール群、KLH-CpGワクチン群、およびCD153#D-CpGワクチン群、 n = 3, 各群)からVAT、腎臓組織および肺組織を回収し、HFD負荷およびワクチン注射のタイムコースに従った。(A)4群間のVAT重量。(B)4群間の脂肪細胞の平均表面積およびヘマトキシリンエオシン(HE)で染色された脂肪蓄積の顕微鏡写真。スケールバー:100μm。(C) 4群間の王冠様構造中のマクロファージの定量。NDコントロール群の平均を100%とした。スケールバー:100μm。全データは平均値±標準誤差で表した。*p < 0.05; **p < 0.01。Histological analysis of VAT, kidney and lung tissues in HFD-loaded mice immunized with the CD153 # D-CpG vaccine. From 4 groups of mice (ND (normal diet) control group, HFD (high fat diet) control group, KLH-CpG vaccine group, and CD153 # D-CpG vaccine group, each = 3 and each group), VAT, kidney tissue and Lung tissue was collected and followed the HFD challenge and vaccination time course. (A) VAT weight between 4 groups. (B) Photomicrograph of mean surface area of adipocytes between four groups and fat accumulation stained with hematoxylin and eosin (HE). Scale bar: 100 μm. (C) Quantification of macrophages in crown-like structures among 4 groups. The average of the ND control group was set to 100%. Scale bar: 100 μm. All data are expressed as mean ± standard error. * p <0.05; ** p <0.01. (D) 4群間の王冠様構造中のCD153陽性老化関連細胞の定量。NDコントロール群の平均を100%とした。スケールバー:100μm。(E) 4群間のIgGで染色された脂肪蓄積、HEまたはIgGで染色された腎臓組織、HEまたはIgGで染色された肺組織の顕微鏡写真。スケールバー:100μm。全データは平均値±標準誤差で表した。*p < 0.05; **p < 0.01。(D) Quantification of CD153-positive senescence-related cells in the crown-like structure among the 4 groups. The average of the ND control group was set to 100%. Scale bar: 100 μm. (E) Micrographs of fat accumulation stained with IgG among 4 groups, kidney tissue stained with HE or IgG, and lung tissue stained with HE or IgG. Scale bar: 100 μm. All data are expressed as mean ± standard error. * p <0.05; ** p <0.01. 7週齢C57BL/6Jマウス(n=3-4, 各群)を0日目、14日目および28日目にマウスCD153#D-ミョウバンワクチンまたはヒトCD153#D-ミョウバンワクチンで免疫した。マウスCD153#D-ミョウバンワクチンおよびヒトCD153#D-ミョウバンワクチンはKLH(200-300 μg)でコンジュゲートされ、ミョウバンと混合された、30 μgのCD153ペプチドで構成された。(A) マウスCD153#Dペプチド(76-85 aa)およびヒトCD153#Dペプチド(71-80 aa)のアミノ酸配列。(B) ヒトまたはマウスCD153-BSAに対するヒトCD153抗体の力価は、免疫後42日目における最大半量の結合を与える血清の希釈率(OD 50%)で表した。(C) 組換えヒト(rh)または組換えマウス(rm)CD153に対するヒトCD153抗体の力価は、免疫後42日目におけるOD 450nmで表した。(D) rhCD153に対するマウスCD153抗体の力価は、免疫後42日目におけるOD 450nmで表した。全データは平均値±標準誤差で表した。N.D., 未検出。Seven-week-old C57BL / 6J mice (n = 3-4, each group) were immunized with mouse CD153 # D-alum vaccine or human CD153 # D-alum vaccine on days 0, 14 and 28. Mouse CD153 # D-alum vaccine and human CD153 # D-alum vaccine were conjugated with KLH (200-300 μg) and consisted of 30 μg of CD153 peptide mixed with alum. (A) Amino acid sequence of mouse CD153 # D peptide (76-85aa) and human CD153 # D peptide (71-80aa). (B) The titer of the human CD153 antibody against human or mouse CD153-BSA was expressed as the dilution ratio (OD50%) of the serum that gave half the maximum binding at 42 days after immunization. (C) The titer of human CD153 antibody against recombinant human (rh) or recombinant mouse (rm) CD153 was expressed as OD 450 nm at 42 days after immunization. (D) The titer of mouse CD153 antibody against rhCD153 was expressed as OD 450 nm at 42 days after immunization. All data are expressed as mean ± standard error. N.D., not detected.
1.糖代謝異常の予防または治療用ワクチン
 本発明は、糖代謝異常の予防または治療用ワクチン(以下、本発明のワクチン)を提供する。
1. Vaccine for preventing or treating abnormal glucose metabolism The present invention provides a vaccine for preventing or treating abnormal glucose metabolism (hereinafter referred to as the vaccine of the present invention).
 本発明のワクチンによって予防または治療される糖代謝異常は、インスリン分泌低下またはインスリン感受性低下によって筋肉、肝臓および脂肪組織へのグルコースの取り込み能およびグリコーゲンへの変換が低下し、血中グルコースが高い状態に維持された状態およびその状態に起因して誘発される疾患であれば特に制限されない。例えば、糖代謝異常としては、糖尿病(1型糖尿病、2型糖尿病)、耐糖能異常、肥満症、高インスリン血症、糖尿病性神経障害、糖尿病性腎症および糖尿病性網膜症などが挙げられる。 Glucose metabolism disorder that is prevented or treated by the vaccine of the present invention is a condition in which glucose uptake into muscle, liver and adipose tissue and conversion to glycogen are reduced due to decreased insulin secretion or insulin sensitivity, and blood glucose is high. There is no particular limitation as long as the condition is maintained and the disease induced by the condition. Examples of abnormal glucose metabolism include diabetes (type 1 diabetes, type 2 diabetes), impaired glucose tolerance, obesity, hyperinsulinemia, diabetic neuropathy, diabetic nephropathy and diabetic retinopathy.
 本発明のワクチンの投与対象は、任意の哺乳動物であってよいが、糖代謝異常を発症している哺乳動物または糖代謝異常を発症するおそれのある哺乳動物である。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類及びウサギ等の実験動物、イヌ及びネコ等のペット、ウシ、ブタ、ヤギ、ウマ及びヒツジ等の家畜、ヒト、サル、オランウータン及びチンパンジー等の霊長類等が挙げられ、特にヒトが好ましい。投与対象は、糖代謝異常に対する治療を受けていても受けていなくてもよい。なお、本発明のワクチンがポリペプチドを含む場合、該ポリペプチドは投与対象由来の物質(すなわち、ヒトに投与する場合、該ワクチンはヒト由来のポリペプチドであり、マウスに投与する場合、該ワクチンはマウス由来のポリペプチドである)であることが好ましい。 The subject of administration of the vaccine of the present invention may be any mammal, but it is a mammal that develops glucose metabolism abnormality or a mammal that may develop glucose metabolism abnormality. As mammals, for example, mice, rats, hamsters, experimental animals such as rodents and rabbits such as guinea pigs, pets such as dogs and cats, livestock such as cattle, pigs, goats, horses and sheep, humans, monkeys, Examples thereof include primates such as orangutans and chimpanzees, and humans are particularly preferable. The administration subject may or may not be treated for glucose metabolism abnormality. When the vaccine of the present invention contains a polypeptide, the polypeptide is a substance derived from an administration subject (that is, when administered to humans, the vaccine is a human-derived polypeptide, and when administered to mice, the vaccine is Is a mouse-derived polypeptide).
 本発明のワクチンは、以下の(1)~(3):
(1)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド、
(2)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド、
(3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター
のいずれかを含む。
 本発明のワクチンは、好ましくは、以下の(1’)または(2’):
(1’)配列番号:2に示されるアミノ酸配列からなるポリペプチド、
(2’)上記(1’)のポリペプチドを発現し得る発現ベクター、あるいは、
以下の(1’’)または(2’’):
(1’’)配列番号:4に示されるアミノ酸配からなるポリペプチド、
(2’’)上記(1’’)のポリペプチドを発現し得る発現ベクター
を含む。
The vaccine of the present invention comprises the following (1) to (3):
(1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2;
(2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 A polypeptide comprising a sequence,
(3) It includes either an expression vector capable of expressing the polypeptide of (1) or (2) above.
The vaccine of the present invention preferably has the following (1 ′) or (2 ′):
(1 ') a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2,
(2 ′) An expression vector capable of expressing the polypeptide of (1 ′) above, or
The following (1 '') or (2 ''):
(1 '') a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4,
(2 ″) An expression vector capable of expressing the polypeptide of (1 ″) above is included.
 本発明のワクチンに含まれる上記(1)のポリペプチドは、CD153を構成するアミノ酸配列の部分配列である。CD153は公知の遺伝子であり、そのヌクレオチド配列やアミノ酸配列も公知である。例えば、上記(1)のポリペプチドに含まれる配列番号:2に示されるアミノ酸配列は、ヒトCD153(配列番号:5)のアミノ酸番号71~80に相当する。また、該部分配列は、例えば配列番号:1に示されるヌクレオチド配列によってコードされる。さらに、上記(1)のポリペプチドに含まれる配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列は、本明細書中の配列番号:2に示されるアミノ酸配列の情報や、公知の配列データベースに開示された非ヒト哺乳動物のゲノムまたはmRNAの塩基配列情報を利用して、非ヒト哺乳動物の塩基配列情報由来の適切なプライマーやプローブを設計し、RT-PCRやプラークハイブリダイゼーション等の通常の遺伝子工学的手法を用いて容易に取得することが出来る。例えば、ヒトCD153の部分配列である配列番号:2に対応する、マウスCD153アミノ酸配列の部分配列は、マウスCD153(配列番号:6)のアミノ酸番号76~85に相当する配列番号:4に示されるアミノ酸配列として挙げることができ、該部分配列は、例えば配列番号:3に示されるヌクレオチド配列にコードされる。また、ここで非ヒト哺乳動物とは上記した哺乳動物からヒトを除く哺乳動物である。 The above-mentioned polypeptide (1) contained in the vaccine of the present invention is a partial sequence of the amino acid sequence constituting CD153. CD153 is a known gene, and its nucleotide sequence and amino acid sequence are also known. For example, the amino acid sequence represented by SEQ ID NO: 2 contained in the above polypeptide (1) corresponds to amino acid numbers 71 to 80 of human CD153 (SEQ ID NO: 5). The partial sequence is encoded by the nucleotide sequence shown in SEQ ID NO: 1, for example. Furthermore, the non-human mammal-derived amino acid sequence corresponding to SEQ ID NO: 2 contained in the above-mentioned polypeptide (1) includes information on the amino acid sequence represented by SEQ ID NO: 2 in the present specification and known sequences. Using the nucleotide sequence information of the genome or mRNA of non-human mammals disclosed in the database, design appropriate primers and probes derived from the nucleotide sequence information of non-human mammals, such as RT-PCR and plaque hybridization It can be easily obtained using ordinary genetic engineering techniques. For example, the partial sequence of the mouse CD153 amino acid sequence corresponding to SEQ ID NO: 2 which is a partial sequence of human CD153 is shown in SEQ ID NO: 4 corresponding to amino acid numbers 76 to 85 of mouse CD153 (SEQ ID NO: 6). An amino acid sequence can be mentioned, and the partial sequence is encoded by, for example, the nucleotide sequence shown in SEQ ID NO: 3. The term “non-human mammal” as used herein means a mammal excluding humans from the above-mentioned mammals.
 本発明のワクチンに含まれる上記(1)のポリペプチドは、好ましくは、ヒトの場合、配列番号:2に示されるアミノ酸配列、マウスの場合、配列番号:4に示されるアミノ酸配からなるポリペプチドである(上記(1’)および(1’’)のポリペプチド)。 The above-mentioned polypeptide (1) contained in the vaccine of the present invention is preferably a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 for human and the amino acid sequence represented by SEQ ID NO: 4 for mouse. (The polypeptides of (1 ′) and (1 ″) above).
 また、本発明のワクチンに含まれる上記(2)のポリペプチドは、CD153アミノ酸配列の部分配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列である。そのようなポリペプチドとしては、ヒトの場合、配列番号:2に示されるアミノ酸配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も含まれる。該アミノ酸配列としては、例えば、(1)配列番号:2に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失したアミノ酸配列、(2)配列番号:2に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が付加されたアミノ酸配列、(3)配列番号:2に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が挿入されたアミノ酸配列、(4)配列番号:2に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または(5)上記(1)~(4)の変異が組み合わせられたアミノ酸配列(この場合、変異したアミノ酸の総和が、1又は数個(好ましくは1~数(2~5)個))が含まれる。
 また、上記(2)のポリペプチドに含まれるアミノ酸配列としては、配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も好ましく挙げることができる。そのようなポリペプチドとしては、マウスの場合、配列番号:4に示されるアミノ酸配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も含まれる。該アミノ酸配列としては、例えば、(1) 配列番号:4に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失したアミノ酸配列、(2) 配列番号:4に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が付加されたアミノ酸配列、(3) 配列番号:4に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が挿入されたアミノ酸配列、(4) 配列番号:4に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または(5)上記(1)~(4)の変異が組み合わせられたアミノ酸配列(この場合、変異したアミノ酸の総和が、1又は数個(好ましくは1~数(2~5)個))が含まれる。
In the polypeptide of (2) contained in the vaccine of the present invention, one or several (preferably 1 to several (2 to 5)) amino acids are deleted or substituted in the partial sequence of the CD153 amino acid sequence, The amino acid sequence inserted or added. As such a polypeptide, in the case of human, one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence shown in SEQ ID NO: 2 are deleted, substituted, inserted or added. Included amino acid sequences. Examples of the amino acid sequence include (1) an amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence represented by SEQ ID NO: 2 are deleted, (2 ) An amino acid sequence having 1 or several (preferably 1 to several (2 to 5)) amino acids added to the amino acid sequence represented by SEQ ID NO: 2, (3) the amino acid sequence represented by SEQ ID NO: 2. An amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids are inserted, (4) 1 or several (preferably 1 to several) in the amino acid sequence shown in SEQ ID NO: 2. An amino acid sequence in which (2 to 5) amino acids are substituted with other amino acids, or (5) an amino acid sequence in which the mutations in (1) to (4) above are combined (in this case, the sum of the mutated amino acids is 1 or several (preferably 1 to several (2 to 5)).
The amino acid sequence contained in the polypeptide of (2) above is 1 or several (preferably 1 to several (2 to 5)) in the amino acid sequence derived from the non-human mammal corresponding to SEQ ID NO: 2. An amino acid sequence in which the amino acid of is deleted, substituted, inserted or added can also be preferably mentioned. As such a polypeptide, in the case of mouse, one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence shown in SEQ ID NO: 4 are deleted, substituted, inserted or added. Included amino acid sequences. Examples of the amino acid sequence include (1) an amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence represented by SEQ ID NO: 4 are deleted, (2 ) An amino acid sequence having 1 or several (preferably 1 to several (2 to 5)) amino acids added to the amino acid sequence shown in SEQ ID NO: 4, (3) to the amino acid sequence shown in SEQ ID NO: 4. An amino acid sequence in which 1 or several (preferably 1 to several (2 to 5)) amino acids are inserted, (4) 1 or several (preferably 1 to several) in the amino acid sequence shown in SEQ ID NO: 4. An amino acid sequence in which (2 to 5) amino acids are substituted with other amino acids, or (5) an amino acid sequence in which the mutations in (1) to (4) above are combined (in this case, the sum of the mutated amino acids is 1 or several (preferably 1 to several (2 to 5)).
 「アミノ酸残基の置換」としては、例えば保存的アミノ酸置換があげられる。保存的アミノ酸置換とは、特定のアミノ酸を、そのアミノ酸の側鎖と同様の性質の側鎖を有するアミノ酸で置換することをいう。具体的には、保存的アミノ酸置換では、特定のアミノ酸は、そのアミノ酸と同じグループに属する他のアミノ酸により置換される。同様の性質の側鎖を有するアミノ酸のグループは、当該分野で公知である。例えば、このようなアミノ酸のグループとしては、塩基性側鎖を有するアミノ酸(例えば、リジン、アルギニン、ヒスチジン)、酸性側鎖を有するアミノ酸(例えば、アスパラギン酸、グルタミン酸)、中性側鎖を有するアミノ酸(例えば、グリシン、アスパラギン、グルタミン、セリン、トレオニン、チロシン、システイン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)があげられる。また、中性側鎖を有するアミノ酸は、さらに、極性側鎖を有するアミノ酸(例えば、グリシン、アスパラギン、グルタミン、セリン、トレオニン、チロシン、システイン)、および非極性側鎖を有するアミノ酸(例えば、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)に分類することもできる。また、他のグループとして、例えば、芳香族側鎖を有するアミノ酸(例えば、フェニルアラニン、トリプトファン、チロシン)、水酸基(アルコール性水酸基、フェノール性水酸基)を含む側鎖を有するアミノ酸(例えば、セリン、トレオニン、チロシン)などもあげることができる。 “Conservative amino acid substitutions” are examples of “substitution of amino acid residues”. The conservative amino acid substitution means substitution of a specific amino acid with an amino acid having a side chain having the same property as that of the amino acid. Specifically, in a conservative amino acid substitution, a particular amino acid is replaced with another amino acid that belongs to the same group as that amino acid. Groups of amino acids with side chains of similar nature are known in the art. For example, such groups of amino acids include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having neutral side chains. (For example, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan). Further, an amino acid having a neutral side chain, further, an amino acid having a polar side chain (for example, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), and an amino acid having a non-polar side chain (for example, alanine, Valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan). As another group, for example, an amino acid having an aromatic side chain (eg, phenylalanine, tryptophan, tyrosine), an amino acid having a side chain containing a hydroxyl group (alcoholic hydroxyl group, phenolic hydroxyl group) (eg, serine, threonine, Tyrosine) can also be mentioned.
 「アミノ酸残基の欠失」としては、例えば配列番号:2に示されるアミノ酸配列の中から、任意のアミノ酸残基を選択して欠失させることがあげられる。 The “deletion of amino acid residue” includes, for example, selecting and deleting an arbitrary amino acid residue from the amino acid sequence shown in SEQ ID NO: 2.
 「アミノ酸残基の挿入」または「アミノ酸残基の付加」としては、例えば配列番号:2に示されるアミノ酸配列の内部、N末端側またはC末端側に、アミノ酸残基を挿入または付加させることがあげられる。ペプチドの水溶解性を増強するため、アミノ酸配列のN末端側またはC末端側に塩基性アミノ酸であるアルギニン(Arg)またはリジン(Lys)を1ないし2残基付加してもよい。 “Insertion of amino acid residue” or “addition of amino acid residue” means, for example, insertion or addition of an amino acid residue inside, N-terminal side or C-terminal side of the amino acid sequence shown in SEQ ID NO: 2. can give. In order to enhance the water solubility of the peptide, one or two residues of a basic amino acid, arginine (Arg) or lysine (Lys), may be added to the N-terminal side or C-terminal side of the amino acid sequence.
 本発明のワクチンに含まれる上記(2)のポリペプチドは、好ましくは、配列番号:2に示されるアミノ酸配列または配列番号:4に示されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列からなるポリペプチドである。 The above-mentioned polypeptide (2) contained in the vaccine of the present invention preferably has one or several amino acid residues substituted in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence shown in SEQ ID NO: 4. , A polypeptide consisting of a deleted, inserted, or added amino acid sequence.
 上記(1)、(2)、(1’)、(1’’)のポリペプチド(以下、本発明のポリペプチド)は、付加的なアミノ酸を含んでいてもよい。このようなアミノ酸付加は、該ポリペプチドがCD153に対する特異的免疫反応を誘導する限り許容される。付加されるアミノ酸配列は、特に限定されないが、例えばポリペプチドの検出や精製等を容易にならしめるためのタグを挙げることが出来る。タグとしては、Flagタグ、ヒスチジンタグ、c-Mycタグ、HAタグ、AU1タグ、GSTタグ、MBPタグ、蛍光タンパク質タグ(例えばGFP、YFP、RFP、CFP、BFP等)、イムノグロブリンFcタグ等を例示することが出来る。アミノ酸配列が付加される位置は、本発明のポリペプチドのN末端及び/又はC末端である。 The above-mentioned polypeptides (1), (2), (1 '), and (1' ') (hereinafter referred to as the polypeptide of the present invention) may contain additional amino acids. Such amino acid additions are permissible as long as the polypeptide induces a specific immune response against CD153. The amino acid sequence to be added is not particularly limited, and examples thereof include a tag for facilitating detection and purification of the polypeptide. As the tag, Flag tag, histidine tag, c-Myc tag, HA tag, AU1 tag, GST tag, MBP tag, fluorescent protein tag (for example, GFP, YFP, RFP, CFP, BFP, etc.), immunoglobulin Fc tag, etc. It can be illustrated. The position where the amino acid sequence is added is the N-terminal and / or the C-terminal of the polypeptide of the present invention.
 本発明のポリペプチドに用いられるアミノ酸はL体、D体およびDL体を包含するものであるが、通常、L体であることが好ましい。これらのポリペプチドは、通常のポリペプチド合成法によって合成され本発明に供することが出来るが、本発明においては製造方法、合成方法、調達方法等については、特に限定されない。 The amino acids used in the polypeptide of the present invention include L-form, D-form and DL-form, but usually L-form is preferred. These polypeptides can be used in the present invention after being synthesized by an ordinary polypeptide synthesis method, but the production method, the synthesis method, the procurement method and the like are not particularly limited in the present invention.
 上記(3)、(2’)又は(2’’)の発現ベクターにおいては、上記(1)、(2)、(1’)又は(1’’)のポリペプチドをコードするポリヌクレオチド(DNA又はRNA、好ましくはDNA)が、投与対象である哺乳動物の細胞内でプロモーター活性を発揮し得るプロモーターの下流に機能的に連結されている。即ち、上記(3)、(2’)又は(2’’)の発現ベクターは、プロモーターの制御下で、転写産物として上記(1)、(2)、(1’)又は(1’’)のポリペプチドを発現し得る。上記(3)、(2’)又は(2’’)の発現ベクターを哺乳動物に投与することにより、該哺乳動物の体内において上記(1)、(2)、(1’)又は(1’’)のポリペプチドが産生され、該哺乳動物に上記(1)、(2)、(1’)又は(1’’)のポリペプチドに対する特異的免疫反応が誘導される。
 使用されるプロモーターは、投与対象である哺乳動物の細胞内で機能し得るものであれば特に制限はない。プロモーターとしては、polI系プロモーター、polII系プロモーター、polIII系プロモーター等を使用することができる。具体的には、SV40由来初期プロモーター、サイトメガロウイルスLTR等のウイルスプロモーター、β-アクチン遺伝子プロモーター等の哺乳動物の構成タンパク質遺伝子プロモーター等が用いられる。
In the expression vector of (3), (2 ′) or (2 ″), the polynucleotide (DNA encoding the polypeptide of (1), (2), (1 ′) or (1 ″) above is used. Alternatively, RNA (preferably DNA) is operably linked to the downstream of a promoter capable of exhibiting promoter activity in the cells of the mammal to be administered. That is, the expression vector of (3), (2 ′) or (2 ″) is a transcription product of (1), (2), (1 ′) or (1 ″) under the control of a promoter. Can be expressed. By administering the expression vector of (3), (2 ′) or (2 ″) to a mammal, the above-mentioned (1), (2), (1 ′) or (1 ′) in the body of the mammal. The polypeptide of ') is produced, and a specific immune response to the polypeptide of (1), (2), (1') or (1 '') is induced in the mammal.
The promoter used is not particularly limited as long as it can function in the cells of the mammal to be administered. As the promoter, a polI type promoter, a polII type promoter, a polIII type promoter and the like can be used. Specifically, SV40-derived early promoters, viral promoters such as cytomegalovirus LTR, and mammalian constitutive protein gene promoters such as β-actin gene promoter are used.
 上記(3)、(2’)又は(2’’)の発現ベクターは、好ましくは上記(1)、(2)、(1’)又は(1’’)のポリペプチドをコードするポリヌクレオチドの下流に転写終結シグナル、すなわちターミネーター領域を含有する。さらに、形質転換細胞選択のための選択マーカー遺伝子(テトラサイクリン、アンピシリン、カナマイシン等の薬剤に対する抵抗性を付与する遺伝子、栄養要求性変異を相補する遺伝子等)を含有することもできる。 The expression vector of (3), (2 ′) or (2 ″) is preferably a polynucleotide encoding the polypeptide of (1), (2), (1 ′) or (1 ″) above. It contains a transcription termination signal, that is, a terminator region, downstream. Furthermore, a selectable marker gene for selecting transformed cells (a gene that imparts resistance to drugs such as tetracycline, ampicillin, and kanamycin, a gene that complements an auxotrophic mutation, and the like) can be included.
 本発明において発現ベクターに使用されるベクターの種類は特に制限されないが、ヒト等の哺乳動物への投与に好適なベクターとしては、ウイルスベクター、プラスミドベクター等を挙げることが出来る。ウイルスベクターとしては、レトロウイルス、アデノウイルス、アデノ随伴ウイルス等が挙げられる。製造及び取り扱いの容易性や経済性を考慮すると、プラスミドベクターが好ましく用いられる。 The type of vector used as an expression vector in the present invention is not particularly limited, but examples of vectors suitable for administration to mammals such as humans include viral vectors and plasmid vectors. Examples of viral vectors include retrovirus, adenovirus, adeno-associated virus and the like. A plasmid vector is preferably used in consideration of easiness of production and handling and economical efficiency.
 本発明のワクチンは、上記(1)、(2)、(1’)若しくは(1’’)のポリペプチド又は上記(3)、(2’)若しくは(2’’)の発現ベクターによってコードされるポリペプチドの免疫原性を高めるために、キャリアタンパク質をさらに含むことが好ましい。キャリアタンパク質は、一般には、分子量が小さいために免疫原性を有さない分子(ハプテン)に結合して免疫原性を付与する物質であり、当技術分野で公知である。キャリアタンパク質の例としては、牛血清アルブミン(BSA)、ウサギ血清アルブミン(RSA)、オボアルブミン(OVA)、スカシ貝ヘモシアニン(KLH)、チログロブリン(TG)、免疫グロブリン等などが好ましく挙げられる。特に好ましいキャリアタンパク質は、スカシ貝ヘモシアニン(KLH)である。本発明のワクチンが上記(1)、(2)、(1’)又は(1’’)のポリペプチドである場合は、キャリアタンパク質は上記(1)、(2)、(1’)又は(1’’)のポリペプチドのN末端またはC末端にコンジュゲートされてよい。コンジュゲートする方法としては、上記(1)、(2)、(1’)又は(1’’)のポリペプチドにシステイン残基を導入し、当該システインの側鎖であるSH基を介してキャリアタンパク質のアミノ基と結合させることによってコンジュゲートすることができる(MBS法)。また、タンパク質のリジン残基のεアミノ基や、αアミノ基などのアミノ基同士を結合させることによってもコンジュゲートすることができる(グルタルアルデヒド法)。本発明のワクチンが上記(3)、(2’)又は(2’’)の発現ベクターである場合は、上記(1)、(2)、(1’)又は(1’’)のポリペプチドをコードするポリヌクレオチドの5’側または3’側に、該キャリアタンパク質をコードするポリヌクレオチドが連結されてよい。 The vaccine of the present invention is encoded by the polypeptide of (1), (2), (1 ′) or (1 ″) above or the expression vector of (3), (2 ′) or (2 ″) above. In order to enhance the immunogenicity of the polypeptide, it is preferable to further include a carrier protein. The carrier protein is a substance that imparts immunogenicity by binding to a molecule (hapten) that does not have immunogenicity due to its small molecular weight, and is known in the art. Preferable examples of carrier proteins include bovine serum albumin (BSA), rabbit serum albumin (RSA), ovalbumin (OVA), keyhole limpet hemocyanin (KLH), thyroglobulin (TG), immunoglobulin and the like. A particularly preferred carrier protein is keyhole limpet hemocyanin (KLH). When the vaccine of the present invention is the polypeptide of (1), (2), (1 ′) or (1 ″), the carrier protein is (1), (2), (1 ′) or ( 1 ″) may be conjugated to the N-terminus or C-terminus of the polypeptide. As a method for conjugating, a cysteine residue is introduced into the polypeptide of (1), (2), (1 ′) or (1 ″), and the carrier is introduced via the SH group which is the side chain of the cysteine. It can be conjugated by binding to an amino group of a protein (MBS method). Alternatively, conjugation can also be achieved by linking the ε-amino group of the lysine residue of the protein and the amino groups such as α-amino group (glutaraldehyde method). When the vaccine of the present invention is the expression vector of (3), (2 ′) or (2 ″) above, the polypeptide of (1), (2), (1 ′) or (1 ″) above The polynucleotide encoding the carrier protein may be linked to the 5'side or 3'side of the polynucleotide encoding the carrier protein.
 本発明のワクチンはまた、製薬上許容可能で且つ活性成分と相溶性であるアジュバントをさらに含有することが好ましい。アジュバントは、一般には、宿主の免疫応答を非特異的に増強する物質であり、多数のアジュバントが当技術分野で公知である。本発明のワクチンに使用されるアジュバントは、免疫応答を非特異的に増強することができる限り特に限定されないが、例えば、ミョウバン、CpGオリゴデオキシヌクレオチド、dsRNA、モンタナイド、サーバリックス等が挙げられ、好ましくは、CpGオリゴデオキシヌクレオチドである。 The vaccine of the present invention preferably further contains an adjuvant which is pharmaceutically acceptable and compatible with the active ingredient. Adjuvants are generally substances that nonspecifically enhance the immune response of the host and numerous adjuvants are known in the art. The adjuvant used in the vaccine of the present invention is not particularly limited as long as it can nonspecifically enhance the immune response, but includes, for example, alum, CpG oligodeoxynucleotide, dsRNA, montanide, cervarix, etc., and is preferable. Is a CpG oligodeoxynucleotide.
 本発明のワクチンは、上記(1)、(2)、(1’)若しくは(1’’)のポリペプチド又は上記(3)、(2’)若しくは(2’’)の発現ベクターに加えて、任意の担体、例えば医薬上許容される担体を含む医薬組成物として提供され得る。 The vaccine of the present invention comprises the polypeptide of (1), (2), (1 ′) or (1 ″) or the expression vector of (3), (2 ′) or (2 ″) , And can be provided as a pharmaceutical composition containing any carrier, for example, a pharmaceutically acceptable carrier.
 医薬上許容される担体は、剤形によって適宜選択されてよく、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリド等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、それらに限定されるものではない。 The pharmaceutically acceptable carrier may be appropriately selected depending on the dosage form, for example, sucrose, an excipient such as starch, cellulose, a binder such as methyl cellulose, starch, a disintegrating agent such as carboxymethyl cellulose, magnesium stearate, Lubricants such as Aerosil, fragrances such as citric acid and menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspending agents such as methylcellulose and polyvinylpyrrolide, surface active agents Examples thereof include, but are not limited to, dispersants such as agents, diluents such as water and physiological saline, base waxes, and the like.
 さらに、本発明のワクチンが上記(3)、(2’)又は(2’’)の発現ベクターの場合、該発現ベクターの細胞内への導入を促進するために、本発明のワクチンは更に核酸導入用試薬を含むことができる。発現ベクターとしてウイルスベクターを使用する場合には、遺伝子導入試薬としてはレトロネクチン、ファイブロネクチン、ポリブレン等を用いることができる。また、発現ベクターとしてプラスミドベクターを使用する場合には、リポフェクチン、リポフェクタミン(lipofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質を用いることが出来る。 Furthermore, when the vaccine of the present invention is the expression vector of (3), (2 ′) or (2 ″) above, the vaccine of the present invention further comprises a nucleic acid in order to promote introduction of the expression vector into cells. A transfer reagent can be included. When a viral vector is used as the expression vector, retronectin, fibronectin, polybrene or the like can be used as the gene transfer reagent. When a plasmid vector is used as the expression vector, lipofectin, lipofectamine, DOGS (transfectam), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, poly (ethyleneimine) (PEI), etc. Cationic lipids can be used.
 本発明のワクチンは、経口又は非経口的に哺乳動物に対して投与することが出来る。ポリペプチドや発現ベクターは、胃の中で分解され得るので、非経口的に投与することが好ましい。経口投与に好適な製剤としては、液剤、カプセル剤、サシェ剤、錠剤、懸濁液剤、乳剤等を挙げることができる。非経口的な投与(例えば、皮下注射、筋肉注射、局所注入、腹腔内投与など)に好適な製剤としては、水性および非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性および非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分および医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌のビヒクルに溶解または懸濁すればよい状態で保存することもできる。 The vaccine of the present invention can be orally or parenterally administered to mammals. The polypeptide and expression vector are preferably administered parenterally because they can be degraded in the stomach. Suitable formulations for oral administration include solutions, capsules, sachets, tablets, suspensions, emulsions and the like. Suitable formulations for parenteral administration (eg subcutaneous injection, intramuscular injection, local infusion, intraperitoneal administration, etc.) include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants. , A buffer solution, a bacteriostatic agent, a tonicity agent, etc. may be contained. Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like. The preparation can be enclosed in a container such as an ampoule or a vial in a unit dose or multiple doses. Alternatively, the active ingredient and a pharmaceutically acceptable carrier may be lyophilized and stored in a state in which they may be dissolved or suspended in an appropriate sterile vehicle immediately before use.
 医薬組成物中の有効成分の含有量は、通常、医薬組成物全体の約0.1~100重量%、好ましくは約1~99重量%、さらに好ましくは約10~90重量%程度である。
 本発明のワクチンの投与量は、投与する対象、投与方法、投与形態等によって異なるが、有効成分が上記(1)、(2)、(1’)又は(1’’)のポリペプチドの場合は、通常成人1人当たりポリペプチドを、一回当たり1μg~1000μgの範囲、好ましくは20μg~100μgの範囲で、通常4週間から12週間に亘って、2回から3回投与し、抗体価が低下した場合にはその都度1回追加投与する。有効成分が上記(3)、(2’)又は(2’’)の発現ベクターの場合は、通常成人1人当たり発現ベクターを、一回当たり1μg~1000μgの範囲、好ましくは20μg~100μgの範囲で、通常4週間から12週間に亘って、2回から3回投与し、抗体価が低下した場合にはその都度1回追加投与する。
The content of the active ingredient in the pharmaceutical composition is usually about 0.1 to 100% by weight, preferably about 1 to 99% by weight, more preferably about 10 to 90% by weight, based on the whole pharmaceutical composition.
The dose of the vaccine of the present invention varies depending on the administration subject, administration method, administration form, etc., but when the active ingredient is the above-mentioned polypeptide (1), (2), (1 ′) or (1 ″) Is usually administered in the range of 1 μg to 1000 μg per adult, preferably 20 μg to 100 μg per adult, usually 2 to 3 times over 4 to 12 weeks, and the antibody titer is decreased. If this is the case, an additional dose will be given each time. When the active ingredient is the expression vector of (3), (2 ′) or (2 ″), the expression vector per adult is usually in the range of 1 μg to 1000 μg, preferably 20 μg to 100 μg. Usually, it is administered 2 to 3 times over 4 to 12 weeks, and if the antibody titer decreases, additional administration is performed once each time.
 本発明のワクチンを哺乳動物へ投与することにより、CD153に対する特異的免疫応答(特異的抗体産生、特異的T細胞の増殖等)が誘導され、該哺乳動物がCD153に対する中和抗体を獲得し、細胞表面上にCD153を発現する老化関連T細胞が阻害される。老化関連T細胞は、T細胞受容体への刺激に対し増殖やサイトカインの産生を示さず,炎症性タンパク質や炎症性ケモカインを大量に分泌する特徴を有する、加齢と共に全身性に増加するT細胞である。老化関連T細胞の増加によって慢性炎症が引き起こされ、インスリン耐性や耐糖能異常等の糖代謝異常が誘発される。従って、本発明のワクチンによって老化関連T細胞が阻害される結果、糖代謝異常に対する予防または治療効果が発揮される。老化関連T細胞としては、上記の特徴を有するT細胞であれば特に制限されないが、例えば、CD4陽性PD-1陽性CD153陽性T細胞、好ましくは、CD4陽性CD44陽性CD62L陰性PD-1陽性CD153陽性T細胞が挙げられる。 By administering the vaccine of the present invention to a mammal, a specific immune response against CD153 (specific antibody production, specific T cell proliferation, etc.) is induced, and the mammal acquires a neutralizing antibody against CD153, Senescence-related T cells that express CD153 on the cell surface are inhibited. Senescence-related T cells have the characteristic of not proliferating or producing cytokines in response to stimulation of T cell receptors, and secreting large amounts of inflammatory proteins and chemokines, and increase systemically with age. Is. Chronic inflammation is caused by an increase in age-related T cells, and abnormal glucose metabolism such as insulin resistance and impaired glucose tolerance is induced. Therefore, as a result of the inhibition of senescence-related T cells by the vaccine of the present invention, a preventive or therapeutic effect on abnormal glucose metabolism is exerted. The senescence-related T cells are not particularly limited as long as they are T cells having the above characteristics, for example, CD4 positive PD-1 positive CD153 positive T cells, preferably, CD4 positive CD44 positive CD62L negative PD-1 positive CD153 positive. Examples include T cells.
 また本発明は、本発明のワクチンの1または2以上の成分を包含する、1または2以上の容器からなるキットを提供する。本発明のキットを用いることによっても、糖代謝異常を予防することができ、またはその症状を治療もしくは軽減することができる。 The present invention also provides a kit comprising one or more containers containing one or more components of the vaccine of the present invention. By using the kit of the present invention, abnormal glucose metabolism can be prevented, or its symptoms can be treated or reduced.
2.糖代謝異常の予防または治療用抗体
 本発明はまた、糖代謝異常の予防または治療剤(本発明の予防または治療剤)を提供する。
 本発明の予防または治療剤によって予防または治療される糖代謝異常、本発明の予防または治療剤の投与対象は、本発明のワクチンによって予防または治療される糖代謝異常、本発明のワクチンの投与対象と同様であってよい。
2. Antibody for Preventing or Treating Glucose Metabolism Disorders The present invention also provides a preventive or therapeutic agent for glucose metabolism disorders (the preventive or therapeutic agent of the present invention).
Glucose metabolism disorders that are prevented or treated by the prophylactic or therapeutic agent of the present invention, administration targets of the prophylactic or therapeutic agent of the present invention are glucose metabolism disorders that are prevented or treated by the vaccine of the present invention, and administration targets of the vaccine of the present invention May be similar to.
 本発明の予防または治療剤は、以下の(1)または(2):
(1)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド
を認識し、老化関連T細胞を阻害する抗体を含む。
 本発明の予防または治療剤は、好ましくは、
(1’)配列番号:2に示されるアミノ酸配列からなるポリペプチドを認識し、老化関連T細胞を阻害する抗体、あるいは、
(1’’)配列番号:4に示されるアミノ酸配列からなるポリペプチドを認識し、老化関連T細胞を阻害する抗体
を含む。
The preventive or therapeutic agent of the present invention has the following (1) or (2):
(1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2;
(2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 It includes an antibody that recognizes a polypeptide comprising the sequence and inhibits senescence-associated T cells.
The preventive or therapeutic agent of the present invention is preferably
(1 ′) an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 and inhibits senescence-related T cells, or
(1 ″) It includes an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4 and inhibits senescence-related T cells.
 上記(1)のポリペプチドは、好ましくは、ヒトの場合、配列番号:2に示されるアミノ酸配列、マウスの場合、配列番号:4に示されるアミノ酸配からなるポリペプチドである。 The above polypeptide (1) is preferably a polypeptide having the amino acid sequence represented by SEQ ID NO: 2 for human and the amino acid sequence represented by SEQ ID NO: 4 for mouse.
 上記(1)、(2)、(1’)又は(1’’)のポリペプチドを認識する抗体(以下、本発明の抗体)は、老化関連T細胞の表面上に発現するCD153に結合し、老化関連T細胞を阻害し、炎症性タンパク質、炎症性ケモカインの分泌を低減させることができるので、糖代謝異常に対する有効な予防または治療剤となり得る。すなわち、該抗体を投与することにより、糖代謝異常を発症した患者に対する治療効果、および発症のおそれのある対象に対する予防効果が期待できる。 An antibody that recognizes the polypeptide of (1), (2), (1 ′) or (1 ″) (hereinafter, the antibody of the present invention) binds to CD153 expressed on the surface of senescence-related T cells. Since it can inhibit aging-related T cells and reduce the secretion of inflammatory proteins and chemokines, it can be an effective preventive or therapeutic agent for glucose metabolism abnormality. That is, administration of the antibody can be expected to have a therapeutic effect on a patient who has developed a glucose metabolism disorder and a preventive effect on a subject who may develop the disorder.
 本発明の抗体としては、ポリクローナル抗体、モノクローナル抗体等の天然型抗体、トランスジェニックマウスや遺伝子組換え技術を用いて製造され得るキメラ抗体、ヒト化抗体および一本鎖抗体、ヒト抗体産生遺伝子を導入したマウスやファージディスプレイなどによって作製したヒト抗体ならびにこれらの断片などが含まれる。本発明の抗体は、本発明のポリペプチドを認識し、老化関連T細胞を阻害する抗体である限り特に限定されないが、本発明のポリペプチドに対する特異性の点からモノクローナル抗体であることが好ましい。あるいはヒトへの臨床応用の点から、本発明の抗体はヒト化抗体またはヒト抗体であることが好ましい。 As the antibody of the present invention, a natural antibody such as a polyclonal antibody or a monoclonal antibody, a chimeric antibody that can be produced by using a transgenic mouse or gene recombination technology, a humanized antibody and a single chain antibody, and a human antibody-producing gene are introduced. Human antibodies produced by the mouse and phage display, and fragments thereof are included. The antibody of the present invention is not particularly limited as long as it is an antibody that recognizes the polypeptide of the present invention and inhibits senescence-related T cells, but is preferably a monoclonal antibody from the viewpoint of specificity for the polypeptide of the present invention. Alternatively, from the viewpoint of human clinical application, the antibody of the present invention is preferably a humanized antibody or a human antibody.
 上記抗体断片とは、前述した抗体の一部分の領域を意味し、具体的には、例えばF(ab’)2、Fab’、Fab、Fc領域を含む抗体断片、Fv(variable fragment of antibody)、sFv、dsFv(disulphide stabilised Fv)、dAb(single domain antibody)等が挙げられる(Exp. Opin. Ther. Patents, Vol.6, No.5, p.441-456, 1996)。 The above antibody fragment means a region of a part of the above-mentioned antibody, and specifically, for example, F (ab ') 2 , Fab', Fab, an antibody fragment containing an Fc region, Fv (variable fragment of antibody), Examples include sFv, dsFv (disulphide stabilized Fv), dAb (single domain antibody) and the like (Exp. Opin. Ther. Patents, Vol. 6, No. 5, p. 441-456, 1996).
 上記ヒト化抗体とは、抗原認識部位のみヒト以外の遺伝子を由来とし、かつ残りの部位をヒト遺伝子由来として、遺伝子組換え技術を用いて製造された抗体のことをいう。また上記ヒト抗体とは、ヒト抗体産生遺伝子を導入したトランスジェニックマウス(例、TransChromo Mouse(商標))が産生するヒト抗体や、ヒトのBリンパ球のmRNAやゲノム由来のVH遺伝子とVL遺伝子とをランダムに組み合わせて構築したライブラリーから、ファージディスプレイ法などのディスプレイ技術によって抗体可変領域を発現させたヒト抗体ライブラリーを基に作製した抗体のことをいう。 The above-mentioned humanized antibody refers to an antibody produced by gene recombination technology in which only the antigen recognition site is derived from a gene other than human and the remaining site is derived from a human gene. In addition, the above-mentioned human antibody is a human antibody produced by a transgenic mouse into which a human antibody-producing gene has been introduced (eg, TransChromoMouse (trademark)), VH gene and VL gene derived from human B lymphocyte mRNA or genome. It refers to an antibody prepared from a library constructed by randomly combining the above-mentioned antibodies based on a human antibody library expressing an antibody variable region by a display technique such as a phage display method.
 また抗体のクラスも特に限定されず、本発明の抗体は、IgG、IgM、IgA、IgDまたはIgE等のいずれのアイソタイプを有する抗体をも包含する。好ましくはIgGまたはIgMであり、抗体の精製の容易性等を考慮すると、より好ましくはIgGである。 The class of antibody is not particularly limited, and the antibody of the present invention includes antibodies having any isotype such as IgG, IgM, IgA, IgD or IgE. IgG or IgM is preferable, and IgG is more preferable in view of easiness of antibody purification.
 次に、抗体の製造方法について説明する。
 ポリクローナル抗体またはモノクローナル抗体は、自体公知の方法によって製造することができる。すなわち、免疫原(本発明のポリペプチド)を、必要に応じてフロイントアジュバント(Freund’s Adjuvant)と共に、哺乳動物、例えばポリクローナル抗体の場合、マウス、ラット、ハムスター、モルモット、ウサギ、ネコ、イヌ、ブタ、ヤギ、ウマまたはウシなど、好ましくはマウス、ラット、ハムスター、モルモット、ヤギ、ウマまたはウサギに免疫する。モノクローナル抗体の場合は、同様の方法で、マウス、ラット、ハムスターなどに免疫する。
Next, a method for producing an antibody will be described.
A polyclonal antibody or a monoclonal antibody can be produced by a method known per se. That is, the immunogen (polypeptide of the present invention), optionally with Freund's adjuvant (Freund's Adjuvant), mammals, for example, in the case of a polyclonal antibody, mouse, rat, hamster, guinea pig, rabbit, cat, dog, pig, Immunize preferably a mouse, rat, hamster, guinea pig, goat, horse or rabbit, such as goat, horse or cow. In the case of a monoclonal antibody, mice, rats, hamsters, etc. are immunized in the same manner.
 本発明のポリペプチドは、そのまま免疫原として用いることも可能であるが、分子量1万以上の高分子化合物との複合体として免疫することが望ましい。従って、本発明のポリペプチドは、免疫原として使用するとき、自体公知の方法により高分子化合物(例、キャリアタンパク質など)との複合体としてもよい。例えば、配列番号:2で表されるアミノ酸配列からなるポリペプチドを上記記載の方法に従って合成し、牛血清アルブミン(BSA)、ウサギ血清アルブミン(RSA)、オボアルブミン(OVA)、スカシ貝ヘモシアニン(KLH)、チログロブリン(TG)、免疫グロブリン等のキャリアタンパク質との複合体を形成させる。当該複合体は、その後好ましい免疫原として用いることができる。複合体としては、スカシ貝ヘモシアニンとの複合体が好ましく用いられる。 The polypeptide of the present invention can be used as an immunogen as it is, but it is desirable to immunize it as a complex with a high molecular weight compound having a molecular weight of 10,000 or more. Therefore, when used as an immunogen, the polypeptide of the present invention may be formed into a complex with a high molecular compound (eg, carrier protein etc.) by a method known per se. For example, a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 was synthesized according to the method described above, and bovine serum albumin (BSA), rabbit serum albumin (RSA), ovalbumin (OVA), keyhole limpet hemocyanin (KLH). ), Thyroglobulin (TG), immunoglobulins and other carrier proteins. The complex can then be used as the preferred immunogen. As the complex, a complex with keyhole limpet hemocyanin is preferably used.
 前記ポリペプチドとキャリアタンパク質との複合体を形成させるなどの目的で、本発明のポリペプチドには1~2個、好ましくは1個のアミノ酸を付加することが出来る。付加されるアミノ酸の位置はポリペプチドのいずれの位置でもよく、特に限定されないが、ポリペプチドのN末端またはC末端が好ましい。 1 to 2, preferably 1 amino acid can be added to the polypeptide of the present invention for the purpose of forming a complex between the polypeptide and a carrier protein. The position of the added amino acid may be any position of the polypeptide and is not particularly limited, but the N-terminal or C-terminal of the polypeptide is preferable.
 複合体の形成においては、本発明のポリペプチドの抗原性を維持することができる限り、限定なく公知の方法を適用することができる。例えば、本発明のポリペプチドにシステイン残基を導入し、当該システインの側鎖であるSH基を介して前記高分子化合物(キャリアタンパク質)のアミノ基と結合させることもできる(MBS法)。また、タンパク質のリジン残基のεアミノ基や、αアミノ基などのアミノ基同士を結合させることもできる(グルタルアルデヒド法)。 In forming the complex, known methods can be applied without limitation as long as the antigenicity of the polypeptide of the present invention can be maintained. For example, it is also possible to introduce a cysteine residue into the polypeptide of the present invention and bind it to the amino group of the polymer compound (carrier protein) via the SH group which is the side chain of the cysteine (MBS method). In addition, ε-amino groups of lysine residues of proteins and amino groups such as α-amino groups can also be bound to each other (glutaraldehyde method).
 ポリクローナル抗体は、具体的には下記のようにして製造することができる。すなわち、免疫原をマウス、ラット、ハムスター、モルモット、ヤギ、ウマまたはウサギ、好ましくはヤギ、ウマまたはウサギ、より好ましくはウサギの皮下内、筋肉内、静脈内、フッドパッド内あるいは腹腔内に1~数回注射することにより免疫感作を施す。通常、初回免疫から約1~14日毎に1~5回免疫を行って、最終免疫より約1~5日後に免疫感作された該哺乳動物から血清を取得する。 Specifically, the polyclonal antibody can be produced as follows. That is, the immunogen is administered to a mouse, rat, hamster, guinea pig, goat, horse or rabbit, preferably goat, horse or rabbit, more preferably rabbit subcutaneously, intramuscularly, intravenously, in a hood pad or intraperitoneally. Immunizations are given by several injections. Usually, about 1 to 14 days after the initial immunization, immunization is performed 1 to 5 times, and serum is obtained from the immunized mammal about 1 to 5 days after the final immunization.
 血清そのものをポリクローナル抗体として用いることも可能であるが、限外ろ過、硫安分画、ユーグロブリン沈澱法、カプロイン酸法、カプリル酸法、イオン交換クロマトグラフィー(DEAEまたはDE52等)、抗イムノグロブリンカラムもしくはプロテインA/Gカラム、免疫原を架橋させたカラム等を用いたアフィニティカラムクロマトグラフィーにより、該抗体を単離および/または精製し、得られた精製抗体を用いることも可能である。 Although serum itself can be used as a polyclonal antibody, ultrafiltration, ammonium sulfate fractionation, euglobulin precipitation method, caproic acid method, caprylic acid method, ion exchange chromatography (DEAE or DE52, etc.), anti-immunoglobulin column Alternatively, the purified antibody obtained by isolating and / or purifying the antibody by affinity column chromatography using a protein A / G column, a column obtained by crosslinking an immunogen, or the like can be used.
 モノクローナル抗体の製造方法としては、例えば下記の方法が挙げられる。まず上記免疫感作動物から得た該抗体産生細胞と自己抗体産生能のない骨髄腫系細胞(ミエローマ細胞)からハイブリドーマを調製し、該ハイブリドーマをクローン化する。すなわち、ハイブリドーマの培養上清を検体として、免疫学的手法により、哺乳動物の免疫に用いた本発明のペプチドに対する特異的親和性を示しかつキャリアタンパク質と交差反応性を示さないモノクローナル抗体を産生するクローンを選択する。次いで、当該ハイブリドーマの培養上清などから、自体公知の方法によって抗体を製造することができる。 Examples of the method for producing a monoclonal antibody include the following methods. First, a hybridoma is prepared from the antibody-producing cells obtained from the immunized animal and myeloma cells (myeloma cells) having no autoantibody-producing ability, and the hybridoma is cloned. That is, using a culture supernatant of a hybridoma as a sample, an immunological method is used to produce a monoclonal antibody that exhibits a specific affinity for the peptide of the present invention used for immunization of mammals and does not show cross-reactivity with a carrier protein. Select a clone. Then, an antibody can be produced from the culture supernatant of the hybridoma by a method known per se.
 具体的には、下記のようにしてモノクローナル抗体を製造することができる。すなわち、免疫原を、マウス、ラットまたはハムスター(ヒト抗体産生トランスジェニックマウスのような他の動物由来の抗体を産生するように作出されたトランスジェニック動物を含む)の皮下内、筋肉内、静脈内、フッドパッド内もしくは腹腔内に1~数回注射するか、または移植することにより免疫感作を施す。通常、初回免疫から約1~14日毎に1~4回免疫を行って、最終免疫より約1~5日後に免疫感作された該哺乳動物の脾臓などから抗体産生細胞を取得する。 Specifically, a monoclonal antibody can be produced as follows. That is, the immunogen is subcutaneously, intramuscularly, or intravenously in a mouse, rat, or hamster (including a transgenic animal produced to produce an antibody derived from another animal such as a human antibody-producing transgenic mouse). Immunization is carried out by injecting 1 to several times in the foot pad or intraperitoneal cavity, or by transplantation. Usually, about 1 to 14 days after the first immunization, immunization is performed 1 to 4 times, and antibody-producing cells are obtained from the spleen of the immunized mammal about 1 to 5 days after the final immunization.
 モノクローナル抗体を分泌するハイブリドーマ(融合細胞)の調製は、ケーラーおよびミルシュタインらの方法(Nature, Vol.256, p.495-497, 1975)ならびにそれらに準じる修飾方法に従って行うことができる。すなわち、前述の如く免疫感作された哺乳動物から取得される脾臓、リンパ節、骨髄または扁桃等、好ましくは脾臓に含まれる抗体産生細胞と、好ましくはマウス、ラット、モルモット、ハムスター、ウサギまたはヒト等の哺乳動物、より好ましくはマウス、ラットまたはヒト由来の自己抗体産生能のないミエローマ細胞との細胞融合により、ハイブリドーマを得る。 Hybridomas (fused cells) that secrete monoclonal antibodies can be prepared according to the method of Kohler and Milstein et al. (Nature, Vol. 256, p. 495-497, 1975) and modification methods similar to them. That is, antibody-producing cells contained in spleen, lymph node, bone marrow or tonsil, etc., preferably spleen, obtained from a mammal immunized as described above, and preferably mouse, rat, guinea pig, hamster, rabbit or human. A hybridoma is obtained by cell fusion with a myeloma cell having no autoantibody-producing ability derived from a mammal such as, for example, a mouse, rat or human.
 細胞融合に用いられるミエローマ細胞としては、例えばマウス由来ミエローマP3/X63-AG8.653 (653;ATCC No.CRL1580)、P3/NSI/1-Ag4-1 (NS-1)、P3/X63-Ag8.U1 (P3U1)、SP2/0-Ag14 (Sp2/0、Sp2)、PAI、F0またはBW5147、ラット由来ミエローマ210RCY3-Ag.2.3.、ヒト由来ミエローマU-266AR1、GM1500-6TG-A1-2、UC729-6、CEM-AGR、D1R11またはCEM-T15が挙げられる。 Examples of myeloma cells used for cell fusion include mouse-derived myeloma P3 / X63-AG8.653 (653; ATCC No. CRL1580), P3 / NSI / 1-Ag4-1 (NS-1), P3 / X63-Ag8. .U1 (P3U1), SP2 / 0-Ag14 (Sp2 / 0, Sp2), PAI, F0 or BW5147, rat-derived myeloma 210RCY3-Ag.2.3., Human-derived myeloma U-266AR1, GM1500-6TG-A1-2, UC729-6, CEM-AGR, D1R11 or CEM-T15.
 モノクローナル抗体を産生するハイブリドーマのスクリーニングは、得られたハイブリドーマを、例えばマイクロタイタープレート内で培養し、増殖の見られたウェルの培養上清の、前述の免疫感作で用いた本発明のポリペプチドに対する反応性および前記上清のキャリアタンパク質に対する反応性を、例えばELISA等の免疫測定法によって測定し、比較することによって行うことができる。 The screening of hybridomas producing a monoclonal antibody is carried out by culturing the obtained hybridomas in, for example, a microtiter plate, and the culture supernatant of the wells in which the proliferation is observed. And the carrier protein of the supernatant can be measured and compared by an immunoassay such as ELISA.
 スクリーニングによりクローン化されたハイブリドーマは、培地(例えば、10%牛胎仔血清を含むDMEM)を用いて培養される。そして、その培養液の遠心上清をモノクローナル抗体溶液とすることができる。また、該ハイブリドーマを、該ハイブリドーマに由来する動物の腹腔に注入することにより、動物に腹水を生成させ、該動物から得られた腹水をモノクローナル抗体溶液とすることができる。モノクローナル抗体は、上述のポリクローナル抗体と同様の方法で、単離および/または精製されることが好ましい。 Hybridomas cloned by screening are cultured in a medium (eg, DMEM containing 10% fetal bovine serum). Then, the centrifugation supernatant of the culture can be used as a monoclonal antibody solution. Further, the hybridoma can be injected into the abdominal cavity of an animal derived from the hybridoma to cause ascites in the animal, and the ascites obtained from the animal can be used as a monoclonal antibody solution. Monoclonal antibodies are preferably isolated and / or purified in a manner similar to the polyclonal antibodies described above.
 また、キメラ抗体は、例えば「実験医学(臨時増刊号),Vol.6, No.10, 1988」、特公平3-73280号公報等を、ヒト化抗体は、例えば特表平4-506458号公報、特開昭62-296890号公報等を、ヒト抗体は、例えば「Nature Genetics, Vol.15, p.146-156, 1997」、「Nature Genetics, Vol.7, p.13-21, 1994」、特表平4-504365号公報、国際公開WO94/25585号、「日経サイエンス、6月号、第40~第50頁、1995年」、「Nature, Vol.368, p.856-859, 1994」、特表平6-500233号公報等を参考にそれぞれ製造することができる。 Chimeric antibodies are, for example, “Experimental Medicine (Extra special issue), Vol. 6, No. 10, 1988”, Japanese Patent Publication No. 3-73280, and humanized antibodies are, for example, Japanese Patent Publication No. 4-506458. Publication, JP-A-62-296890, etc., human antibodies, for example, "Nature Genetics, Vol.15, P.146-156, 1997", "Nature Genetics, Vol.7, P.13-21, 1994 , Special Publication No. 4-504365, International Publication WO94 / 25585, "Nikkei Science, June issue, 40 to 50 pages, 1995", "Nature, Vol.368, p.856-859, 1994 ”and Japanese Patent Publication No. 6-500233.
 ファージディスプレイによる抗体作製は、例えばヒト抗体スクリーニング用に作製されたファージライブラリーから、バイオパニングにより抗原に親和性を有するファージを回収、濃縮することにより行うことができ、これによりFab等の抗体等を容易に得ることができる。この場合、本発明のポリペプチドを抗原として用いて、抗体ライブラリーをスクリーニングすることが好ましい。好ましい抗体ライブラリーおよび抗体のスクリーニング方法については、「Science, 228:4075 p.1315-1317 (1985)」、「Nature, 348: p.552-554 (1990)」、「Curr. Protein Pept. Sci., Sep;1(2): 155-169 (2000)」、国際公開WO01/062907号などを参照することができる。これにより得られた抗体断片を用いたり、ファージが有するDNAを利用して抗体を調製することができる。 Antibody production by phage display can be carried out, for example, by recovering and concentrating phage having an affinity for an antigen by biopanning from a phage library prepared for human antibody screening, thereby producing antibodies such as Fab. Can be easily obtained. In this case, it is preferable to screen the antibody library using the polypeptide of the present invention as an antigen. For preferable antibody libraries and antibody screening methods, see `` Science, 228: 4075, p.1315-1317 (1985), '' `` Nature, 348 :, p.552-554, (1990), '' `` Curr. Protein Pept.Sci. ., Sep; 1 (2): 155-169 (2000) ”, international publication WO01 / 062907, etc. can be referred to. The antibody can be prepared by using the antibody fragment thus obtained or by utilizing the DNA of the phage.
 本発明の予防または治療剤中に含まれる前記抗体の配合量は、上記効果を奏する限り特に限定されるものではないが、通常、本発明の予防または治療剤全体の0.001~90重量%であり、好ましくは0.005~50重量%であり、より好ましくは0.01~10重量%である。 The amount of the antibody contained in the prophylactic or therapeutic agent of the present invention is not particularly limited as long as the above effects are exhibited, but is usually 0.001 to 90% by weight of the total prophylactic or therapeutic agent of the present invention. , Preferably 0.005 to 50% by weight, more preferably 0.01 to 10% by weight.
 本発明の予防または治療剤は、有効成分である前記抗体以外に医薬的に許容される担体を含有していてもよい。かかる担体としては、製剤分野において通常用いられる担体を使用することができ、例えば、ショ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、リン酸カルシウム、炭酸カルシウム等の賦形剤、安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等の保存剤、クエン酸、クエン酸ナトリウム、酢酸等の安定剤、メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、グリセリン、ポリエチレングリコール等のベースワックスなどが挙げられるが、それらに限定されない。 The prophylactic or therapeutic agent of the present invention may contain a pharmaceutically acceptable carrier in addition to the antibody as the active ingredient. As such a carrier, a carrier usually used in the field of formulation can be used. For example, excipients such as sucrose, starch, mannitol, sorbit, lactose, glucose, calcium phosphate, calcium carbonate, sodium benzoate, and sulfite. Preservatives such as sodium hydrogen, methylparaben, propylparaben, stabilizers such as citric acid, sodium citrate, acetic acid, suspending agents such as methylcellulose, polyvinylpyrrolidone, aluminum stearate, dispersants such as surfactants, water, physiological Examples thereof include diluents such as saline, base waxes such as glycerin and polyethylene glycol, but are not limited thereto.
 本発明の予防または治療剤の投与剤形としては、例えば液剤、注射製剤などが挙げられるが、それらに限定されない。また本発明の予防または治療剤は、その剤形が速放性製剤または徐放性製剤などの放出制御製剤であってもよい。抗体は一般に水性溶媒に可溶であるため、上記いずれの剤形を採っても容易に吸収される。さらに自体公知の方法により抗体の溶解性を上昇させることも可能である。 Examples of the dosage form of the prophylactic or therapeutic agent of the present invention include, but are not limited to, solutions and injection preparations. The prophylactic or therapeutic agent of the present invention may be in the form of controlled release preparation such as immediate release preparation or sustained release preparation. Since an antibody is generally soluble in an aqueous solvent, it is easily absorbed by any of the above dosage forms. Furthermore, the solubility of the antibody can be increased by a method known per se.
 糖代謝異常の予防、治療または軽減のために用いることができる本発明の予防または治療剤は、製剤製法として自体公知である手段に従って、上記抗体を有効成分として使用することで製造することができる。 The preventive or therapeutic agent of the present invention, which can be used for the prevention, treatment or alleviation of glucose metabolism abnormality, can be produced by using the above-mentioned antibody as an active ingredient according to a means known per se as a pharmaceutical production method. ..
 例えば、全身投与に好適な本発明の予防または治療剤は、水性または非水性の等張な無菌の注射液に有効量の本発明の抗体を溶解させて製造(例、注射製剤)することができる。本発明の抗体を凍結乾燥させ(例、凍結乾燥製剤)これを水性または非水性の等張な無菌の希釈液に溶解させることで製造してもよい。また、局所投与に好適な本発明の予防または治療剤は、水または生理食塩水のような希釈液に本発明の抗体を溶解させて製造することができる(例、液剤)。液剤は、噴霧器を用いた気管支や肺などへの吸入療法によって使用することも可能である。なお、これらの剤には抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。これらの本発明の予防または治療剤は、アンプル及びバイアルのように、単位投与量あるいは複数回投与量ずつ容器に封入することができる。 For example, the prophylactic or therapeutic agent of the present invention suitable for systemic administration may be produced by dissolving an effective amount of the antibody of the present invention in an aqueous or non-aqueous isotonic sterile injection solution (eg, injection preparation). it can. It may be produced by freeze-drying the antibody of the present invention (eg, freeze-dried preparation) and dissolving it in an aqueous or non-aqueous isotonic sterile diluent. Moreover, the prophylactic or therapeutic agent of the present invention suitable for topical administration can be produced by dissolving the antibody of the present invention in a diluent such as water or physiological saline (eg, liquid preparation). The liquid agent can also be used by inhalation therapy to the bronchus or lungs using a nebulizer. In addition, these agents may contain an antioxidant, a buffer solution, a bacteriostatic agent, an isotonicity agent and the like. These prophylactic or therapeutic agents of the present invention, like ampoules and vials, can be enclosed in a container in a unit dose or multiple doses.
 本発明の予防または治療剤の投与量は、有効成分として含有する抗体の活性、種類もしくは配合量、投与対象、投与ルート、投与対象の年齢及び体重等により適宜設定することができるが、例えば成人(体重60kg)1日あたりの投与量(有効量)としては、抗体量として0.1mg~1000mg、好ましくは0.1mg~500mg、さらに好ましくは0.1mg~300mgである。本発明の予防または治療剤は、1日あたり、必要に応じて一度又は数回に分割して投与することができ、また数日に分けて投与することもできる。 The dose of the prophylactic or therapeutic agent of the present invention can be appropriately set depending on the activity, type or amount of the antibody contained as an active ingredient, administration subject, administration route, age and weight of administration subject, and the like. (60 kg body weight) The daily dose (effective amount) is 0.1 mg to 1000 mg, preferably 0.1 mg to 500 mg, and more preferably 0.1 mg to 300 mg as the amount of antibody. The prophylactic or therapeutic agent of the present invention can be administered once or in several divided doses per day as needed, or can be administered in divided doses for several days.
 本発明の予防または治療剤は、公知の糖代謝異常の予防または治療剤と併用することができる。そのような公知の糖代謝異常の予防または治療剤としては、インスリン、トルブタミド、グリクロピラミド、グリベンクラミド、メトホルミン、エパルレスタット、ボグリボース、アカルボース、トログリタゾン等の抗糖尿病薬などが挙げられる。これらは1種類のみを併用してもよいし、複数の種類を併用してもよい。本明細書中、「併用」とは、本発明の予防または治療剤と該公知の糖代謝異常の予防または治療剤とを組み合わせて使用することを意味し、その使用形態は特に限定されない。例えば、本発明の予防または治療剤と該公知の糖代謝異常の予防または治療剤とを共に含有した医薬組成物としての投与、または混合することなく別途製剤し、同時若しくは時間差をあけての投与の両方を含む。 The preventive or therapeutic agent of the present invention can be used in combination with a known preventive or therapeutic agent for abnormal glucose metabolism. Examples of such known preventive or therapeutic agents for abnormal glucose metabolism include antidiabetic agents such as insulin, tolbutamide, glyclopyramide, glibenclamide, metformin, epalrestat, voglibose, acarbose, troglitazone. These may be used alone or in combination of a plurality of types. In the present specification, the term “combination” means that the prophylactic or therapeutic agent of the present invention is used in combination with the known prophylactic or therapeutic agent for abnormal glucose metabolism, and its form of use is not particularly limited. For example, administration as a pharmaceutical composition containing both the prophylactic or therapeutic agent of the present invention and the known prophylactic or therapeutic agent for abnormal glucose metabolism, or separate formulation without mixing, and simultaneous or staggered administration Including both.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。 The present invention will be described in more detail below with reference to examples, but it goes without saying that the present invention is not limited thereto.
ワクチン設計およびペプチド合成
 3次元予測構造およびエピトープ情報の高抗原性解析に基づいて、マウスCD153のアミノ酸配列から5つの異なる抗原ペプチドを選択した(表1)。ペプチドのN末端をキャリアタンパク質としてKLH (Enzo Life Sciences Inc., Farmingdale, NY, USA)にコンジュゲートし、合成ペプチドを逆相HPLCで精製した(>98%純度) (Peptide Institute Inc., Osaka, Japan)。無菌リン酸緩衝生理食塩水(PBS)中で0.5-1 mg/mlのCD153ペプチドおよび5-10 mg/mlのKLHでCD153ペプチドワクチンを再構成した。
Vaccine Design and Peptide Synthesis Five different antigenic peptides were selected from the amino acid sequence of mouse CD153 based on three-dimensional predicted structure and high antigenicity analysis of epitope information (Table 1). The N-terminal of the peptide was conjugated to KLH (Enzo Life Sciences Inc., Farmingdale, NY, USA) as a carrier protein, and the synthetic peptide was purified by reverse phase HPLC (> 98% purity) (Peptide Institute Inc., Osaka, Japan). The CD153 peptide vaccine was reconstituted with 0.5-1 mg / ml CD153 peptide and 5-10 mg / ml KLH in sterile phosphate buffered saline (PBS).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
動物
 全ての動物実験手続は大阪大学動物実験委員会によって評価および承認され、研究施設における動物実験に関する基本指針(文部科学省、日本)、施設における動物実験に関する基本指針(厚生労働省、日本)、動物実験の適正な実施に向けたガイドライン(日本学術会議、日本)の推奨に従った。CLEA Japan Inc.より7週齢の雄C57BL/6Jマウスおよび8週齢の雌C57BL/6Nマウスを購入し、温度および光サイクル調節施設で飼育した。マウスは自由に餌と水を摂取させた。C57BL/6Jマウスは通常食(ND) (MF, 12.8 kcal% 脂肪; Oriental Yeast Co., LTD.)または高脂肪食(HFD) (D12492, 60 kcal% 脂肪; Research Diets Inc.)を与え、C57BL/6NマウスはNDを与えた。
Animals All animal experiment procedures have been evaluated and approved by the Animal Experiment Committee of Osaka University. Basic guidelines for animal experiments in research facilities (MEXT, Japan), Basic guidelines for animal experiments in institutions (Ministry of Health, Labor and Welfare, Japan), animals Followed the recommendations of the guidelines (Science Council of Japan, Japan) for the proper implementation of experiments. Seven-week-old male C57BL / 6J mice and eight-week-old female C57BL / 6N mice were purchased from CLEA Japan Inc. and kept in a temperature and light cycle control facility. The mice had free access to food and water. C57BL / 6J mice were fed with normal diet (ND) (MF, 12.8 kcal% fat; Oriental Yeast Co., LTD.) Or high-fat diet (HFD) (D12492, 60 kcal% fat; Research Diets Inc.) to give C57BL. / 6N mice received ND.
ワクチン接種スケジュール
 CD153-KLHペプチド溶液(30μgのCD153ペプチドおよび200-300μgのKLH)とアジュバント溶液の混合物として単回量のCD153ワクチンとして調製した。200-300μgのKLHとアジュバント溶液の混合物として単回量のKLHワクチンとして調製した。アジュバント溶液は、30μlのAlhydrogel (CD153-ミョウバン, KLH-ミョウバン; Invivogen)または30μgのCpG ODN 1585 (CD153-CpG, KLH-CpG; Invivogen)を含有した。TLR7リガンド投与の研究において、8、10,12週齢時にCD153-CpGワクチンまたはKLH-CpGワクチンを雌C57BL/6Nマウスの皮下にワクチン接種した。HFD負荷の研究において、7、9,11、13、15週齢時にD153-ミョウバンワクチンまたはKLH-ミョウバンワクチン、あるいは7、9,11、16週齢時にD153-CpGワクチンまたはKLH-CpGワクチンを雄C57BL/6Jマウスの皮下にワクチン接種した。尾静脈から血清を回収し、酵素結合免疫吸着検査法(ELISA)によって抗CD153抗体価を測定した。
Vaccination Schedule A single dose of CD153 vaccine was prepared as a mixture of CD153-KLH peptide solution (30 μg CD153 peptide and 200-300 μg KLH) and adjuvant solution. Prepared as a single dose KLH vaccine as a mixture of 200-300 μg KLH and adjuvant solution. The adjuvant solution contained 30 μl Alhydrogel (CD153-Alum, KLH-Alum; Invivogen) or 30 μg CpG ODN 1585 (CD153-CpG, KLH-CpG; Invivogen). In studies of TLR7 ligand administration, female C57BL / 6N mice were vaccinated subcutaneously with the CD153-CpG vaccine or the KLH-CpG vaccine at 8, 10 and 12 weeks of age. In studies of HFD burden, males were given D153-alum vaccine or KLH-alum vaccine at 7, 9, 11, 13, 15 weeks of age, or D153-CpG vaccine or KLH-CpG vaccine at 7, 9, 11, 16 weeks of age. C57BL / 6J mice were vaccinated subcutaneously. Serum was collected from the tail vein and anti-CD153 antibody titer was measured by enzyme-linked immunosorbent assay (ELISA).
TLR7リガンド投与
 週3回R848 (TLR7リガンド; InvivoGen)を12週齢雌C57BL/6Nマウスに腹腔内注射した。16週齢で犠死したマウスには4週間で5 μgのR848を注射した。18週齢で犠死したマウスには4週間で5 μgのR848を注射し、さらに2週間で10 μgのR848を注射した。
TLR7 ligand administration R848 (TLR7 ligand; InvivoGen) was intraperitoneally injected into 12-week-old female C57BL / 6N mice three times a week. Mice sacrificed at 16 weeks of age were injected with 5 μg of R848 for 4 weeks. Mice sacrificed at 18 weeks of age were injected with 5 μg of R848 for 4 weeks and 10 μg of R848 for another 2 weeks.
細胞株および培養条件
 American Type Culture Collection (ATCC)からマウスマクロファージ細胞株RAW 264.7を取得した。熱不活性化された10% (v/v) FBS (Sigma Aldrich, MO, USA)を添加したダルベッコ改変イーグル培地 (DMEM; Nacalai Tesque, Kyoto, Japan)においてRAW 264.7を増殖させ、回収前に2 μg/mlのLPS (L4391, E. coli O111:B4由来; Sigma Aldrich, MO, USA)で24時間刺激した。ATCC動物細胞培養ガイドに従い、5% CO2、37℃で細胞株を培養した。
Cell line and culture conditions Mouse macrophage cell line RAW 264.7 was obtained from American Type Culture Collection (ATCC). RAW 264.7 was grown in Dulbecco's modified Eagle medium (DMEM; Nacalai Tesque, Kyoto, Japan) supplemented with 10% (v / v) heat-inactivated FBS (Sigma Aldrich, MO, USA), and RAW 264.7 was grown before recovery. The cells were stimulated with μg / ml of LPS (from L4391, E. coli O111: B4; Sigma Aldrich, MO, USA) for 24 hours. The cell line was cultured at 37 ° C in 5% CO 2 according to the ATCC animal cell culture guide.
酵素結合免疫吸着検査法
 ELISAによって血清抗CD153抗体価を定量した。50 mM炭酸バッファーに10 μg/ml濃度で希釈したCD153-BSAコンジュゲート(Peptide Institute Inc., Osaka, Japan)または組換えマウスCD153タンパク質(キャリア無し; R&D Systems, Minneapolis, MN, USA)で96ウェルELISAプレートを4℃で一晩被覆した。5%スキムミルクを含むPBSでブロッキング後、血清をブロッキングバッファー中で100から325,000倍に連続的に希釈し、各ウェルに加え、4℃で一晩インキュベートした。各ウェルを0.05% PBS Tween-20 (PBS-T)で洗浄後、マウスIgGに特異的な西洋わさびパーオキシダーゼ(HRP)コンジュゲート抗体(1:1000; GE Healthcare, UK)で3時間、室温で各ウェルをインキュベートした。IgGサブクラス決定アッセイについて、抗マウスIgGサブクラス特異的HRPコンジュゲート抗体(1:1000; IgG1, IgG2b, IgG2c and IgG3, Abcam)を用いた。PBS-Tで洗浄後、パーオキシダーゼ発色基質3,3',5,5'-テトラメチルベンジジン(TMB; Sigma Aldrich, MO, USA)で発色させ、反応を0.5 N硫酸で停止させた。全プレートをiMarkマイクロプレート吸光度リーダー(Bio-Rad, CA, USA)を用いて450nmの吸光度で測定した。各サンプルの希釈範囲中の最大値に従って最大半量抗体価を決定した。
Serum anti-CD153 antibody titers were quantified by enzyme-linked immunosorbent assay ELISA. 96 wells with CD153-BSA conjugate (Peptide Institute Inc., Osaka, Japan) or recombinant mouse CD153 protein (no carrier; R & D Systems, Minneapolis, MN, USA) diluted in 50 mM carbonate buffer at 10 μg / ml. ELISA plates were coated overnight at 4 ° C. After blocking with PBS containing 5% skim milk, serum was serially diluted 100 to 325,000-fold in blocking buffer, added to each well, and incubated overnight at 4 ° C. After washing each well with 0.05% PBS Tween-20 (PBS-T), the mouse IgG-specific horseradish peroxidase (HRP) -conjugated antibody (1: 1000; GE Healthcare, UK) for 3 hours at room temperature. Each well was incubated. For the IgG subclass determination assay, anti-mouse IgG subclass specific HRP conjugated antibody (1: 1000; IgG1, IgG2b, IgG2c and IgG3, Abcam) was used. After washing with PBS-T, the color was developed with the peroxidase chromogenic substrate 3,3 ′, 5,5′-tetramethylbenzidine (TMB; Sigma Aldrich, MO, USA), and the reaction was stopped with 0.5 N sulfuric acid. All plates were measured at 450 nm absorbance using an iMark Microplate Absorbance Reader (Bio-Rad, CA, USA). The half maximal antibody titer was determined according to the maximum in the dilution range for each sample.
ウェスタンブロット解析
 30または100 ngの組換えマウスCD153 (rmCD153; R&D Systems)および100 ngの組換えマウスOPN(rmOPN; 陰性コントロールとして使用;R&D Systems)をSDS/PAGEによって電気泳動的に分離し、水和したImmobilon-P PVDF転写メンブレン(Merck Millipore Ltd.)にブロットした。CD153ワクチンまたはKLHワクチンで免疫したマウス由来の500倍に希釈された血清または0.05μg/mlの市販の抗CD153抗体(R&D Systems)でブロットされたメンブレンを4℃で一晩インキュベートした。2000倍に希釈されたHRPコンジュゲートIgG抗体 (GE Healthcare)で1時間インキュベートした後、Chemi-Lumi One L (Nacalai Tesque)で可視化された化学発光シグナルをLAS 1000 (Fuji Film)で検出し、Multi Gauge software version 3.2で解析した。
Western blot analysis 30 or 100 ng of recombinant mouse CD153 (rmCD153; R & D Systems) and 100 ng of recombinant mouse OPN (rmOPN; used as negative control; R & D Systems) were electrophoretically separated by SDS / PAGE and washed with water. Blotted on wet Immobilon-P PVDF transfer membrane (Merck Millipore Ltd.). Membranes blotted with 500-fold diluted serum from mice immunized with CD153 vaccine or KLH vaccine or 0.05 μg / ml commercial anti-CD153 antibody (R & D Systems) were incubated overnight at 4 ° C. After incubating for 1 hour with 2000-fold diluted HRP-conjugated IgG antibody (GE Healthcare), the chemiluminescence signal visualized with Chemi-Lumi One L (Nacalai Tesque) was detected with LAS 1000 (Fuji Film), and It was analyzed with Gauge software version 3.2.
補体依存性細胞傷害アッセイ
 50%飽和硫酸アンモニウム、Zebaスピン脱塩カラムおよびMelonゲルIgGスピン精製キット(Thermo Scientific, Rockford, IL, USA)を用いて、免疫されたマウスからプールされた血清から総IgG抗体を精製した。補体依存性細胞傷害(CDC)アッセイについて、1% FBSを添加したDMEM中に2 x 104細胞を含む、LPS刺激されたRAW 264.7細胞懸濁液を種々の濃度(30, 100, 300 μg/ml)の精製IgG抗体または陽性コントロール抗体と混合し、4℃で1時間培養した。使用した陽性コントロール抗体は、抗マウスCD153抗体 (functional grade, RM153; eBioscience)および抗マウスMHC Class I (H-2Kd/H-2Dd)抗体 (functional grade, 34-1-2S; eBioscience)であった。次いで、Low-Tox-Mウサギ補体(Cedarlane, Hornby, Canada)を再懸濁液に加えた。フローサイトメトリー解析を用いて、7-AAD陽性細胞の割合として細胞死を評価した。
Complement-dependent cytotoxicity assay Total IgG from pooled sera from immunized mice using 50% saturated ammonium sulfate, Zeba spin desalting columns and Melon gel IgG spin purification kit (Thermo Scientific, Rockford, IL, USA). The antibody was purified. For complement-dependent cytotoxicity (CDC) assay, LPS-stimulated RAW 264.7 cell suspension containing 2 x 10 4 cells in DMEM supplemented with 1% FBS at various concentrations (30, 100, 300 μg). (ml / ml) was mixed with purified IgG antibody or positive control antibody and incubated at 4 ° C for 1 hour. The positive control antibodies used were anti-mouse CD153 antibody (functional grade, RM153; eBioscience) and anti-mouse MHC Class I (H-2Kd / H-2Dd) antibody (functional grade, 34-1-2S; eBioscience). .. Low-Tox-M rabbit complement (Cedarlane, Hornby, Canada) was then added to the resuspension. Cell death was assessed as a percentage of 7-AAD positive cells using flow cytometric analysis.
代謝測定
 4時間の絶食後に腹腔内インスリン負荷試験(ipITT)によってインスリン感受性を評価した。0.75 U/kgの組換えヒトインスリン(Humulin R; Eli Lilly Japan K.K., Japan)の腹腔内注射前および後15、30、60および120分に血中グルコース濃度を測定した。6時間の絶食後に経口的グルコース負荷試験(OGTT)によって耐糖能を評価した。2.0 g/kgのグルコースの経口投与前および後15、30、60および120分に血中グルコース濃度を測定した。インスリン耐性の指標としてインスリン耐性のホメオスタシスモデルアセスメント(HOMA-IR)を計算した:空腹時血清グルコース(mmol/L)×空腹時血清インスリン(pmol/L)/22.5。小動物に対するO2/CO2代謝測定システム(MK-5000RQ; Muromachi Kikai, Tokyo, Japan)で酸素消費量を測定した。0.50 L/分のエアフローで25℃に維持された気密室中に24時間以上各マウスを置き、kilogram0.75 body weightによって酸素消費を標準化した。
Metabolic measurement Insulin sensitivity was assessed by an intraperitoneal insulin tolerance test (ipITT) after a 4-hour fast. Blood glucose levels were measured before, 30, 60, and 120 minutes after intraperitoneal injection of 0.75 U / kg of recombinant human insulin (Humulin R; Eli Lilly Japan KK, Japan). Glucose tolerance was assessed by the oral glucose tolerance test (OGTT) after a 6-hour fast. Blood glucose levels were measured before, 15, 30, 60, and 120 minutes after oral administration of 2.0 g / kg glucose. A homeostatic model assessment of insulin resistance (HOMA-IR) was calculated as an indicator of insulin resistance: fasting serum glucose (mmol / L) x fasting serum insulin (pmol / L) /22.5. Oxygen consumption was measured with an O 2 / CO 2 metabolism measuring system (MK-5000RQ; Muromachi Kikai, Tokyo, Japan) for small animals. Each mouse was placed in an airtight chamber maintained at 25 ° C with an airflow of 0.50 L / min for 24 hours or more, and oxygen consumption was standardized by a kilogram 0.75 body weight.
フローサイトメトリー解析
 免疫されたマウス由来の脾臓サンプルを破砕し、染色バッファー(BD Biosciences, San Diego, CA, USA)中に懸濁した。VATを微細片に細断し、10% FBS、100 μg/mlのDNase Iおよび200 U/mlのコラゲナーゼタイプI (Worthington, Lakewood, NJ, USA)を含むHBSSからなる消化バッファー中で37℃、1時間、振とう培養した。消化組織を1000 x g、4℃、10分間遠心分離し、染色バッファーに再懸濁した。ACK赤血球溶解バッファー(Gibco, Grand Island, NY, USA)を用いて、脾細胞および脂肪間質血管画分(SVF)の懸濁液から赤血球を除去した。赤血球溶解後、懸濁した脾細胞およびSVFを70-μmフィルターを通してフィルター処理し、1000 x g、4℃、10分間遠心分離し、染色バッファーで再懸濁した。抗マウスCD16/32抗体(マウスFcレセプター阻害剤; BD Biosciences)で4℃、20分間Fcレセプターをブロッキングしたのち、蛍光性標識抗体の混合液で、4℃、40分間、暗所で細胞を染色した。使用した抗体は、CD4 (RM4-4)、CD44 (IM7)、CD153 (RM153) (BD Biosciences)、CD62L (MEL-14)およびPD-1 (29F.1A12) (Bio Legend)に特異的であった。死細胞を除外するために7-AAD生存染色溶液を加えた。BD FACS Canto II (BD Biosciences)を用いてフローサイトメトリー解析を行い、BD FACS DivaソフトウェアおよびFCAP Arrayソフトウェア(BD Biosciences)を用いて解析した。
Flow cytometric analysis Spleen samples from immunized mice were disrupted and suspended in staining buffer (BD Biosciences, San Diego, CA, USA). Shred VAT into fine pieces, 37 ° C in a digestion buffer consisting of HBSS containing 10% FBS, 100 μg / ml DNase I and 200 U / ml collagenase type I (Worthington, Lakewood, NJ, USA), Shaking culture was carried out for 1 hour. The digested tissue was centrifuged at 1000 xg, 4 ° C for 10 minutes and resuspended in staining buffer. Red blood cells were removed from a suspension of splenocytes and the interstitial vascular fraction of fat (SVF) using ACK red blood cell lysis buffer (Gibco, Grand Island, NY, USA). After red blood cell lysis, suspended splenocytes and SVF were filtered through a 70-μm filter, centrifuged at 1000 xg, 4 ° C for 10 minutes and resuspended in staining buffer. Block the Fc receptor with anti-mouse CD16 / 32 antibody (mouse Fc receptor inhibitor; BD Biosciences) at 4 ° C for 20 minutes, and then stain the cells with a mixture of fluorescent-labeled antibodies at 4 ° C for 40 minutes in the dark. did. The antibodies used were specific for CD4 (RM4-4), CD44 (IM7), CD153 (RM153) (BD Biosciences), CD62L (MEL-14) and PD-1 (29F.1A12) (Bio Legend). It was 7-AAD viability staining solution was added to exclude dead cells. Flow cytometric analysis was performed using BD FACS Canto II (BD Biosciences) and analyzed using BD FACS Diva software and FCAP Array software (BD Biosciences).
免疫組織化学
 パラフィン切片について、10%中性緩衝ホルマリンでマウスVAT、腎臓および肺試料を固定し、パラフィンに包埋した。VAT、腎臓組織および肺組織中でヘマトキシリンエオシン染色を行った。脱パラフィン化と再水和の後、F4/80 (CI:A3-1, Abcam)およびCD153 (Biorbyt)に対する免疫組織化学的染色をVAT に行い、IgG (二次抗体のみ使用)に対する免疫組織化学的染色をVAT、腎臓組織および肺組織に行った。抗原回復について、F4/80およびIgG染色に対してはプロテイナーゼK(Agilent Technologies)で5分間インキュベートを行い、CD153染色に対してはHistoVT One (Nacalai Tesque)で90℃、30分間インキュベートを行った。酵素的検出について、製造者の推奨に従い、F4/80およびIgG染色に対してはポリマーに基づく検出キット (MAX-PO(M), Nichirei Bioscience)を使用し、CD153染色に対してはアビジン-ビオチン複合体キット (VECTASTAIN Elite ABC kit, Vector Laboratories)を使用した。酵素的検出の前に、メタノール中0.3-0.6% H2O2で内在性パーオキシダーゼの阻害を行った。
Immunohistochemistry For paraffin sections, mouse VAT, kidney and lung samples were fixed with 10% neutral buffered formalin and embedded in paraffin. Hematoxylin and eosin staining was performed in VAT, kidney tissue and lung tissue. After deparaffinization and rehydration, immunohistochemical staining for F4 / 80 (CI: A3-1, Abcam) and CD153 (Biorbyt) was performed on VAT and immunohistochemistry for IgG (only secondary antibody used). Staining was performed on VAT, kidney tissue and lung tissue. For antigen retrieval, F4 / 80 and IgG staining were incubated with proteinase K (Agilent Technologies) for 5 minutes, and CD153 staining was incubated with HistoVT One (Nacalai Tesque) at 90 ° C. for 30 minutes. For enzymatic detection, use the polymer-based detection kit (MAX-PO (M), Nichirei Bioscience) for F4 / 80 and IgG staining and avidin-biotin for CD153 staining according to the manufacturer's recommendations. A complex kit (VECTASTAIN Elite ABC kit, Vector Laboratories) was used. Inhibition of endogenous peroxidase was performed with 0.3-0.6% H 2 O 2 in methanol prior to enzymatic detection.
統計分析
 全データは、平均値±標準誤差として表した。2群間の差の統計的有意性は、両側スチューデントのt検定によって検証した。多群間の差は、分散分析(ANOVA)し、テューキーの多重比較検定によって検証した。P<0.05の時に差が統計的に有意であるとみなした。統計解析はPrism GraphPadバージョン6.07(GraphPad Software)を用いて行った。
Statistical analysis All data were expressed as mean ± standard error. The statistical significance of the difference between the two groups was verified by a two-tailed Student's t-test. Differences between multiple groups were analyzed by analysis of variance (ANOVA) and verified by Tukey's multiple comparison test. Differences were considered statistically significant when P <0.05. Statistical analysis was performed using Prism GraphPad version 6.07 (GraphPad Software).
実施例1 CD153#Dワクチンによって誘導されるCD153特異的IgGはrmCD153タンパク質を認識し、CD153-CpGワクチン接種はTh1免疫応答を誘導する傾向があった。
 CD153ワクチンは、抗原ペプチドおよびキャリアタンパク質からなり、CD153に対する特定の抗体を誘導する。マウスCD153のエピトープ情報に従い、発明者らは抗原として5つのペプチド(#A, 116-125 aa; #B, 182-189 aa; #C, 101-108 aa; #D, 76-85 aa; #E, 234-239 aa;表1)を設計した。5つのペプチドワクチン(30μg用量CD153ペプチド/マウス)をキャリアタンパク質としてスカシ貝ヘモシアニン(KLH)とコンジュゲートし、ミョウバンアジュバントと共に7週齢雄C57BL/6Jマウスに2週間間隔で2回投与した。ELISAによる抗体産生評価において、マウスCD153-BSAに対する力価は、#Aまたは#Cワクチンで免疫されたマウスにおいて14日目に最初に増加し、28日目には5つの各ワクチンで免疫されたマウスにおいて首尾よく増加した(図1A)。組換えマウスCD153(rmCD153)を用いたELISAの評価では、CD153#Dワクチンによって誘導された抗体がrmCD153と強く反応した(図1B)。ウェスタンブロット解析もまた、CD153#Dワクチンによって誘導された抗体がrmCD153と特異的かつ強く反応したことを示した。また、陽性コントロール抗体として使用した市販の抗CD153抗体およびCD153#Dワクチン誘導抗体は、30 ngのrmCD153タンパク質および100 ngのrmCD153タンパク質を認識したが、組換えマウスOPNタンパク質(rmOPN; 陰性コントロールタンパク質として使用)を認識しなかった。一方、KLHコントロールワクチンによって誘導される抗体は、rmCD153タンパク質もrmOPNタンパク質も認識しなかった(図1C)。これらの結果は、CD153#Dワクチン誘導抗体はrmCD153タンパク質を効率的に認識することを実証している。従って、発明者らは、以降の実施例2~5に使用するワクチンとしてCD153#Dワクチンを選択した。さらに、ミョウバンアジュバントはTh2免疫応答を誘導することができ、CpGアジュバントはTh1免疫応答を誘導することができる。そこで、発明者らは、CD153に対する血清IgGサブクラス抗体(IgG1; Th2免疫応答、IgG2b、IgG2cおよびIgG3; Th1免疫応答)をELISAによって評価し、CD153#D-CpGワクチン接種がCD153#D-ミョウバンワクチン接種よりさらにTh1免疫応答を誘導できるかどうかを確認した。その結果、IgGサブクラス解析において、CD153#D-CpGワクチン接種は、CD153#D-ミョウバンワクチン接種よりさらにIgG2b、IgG2cおよびIgG3を誘導した(図1D)。これらの結果は、CD153#D-CpGワクチン接種がTh1免疫応答を効率的に誘導することを示す。
Example 1 CD153-specific IgG induced by the CD153 # D vaccine recognized the rmCD153 protein, and CD153-CpG vaccination tended to induce a Th1 immune response.
The CD153 vaccine consists of an antigenic peptide and a carrier protein and induces specific antibodies against CD153. According to the epitope information of mouse CD153, the present inventors have developed five peptides as antigens (#A, 116-125 aa; #B, 182-189 aa; #C, 101-108 aa; #D, 76-85 aa; # E, 234-239 aa; Table 1) was designed. Five peptide vaccines (30 μg dose CD153 peptide / mouse) were conjugated with keyhole limpet hemocyanin (KLH) as a carrier protein and administered to 7-week-old male C57BL / 6J mice twice at 2 week intervals together with alum adjuvant. In the antibody production evaluation by ELISA, the titer against mouse CD153-BSA first increased on day 14 in mice immunized with #A or #C vaccine, and on day 28 immunized with each of the 5 vaccines. It was successfully increased in mice (Fig. 1A). In the evaluation of ELISA using recombinant mouse CD153 (rmCD153), the antibody induced by the CD153 # D vaccine strongly reacted with rmCD153 (FIG. 1B). Western blot analysis also showed that the antibodies induced by the CD153 # D vaccine reacted specifically and strongly with rmCD153. The commercially available anti-CD153 antibody and CD153 # D vaccine-derived antibody used as the positive control antibody recognized 30 ng of rmCD153 protein and 100 ng of rmCD153 protein, but the recombinant mouse OPN protein (rmOPN; as a negative control protein). Use) was not recognized. On the other hand, the antibody induced by the KLH control vaccine did not recognize the rmCD153 protein or the rmOPN protein (Fig. 1C). These results demonstrate that the CD153 # D vaccine-derived antibody efficiently recognizes the rmCD153 protein. Therefore, the inventors selected the CD153 # D vaccine as the vaccine to be used in Examples 2 to 5 below. Moreover, alum adjuvant can induce Th2 immune response and CpG adjuvant can induce Th1 immune response. Therefore, the inventors have evaluated serum IgG subclass antibody against CD153 (IgG1; Th2 immune response, IgG2b, IgG2c and IgG3; Th1 immune response) by ELISA, CD153 # D-CpG vaccination is CD153 # D-Alum vaccine. It was confirmed whether the Th1 immune response can be further induced by inoculation. As a result, in IgG subclass analysis, CD153 # D-CpG vaccination induced more IgG2b, IgG2c and IgG3 than CD153 # D-alum vaccination (FIG. 1D). These results show that CD153 # D-CpG vaccination efficiently induces a Th1 immune response.
実施例2 CD153#D-CpGワクチン誘導抗体はTLR7リガンドのin vivo投与によって誘導される脾臓のCD153陽性老化関連T細胞を減少させる。
 CD153陽性老化関連T細胞は加齢と共に次第に全身性に増加することが報告されている。発明者らはまた、3か月齢に比べて、20か月齢の雄C57BL/6Jマウスの脾臓組織におけるCD153陽性老化関連T細胞は増加していることを確認した(18.7 ± 0.5 % versus 3.8 ± 0.2 %; p < 0.0001; n = 3, 各群)。VATにおいては、若齢マウスと比較して老齢マウスにおいてCD153陽性老化関連T細胞は増加する傾向があった(8.2 ±1.0 % versus 4.3 ± 1.4 %; p = 0.08; n = 3, 各群) (図2A)。いくつかの研究では、CD153陽性老化関連T細胞の発達は、自己反応性B細胞、特に自発的胚中心(GCs)に依存し、GC反応はTLR7リガンドの連続的投与によって駆動されることが報告されている。CD153陽性老化関連T細胞はTLR7駆動性自己反応性B細胞によって効率的に誘導されるため、発明者らは、R848投与条件下CD153陽性老化関連T細胞を調べ、CD153#D-CpGワクチン接種の効果を見積もった。実験的なR848投与プロトコル(図2B)に従い、CD153#D-CpGワクチンを8週齢雌C57BL/6Nマウスに2週間間隔で3回投与し、次いで4-6週間、週3回R848を投与した。R848の投与期間中、CD153#D-CpGワクチンによって誘導された抗CD153抗体価は高水準で維持された(図2C)。また、フローサイトメトリー解析によって、膵臓のCD153陽性老化関連T細胞の割合が、16週齢においてはPBSコントロール群とR848投与群間でほとんど差が無かったが、18週齢のPBSコントロール群に比べて18週齢のR848投与群において増加したことが示された。さらに、発明者らは、R848投与群およびKLH-CpGワクチン接種群に比べて、CD153#D-CpGワクチンで免疫したマウスにおいて膵臓のCD153陽性老化関連T細胞の割合が減少していることを確認した(図2D)。さらに、継続的なTLR7刺激は、慢性的な免疫活性化を誘導し、脾腫の原因となることが知られていることから、CD153#D-CpGワクチン接種がR848刺激と関連する脾腫を改善するかどうかを評価するため、発明者らはさらに、R848投与マウスの脾重量を調べた。発明者らは、継続的なR848刺激によって脾重量は顕著に増加し、R848投与群に比べてCD153#D-CpGワクチンで免疫したマウスにおいて脾重量が減少したことを見出した(図2E)。また、KLH-CpGワクチンで免疫したマウスにおいて脾重量は減少する傾向があった(p = 0.07, versus R848コントロール群)。これらの結果は、CD153#D-CpGワクチン接種が脾臓のCD153陽性老化関連T細胞および慢性的な免疫活性化によって刺激される脾腫を改善することを示唆した。
Example 2 CD153 # D-CpG Vaccine-Induced Antibody Reduces Spleen CD153-Positive Senescence-Associated T Cells Induced by In Vivo Administration of TLR7 Ligand
It has been reported that CD153-positive senescence-related T cells gradually increase systemically with age. The inventors also confirmed that CD153-positive senescence-related T cells in spleen tissue of 20-month-old male C57BL / 6J mice were increased compared to 3 months of age (18.7 ± 0.5% versus 3.8 ± 0.2). %; p <0.0001; n = 3, each group). In VAT, CD153-positive senescence-related T cells tended to increase in old mice compared with young mice (8.2 ± 1.0% versus 4.3 ± 1.4%; p = 0.08; n = 3, each group) ( (Figure 2A). Several studies report that the development of CD153-positive senescence-associated T cells is dependent on autoreactive B cells, especially spontaneous germinal centers (GCs), and that the GC response is driven by continuous administration of TLR7 ligands Has been done. Since CD153-positive senescence-related T cells are efficiently induced by TLR7-driven autoreactive B cells, we examined CD153-positive senescence-related T cells under R848-administered conditions and tested for CD153 # D-CpG vaccination. Estimated effect. Following the experimental R848 administration protocol (FIG. 2B), the CD153 # D-CpG vaccine was administered to 8-week-old female C57BL / 6N mice three times at 2-week intervals, and then R848 three times a week for 4-6 weeks. .. The anti-CD153 antibody titer induced by the CD153 # D-CpG vaccine was maintained at a high level during the administration period of R848 (FIG. 2C). In addition, by flow cytometry analysis, the proportion of CD153-positive senescence-related T cells in the pancreas showed almost no difference between the PBS control group and the R848-administered group at 16 weeks of age, but compared with the PBS control group of 18 weeks of age. It was shown that the increase was observed in the 18-week-old R848-administered group. Furthermore, the inventors confirmed that the proportion of CD153-positive senescence-related T cells in the pancreas was reduced in mice immunized with the CD153 # D-CpG vaccine compared to the R848-administered group and the KLH-CpG vaccinated group. (Fig. 2D). Furthermore, continued TLR7 stimulation induces chronic immune activation and is known to cause splenomegaly, so CD153 # D-CpG vaccination improves splenomegaly associated with R848 stimulation. In order to evaluate whether or not the present inventors further examined the spleen weight of R848-treated mice. The inventors found that spleen weight was significantly increased by continuous R848 stimulation, and spleen weight was decreased in mice immunized with the CD153 # D-CpG vaccine as compared to the R848-administered group (FIG. 2E). In addition, spleen weight tended to decrease in mice immunized with the KLH-CpG vaccine (p = 0.07, versus R848 control group). These results suggested that CD153 # D-CpG vaccination ameliorates CD153-positive senescence-associated T cells in the spleen and splenomegaly stimulated by chronic immune activation.
実施例3 HFD誘導インスリン耐性および耐糖能異常はCD153#D-CpGワクチン接種によって改善される。
 最近の調査では、CD153陽性老化関連T細胞がHFDを与えられたマウスの脂肪組織中に蓄積し、耐糖能およびインスリン耐性を悪化させることを報告されている。そこで、発明者らは次に、HFD負荷マウスに対するCD153#D-CpGワクチン接種がVAT中のCD153陽性老化関連T細胞を減少させ、耐糖能およびインスリン耐性を改善できるかどうかを調べた。実験的なHFD負荷研究のプロトコル(図3A)に従い、CD153#D-ミョウバンワクチンまたはCD153#D-CpGワクチンを7週齢雄C57BL/6Jマウスに複数回投与し、次いで10-11週間HFD負荷を行った。HFD負荷期間中、CD153#D-ミョウバンワクチンおよびCD153#D-CpGワクチンによって誘導される抗CD153抗体価は両者とも高水準に維持された(図3B)。CD153#D-ミョウバンワクチン接種群およびCD153#D-CpGワクチン接種群間で体重は有意に異ならなかった(データ未掲載)。しかし、CD153#D-CpGワクチンで免疫されたマウスの体重は、KLH-CpGワクチンで免疫されたマウスより有意に低く、HFDコントロール群より低い傾向があった(図3C)。また、週平均HFD摂取量は、HFDコントロール群およびKLH-CpGワクチン群に比べて、CD153#D-CpGワクチンで免疫されたマウスにおいて減少した(図3D)。さらに、代謝の間接的測定として酸素消費を見積もった。CD153#D-CpGワクチンで免疫されたマウスは、KLH-CpGワクチンで免疫されたマウスに比べて暗期において酸素消費量が増加する傾向があった(p = 0.08)(図3E)。発明者らは次に、腹腔内インスリン負荷試験(ipITT)および経口的グルコース負荷試験(OGTT)を評価した。CD153#D-ミョウバンワクチン接種群とKLH-ミョウバンワクチン接種群間でインスリン感受性は異ならなかった(図4A)が、CD153#D-CpGワクチン接種群において、KLH-CpGワクチン接種群に比べてインスリン感受性および曲線下面積(AUC)は改善した (図4Bおよび4C)。また、CD153#D-ミョウバンワクチン接種群とKLH-ミョウバンワクチン接種群間で耐糖能は異ならなかった(図4D)が、CD153#D-CpGワクチン接種群において、KLH-CpGワクチン接種群およびHFDコントロール群に比べて耐糖能およびAUCは著しく改善した(図4Eおよび4F)。また、CD153#D-CpGワクチン接種群において、KLH-CpGワクチン接種群に比べてインスリン抵抗性の指標である、HOMA-IRが著しく改善した(図4G)。これらの結果は、CD153-CpGワクチン接種が耐糖能やインスリン抵抗性などのような肥満誘導性代謝異常を改善することを示す。
Example 3 HFD-induced insulin resistance and impaired glucose tolerance are ameliorated by CD153 # D-CpG vaccination.
Recent studies have reported that CD153-positive senescence-associated T cells accumulate in adipose tissue of HFD-fed mice, exacerbating glucose and insulin resistance. Therefore, the inventors next investigated whether CD153 # D-CpG vaccination of HFD-loaded mice could reduce CD153-positive senescence-associated T cells in VAT and improve glucose and insulin resistance. CD153 # D-Alum vaccine or CD153 # D-CpG vaccine was administered multiple times to 7-week-old male C57BL / 6J mice according to the experimental HFD challenge study protocol (Figure 3A), followed by 10-11 weeks of HFD challenge. went. Both anti-CD153 antibody titers induced by the CD153 # D-alum vaccine and the CD153 # D-CpG vaccine remained high during HFD challenge (Fig. 3B). Body weights did not differ significantly between the CD153 # D-alum vaccinated and CD153 # D-CpG vaccinated groups (data not shown). However, the body weight of mice immunized with the CD153 # D-CpG vaccine was significantly lower than that of mice immunized with the KLH-CpG vaccine and tended to be lower than that of the HFD control group (Fig. 3C). Also, the weekly average HFD intake was decreased in mice immunized with the CD153 # D-CpG vaccine as compared to the HFD control group and the KLH-CpG vaccine group (Fig. 3D). In addition, oxygen consumption was estimated as an indirect measure of metabolism. Mice immunized with the CD153 # D-CpG vaccine tended to have increased oxygen consumption in the dark phase compared to mice immunized with the KLH-CpG vaccine (p = 0.08) (Fig. 3E). The inventors next evaluated the intraperitoneal insulin tolerance test (ipITT) and the oral glucose tolerance test (OGTT). Insulin sensitivity did not differ between the CD153 # D-alum vaccinated and KLH-alum vaccinated groups (Fig. 4A), but the CD153 # D-CpG vaccinated group had higher insulin sensitivity than the KLH-CpG vaccinated group. And the area under the curve (AUC) was improved (Figures 4B and 4C). Although glucose tolerance did not differ between the CD153 # D-alum vaccinated group and the KLH-alum vaccinated group (Fig.4D), in the CD153 # D-CpG vaccinated group, the KLH-CpG vaccinated group and the HFD control Glucose tolerance and AUC were significantly improved compared to the group (Figures 4E and 4F). Further, in the CD153 # D-CpG vaccinated group, HOMA-IR, which is an index of insulin resistance, was significantly improved as compared with the KLH-CpG vaccinated group (Fig. 4G). These results indicate that CD153-CpG vaccination ameliorates obesity-induced metabolic abnormalities such as glucose tolerance and insulin resistance.
実施例4 CD153#D-CpGワクチン誘導抗体はHFD負荷によって誘導されるCD153陽性老化関連T細胞を減少させる。
 発明者らは、フローサイトメトリーで肥満誘導性CD153陽性老化関連T細胞の割合を解析した。フローサイトメトリー解析では、NDコントロール群およびHFDコントロール群間で膵臓のCD153陽性老化関連T細胞の割合は変わらないことが示された。また、発明者らは、CD153#D-ミョウバンワクチン接種もCD153#D-CpGワクチン接種も膵臓のCD153陽性老化関連T細胞の割合に影響を与えないことを見出した(図5A)。一方、HFDコントロール群のVATにおけるCD153陽性老化関連T細胞の割合は、NDコントロール群に比べて有意に増加した。さらに、発明者らは、CD153#D-ミョウバンワクチン接種と異なり、CD153#D-CpGワクチン接種がVATにおけるCD153陽性老化関連T細胞の割合を減少させることを見出した(図5B)。これらの結果は、HFD負荷肥満マウスにおいて、CD153#D-CpGワクチン接種が、全身性ではないにしても、局所的にCD153陽性老化関連T細胞を改善することを示す。CD153#D-CpGワクチン誘導抗体がCD153を高発現する免疫細胞を除去できるかどうかを明らかにすべく、抗体を介する補体依存性細胞傷害(CDC)アッセイを実施した。LPS刺激RAW264.7細胞のCD153発現は、本実施例におけるマウス脾細胞または脂肪細胞のCD153発現(5-20%)に比べて高い(40-60%)ので、LPS刺激RAW264.7細胞をCDCアッセイのための標的細胞として選択した。CDCアッセイは、市販の抗マウスCD153抗体(10, 30, 100 μg/ml)と同様、CD153#D-CpGワクチンで免疫されたマウス由来の精製IgG (30, 100, 300 μg/ml)が補体依存性細胞死を引き起こし、その一方、CD153#D-ミョウバンワクチン、KLH-ミョウバンワクチンまたはKLH-CpGワクチンで免疫されたマウス由来の精製IgG (30, 100, 300 μg/ml)は引き起こさなかったことを示した(図5C)。
Example 4 CD153 # D-CpG Vaccine-Induced Antibody Reduces CD153-Positive Senescence-Associated T Cells Induced by HFD Loading.
The inventors analyzed the proportion of obesity-induced CD153-positive senescence-related T cells by flow cytometry. Flow cytometric analysis showed that the proportion of CD153-positive senescence-related T cells in the pancreas did not change between the ND control group and the HFD control group. The inventors also found that neither CD153 # D-alum vaccination nor CD153 # D-CpG vaccination affected the proportion of CD153-positive senescence-associated T cells in the pancreas (FIG. 5A). On the other hand, the proportion of CD153-positive senescence-related T cells in VAT in the HFD control group was significantly increased compared to that in the ND control group. Furthermore, the inventors found that, unlike CD153 # D-alum vaccination, CD153 # D-CpG vaccination reduced the proportion of CD153-positive senescence-associated T cells in VAT (Fig. 5B). These results show that in HFD-loaded obese mice, CD153 # D-CpG vaccination locally improves, if not systemically, CD153-positive senescence-related T cells. An antibody-mediated complement dependent cytotoxicity (CDC) assay was performed to determine whether the CD153 # D-CpG vaccine-induced antibody was able to eliminate immune cells that overexpress CD153. Since CD153 expression of LPS-stimulated RAW264.7 cells was higher (40-60%) than that of mouse splenocytes or adipocytes (5-20%) in this example, LPS-stimulated RAW264.7 cells were subjected to CDC. Selected as target cells for the assay. The CDC assay was supplemented with purified IgG (30, 100, 300 μg / ml) from mice immunized with the CD153 # D-CpG vaccine, similar to the commercially available anti-mouse CD153 antibody (10, 30, 100 μg / ml). Induced body-dependent cell death, whereas purified IgG (30, 100, 300 μg / ml) from mice immunized with CD153 # D-alum vaccine, KLH-alum vaccine or KLH-CpG vaccine did not (Fig. 5C).
実施例5 CD153#D-CpGワクチンは脂肪王冠様構造中のマクロファージおよびCD153陽性老化関連T細胞の蓄積を減少させる。
 VAT、腎臓組織および肺組織の組織学的解析を行った。VAT重量(図6-1A)および脂肪細胞の平均表面積(図6-1B)は、HFDコントロール群およびKLH-CpGワクチン接種群に比べて、CD153#D-CpGワクチンで免疫されたマウスで減少する傾向があった。肥満は、VATの慢性炎症と関連する、脂肪細胞の周囲の王冠様構造(CLS)におけるマクロファージの蓄積を生じさせる。また、CD153陽性老化関連T細胞もまたCLS中に局在化する。F4/80に対する免疫組織化学染色は、CD153#D-CpGワクチンで免疫されたマウスのCLS中のF4/80+細胞の蓄積がHFDコントロールマウスよりも少ないことを示した(図6-1C)。CD153に対する免疫組織化学染色もまた、CD153#D-CpGワクチン接種群のF4/80+細胞のCLS中のCD153陽性老化関連T細胞の蓄積がHFDコントロール群よりも改善されたことを示した(図6-2D)。さらに、発明者らは、抗マウスIgG抗体でVAT、腎臓組織および肺組織を染色し、自己反応性抗体が存在するか否かを評価した(図6-2E)。VATでは、CD153#D-CpGワクチンで免疫されたマウスのCLD中におけるIgGに対するわずかな陽性染色を除き、IgGに対する陽性染色はなかった。肺組織では、KLH-CpGワクチンまたはCD153#D-CpGワクチンで免疫されたマウスにおいて、肺胞壁へのIgG抗体の沈着が存在したが、4群間で肺胞壁の厚さおよび炎症性細胞の浸潤に明らかな差はなかった。同様に、腎臓組織では、KLH-CpGワクチンまたはCD153#D-CpGワクチンで免疫されたマウスにおいて、糸球体に対するIgG抗体の沈着が存在したが、4群間で糸球体毛細管ループの厚さおよび脆さに明らかな差はなかった。
Example 5 CD153 # D-CpG Vaccine Reduces Accumulation of Macrophages and CD153 Positive Senescence-Associated T Cells in Adipose Crown-Like Structures
Histological analysis of VAT, kidney tissue and lung tissue was performed. VAT weight (Figure 6-1A) and mean adipocyte surface area (Figure 6-1B) are decreased in mice immunized with the CD153 # D-CpG vaccine compared to the HFD control group and the KLH-CpG vaccinated group. There was a tendency. Obesity results in the accumulation of macrophages in the crown-like structure (CLS) surrounding adipocytes, which is associated with chronic inflammation of VAT. In addition, CD153-positive senescence-associated T cells are also localized in CLS. Immunohistochemical staining for F4 / 80 showed less accumulation of F4 / 80 + cells in the CLS of mice immunized with the CD153 # D-CpG vaccine than in HFD control mice (Figure 6-1C). Immunohistochemical staining for CD153 also showed that the accumulation of CD153-positive senescence-related T cells in the CLS of F4 / 80 + cells in the CD153 # D-CpG vaccinated group was improved over the HFD control group (Fig. 6-2D). Furthermore, the inventors stained VAT, kidney tissue and lung tissue with an anti-mouse IgG antibody and evaluated whether or not autoreactive antibody was present (FIG. 6-2E). VAT had no positive staining for IgG except for a slight positive staining for IgG in CLD of mice immunized with the CD153 # D-CpG vaccine. In lung tissue, IgG antibody deposition on the alveolar wall was present in mice immunized with KLH-CpG vaccine or CD153 # D-CpG vaccine, but alveolar wall thickness and inflammatory cells among 4 groups There was no obvious difference in the infiltration of the. Similarly, in renal tissues, there was IgG antibody deposition to the glomerulus in mice immunized with the KLH-CpG vaccine or the CD153 # D-CpG vaccine, but glomerular capillary loop thickness and fragility among the 4 groups was present. There was no obvious difference.
 実施例6 抗ヒトCD153抗体はマウスCD153に交差反応性を示さず、抗マウスCD153抗体はヒトCD153に交差反応性を示さない。
 発明者らは、抗ヒトCD153抗体と抗マウスCD153抗体の交差反応性を検証するために、ヒトCD153アミノ酸配列からCD153#Dワクチン(マウスCD153#Dワクチン)に相同なヒトCD153#Dワクチンを設計した(図7A)。マウスCD153#D-ミョウバンワクチンおよびヒトCD153#D-ミョウバンワクチンをそれぞれ7週齢の雄C57BL/6Jマウスにそれぞれ2週間で3回投与し、マウスまたはヒトCD153抗体の産生をELISAで評価した。発明者らは、ヒトCD153#D-ミョウバンワクチンで誘導された抗体は、ヒトCD153#D-BSAおよび組換えヒトCD153(rhCD153)と強く反応することを見出した(図7B、C)。一方、該抗体は、マウスCD153#D-BSAおよび組換えマウスCD153(rmCD153)と反応しなかった(図7B、C)。また、マウスCD153#D-ミョウバンワクチンで誘導された抗体は、rmCD153とは反応したが、rhCD153とほとんど反応しなかった(図7D)。
Example 6 Anti-human CD153 antibody is not cross-reactive with mouse CD153 and anti-mouse CD153 antibody is not cross-reactive with human CD153.
The inventors designed a human CD153 # D vaccine homologous to the CD153 # D vaccine (mouse CD153 # D vaccine) from the human CD153 amino acid sequence in order to verify the cross-reactivity of the anti-human CD153 antibody and the anti-mouse CD153 antibody. (Fig. 7A). The mouse CD153 # D-alum vaccine and the human CD153 # D-alum vaccine were each administered to 7-week-old male C57BL / 6J mice three times for two weeks, and the production of mouse or human CD153 antibody was evaluated by ELISA. The inventors found that antibodies induced with the human CD153 # D-alum vaccine strongly reacted with human CD153 # D-BSA and recombinant human CD153 (rhCD153) (Fig. 7B, C). On the other hand, the antibody did not react with mouse CD153 # D-BSA and recombinant mouse CD153 (rmCD153) (Fig. 7B, C). In addition, the antibody induced by the mouse CD153 # D-alum vaccine reacted with rmCD153 but hardly with rhCD153 (Fig. 7D).
 本発明のCD153の部分アミノ酸配列をワクチンとして用いることにより、細胞表面にCD153を発現している老化関連T細胞を阻害する抗体を誘導し、それによって老化関連T細胞からの炎症性タンパク質、炎症性ケモカインの分泌を低減させ、糖代謝異常を改善することができる。該ワクチンによって誘導される抗体は半減期が長いため、従来の糖代謝異常治療薬のような頻回投与を必要としない。本出願は、日本で出願された特願2018-211771(出願日:平成30年11月9日)を基礎としており、その内容はすべて本明細書に包含されるものとする。
 
By using the partial amino acid sequence of CD153 of the present invention as a vaccine, an antibody that inhibits senescence-related T cells expressing CD153 on the cell surface is induced, and thereby an inflammatory protein or inflammatory protein from senescence-related T cells is induced. It can reduce chemokine secretion and improve glucose metabolism disorders. Since the antibody induced by the vaccine has a long half-life, it does not require frequent administration unlike conventional therapeutic agents for abnormal glucose metabolism. This application is based on Japanese Patent Application No. 2018-211771 (filed on: Nov. 9, 2018) filed in Japan, the contents of which are incorporated in full herein.

Claims (13)

  1.  以下の(1)~(3)のいずれかを含む、糖代謝異常の予防または治療用ワクチン:
    (1)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド、
    (2)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド、
    (3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター。
    A vaccine for preventing or treating abnormal glucose metabolism, which comprises any of the following (1) to (3):
    (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2;
    (2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 A polypeptide comprising a sequence,
    (3) An expression vector capable of expressing the polypeptide of (1) or (2) above.
  2.  以下の(1’)または(2’)を含む、請求項1に記載のワクチン:
    (1’)配列番号:2に示されるアミノ酸配列からなるポリペプチド、
    (2’)上記(1’)のポリペプチドを発現し得る発現ベクター。
    The vaccine according to claim 1, comprising the following (1 ') or (2'):
    (1 ') a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2,
    (2 ′) An expression vector capable of expressing the polypeptide of (1 ′) above.
  3.  以下の(1’’)または(2’’)を含む、請求項1に記載のワクチン:
    (1’’)配列番号:4に示されるアミノ酸配からなるポリペプチド、
    (2’’)上記(1’’)のポリペプチドを発現し得る発現ベクター。
    The vaccine according to claim 1, comprising the following (1 '') or (2 ''):
    (1 '') a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4,
    (2 ″) An expression vector capable of expressing the polypeptide of (1 ″) above.
  4.  キャリアタンパク質をさらに含む、請求項1~3のいずれか1項に記載のワクチン。 The vaccine according to any one of claims 1 to 3, further comprising a carrier protein.
  5.  キャリアタンパク質がスカシ貝ヘモシアニンである、請求項4に記載のワクチン。 The vaccine according to claim 4, wherein the carrier protein is keyhole limpet hemocyanin.
  6.  アジュバントをさらに含む、請求項1~5のいずれか1項に記載のワクチン。 The vaccine according to any one of claims 1 to 5, further comprising an adjuvant.
  7.  アジュバントがCpGオリゴデオキシヌクレオチドである、請求項6に記載のワクチン。 The vaccine according to claim 6, wherein the adjuvant is CpG oligodeoxynucleotide.
  8.  糖代謝異常が、糖尿病、耐糖能異常、肥満症、高インスリン血症、糖尿病性神経障害、糖尿病性腎症および糖尿病性網膜症からなる群から選択される、請求項1~7のいずれか1項に記載のワクチン。 The glucose metabolism disorder is selected from the group consisting of diabetes, glucose intolerance, obesity, hyperinsulinemia, diabetic neuropathy, diabetic nephropathy and diabetic retinopathy. Vaccine according to paragraph.
  9.  以下の(1)または(2)のポリペプチドを認識し、老化関連T細胞を阻害する抗体を含む、糖代謝異常の予防または治療剤:
    (1)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド;
    (2)配列番号:2に示されるアミノ酸配列または配列番号:2に対応する非ヒト哺乳動物由来のアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド。
    A prophylactic or therapeutic agent for glucose metabolism disorder, which comprises an antibody that recognizes the following polypeptide (1) or (2) and inhibits senescence-related T cells:
    (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 2;
    (2) Amino acid in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence derived from non-human mammal corresponding to SEQ ID NO: 2 A polypeptide comprising a sequence.
  10.  配列番号:2に示されるアミノ酸配列からなるポリペプチドを認識し、老化関連T細胞を阻害する抗体を含む、請求項9に記載の予防または治療剤。 The preventive or therapeutic agent according to claim 9, which comprises an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 and inhibits senescence-related T cells.
  11.  配列番号:4に示されるアミノ酸配列からなるポリペプチドを認識し、老化関連T細胞を阻害する抗体を含む、請求項9に記載の予防または治療剤。 The preventive or therapeutic agent according to claim 9, which comprises an antibody that recognizes the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4 and inhibits senescence-related T cells.
  12.  老化関連T細胞は、CD4陽性PD-1陽性CD153陽性T細胞である、請求項9~11のいずれか1項に記載の予防または治療剤。 The preventive or therapeutic agent according to any one of claims 9 to 11, wherein the senescence-related T cells are CD4 positive PD-1 positive CD153 positive T cells.
  13.  糖代謝異常が、糖尿病、耐糖能異常、肥満症、高インスリン血症、糖尿病性神経障害、糖尿病性腎症および糖尿病性網膜症からなる群から選択される、請求項9~12のいずれか1項に記載の予防または治療剤。
     
    The glucose metabolism disorder is selected from the group consisting of diabetes, glucose intolerance, obesity, hyperinsulinemia, diabetic neuropathy, diabetic nephropathy and diabetic retinopathy. The preventive or therapeutic agent according to the item.
PCT/JP2019/043886 2018-11-09 2019-11-08 Senescent t cell-targeting vaccine for preventing or treating abnormal sugar metabolism WO2020096046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-211771 2018-11-09
JP2018211771 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020096046A1 true WO2020096046A1 (en) 2020-05-14

Family

ID=70612089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043886 WO2020096046A1 (en) 2018-11-09 2019-11-08 Senescent t cell-targeting vaccine for preventing or treating abnormal sugar metabolism

Country Status (1)

Country Link
WO (1) WO2020096046A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866505B2 (en) 2021-02-17 2024-01-09 Prometheus Biosciences, Inc. Anti-CD30L antibodies and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503319A (en) * 2000-08-08 2005-02-03 イミュネックス・コーポレーション Treatment of autoimmune and chronic inflammatory conditions using antagonists of CD30 or CD30L
JP2015522252A (en) * 2012-04-27 2015-08-06 ノヴォ ノルディスク アー/エス Human CD30 ligand antigen binding protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503319A (en) * 2000-08-08 2005-02-03 イミュネックス・コーポレーション Treatment of autoimmune and chronic inflammatory conditions using antagonists of CD30 or CD30L
JP2015522252A (en) * 2012-04-27 2015-08-06 ノヴォ ノルディスク アー/エス Human CD30 ligand antigen binding protein

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAKRABARTY, S. ET AL.: "2-H-W15-7-O/P: Blockade of CD30/CD30L interactions does not facilitate autoimmune diabetes in NOD mice", PROCEEDINGS OF THE JAPANESE SOCIETY FOR IMMUNOLOGY, vol. 31, 2001, pages 208, XP009520988, ISSN: 0919-1984 *
SHIRAKAWA, K. ET AL: "Obesity accelerates T cell senescence in murine visceral adipose tissue", JOURNAL OF CLINICAL INVESTIGATION, vol. 126, no. 12, 1 December 2016 (2016-12-01), pages 4626 - 4639, XP055704747, ISSN: 0021-9738, DOI: 10.1172/JCI88606 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866505B2 (en) 2021-02-17 2024-01-09 Prometheus Biosciences, Inc. Anti-CD30L antibodies and uses thereof

Similar Documents

Publication Publication Date Title
JP5823663B2 (en) Methods and compositions for treating and detecting misfolded SOD1-mediated diseases
US20210205446A1 (en) Conjugate vaccine targeting a disease-causing biological protein
EA007218B1 (en) Prevention and treatment of amyloidogenic disease
WO2020096046A1 (en) Senescent t cell-targeting vaccine for preventing or treating abnormal sugar metabolism
KR101836756B1 (en) Vaccine targeting il-17a
EP1198246B1 (en) Methods for preventing or attenuating pathoangiogenic conditions by using the gbs-toxin (cm101) receptor as a vaccine
WO2015033831A1 (en) Dpp-4-targeting vaccine for treating diabetes
US20090221804A1 (en) GBS Toxin Receptor Compositions and Methods of Use
JP2013512279A (en) Method for treating IgE-mediated diseases
US20160304881A1 (en) Ddr1 antagonist or an inhibitor of ddr1 gene expression for use in the prevention or treatment of crescentic glomerulonephritis
Nara et al. An octavalent dendrimer of multiple antigenic peptide with a property of pan-coronavirus IgM induction improved clinical signs of feline infectious peritonitis in cats
JP4549666B2 (en) Antibody production method
US8609614B2 (en) GBS toxin receptor compositions and methods of use
CN103044546B (en) A kind of PrPC antibody and its preparation method and application
JP2013091648A (en) Method and composition to treat and detect misfolded-sod1 mediated disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP