WO2020095660A1 - Glass product which has three-dimensional shape and method for manufacturing same, and chemically strengthened glass product and method for manufacturing same - Google Patents

Glass product which has three-dimensional shape and method for manufacturing same, and chemically strengthened glass product and method for manufacturing same Download PDF

Info

Publication number
WO2020095660A1
WO2020095660A1 PCT/JP2019/041217 JP2019041217W WO2020095660A1 WO 2020095660 A1 WO2020095660 A1 WO 2020095660A1 JP 2019041217 W JP2019041217 W JP 2019041217W WO 2020095660 A1 WO2020095660 A1 WO 2020095660A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
shape
glass article
plate portion
Prior art date
Application number
PCT/JP2019/041217
Other languages
French (fr)
Japanese (ja)
Inventor
典久 帆苅
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2020556738A priority Critical patent/JPWO2020095660A1/en
Priority to KR1020217012433A priority patent/KR20210090616A/en
Priority to CN201980072502.6A priority patent/CN112969667A/en
Publication of WO2020095660A1 publication Critical patent/WO2020095660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a glass article having a three-dimensional shape and a chemically strengthened glass article, which contains an alkali aluminosilicate glass containing lithium.
  • a "three-dimensional shape” means a shape other than a flat plate.
  • cover glass for example, a plate-shaped alkali aluminosilicate glass having a thickness of about 0.3 mm to 1 mm chemically strengthened is used.
  • a cover glass having a three-dimensional shape is expected.
  • a chemically strengthened glass housing having a three-dimensional shape is used in place of the metal housing to improve the radio wave transmission / reception of the built-in antenna of the mobile terminal. It is also expected to do.
  • a cover glass that is processed from a flat plate shape into a three-dimensional shape by thermal processing and is chemically strengthened (Patent Documents 1 to 4).
  • Patent Document 1 discloses "curved surface shape, uneven shape, corrugated shape, stepped shape, etc.” Further, in Patent Document 2, a flat plate glass is bent as a "dish shape” and is raised at a predetermined angle with respect to the main surface thereof, which should be a plate shape, a bat (tray) shape, or a box shape (Fig. 1). , FIG. 2) is illustrated. Further, Patent Documents 4 and 5 exemplify those molded into a uniform curved surface.
  • Patent Documents 5 and 6 As a method of forming a flat glass into a three-dimensional shape, a self-weight forming method of heating and bending the flat glass, a vacuum forming method (sagging or suction method), etc. are known (for example, Patent Documents 5 and 6).
  • Non-Patent Document 1 This is a method which is originally widely used for press molding of aspherical lenses, but flat glass can also be used as a preform. Compared with other thermal processing methods, the mold pressing method has a high degree of freedom in designing the shape of a glass article having a three-dimensional shape, that the shape can be precisely controlled and formed, and the surface may be different depending on the condition of the mold surface. It has advantages such as obtaining a glass article having a smooth three-dimensional shape.
  • Patent Document 1 discloses a glass article having an alkali aluminoborosilicate glass composition. However, since the glass composition disclosed in Patent Document 1 has a high characteristic temperature such as a softening point, a mold pressing method using a flat glass as a preform at a relatively low processing temperature (for example, around 600 ° C.) is applied. Not suitable to do.
  • Patent Documents 2 to 5 do not disclose a glass composition suitable for applying the mold pressing method in which a flat glass is used as a preform at the processing temperature.
  • JP, 2010-168233 A Japanese Patent Publication No. 2015-527277 Japanese Patent Publication No. 2015-527970 Japanese Patent Publication No. 2017-506616 International Publication No. 2016/125713 Japanese Patent Publication No. 2011-526874
  • the problem to be solved by the present invention is to impart a three-dimensional shape using a mold pressing method, and further to strengthen it by a chemical strengthening treatment, having a glass composition suitable for the three-dimensional shape.
  • a glass article provided.
  • the problem to be solved by the present invention is to provide a glass article having such a glass composition, having a three-dimensional shape, and having a high strength by a chemical strengthening treatment.
  • the present invention is Has a three-dimensional shape, that is, a shape other than a flat plate, Displayed in mass% based on oxide, SiO 2 60% or more, 70% or less, Al 2 O 3 6% or more, 18% or less, Li 2 O 2% or more, 8% or less, Na 2 O 8% or more, 20% or less, K 2 O 0% or more, 1% or less, MgO 0% or more, 3% or less, CaO 1% or more, 6% or less, Provided is a glass article containing 0.01% or more and 0.2% or less of Fe 2 O 3 .
  • the present invention is From the molten glass raw material, represented by mass% on an oxide basis, to form a flat glass having a glass composition containing each of the above components in the above content ratio, Molding the flat glass into a glass article having a shape other than a flat plate by a mold pressing method, and a method for producing a glass article.
  • the present invention is Has a shape other than a flat plate, Has a compressive stress layer on the surface, At least the portion other than the compressive stress layer is displayed by mass% based on oxide, Provided is a chemically strengthened glass article containing the above components in the above content rates.
  • the present invention is From the molten glass raw material, represented by mass% on an oxide basis, to form a flat glass having a glass composition containing each of the above components in the above content ratio, Forming the flat glass into a glass article having a shape other than a flat plate by a mold pressing method, A method for producing a chemically strengthened glass article, comprising: chemically strengthening the glass article.
  • the present invention is Provided is a mobile terminal provided with the glass article according to the present invention.
  • the present invention is Provided is a vehicle-mounted display device including a glass article according to the present invention.
  • Articles are provided.
  • a glass article having such a glass composition, imparted with a three-dimensional shape, and strengthened by a chemical strengthening treatment.
  • the glass composition specified by the present invention enables molding by a mold pressing method at a relatively low temperature.
  • the mold press method at a relatively low temperature suppresses problems that may occur with the mold press method such as reduction of transmittance of glass articles due to devitrification, roughening of the surface of glass articles, wear of mold used for molding, etc. It is advantageous in doing so.
  • the glass composition specified by the present invention enables chemical strengthening treatment after molding, and is suitable for realizing a high-strength glass article having a three-dimensional shape.
  • the molding temperature by the mold pressing method may be higher if necessary.
  • Molding at a higher temperature is preferably applied when the flat glass is molded into a specific shape, for example, a shape in which the side plate portion is thicker than the bottom plate portion.
  • the glass composition specified by the present invention can provide the advantage that molding into glass articles of such different thicknesses can also be carried out at lower temperatures.
  • the top view which shows an example of the shape of the glass article which has a three-dimensional shape.
  • II-II sectional view of FIG. III-III sectional view of FIG. The top view which shows another example of the shape of the glass article which has a three-dimensional shape.
  • VV sectional view of FIG. VI-VI sectional view of FIG. The top view which shows another example of the shape of the glass article which has a three-dimensional shape.
  • the top view which shows another example of the shape of the glass article which has a three-dimensional shape.
  • the figure which expanded a part of FIG. The figure which shows the concentration distribution of the depth direction of sodium ion in the surface vicinity of the chemically strengthened glass article which consists of the glass composition of Example 1.
  • the glass article has a shape other than a flat plate, that is, a three-dimensional shape.
  • the three-dimensional shape is, for example, a shape including a bottom plate portion, a bent portion, and a side plate portion, and the side plate portion is connected to the peripheral edge of the bottom plate portion via the bent portion.
  • the glass article 10 has a shape in which the side plate portion 2 is connected to the entire peripheral edge of the bottom plate portion 1 via the bent portion 3.
  • the bottom plate portion 1 has a substantially quadrangular shape in a plan view, to be precise, a rectangular shape with rounded corners.
  • the bottom plate portion 1 is a flat plate, and the main surface 1f thereof is a flat surface.
  • the side plate portion 2 rises from the bent portion 3 to the same height as viewed from the main surface 1f of the bottom plate portion 1.
  • the side plate portion 2 extends in a direction away from the main surface 1f that is the bottom surface of the bottom plate portion 1.
  • Both the side plate portion 2 and the bent portion 3 have curved surfaces (see FIGS. 2 and 3), and the surface of the bent portion 3 has a larger curvature than the surface of the side plate portion 2.
  • the bottom plate portion 1 of the glass article 20 has a peripheral edge to which the side plate portion 2 is connected via the bent portion 3 and a peripheral edge to which the side plate portion 2 is not connected.
  • the bottom plate portion 1 has a substantially quadrangular shape in plan view, and more specifically, a rectangular shape.
  • the side plate portion 2 rises from the peripheral edge of the bottom plate portion 1 corresponding to a pair of opposite sides of the rectangle facing each other through the bent portion 3, and the end surface of the bottom plate portion 1 is exposed at the peripheral edge corresponding to the other opposite side of the bottom plate portion 1. ing.
  • the bottom plate portion 1 has a peripheral edge to which the side plate portion 2 is connected via the bent portion 3 and a peripheral edge to which the side plate portion 2 is not connected.
  • the side plate portion 2 rises through the bent portion 3 from the peripheral edge corresponding to the long side of the main surface of the bottom plate portion 1 instead of the short side.
  • the bottom plate portion 1 of the glass article 30 is a curved plate whose main surface 1c is a curved surface (see FIG. 9).
  • the shapes shown in FIGS. 1 to 9 are dish-shaped, bat (tray) -shaped and the like. Further, if the side plate portion 2 is extended further from the shape shown in FIGS. 1 to 3, it can be called a box shape.
  • the glass article may have a shape corresponding to at least one selected from a dish shape, a bat shape, and a box shape.
  • the shape of the glass article is not limited to the examples shown in FIGS.
  • the bottom plate portion 1 is not limited to a quadrangle in a plan view, and may have a circular shape, an elliptical shape, or the like.
  • the side plate portion 2 may be a flat plate or may rise in a direction orthogonal to the main surface of the bottom plate portion 1.
  • the side plate portion 2 may be provided with notches, holes or the like for connecting a connector or the like to the mobile terminal.
  • a hole or the like may be formed in the bottom plate portion 1.
  • the shape of the glass article is not limited to the shape including the bottom plate portion, the bent portion, and the side plate portion.
  • the glass article 40 shown in FIG. 10 does not have a portion that can be regarded as a bent portion when the side plate portion 2 having a constant curvature is directly connected to the peripheral edge of the bottom plate portion 1 that is a flat plate in a cross-sectional view.
  • a glass article typically has a shape that can be applied by deforming a plate-shaped glass article having a pair of main surfaces that are flat, that is, flat glass, by a mold pressing method.
  • the glass article preferably has a bottom plate portion 1 as a main portion thereof, specifically, a portion occupying a majority of the whole on a mass basis, and the bottom plate portion 1 preferably has a flat plate shape or a curved surface shape.
  • a preferable curved surface shape of the bottom plate portion 1 is a smooth curved surface having a minimum radius of curvature of 5 cm or more.
  • the shape of the bottom plate portion which is a flat plate or a curved plate having a small curvature, is suitable for use as, for example, a front surface portion arranged on the front surface of a display such as a mobile terminal or a bottom portion of a glass housing of the mobile terminal.
  • the thickness t1 of the bottom plate portion 1 is, for example, 0.3 mm or more and 2 mm or less, and particularly 0.3 mm or more and 1 mm or less. This thickness is suitable for use as a cover glass or glass housing for mobile terminals. However, when the bottom plate portion 1 is used in a display device other than that for a mobile terminal, it may have a thickness suitable for it.
  • the thickness t2 of the side plate portion 2 may also be, for example, 0.3 mm or more and 2 mm or less, particularly 0.5 mm or more and 2 mm or less. Further, the thickness t2 may be substantially the same as the thickness t1 of the bottom plate portion 1. In the glass article, the thickness may be substantially the same over the entire area of the bottom plate portion 1 and the side plate portion 2. In the present specification, "substantially the same thickness” means that the difference in thickness is 0.1 mm or less, and further 0.05 mm or less.
  • the thickness t2 is not substantially the same as the thickness t1 and may be larger than the thickness t1.
  • the difference (t2-t1) may be, for example, 0.3 mm or more, and particularly 0.4 to 1 mm.
  • the thickness t2 of the side plate portion 2 may be locally thicker than the thickness t1 of the bottom plate portion 1.
  • the thickness t2 of the side plate portion 2 may be locally thicker than the thickness t1 of the bottom plate portion 1.
  • the difference (t2p-t1) between the thickness t2p and the thickness t1 of the locally thickened portion is within the range described above for the difference (t2-t1).
  • a glass article in which the thickness of the side plate portion 2 is substantially the same as the thickness of the bottom plate portion 1 is produced from a flat glass having substantially the same thickness. It is also possible to form a glass article in which the side plate portion 2 is thicker than the bottom plate portion 1 from the above flat glass.
  • the surface of the glass article can have high smoothness even after applying the mold pressing method and the chemical strengthening treatment.
  • the arithmetic average roughness Ra of the surface is, for example, 1 nm or less, and further 0.8 nm or less.
  • the glass article may have a high light transmittance even after applying the mold pressing method and the chemical strengthening treatment, at least in the bottom plate portion 1.
  • the change in light transmittance compared with the flat glass that is the preform before applying the mold pressing method and the chemical strengthening treatment is within 2%, further within 1%, as expressed by the average transmittance in the wavelength range of 400 to 1200 nm. Is.
  • the glass composition of the glass article is an alkali aluminosilicate glass containing lithium oxide (Li 2 O).
  • % indications indicating the components of the glass composition mean mass% on the oxide basis.
  • substantially free from means that the content of the component is 0.05% or less, preferably 0.01% or less. In industrial mass production of glass articles, it may be unavoidable to mix impurities. “Substantially” means that unavoidable mixing of a trace amount of impurities is allowed.
  • each component SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, K 2 O, MgO, CaO, Fe 2 O 3 ) constituting the glass composition of the glass article is described above. It is as follows.
  • the glass article may further contain, for example, the following components as a coloring agent and a clarifying agent.
  • a coloring agent TiO 2 0% or more, 1% or less, SO 3 0% or more, 1% or less, SnO 0% or more, 1% or less, CeO 2 0% or more, 1% or less, As 2 O 3 0% or more, 1% or less, Sb 2 O 3 0% or more and 1% or less
  • As 2 O 3 and Sb 2 O 3 are not substantially contained.
  • Other optional components will be described later.
  • SiO 2 SiO 2
  • the SiO 2 content is in the range of 60 to 70%, preferably 60 to 68%, more preferably 62 to 66%, and most preferably 64 to 66%.
  • Al 2 O 3 improves chemical durability such as water resistance and further facilitates the movement of alkali metal ions in the glass to increase the surface compressive stress after chemical strengthening and to increase the stress layer depth. It is an ingredient for deepening. If the proportion is less than 6%, the effect is insufficient. On the other hand, if it exceeds 18%, the viscosity of the glass melt becomes high, and it becomes difficult to melt and mold, and the expansion coefficient becomes too small. Therefore, the content of Al 2 O 3 is in the range of 6 to 18%, preferably 10 to 18%, more preferably 14 to 17%.
  • Li 2 O is a component for performing ion exchange and also a component for enhancing solubility. If the proportion is less than 2%, sufficient surface compressive stress after ion exchange cannot be obtained, and the solubility is poor. On the other hand, if it exceeds 8%, the water resistance after ion exchange is deteriorated, and the liquidus temperature rises, making molding difficult. Therefore, the Li 2 O content is in the range of 2 to 8%, preferably 2 to 6.1%, more preferably 2.6 to 6%, and further preferably 3 to 5%.
  • Na 2 O Na 2 O is a component that enhances the solubility. If the proportion is less than 8%, the effect is insufficient. On the other hand, if it exceeds 20%, the water resistance after ion exchange is deteriorated. Therefore, the content of Na 2 O is in the range of 8 to 20%, preferably 10 to 16%, more preferably 10 to 14%, and most preferably 11 to 13%.
  • K 2 O K 2 O is a component that enhances solubility, but it is not an essential component because the surface compressive stress after ion exchange may decrease. Therefore, the content of K 2 O is in the range of 0 to 2%, preferably 0 to 1%, more preferably 0 to 0.5%, most preferably 0.3 to 0.5%.
  • MgO MgO is a component that enhances the solubility, but if it exceeds 3%, the liquidus temperature rises, and molding becomes difficult. Therefore, the MgO content is in the range of 0 to 3%, preferably 0 to 2%, more preferably 0.5 to 2%, and most preferably 0.5 to 1.5%.
  • CaO CaO is a component that enhances the solubility and an essential component for adjusting the ion exchange rate. If the proportion is less than 1%, the effect is not sufficient. On the other hand, if it exceeds 6%, the liquidus temperature rises and molding becomes difficult. Therefore, the CaO content is in the range of 1 to 6%, preferably 1 to 4%, and most preferably 2 to 4%.
  • Fe is present in the glass in the state of Fe 2+ or Fe 3+ and acts as a colorant.
  • Fe 3+ is a component that enhances the ultraviolet absorbing performance of glass
  • Fe 2+ is a component that enhances the heat ray absorbing performance.
  • the glass article is used as a cover glass for a display, it is required that the coloring is inconspicuous. Therefore, the Fe content is preferably low.
  • Fe is often inevitably mixed with industrial raw materials.
  • the content of iron oxide converted to Fe 2 O 3 is 0.2% or less, preferably 0.15% or less, more preferably 0.1% or less, It is preferably 0.05% or less, but may not be completely excluded, and may be 0.01% or more.
  • the iron oxide content converted to Fe 2 O 3 is 0.1% or more for the purpose of coloring, and more preferably It may be suitable to be 0.5% or more.
  • SrO and BaO are components that enhance the solubility and are effective in lowering the liquidus temperature. However, as the density of glass increases, the cost of raw materials increases.
  • the contents of SrO and BaO are each in the range of 0 to 1%, preferably 0 to 0.5%, more preferably 0 to 0.1%. Most preferably, the glass article is substantially free of SrO and BaO.
  • B 2 O 3 is a component that lowers the viscosity of the glass composition and improves the solubility. However, if the B 2 O 3 content is too high, the glass composition is likely to undergo phase separation, and the water resistance of the glass composition is reduced. Further, the compound formed by B 2 O 3 and the alkali metal oxide may volatilize and damage the refractory in the glass melting chamber. Further, the inclusion of B 2 O 3 makes the depth of the compressive stress layer in chemical strengthening shallow. Therefore, the B 2 O 3 content is suitably 0.5% or less, preferably 0.1% or less. Most preferably, the glass article is substantially free of B 2 O 3 . Further, since P 2 O 5 also has a problem of volatility and the like, the content of P 2 O 5 is 0.5% or less, preferably 0.1% or less.
  • the glass article may contain other components, for example, components derived from coloring agents and fining agents, as long as they do not affect the conditions of thermal processing and chemical strengthening.
  • the content of TiO 2 , SO 3 , SnO, CeO 2 , As 2 O 3 , and Sb 2 O 3 is 1% or less, preferably 0.5% or less.
  • the total content of these components is 1% or less, preferably 0.5% or less, more preferably 0.3% or less, further preferably 0.1% or less. Is preferred.
  • As 2 O 3 and Sb 2 O 3 are not substantially contained because they have an adverse effect on the environment. It is preferable that the other components are not substantially contained.
  • Glass article further, ZrO 2, PbO, La 2 O 3, Y 2 O 3, MoO 3, WO 3, Nb 2 O 5, CoO, Cr 2 O 3 0.5%, respectively less, preferably 0. It may be contained in the range of 1% or less.
  • the glass article may contain a noble metal element such as Au, Ag, Pt, Rh, and Os, and a halogen element such as Cl and F in a range of 0.5% or less for each element.
  • a noble metal element such as Au, Ag, Pt, Rh, and Os
  • a halogen element such as Cl and F
  • ZrO 2 causes corrosion of heat-resistant bricks in a melting kiln.
  • the total content of the components TiO 2 to F listed above is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less.
  • the glass composition whose composition has been described above has characteristics suitable for forming a three-dimensional shape by a mold pressing method performed at a relatively low temperature, specifically, a yield point, a glass transition point and a thermal expansion coefficient. obtain. These characteristics are as follows.
  • the upper limit of the yield point is 580 ° C., preferably 560 ° C.
  • the lower limit of the yield point is 420 ° C, preferably 450 ° C, and more preferably 500 ° C.
  • the upper limit of the glass transition temperature is 530 ° C., preferably 500 ° C.
  • the lower limit of the glass transition temperature is 330 ° C, preferably 400 ° C, and more preferably 430 ° C.
  • the thermal expansion coefficient ⁇ (unit: 10 ⁇ 7 / ° C.) is 80 to 120, preferably 80 to 100, as an average value from 50 ° C. to 350 ° C.
  • the glass composition preferably has a melting point, a working point, and a liquidus temperature suitable for producing a flat glass as a preform.
  • a float method and a down draw method
  • the float method which is a method for producing a large area flat glass with high productivity, is preferable.
  • the melting point T 2 , working point T 4 , and liquidus temperature TL of the glass composition are as follows.
  • melting point T 2 When the melting point is low, the amount of energy required to melt the glass raw material can be suppressed, and the glass raw material is more easily melted to promote defoaming and fining of the glass melt.
  • the melting point is 1580 ° C or lower, preferably 1550 ° C or lower, and more preferably 1500 ° C or lower.
  • the melting point T 2 is the temperature at which the glass has a viscosity of 10 2 dPa ⁇ s, and may be displayed as T 2 based on this viscosity. Also in the following, the numerical value indicated with T corresponds to the viscosity of the glass at that temperature.
  • the temperature of the molten glass is adjusted so that the viscosity ⁇ of the molten glass is about 10 4 dPa ⁇ s when the molten glass is flowed into the float bath from the melting furnace.
  • the lower limit of the working point is not particularly limited, but may be 800 ° C., for example.
  • the difference between the working point and the liquidus temperature (T 4 -T L ) is preferably 10 ° C. or higher, preferably 50 ° C. or higher, more preferably 100 ° C. or higher.
  • the glass article can be obtained by melting a glass raw material to form a flat glass plate, shaping the flat glass plate into a shape other than a flat plate by a mold pressing method, and further chemically strengthening the flat glass plate as necessary.
  • the flat glass can be formed by a float method, a down draw method, or any other known method.
  • the float method is a preferred method for producing flat glass. Since the flat glass forming method including the float method is well known to those skilled in the art, the description thereof is omitted here.
  • mold press method flat glass is press molded using a molding die.
  • an isothermal pressing method in which the forming die and the flat glass are heated to a predetermined temperature and pressed into a desired shape at that temperature (processing temperature). After press molding, the glass article is cooled to a predetermined temperature, the glass article is removed from the mold, and precision annealing is performed.
  • the mold is heated to the temperature for processing flat glass, so it is required to have low strength at high temperatures and low reactivity with flat glass.
  • a preform having a shape close to a desired product shape is relatively low by using a mold in which a surface of a cemented carbide is precisely processed and a release film such as a DLC (diamond-like carbon) film is coated on the surface. It is preferable to mold at the processing temperature.
  • An example of the cemented carbide is tungsten carbide. If a mold made of cemented carbide is used, surface polishing after molding is unnecessary.
  • the mold and the flat glass are heated to a temperature exceeding the deformation point, while pressing the flat glass using the mold. It is preferable to hold for a predetermined time required for deformation (for example, 2 to 6 minutes, for example, 5 minutes), and then cool to a temperature around the glass transition point.
  • a predetermined time required for deformation for example, 2 to 6 minutes, for example, 5 minutes
  • This condition is suitable for a method of forming a glass article in which the thickness t2 of the side plate portion 2 is substantially the same as the thickness t1 of the bottom plate portion 1 from a flat glass having a uniform thickness.
  • an appropriate processing temperature is 550 ° C. or higher.
  • the temperature is preferably 580 ° C or higher, more preferably 600 ° C or higher.
  • the processing temperature is 150 ° C. or less, preferably 130 ° C. or less, more preferably 120 ° C. or less, further preferably 100 ° C. or less. ..
  • the mold press method it is also possible to transfer the marks and the like to the surface of a glass article while molding it, by engraving marks or patterns on the part of the mold that contacts the flat glass.
  • Chemical strengthening is a technique of forming a compressive stress layer on the surface of a glass article by ion exchange in which the alkali metal ions contained on the surface of the glass article are replaced with monovalent alkali metal ions having a larger radius. Chemical strengthening is often carried out by replacing lithium ions (Li + ) with sodium ions (Na + ) or by replacing sodium ions with potassium ions (K + ).
  • the ion exchange can be performed by bringing the glass article into contact with a molten salt containing an alkali metal ion to be introduced on the surface of the glass article.
  • the ion exchange may be carried out in two steps.
  • Na + introduced on the surface of the glass article by ion exchange with Li + may be further replaced by K + .
  • the molten salt for ion exchange include potassium nitrate.
  • a mixed molten salt of potassium nitrate and sodium nitrate is also a preferable molten salt.
  • the temperature of the molten salt brought into contact with the glass article is preferably 360 to 450 ° C.
  • the contact time between the glass article and the molten salt is preferably 2 to 6 hours.
  • the contact time is the time per ion exchange.
  • the glass composition before the ion exchange is maintained inside the surface except the surface affected by the ion exchange.
  • a compressive stress layer is generated on the surface so as to include a portion affected by ion exchange. Therefore, in the chemically strengthened glass article, the glass composition before the chemical strengthening is maintained at least inside the compression stress layer.
  • the entire glass article may have the composition described above.
  • the surface compressive stress C S in the chemically strengthened glass article is 400 MPa or more, preferably 600 MPa or more, more preferably 800 MPa or more.
  • the thickness DOC (Depth of Compression) of the compression stress layer is 60 ⁇ m or more, preferably 80 ⁇ m or more, more preferably 100 ⁇ m or more.
  • DOC is the depth at which the stress inside the glass changes from compression to tension, that is, the depth at which the stress becomes 0 MPa.
  • the ion exchange depth DOL (Depth of Layer) is preferably 5 to 12 ⁇ m. DOL is a depth at which birefringence can be confirmed, and can be measured using a glass surface stress meter (for example, FSM-6000 manufactured by Orihara Manufacturing Co., Ltd.).
  • Example 1 (Production of glass) A glass raw material batch was prepared by using ordinary glass raw materials such as silica sand, spodumene, alumina, lithium carbonate, sodium carbonate, potassium carbonate, dolomite, limestone, and iron oxide so that the glass composition shown in Example 1 of Table 2 was obtained. I prepared it. This batch was heated to 1550 ° C. with a platinum crucible and melted, and after holding for 4 hours as it was, molten glass was poured out onto an iron plate. The molten glass poured on the iron plate was solidified in 100 seconds, and immediately after solidification, it was placed in an electric furnace set at 600 ° C. After 30 minutes, the electric furnace was turned off, and the glass was obtained by allowing it to cool to room temperature and gradually cooling.
  • ordinary glass raw materials such as silica sand, spodumene, alumina, lithium carbonate, sodium carbonate, potassium carbonate, dolomite, limestone, and iron oxide
  • melting point T 2 (Melting point T 2 , working point T 4 )
  • the high temperature viscosity of glass is measured using a platinum ball pull-up type automatic viscosity measuring device, and the melting point T 2 is determined as the temperature at which the viscosity ( ⁇ , unit is dPa ⁇ s) of the glass melt becomes 10 2 dPa ⁇ s. It was Similarly, the working point T 4 was determined as the temperature at which the viscosity of the glass melt became 10 4 dPa ⁇ s. The results are shown in Table 2.
  • FIG. 11 shows a melting point, a working point, and a temperature-viscosity curve prepared from these values using the Fruchar equation.
  • a glass plate having dimensions of 50 mm ⁇ 100 mm ⁇ 0.9 mm was prepared from the obtained glass, and both surfaces were mirror-polished to obtain a flat glass sample.
  • the flat glass sample was heat-processed by the mold pressing method to obtain a glass sample having a three-dimensional shape similar to that shown in FIGS.
  • a cemented metal mold having a DLC film coated thereon was used to form a dish-like shape having a depth of about 5 mm in which the side plate portion and the bottom plate portion had substantially the same thickness.
  • the mold and glass were heated with an infrared heater, the temperature was measured, the temperature was raised to the processing temperature (a predetermined temperature of 610 to 670 ° C.), and the pressure was maintained for 5 minutes.
  • the side plate portion was formed in a dish-like shape having a depth of about 5 mm, which was thicker than the bottom plate portion.
  • the thickness of the bottom plate and the side plate of this sample were 0.6 mm and 1.3 mm, respectively.
  • the sample was molded at a processing temperature of 710 ° C. and a holding time of 12 minutes.
  • the average transmittance was determined by using a spectrophotometer (Hitachi U-4100 Spectrophotometer) and determining the average value of the transmittance measured every 5 nm in the wavelength range of 400 to 1200 nm.
  • the arithmetic mean roughness Ra was measured twice using a stylus (Tencor Alpha-Step 500), with a needle diameter of 5 ⁇ m, a needle pressure of 10 mg, and a needle scanning speed of 50 ⁇ m / sec. was determined by asking.
  • the glass sample having a three-dimensional shape was subjected to a two-step chemical strengthening treatment to obtain a chemically strengthened glass sample having a three-dimensional shape.
  • the first chemical strengthening treatment was performed by using a mixed salt containing sodium nitrate (NaNO 3 ) and potassium nitrate (KNO 3 ) in a weight ratio of 6: 4, and immersing the sample in a molten salt bath kept at 420 ° C. for 5 hours. It was Subsequently, as the second chemical strengthening treatment, the sample was immersed in a potassium nitrate molten salt bath kept at 370 ° C. for 3 hours. The sample was taken out, cooled to room temperature, washed and dried.
  • Examples 2 to 23 With respect to the glass compositions of Examples 2 to 23 in Tables 2 to 4, glass samples were prepared in the same manner as in Example 1, and the density ⁇ , the thermal expansion coefficient ⁇ , the yield point At, the glass transition point Tg, the melting point T 2 , the working point were used. The results of measuring T 4 and liquidus temperature TL are shown in Tables 2 to 4.
  • the table below shows the glass composition (mass% display) and various measurement results.
  • the glass article according to the present invention can be used for various purposes, for example, as a cover glass of a mobile terminal represented by a smartphone or a smart watch, a glass housing that houses the main body of the mobile terminal, and the like.
  • the glass article according to the present invention can be used as, for example, a vehicle-mounted display device or a digital signage device.
  • the glass article is not limited to being colorless and transparent, and may be colored by adding a coloring component especially when it is used as a glass housing.

Abstract

Provided is a glass product which has a shape other than a flat plate shape and has a glass composition comprising, represented in mass% on an oxide basis, 60 to 70% of SiO2, 6 to 18% of Al2O3, 2 to 8% of Li2O, 8 to 20% of Na2O, 0 to 1% of K2O, 0 to 3% of MgO, 1 to 6% of CaO, and 0.01 to 0.2% of Fe2O3. This glass composition is suited for being made into a three-dimensional shape using a mold press method and for being strengthened by a chemical strengthening process.

Description

三次元形状を有するガラス物品とその製造方法、化学強化ガラス物品およびその製造方法Glass article having three-dimensional shape and method for producing the same, chemically strengthened glass article and method for producing the same
 本発明は、リチウムを含むアルカリアルミノシリケートガラスを含み、三次元形状を有するガラス物品および化学強化ガラス物品に関するものである。なお、本明細書において、「三次元形状」は平板以外の形状を意味する。 The present invention relates to a glass article having a three-dimensional shape and a chemically strengthened glass article, which contains an alkali aluminosilicate glass containing lithium. In addition, in this specification, a "three-dimensional shape" means a shape other than a flat plate.
 近年、タッチパネルを搭載した携帯端末が広く普及しており、そのディスプレイを保護するために当該ディスプレイの表面にカバーガラスを備えることが一般的になっている。カバーガラスとしては、例えば厚さ0.3mm~1mm程度の平板形状のアルカリアルミノシリケートガラスを化学強化したものが用いられている。 In recent years, mobile terminals equipped with a touch panel have become widespread, and it is common to equip the surface of the display with a cover glass to protect the display. As the cover glass, for example, a plate-shaped alkali aluminosilicate glass having a thickness of about 0.3 mm to 1 mm chemically strengthened is used.
 さらに最近では、曲面形状などの三次元形状を有するディスプレイの開発に応じて、三次元形状を有するカバーガラスが期待されている。また、携帯端末の内蔵アンテナの電波受発信を良好にするため、金属筐体に代えて三次元形状を有する化学強化ガラス筐体とすることで、携帯端末の内臓アンテナの電波受発信を良好にすることも期待されている。これらに対して、熱加工により平板形状から三次元形状に加工され、さらに化学強化された、カバーガラスが提案されている(特許文献1~4)。 More recently, with the development of displays having a three-dimensional shape such as a curved shape, a cover glass having a three-dimensional shape is expected. Also, in order to improve the radio wave transmission / reception of the built-in antenna of the mobile terminal, a chemically strengthened glass housing having a three-dimensional shape is used in place of the metal housing to improve the radio wave transmission / reception of the built-in antenna of the mobile terminal. It is also expected to do. On the other hand, there has been proposed a cover glass that is processed from a flat plate shape into a three-dimensional shape by thermal processing and is chemically strengthened (Patent Documents 1 to 4).
 三次元形状としては、例えば特許文献1には「曲面形状、凹凸形状、波型形状、段付形状等」が開示されている。また特許文献2には、「皿形」として平板ガラスの周縁部を曲げてその主面に対して所定の角度立ち上げた、皿状、バット(トレイ)状あるいは箱状というべき形状(図1、図2)が例示されている。さらに特許文献4、5には全体を一様な曲面形状に成形したものが例示されている。 As a three-dimensional shape, for example, Patent Document 1 discloses "curved surface shape, uneven shape, corrugated shape, stepped shape, etc." Further, in Patent Document 2, a flat plate glass is bent as a "dish shape" and is raised at a predetermined angle with respect to the main surface thereof, which should be a plate shape, a bat (tray) shape, or a box shape (Fig. 1). , FIG. 2) is illustrated. Further, Patent Documents 4 and 5 exemplify those molded into a uniform curved surface.
 平板ガラスを三次元形状に成形する方法として、平板ガラスを加熱して曲げる自重形成法、真空形成法(サギングあるいはサクション法)などが知られている(例えば特許文献5、6)。 As a method of forming a flat glass into a three-dimensional shape, a self-weight forming method of heating and bending the flat glass, a vacuum forming method (sagging or suction method), etc. are known (for example, Patent Documents 5 and 6).
 一様な曲面ではなく、局所的に曲げられた屈曲部を有する三次元形状のガラス物品(特許文献2の図1、2を参照)を形成する場合、特にその形状、厚み分布を精密に制御することが求められる場合には、モールドプレス法が最も適している(非特許文献1)。これは、元来、非球面レンズのプレス成形に広く用いられている手法であるが、平板ガラスをプリフォームとして実施することもできる。モールドプレス法は、他の熱加工法に比して、三次元形状のガラス物品の形状設計の自由度が高いこと、形状を精密に制御して形成できること、また型表面の状態によるが表面が滑らかな三次元形状のガラス物品を得られることなどの利点を有する。 When forming a three-dimensionally shaped glass article (see FIGS. 1 and 2 of Patent Document 2) having a bent portion that is locally bent instead of a uniform curved surface, particularly, the shape and thickness distribution thereof are precisely controlled. When it is required to do so, the mold pressing method is most suitable (Non-Patent Document 1). This is a method which is originally widely used for press molding of aspherical lenses, but flat glass can also be used as a preform. Compared with other thermal processing methods, the mold pressing method has a high degree of freedom in designing the shape of a glass article having a three-dimensional shape, that the shape can be precisely controlled and formed, and the surface may be different depending on the condition of the mold surface. It has advantages such as obtaining a glass article having a smooth three-dimensional shape.
 特許文献1~4に開示されたガラス組成物からなる平板ガラスをプリフォームとして用いて前記のモールドプレス法により三次元形状のガラス物品を得ることについては、以下の問題がある。 There are the following problems in obtaining a glass article having a three-dimensional shape by the above-mentioned mold pressing method using a flat glass composed of the glass composition disclosed in Patent Documents 1 to 4 as a preform.
 特許文献1にはアルカリアルミノボロシリケートガラス組成物を有するガラス物品が開示されている。しかし、特許文献1に開示されているガラス組成物は、軟化点等の特性温度が高いため、比較的低温の加工温度(例えば600℃前後)で平板ガラスをプリフォームとするモールドプレス法を適用することには適していない。 Patent Document 1 discloses a glass article having an alkali aluminoborosilicate glass composition. However, since the glass composition disclosed in Patent Document 1 has a high characteristic temperature such as a softening point, a mold pressing method using a flat glass as a preform at a relatively low processing temperature (for example, around 600 ° C.) is applied. Not suitable to do.
 特許文献2~5にも、前記加工温度で平板ガラスをプリフォームとするモールドプレス法を適用することに適したガラス組成は開示されていない。 Also, Patent Documents 2 to 5 do not disclose a glass composition suitable for applying the mold pressing method in which a flat glass is used as a preform at the processing temperature.
 なお、化学強化によるガラス物品の強度向上の程度はガラス物品の表面近傍のガラス組成に大きく影響されるため、熱加工によりガラス物品の表面近傍のガラス組成が変化することは通常ガラス物品の強度向上に不利に作用する。その点からも、高温での熱加工は好ましくない。 It should be noted that since the degree of improvement in the strength of a glass article due to chemical strengthening is greatly influenced by the glass composition near the surface of the glass article, it is usually the strength improvement of the glass article that the glass composition near the surface of the glass article changes due to thermal processing. Work against you. From that point as well, thermal processing at high temperature is not preferable.
 この問題に対して、平板ガラスに化学強化処理を施した後に熱加工を施す手法が考えられる。その場合、イオン交換によって導入されたイオンの拡散などに起因して応力緩和が生じ、ガラス物品の表面に付与した圧縮応力が減少することとなるため等温プレス法の適用が難しくなる。 For this problem, a method of subjecting flat glass to chemical strengthening and then heat processing is conceivable. In that case, stress relaxation occurs due to diffusion of ions introduced by ion exchange, and the compressive stress applied to the surface of the glass article is reduced, which makes it difficult to apply the isothermal pressing method.
特開2010-168233号公報JP, 2010-168233, A 特表2015-527277号公報Japanese Patent Publication No. 2015-527277 特表2015-527970号公報Japanese Patent Publication No. 2015-527970 特表2017-506616号公報Japanese Patent Publication No. 2017-506616 国際公開第2016/125713号公報International Publication No. 2016/125713 特表2011-526874号公報Japanese Patent Publication No. 2011-526874
 本発明が解決しようとする課題は、モールドプレス法を利用して三次元形状を付与すること、さらに引き続き化学強化処理によって高強度化すること、に適したガラス組成を有し、三次元形状が付与されたガラス物品を提供することにある。また、本発明が解決しようとする課題は、このようなガラス組成を有し、三次元形状が付与され、化学強化処理によって高強度化されたガラス物品を提供することにある。 The problem to be solved by the present invention is to impart a three-dimensional shape using a mold pressing method, and further to strengthen it by a chemical strengthening treatment, having a glass composition suitable for the three-dimensional shape. To provide a glass article provided. Further, the problem to be solved by the present invention is to provide a glass article having such a glass composition, having a three-dimensional shape, and having a high strength by a chemical strengthening treatment.
 本発明は、
 三次元形状、すなわち平板以外の形状、を有し、
 酸化物基準の質量%により表示して、
  SiO2 60%以上、70%以下、
  Al23 6%以上、18%以下、
  Li2O 2%以上、8%以下、
  Na2O 8%以上、20%以下、
  K2O 0%以上、1%以下、
  MgO 0%以上、3%以下、
  CaO 1%以上、6%以下、
  Fe23 0.01%以上、0.2%以下
を含む、ガラス物品、を提供する。
The present invention is
Has a three-dimensional shape, that is, a shape other than a flat plate,
Displayed in mass% based on oxide,
SiO 2 60% or more, 70% or less,
Al 2 O 3 6% or more, 18% or less,
Li 2 O 2% or more, 8% or less,
Na 2 O 8% or more, 20% or less,
K 2 O 0% or more, 1% or less,
MgO 0% or more, 3% or less,
CaO 1% or more, 6% or less,
Provided is a glass article containing 0.01% or more and 0.2% or less of Fe 2 O 3 .
 また、本発明は、
 溶融したガラス原料から、酸化物基準の質量%により表示して、上記各成分を上記の含有率で含むガラス組成を有する平板ガラスを成形することと、
 前記平板ガラスをモールドプレス法により平板以外の形状を有するガラス物品へと成形することと、を具備する、ガラス物品の製造方法、を提供する。
Further, the present invention is
From the molten glass raw material, represented by mass% on an oxide basis, to form a flat glass having a glass composition containing each of the above components in the above content ratio,
Molding the flat glass into a glass article having a shape other than a flat plate by a mold pressing method, and a method for producing a glass article.
 また、本発明は、
 平板以外の形状を有し、
 表面に圧縮応力層を有し、
 少なくとも前記圧縮応力層以外の部分が、酸化物基準の質量%により表示して、
 上記各成分を上記の含有率で含む、化学強化されたガラス物品、を提供する。
Further, the present invention is
Has a shape other than a flat plate,
Has a compressive stress layer on the surface,
At least the portion other than the compressive stress layer is displayed by mass% based on oxide,
Provided is a chemically strengthened glass article containing the above components in the above content rates.
 また、本発明は、
 溶融したガラス原料から、酸化物基準の質量%により表示して、上記各成分を上記の含有率で含むガラス組成を有する平板ガラスを成形することと、
 前記平板ガラスをモールドプレス法により平板以外の形状を有するガラス物品へと成形することと、
 前記ガラス物品を化学強化処理することと、を具備する、化学強化されたガラス物品の製造方法、を提供する。
Further, the present invention is
From the molten glass raw material, represented by mass% on an oxide basis, to form a flat glass having a glass composition containing each of the above components in the above content ratio,
Forming the flat glass into a glass article having a shape other than a flat plate by a mold pressing method,
A method for producing a chemically strengthened glass article, comprising: chemically strengthening the glass article.
 また、本発明は、
 本発明によるガラス物品を備えた携帯端末、を提供する。
Further, the present invention is
Provided is a mobile terminal provided with the glass article according to the present invention.
 また、本発明は、
 本発明によるガラス物品を備えた車両搭載用表示装置、を提供する。
Further, the present invention is
Provided is a vehicle-mounted display device including a glass article according to the present invention.
 本発明によれば、モールドプレス法を利用して三次元形状を付与すること、さらに引き続き化学強化処理によって高強度化すること、に適したガラス組成を有し、三次元形状が付与されたガラス物品が提供される。また、本発明によれば、このようなガラス組成を有し、三次元形状が付与され、化学強化処理によって高強度化されたガラス物品が提供される。 According to the present invention, a glass having a glass composition suitable for imparting a three-dimensional shape by using a mold pressing method and further increasing the strength by a chemical strengthening treatment and having a three-dimensional shape imparted thereto. Articles are provided. Further, according to the present invention, there is provided a glass article having such a glass composition, imparted with a three-dimensional shape, and strengthened by a chemical strengthening treatment.
 本発明が特定するガラス組成は、比較的低温でのモールドプレス法による成形を可能とする。比較的低温でのモールドプレス法は、失透などによるガラス物品の透過率の減少、ガラス物品の表面の粗面化、成形に用いる型の損耗などのモールドプレス法に伴って生じ得る問題を抑制する上で有利である。また、本発明が特定するガラス組成は、成形後の化学強化処理を可能とし、三次元形状を有する高強度のガラス物品の実現に適している。なお、本発明においても、モールドプレス法による成形温度は、必要に応じ、より高温としてもよい。より高温での成形は、特定の形状、例えば側板部が底板部よりも厚い形状へと平板ガラスを成形する場合に適用することが好ましい。本発明が特定するガラス組成は、このような異厚のガラス物品への成形もより低温で実施できるという利点を提供できる。 The glass composition specified by the present invention enables molding by a mold pressing method at a relatively low temperature. The mold press method at a relatively low temperature suppresses problems that may occur with the mold press method such as reduction of transmittance of glass articles due to devitrification, roughening of the surface of glass articles, wear of mold used for molding, etc. It is advantageous in doing so. Further, the glass composition specified by the present invention enables chemical strengthening treatment after molding, and is suitable for realizing a high-strength glass article having a three-dimensional shape. In the present invention as well, the molding temperature by the mold pressing method may be higher if necessary. Molding at a higher temperature is preferably applied when the flat glass is molded into a specific shape, for example, a shape in which the side plate portion is thicker than the bottom plate portion. The glass composition specified by the present invention can provide the advantage that molding into glass articles of such different thicknesses can also be carried out at lower temperatures.
三次元形状を有するガラス物品の形状の一例を示す平面図The top view which shows an example of the shape of the glass article which has a three-dimensional shape. 図1のII-II断面図II-II sectional view of FIG. 図1のIII-III断面図III-III sectional view of FIG. 三次元形状を有するガラス物品の形状の別の一例を示す平面図The top view which shows another example of the shape of the glass article which has a three-dimensional shape. 図4のV-V断面図VV sectional view of FIG. 図4のVI-VI断面図VI-VI sectional view of FIG. 三次元形状を有するガラス物品の形状のまた別の一例を示す平面図The top view which shows another example of the shape of the glass article which has a three-dimensional shape. 図7のVIII-VIII断面図VIII-VIII sectional view of FIG. 図7のIX-IX断面図IX-IX sectional view of FIG. 三次元形状を有するガラス物品の形状のさらに別の一例を示す平面図The top view which shows another example of the shape of the glass article which has a three-dimensional shape. 実施例1~3のガラス組成物の温度-粘度曲線を示す図The figure which shows the temperature-viscosity curve of the glass composition of Examples 1-3. 実施例1のガラス組成物からなる化学強化ガラス物品の深さ方向における圧縮応力分布を示す図The figure which shows the compressive stress distribution in the depth direction of the chemically strengthened glass article which consists of the glass composition of Example 1. 図12の一部分を拡大した図The figure which expanded a part of FIG. 実施例1のガラス組成物からなる化学強化ガラス物品の表面近傍におけるナトリウムイオンの深さ方向濃度分布を示す図The figure which shows the concentration distribution of the depth direction of sodium ion in the surface vicinity of the chemically strengthened glass article which consists of the glass composition of Example 1.
 以下、適宜図面を参照しながら本発明を説明するが、以下の説明は本発明を特定の形態に限定するものではない。 Hereinafter, the present invention will be described with reference to the drawings as appropriate, but the following description does not limit the present invention to a particular mode.
[ガラス物品の三次元形状]
 ガラス物品は、平板以外の形状、すなわち三次元形状を有する。三次元形状は、例えば、底板部と屈曲部と側板部とを備え、底板部の周縁に屈曲部を介して側板部が接続された形状である。
[Three-dimensional shape of glass article]
The glass article has a shape other than a flat plate, that is, a three-dimensional shape. The three-dimensional shape is, for example, a shape including a bottom plate portion, a bent portion, and a side plate portion, and the side plate portion is connected to the peripheral edge of the bottom plate portion via the bent portion.
 図1~3に上記形状の一例を示す。ガラス物品10は、底板部1の全周縁に屈曲部3を介して側板部2が接続された形状を有する。底板部1は、平面視で、実質的に四角形、正確には隅角部が丸みを帯びた矩形である。また、底板部1は、平板であり、その主表面1fは平面である。側板部2は、屈曲部3から、底板部1の主表面1fから見て同一の高さにまで立ち上がっている。側板部2は、底板部1の底面である主表面1fから遠ざかる方向に延びている。側板部2および屈曲部3は、共にその表面が曲面であり(図2および3参照)、屈曲部3の表面は側板部2の表面よりも大きな曲率を有する。 1 to 3 show examples of the above shapes. The glass article 10 has a shape in which the side plate portion 2 is connected to the entire peripheral edge of the bottom plate portion 1 via the bent portion 3. The bottom plate portion 1 has a substantially quadrangular shape in a plan view, to be precise, a rectangular shape with rounded corners. The bottom plate portion 1 is a flat plate, and the main surface 1f thereof is a flat surface. The side plate portion 2 rises from the bent portion 3 to the same height as viewed from the main surface 1f of the bottom plate portion 1. The side plate portion 2 extends in a direction away from the main surface 1f that is the bottom surface of the bottom plate portion 1. Both the side plate portion 2 and the bent portion 3 have curved surfaces (see FIGS. 2 and 3), and the surface of the bent portion 3 has a larger curvature than the surface of the side plate portion 2.
 図4~6に上記形状の別の一例を示す。ガラス物品20の底板部1は、屈曲部3を介して側板部2が接続された周縁と、側板部2が接続されていない周縁とを有する。底板部1は、平面視で実質的に四角形、より具体的には矩形である。その矩形の相対する一対の対辺に相当する底板部1の周縁からは屈曲部3を介して側板部2が立ち上がり、底板部1の残りの対辺に相当する周縁では底板部1の端面が露出している。 4 to 6 show another example of the above shape. The bottom plate portion 1 of the glass article 20 has a peripheral edge to which the side plate portion 2 is connected via the bent portion 3 and a peripheral edge to which the side plate portion 2 is not connected. The bottom plate portion 1 has a substantially quadrangular shape in plan view, and more specifically, a rectangular shape. The side plate portion 2 rises from the peripheral edge of the bottom plate portion 1 corresponding to a pair of opposite sides of the rectangle facing each other through the bent portion 3, and the end surface of the bottom plate portion 1 is exposed at the peripheral edge corresponding to the other opposite side of the bottom plate portion 1. ing.
 図7~9に上記形状のまた別の一例を示す。ガラス物品30においても、底板部1は、屈曲部3を介して側板部2が接続された周縁と、側板部2が接続されていない周縁とを有する。ただし、ガラス物品20とは異なり、ガラス物品30においては、底板部1の主表面の短辺ではなく長辺に相当する周縁から屈曲部3を介して側板部2が立ち上がっている。また、ガラス物品10、20とは異なり、ガラス物品30の底板部1は、その主表面1cが曲面の曲板である(図9参照)。 7 to 9 show another example of the above shape. Also in the glass article 30, the bottom plate portion 1 has a peripheral edge to which the side plate portion 2 is connected via the bent portion 3 and a peripheral edge to which the side plate portion 2 is not connected. However, unlike the glass article 20, in the glass article 30, the side plate portion 2 rises through the bent portion 3 from the peripheral edge corresponding to the long side of the main surface of the bottom plate portion 1 instead of the short side. Further, unlike the glass articles 10 and 20, the bottom plate portion 1 of the glass article 30 is a curved plate whose main surface 1c is a curved surface (see FIG. 9).
 図1~9に示した形状は、皿状、バット(トレイ)状などといい得る形状である。また、図1~3に示した形状から側板部2をさらに長く延ばせば、箱状といい得る形状になる。このように、ガラス物品は、皿状、バット状および箱状から選ばれる少なくとも1つに相当する形状を有していてもよい。ただし、ガラス物品の形状は図1~9の例示に限らない。例えば、底板部1は、平面視において四角形に限らず、円形、楕円形その他であってもよい。側板部2は、平板であってもよく、また、底板部1の主表面と直交する方向に立ち上がっていてもよい。側板部2には、携帯端末にコネクターなどを接続するための切り欠き、孔などが設けられていてもよい。底板部1にも孔などが形成されていても構わない。ガラス物品は、その形状が底板部と屈曲部と側板部とを備えた形状に限られるものでもない。例えば、図10に示すガラス物品40は、断面視において、一定の曲率を有する側板部2が平板である底板部1の周縁と直接接続し、屈曲部とみなし得る部分を有していない。 The shapes shown in FIGS. 1 to 9 are dish-shaped, bat (tray) -shaped and the like. Further, if the side plate portion 2 is extended further from the shape shown in FIGS. 1 to 3, it can be called a box shape. Thus, the glass article may have a shape corresponding to at least one selected from a dish shape, a bat shape, and a box shape. However, the shape of the glass article is not limited to the examples shown in FIGS. For example, the bottom plate portion 1 is not limited to a quadrangle in a plan view, and may have a circular shape, an elliptical shape, or the like. The side plate portion 2 may be a flat plate or may rise in a direction orthogonal to the main surface of the bottom plate portion 1. The side plate portion 2 may be provided with notches, holes or the like for connecting a connector or the like to the mobile terminal. A hole or the like may be formed in the bottom plate portion 1. The shape of the glass article is not limited to the shape including the bottom plate portion, the bent portion, and the side plate portion. For example, the glass article 40 shown in FIG. 10 does not have a portion that can be regarded as a bent portion when the side plate portion 2 having a constant curvature is directly connected to the peripheral edge of the bottom plate portion 1 that is a flat plate in a cross-sectional view.
 ガラス物品は、典型的には、一対の主表面がともに平面である板状のガラス物品、すなわち平板ガラスを、モールドプレス法により変形させて付与しうる形状を有する。ガラス物品は、その主要部、具体的には質量基準で全体の過半を占める部分として、底板部1を有することが好ましく、底板部1は平板形状または曲面形状を有することが好ましい。好ましい底板部1の曲面形状は、最小曲率半径が5cm以上のなだらかな曲面である。平板または曲率が小さい曲板である底板部の形状は、例えば、携帯端末などのディスプレイの前面に配置される前面部、あるいは携帯端末のガラス筐体の底部などとしての使用に適している。 A glass article typically has a shape that can be applied by deforming a plate-shaped glass article having a pair of main surfaces that are flat, that is, flat glass, by a mold pressing method. The glass article preferably has a bottom plate portion 1 as a main portion thereof, specifically, a portion occupying a majority of the whole on a mass basis, and the bottom plate portion 1 preferably has a flat plate shape or a curved surface shape. A preferable curved surface shape of the bottom plate portion 1 is a smooth curved surface having a minimum radius of curvature of 5 cm or more. The shape of the bottom plate portion, which is a flat plate or a curved plate having a small curvature, is suitable for use as, for example, a front surface portion arranged on the front surface of a display such as a mobile terminal or a bottom portion of a glass housing of the mobile terminal.
 底板部1の厚みt1は、例えば0.3mm以上2mm以下、特に0.3mm以上1mm以下である。この厚みは、携帯端末用のカバーガラスまたはガラス筐体としての使用に適している。ただし、底板部1は、携帯端末用以外の表示装置に使用される場合には、適宜、それに適した厚みを有し得る。 The thickness t1 of the bottom plate portion 1 is, for example, 0.3 mm or more and 2 mm or less, and particularly 0.3 mm or more and 1 mm or less. This thickness is suitable for use as a cover glass or glass housing for mobile terminals. However, when the bottom plate portion 1 is used in a display device other than that for a mobile terminal, it may have a thickness suitable for it.
 側板部2の厚みt2も、例えば0.3mm以上2mm以下、特に0.5mm以上2mm以下であってよい。また、厚みt2は、底板部1の厚みt1と実質的に同一であってもよい。ガラス物品では、底板部1および側板部2のすべての領域にわたってその厚みが実質的に同一であってもよい。本明細書において、厚みが「実質的に同一」とは、厚みの差分が、0.1mm以下、さらには0.05mm以下であることを意味する。 The thickness t2 of the side plate portion 2 may also be, for example, 0.3 mm or more and 2 mm or less, particularly 0.5 mm or more and 2 mm or less. Further, the thickness t2 may be substantially the same as the thickness t1 of the bottom plate portion 1. In the glass article, the thickness may be substantially the same over the entire area of the bottom plate portion 1 and the side plate portion 2. In the present specification, "substantially the same thickness" means that the difference in thickness is 0.1 mm or less, and further 0.05 mm or less.
 ただし、これに限らず、厚みt2は、厚みt1と実質的に同一でなく、厚みt1より大きくてもよい。この場合、差分(t2-t1)は、例えば0.3mm以上、特に0.4~1mmであってもよい。側板部2を底板部1より厚くすることにより、ガラス物品全体の重量増を抑制しながら、1)底板部1自体の重量および底板部1に加わる圧力、例えばディスプレイに指などから加わる圧力に抗する強度を保持することが容易になり、2)側板部2に切り欠き、孔などを設けても、側板部2の強度を保持することが容易になる、などの利点が得られる。このような効果を十分に得るために、厚みt2は、厚みt1の2倍以上であってもよい。 However, not limited to this, the thickness t2 is not substantially the same as the thickness t1 and may be larger than the thickness t1. In this case, the difference (t2-t1) may be, for example, 0.3 mm or more, and particularly 0.4 to 1 mm. By making the side plate portion 2 thicker than the bottom plate portion 1, while suppressing an increase in the weight of the entire glass article, 1) the weight of the bottom plate portion 1 itself and the pressure applied to the bottom plate portion 1, for example, the pressure applied to the display by a finger or the like are prevented. The strength of the side plate 2 can be easily maintained, and 2) the strength of the side plate 2 can be easily maintained even if the side plate 2 is provided with a notch or a hole. In order to sufficiently obtain such an effect, the thickness t2 may be twice or more the thickness t1.
 なお、側板部2の厚みt2は、局部的に、底板部1の厚みt1より厚くしてもよい。例えば1)の効果を得るためには、屈曲部3との接続部から延びて側板部2の端面に至る1または2以上の柱状の部分のみを局部的に厚くして側板部2に支持部を設けるとよい。また例えば2)の効果を得るためには、切り欠きを設ける部分を局部的に厚くするとよい。これらの場合は、局部的に厚くした部分の厚みt2pと厚みt1との差分(t2p-t1)を、差分(t2-t1)について述べた上述の範囲とすることが好ましい。 Note that the thickness t2 of the side plate portion 2 may be locally thicker than the thickness t1 of the bottom plate portion 1. For example, in order to obtain the effect of 1), only one or two or more columnar portions extending from the connecting portion with the bent portion 3 and reaching the end surface of the side plate portion 2 are locally thickened so that the side plate portion 2 has a supporting portion. Should be provided. Further, for example, in order to obtain the effect of 2), it is preferable to locally thicken the portion where the notch is provided. In these cases, it is preferable that the difference (t2p-t1) between the thickness t2p and the thickness t1 of the locally thickened portion is within the range described above for the difference (t2-t1).
 後述するように、モールドプレス法の条件を適切に選択すれば、厚みが実質的に同一である平板ガラスから側板部2の厚みが底板部1の厚みと実質的に同一であるガラス物品を製造することのみならず、上記平板ガラスから側板部2が底板部1よりも厚いガラス物品を成形することも可能である。 As will be described later, if the conditions of the mold pressing method are appropriately selected, a glass article in which the thickness of the side plate portion 2 is substantially the same as the thickness of the bottom plate portion 1 is produced from a flat glass having substantially the same thickness. It is also possible to form a glass article in which the side plate portion 2 is thicker than the bottom plate portion 1 from the above flat glass.
 ガラス物品の表面は、モールドプレス法、さらに化学強化処理を適用した後にも高い平滑性を有し得る。表面の算術平均粗さRaは、例えば1nm以下、さらには0.8nm以下である。また、ガラス物品は、少なくとも底板部1において、モールドプレス法、さらに化学強化処理を適用した後にも高い光線透過率を有し得る。モールドプレス法および化学強化処理を適用する前のプリフォームである平板ガラスと比較した光線透過率の変化は、波長域400~1200nmの平均透過率により表示して2%以内、さらには1%以内である。 The surface of the glass article can have high smoothness even after applying the mold pressing method and the chemical strengthening treatment. The arithmetic average roughness Ra of the surface is, for example, 1 nm or less, and further 0.8 nm or less. Further, the glass article may have a high light transmittance even after applying the mold pressing method and the chemical strengthening treatment, at least in the bottom plate portion 1. The change in light transmittance compared with the flat glass that is the preform before applying the mold pressing method and the chemical strengthening treatment is within 2%, further within 1%, as expressed by the average transmittance in the wavelength range of 400 to 1200 nm. Is.
[ガラス組成]
 ガラス物品のガラス組成は、酸化リチウム(Li2O)を含むアルカリアルミノシリケートガラスである。以降において、ガラス組成の成分を示す%表示は、酸化物基準の質量%を意味する。また、本明細書において「実質的に含有しない」とは、当該成分の含有率が0.05%以下、好ましくは0.01%以下であることを意味する。ガラス物品の工業的量産では不純物の混入が避けがたい場合がある。「実質的に」は微量の不純物の不可避的混入を許容する趣旨である。
[Glass composition]
The glass composition of the glass article is an alkali aluminosilicate glass containing lithium oxide (Li 2 O). Hereinafter,% indications indicating the components of the glass composition mean mass% on the oxide basis. Further, in the present specification, "substantially free from" means that the content of the component is 0.05% or less, preferably 0.01% or less. In industrial mass production of glass articles, it may be unavoidable to mix impurities. “Substantially” means that unavoidable mixing of a trace amount of impurities is allowed.
 ガラス物品のガラス組成を構成する各成分(SiO2、Al23、Li2O、Na2O、K2O、MgO、CaO、Fe23)の含有率の好適な範囲は上述したとおりである。 The preferable range of the content of each component (SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, K 2 O, MgO, CaO, Fe 2 O 3 ) constituting the glass composition of the glass article is described above. It is as follows.
 ガラス物品は、着色剤、清澄剤などとして、例えば以下の成分をさらに含んでいてもよい。
  TiO2 0%以上、1%以下、
  SO3 0%以上、1%以下、
  SnO 0%以上、1%以下、
  CeO2 0%以上、1%以下、
  As23 0%以上、1%以下、
  Sb23 0%以上、1%以下
  ただし、As23とSb23は、実質的に含まないことが望ましい。その他の任意成分については後述する。
The glass article may further contain, for example, the following components as a coloring agent and a clarifying agent.
TiO 2 0% or more, 1% or less,
SO 3 0% or more, 1% or less,
SnO 0% or more, 1% or less,
CeO 2 0% or more, 1% or less,
As 2 O 3 0% or more, 1% or less,
Sb 2 O 3 0% or more and 1% or less However, it is desirable that As 2 O 3 and Sb 2 O 3 are not substantially contained. Other optional components will be described later.
 以下、各成分の好ましい含有率についてより詳しく説明する。 Below, we will explain in more detail the preferred content of each component.
 (SiO2
 SiO2は、含有率が低すぎるとガラスの耐水性などの化学的耐久性および耐熱性が低下する。他方、SiO2の含有率が高すぎると、高温でのガラス組成物の粘性が高くなり、溶解および成形が困難になる。したがって、SiO2の含有率は60~70%の範囲であり、好ましくは60~68%、さらに好ましくは62~66%、最も好ましくは64~66%である。
(SiO 2 )
If the content of SiO 2 is too low, the chemical durability such as water resistance of glass and the heat resistance decrease. On the other hand, if the content of SiO 2 is too high, the viscosity of the glass composition at high temperature becomes high, which makes melting and molding difficult. Therefore, the SiO 2 content is in the range of 60 to 70%, preferably 60 to 68%, more preferably 62 to 66%, and most preferably 64 to 66%.
 (Al23
 Al23は、耐水性などの化学的耐久性を向上させ、さらにガラス中のアルカリ金属イオンの移動を容易にすることにより化学強化後の表面圧縮応力を高め、かつ、応力層深さを深くするための成分である。その割合が6%未満では、その効果が不十分である。一方、18%を越えるとガラス融液の粘性が高くなり、溶融や成形が困難となるとともに、膨張係数が小さくなりすぎる。このため、Al23の含有率は6~18%の範囲であり、好ましくは10~18%、さらに好ましくは14~17%である。
(Al 2 O 3 )
Al 2 O 3 improves chemical durability such as water resistance and further facilitates the movement of alkali metal ions in the glass to increase the surface compressive stress after chemical strengthening and to increase the stress layer depth. It is an ingredient for deepening. If the proportion is less than 6%, the effect is insufficient. On the other hand, if it exceeds 18%, the viscosity of the glass melt becomes high, and it becomes difficult to melt and mold, and the expansion coefficient becomes too small. Therefore, the content of Al 2 O 3 is in the range of 6 to 18%, preferably 10 to 18%, more preferably 14 to 17%.
 (Li2O)
 Li2Oは、イオン交換を行うための成分であるとともに、溶解性を高める成分である。その割合が2%未満では、イオン交換後の表面圧縮応力が十分得られず、また溶解性も悪い。一方、8%を越えるとイオン交換後の耐水性が悪化するとともに、液相温度が上がり、成形が困難となる。このため、Li2Oの含有率は2~8%の範囲であり、好ましくは2~6.1%、より好ましくは2.6~6%、さらに好ましくは3~5%である。
(Li 2 O)
Li 2 O is a component for performing ion exchange and also a component for enhancing solubility. If the proportion is less than 2%, sufficient surface compressive stress after ion exchange cannot be obtained, and the solubility is poor. On the other hand, if it exceeds 8%, the water resistance after ion exchange is deteriorated, and the liquidus temperature rises, making molding difficult. Therefore, the Li 2 O content is in the range of 2 to 8%, preferably 2 to 6.1%, more preferably 2.6 to 6%, and further preferably 3 to 5%.
 (Na2O)
 Na2Oは溶解性を高める成分である。その割合が8%未満では、その効果が不十分である。一方、20%を越えるとイオン交換後の耐水性が悪化する。このため、Na2Oの含有率は8~20%の範囲であり、好ましくは10~16%、さらに好ましくは10~14%、最も好ましくは11~13%である。
(Na 2 O)
Na 2 O is a component that enhances the solubility. If the proportion is less than 8%, the effect is insufficient. On the other hand, if it exceeds 20%, the water resistance after ion exchange is deteriorated. Therefore, the content of Na 2 O is in the range of 8 to 20%, preferably 10 to 16%, more preferably 10 to 14%, and most preferably 11 to 13%.
 (K2O)
 K2Oは、溶解性を高める成分であるが、イオン交換後の表面圧縮応力が低下する場合があるため必須成分ではない。このため、K2Oの含有率は0~2%の範囲であり、好ましくは0~1%、さらに好ましくは0~0.5%、最も好ましくは0.3~0.5%である。
(K 2 O)
K 2 O is a component that enhances solubility, but it is not an essential component because the surface compressive stress after ion exchange may decrease. Therefore, the content of K 2 O is in the range of 0 to 2%, preferably 0 to 1%, more preferably 0 to 0.5%, most preferably 0.3 to 0.5%.
 (MgO)
 MgOは、溶解性を高める成分であるが、3%を越えると液相温度が上がり、成形が困難となる。このためMgOの含有率は0~3%の範囲であり、好ましくは0~2%、さらに好ましくは0.5~2%、最も好ましくは0.5~1.5%である。
(MgO)
MgO is a component that enhances the solubility, but if it exceeds 3%, the liquidus temperature rises, and molding becomes difficult. Therefore, the MgO content is in the range of 0 to 3%, preferably 0 to 2%, more preferably 0.5 to 2%, and most preferably 0.5 to 1.5%.
 (CaO)
 CaOは、溶解性を高める成分であるとともに、イオン交換速度を調整するための必須成分である。その割合が1%未満ではその効果が十分でない。一方、6%を越えると液相温度が上がり、成形が困難となる。このため、CaOの含有率は1~6%の範囲であり、好ましくは1~4%、最も好ましくは2~4%である。
(CaO)
CaO is a component that enhances the solubility and an essential component for adjusting the ion exchange rate. If the proportion is less than 1%, the effect is not sufficient. On the other hand, if it exceeds 6%, the liquidus temperature rises and molding becomes difficult. Therefore, the CaO content is in the range of 1 to 6%, preferably 1 to 4%, and most preferably 2 to 4%.
 (Fe23
 通常Feは、Fe2+またはFe3+の状態でガラス中に存在し、着色剤として作用する。Fe3+はガラスの紫外線吸収性能を高める成分であり、Fe2+は熱線吸収性能を高める成分である。ガラス物品をディスプレイのカバーガラスとして用いる場合、着色が目立たないことが求められるため、Feの含有率は少ない方が好ましい。しかし、Feは工業原料により不可避的に混入することが多い。したがって、ディスプレイのカバーガラスとする場合は、Fe23に換算した酸化鉄の含有率は0.2%以下であり、好ましくは0.15%以下、さらに好ましくは0.1%以下、さらに好ましくは0.05%以下であることが好適であるが、完全に排除されていなくてもよく、0.01%以上であってもよい。
(Fe 2 O 3 )
Usually, Fe is present in the glass in the state of Fe 2+ or Fe 3+ and acts as a colorant. Fe 3+ is a component that enhances the ultraviolet absorbing performance of glass, and Fe 2+ is a component that enhances the heat ray absorbing performance. When the glass article is used as a cover glass for a display, it is required that the coloring is inconspicuous. Therefore, the Fe content is preferably low. However, Fe is often inevitably mixed with industrial raw materials. Therefore, when used as a cover glass for a display, the content of iron oxide converted to Fe 2 O 3 is 0.2% or less, preferably 0.15% or less, more preferably 0.1% or less, It is preferably 0.05% or less, but may not be completely excluded, and may be 0.01% or more.
 一方、ガラス筐体として三次元形状を有する化学強化ガラス物品を用いる場合には、着色することを目的としてFe23に換算した酸化鉄の含有率を0.1%以上とし、さらに好ましくは0.5%以上とすることが好適なことがある。 On the other hand, when a chemically strengthened glass article having a three-dimensional shape is used as the glass housing, the iron oxide content converted to Fe 2 O 3 is 0.1% or more for the purpose of coloring, and more preferably It may be suitable to be 0.5% or more.
 (その他の成分)
 SrOやBaOは、溶解性を高める成分であるとともに液相温度を下げるのに有効な成分である。しかし、ガラスの密度が大きくなるとともに、原料費用の増加を招く。SrOとBaOの含有率は、それぞれ0~1%の範囲であり、好ましくは0~0.5%、さらに好ましくは0~0.1%である。ガラス物品は、SrOやBaOを実質的に含有しないことが最も好ましい。
(Other ingredients)
SrO and BaO are components that enhance the solubility and are effective in lowering the liquidus temperature. However, as the density of glass increases, the cost of raw materials increases. The contents of SrO and BaO are each in the range of 0 to 1%, preferably 0 to 0.5%, more preferably 0 to 0.1%. Most preferably, the glass article is substantially free of SrO and BaO.
 B23は、ガラス組成物の粘性を下げ、溶解性を改善する成分である。しかし、B23の含有率が高すぎると、ガラス組成物が分相しやすくなり、ガラス組成物の耐水性が低下する。また、B23とアルカリ金属酸化物とが形成する化合物が揮発してガラス溶解室の耐火物を損傷するおそれが生じる。さらに、B23の含有は化学強化における圧縮応力層の深さを浅くしてしまう。したがって、B23の含有率は0.5%以下、好ましくは0.1%以下であることが適切である。ガラス物品は、B23を実質的に含有しないことが最も好ましい。また、P25についても、その揮発性などが問題になるため、P25の含有率は0.5%以下、好ましくは0.1%以下が適切である。 B 2 O 3 is a component that lowers the viscosity of the glass composition and improves the solubility. However, if the B 2 O 3 content is too high, the glass composition is likely to undergo phase separation, and the water resistance of the glass composition is reduced. Further, the compound formed by B 2 O 3 and the alkali metal oxide may volatilize and damage the refractory in the glass melting chamber. Further, the inclusion of B 2 O 3 makes the depth of the compressive stress layer in chemical strengthening shallow. Therefore, the B 2 O 3 content is suitably 0.5% or less, preferably 0.1% or less. Most preferably, the glass article is substantially free of B 2 O 3 . Further, since P 2 O 5 also has a problem of volatility and the like, the content of P 2 O 5 is 0.5% or less, preferably 0.1% or less.
 ガラス物品は、熱加工の条件や化学強化に影響しない範囲で、その他の成分、例えば着色剤や清澄剤に起因する成分を含むことができる。例えば透過率の高いカバーガラスとして用いる場合には、TiO2、SO3、SnO、CeO2、As23、Sb23の含有率をそれぞれ1%以下、好ましくは0.5%以下とすることが好適であり、さらにこれらの成分の含有率の合計が1%以下であり、好ましくは0.5%以下、さらに好ましくは0.3%以下、さらに好ましくは0.1%以下とすることが好適である。ただし、As23とSb23は環境に悪影響があるため、実質的に含有しないことが好ましい。その他の成分も、それぞれ実質的に含有しないことが好ましい。 The glass article may contain other components, for example, components derived from coloring agents and fining agents, as long as they do not affect the conditions of thermal processing and chemical strengthening. For example, when it is used as a cover glass having high transmittance, the content of TiO 2 , SO 3 , SnO, CeO 2 , As 2 O 3 , and Sb 2 O 3 is 1% or less, preferably 0.5% or less. Further, the total content of these components is 1% or less, preferably 0.5% or less, more preferably 0.3% or less, further preferably 0.1% or less. Is preferred. However, it is preferable that As 2 O 3 and Sb 2 O 3 are not substantially contained because they have an adverse effect on the environment. It is preferable that the other components are not substantially contained.
 ガラス物品は、さらに、ZrO2、PbO、La23、Y23、MoO3、WO3、Nb25、CoO、Cr23をそれぞれ0.5%以下、好ましくは0.1%以下の範囲で含んでいてもよい。ガラス物品は、Au、Ag、Pt、Rh、Osなどの貴金属元素、Cl、Fなどのハロゲン元素を各元素について0.5%以下の範囲で含んでいてもよい。ただし、ZrO2からCr23までに列記した成分、貴金属元素およびハロゲン元素も、それぞれ実質的に含有しないことが好ましい。例えば、ZrO2は溶融窯の耐熱レンガを侵食する原因になる。上記に列記したTiO2からFまでの成分の含有率の合計は1%以下、さらには0.5%以下、特に0.1%以下が好適である。 Glass article further, ZrO 2, PbO, La 2 O 3, Y 2 O 3, MoO 3, WO 3, Nb 2 O 5, CoO, Cr 2 O 3 0.5%, respectively less, preferably 0. It may be contained in the range of 1% or less. The glass article may contain a noble metal element such as Au, Ag, Pt, Rh, and Os, and a halogen element such as Cl and F in a range of 0.5% or less for each element. However, it is preferable that the components listed from ZrO 2 to Cr 2 O 3 , the noble metal element and the halogen element are not substantially contained. For example, ZrO 2 causes corrosion of heat-resistant bricks in a melting kiln. The total content of the components TiO 2 to F listed above is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less.
[ガラス組成物の特性]
 以下、ガラス物品を構成するガラス組成物の好ましい特性について説明する。
[Characteristics of glass composition]
Hereinafter, preferable characteristics of the glass composition constituting the glass article will be described.
 上記で組成を説明したガラス組成物は、比較的低温で行われるモールドプレス法によって三次元形状を形成することに適した特性、具体的には屈伏点、ガラス転移点および熱膨張係数を有し得る。これらの特性は以下のとおりである。 The glass composition whose composition has been described above has characteristics suitable for forming a three-dimensional shape by a mold pressing method performed at a relatively low temperature, specifically, a yield point, a glass transition point and a thermal expansion coefficient. obtain. These characteristics are as follows.
 (屈伏点At)
 モールドプレス法の加工温度の条件から、屈伏点の上限は580℃であり、好ましくは560℃であることが好適である。一方屈伏点の下限は420℃であり、好ましくは450℃、さらに好ましくは500℃であることが好適である。
(The yield point At)
From the processing temperature condition of the mold pressing method, the upper limit of the yield point is 580 ° C., preferably 560 ° C. On the other hand, the lower limit of the yield point is 420 ° C, preferably 450 ° C, and more preferably 500 ° C.
(ガラス転移温度Tg
 モールドプレス法の離型温度の条件から、ガラス転移温度の上限は530℃、好ましくは500℃であることが好適である。一方ガラス転移温度の下限は330℃であり、好ましくは400℃、さらに好ましくは430℃であることが好適である。
(Glass transition temperature T g )
From the mold release temperature condition of the mold pressing method, the upper limit of the glass transition temperature is 530 ° C., preferably 500 ° C. On the other hand, the lower limit of the glass transition temperature is 330 ° C, preferably 400 ° C, and more preferably 430 ° C.
 (熱膨張係数α)
 モールドプレス法においては、ガラス組成物の熱膨張係数が大きすぎると、所望のガラスの形状を得るための型形状の設計が困難になる場合がある。そのため、熱膨張係数α(単位:10-7/℃)は、50℃から350℃の平均値として80~120であり、好ましくは80~100であることが好適である。
(Coefficient of thermal expansion α)
In the mold pressing method, if the coefficient of thermal expansion of the glass composition is too large, it may be difficult to design a mold shape for obtaining a desired glass shape. Therefore, the thermal expansion coefficient α (unit: 10 −7 / ° C.) is 80 to 120, preferably 80 to 100, as an average value from 50 ° C. to 350 ° C.
 ガラス組成物は、プリフォームとなる平板ガラスを製造することに適した溶融点、作業点、液相温度を有することが好ましい。平板ガラスの製造方法はフロート法、ダウンドロー法など種々の方法があるが、大面積の平板ガラスを生産性良く製造する方法であるフロート法が好ましい。 The glass composition preferably has a melting point, a working point, and a liquidus temperature suitable for producing a flat glass as a preform. There are various methods for producing flat glass, such as a float method and a down draw method, but the float method, which is a method for producing a large area flat glass with high productivity, is preferable.
 フロート法で平板ガラスを得る場合には、ガラス組成物の溶融点T2、作業点T4、液相温度TLが以下のようであることが望ましい。 When flat glass is obtained by the float method, it is desirable that the melting point T 2 , working point T 4 , and liquidus temperature TL of the glass composition are as follows.
 (溶融点T2
 溶融点が低いとガラス原料を溶融するために必要なエネルギー量を抑制することができ、ガラス原料がより容易に溶解してガラス融液の脱泡および清澄が促進される。溶融点は1580℃以下、好ましくは1550℃以下、さらに好ましくは1500℃以下である。なお、溶融点T2は、ガラスの粘度が102dPa・sとなる温度であり、この粘度に基づいてT2と表示されることがある。以下においても、Tと共に表記する数値は、当該温度におけるガラスの粘度に対応している。
(Melting point T 2 )
When the melting point is low, the amount of energy required to melt the glass raw material can be suppressed, and the glass raw material is more easily melted to promote defoaming and fining of the glass melt. The melting point is 1580 ° C or lower, preferably 1550 ° C or lower, and more preferably 1500 ° C or lower. The melting point T 2 is the temperature at which the glass has a viscosity of 10 2 dPa · s, and may be displayed as T 2 based on this viscosity. Also in the following, the numerical value indicated with T corresponds to the viscosity of the glass at that temperature.
 (作業点T4
 フロート法によって平板ガラスを製造する場合には、溶融ガラスを溶融窯からフロートバスに流入させる際に、溶融ガラスの粘度ηが104dPa・s程度になるように溶融ガラスの温度を調整する。溶融ガラスの粘度が104 dPa・sとなる温度(作業点)は低い方が好ましく、例えばディスプレイのカバーガラスなど向けにガラスを薄く成形するためには、作業点は1300℃以下であり、好ましくは1200℃以下、さらに好ましくは1100℃以下であることが好適である。作業点の下限は特に限定されないが、例えば800℃が挙げられる。
(Working point T 4 )
In the case of producing flat glass by the float method, the temperature of the molten glass is adjusted so that the viscosity η of the molten glass is about 10 4 dPa · s when the molten glass is flowed into the float bath from the melting furnace. The lower the temperature (working point) at which the viscosity of the molten glass becomes 10 4 dPa · s, the lower the working temperature is, for example, in order to thinly form the glass for a cover glass of a display, the working point is preferably 1300 ° C. or lower, Is 1200 ° C. or lower, and more preferably 1100 ° C. or lower. The lower limit of the working point is not particularly limited, but may be 800 ° C., for example.
 (液相温度(失透温度)TL
 フロート法により平板ガラスを製造する場合、溶融ガラスが平板形状に成形される際の失透を避ける必要がある。すなわち、形成温度(作業点)において溶融ガラスが失透しないこと、言い換えれば作業点と液相温度の差が大きいことが好ましい。作業点と液相温度の差(T4-TL)は10℃以上、好ましくは50℃以上、さらに好ましくは100℃以上であることが好適である。
(Liquid phase temperature (devitrification temperature) T L )
When producing flat glass by the float method, it is necessary to avoid devitrification when the molten glass is formed into a flat shape. That is, it is preferable that the molten glass does not devitrify at the forming temperature (working point), in other words, the difference between the working point and the liquidus temperature is large. The difference between the working point and the liquidus temperature (T 4 -T L ) is preferably 10 ° C. or higher, preferably 50 ° C. or higher, more preferably 100 ° C. or higher.
[ガラス物品の製造方法]
 (平板ガラスの成形)
 ガラス物品は、ガラス原料を溶融して平板ガラスを成形し、その平板ガラスをモールドプレス法により平板以外の形状へと成形し、さらに必要に応じて化学強化処理することにより、得ることができる。平板ガラスの成形は、フロート法、ダウンドロー法その他公知の方法により実施することができる。上述したとおり、フロート法は平板ガラスの好ましい製法である。フロート法を始めとする平板ガラスの成形方法は、当業者に周知であるため、ここでは説明を省略する。
[Method of manufacturing glass article]
(Formation of flat glass)
The glass article can be obtained by melting a glass raw material to form a flat glass plate, shaping the flat glass plate into a shape other than a flat plate by a mold pressing method, and further chemically strengthening the flat glass plate as necessary. The flat glass can be formed by a float method, a down draw method, or any other known method. As mentioned above, the float method is a preferred method for producing flat glass. Since the flat glass forming method including the float method is well known to those skilled in the art, the description thereof is omitted here.
 (モールドプレス法)
 モールドプレス法では成形型を用いて平板ガラスがプレス成形される。この場合、成形型と平板ガラスとを所定の温度まで加熱し、その温度(加工温度)で所望の形状になるようにプレスする、等温プレス法を用いることが好ましい。プレス成形後は、所定の温度まで冷却して型からガラス物品を外して精密アニールを行う。
(Mold press method)
In the mold pressing method, flat glass is press molded using a molding die. In this case, it is preferable to use an isothermal pressing method in which the forming die and the flat glass are heated to a predetermined temperature and pressed into a desired shape at that temperature (processing temperature). After press molding, the glass article is cooled to a predetermined temperature, the glass article is removed from the mold, and precision annealing is performed.
 等温プレス法においては、型は平板ガラスを加工するための温度まで加熱されるので、高温における強度および平板ガラスとの反応性が低いことが求められる。一般に、超硬合金の表面を精密に加工し、さらにDLC(ダイヤモンドライクカーボン)膜などの離型膜を表面にコーティングした型を用いて所望の製品形状に近い形状を有するプリフォームを比較的低い加工温度で成形することが好ましい。超硬合金としては、タングステンカーバイドを例示できる。超硬合金を加工した型を用いれば、成形後の表面研磨も不要となる。一方、溶融軟化状態のガラスを加工する場合には加工温度が高いため炭素系素材を型材料に用いることが行われるが、表面の加工精度が超硬合金に劣ることや離型膜の劣化による表面の粗面化によりプレス後に研磨が必要になりやすい。炭素系素材は、超硬合金と比較して、強度が弱く耐久性にも劣る。 In the isothermal pressing method, the mold is heated to the temperature for processing flat glass, so it is required to have low strength at high temperatures and low reactivity with flat glass. Generally, a preform having a shape close to a desired product shape is relatively low by using a mold in which a surface of a cemented carbide is precisely processed and a release film such as a DLC (diamond-like carbon) film is coated on the surface. It is preferable to mold at the processing temperature. An example of the cemented carbide is tungsten carbide. If a mold made of cemented carbide is used, surface polishing after molding is unnecessary. On the other hand, when processing glass in a melt-softened state, a carbon-based material is used as a mold material because the processing temperature is high, but the surface processing accuracy is inferior to that of cemented carbide and deterioration of the release film. Due to the roughened surface, polishing tends to be required after pressing. Carbon-based materials have lower strength and poorer durability than cemented carbide.
 平板ガラスをプリフォームとして前記のモールドプレス法により三次元形状を有するガラス物品を製造する場合には、屈伏点を超える温度まで型と平板ガラスを加熱し、型を用いて平板ガラスをプレスしながら変形に要する所定時間(例えば2~6分間、一例としては5分間)保持し、その後にガラス転移点前後の温度まで冷却することが好ましい。超硬合金にDLC膜を被覆した型を用いる場合、DLC膜の損耗を抑えるためには650℃以下、好ましくは630℃以下の加工温度でプレス加工することが好適である。この条件は、厚みが均一である平板ガラスから、側板部2の厚みt2が底板部1の厚みt1と実質的に同一であるガラス物品を成形する方法に適している。一方、特に熱加工による形状変化が大きい場合には、加工温度が低すぎるとガラスの粘度ηが大きくなって変形に要する時間(保持時間)が長くなるので、適切な加工温度は550℃以上、好ましくは580℃以上、さらに好ましくは600℃以上である。側板部の厚みt2が底板部の厚みt1よりも大きいガラス物品を成形する場合には、加工温度を例えば680~720℃、さらには700~715℃とすることが好ましい。なお、冷却時間が長くなりすぎないよう、加工温度と離型温度の差は150℃以下、好ましくは130℃以下、さらに好ましくは120℃以下、さらに好ましくは100℃以下とすることが好適である。 In the case of producing a glass article having a three-dimensional shape by the mold pressing method using a flat glass as a preform, the mold and the flat glass are heated to a temperature exceeding the deformation point, while pressing the flat glass using the mold. It is preferable to hold for a predetermined time required for deformation (for example, 2 to 6 minutes, for example, 5 minutes), and then cool to a temperature around the glass transition point. When using a die in which a DLC film is coated on a cemented carbide, it is suitable to press at a processing temperature of 650 ° C. or lower, preferably 630 ° C. or lower in order to suppress wear of the DLC film. This condition is suitable for a method of forming a glass article in which the thickness t2 of the side plate portion 2 is substantially the same as the thickness t1 of the bottom plate portion 1 from a flat glass having a uniform thickness. On the other hand, particularly when the shape change due to thermal processing is large, if the processing temperature is too low, the viscosity η of the glass becomes large and the time required for deformation (holding time) becomes long. Therefore, an appropriate processing temperature is 550 ° C. or higher. The temperature is preferably 580 ° C or higher, more preferably 600 ° C or higher. When molding a glass article in which the thickness t2 of the side plate portion is larger than the thickness t1 of the bottom plate portion, it is preferable to set the processing temperature to, for example, 680 to 720 ° C, and further 700 to 715 ° C. In order to prevent the cooling time from becoming too long, the difference between the processing temperature and the mold release temperature is 150 ° C. or less, preferably 130 ° C. or less, more preferably 120 ° C. or less, further preferably 100 ° C. or less. ..
 モールドプレス法によれば、成形型の平板ガラスに接する部分にマークや模様を刻印しておくことにより、ガラス物品を成形しながらその表面にそのマークなどを転写することも可能である。 According to the mold press method, it is also possible to transfer the marks and the like to the surface of a glass article while molding it, by engraving marks or patterns on the part of the mold that contacts the flat glass.
 (化学強化処理)
 化学強化は、ガラス物品の表面に含まれるアルカリ金属イオンをより半径の大きい一価のアルカリ金属イオンで置換するイオン交換により、ガラス物品の表面に圧縮応力層を形成する技術である。化学強化は、リチウムイオン(Li+)をナトリウムイオン(Na+)で置換することにより、あるいはナトリウムイオンをカリウムイオン(K+)で置換することにより、実施されることが多い。
(Chemical strengthening treatment)
Chemical strengthening is a technique of forming a compressive stress layer on the surface of a glass article by ion exchange in which the alkali metal ions contained on the surface of the glass article are replaced with monovalent alkali metal ions having a larger radius. Chemical strengthening is often carried out by replacing lithium ions (Li + ) with sodium ions (Na + ) or by replacing sodium ions with potassium ions (K + ).
 イオン交換は、ガラス物品の表面に導入するアルカリ金属イオンを含む溶融塩にガラス物品を接触させることにより実施できる。イオン交換は2段階で実施してもよい。例えばLi+とのイオン交換によりガラス物品の表面に導入したNa+をさらにK+により置換してもよい。イオン交換のための溶融塩としては硝酸カリウムを例示できる。硝酸カリウムと硝酸ナトリウムとの混合溶融塩も好ましい溶融塩である。 The ion exchange can be performed by bringing the glass article into contact with a molten salt containing an alkali metal ion to be introduced on the surface of the glass article. The ion exchange may be carried out in two steps. For example, Na + introduced on the surface of the glass article by ion exchange with Li + may be further replaced by K + . Examples of the molten salt for ion exchange include potassium nitrate. A mixed molten salt of potassium nitrate and sodium nitrate is also a preferable molten salt.
 ガラス物品と接触させる溶融塩の温度は、好ましくは360~450℃である。ガラス物品と溶融塩との接触時間は、好ましくは2~6時間である。なお、この接触時間は、イオン交換1回あたりの時間である。 The temperature of the molten salt brought into contact with the glass article is preferably 360 to 450 ° C. The contact time between the glass article and the molten salt is preferably 2 to 6 hours. The contact time is the time per ion exchange.
[化学強化されたガラス物品]
 上述のガラス組成を有するガラス物品では、イオン交換の影響を受けた表面を除き、その内部ではイオン交換前のガラス組成が維持される。当該表面では、イオン交換の影響を受けた部分を含むように圧縮応力層が発生する。したがって、化学強化されたガラス物品では、少なくとも圧縮応力層以外の内部において化学強化前のガラス組成が維持される。ガラス物品の全体が上述の組成を有していても構わない。
[Chemically strengthened glass articles]
In the glass article having the above-described glass composition, the glass composition before the ion exchange is maintained inside the surface except the surface affected by the ion exchange. A compressive stress layer is generated on the surface so as to include a portion affected by ion exchange. Therefore, in the chemically strengthened glass article, the glass composition before the chemical strengthening is maintained at least inside the compression stress layer. The entire glass article may have the composition described above.
 化学強化されたガラス物品における表面圧縮応力CSは、400MPa以上、好ましくは600MPa以上、さらに好ましくは800MPa以上である。また、圧縮応力層の厚みDOC(Depth of Compression)は、60μm以上、好ましくは80μm以上、さらに好ましくは100μm以上である。DOCは、ガラス内部の応力が圧縮から引張へと変化する深さ、すなわち応力が0MPaとなる深さである。イオン交換深さDOL(Depth of Layer)は、好ましくは5~12μmである。DOLは、複屈折性を確認できる深さであって、ガラス表面応力計(例えば折原製作所製FSM-6000)を用いて測定できる。 The surface compressive stress C S in the chemically strengthened glass article is 400 MPa or more, preferably 600 MPa or more, more preferably 800 MPa or more. The thickness DOC (Depth of Compression) of the compression stress layer is 60 μm or more, preferably 80 μm or more, more preferably 100 μm or more. DOC is the depth at which the stress inside the glass changes from compression to tension, that is, the depth at which the stress becomes 0 MPa. The ion exchange depth DOL (Depth of Layer) is preferably 5 to 12 μm. DOL is a depth at which birefringence can be confirmed, and can be measured using a glass surface stress meter (for example, FSM-6000 manufactured by Orihara Manufacturing Co., Ltd.).
 以下、実施例により本発明についてさらに具体的に説明するが、以下の実施例も本発明を制限する趣旨で提示するものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not intended to limit the present invention.
[実施例1]
 (ガラスの作製)
 表2の例1に示すガラス組成となるように、通常のガラス原料であるケイ砂、スポジュメン、アルミナ、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、ドロマイト、石灰石、酸化鉄などを用いてガラス原料バッチを調合した。このバッチを白金ルツボで1550℃に加熱して溶融し、そのまま4時間保持した後に、溶融ガラスを鉄板上に流し出した。鉄板上に流し出した溶融ガラスは、100数秒で固化し、固化後直ちに600℃に設定した電気炉に入れた。30分後、電気炉の電源を切り、室温まで放冷して徐冷することによりガラスを得た。
[Example 1]
(Production of glass)
A glass raw material batch was prepared by using ordinary glass raw materials such as silica sand, spodumene, alumina, lithium carbonate, sodium carbonate, potassium carbonate, dolomite, limestone, and iron oxide so that the glass composition shown in Example 1 of Table 2 was obtained. I prepared it. This batch was heated to 1550 ° C. with a platinum crucible and melted, and after holding for 4 hours as it was, molten glass was poured out onto an iron plate. The molten glass poured on the iron plate was solidified in 100 seconds, and immediately after solidification, it was placed in an electric furnace set at 600 ° C. After 30 minutes, the electric furnace was turned off, and the glass was obtained by allowing it to cool to room temperature and gradually cooling.
 (溶融点T2、作業点T4
 ガラスの高温粘性測定は白金球引き上げ式自動粘度測定装置を用いて測定し、ガラス融液の粘度(η、単位はdPa・s)が102dPa・sになる温度として溶融点T2を求めた。同じく、ガラス融液の粘度が104dPa・sになる温度として作業点T4を求めた。結果を表2に示す。
(Melting point T 2 , working point T 4 )
The high temperature viscosity of glass is measured using a platinum ball pull-up type automatic viscosity measuring device, and the melting point T 2 is determined as the temperature at which the viscosity (η, unit is dPa · s) of the glass melt becomes 10 2 dPa · s. It was Similarly, the working point T 4 was determined as the temperature at which the viscosity of the glass melt became 10 4 dPa · s. The results are shown in Table 2.
 (液相温度TL
 得られたガラスをメノウ製乳鉢で粉砕し、目の開きが2380μmの篩を通過し、1000μmの篩に留まったガラス粒を篩い分け、そのガラス粒をエタノール中で超音波洗浄し、乾燥させて液相温度測定用試料とした。この試料の25gを秤量して幅12mm、長さ200mmの白金ボートに移し、温度勾配炉中に2時間保持して取り出した後、ガラス中に生成した結晶(失透)を光学顕微鏡で観察し、結晶が観測された最高温度を液相温度(失透温度)TLとした。結果を表2に示す。
(Liquid phase temperature TL )
The obtained glass was crushed with an agate mortar, and the glass particles passed through a sieve having an opening of 2380 μm, and the glass particles retained on the 1000 μm sieve were sieved, and the glass particles were ultrasonically washed in ethanol and dried. The sample was used for liquidus temperature measurement. 25 g of this sample was weighed and transferred to a platinum boat having a width of 12 mm and a length of 200 mm, held in a temperature gradient furnace for 2 hours and taken out, and then the crystals (devitrification) formed in the glass were observed with an optical microscope. The maximum temperature at which crystals were observed was defined as the liquidus temperature (devitrification temperature) T L. The results are shown in Table 2.
 (密度ρ)
 得られたガラスを5×40×30mmの大きさに切断し、各面を鏡面研磨して板状サンプルを作製してその重量からガラスの密度ρを計算した。結果を表2に示す。
(Density ρ)
The obtained glass was cut into a size of 5 × 40 × 30 mm, each surface was mirror-polished to prepare a plate-like sample, and the density ρ of the glass was calculated from its weight. The results are shown in Table 2.
 (熱膨張係数α)
 直径5mm、長さ15mmの円柱状の試料を作製し、熱膨張計(熱機械分析装置 TMA4110SA、ブルカー・エイエックスエス株式会社製)を用いてガラス転移温度、屈伏点および50~350℃の平均線膨張係数αを求めた。結果を表2に示す。
(Coefficient of thermal expansion α)
A cylindrical sample having a diameter of 5 mm and a length of 15 mm was prepared, and a glass transition temperature, a yield point and an average of 50 to 350 ° C. were measured by using a thermal expansion meter (thermomechanical analyzer TMA4110SA, manufactured by Bruker AXS KK). The linear expansion coefficient α was determined. The results are shown in Table 2.
 (軟化点T7.6、sag点T10、徐冷点T13、歪点T14.5および温度-粘度曲線)
 得られたガラスを試料として、非特許文献4に開示されているようなファイバーエロンゲーション法(試料寸法:直径10mm×長さ200mmの丸棒形状)やビームベンディング法(試料寸法:3mm×3mm×55mmの角棒試料)により軟化点T7.6(η=4.5×107dPa・s)、sag点T10(η=1010dPa・s)、徐冷点T13(η=1013dPa・s)、歪点T14.5(η=1014.5dPa・s)を測定した。結果を表5に示す。また溶融点、作業点とこれらの値からフルチャーの式を用いて作成した温度-粘度曲線を図11に示す。
(Softening point T 7.6 , sag point T 10 , annealing point T 13 , strain point T 14.5 and temperature-viscosity curve)
Using the obtained glass as a sample, a fiber elongation method (sample size: 10 mm diameter x 200 mm length round bar shape) or a beam bending method (sample size: 3 mm x 3 mm x) as disclosed in Non-Patent Document 4 is used. 55 mm square bar), softening point T 7.6 (η = 4.5 × 10 7 dPa · s), sag point T 10 (η = 10 10 dPa · s), annealing point T 13 (η = 10 13 dPa · s) .S) and the strain point T 14.5 (η = 10 14.5 dPa · s) were measured. The results are shown in Table 5. FIG. 11 shows a melting point, a working point, and a temperature-viscosity curve prepared from these values using the Fruchar equation.
 (熱加工)
 得られたガラスから寸法50mm×100mm×0.9mmのガラス板を作製し、両面を鏡面研磨して平板ガラス試料とした。平板ガラス試料をモールドプレス法により熱加工して、図1~3と同様の三次元形状を有するガラス試料を得た。超硬合金性の金型にDLC膜を被覆した金型を用い、側板部と底板部との厚みが実質的に同一である深さ約5mmの皿状形状を形成した。具体的には、金型とガラスを赤外線ヒーターで加熱し、温度を測定しながら加工温度(610~670℃までの所定の温度)まで昇温し、加圧して5分間保持した。その後離型温度(500℃)まで冷却して型から外し、冷却しながら200℃までアニールして室温まで放置した。また、上記と同様にして、側板部が底板部よりも厚い深さ約5mmの皿状形状を形成した。この試料の底板部および側板部の厚みはそれぞれ0.6mm、1.3mmであった。このとき、試料の成形は、加工温度を710℃、保持時間を12分間として実施した。得られた三次元形状を有する各ガラス試料の底板部の波長域400~1200nmの平均透過率と、底板部の底面に相当する主表面の算術平均粗さRaとを測定した。結果を表1に示す。得られた三次元形状を有するガラス試料には失透などによる透過率の減少は認められず、ディスプレイの前面部として使用しうる程度に、底板部の平坦性および表面の滑らかさは保たれていた。
(Heat processing)
A glass plate having dimensions of 50 mm × 100 mm × 0.9 mm was prepared from the obtained glass, and both surfaces were mirror-polished to obtain a flat glass sample. The flat glass sample was heat-processed by the mold pressing method to obtain a glass sample having a three-dimensional shape similar to that shown in FIGS. A cemented metal mold having a DLC film coated thereon was used to form a dish-like shape having a depth of about 5 mm in which the side plate portion and the bottom plate portion had substantially the same thickness. Specifically, the mold and glass were heated with an infrared heater, the temperature was measured, the temperature was raised to the processing temperature (a predetermined temperature of 610 to 670 ° C.), and the pressure was maintained for 5 minutes. After that, it was cooled to a mold release temperature (500 ° C.), removed from the mold, annealed to 200 ° C. while being cooled, and left to stand at room temperature. Further, similarly to the above, the side plate portion was formed in a dish-like shape having a depth of about 5 mm, which was thicker than the bottom plate portion. The thickness of the bottom plate and the side plate of this sample were 0.6 mm and 1.3 mm, respectively. At this time, the sample was molded at a processing temperature of 710 ° C. and a holding time of 12 minutes. The average transmittance in the wavelength region of 400 to 1200 nm of the bottom plate portion of each of the obtained glass samples having a three-dimensional shape and the arithmetic average roughness Ra of the main surface corresponding to the bottom surface of the bottom plate portion were measured. The results are shown in Table 1. No decrease in transmittance due to devitrification was observed in the obtained glass sample having a three-dimensional shape. It was
 なお、平均透過率は、分光光度計(Hitachi U-4100 Spectrophotometer)を使用し、波長域400~1200nmの範囲で5nmごとに測定した透過率の平均値を求めることにより定めた。算術平均粗さRaは、触針計(Tencor Alpha-Step 500)を使用し、針径5μm、針圧10mg、針走査速度50μm/秒として、各試料について2回測定を実施し、その平均値を求めることにより定めた。 Note that the average transmittance was determined by using a spectrophotometer (Hitachi U-4100 Spectrophotometer) and determining the average value of the transmittance measured every 5 nm in the wavelength range of 400 to 1200 nm. The arithmetic mean roughness Ra was measured twice using a stylus (Tencor Alpha-Step 500), with a needle diameter of 5 μm, a needle pressure of 10 mg, and a needle scanning speed of 50 μm / sec. Was determined by asking.
 (化学強化処理)
 得られた三次元形状を有するガラス試料に二段階の化学強化処理を施して三次元形状を有する化学強化ガラス試料を得た。一回目の化学強化処理は、硝酸ナトリウム(NaNO3)と硝酸カリウム(KNO3)を重量比で6:4含む混塩を用い、420℃に保持した溶融塩浴に試料を5時間浸漬して行った。続けて二回目の化学強化処理として370℃に保持した硝酸カリウム溶融塩浴に試料を3時間浸漬した。試料を取り出して室温まで冷却し、洗浄乾燥した。
(Chemical strengthening treatment)
The glass sample having a three-dimensional shape was subjected to a two-step chemical strengthening treatment to obtain a chemically strengthened glass sample having a three-dimensional shape. The first chemical strengthening treatment was performed by using a mixed salt containing sodium nitrate (NaNO 3 ) and potassium nitrate (KNO 3 ) in a weight ratio of 6: 4, and immersing the sample in a molten salt bath kept at 420 ° C. for 5 hours. It was Subsequently, as the second chemical strengthening treatment, the sample was immersed in a potassium nitrate molten salt bath kept at 370 ° C. for 3 hours. The sample was taken out, cooled to room temperature, washed and dried.
 (応力分布測定)
 熱加工による化学強化の影響を確認するため、670℃で熱加工して得られた化学強化試料の圧縮応力分布を測定した。応力分布測定装置(折原製作所製、FSM-6000およびSLP-1000)を用いて表面圧縮応力CS(単位:MPa)、圧縮応力層厚みDOC(単位:μm)の測定および表面から深さ方向の圧縮応力分布を測定した。CSは980MPa、DOCは120μmであった。得られた応力分布曲線を図12に示す。比較対象として熱加工を施していない平板ガラスを同じ条件で化学強化したもの(Ref.品)の測定結果を合わせて表示している。図12のスケールでは曲線が重複していることが認められた。部分的に拡大したものを図13に示す。差異がわずかであることが認められた。
(Stress distribution measurement)
In order to confirm the effect of chemical strengthening by thermal processing, the compressive stress distribution of the chemically strengthened sample obtained by thermal processing at 670 ° C was measured. Measurement of surface compressive stress C S (unit: MPa) and compressive stress layer thickness DOC (unit: μm) using a stress distribution measuring device (FSM-6000 and SLP-1000 manufactured by Orihara Seisakusho) and measurement in the depth direction from the surface The compressive stress distribution was measured. CS was 980 MPa and DOC was 120 μm. The obtained stress distribution curve is shown in FIG. For comparison, the measurement results of a flat glass that has not been subjected to heat processing and chemically strengthened under the same conditions (Ref. Product) are also shown. It was observed that the curves overlap on the scale of FIG. A partially enlarged view is shown in FIG. It was observed that the difference was slight.
 (表面Naイオン分布)
 スパッタエッチング機能を備えたX線マイクロアナライザーを用いて表面から深さ方向のNa濃度分布を評価した。試料は応力分布測定に用いたものである。結果を図14に示す。深さ方向の応力分布(図12)にほとんど差がみられなかったように、Naイオンの深さ方向の濃度分布にもほとんど差異が認められないことを確認した。
(Surface Na ion distribution)
The Na concentration distribution from the surface to the depth direction was evaluated using an X-ray microanalyzer equipped with a sputter etching function. The sample was used for stress distribution measurement. The results are shown in Fig. 14. It was confirmed that there was almost no difference in the concentration distribution of Na ions in the depth direction, just as there was almost no difference in the stress distribution in the depth direction (FIG. 12).
 圧縮応力分布およびNaイオン濃度分布の評価結果から、670℃で熱加工したことが化学強化処理に及ぼす影響は軽微であったことが確認できた。 From the evaluation results of the compressive stress distribution and Na ion concentration distribution, it was confirmed that the effect of heat processing at 670 ° C on the chemical strengthening treatment was minor.
[実施例2~23]
 表2~4の例2~例23のガラス組成について、例1と同様にガラス試料を作製し、密度ρ、熱膨張係数α、屈伏点At、ガラス転移点Tg、溶融点T2、作業点T4、液相温度TLを測定した結果を表2~4に示す。
[Examples 2 to 23]
With respect to the glass compositions of Examples 2 to 23 in Tables 2 to 4, glass samples were prepared in the same manner as in Example 1, and the density ρ, the thermal expansion coefficient α, the yield point At, the glass transition point Tg, the melting point T 2 , the working point were used. The results of measuring T 4 and liquidus temperature TL are shown in Tables 2 to 4.
 例2、例3については軟化点T7.6なども測定した。結果を表5に示す。また、温度-粘度曲線を図11に示す。図11において、符号11、12、13は、それぞれ実施例1、2、3のガラス組成物の測定結果を示す。曲線11~13はモールドプレス法への適用に適した温度-粘度曲線であった。 For Examples 2 and 3, the softening point T 7.6 and the like were also measured. The results are shown in Table 5. The temperature-viscosity curve is shown in FIG. In FIG. 11, reference numerals 11, 12, and 13 represent the measurement results of the glass compositions of Examples 1, 2, and 3, respectively. Curves 11 to 13 were temperature-viscosity curves suitable for application to the mold pressing method.
 以下、ガラス組成(質量%表示)と各種測定結果を表に示す。 The table below shows the glass composition (mass% display) and various measurement results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明によるガラス物品は、種々の用途、例えばスマートフォンやスマートウォッチに代表される携帯端末のカバーガラス、携帯端末の本体を収容するガラス筐体などとして利用できる。本発明によるガラス物品は、例えば車両搭載用表示装置やデジタルサイネージ機器、などとしても利用できる。ガラス物品は、無色透明に限らず、特にガラス筐体として使用する場合には着色成分を加えて着色してもよい。 The glass article according to the present invention can be used for various purposes, for example, as a cover glass of a mobile terminal represented by a smartphone or a smart watch, a glass housing that houses the main body of the mobile terminal, and the like. The glass article according to the present invention can be used as, for example, a vehicle-mounted display device or a digital signage device. The glass article is not limited to being colorless and transparent, and may be colored by adding a coloring component especially when it is used as a glass housing.

Claims (12)

  1.  平板以外の形状を有し、
     酸化物基準の質量%により表示して、
      SiO2 60%以上、70%以下、
      Al23 6%以上、18%以下、
      Li2O 2%以上、8%以下、
      Na2O 8%以上、20%以下、
      K2O 0%以上、1%以下、
      MgO 0%以上、3%以下、
      CaO 1%以上、6%以下、
      Fe23 0.01%以上、0.2%以下
    を含むガラス組成を有する、ガラス物品。
    Has a shape other than a flat plate,
    Displayed in mass% based on oxide,
    SiO 2 60% or more, 70% or less,
    Al 2 O 3 6% or more, 18% or less,
    Li 2 O 2% or more, 8% or less,
    Na 2 O 8% or more, 20% or less,
    K 2 O 0% or more, 1% or less,
    MgO 0% or more, 3% or less,
    CaO 1% or more, 6% or less,
    A glass article having a glass composition containing 0.01% or more and 0.2% or less of Fe 2 O 3 .
  2.  底板部と、側板部と、屈曲部とを備え、
     前記底板部の周縁に前記屈曲部を介して前記側板部が接続された形状を有する、請求項1に記載のガラス物品。
    A bottom plate portion, a side plate portion, and a bent portion,
    The glass article according to claim 1, having a shape in which the side plate portion is connected to the peripheral edge of the bottom plate portion via the bent portion.
  3.  前記形状が、皿状、バット状および箱状から選ばれる少なくとも1つに相当する、請求項2に記載のガラス物品。 The glass article according to claim 2, wherein the shape corresponds to at least one selected from a dish shape, a bat shape, and a box shape.
  4.  前記側板部が前記底板部よりも厚い、請求項2または3に記載のガラス物品。 The glass article according to claim 2 or 3, wherein the side plate portion is thicker than the bottom plate portion.
  5.  前記底板部の厚みが0.3mm以上2mm以下である、請求項2~4のいずれか1項に記載のガラス物品。 The glass article according to any one of claims 2 to 4, wherein the bottom plate portion has a thickness of 0.3 mm or more and 2 mm or less.
  6.  前記ガラス組成におけるLi2Oの含有率が2%以上6.1%以下である、請求項1~5のいずれか1項に記載のガラス物品。 The glass article according to any one of claims 1 to 5, wherein the content of Li 2 O in the glass composition is 2% or more and 6.1% or less.
  7.  溶融したガラス原料から、酸化物基準の質量%により表示して、
      SiO2 60%以上、70%以下、
      Al23 6%以上、18%以下、
      Li2O 2%以上、8%以下、
      Na2O 8%以上、20%以下、
      K2O 0%以上、1%以下、
      MgO 0%以上、3%以下、
      CaO 1%以上、6%以下、
      Fe23 0.01%以上、0.2%以下
    を含むガラス組成を有する平板ガラスを成形することと、
     前記平板ガラスをモールドプレス法により平板以外の形状を有するガラス物品へと成形することと、を具備する、ガラス物品の製造方法。
    From the molten glass raw material, displayed by mass% of oxide standard,
    SiO 2 60% or more, 70% or less,
    Al 2 O 3 6% or more, 18% or less,
    Li 2 O 2% or more, 8% or less,
    Na 2 O 8% or more, 20% or less,
    K 2 O 0% or more, 1% or less,
    MgO 0% or more, 3% or less,
    CaO 1% or more, 6% or less,
    Forming a flat glass having a glass composition containing 0.01% or more and 0.2% or less of Fe 2 O 3 ;
    Molding the flat glass into a glass article having a shape other than a flat plate by a mold pressing method.
  8.  平板以外の形状を有し、
     表面に圧縮応力層を有し、
     少なくとも前記圧縮応力層以外の部分が、酸化物基準の質量%により表示して、
      SiO2 60%以上、70%以下、
      Al23 6%以上、18%以下、
      Li2O 2%以上、8%以下、
      Na2O 8%以上、20%以下、
      K2O 0%以上、1%以下、
      MgO 0%以上、3%以下、
      CaO 1%以上、6%以下、
      Fe23 0.01%以上、0.2%以下
    を含むガラス組成を有する、化学強化されたガラス物品。
    Has a shape other than a flat plate,
    Has a compressive stress layer on the surface,
    At least the portion other than the compressive stress layer is displayed by mass% based on oxide,
    SiO 2 60% or more, 70% or less,
    Al 2 O 3 6% or more, 18% or less,
    Li 2 O 2% or more, 8% or less,
    Na 2 O 8% or more, 20% or less,
    K 2 O 0% or more, 1% or less,
    MgO 0% or more, 3% or less,
    CaO 1% or more, 6% or less,
    A chemically strengthened glass article having a glass composition containing 0.01% or more and 0.2% or less of Fe 2 O 3 .
  9.  表面圧縮応力が400MPa以上であり、前記圧縮応力層の厚みが60μm以上である、請求項8に記載の化学強化されたガラス物品。 The chemically strengthened glass article according to claim 8, wherein the surface compressive stress is 400 MPa or more and the thickness of the compressive stress layer is 60 μm or more.
  10.  溶融したガラス原料から、酸化物基準の質量%により表示して、
      SiO2 60%以上、70%以下、
      Al23 6%以上、18%以下、
      Li2O 2%以上、8%以下、
      Na2O 8%以上、20%以下、
      K2O 0%以上、1%以下、
      MgO 0%以上、3%以下、
      CaO 1%以上、6%以下、
      Fe23 0.01%以上、0.2%以下
    を含むガラス組成を有する平板ガラスを成形することと、
     前記平板ガラスをモールドプレス法により平板以外の形状を有するガラス物品へと成形することと、
     前記ガラス物品を化学強化処理することと、を具備する、化学強化されたガラス物品の製造方法。
    From the molten glass raw material, displayed by mass% of oxide standard,
    SiO 2 60% or more, 70% or less,
    Al 2 O 3 6% or more, 18% or less,
    Li 2 O 2% or more, 8% or less,
    Na 2 O 8% or more, 20% or less,
    K 2 O 0% or more, 1% or less,
    MgO 0% or more, 3% or less,
    CaO 1% or more, 6% or less,
    Forming a flat glass having a glass composition containing 0.01% or more and 0.2% or less of Fe 2 O 3 ;
    Forming the flat glass into a glass article having a shape other than a flat plate by a mold pressing method,
    A method for producing a chemically strengthened glass article, which comprises chemically strengthening the glass article.
  11.  請求項1~6、8または9に記載のガラス物品を備えた携帯端末。 A mobile terminal equipped with the glass article according to claims 1 to 6, 8 or 9.
  12.  請求項1~6、8または9に記載のガラス物品を備えた車両搭載用表示装置。 A vehicle-mounted display device comprising the glass article according to any one of claims 1 to 6, 8 or 9.
PCT/JP2019/041217 2018-11-05 2019-10-18 Glass product which has three-dimensional shape and method for manufacturing same, and chemically strengthened glass product and method for manufacturing same WO2020095660A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020556738A JPWO2020095660A1 (en) 2018-11-05 2019-10-18 Glass articles with three-dimensional shape and their manufacturing methods, chemically strengthened glass articles and their manufacturing methods
KR1020217012433A KR20210090616A (en) 2018-11-05 2019-10-18 Glass article having a three-dimensional shape, manufacturing method thereof, chemically tempered glass article, and manufacturing method thereof
CN201980072502.6A CN112969667A (en) 2018-11-05 2019-10-18 Glass article having three-dimensional shape and method for producing same, chemically strengthened glass article and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018207981 2018-11-05
JP2018-207981 2018-11-05

Publications (1)

Publication Number Publication Date
WO2020095660A1 true WO2020095660A1 (en) 2020-05-14

Family

ID=70611271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041217 WO2020095660A1 (en) 2018-11-05 2019-10-18 Glass product which has three-dimensional shape and method for manufacturing same, and chemically strengthened glass product and method for manufacturing same

Country Status (5)

Country Link
JP (1) JPWO2020095660A1 (en)
KR (1) KR20210090616A (en)
CN (1) CN112969667A (en)
TW (1) TW202028139A (en)
WO (1) WO2020095660A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998873A (en) * 2020-12-31 2022-02-01 安徽金龙浩光电科技有限公司 Hot melting process for 3D glass with curved surfaces of different thicknesses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160294A (en) * 1997-06-10 1999-03-02 Nippon Sheet Glass Co Ltd Laminated glass for vehicle
JP2013028506A (en) * 2011-07-29 2013-02-07 Central Glass Co Ltd Cover glass for display
JP2013520385A (en) * 2010-02-26 2013-06-06 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド Thin lithium aluminosilicate glass for 3D precision molding
WO2018074335A1 (en) * 2016-10-18 2018-04-26 旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9010153B2 (en) 2008-07-02 2015-04-21 Corning Incorporated Method of making shaped glass articles
JP5622069B2 (en) 2009-01-21 2014-11-12 日本電気硝子株式会社 Tempered glass, tempered glass and method for producing tempered glass
JP5712912B2 (en) * 2011-12-14 2015-05-07 コニカミノルタ株式会社 Cover glass for display
US9512029B2 (en) 2012-05-31 2016-12-06 Corning Incorporated Cover glass article
US9139469B2 (en) * 2012-07-17 2015-09-22 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
CN104968623A (en) * 2013-02-07 2015-10-07 日本板硝子株式会社 Glass composition, chemically-strengthened glass composition, glass composition, chemically-strengthened article, and cover glass for display
WO2015130587A1 (en) 2014-02-27 2015-09-03 Corning Incorporated Ion exchangeable glass article for three-dimensional forming
CN111410421B (en) 2015-02-05 2022-06-24 Agc株式会社 Curved cover glass, method for manufacturing same, and in-vehicle display member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160294A (en) * 1997-06-10 1999-03-02 Nippon Sheet Glass Co Ltd Laminated glass for vehicle
JP2013520385A (en) * 2010-02-26 2013-06-06 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド Thin lithium aluminosilicate glass for 3D precision molding
JP2013028506A (en) * 2011-07-29 2013-02-07 Central Glass Co Ltd Cover glass for display
WO2018074335A1 (en) * 2016-10-18 2018-04-26 旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass

Also Published As

Publication number Publication date
KR20210090616A (en) 2021-07-20
JPWO2020095660A1 (en) 2021-09-30
TW202028139A (en) 2020-08-01
CN112969667A (en) 2021-06-15

Similar Documents

Publication Publication Date Title
US9199876B2 (en) Thin lithium-aluminosilicate glass for three dimensional precision molding
JP5904426B2 (en) Tempered glass and method for producing the same
JP5867574B2 (en) Tempered glass substrate and manufacturing method thereof
JP5743125B2 (en) Tempered glass and tempered glass substrate
JP6300177B2 (en) Method for producing tempered glass
JP2013528561A (en) Alkaline aluminosilicate glass for 3D precision molding and hot bending
CN109987839A (en) A kind of glass and glassware
WO2020095660A1 (en) Glass product which has three-dimensional shape and method for manufacturing same, and chemically strengthened glass product and method for manufacturing same
JP7335557B2 (en) tempered glass and tempered glass
JP2017114718A (en) Glass sheet for chemical reinforcement and manufacturing method of glass sheet for chemical reinforcement
JP6435937B2 (en) Chemically strengthened glass plate and chemically strengthened glass
WO2024043194A1 (en) Strengthened glass plate, strengthened glass plate production method, and glass plate to be strengthened

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881250

Country of ref document: EP

Kind code of ref document: A1