WO2020094980A1 - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
WO2020094980A1
WO2020094980A1 PCT/FR2019/052631 FR2019052631W WO2020094980A1 WO 2020094980 A1 WO2020094980 A1 WO 2020094980A1 FR 2019052631 W FR2019052631 W FR 2019052631W WO 2020094980 A1 WO2020094980 A1 WO 2020094980A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
conductive
assembly
front face
Prior art date
Application number
PCT/FR2019/052631
Other languages
French (fr)
Inventor
Alain Straboni
Original Assignee
S'tile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S'tile filed Critical S'tile
Priority to CN201990001289.5U priority Critical patent/CN216450658U/en
Priority to EP19817395.7A priority patent/EP3878019A1/en
Publication of WO2020094980A1 publication Critical patent/WO2020094980A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present description relates to the field of photovoltaic devices, and more particularly relates to photovoltaic devices comprising several interconnected photovoltaic cells.
  • one embodiment provides a photovoltaic device comprising a juxtaposition of elementary cells connected in series by adjoined conducting plies.
  • each conductive sheet has a form of grid.
  • each conductive sheet consists of a plurality of braided conductive son forming a mesh, or a one-piece mesh.
  • each conductive sheet is in contact on the one hand, by its rear face, with a first collecting structure on the front face of a first cell and on the other hand, by its front face, with a second collecting structure on the rear face of a second cell close to the first cell.
  • the conductive layers are not fixed to the first and second collector structures.
  • each conductive sheet is fixed to the first collecting structure by its edge farthest from the second cell, and to the second collecting structure by its edge farthest from the first cell.
  • the first collecting structure is a discontinuous conductive pattern formed in a metal layer disposed on and in contact with the front face of a semiconductor plate of the first cell.
  • the neighboring cells are arranged side by side in the same plane.
  • the neighboring cells overlap.
  • each sheet has a width substantially equal to the width of the elementary cells.
  • each sheet has a length between one quarter and three quarters of the length of the elementary cells.
  • the elementary cells and the conductive layers are arranged between a transparent front face protection plate and a rear face protection plate.
  • the device is in the form of a curved or corrugated plate.
  • Another embodiment provides an assembly comprising a plurality of photovoltaic devices as defined above connected in parallel between first and second terminals of the assembly, in which each conductive sheet connecting to one another two neighboring cells of the same photovoltaic device is common to all the photovoltaic devices of
  • Figure 1 schematically shows an example of an assembly of photovoltaic cells
  • FIG. 2 illustrates an embodiment of a collector structure and connection pads of a photovoltaic cell of the assembly of Figure 1;
  • Figure 3 schematically shows an example of an assembly of photovoltaic cells according to a first embodiment
  • Figure 4 shows schematically an alternative embodiment of an assembly of photovoltaic cells according to the first embodiment
  • Figure 5 shows schematically another alternative embodiment of an assembly of photovoltaic cells according to the first embodiment
  • Figure 6 shows schematically another example of an assembly of photovoltaic cells according to the first embodiment
  • Figure 7 shows schematically an alternative embodiment of a conductive connection element of an assembly of photovoltaic cells according to the first embodiment
  • Figure 8 shows schematically another alternative embodiment of a conductive connection element of an assembly of photovoltaic cells according to the first embodiment
  • Figure 9 shows schematically an example of an assembly of photovoltaic cells according to a second embodiment
  • FIG. 10 illustrates an example of a collecting structure of a photovoltaic cell according to a third embodiment
  • Figure 11 shows schematically an example of a photovoltaic device according to a fourth embodiment.
  • the expressions “approximately”, “approximately”, “substantially”, and “of the order of” mean to the nearest 10%, preferably to the nearest 5%, or, when they refer to angular or similar orientations, to within 10 °, preferably to within 5 °.
  • Figure 1 schematically shows an example of an assembly 100 of photovoltaic cells 102 of a photovoltaic panel.
  • Figure 1 includes a view (A) and a view (B) of the assembly.
  • View (A) is a partial sectional view of the assembly 100 along the plane AA of view (B).
  • View (B) is a perspective view of the rear face of the assembly 100.
  • the photovoltaic cells 102 of the assembly 100 are for example identical, apart from the manufacturing dispersions.
  • the cells 102 have the form of rectangular plates and are arranged side by side in the same plane. Neighboring cells have their long sides substantially parallel and facing each other, and have their short sides aligned.
  • length of a photovoltaic cell of a cell assembly the dimension of this cell in the direction of alignment of the cells of the assembly, and "width" of the cell its dimension in a direction orthogonal to the direction of alignment of the cells.
  • the length of a cell corresponds to the dimension of its short sides and the width of a cell corresponds to the dimension of its long sides.
  • the width of the cells can be between 51 mm (about 2 inches) and 210 mm (about 8 inches), for example of the order of 156 mm (about 6 inches) .
  • the length of the cells is for example between one tenth of their width and their width.
  • Each cell 102 comprises a P-type doped semiconductor plate 104 comprising, on the side of its front face, that is to say its upper face in the orientation of the view (A) of FIG. 1, a layer 106 doped with type N.
  • the semiconductor plate 104 is for example made of silicon.
  • the semiconductor plate 104 can be monocrystalline or multicristalline.
  • the thickness of the plate 104 is for example between 100 and 300 ⁇ m.
  • the layer 106 extends vertically from the front face of the plate 104, for example over a thickness of between 0.05 and 0.1 ⁇ m. In top view, the layer 106 extends for example over substantially the entire surface of the semiconductor plate 104.
  • the layer 106 can be structured on the side of its front face so as to trap the sunlight.
  • the layer 106 can also be covered with an anti-reflective layer (not shown).
  • Each cell 102 further comprises conductive collecting structures 108 and 110 respectively disposed on and in contact with the front face and under and in contact with the rear face of the semiconductor plate 104.
  • the front face collector structure 108 may be a metallic layer, for example of aluminum or silver, perforated to allow sunlight to reach the front face of the semiconductor plate 104.
  • the surface of the semiconductor plate 104 covered by the metal layer forming the collecting structure 108 is less than 10% and preferably less than 5% of the total surface of the semiconductor plate 104 so as to allow most of the radiation incident solar to reach the face of the semiconductor plate 104.
  • the collecting structure 108 has, seen from above, the shape of a comb whose teeth form with the front face of the layer 106 electrical contacts regularly distributed over the entire front face of the layer 106.
  • the front face collecting structure 108 is a layer of a transparent conductive material, for example of tin and indium oxide, extending continuously over substantially the entire front face of the semiconductor plate 104.
  • the rear face collector structure 110 may be a metal layer, for example aluminum or silver, extending continuously over substantially the entire rear face of the semiconductor plate 104. If necessary, if desired that the back side of the photovoltaic cells it also collects light, for example by reflection on surfaces arranged at the rear of the panel, the rear face collecting structure 110 can be an openwork metallic layer or a layer of a transparent conductive material.
  • the semiconductor plate 104 may comprise, on the side of its rear face, a doped layer (not shown) of conductivity type opposite to that of the plate 104, that is to say of type N in this example. , extending for example over the entire surface of the plate 104. This is called a bifacial photovoltaic cell.
  • the semiconductor plate 104 comprises, on the side of its rear face, a P-type region 112 doped with a doping level higher than that of the plate 104.
  • the rear face collector structure 110 is in contact with the plate 104 through the region 112.
  • the structure 110 is a layer of aluminum, and the region 112 results from a diffusion of the aluminum in the plate 104 .
  • the collecting structure 110 is for example made of silver.
  • each cell 102 comprises a plurality of connection pads 114 arranged on and in contact with the front face collecting structure 108, and a plurality of connection pads 116 arranged on and in contact with the rear face collecting structure 110.
  • the connection pads 114 and 116 are for example based on silver and / or tin.
  • the studs 114 on the one hand, and the studs 116 on the other hand, are aligned in the direction of the width of the cell.
  • connection pads 114 and 116 are small compared to those of the cells.
  • the connection pads 114 and 116 each have a length less than half the length of the cells. and a width less than 10% of the length of the cells.
  • the lengths and widths of the studs 114 and 116 are for example less than 3 mm.
  • the cells of the assembly of Figure 1 are connected in series by elongate conductive elements 120, for example conductive tapes or conductive son, for example copper.
  • Each conductive element 120 extends longitudinally in the direction of the length of the cells.
  • Each conductive element 120 has one end connected and preferably electrically connected, for example welded, to a stud 116 on the rear face of a cell and at its other end welded to a stud 114 on the front face of a neighboring cell.
  • the width of the tapes can be between 0.5 and 3 mm.
  • the thickness of the conductive tapes is for example between 50 and 200 ⁇ m.
  • each cell 102 comprises three front face connection pads 114 regularly aligned and regularly distributed in the direction of the width of the cell, and three rear face connection pads 116 regularly aligned and distributed in the direction of the width of the cell.
  • Two neighboring cells are then connected by three parallel conductive elements 120, regularly distributed in the direction of the width of the cells. The number of studs
  • each cell 102 comprises seven front face connection pads 114 regularly aligned and evenly distributed in the direction of the width of the cell, and seven rear face connection pads 116 regularly aligned and distributed in the direction of the width of the cell. Of them neighboring cells are then connected by seven parallel conductive elements 120, regularly distributed in the direction of the width of the cells.
  • the rear face connection pads 116 of each cell are arranged near the edge furthest from the neighboring cell to which these pads are connected by conductive elements 120.
  • the pads 116 of each cell are thus in half of the cell furthest from the neighboring cell connected to these pads.
  • each pad 116 of a cell 102 is located entirely within the 10% of the cell 102 furthest from the neighboring cell connected to the pad.
  • the studs 114 are for example arranged directly above the studs 116.
  • each conductive element 120 has, in addition to an oblique part 122 connecting the front face of a cell to the rear face of a neighboring cell, a horizontal free part 124 not welded whose length is greater than half the length of the cells, for example of the order of the length of the cells.
  • connection conductive elements 120 can be connected to other similar assemblies connected in series or in parallel with the assembly 100, or to an electronic device such as a power converter.
  • FIG. 2 is a top view of an elementary photovoltaic cell 102 of the assembly 100 of Figure 1, illustrating in more detail an exemplary embodiment of the front face collecting structure 108 and connection pads of front face 114 of the cell.
  • the collecting structure 108 of FIG. 2 has the shape of a comb comprising a plurality of teeth 203 connected to one another by a collecting strip 201, continuous or discontinuous, extending parallel to a large side (width) of the cell, near an edge of the cell.
  • the width of the collecting track 201 is for example between 50 and 200 ⁇ m.
  • the teeth 203 of the comb are formed by conductive strips perpendicular to the strip 201, extending from the strip 201 to the long side of the cell opposite to the strip 201 (in the direction of the length of the cell).
  • the teeth 203 are distributed regularly over the entire width of the cell.
  • Each tooth 203 has for example a width of between 10 and 100 ⁇ m and preferably between 20 and 50 ⁇ m.
  • the repetition step of the teeth 203 is for example between 1 and 3 mm.
  • the collecting structure 108 of FIG. 2 is for example made of silver or aluminum.
  • the thickness of the structure 108 is for example between 5 and 30 ⁇ m.
  • Portions (not shown) of protective layers and / or anti-reflection layers may be present on the front face of the layer 106 between the teeth of the comb.
  • the cell comprises seven front face connection pads 114 arranged along the main strip 201 of the comb, regularly distributed along the strip 201. Each stud 114 is partly located on the strip 201.
  • the front face collecting structure 108 may have any other form suitable for uniformly collecting the charge carriers generated in the plate semiconductor 104 of the cell, and to make them converge towards the front face connection pads 114 of the cell.
  • a limitation of the assembly described in connection with Figures 1 and 2 is that it is relatively complex to achieve. Indeed, the welding of the conductive elements 120 to the connection pads 114 and 116 of the elementary cells 102 requires expensive and bulky equipment and is relatively long to produce.
  • connection pads 114 and 116 create a rigid mechanical link between the conductive elements 120 and the cells, which can lead to damage in the event of deformation of the photovoltaic panel, due for example to variations in temperature, the force of the wind, or the weight of the snow.
  • the conductive pattern of the collecting structure must be chosen able to converge the charge carriers collected to the corresponding connection pads of the cell. This imposes constraints on the choice of pattern, which are not necessarily compatible with the need to minimize the surface of the semiconductor plate 104 obscured by the collecting structure.
  • the surface of the electrical contact zones between the conductive elements 120 and the collector structures and the number of contact points between the conductive elements 120 and the collector structures are relatively weak.
  • the risk of rupture of the electrical continuity between the conductive elements 120 and the collecting structures, and therefore of loss of efficiency of the assembly, is therefore relatively high.
  • Figure 3 schematically shows an example of an assembly 300 of photovoltaic cells 302 of a photovoltaic panel according to a first embodiment.
  • Figure 3 includes a view (A) and a view (B) of the assembly
  • the view (A) is a partial sectional view of the assembly 300 according to the plane A-A of the view (B).
  • View (B) is a partial top view of assembly 300.
  • the assembly 300 and the elementary cells 302 of Figure 3 include elements common with the assembly 100 and the elementary cells 102 of Figure 1. These common elements will not be detailed again. In the following, only the differences compared to the example described in relation to Figures 1 and 2 will be highlighted.
  • the elementary cells 302 of FIG. 3 differ from the elementary cells 102 of FIG. 1 mainly in that they do not include connection pads 114 on their front face collector structures 108, nor connection pads 116 on their rear face collecting structures 110.
  • each conductive sheet 304 extends over a part of the front face of a cell, and under a part of the rear face of a neighboring cell. More particularly, each conductive sheet 304 comprises a part 304a in contact, by its rear face, with a part of the collecting structure of the front face 108 of a cell, and a part 304b in contact, by its front face, with a part of the rear face collecting structure 110 of a neighboring cell.
  • Each ply 304 further comprises, between the parts 304a and 304b, an oblique part 304c extending between the long sides facing the two neighboring cells that it connects.
  • Each ply 304 extends, in the direction of the width of the assembly, over substantially the entire width of the cells that it connects.
  • the width of the sheet can be limited to only part of the width of the cells.
  • the width of the sheet is at least equal to 90% of the width of the cells.
  • each of the parts 304a and 304b of the ply extends, in the direction of the length of the assembly, over a distance ranging from a quarter to three quarters of the length of the cell, starting from the long side of the cell closest to the neighboring cell connected to the same sheet 304.
  • Perforated conductive layers here means that each layer 304 comprises through openings capable of allowing most of the incident solar radiation to pass in the direction of the semiconductor plate 104.
  • each layer 304 consists of crossed conductive wires forming a grid.
  • each sheet 304 is made up of braided conductive wires (not welded) forming a grid.
  • each ply 304 consists of a one-piece conductive mesh. Due to the relatively large dimensions of the plies 304 in the direction of the width of the assembly, the thickness of the conductive wires constituting the plies 304 may be small, which has the advantage of giving a great flexibility with plies 304. By way of example, the thickness of the conductive wires constituting plies 304 is between 10 and 500 ⁇ m, for example between 50 and 100 ⁇ m.
  • the conductive layers 304 are in mechanical and electrical contact with the collecting structures 108 and 110 of the cells 302, but are not directly attached to the collecting structures 108 and 110.
  • the layers 304 are not welded or glued to the collecting structures 108 and 110.
  • each layer 304 can slide along front and / or rear faces of the cells which it connects, which makes it possible to maintain the electrical connection between the cells without creating mechanical stresses liable to damage the cells.
  • the assembly 300 is protected, on the front face, by a transparent protective plate 306, for example made of glass or plexiglass, and, on the rear face, by an opaque protective plate or transparent 308.
  • a transparent protective plate 306 for example made of glass or plexiglass
  • the upper protective plate 306 has not been shown in view (B) of FIG. 3.
  • the photovoltaic cells 302 and the connection plies 304 are for example kept in compression between the protective plates 306 and 308, so as to maintain electrical contact between the connection plies 304 and the cells 302.
  • the protective plates 306 and 308 can be fixed to each other and to the assembly of photovoltaic cells 302 and connection plies 304 by a lamination process.
  • An advantage of the assembly of FIG. 3 is that it is simpler to produce than assemblies based on welded conductive tapes or wires of the type described in relation to FIG. 1. Indeed, in the mode of As shown in FIG. 3, the elementary cells 302 and the conductive layers 304 can be positioned using conventional picking and positioning equipment ("pick and place" in English). It will also be noted that the relative positioning of the conductive plies 304 relative to the cells 302 does not require great precision due to the relatively large dimensions of the plies 304.
  • each conductive sheet 304 forms with the collecting structures 108 and 110 of the cells that it connects an electrical contact regularly distributed over the entire width of the cells.
  • a collecting structure formed by a perforated metal layer in contact with the front or rear face of the semiconductor plate 104 it is not necessary that the conducting elements of the collecting structure converge towards a limited number of connection pads.
  • FIG. 3 illustrates that the front face collecting structures 108 of the cells have a shape similar to that of FIG. 2, but in which the main bar 201 of the comb has been removed, the teeth 203 of the comb extending from one long side to the other of the cell.
  • each collector structure may consist of a plurality of conductive patterns regularly distributed over one face of the semiconductor plate 104 of the cell, the patterns not necessarily being connected to each other in the absence of the sheet 304. This makes it possible to increase the surface of the semiconductor plate 104 not masked by the collecting structure 108 or 110, and thus increase the efficiency of the cell.
  • the conductive layers 304 can be relatively discreet, or even invisible, even at a relatively small distance, insofar as they consist of very fine conductive son. This improves the aesthetics of the assembly compared to a solution based on ribbons or conductive wires of the type described in relation to FIG. 1.
  • Another advantage from the point of view of electrical reliability is that the number of contact points and the effective contact surface between the conductive sheet 304 and the collecting structures are very large. This drastically reduces, or even eliminates, the risk of breaking electrical continuity within the assembly.
  • first embodiment is not limited to assemblies comprising only cells connected in series, but can be applied more generally to any assembly comprising at least two photovoltaic cells connected in series one to the other.
  • FIG. 4 schematically illustrates, as a variant, an exemplary embodiment of an assembly 300 comprising a plurality of elementary cells 302 connected in parallel and in series. More particularly, in this example, cells 302 are grouped in pairs of two neighboring cells connected in parallel, the pairs of cells being connected in series with each other. More specifically, in each pair of neighboring cells connected in parallel, an upper conductive sheet 304 connects the front face of the first cell to the front face of the second cell, and a lower conductive sheet 304 connects the rear face of the first cell to the back of the second cell. Two neighboring pairs are in turn connected in series by a conductive sheet 304 connecting the front face of the second cell of the first pair to the rear face of the first cell of the second pair.
  • Figure 5 is a schematic and partial top view of another example of an assembly of photovoltaic cells according to the first embodiment.
  • the assembly of Figure 5 includes M strings
  • 300_1, ... 300_M each comprising N photovoltaic cells 302 connected in series, M and N being integers greater than or equal to two.
  • the M strings 300_i (with integer i going from 1 to M) are connected in parallel between main terminals P + and P- of the assembly.
  • the photovoltaic cells are arranged in a matrix according to M rows and N columns.
  • Each row of the matrix corresponds to a rosary 300_i.
  • Each column of the matrix comprises all the cells of the same rank j in the M strings (with j integer ranging from 1 to N).
  • each of the strings 300_i corresponds to an assembly identical or similar to the assembly 300 of FIG. 3.
  • each conductive sheet 304 connecting to each other two neighboring cells of the same string is common to the M strings 300_i of the assembly.
  • each conductive sheet 304 extends continuously over substantially the entire height of the assembly in the direction of the columns of the matrix.
  • the same perforated conductive sheet 304 extends over part of the front face of each cell of row j of the matrix, and under a part of the rear face of each cell of row j + 1 of the matrix.
  • the front faces of the M cells of row j of the assembly are connected to each other and to the rear faces of the M cells of row j + 1 of the assembly by the same conductive sheet 304.
  • An advantage of the assembly of FIG. 5 is that the electrical connection in parallel of the M strings 300_i is carried out not only at the ends of the strings, but also at the level of each elementary photovoltaic cell of each strand, inside of the matrix, which allows a better distribution of the collected currents.
  • FIG. 5 is a partial sectional view schematically illustrating another example of an assembly 400 of photovoltaic cells 302 according to the first embodiment.
  • the assembly 400 of Figure 6 includes elements common to the assembly 300 of Figure 3. These elements will not be detailed again below. In the following, only the differences between the two assemblies will be highlighted.
  • the neighboring cells overlap.
  • the area of overlap between two neighboring cells has a dimension of between 1 and 10% of the length of a cell.
  • the neighboring cells are connected via an openwork conductive sheet 304 having a first part 304a in contact, through its rear face, with a part of the surface of the collecting structure of front face 108 of a cell, and a second part 304b in contact, by its front face, with a part of the surface of the rear face collector structure 110 of the neighboring cell.
  • each ply 304 further comprises, between the parts 304a and 304b, in the zone of overlap or overlap between the two cells which it connects, a part 304c in contact at the same time, by its rear face, with the collecting structure 108 of the first cell, and, by its front face, with the collecting structure 110 of the second cell.
  • FIG. 7 illustrates an alternative embodiment of a conductive connection sheet 304 of an assembly of photovoltaic cells according to the first embodiment.
  • the tablecloth connection 304 of FIG. 7 can in particular be used in an assembly of the type described above in relation to FIGS. 3 to 6.
  • the ply 304 comprises, in its part 304a, facing the first cell (not shown in FIG. 7) connected to the ply, along the edge of the sheet furthest from the second cell (not shown in FIG. 7) connected to the sheet, a conductive fixing strip 351, and, in its part 304b, facing the second cell connected to the sheet , along the edge of the ply most distant from the first cell connected to the ply, a conductive fixing strip 353.
  • the conductive fixing strips 351 and 353 are for example metal strips, for example copper, coated with a metal alloy suitable for melting and fusing with the metal of the collecting structures 108 and 110 during the lamination of the plates. protective 306 and 308.
  • An advantage of the variant of FIG. 7 is that it allows, by fixing the conductive connection plies 304 to the collecting structures of the photovoltaic cells, to further reduce the risk of breaking of electrical continuity within the assembly. Due to the arrangement of the conductive fixing strips along the two edges of the ply parallel to the width of the assembly, a portion of the portion 304a of the ply 304 remains free to move relative to the first cell, and a portion of the part 304b of the sheet 304 remains free to move relative to the second cell. The advantage of flexibility of the assembly and relative mobility of the cells with respect to each other within the assembly (in particular in the direction of the length of the cells) is thus preserved.
  • each of the conductive fixing strips 351 and 353 is less than 20% of the total dimension of the sheet in this direction.
  • the strips 351 and 353 have been shown in the form of solid conductive strips in FIG. 7, the embodiments described are not limited to this particular case.
  • each of the conductive fixing strips 351 and 353 may correspond to an openwork portion of the sheet 304.
  • each openwork conductive sheet 304 may comprise:
  • FIG. 8 illustrates another alternative embodiment of a conductive connection sheet 304 of an assembly of photovoltaic cells according to the first embodiment Unlike the examples described above in which the conductive sheet 304 had, seen from above, a generally rectangular shape, in the example of FIG. 8, the parts 304a and 304c of the sheet 304 have a serrated or square shape.
  • the part 304a of the ply 304 comprises, on the side of the edge of the ply most distant from the second cell (not visible in FIG. 8) connected to the ply, a plurality of teeth or slots 305a extending in the direction of the length of the cells, for example regularly distributed over the width of the sheet
  • the portion 304c of the sheet 304 comprises, on the side of the edge of the ply furthest from the first cell (not visible in FIG. 8) connected to the ply, a plurality of teeth or slots 305c extending in the direction of the length of the cells, for example evenly distributed over the width of the tablecloth.
  • the upper face of the first cell connected to the ply 304 is not covered by the ply.
  • the underside of the second cell connected to the ply is not covered by the ply
  • the conductive patterns of the collector structures of the front face and rear face of the elementary cells are chosen so that each conductive element of the pattern is connected to at least one tooth 305a or 305b of the sheet 304.
  • Such a serrated conductive sheet is for example well suited to the connection of cells provided with collecting structures of the type described below in relation to FIG. 10.
  • the teeth 305a and 305c each extend for example over substantially the entire length of the part 304a, respectively 304c of the ply, as illustrated in view (A) of FIG. 8. As a variant, the teeth 305a and 305c each extend over a length less than the length of the part 304a, respectively 304c of the ply, as illustrated in view (B) of FIG. 8.
  • the part 304a and the part 304c of the web are both provided with teeth or slots.
  • only one of the two parts 304a and 304c of the ply may be provided with teeth or slots.
  • An advantage of the variant of FIG. 8 is that it makes it possible to increase the surface of the cells not covered by the plies 304, and therefore the yield of the cells. Furthermore, this variant saves conductive material for producing the plies 304.
  • Figure 9 is a sectional view schematically and partially illustrating an example of an assembly 600 of photovoltaic cells 302 of a photovoltaic panel according to a second embodiment.
  • the assembly 600 of FIG. 9 comprises elements that are common with the assembly 400 of FIG. 6. These common elements will not be described again below. In the following, only the differences compared to the assembly of Figure 6 will be highlighted.
  • assembly 600 does not include conductive plies connecting two by two in series with neighboring cells.
  • the front face collector structure of a cell is directly in contact, mechanically and electrically, with the rear face collector structure of a neighboring cell, in the overlap area between the two cells. This makes it possible to directly ensure the series connection of the cells of the assembly, without elements of intermediate connection between the cells.
  • the contacts between the collecting structures of the front and rear face of the cells, in the areas of overlap between neighboring cells are sliding contacts.
  • the front face of the lower cell in the area of overlap between two neighboring cells, the front face of the lower cell is not fixed to the rear face of the upper cell.
  • the front face collecting structure 108 of the lower cell is not welded, nor glued to the conductive structure of the rear face 110 of the upper cell.
  • an advantage of assembly 600 is that, in the event of deformation of the photovoltaic panel, for example under the effect of temperature variations during manufacture and in particular during the lamination phase of the protective plates of the panel , or due to meteorological phenomena, each cell 302 can slide along the front and / or rear faces of the neighboring cells to which it is connected, which makes it possible to maintain the electrical connection between the cells without creating mechanical stresses liable to damage cells.
  • FIG. 9 Another advantage of the assembly of FIG. 9 is that it is particularly simple to manufacture insofar as no intermediate connection element and no solder, conductive adhesive or conductive adhesive are provided between the cells. Simple cell assembly equipment which is easy to automate and quick can therefore be used, for example "pick and place" type equipment.
  • the elementary cells 302 of the assembly 600 can be maintained by any mechanical support adapted to avoid excessive displacements of the cells with respect to each other, so as to guarantee the maintenance of the electrical connection between the cells.
  • the elementary cells 302 of the assembly 600 are for example kept in compression between a protective plate on the front face 306 and a protective plate on the rear face 308.
  • the front face 108 and rear face 110 collecting structures of the cells are chosen such that all the conductive elements of the front face collecting structure 108 of each cell are connected to the rear face collector structure of the upper neighboring cell in the area of overlap between the two cells, and such that all the conducting elements of the rear face collector structure 110 of each cell are connected to the front face collector structure of the cell lower neighbor in the overlap area between the two cells.
  • the rear face collecting structure 110 of each cell 302 is a metallic layer, for example made of silver, tin or aluminum, extending continuously over substantially the entire rear face of the cell.
  • the front face collecting structure 108 of each cell is for example an openwork metallic layer, for example made of silver or aluminum, such that all the elements of the conductive pattern of the structure extend up to the overlapping zone of the cell. with the upper neighboring cell
  • the conductive pattern of the front face collecting structure 108 of the elementary cells 302 can be a pattern of the type described above in relation to FIGS. 2 or 3, or even a leaf-shaped pattern of the type described in connection with FIG. 4 of the above-mentioned French patent application No. 16/54518.
  • Figure 10 is a top view of an elementary photovoltaic cell 602 of an assembly of photovoltaic cells according to a third embodiment.
  • the elementary cell 602 of FIG. 10 comprises elements common with the elementary cells 102 and 302 described above. These common elements will not be described again below. In the following, only the differences compared to the elementary cells 102 and 302 will be highlighted.
  • Cell 602 of Figure 10 differs from cells
  • the front face collector structure 108 of the cell 602 is formed by an openwork metallic layer, for example made of silver or aluminum, in contact with the front face of the semiconductor layer 106 of the cell.
  • the collecting structure 108 of the cell 602 consists of one or more occurrences of an elementary conductive pattern 610 comprising, in top view:
  • a straight main conductive strip 614 extending longitudinally from an edge of the cell, in the direction of the length of the cell, over about half of the length of the cell;
  • the collecting structure 108 of the cell 602 comprises 5 occurrences of the elementary conductive pattern 610, regularly distributed over the entire width of the cell.
  • the main conductive strips 614 of the different occurrences of the elementary pattern 610 all start from the same edge of the cell (the right edge in the orientation of FIG. 10).
  • the neighboring occurrences of the elementary pattern 610 have secondary conductive bands which meet, so that the whole of the conductive pattern of the collecting structure 108 is continuous.
  • the main conductive strip 614 of the elementary pattern 610 has a width of between 0.2 and 1 mm.
  • Each secondary conductive strip 616 of the elementary pattern has for example a width of between 10 and 100 ⁇ m.
  • the width of the secondary conductive strips is for example between 10 and 50 ⁇ m.
  • the thickness of the structure 108 is for example between 10 and 30 ⁇ m.
  • each elementary conductive pattern 610 is inscribed in a rectangle 612 having two sides 612a and 612b substantially parallel to the length of the cell, of length substantially equal to the length of the cell, and two sides 612c and 612d substantially parallel to the width of the cell, of length substantially equal to the width of the cell or to a submultiple of the width of the cell.
  • the main conductive strip 614 extends from the center of the side 612c, orthogonally to the side 612c, in the direction of the side 612d, over approximately half the length of the sides 612a and 612b.
  • the secondary conductive strips 616 extend from the longitudinal edges of the main strip 614 and from the end of the main strip 614 opposite the side 612c, to the sides 612a, 612b and 612d of the rectangle 612.
  • the secondary conductive strips 616 have their ends opposite to the main conductive strip 614 evenly distributed along the sides 612a, 612b and 612d of the rectangle
  • the conductive pattern 610 is for example symmetrical with respect to the central longitudinal axis of the conductive strip main 614.
  • the conductive pattern 610 comprises a plurality of curved secondary conductive strips 616 extending from the end of the strip 614 opposite the side 612c, towards the side 612d and half of the sides 612a and 612b the furthest from the side 612c, and forming with the main strip 614 a dandelion seed-shaped pattern.
  • the 10 further comprises a plurality of secondary rectilinear conductive strips 616 substantially orthogonal to the main strip, extending at regular spacing on either side of the main strip 614, from the longitudinal edges of the main strip 614 to the sides 612a and 612b of the rectangle 612.
  • the lengths of the secondary conductive strips 616 of the pattern 610 are all of the same order of magnitude.
  • the lengths of the secondary conductive strips 616 of the pattern are all equal to plus or minus 30%.
  • an advantage of the elementary conductive pattern 610 of FIG. 10 is that all the charges collected by the secondary conductive strips 616 at the periphery of the rectangle 612 cover substantially the same distance via the secondary conductive strips 616 before reaching the strip main conductor 614. This results in a particularly efficient collection of the carriers generated by the light on the surface of the cell and a particularly homogeneous distribution of the collected current, which makes it possible to improve the efficiency of the cell.
  • a collecting structure identical or similar to the structure 108 of FIG. 10 can also be used as a collecting structure on the rear face 110 of a photovoltaic cell.
  • the photovoltaic cell 602 of Figure 10 can be used in any type of cell assembly photovoltaic.
  • the cell 602 can be used in an assembly of the type described in relation to FIG. 1, in which case connection pads 114 can be placed on and in contact with the upper face of the main conductive strip 614 of each elementary conductive pattern 610 of the collecting structure 108, for example in the vicinity of the side 612c of the pattern.
  • the cell 602 can be used in an assembly of the type described in relation to FIG. 3 or 4, or also in an assembly of the type described in relation to FIG. 9, in which case the connection pads 114 can be omitted.
  • FIG. 11 illustrates an example of a photovoltaic device 700 according to a fourth embodiment.
  • Figure 11 includes a view (A) and a view (B) of the device.
  • the view (A) is a schematic perspective view of the front face of the device
  • the view (B) is an enlarged partial sectional view of the device according to the plane B-B of FIG. (A).
  • the device 700 of Figure 11 has the shape of a corrugated plate, and comprises a plurality of elementary cells 702 connected in series.
  • the elementary cells 702 of the device 700 are for example cells identical or similar to cells 102, connected in series by conductive elements in a similar manner to what has been described in relation to FIG. 1.
  • the elementary cells 702 of the device 700 are cells identical or similar to the cells 302, connected in series by perforated conducting sheets in a similar manner to what has been described in relation to FIGS. 3 to 8.
  • the elementary cells 702 of the device 700 can also be cells identical or similar to cell 602 in FIG. 10, connected in series by conductive tapes or by perforated conductive plies.
  • the direction of the undulations of the device 700 is parallel to the length of the assembly of cells 702.
  • the elementary cells 702 are slightly curved in the direction of their length so to match the curvature of the device, but are not curved in the direction of their width.
  • the length of each cell is relatively small compared to the minimum radius of curvature of the device, for example between one tenth and one twentieth of the minimum radius of curvature of the plate for cells of thickness of the order of 200 ym.
  • the curvature of cells 702 remains limited.
  • the length of the cells can be between one third and one fifth of the minimum radius of curvature of the plate.
  • the device comprises a transparent corrugated front face protection plate 704, for example made of glass or plexiglass, and a corrugated or opaque rear protective face plate 706.
  • a transparent corrugated front face protection plate 704 for example made of glass or plexiglass
  • a corrugated or opaque rear protective face plate 706 At least one of the protective plates 704 and 706 is a rigid plate, so as to obtain a photovoltaic panel in the form of a rigid corrugated plate.
  • the protective plates 704 and 706 can be fixed to each other and to the assembly of photovoltaic cells 702 by a lamination process. More generally, any other suitable method can be used. A bonding and / or filling material, not shown, can optionally be provided between the protective plates. 704 and 706, in particular at the periphery of the assembly to seal the assembly.
  • connection links 708 connecting the front face of each cell to the rear face of the neighboring cell.
  • connection links 708 may correspond to conductive elements as described in relation to FIG. 1, or to conductive layers as described in relation to FIGS. 3 to 8.
  • An advantage of the device 700 of FIG. 11 is that it can directly be used as a covering element of a building, for example in replacement of traditional tiles or slates.
  • the height and spacing of the corrugations is compatible with traditional covering elements such as tiles, so that the panel 700 can be used in combination with such traditional covering elements.
  • the height (or amplitude) of the undulations is between 5 and 15 cm, and the pitch (or period) of the undulations is between 15 and 30 cm.
  • the device 700 may be in the form of a curved plate, for example in the form of a single tile (that is to say comprising a single period of undulation).
  • each cell described each comprise a P-type doped semiconductor plate 104 provided, on the front face, with an N-type doped layer, alternatively, each cell can comprise a doped semiconductor plate type N equipped, on the front face with a doped layer of type P.

Abstract

The invention relates to a photovoltaic device (300) which comprises a juxtaposition of elementary cells (302) that are connected in series by open-work conductive layers (304).

Description

DESCRIPTION  DESCRIPTION
Dispositif photovoltaïque Photovoltaic device
La présente demande de brevet revendique la priorité de la demande de brevet français FR18/71388 qui sera considérée comme faisant partie intégrante de la présente description. The present patent application claims priority from the French patent application FR18 / 71388 which will be considered as an integral part of the present description.
Domaine technique Technical area
[0001] La présente description concerne le domaine des dispositifs photovoltaïques, et vise plus particulièrement des dispositifs photovoltaïques comprenant plusieurs cellules photovoltaïques interconnectées.  The present description relates to the field of photovoltaic devices, and more particularly relates to photovoltaic devices comprising several interconnected photovoltaic cells.
Technique antérieure  Prior art
[0002] On a déjà proposé, par exemple dans la demande de brevet français N°16/54518 déposée par le demandeur le 20 mai 2016, des dispositifs photovoltaïques comportant plusieurs cellules photovoltaïques élémentaires interconnectées.  It has already been proposed, for example in French patent application No. 16/54518 filed by the applicant on May 20, 2016, photovoltaic devices comprising several elementary photovoltaic cells interconnected.
[0003] Il serait toutefois souhaitable d'améliorer au moins en partie certains aspects des dispositifs photovoltaïques connus .  It would however be desirable to at least partially improve certain aspects of known photovoltaic devices.
Résumé de 11 invention Summary of 1 1 invention
[0004] Ainsi, un mode de réalisation prévoit un dispositif photovoltaïque comportant une juxtaposition de cellules élémentaires connectées en série par des nappes conductrices aj ourées .  [0004] Thus, one embodiment provides a photovoltaic device comprising a juxtaposition of elementary cells connected in series by adjoined conducting plies.
[0005] Selon un mode de réalisation, chaque nappe conductrice a une forme de grillage.  According to one embodiment, each conductive sheet has a form of grid.
[0006] Selon un mode de réalisation, chaque nappe conductrice est constituée d'une pluralité de fils conducteurs tressés formant un grillage, ou d'un grillage monobloc.  According to one embodiment, each conductive sheet consists of a plurality of braided conductive son forming a mesh, or a one-piece mesh.
[0007] Selon un mode de réalisation, chaque nappe conductrice est en contact d'une part, par sa face arrière, avec une première structure collectrice en face avant d'une première cellule et d'autre part, par sa face avant, avec une deuxième structure collectrice en face arrière d'une deuxième cellule voisine de la première cellule. According to one embodiment, each conductive sheet is in contact on the one hand, by its rear face, with a first collecting structure on the front face of a first cell and on the other hand, by its front face, with a second collecting structure on the rear face of a second cell close to the first cell.
[0008] Selon un mode de réalisation, les nappes conductrices ne sont pas fixées aux premières et deuxièmes structures collectrices .  According to one embodiment, the conductive layers are not fixed to the first and second collector structures.
[0009] Selon un mode de réalisation, chaque nappe conductrice est fixée à la première structure collectrice par son bord le plus éloigné de la deuxième cellule, et à la deuxième structure collectrice par son bord le plus éloigné de la première cellule.  According to one embodiment, each conductive sheet is fixed to the first collecting structure by its edge farthest from the second cell, and to the second collecting structure by its edge farthest from the first cell.
[0010] Selon un mode de réalisation, la première structure collectrice est un motif conducteur discontinu formé dans une couche métallique disposée sur et en contact avec la face avant d'une plaque semiconductrice de la première cellule.  According to one embodiment, the first collecting structure is a discontinuous conductive pattern formed in a metal layer disposed on and in contact with the front face of a semiconductor plate of the first cell.
[0011] Selon un mode de réalisation, les cellules voisines sont disposées côte à côte dans un même plan.  According to one embodiment, the neighboring cells are arranged side by side in the same plane.
[0012] Selon un mode de réalisation, les cellules voisines se chevauchent.  According to one embodiment, the neighboring cells overlap.
[0013] Selon un mode de réalisation, chaque nappe a une largeur sensiblement égale à la largeur des cellules élémentaires .  According to one embodiment, each sheet has a width substantially equal to the width of the elementary cells.
[0014] Selon un mode de réalisation, chaque nappe a une longueur comprise entre un quart et trois quarts de la longueur des cellules élémentaires.  According to one embodiment, each sheet has a length between one quarter and three quarters of the length of the elementary cells.
[0015] Selon un mode de réalisation, les cellules élémentaires et les nappes conductrices sont disposées entre une plaque de protection de face avant transparente et une plaque de protection de face arrière. [0016] Selon un mode de réalisation, le dispositif est en forme de plaque galbée ou ondulée. According to one embodiment, the elementary cells and the conductive layers are arranged between a transparent front face protection plate and a rear face protection plate. According to one embodiment, the device is in the form of a curved or corrugated plate.
[0017] Un autre mode de réalisation prévoit un assemblage comportant une pluralité de dispositifs photovoltaïques tels que définis ci-dessus connectés en parallèle entre des première et deuxième bornes de l'assemblage, dans lequel chaque nappe conductrice connectant l'une à l'autre deux cellules voisines d'un même dispositif photovoltaïque est commune à tous les dispositifs photovoltaïques de Another embodiment provides an assembly comprising a plurality of photovoltaic devices as defined above connected in parallel between first and second terminals of the assembly, in which each conductive sheet connecting to one another two neighboring cells of the same photovoltaic device is common to all the photovoltaic devices of
1 ' assemblage . 1 assembly.
Brève description des dessins  Brief description of the drawings
[0018] Ces caractéristiques et leurs avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :  These characteristics and their advantages, as well as others, will be described in detail in the following description of particular embodiments made without implied limitation in relation to the attached figures among which:
[0019] la figure 1 représente de façon schématique un exemple d'un assemblage de cellules photovoltaïques ;  Figure 1 schematically shows an example of an assembly of photovoltaic cells;
[0020] la figure 2 illustre un exemple de réalisation d'une structure collectrice et de plots de connexion d'une cellule photovoltaïque de l'assemblage de la figure 1 ;  2 illustrates an embodiment of a collector structure and connection pads of a photovoltaic cell of the assembly of Figure 1;
[0021] la figure 3 représente de façon schématique un exemple d'un assemblage de cellules photovoltaïques selon un premier mode de réalisation ;  Figure 3 schematically shows an example of an assembly of photovoltaic cells according to a first embodiment;
[0022] la figure 4 représente de façon schématique une variante de réalisation d'un assemblage de cellules photovoltaïques selon le premier mode de réalisation ;  Figure 4 shows schematically an alternative embodiment of an assembly of photovoltaic cells according to the first embodiment;
[0023] la figure 5 représente de façon schématique une autre variante de réalisation d'un assemblage de cellules photovoltaïques selon le premier mode de réalisation ; [0024] la figure 6 représente de façon schématique un autre exemple d'un assemblage de cellules photovoltaïques selon le premier mode de réalisation ; Figure 5 shows schematically another alternative embodiment of an assembly of photovoltaic cells according to the first embodiment; Figure 6 shows schematically another example of an assembly of photovoltaic cells according to the first embodiment;
[0025] la figure 7 représente de façon schématique une variante de réalisation d'un élément conducteur de connexion d'un assemblage de cellules photovoltaïques selon le premier mode de réalisation ;  Figure 7 shows schematically an alternative embodiment of a conductive connection element of an assembly of photovoltaic cells according to the first embodiment;
[0026] la figure 8 représente de façon schématique une autre variante de réalisation d'un élément conducteur de connexion d'un assemblage de cellules photovoltaïques selon le premier mode de réalisation ;  Figure 8 shows schematically another alternative embodiment of a conductive connection element of an assembly of photovoltaic cells according to the first embodiment;
[0027] la figure 9 représente de façon schématique un exemple d'un assemblage de cellules photovoltaïques selon un deuxième mode de réalisation ;  Figure 9 shows schematically an example of an assembly of photovoltaic cells according to a second embodiment;
[0028] la figure 10 illustre un exemple d'une structure collectrice d'une cellule photovoltaïque selon un troisième mode de réalisation ; et  FIG. 10 illustrates an example of a collecting structure of a photovoltaic cell according to a third embodiment; and
[0029] la figure 11 représente de façon schématique un exemple d'un dispositif photovoltaïque selon un quatrième mode de réalisation.  Figure 11 shows schematically an example of a photovoltaic device according to a fourth embodiment.
Description des modes de réalisation  Description of the embodiments
[0030] De mêmes éléments ont été désignés par de mêmes références dans les différentes figures. En particulier, les éléments structurels et/ou fonctionnels communs aux différents modes de réalisation peuvent présenter les mêmes références et peuvent disposer de propriétés structurelles, dimensionnelles et matérielles identiques.  The same elements have been designated by the same references in the different figures. In particular, the structural and / or functional elements common to the various embodiments may have the same references and may have identical structural, dimensional and material properties.
[0031] Par souci de clarté, seuls les étapes et éléments utiles à la compréhension des modes de réalisation décrits ont été représentés et sont détaillés. En particulier, la réalisation des cellules photovoltaïques élémentaires constitutives des assemblages décrits n'a pas été détaillée, la réalisation de telles cellules étant à la portée de l'homme du métier à partir des indications de la présente description. For clarity, only the steps and elements useful for understanding the described embodiments have been shown and are detailed. In particular, the production of the elementary photovoltaic cells constituting the described assemblies has not been detailed, the production of such cells being within the reach of the skilled person from the indications of this description.
[0032] Sauf précision contraire, lorsque l'on fait référence à deux éléments connectés entre eux, cela signifie directement connectés sans éléments intermédiaires autres que des conducteurs, et lorsque l'on fait référence à deux éléments reliés ou couplés entre eux, cela signifie que ces deux éléments peuvent être connectés ou être reliés ou couplés par l'intermédiaire d'un ou plusieurs autres éléments.  Unless otherwise specified, when reference is made to two elements connected to each other, this means directly connected without intermediate elements other than conductors, and when reference is made to two elements connected or coupled together, this means that these two elements can be connected or be linked or coupled via one or more other elements.
[0033] Dans la description qui suit, lorsque l'on fait référence à des qualificatifs de position absolue, tels que les termes "avant", "arrière", "haut", "bas", "gauche", "droite", etc., ou relative, tels que les termes "dessus", "dessous", "supérieur", "inférieur", etc., ou à des qualificatifs d'orientation, tels que les termes "horizontal", "vertical", etc., il est fait référence sauf précision contraire à l'orientation des figures, étant entendu que, en pratique, les dispositifs décrits peuvent être orientés différemment .  In the following description, when reference is made to qualifiers of absolute position, such as the terms "front", "rear", "top", "bottom", "left", "right", etc., or relative, such as "above", "below", "upper", "lower", etc., or to orientation qualifiers, such as "horizontal", "vertical", etc. ., reference is made unless otherwise specified in the orientation of the figures, it being understood that, in practice, the devices described can be oriented differently.
[0034] Sauf précision contraire, les expressions "environ", "approximativement", "sensiblement", et "de l'ordre de" signifient à 10 % près, de préférence à 5 % près, ou, lorsqu'elles se réfèrent à des orientations angulaires ou assimilées, à 10° près, de préférence à 5° près.  Unless specified otherwise, the expressions "approximately", "approximately", "substantially", and "of the order of" mean to the nearest 10%, preferably to the nearest 5%, or, when they refer to angular or similar orientations, to within 10 °, preferably to within 5 °.
[0035] La figure 1 représente de façon schématique un exemple d'un assemblage 100 de cellules photovoltaïques 102 d'un panneau photovoltarque . La figure 1 comprend une vue (A) et une vue (B) de l'assemblage. La vue (A) est une vue en coupe partielle de l'assemblage 100 selon le plan A-A de la vue (B) . La vue (B) est une vue en perspective de la face arrière de l'assemblage 100. [0036] Les cellules photovoltaïques 102 de l'assemblage 100 sont par exemple identiques, aux dispersions de fabrication près. Dans l'exemple de la figure 1, les cellules 102 ont la forme de plaques rectangulaires et sont disposées côte à côte dans un même plan. Les cellules voisines ont leurs grands côtés sensiblement parallèles et en vis-à-vis, et ont leurs petits côtés alignés. Figure 1 schematically shows an example of an assembly 100 of photovoltaic cells 102 of a photovoltaic panel. Figure 1 includes a view (A) and a view (B) of the assembly. View (A) is a partial sectional view of the assembly 100 along the plane AA of view (B). View (B) is a perspective view of the rear face of the assembly 100. The photovoltaic cells 102 of the assembly 100 are for example identical, apart from the manufacturing dispersions. In the example of FIG. 1, the cells 102 have the form of rectangular plates and are arranged side by side in the same plane. Neighboring cells have their long sides substantially parallel and facing each other, and have their short sides aligned.
[0037] Par la suite, on appellera "longueur" d'une cellule photovoltaïque d'un assemblage de cellules la dimension de cette cellule dans la direction d'alignement des cellules de l'assemblage, et "largeur" de la cellule sa dimension dans une direction orthogonale à la direction d'alignement des cellules. Autrement dit, dans l'exemple de la figure 1, la longueur d'une cellule correspond à la dimension de ses petits côtés et la largeur d'une cellule correspond à la dimension de ses grands côtés.  Thereafter, we will call "length" of a photovoltaic cell of a cell assembly the dimension of this cell in the direction of alignment of the cells of the assembly, and "width" of the cell its dimension in a direction orthogonal to the direction of alignment of the cells. In other words, in the example of FIG. 1, the length of a cell corresponds to the dimension of its short sides and the width of a cell corresponds to the dimension of its long sides.
[0038] Dans l'exemple de la figure 1, la largeur des cellules peut être comprise entre 51 mm (environ 2 pouces) et 210 mm (environ 8 pouces), par exemple de l'ordre de 156 mm (environ 6 pouces) . La longueur des cellules est par exemple comprise entre un dixième de leur largeur et leur largeur.  In the example of Figure 1, the width of the cells can be between 51 mm (about 2 inches) and 210 mm (about 8 inches), for example of the order of 156 mm (about 6 inches) . The length of the cells is for example between one tenth of their width and their width.
[0039] Chaque cellule 102 comprend une plaque semiconductrice 104 dopée de type P comprenant, du côté de sa face avant, c'est-à-dire sa face supérieure dans l'orientation de la vue (A) de la figure 1, une couche 106 dopée de type N. La plaque semiconductrice 104 est par exemple en silicium. La plaque semiconductrice 104 peut être monocristalline ou multicristalline . L'épaisseur de la plaque 104 est par exemple comprise entre 100 et 300 ym. La couche 106 s'étend verticalement à partir de la face avant de la plaque 104, par exemple sur une épaisseur comprise entre 0,05 et 0,1 ym. En vue de dessus, la couche 106 s'étend par exemple sur sensiblement toute la surface de la plaque semiconductrice 104. La couche 106 peut être structurée du côté de sa face avant de façon à piéger la lumière du soleil. La couche 106 peut en outre être recouverte d'une couche antireflet (non représentée) . Each cell 102 comprises a P-type doped semiconductor plate 104 comprising, on the side of its front face, that is to say its upper face in the orientation of the view (A) of FIG. 1, a layer 106 doped with type N. The semiconductor plate 104 is for example made of silicon. The semiconductor plate 104 can be monocrystalline or multicristalline. The thickness of the plate 104 is for example between 100 and 300 μm. The layer 106 extends vertically from the front face of the plate 104, for example over a thickness of between 0.05 and 0.1 μm. In top view, the layer 106 extends for example over substantially the entire surface of the semiconductor plate 104. The layer 106 can be structured on the side of its front face so as to trap the sunlight. The layer 106 can also be covered with an anti-reflective layer (not shown).
[0040] Chaque cellule 102 comprend en outre des structures conductrices collectrices 108 et 110 disposées respectivement sur et en contact avec la face avant et sous et en contact avec la face arrière de la plaque semiconductrice 104. Sur la figure 1, les structures collectrices 108 et 110 n'ont pas été détaillées. La structure collectrice de face avant 108 peut être une couche métallique, par exemple en aluminium ou en argent, ajourée pour permettre à la lumière du soleil d'atteindre la face avant de la plaque semiconductrice 104. A titre d'exemple, en vue de dessus, la surface de la plaque semiconductrice 104 recouverte par la couche métallique formant la structure collectrice 108 est inférieure à 10 % et de préférence inférieure à 5 % de la surface totale de la plaque semiconductrice 104 de façon à permettre à la majeure partie du rayonnement solaire incident d'atteindre la face de la plaque semiconductrice 104. A titre d'exemple, la structure collectrice 108 a, vu de dessus, la forme d'un peigne dont les dents forment avec la face avant de la couche 106 des contacts électriques régulièrement répartis sur toute la face avant de la couche 106. A titre de variante, la structure collectrice de face avant 108 est une couche d'un matériau conducteur transparent, par exemple de l'oxyde d'étain et d'indium, s'étendant de façon continue sur sensiblement toute la face avant de la plaque semiconductrice 104.  Each cell 102 further comprises conductive collecting structures 108 and 110 respectively disposed on and in contact with the front face and under and in contact with the rear face of the semiconductor plate 104. In Figure 1, the collecting structures 108 and 110 have not been detailed. The front face collector structure 108 may be a metallic layer, for example of aluminum or silver, perforated to allow sunlight to reach the front face of the semiconductor plate 104. By way of example, with a view to above, the surface of the semiconductor plate 104 covered by the metal layer forming the collecting structure 108 is less than 10% and preferably less than 5% of the total surface of the semiconductor plate 104 so as to allow most of the radiation incident solar to reach the face of the semiconductor plate 104. For example, the collecting structure 108 has, seen from above, the shape of a comb whose teeth form with the front face of the layer 106 electrical contacts regularly distributed over the entire front face of the layer 106. As a variant, the front face collecting structure 108 is a layer of a transparent conductive material, for example of tin and indium oxide, extending continuously over substantially the entire front face of the semiconductor plate 104.
[0041] La structure collectrice de face arrière 110 peut être une couche métallique, par exemple en aluminium ou en argent, s'étendant de façon continue sur sensiblement toute la face arrière de la plaque semiconductrice 104. Au besoin, si l'on souhaite que la face arrière des cellules photovoltaïques recueille elle aussi de la lumière, par exemple par réflexion sur des surfaces disposées à l'arrière du panneau, la structure collectrice de face arrière 110 peut être une couche métallique ajourée ou une couche d'un matériau conducteur transparent. Dans ce cas, la plaque semiconductrice 104 peut comprendre, du côté de sa face arrière, une couche dopée (non représentée) de type de conductivité opposé à celui de la plaque 104, c'est-à-dire de type N dans cet exemple, s'étendant par exemple sur toute la surface de la plaque 104. On parle alors de cellule photovoltaïque bifaciale. The rear face collector structure 110 may be a metal layer, for example aluminum or silver, extending continuously over substantially the entire rear face of the semiconductor plate 104. If necessary, if desired that the back side of the photovoltaic cells it also collects light, for example by reflection on surfaces arranged at the rear of the panel, the rear face collecting structure 110 can be an openwork metallic layer or a layer of a transparent conductive material. In this case, the semiconductor plate 104 may comprise, on the side of its rear face, a doped layer (not shown) of conductivity type opposite to that of the plate 104, that is to say of type N in this example. , extending for example over the entire surface of the plate 104. This is called a bifacial photovoltaic cell.
[0042] Dans l'exemple de la figure 1, la plaque semiconductrice 104 comprend, du côté de sa face arrière, une région 112 dopée de type P de niveau de dopage supérieur à celui de la plaque 104. La structure collectrice de face arrière 110 est en contact avec la plaque 104 par l'intermédiaire de la région 112. A titre d'exemple, la structure 110 est une couche d'aluminium, et la région 112 résulte d'une diffusion de l'aluminium dans la plaque 104.  In the example of Figure 1, the semiconductor plate 104 comprises, on the side of its rear face, a P-type region 112 doped with a doping level higher than that of the plate 104. The rear face collector structure 110 is in contact with the plate 104 through the region 112. For example, the structure 110 is a layer of aluminum, and the region 112 results from a diffusion of the aluminum in the plate 104 .
[0043] Dans le cas de cellules photovoltaïques bifaciales, la structure collectrice 110 est par exemple en argent.  In the case of bifacial photovoltaic cells, the collecting structure 110 is for example made of silver.
[0044] Dans l'exemple de la figure 1, chaque cellule 102 comprend une pluralité de plots de connexion 114 disposés sur et en contact avec la structure collectrice de face avant 108, et une pluralité de plots de connexion 116 disposés sur et en contact avec la structure collectrice de face arrière 110. Les plots de connexion 114 et 116 sont par exemple à base d'argent et/ou d'étain. Les plots 114 d'une part, et les plots 116 d'autre part, sont alignés dans le sens de la largeur de la cellule.  In the example of Figure 1, each cell 102 comprises a plurality of connection pads 114 arranged on and in contact with the front face collecting structure 108, and a plurality of connection pads 116 arranged on and in contact with the rear face collecting structure 110. The connection pads 114 and 116 are for example based on silver and / or tin. The studs 114 on the one hand, and the studs 116 on the other hand, are aligned in the direction of the width of the cell.
[0045] Les dimensions latérales des plots de connexion 114 et 116 sont petites par rapport à celles des cellules. A titre d'exemple, les plots de connexion 114 et 116 ont chacun une longueur inférieure à la moitié de la longueur des cellules et une largeur inférieure à 10 % de la longueur des cellules. Les longueurs et les largeurs des plots 114 et 116 sont par exemple inférieures à 3 mm. The lateral dimensions of the connection pads 114 and 116 are small compared to those of the cells. For example, the connection pads 114 and 116 each have a length less than half the length of the cells. and a width less than 10% of the length of the cells. The lengths and widths of the studs 114 and 116 are for example less than 3 mm.
[0046] Les cellules de l'assemblage de la figure 1 sont reliées en série par des éléments conducteurs longilignes 120, par exemple des rubans conducteurs ou des fils conducteurs, par exemple en cuivre. Chaque élément conducteur 120 s'étend longitudinalement dans le sens de la longueur des cellules. Chaque élément conducteur 120 a une extrémité reliée et de préférence connectée électriquement, par exemple soudée, à un plot 116 sur la face arrière d'une cellule et a son autre extrémité soudée à un plot 114 sur la face avant d'une cellule voisine. Dans le cas où les éléments conducteurs 120 sont des rubans, la largeur des rubans peut être comprise entre 0,5 et 3 mm. L'épaisseur des rubans conducteurs est par exemple comprise entre 50 et 200 ym. Dans le cas où les éléments conducteurs 120 sont des fils, le diamètre des fils peut être compris entre 50 et 500 ym. Dans l'exemple représenté, chaque cellule 102 comprend trois plots de connexion de face avant 114 régulièrement alignés et régulièrement répartis dans la direction de la largeur de la cellule, et trois plots de connexion de face arrière 116 régulièrement alignés et répartis dans la direction de la largeur de la cellule. Deux cellules voisines sont alors reliées par trois éléments conducteurs 120 parallèles, régulièrement répartis dans la direction de la largeur des cellules. Le nombre de plots The cells of the assembly of Figure 1 are connected in series by elongate conductive elements 120, for example conductive tapes or conductive son, for example copper. Each conductive element 120 extends longitudinally in the direction of the length of the cells. Each conductive element 120 has one end connected and preferably electrically connected, for example welded, to a stud 116 on the rear face of a cell and at its other end welded to a stud 114 on the front face of a neighboring cell. In the case where the conductive elements 120 are tapes, the width of the tapes can be between 0.5 and 3 mm. The thickness of the conductive tapes is for example between 50 and 200 μm. In the case where the conductive elements 120 are wires, the diameter of the wires can be between 50 and 500 μm. In the example shown, each cell 102 comprises three front face connection pads 114 regularly aligned and regularly distributed in the direction of the width of the cell, and three rear face connection pads 116 regularly aligned and distributed in the direction of the width of the cell. Two neighboring cells are then connected by three parallel conductive elements 120, regularly distributed in the direction of the width of the cells. The number of studs
114/116 par cellule et le nombre d'éléments conducteurs 120 reliant entre elles deux cellules voisines peut toutefois être différent de trois. A titre d'exemple, chaque cellule 102 comprend sept plots de connexion de face avant 114 régulièrement alignés et régulièrement répartis dans la direction de la largeur de la cellule, et sept plots de connexion de face arrière 116 régulièrement alignés et répartis dans la direction de la largeur de la cellule. Deux cellules voisines sont alors reliées par sept éléments conducteurs 120 parallèles, régulièrement répartis dans la direction de la largeur des cellules. 114/116 per cell and the number of conductive elements 120 connecting two neighboring cells together may, however, be different from three. For example, each cell 102 comprises seven front face connection pads 114 regularly aligned and evenly distributed in the direction of the width of the cell, and seven rear face connection pads 116 regularly aligned and distributed in the direction of the width of the cell. Of them neighboring cells are then connected by seven parallel conductive elements 120, regularly distributed in the direction of the width of the cells.
[0047] Les plots de connexion de face arrière 116 de chaque cellule sont disposés près du bord le plus éloigné de la cellule voisine à laquelle ces plots sont connectés par des éléments conducteurs 120. Les plots 116 de chaque cellule se trouvent ainsi dans la moitié de la cellule la plus éloignée de la cellule voisine connectée à ces plots. A titre d'exemple, chaque plot 116 d'une cellule 102 est situé en totalité dans les 10 % de la cellule 102 les plus éloignés de la cellule voisine connectée au plot. Les plots 114 sont par exemple disposés à l'aplomb des plots 116.  The rear face connection pads 116 of each cell are arranged near the edge furthest from the neighboring cell to which these pads are connected by conductive elements 120. The pads 116 of each cell are thus in half of the cell furthest from the neighboring cell connected to these pads. For example, each pad 116 of a cell 102 is located entirely within the 10% of the cell 102 furthest from the neighboring cell connected to the pad. The studs 114 are for example arranged directly above the studs 116.
[0048] Du fait de cette disposition des plots, chaque élément conducteur 120 a, en plus d'une partie oblique 122 reliant la face avant d'une cellule à la face arrière d'une cellule voisine, une partie libre horizontale 124 non soudée dont la longueur est supérieure à la moitié de la longueur des cellules, par exemple de l'ordre de la longueur des cellules.  Due to this arrangement of the pads, each conductive element 120 has, in addition to an oblique part 122 connecting the front face of a cell to the rear face of a neighboring cell, a horizontal free part 124 not welded whose length is greater than half the length of the cells, for example of the order of the length of the cells.
[0049] Aux extrémités (non représentées) de la répétition de cellules, les éléments conducteurs de connexion 120 peuvent être reliés à d'autres assemblages similaires connectés en série ou en parallèle avec l'assemblage 100, ou à un dispositif électronique tel qu'un convertisseur de puissance.  At the ends (not shown) of the cell repetition, the connection conductive elements 120 can be connected to other similar assemblies connected in series or in parallel with the assembly 100, or to an electronic device such as a power converter.
[0050] En fonctionnement, lorsque les cellules sont exposées à la lumière du soleil, le courant produit par chaque cellule est collecté, en face avant par la structure collectrice 108, et, dans le cas d'une cellule bifaciale, en face arrière par la structure collectrice 110. Le courant collecté converge vers les plots 114 et chemine dans les éléments conducteurs 120 vers les plots 116 de la cellule voisine. [0051] La figure 2 est une vue de dessus d'une cellule photovoltaïque élémentaire 102 de l'assemblage 100 de la figure 1, illustrant plus en détail un exemple de réalisation de la structure collectrice de face avant 108 et des plots de connexion de face avant 114 de la cellule. In operation, when the cells are exposed to sunlight, the current produced by each cell is collected, on the front side by the collecting structure 108, and, in the case of a bifacial cell, on the back side by the collecting structure 110. The collected current converges towards the pads 114 and travels in the conductive elements 120 towards the pads 116 of the neighboring cell. Figure 2 is a top view of an elementary photovoltaic cell 102 of the assembly 100 of Figure 1, illustrating in more detail an exemplary embodiment of the front face collecting structure 108 and connection pads of front face 114 of the cell.
[0052] La structure collectrice 108 de la figure 2 a une forme de peigne comprenant une pluralité de dents 203 reliées entre elles par une bande collectrice 201, continue ou discontinue, s'étendant parallèlement à un grand côté (largeur) de la cellule, au voisinage d'un bord de la cellule. La largeur de la piste collectrice 201 est par exemple comprise entre 50 et 200 ym. Les dents 203 du peigne sont formées par des bandes conductrices perpendiculaires à la bande 201, s'étendant depuis la bande 201 jusqu'au grand côté de la cellule opposé à la bande 201 (dans la direction de la longueur de la cellule) . Les dents 203 sont réparties régulièrement sur toute la largeur de la cellule. Chaque dent 203 a par exemple une largeur comprise entre 10 et 100 ym et de préférence entre 20 et 50 ym. Le pas de répétition des dents 203 est par exemple compris entre 1 et 3 mm. La structure collectrice 108 de la figure 2 est par exemple en argent ou en aluminium. L'épaisseur de la structure 108 est par exemple comprise entre 5 et 30 ym. Des portions (non représentées) de couches de protection et/ou de couches antireflets peuvent être présentes sur la face avant de la couche 106 entre les dents du peigne. Dans l'exemple de la figure 2, la cellule comprend sept plots de connexion de face avant 114 disposés le long de la bande principale 201 du peigne, régulièrement répartis le long de la bande 201. Chaque plot 114 est situé en partie sur la bande 201. The collecting structure 108 of FIG. 2 has the shape of a comb comprising a plurality of teeth 203 connected to one another by a collecting strip 201, continuous or discontinuous, extending parallel to a large side (width) of the cell, near an edge of the cell. The width of the collecting track 201 is for example between 50 and 200 μm. The teeth 203 of the comb are formed by conductive strips perpendicular to the strip 201, extending from the strip 201 to the long side of the cell opposite to the strip 201 (in the direction of the length of the cell). The teeth 203 are distributed regularly over the entire width of the cell. Each tooth 203 has for example a width of between 10 and 100 μm and preferably between 20 and 50 μm. The repetition step of the teeth 203 is for example between 1 and 3 mm. The collecting structure 108 of FIG. 2 is for example made of silver or aluminum. The thickness of the structure 108 is for example between 5 and 30 μm. Portions (not shown) of protective layers and / or anti-reflection layers may be present on the front face of the layer 106 between the teeth of the comb. In the example of FIG. 2, the cell comprises seven front face connection pads 114 arranged along the main strip 201 of the comb, regularly distributed along the strip 201. Each stud 114 is partly located on the strip 201.
[0053] Plus généralement, la structure collectrice de face avant 108 peut avoir toute autre forme adaptée à collecter de façon homogène les porteurs de charges générés dans la plaque semiconductrice 104 de la cellule, et à les faire converger vers les plots de connexion de face avant 114 de la cellule. More generally, the front face collecting structure 108 may have any other form suitable for uniformly collecting the charge carriers generated in the plate semiconductor 104 of the cell, and to make them converge towards the front face connection pads 114 of the cell.
[0054] Une limitation de l'assemblage décrit en relation avec les figures 1 et 2 est qu'il est relativement complexe à réaliser. En effet, la soudure des éléments conducteurs 120 aux plots de connexion 114 et 116 des cellules élémentaires 102 nécessite des équipements coûteux et encombrants et est relativement longue à réaliser.  A limitation of the assembly described in connection with Figures 1 and 2 is that it is relatively complex to achieve. Indeed, the welding of the conductive elements 120 to the connection pads 114 and 116 of the elementary cells 102 requires expensive and bulky equipment and is relatively long to produce.
[0055] De plus, les soudures des éléments conducteurs 120 aux plots de connexion 114 et 116 créent un lien mécanique rigide entre les éléments conducteurs 120 et les cellules, pouvant conduire à des dégradations en cas de déformation du panneau photovoltaïque, dues par exemple à des variations de température, à la force du vent, ou encore au poids de la neige .  In addition, the welds of the conductive elements 120 to the connection pads 114 and 116 create a rigid mechanical link between the conductive elements 120 and the cells, which can lead to damage in the event of deformation of the photovoltaic panel, due for example to variations in temperature, the force of the wind, or the weight of the snow.
[0056] Par ailleurs, dans le cas de cellules élémentaires comportant une structure collectrice formée par une couche métallique ajourée, par exemple du type décrit en relation avec la figure 2, le motif conducteur de la structure collectrice doit être choisi apte à faire converger les porteurs de charges collectés vers les plots de connexion correspondant de la cellule. Ceci impose des contraintes sur le choix du motif, qui ne sont pas nécessairement compatibles avec le besoin de minimiser la surface de la plaque semiconductrice 104 occultée par la structure collectrice.  Furthermore, in the case of elementary cells comprising a collecting structure formed by an openwork metal layer, for example of the type described in relation to FIG. 2, the conductive pattern of the collecting structure must be chosen able to converge the charge carriers collected to the corresponding connection pads of the cell. This imposes constraints on the choice of pattern, which are not necessarily compatible with the need to minimize the surface of the semiconductor plate 104 obscured by the collecting structure.
[0057] De plus, la présence de rubans ou fils conducteurs In addition, the presence of ribbons or conductive son
120, relativement épais, en surface des cellules, dégrade l'esthétique de l'assemblage. 120, relatively thick, on the surface of the cells, degrades the aesthetics of the assembly.
[0058] En outre, la surface des zones de contact électrique entre les éléments conducteurs 120 et les structures collectrices et le nombre de points de contact entre les éléments conducteurs 120 et les structures collectrices sont relativement faibles. Le risque de rupture de la continuité électrique entre les éléments conducteurs 120 et les structures collectrices, et donc de perte de rendement de l'assemblage, est donc relativement élevé. In addition, the surface of the electrical contact zones between the conductive elements 120 and the collector structures and the number of contact points between the conductive elements 120 and the collector structures are relatively weak. The risk of rupture of the electrical continuity between the conductive elements 120 and the collecting structures, and therefore of loss of efficiency of the assembly, is therefore relatively high.
[0059] La figure 3 représente de façon schématique un exemple d'un assemblage 300 de cellules photovoltaïques 302 d'un panneau photovoltalque selon un premier mode de réalisation. La figure 3 comprend une vue (A) et une vue (B) de l'assemblage La vue (A) est une vue en coupe partielle de l'assemblage 300 selon le plan A-A de la vue (B) . La vue (B) est une vue de dessus partielle de l'assemblage 300. Figure 3 schematically shows an example of an assembly 300 of photovoltaic cells 302 of a photovoltaic panel according to a first embodiment. Figure 3 includes a view (A) and a view (B) of the assembly The view (A) is a partial sectional view of the assembly 300 according to the plane A-A of the view (B). View (B) is a partial top view of assembly 300.
[0060] L'assemblage 300 et les cellules élémentaires 302 de la figure 3 comprennent des éléments communs avec l'assemblage 100 et les cellules élémentaires 102 de la figure 1. Ces éléments communs ne seront pas détaillés à nouveau. Dans la suite, seules les différences par rapport à l'exemple décrit en relation avec les figures 1 et 2 seront mises en exergue. The assembly 300 and the elementary cells 302 of Figure 3 include elements common with the assembly 100 and the elementary cells 102 of Figure 1. These common elements will not be detailed again. In the following, only the differences compared to the example described in relation to Figures 1 and 2 will be highlighted.
[0061] Les cellules élémentaires 302 de la figure 3 diffèrent des cellules élémentaires 102 de la figure 1 principalement en ce qu'elles ne comprennent pas de plots de connexion 114 sur leurs structures collectrices de face avant 108, ni de plots de connexion 116 sur leurs structures collectrices de face arrière 110. The elementary cells 302 of FIG. 3 differ from the elementary cells 102 of FIG. 1 mainly in that they do not include connection pads 114 on their front face collector structures 108, nor connection pads 116 on their rear face collecting structures 110.
[0062] Dans l'assemblage 300 de la figure 3, les cellules 302 sont connectées en série par des nappes conductrices ajourées 304, par exemple en cuivre, de préférence en cuivre étamé (c'est-à-dire recouvert d'un alliage à base d'étain). Chaque nappe conductrice 304 s'étend sur une partie de la face avant d'une cellule, et sous une partie de la face arrière d'une cellule voisine. Plus particulièrement, chaque nappe conductrice 304 comprend une partie 304a en contact, par sa face arrière, avec une partie de la structure collectrice de face avant 108 d'une cellule, et une partie 304b en contact, par sa face avant, avec une partie de la structure collectrice de face arrière 110 d'une cellule voisine. Chaque nappe 304 comprend en outre, entre les parties 304a et 304b, une partie oblique 304c s'étendant entre les grands côtés en vis à vis des deux cellules voisines qu'elle connecte. Chaque nappe 304 s'étend, dans la direction de la largeur de l'assemblage, sur sensiblement toute la largeur des cellules qu'elle connecte. A titre de variante, la largeur de la nappe peut se limiter à une partie seulement de la largeur des cellules. De préférence, la largeur de la nappe est au moins égale à 90 % de la largeur des cellules. A titre d'exemple, dans chaque nappe 304, chacune des parties 304a et 304b de la nappe s'étend, dans la direction de la longueur de l'assemblage, sur une distance allant de un quart à trois quart de la longueur de la cellule, en partant du grand côté de la cellule le plus proche de la cellule voisine connectée à la même nappe 304. In the assembly 300 of Figure 3, the cells 302 are connected in series by perforated conductive sheets 304, for example copper, preferably tinned copper (that is to say covered with an alloy based on tin). Each conductive sheet 304 extends over a part of the front face of a cell, and under a part of the rear face of a neighboring cell. More particularly, each conductive sheet 304 comprises a part 304a in contact, by its rear face, with a part of the collecting structure of the front face 108 of a cell, and a part 304b in contact, by its front face, with a part of the rear face collecting structure 110 of a neighboring cell. Each ply 304 further comprises, between the parts 304a and 304b, an oblique part 304c extending between the long sides facing the two neighboring cells that it connects. Each ply 304 extends, in the direction of the width of the assembly, over substantially the entire width of the cells that it connects. As a variant, the width of the sheet can be limited to only part of the width of the cells. Preferably, the width of the sheet is at least equal to 90% of the width of the cells. By way of example, in each ply 304, each of the parts 304a and 304b of the ply extends, in the direction of the length of the assembly, over a distance ranging from a quarter to three quarters of the length of the cell, starting from the long side of the cell closest to the neighboring cell connected to the same sheet 304.
[0063] On notera que sur la vue (B) de la figure 3, par souci de simplification, seule la nappe 304 centrale de la portion d'assemblage de la vue (A) a été représentée.  Note that in the view (B) of Figure 3, for the sake of simplification, only the central web 304 of the assembly portion of the view (A) has been shown.
[0064] Par nappes conductrices ajourées, on entend ici que chaque nappe 304 comprend des ouvertures traversantes aptes à laisser passer la majeure partie du rayonnement solaire incident en direction de la plaque semiconductrice 104. A titre d'exemple, chaque nappe 304 est constituée de fils conducteurs croisés formant un grillage. A titre d'exemple, chaque nappe 304 est constituée de fils conducteurs tressés (non soudés) formant un grillage. A titre de variante, chaque nappe 304 est constituée d'un grillage conducteur monobloc. Du fait des dimensions relativement importantes des nappes 304 dans la direction de la largeur de l'assemblage, l'épaisseur des fils conducteurs constituant les nappes 304 peut être faible, ce qui présente l'avantage de conférer une grande souplesse aux nappes 304. A titre d'exemple, l'épaisseur des fils conducteurs constituant les nappes 304 est comprise entre 10 et 500 ym, par exemple entre 50 et 100 ym. Perforated conductive layers here means that each layer 304 comprises through openings capable of allowing most of the incident solar radiation to pass in the direction of the semiconductor plate 104. For example, each layer 304 consists of crossed conductive wires forming a grid. By way of example, each sheet 304 is made up of braided conductive wires (not welded) forming a grid. As a variant, each ply 304 consists of a one-piece conductive mesh. Due to the relatively large dimensions of the plies 304 in the direction of the width of the assembly, the thickness of the conductive wires constituting the plies 304 may be small, which has the advantage of giving a great flexibility with plies 304. By way of example, the thickness of the conductive wires constituting plies 304 is between 10 and 500 μm, for example between 50 and 100 μm.
[0065] Dans l'exemple de la figure 3, les nappes conductrices 304 sont en contact mécaniquement et électriquement avec les structures collectrices 108 et 110 des cellules 302, mais ne sont pas directement fixées aux structures collectrices 108 et 110. En particulier, les nappes 304 ne sont pas soudées ni collées aux structures collectrices 108 et 110. Ainsi, en cas de déformation du panneau photovoltaïque, par exemple sous l'effet de variations de la température ou du fait de phénomènes météorologiques, chaque nappe 304 peut glisser le long des faces avant et/ou arrière des cellules qu'elle connecte, ce qui permet de maintenir la connexion électrique entre les cellules sans créer de contraintes mécaniques susceptibles d'endommager les cellules.  In the example of Figure 3, the conductive layers 304 are in mechanical and electrical contact with the collecting structures 108 and 110 of the cells 302, but are not directly attached to the collecting structures 108 and 110. In particular, the layers 304 are not welded or glued to the collecting structures 108 and 110. Thus, in the event of deformation of the photovoltaic panel, for example under the effect of variations in temperature or due to meteorological phenomena, each layer 304 can slide along front and / or rear faces of the cells which it connects, which makes it possible to maintain the electrical connection between the cells without creating mechanical stresses liable to damage the cells.
[0066] Dans l'exemple de la figure 3, l'assemblage 300 est protégé, en face avant, par une plaque protectrice transparente 306, par exemple en verre ou en plexiglas, et, en face arrière, par une plaque protectrice opaque ou transparente 308. Par souci de simplification, la plaque protectrice supérieure 306 n'a pas été représentée sur la vue (B) de la figure 3. Les cellules photovoltaïques 302 et les nappes de connexion 304 sont par exemple maintenues en compression entre les plaques protectrices 306 et 308, de façon à maintenir un contact électrique entre les nappes de connexion 304 et les cellules 302. A titre d'exemple, les plaques protectrices 306 et 308 peuvent être fixées l'une à l'autre et à l'assemblage de cellules photovoltaïques 302 et de nappes de connexion 304 par un procédé de lamination. L'utilisation d'un procédé de lamination permet notamment d'établir une contrainte de compression résiduelle uniforme perdurant pendant une longue période de temps, typiquement de plusieurs années à plusieurs dizaines d'années. Plus généralement, tout autre moyen de fixation permettant de maintenir les cellules 302 et les nappes 304 en compression entre les plaques protectrices 306 et 308 peut être utilisé. In the example of FIG. 3, the assembly 300 is protected, on the front face, by a transparent protective plate 306, for example made of glass or plexiglass, and, on the rear face, by an opaque protective plate or transparent 308. For the sake of simplification, the upper protective plate 306 has not been shown in view (B) of FIG. 3. The photovoltaic cells 302 and the connection plies 304 are for example kept in compression between the protective plates 306 and 308, so as to maintain electrical contact between the connection plies 304 and the cells 302. By way of example, the protective plates 306 and 308 can be fixed to each other and to the assembly of photovoltaic cells 302 and connection plies 304 by a lamination process. The use of a lamination process makes it possible in particular to establish a uniform residual compression stress enduring for a long period of time, typically several years to several decades. More generally, any other fixing means making it possible to keep the cells 302 and the plies 304 in compression between the protective plates 306 and 308 can be used.
[0067] Un avantage de l'assemblage de la figure 3 est qu'il est plus simple à réaliser que des assemblages à base de rubans ou fils conducteurs soudés du type décrit en relation avec la figure 1. En effet, dans le mode de réalisation de la figure 3, les cellules élémentaires 302 et les nappes conductrices 304 peuvent être positionnées en utilisant des équipements classiques de prélèvement et positionnement ("pick and place" en langue anglaise) . On notera en outre que le positionnement relatif des nappes conductrices 304 par rapport aux cellules 302 ne nécessite pas une grande précision du fait des dimensions relativement importantes des nappes 304.  An advantage of the assembly of FIG. 3 is that it is simpler to produce than assemblies based on welded conductive tapes or wires of the type described in relation to FIG. 1. Indeed, in the mode of As shown in FIG. 3, the elementary cells 302 and the conductive layers 304 can be positioned using conventional picking and positioning equipment ("pick and place" in English). It will also be noted that the relative positioning of the conductive plies 304 relative to the cells 302 does not require great precision due to the relatively large dimensions of the plies 304.
[0068] Par ailleurs, dans le mode de réalisation de la figure 3, chaque nappe conductrice 304 forme avec les structures collectrices 108 et 110 des cellules qu'elle connecte un contact électrique régulièrement distribué sur toute la largeur des cellules. Ainsi, dans le cas d'une structure collectrice formée par une couche métallique ajourée en contact avec la face avant ou arrière de la plaque semiconductrice 104, il n'est pas nécessaire que les éléments conducteurs de la structure collectrice convergent vers un nombre restreint de plots de connexion. Ceci est illustré par la vue (B) de la figure 3, dans laquelle les structures collectrices de face avant 108 des cellules ont une forme similaire à celle de la figure 2, mais dans laquelle la barre principale 201 du peigne a été retirée, les dents 203 du peigne s'étendant d'un grand côté à l'autre de la cellule. Autrement dit, dans le mode de réalisation de la figure 3, chaque structure collectrice peut être constituée d'une pluralité de motifs conducteurs régulièrement répartis sur une face de la plaque semiconductrice 104 de la cellule, les motifs n'étant pas nécessairement connectés entre eux en l'absence de la nappe 304. Ceci permet d'augmenter la surface de la plaque semiconductrice 104 non masquée par la structure collectrice 108 ou 110, et ainsi d'augmenter le rendement de la cellule. Furthermore, in the embodiment of Figure 3, each conductive sheet 304 forms with the collecting structures 108 and 110 of the cells that it connects an electrical contact regularly distributed over the entire width of the cells. Thus, in the case of a collecting structure formed by a perforated metal layer in contact with the front or rear face of the semiconductor plate 104, it is not necessary that the conducting elements of the collecting structure converge towards a limited number of connection pads. This is illustrated by the view (B) of FIG. 3, in which the front face collecting structures 108 of the cells have a shape similar to that of FIG. 2, but in which the main bar 201 of the comb has been removed, the teeth 203 of the comb extending from one long side to the other of the cell. In other words, in the embodiment of FIG. 3, each collector structure may consist of a plurality of conductive patterns regularly distributed over one face of the semiconductor plate 104 of the cell, the patterns not necessarily being connected to each other in the absence of the sheet 304. This makes it possible to increase the surface of the semiconductor plate 104 not masked by the collecting structure 108 or 110, and thus increase the efficiency of the cell.
[0069] Un autre avantage du mode de réalisation de la figure 3 est que les nappes conductrices 304 peuvent être relativement discrètes, voire invisibles, même à une distance relativement faible, dans la mesure où elles sont constituées de fils conducteurs très fins. Ceci permet d'améliorer l'esthétique de l'assemblage par rapport à une solution à base de rubans ou fils conducteurs du type décrit en relation avec la figure 1.  Another advantage of the embodiment of Figure 3 is that the conductive layers 304 can be relatively discreet, or even invisible, even at a relatively small distance, insofar as they consist of very fine conductive son. This improves the aesthetics of the assembly compared to a solution based on ribbons or conductive wires of the type described in relation to FIG. 1.
[0070] Un autre avantage du point de vue de la fiabilité électrique est que le nombre de points de contact et la surface effective de contact entre la nappe conductrice 304 et les structures collectrices sont très importants. Ceci permet de réduire drastiquement, voire d'éliminer, le risque de rupture de continuité électrique au sein de l'assemblage.  Another advantage from the point of view of electrical reliability is that the number of contact points and the effective contact surface between the conductive sheet 304 and the collecting structures are very large. This drastically reduces, or even eliminates, the risk of breaking electrical continuity within the assembly.
[0071] On notera que le premier mode de réalisation ne se limite pas à des assemblages comportant uniquement des cellules connectées en série, mais peut être appliqué plus généralement à tout assemblage comportant au moins deux cellules photovoltaïques connectées en série l'une à l'autre.  Note that the first embodiment is not limited to assemblies comprising only cells connected in series, but can be applied more generally to any assembly comprising at least two photovoltaic cells connected in series one to the other.
[0072] La figure 4 illustre de façon schématique, à titre de variante, un exemple de réalisation d'un assemblage 300 comportant une pluralité de cellules élémentaires 302 connectées en parallèle et en série. Plus particulièrement, dans cet exemple, les cellules 302 sont regroupées par paires de deux cellules voisines connectées en parallèle, les paires de cellules étant connectées en série les unes aux autres. Plus précisément, dans chaque paire de cellules voisines connectées en parallèle, une nappe conductrice supérieure 304 connecte la face avant de la première cellule à la face avant de la deuxième cellule, et une nappe conductrice inférieure 304 connecte la face arrière de la première cellule à la face arrière de la deuxième cellule. Deux paires voisines sont quant à elles reliées en série par une nappe conductrice 304 connectant la face avant de la deuxième cellule de la première paire à la face arrière de la première cellule de la deuxième paire . FIG. 4 schematically illustrates, as a variant, an exemplary embodiment of an assembly 300 comprising a plurality of elementary cells 302 connected in parallel and in series. More particularly, in this example, cells 302 are grouped in pairs of two neighboring cells connected in parallel, the pairs of cells being connected in series with each other. More specifically, in each pair of neighboring cells connected in parallel, an upper conductive sheet 304 connects the front face of the first cell to the front face of the second cell, and a lower conductive sheet 304 connects the rear face of the first cell to the back of the second cell. Two neighboring pairs are in turn connected in series by a conductive sheet 304 connecting the front face of the second cell of the first pair to the rear face of the first cell of the second pair.
[0073] La figure 5 est une vue de dessus schématique et partielle d'un autre exemple d'un assemblage de cellules photovoltaïques selon le premier mode de réalisation.  Figure 5 is a schematic and partial top view of another example of an assembly of photovoltaic cells according to the first embodiment.
[0074] L'assemblage de la figure 5 comprend M chapelets The assembly of Figure 5 includes M strings
300_1, ... 300_M comprenant chacun N cellules photovoltaïques 302 connectées en série, M et N étant des entiers supérieurs ou égaux à deux. Les M chapelets 300_i (avec i entier allant de 1 à M) sont connectés en parallèle entre des bornes principales P+ et P- de l'assemblage. Dans l'exemple représenté, l'assemblage comprend M=4 chapelets 300_1, 300_2, 300_3 et 300_4 comprenant chacun N=8 cellules 302. Les modes de réalisation décrits ne se limitent bien entendu pas à ce cas particulier. 300_1, ... 300_M each comprising N photovoltaic cells 302 connected in series, M and N being integers greater than or equal to two. The M strings 300_i (with integer i going from 1 to M) are connected in parallel between main terminals P + and P- of the assembly. In the example shown, the assembly comprises M = 4 strings 300_1, 300_2, 300_3 and 300_4 each comprising N = 8 cells 302. The embodiments described are of course not limited to this particular case.
[0075] En vue de dessus, les cellules photovoltaïques sont agencées en matrice selon M rangées et N colonnes. Chaque rangée de la matrice correspond à un chapelet 300_i. Chaque colonne de la matrice comprend l'ensemble des cellules de même rang j dans les M chapelets (avec j entier allant de 1 à N) .  In top view, the photovoltaic cells are arranged in a matrix according to M rows and N columns. Each row of the matrix corresponds to a rosary 300_i. Each column of the matrix comprises all the cells of the same rank j in the M strings (with j integer ranging from 1 to N).
[0076] Chacun des chapelets 300_i correspond à un assemblage identique ou similaire à l'assemblage 300 de la figure 3. [0077] Toutefois, dans l'assemblage de la figure 5, chaque nappe conductrice 304 connectant l'une à l'autre deux cellules voisines d'un même chapelet est commune aux M chapelets 300_i de l'assemblage. Autrement dit, chaque nappe conductrice 304 s'étend de façon continue sur sensiblement toute la hauteur de l'assemblage dans la direction des colonnes de la matrice. Each of the strings 300_i corresponds to an assembly identical or similar to the assembly 300 of FIG. 3. However, in the assembly of Figure 5, each conductive sheet 304 connecting to each other two neighboring cells of the same string is common to the M strings 300_i of the assembly. In other words, each conductive sheet 304 extends continuously over substantially the entire height of the assembly in the direction of the columns of the matrix.
[0078] Ainsi, si on considère deux colonnes de rang j et j+1 de la matrice, une même nappe conductrice ajourée 304 s'étend sur une partie de la face avant de chaque cellule de rang j de la matrice, et sous une partie de la face arrière de chaque cellule de rang j+1 de la matrice. Ainsi, les faces avant des M cellules de rang j de l'assemblage sont connectées entre elles et aux faces arrière des M cellules de rang j+1 de l'assemblage par une même nappe conductrice 304.  Thus, if we consider two columns of row j and j + 1 of the matrix, the same perforated conductive sheet 304 extends over part of the front face of each cell of row j of the matrix, and under a part of the rear face of each cell of row j + 1 of the matrix. Thus, the front faces of the M cells of row j of the assembly are connected to each other and to the rear faces of the M cells of row j + 1 of the assembly by the same conductive sheet 304.
[0079] Un avantage de l'assemblage de la figure 5 est que la connexion électrique en parallèle des M chapelets 300_i est réalisée non seulement aux extrémités des chapelets, mais également au niveau de chaque cellule photovoltaique élémentaire de chaque chapelet, à l'intérieur de la matrice, ce qui permet de mieux répartir les courants collectés.  An advantage of the assembly of FIG. 5 is that the electrical connection in parallel of the M strings 300_i is carried out not only at the ends of the strings, but also at the level of each elementary photovoltaic cell of each strand, inside of the matrix, which allows a better distribution of the collected currents.
[0080] Un autre avantage de l'assemblage de la figure 5 est qu'il est relativement aisé à réaliser. A titre d'exemple, les cellules de même rang j peuvent être prélevées et positionnées simultanément par un robot, puis une nappe conductrice ajourée s'étendant de façon continue sur toute la hauteur de l'assemblage peut être positionnée, et ainsi de suite jusqu'à la réalisation complète de l'assemblage. On notera en particulier que le nombre de nappes conductrices 304 à manipuler est divisé par M par rapport à un assemblage de M chapelets en parallèle dans lequel les nappes conductrices 304 ne seraient pas communes aux différents chapelets . [0081] La figure 6 est une vue en coupe partielle illustrant de façon schématique un autre exemple d'un assemblage 400 de cellules photovoltaïques 302 selon le premier mode de réalisation. L'assemblage 400 de la figure 6 comprend des éléments communs avec l'assemblage 300 de la figure 3. Ces éléments ne seront pas détaillés à nouveau ci-après. Dans la suite, seules les différences entre les deux assemblages seront mises en exergue. Another advantage of the assembly of Figure 5 is that it is relatively easy to achieve. For example, cells of the same rank j can be removed and positioned simultaneously by a robot, then an openwork conductive sheet extending continuously over the entire height of the assembly can be positioned, and so on until '' to complete the assembly. It will be noted in particular that the number of conductive plies 304 to be handled is divided by M relative to an assembly of M strings in parallel in which the conductive plies 304 would not be common to the different strings. Figure 6 is a partial sectional view schematically illustrating another example of an assembly 400 of photovoltaic cells 302 according to the first embodiment. The assembly 400 of Figure 6 includes elements common to the assembly 300 of Figure 3. These elements will not be detailed again below. In the following, only the differences between the two assemblies will be highlighted.
[0082] Dans l'exemple de la figure 6, au lieu que les cellules soient côte à côte dans un même plan, les cellules voisines se chevauchent. A titre d'exemple, dans la direction de la longueur de l'assemblage, la zone de chevauchement entre deux cellules voisines a une dimension comprise entre 1 et 10 % de la longueur d'une cellule. Comme dans l'exemple de la figure 3, les cellules voisines sont connectées par l'intermédiaire d'une nappe conductrice ajourée 304 ayant une première partie 304a en contact, par sa face arrière, avec une partie de la surface de la structure collectrice de face avant 108 d'une cellule, et une deuxième partie 304b en contact, par sa face avant, avec une partie de la surface de la structure collectrice de face arrière 110 de la cellule voisine. Dans l'exemple de la figure 6, chaque nappe 304 comprend en outre, entre les parties 304a et 304b, dans la zone de chevauchement ou recouvrement entre les deux cellules qu'elle connecte, une partie 304c en contact à la fois, par sa face arrière, avec la structure collectrice 108 de la première cellule, et, par sa face avant, avec la structure collectrice 110 de la deuxième cellule.  In the example of Figure 6, instead of the cells being side by side in the same plane, the neighboring cells overlap. By way of example, in the direction of the length of the assembly, the area of overlap between two neighboring cells has a dimension of between 1 and 10% of the length of a cell. As in the example in FIG. 3, the neighboring cells are connected via an openwork conductive sheet 304 having a first part 304a in contact, through its rear face, with a part of the surface of the collecting structure of front face 108 of a cell, and a second part 304b in contact, by its front face, with a part of the surface of the rear face collector structure 110 of the neighboring cell. In the example of FIG. 6, each ply 304 further comprises, between the parts 304a and 304b, in the zone of overlap or overlap between the two cells which it connects, a part 304c in contact at the same time, by its rear face, with the collecting structure 108 of the first cell, and, by its front face, with the collecting structure 110 of the second cell.
[0083] On notera que les exemples de réalisation des figures 5 et 6 peuvent bien entendu être combinés.  Note that the embodiments of Figures 5 and 6 can of course be combined.
[0084] La figure 7 illustre une variante de réalisation d'une nappe conductrice de connexion 304 d'un assemblage de cellules photovoltaïques selon le premier mode de réalisation. La nappe de connexion 304 de la figure 7 peut notamment être utilisée dans un assemblage du type décrit ci-dessus en relation avec les figures 3 à 6. FIG. 7 illustrates an alternative embodiment of a conductive connection sheet 304 of an assembly of photovoltaic cells according to the first embodiment. The tablecloth connection 304 of FIG. 7 can in particular be used in an assembly of the type described above in relation to FIGS. 3 to 6.
[0085] Dans l'exemple de la figure 7, la nappe 304 comprend, dans sa partie 304a, en vis-à-vis de la première cellule (non représentée sur la figure 7) connectée à la nappe, le long du bord de la nappe le plus éloigné de la deuxième cellule (non représentée sur la figure 7) connectée à la nappe, une bande conductrice de fixation 351, et, dans sa partie 304b, en vis- à-vis de la deuxième cellule connectée à la nappe, le long du bord de la nappe le plus éloigné de la première cellule connectée à la nappe, une bande conductrice de fixation 353.  In the example of FIG. 7, the ply 304 comprises, in its part 304a, facing the first cell (not shown in FIG. 7) connected to the ply, along the edge of the sheet furthest from the second cell (not shown in FIG. 7) connected to the sheet, a conductive fixing strip 351, and, in its part 304b, facing the second cell connected to the sheet , along the edge of the ply most distant from the first cell connected to the ply, a conductive fixing strip 353.
[0086] Les bandes conductrices de fixation 351 et 353 sont par exemple des bandes métalliques, par exemple en cuivre, enduites d'un alliage métallique adapté pour fondre et à fusionner avec le métal des structures collectrices 108 et 110 lors de la lamination des plaques protectrices 306 et 308.  The conductive fixing strips 351 and 353 are for example metal strips, for example copper, coated with a metal alloy suitable for melting and fusing with the metal of the collecting structures 108 and 110 during the lamination of the plates. protective 306 and 308.
[0087] Un avantage de la variante de la figure 7 est qu'elle permet, en fixant les nappes conductrices de connexion 304 aux structures collectrices des cellules photovoltaïques, de réduire encore le risque de rupture de continuité électrique au sein de l'assemblage. Du fait de la disposition des bandes conductrices de fixation le long des deux bords de la nappe parallèles à la largeur de l'assemblage, une portion de la partie 304a de la nappe 304 reste libre de se déplacer par rapport à la première cellule, et une portion de la partie 304b de la nappe 304 reste libre de se déplacer par rapport à la deuxième cellule. L'avantage de flexibilité de l'assemblage et de relative mobilité des cellules les unes par rapport aux autres au sein de l'assemblage (en particulier dans la direction de la longueur des cellules) est ainsi préservé. A titre d'exemple, la largeur de chacune des bandes conductrices de fixation 351 et 353 (i.e. dans la direction de la longueur des cellules) est inférieure à 20 % de la dimension totale de la nappe dans cette direction. Par ailleurs, bien que les bandes 351 et 353 aient été représentées sous la forme de bandes conductrices pleines sur la figure 7, les modes de réalisation décrits ne se limitent pas à ce cas particulier. A titre de variante, chacune des bandes conductrices de fixation 351 et 353 peut correspondre à une portion ajourée de la nappe 304. Autrement dit, chaque nappe conductrice ajourée 304 peut comprendre : An advantage of the variant of FIG. 7 is that it allows, by fixing the conductive connection plies 304 to the collecting structures of the photovoltaic cells, to further reduce the risk of breaking of electrical continuity within the assembly. Due to the arrangement of the conductive fixing strips along the two edges of the ply parallel to the width of the assembly, a portion of the portion 304a of the ply 304 remains free to move relative to the first cell, and a portion of the part 304b of the sheet 304 remains free to move relative to the second cell. The advantage of flexibility of the assembly and relative mobility of the cells with respect to each other within the assembly (in particular in the direction of the length of the cells) is thus preserved. As an example, the width of each of the conductive fixing strips 351 and 353 (ie in the direction the length of the cells) is less than 20% of the total dimension of the sheet in this direction. Furthermore, although the strips 351 and 353 have been shown in the form of solid conductive strips in FIG. 7, the embodiments described are not limited to this particular case. As a variant, each of the conductive fixing strips 351 and 353 may correspond to an openwork portion of the sheet 304. In other words, each openwork conductive sheet 304 may comprise:
- en partie gauche de la nappe, une première portion de nappe ajourée enduite de l'alliage métallique adapté pour fondre et fusionner avec le métal des structures collectrices 108 et 110 lors de la lamination des plaques protectrices 306 et 308 ;  - In the left part of the sheet, a first portion of perforated sheet coated with the metal alloy suitable for melting and fusing with the metal of the collecting structures 108 and 110 during the lamination of the protective plates 306 and 308;
- en partie droite de la nappe, une deuxième portion de nappe ajourée enduite de l'alliage métallique ; et  - In the right part of the sheet, a second portion of perforated sheet coated with the metal alloy; and
- en partie centrale de la nappe, une troisième portion de nappe ajourée non enduite de l'alliage métallique.  - In the central part of the sheet, a third portion of perforated sheet not coated with the metal alloy.
[0088] La figure 8 illustre une autre variante de réalisation d'une nappe conductrice de connexion 304 d'un assemblage de cellules photovoltaïques selon le premier mode de réalisation A la différence des exemples décrits précédemment dans lesquels la nappe conductrice 304 avait, vu de dessus, une forme générale rectangulaire, dans l'exemple de la figure 8, les parties 304a et 304c de la nappe 304 ont une forme dentelée ou en créneau. FIG. 8 illustrates another alternative embodiment of a conductive connection sheet 304 of an assembly of photovoltaic cells according to the first embodiment Unlike the examples described above in which the conductive sheet 304 had, seen from above, a generally rectangular shape, in the example of FIG. 8, the parts 304a and 304c of the sheet 304 have a serrated or square shape.
[0089] Plus particulièrement, dans cet exemple, la partie 304a de la nappe 304 comprend, du côté du bord de la nappe le plus éloigné de la deuxième cellule (non visible sur la figure 8) connectée à la nappe, une pluralité de dents ou créneaux 305a s'étendant dans la direction de la longueur des cellules, par exemple régulièrement réparties sur la largeur de la nappe De plus, dans cet exemple, la partie 304c de la nappe 304 comprend, du côté du bord de la nappe le plus éloigné de la première cellule (non visible sur la figure 8) connectée à la nappe, une pluralité de dents ou créneaux 305c s'étendant dans la direction de la longueur des cellules, par exemple régulièrement réparties sur la largeur de la nappe. Entre deux dents 305a voisines de la nappe 304, la face supérieure de la première cellule connectée à la nappe 304 n'est pas recouverte par la nappe. De plus, entre deux dents 305c voisines de la nappe 304, la face inférieure de la deuxième cellule connectée à la nappe n'est pas recouverte par la nappeMore particularly, in this example, the part 304a of the ply 304 comprises, on the side of the edge of the ply most distant from the second cell (not visible in FIG. 8) connected to the ply, a plurality of teeth or slots 305a extending in the direction of the length of the cells, for example regularly distributed over the width of the sheet In addition, in this example, the portion 304c of the sheet 304 comprises, on the side of the edge of the ply furthest from the first cell (not visible in FIG. 8) connected to the ply, a plurality of teeth or slots 305c extending in the direction of the length of the cells, for example evenly distributed over the width of the tablecloth. Between two neighboring teeth 305a of the ply 304, the upper face of the first cell connected to the ply 304 is not covered by the ply. In addition, between two neighboring teeth 305c of the ply 304, the underside of the second cell connected to the ply is not covered by the ply
[0090] Les motifs conducteurs des structures collectrices de face avant et de face arrière des cellules élémentaires sont choisis de façon que chaque élément conducteur du motif soit connecté à au moins une dent 305a ou 305b de la nappe 304. Une telle nappe conductrice dentelée est par exemple bien adaptée à la connexion de cellules munies de structures collectrices du type décrit ci-après en relation avec la figure 10. The conductive patterns of the collector structures of the front face and rear face of the elementary cells are chosen so that each conductive element of the pattern is connected to at least one tooth 305a or 305b of the sheet 304. Such a serrated conductive sheet is for example well suited to the connection of cells provided with collecting structures of the type described below in relation to FIG. 10.
[0091] Les dents 305a et 305c s'étendent par exemple chacune sur sensiblement toute la longueur de la partie 304a, respectivement 304c de la nappe, comme l'illustre la vue (A) de la figure 8. A titre de variante, les dents 305a et 305c s'étendent chacune sur une longueur inférieure à la longueur de la partie 304a, respectivement 304c de la nappe, comme l'illustre la vue (B) de la figure 8.  The teeth 305a and 305c each extend for example over substantially the entire length of the part 304a, respectively 304c of the ply, as illustrated in view (A) of FIG. 8. As a variant, the teeth 305a and 305c each extend over a length less than the length of the part 304a, respectively 304c of the ply, as illustrated in view (B) of FIG. 8.
[0092] Dans l'exemple représenté en figure 8, la partie 304a et la partie 304c de la nappe sont toutes deux munies de dents ou créneaux. A titre de variante, seule l'une des deux parties 304a et 304c de la nappe peut être munie de dents ou créneaux.  In the example shown in Figure 8, the part 304a and the part 304c of the web are both provided with teeth or slots. As a variant, only one of the two parts 304a and 304c of the ply may be provided with teeth or slots.
[0093] Un avantage de la variante de la figure 8 est qu'elle permet d'augmenter la surface des cellules non recouverte par les nappes 304, et donc le rendement des cellules. De plus, cette variante permet une économie de matériau conducteur pour la réalisation des nappes 304. An advantage of the variant of FIG. 8 is that it makes it possible to increase the surface of the cells not covered by the plies 304, and therefore the yield of the cells. Furthermore, this variant saves conductive material for producing the plies 304.
[0094] La figure 9 est une vue en coupe illustrant de façon schématique et partielle un exemple d'un assemblage 600 de cellules photovoltaïques 302 d'un panneau photovoltalque selon un deuxième mode de réalisation. L'assemblage 600 de la figure 9 comprend des éléments communs avec l'assemblage 400 de la figure 6. Ces éléments communs ne seront pas décrits à nouveau ci-après. Dans la suite, seules les différences par rapport à l'assemblage de la figure 6 seront mises en exergue. Figure 9 is a sectional view schematically and partially illustrating an example of an assembly 600 of photovoltaic cells 302 of a photovoltaic panel according to a second embodiment. The assembly 600 of FIG. 9 comprises elements that are common with the assembly 400 of FIG. 6. These common elements will not be described again below. In the following, only the differences compared to the assembly of Figure 6 will be highlighted.
[0095] De même que dans l'assemblage 400 de la figure 6, les cellules élémentaires 302 voisines de l'assemblage 600 de la figure 9 se chevauchent. Toutefois, à la différence de l'assemblage 400, l'assemblage 600 ne comprend pas de nappes conductrices reliant deux à deux en série les cellules voisines . As in the assembly 400 of Figure 6, the elementary cells 302 adjacent to the assembly 600 of Figure 9 overlap. However, unlike assembly 400, assembly 600 does not include conductive plies connecting two by two in series with neighboring cells.
[0096] Dans le mode de réalisation de la figure 9, la structure collectrice de face avant d'une cellule est directement en contact, mécaniquement et électriquement, avec la structure collectrice de face arrière d'une cellule voisine, dans la zone de chevauchement entre les deux cellules. Ceci permet d'assurer directement la connexion en série des cellules de l'assemblage, sans éléments de connexion intermédiaire entre les cellules. In the embodiment of Figure 9, the front face collector structure of a cell is directly in contact, mechanically and electrically, with the rear face collector structure of a neighboring cell, in the overlap area between the two cells. This makes it possible to directly ensure the series connection of the cells of the assembly, without elements of intermediate connection between the cells.
[0097] Dans l'assemblage 600, les contacts entre les structures collectrices de face avant et arrière des cellules, dans les zones de chevauchement entre cellules voisines, sont des contacts glissants. Autrement dit, dans la zone de chevauchement entre deux cellules voisines, la face avant de la cellule inférieure n'est pas fixée à la face arrière de la cellule supérieure. En particulier, la structure collectrice de face avant 108 de la cellule inférieure n'est pas soudée, ni collée, à la structure conductrice de face arrière 110 de la cellule supérieure. In assembly 600, the contacts between the collecting structures of the front and rear face of the cells, in the areas of overlap between neighboring cells, are sliding contacts. In other words, in the area of overlap between two neighboring cells, the front face of the lower cell is not fixed to the rear face of the upper cell. In particular, the front face collecting structure 108 of the lower cell is not welded, nor glued to the conductive structure of the rear face 110 of the upper cell.
[0098] Ainsi, un avantage de l'assemblage 600 est que, en cas de déformation du panneau photovoltaïque, par exemple sous l'effet de variations de température lors de la fabrication et en particulier pendant la phase de lamination des plaques protectrices du panneau, ou du fait de phénomènes météorologiques, chaque cellule 302 peut glisser le long des faces avant et/ou arrière des cellules voisines auxquelles elle est connectée, ce qui permet de maintenir la connexion électrique entre les cellules sans créer de contraintes mécaniques susceptibles d'endommager les cellules.  Thus, an advantage of assembly 600 is that, in the event of deformation of the photovoltaic panel, for example under the effect of temperature variations during manufacture and in particular during the lamination phase of the protective plates of the panel , or due to meteorological phenomena, each cell 302 can slide along the front and / or rear faces of the neighboring cells to which it is connected, which makes it possible to maintain the electrical connection between the cells without creating mechanical stresses liable to damage cells.
[0099] Un autre avantage de l'assemblage de la figure 9 est qu' il est particulièrement simple à fabriquer dans la mesure où aucun élément de connexion intermédiaire et aucune soudure, colle conductrice ou adhésif conducteur ne sont prévus entre les cellules. Un équipement d'assemblage de cellules simple, facile à automatiser et rapide peut donc être utilisé, par exemple un équipement de type "pick and place".  Another advantage of the assembly of FIG. 9 is that it is particularly simple to manufacture insofar as no intermediate connection element and no solder, conductive adhesive or conductive adhesive are provided between the cells. Simple cell assembly equipment which is easy to automate and quick can therefore be used, for example "pick and place" type equipment.
[0100] Par ailleurs, l'élimination des soudures de ruban ou fils conducteurs sur les cellules, sources de défauts, conduit à un meilleur rendement de conversion des cellules, et à une meilleure tenue au vieillissement.  Furthermore, the elimination of the soldering of ribbon or conductive wires on the cells, sources of defects, leads to a better conversion efficiency of the cells, and to better resistance to aging.
[0101] De plus, du fait de l'absence de rubans ou fils conducteurs et de plots de connexion, une quantité importante de matériau conducteur peut être économisée, ce qui réduit le prix de revient des cellules ainsi que l'empreinte carbone associée à la fabrication des cellules. Une étape de sérigraphie généralement prévue dans la fabrication d'une cellule du type décrit en relation avec la figure 1 pour former les plots de connexion 114, 116 peut en outre être évitée . [0102] Comme dans les exemples des figures 3 à 8, les cellules élémentaires 302 de l'assemblage 600 peuvent être maintenues par tout support mécanique adapté à éviter des déplacements trop importants des cellules les unes par rapport aux autres, de façon à garantir le maintien de la connexion électrique entre les cellules. Comme dans l'exemple des figures 3 à 8, les cellules élémentaires 302 de l'assemblage 600 sont par exemple maintenues en compression entre une plaque protectrice de face avant 306 et une plaque protectrice de face arrière 308. In addition, due to the absence of ribbons or conductive wires and connection pads, a large quantity of conductive material can be saved, which reduces the cost price of the cells as well as the carbon footprint associated with the manufacture of cells. A screen printing step generally provided for in the manufacture of a cell of the type described in relation to FIG. 1 to form the connection pads 114, 116 can also be avoided. As in the examples of FIGS. 3 to 8, the elementary cells 302 of the assembly 600 can be maintained by any mechanical support adapted to avoid excessive displacements of the cells with respect to each other, so as to guarantee the maintenance of the electrical connection between the cells. As in the example in FIGS. 3 to 8, the elementary cells 302 of the assembly 600 are for example kept in compression between a protective plate on the front face 306 and a protective plate on the rear face 308.
[0103] Dans le mode de réalisation de la figure 9, les structures collectrices de face avant 108 et de face arrière 110 des cellules sont choisies telles que tous les éléments conducteurs de la structure collectrice de face avant 108 de chaque cellule soient connectées à la structure collectrice de face arrière de la cellule voisine supérieure dans la zone de chevauchement entre les deux cellules, et telles que tous les éléments conducteurs de la structure collectrice de face arrière 110 de chaque cellule soient connectées à la structure collectrice de face avant de la cellule voisine inférieure dans la zone de chevauchement entre les deux cellules. De préférence, la structure collectrice de face arrière 110 de chaque cellule 302 est une couche métallique, par exemple en argent, en étain ou en aluminium, s'étendant de façon continue sur sensiblement toute la face arrière de la cellule. La structure collectrice de face avant 108 de chaque cellule est par exemple une couche métallique ajourée, par exemple en argent ou en aluminium, telle que tous les éléments du motif conducteur de la structure s'étendent jusqu'à la zone de chevauchement de la cellule avec la cellule voisine supérieure Par exemple, le motif conducteur de la structure collectrice de face avant 108 des cellules élémentaires 302 peut être un motif du type décrit ci-dessus en relation avec les figures 2 ou 3, ou encore un motif en forme de feuilles du type décrit en relation avec la figure 4 de la demande de brevet français N°16/54518 susmentionnée. In the embodiment of FIG. 9, the front face 108 and rear face 110 collecting structures of the cells are chosen such that all the conductive elements of the front face collecting structure 108 of each cell are connected to the rear face collector structure of the upper neighboring cell in the area of overlap between the two cells, and such that all the conducting elements of the rear face collector structure 110 of each cell are connected to the front face collector structure of the cell lower neighbor in the overlap area between the two cells. Preferably, the rear face collecting structure 110 of each cell 302 is a metallic layer, for example made of silver, tin or aluminum, extending continuously over substantially the entire rear face of the cell. The front face collecting structure 108 of each cell is for example an openwork metallic layer, for example made of silver or aluminum, such that all the elements of the conductive pattern of the structure extend up to the overlapping zone of the cell. with the upper neighboring cell For example, the conductive pattern of the front face collecting structure 108 of the elementary cells 302 can be a pattern of the type described above in relation to FIGS. 2 or 3, or even a leaf-shaped pattern of the type described in connection with FIG. 4 of the above-mentioned French patent application No. 16/54518.
[0104] La figure 10 est une vue de dessus d'une cellule photovoltaïque élémentaire 602 d'un assemblage de cellules photovoltaïques selon un troisième mode de réalisation. La cellule élémentaire 602 de la figure 10 comprend des éléments communs avec les cellules élémentaires 102 et 302 décrites précédemment. Ces éléments communs ne seront pas décrits à nouveau ci-après. Dans la suite, seules les différences par rapport aux cellules élémentaires 102 et 302 seront mises en exergue .  Figure 10 is a top view of an elementary photovoltaic cell 602 of an assembly of photovoltaic cells according to a third embodiment. The elementary cell 602 of FIG. 10 comprises elements common with the elementary cells 102 and 302 described above. These common elements will not be described again below. In the following, only the differences compared to the elementary cells 102 and 302 will be highlighted.
[0105] La cellule 602 de la figure 10 diffère des cellules Cell 602 of Figure 10 differs from cells
102 et 302 décrites précédemment principalement par la forme de sa structure collectrice de face avant 108. 102 and 302 described above mainly by the shape of its front face collecting structure 108.
[0106] La structure collectrice de face avant 108 de la cellule 602 est formée par une couche métallique ajourée, par exemple en argent ou en aluminium, en contact avec la face avant de la couche semiconductrice 106 de la cellule.  The front face collector structure 108 of the cell 602 is formed by an openwork metallic layer, for example made of silver or aluminum, in contact with the front face of the semiconductor layer 106 of the cell.
[0107] La structure collectrice 108 de la cellule 602 est constituée d'une ou plusieurs occurrences d'un motif conducteur élémentaire 610 comprenant, en vue de dessus : The collecting structure 108 of the cell 602 consists of one or more occurrences of an elementary conductive pattern 610 comprising, in top view:
- une bande conductrice principale rectiligne 614 s'étendant longitudinalement depuis un bord de la cellule, dans le sens de la longueur de la cellule, sur environ la moitié de la longueur de la cellule ; et - A straight main conductive strip 614 extending longitudinally from an edge of the cell, in the direction of the length of the cell, over about half of the length of the cell; and
- une pluralité de bandes conductrices secondaires 616 de largeur inférieure à celle de la bande principale 614, s'étendant depuis la périphérie de la bande 614.  - A plurality of secondary conductive strips 616 of width less than that of the main strip 614, extending from the periphery of the strip 614.
[0108] Dans l'exemple représenté, la structure collectrice 108 de la cellule 602 comprend 5 occurrences du motif conducteur élémentaire 610, régulièrement réparties sur toute la largeur de la cellule. Les bandes conductrices principales 614 des différentes occurrences du motif élémentaire 610 partent toutes d'un même bord de la cellule (le bord droit dans l'orientation de la figure 10) . Les occurrences voisines du motif élémentaire 610 ont des bandes conductrices secondaires qui se rejoignent, de sorte que l'ensemble du motif conducteur de la structure collectrice 108 est continu. In the example shown, the collecting structure 108 of the cell 602 comprises 5 occurrences of the elementary conductive pattern 610, regularly distributed over the entire width of the cell. The main conductive strips 614 of the different occurrences of the elementary pattern 610 all start from the same edge of the cell (the right edge in the orientation of FIG. 10). The neighboring occurrences of the elementary pattern 610 have secondary conductive bands which meet, so that the whole of the conductive pattern of the collecting structure 108 is continuous.
[0109] A titre d'exemple, la bande conductrice principale 614 du motif élémentaire 610 a une largeur comprise entre 0,2 et 1 mm. Chaque bande conductrice secondaire 616 du motif élémentaire a par exemple une largeur comprise entre 10 et 100 ym. La largeur des bandes conductrices secondaires est par exemple comprise entre 10 et 50 ym. L'épaisseur de la structure 108 est par exemple comprise entre 10 et 30 ym.  For example, the main conductive strip 614 of the elementary pattern 610 has a width of between 0.2 and 1 mm. Each secondary conductive strip 616 of the elementary pattern has for example a width of between 10 and 100 μm. The width of the secondary conductive strips is for example between 10 and 50 μm. The thickness of the structure 108 is for example between 10 and 30 μm.
[0110] Dans cet exemple, en vue de dessus, chaque motif conducteur élémentaire 610 s'inscrit dans un rectangle 612 ayant deux côtés 612a et 612b sensiblement parallèles à la longueur de la cellule, de longueur sensiblement égale à la longueur de la cellule, et deux côtés 612c et 612d sensiblement parallèles à la largeur de la cellule, de longueur sensiblement égale à la largeur de la cellule ou à un sous-multiple de la largeur de la cellule. La bande conductrice principale 614 s'étend depuis le centre du côté 612c, orthogonalement au côté 612c, en direction du côté 612d, sur environ la moitié de la longueur des côtés 612a et 612b. Les bandes conductrices secondaires 616 s'étendent depuis les bords longitudinaux de la bande principale 614 et depuis l'extrémité de la bande principale 614 opposée au côté 612c, jusqu'aux côtés 612a, 612b et 612d du rectangle 612. Les bandes conductrices secondaires 616 ont leurs extrémités opposées à la bande conductrice principale 614 régulièrement réparties le long des côtés 612a, 612b et 612d du rectangle In this example, seen from above, each elementary conductive pattern 610 is inscribed in a rectangle 612 having two sides 612a and 612b substantially parallel to the length of the cell, of length substantially equal to the length of the cell, and two sides 612c and 612d substantially parallel to the width of the cell, of length substantially equal to the width of the cell or to a submultiple of the width of the cell. The main conductive strip 614 extends from the center of the side 612c, orthogonally to the side 612c, in the direction of the side 612d, over approximately half the length of the sides 612a and 612b. The secondary conductive strips 616 extend from the longitudinal edges of the main strip 614 and from the end of the main strip 614 opposite the side 612c, to the sides 612a, 612b and 612d of the rectangle 612. The secondary conductive strips 616 have their ends opposite to the main conductive strip 614 evenly distributed along the sides 612a, 612b and 612d of the rectangle
612. Le motif conducteur 610 est par exemple symétrique par rapport à l'axe longitudinal central de la bande conductrice principale 614. Dans cet exemple, le motif conducteur 610 comprend une pluralité de bandes conductrices secondaires 616 courbes s'étendant depuis l'extrémité de la bande 614 opposée au côté 612c, en direction du côté 612d et de la moitié des côtés 612a et 612b la plus éloignée du côté 612c, et formant avec la bande principale 614 un motif en forme de graine de pissenlit. Le motif conducteur 610 de la figure 10 comprend en outre une pluralité de bandes conductrices rectilignes secondaires 616 sensiblement orthogonales à la bande principale, s'étendant à espacement régulier de part et d'autre de la bande principale 614, depuis les bords longitudinaux de la bande principale 614 jusqu'aux côtés 612a et 612b du rectangle 612. Les longueurs des bandes conductrices secondaires 616 du motif 610 sont toutes du même ordre de grandeur. A titre d'exemple, les longueurs des bandes conductrices secondaires 616 du motif sont toutes égales à plus ou moins 30 % près. 612. The conductive pattern 610 is for example symmetrical with respect to the central longitudinal axis of the conductive strip main 614. In this example, the conductive pattern 610 comprises a plurality of curved secondary conductive strips 616 extending from the end of the strip 614 opposite the side 612c, towards the side 612d and half of the sides 612a and 612b the furthest from the side 612c, and forming with the main strip 614 a dandelion seed-shaped pattern. The conductive pattern 610 of FIG. 10 further comprises a plurality of secondary rectilinear conductive strips 616 substantially orthogonal to the main strip, extending at regular spacing on either side of the main strip 614, from the longitudinal edges of the main strip 614 to the sides 612a and 612b of the rectangle 612. The lengths of the secondary conductive strips 616 of the pattern 610 are all of the same order of magnitude. By way of example, the lengths of the secondary conductive strips 616 of the pattern are all equal to plus or minus 30%.
[0111] Ainsi, un avantage du motif conducteur élémentaire 610 de la figure 10 est que toutes les charges collectées par les bandes conductrices secondaires 616 en périphérie du rectangle 612 parcourent sensiblement la même distance via les bandes conductrices secondaires 616 avant d'atteindre la bande conductrice principale 614. Il en résulte une collecte particulièrement efficace des porteurs générés par la lumière en surface de la cellule et une répartition particulièrement homogène du courant collecté, ce qui permet d'améliorer le rendement de la cellule.  Thus, an advantage of the elementary conductive pattern 610 of FIG. 10 is that all the charges collected by the secondary conductive strips 616 at the periphery of the rectangle 612 cover substantially the same distance via the secondary conductive strips 616 before reaching the strip main conductor 614. This results in a particularly efficient collection of the carriers generated by the light on the surface of the cell and a particularly homogeneous distribution of the collected current, which makes it possible to improve the efficiency of the cell.
[0112] Une structure collectrice identique ou similaire à la structure 108 de la figure 10 peut également être utilisée comme structure collectrice de face arrière 110 d'une cellule photovoltaïque .  A collecting structure identical or similar to the structure 108 of FIG. 10 can also be used as a collecting structure on the rear face 110 of a photovoltaic cell.
[0113] La cellule photovoltaïque 602 de la figure 10 peut être utilisée dans tout type d'assemblage de cellules photovoltaïques. A titre d'exemple, la cellule 602 peut être utilisée dans un assemblage du type décrit en relation avec la figure 1, auquel cas des plots de connexion 114 peuvent être disposés sur et en contact avec la face supérieure de la bande conductrice principale 614 de chaque motif conducteur élémentaire 610 de la structure collectrice 108, par exemple au voisinage du côté 612c du motif. A titre de variante, la cellule 602 peut être utilisée dans un assemblage du type décrit en relation avec la figure 3 ou 4, ou encore dans un assemblage du type décrit en relation avec la figure 9, auquel cas les plots de connexion 114 peuvent être omis. The photovoltaic cell 602 of Figure 10 can be used in any type of cell assembly photovoltaic. By way of example, the cell 602 can be used in an assembly of the type described in relation to FIG. 1, in which case connection pads 114 can be placed on and in contact with the upper face of the main conductive strip 614 of each elementary conductive pattern 610 of the collecting structure 108, for example in the vicinity of the side 612c of the pattern. As a variant, the cell 602 can be used in an assembly of the type described in relation to FIG. 3 or 4, or also in an assembly of the type described in relation to FIG. 9, in which case the connection pads 114 can be omitted.
[0114] La figure 11 illustre un exemple d'un dispositif photovoltaïque 700 selon un quatrième mode de réalisation. La figure 11 comprend une vue (A) et une vue (B) du dispositif. La vue (A) est une vue en perspective schématique de la face avant du dispositif, et la vue (B) est une vue en coupe partielle agrandie du dispositif selon le plan B-B de la figure (A) .  FIG. 11 illustrates an example of a photovoltaic device 700 according to a fourth embodiment. Figure 11 includes a view (A) and a view (B) of the device. The view (A) is a schematic perspective view of the front face of the device, and the view (B) is an enlarged partial sectional view of the device according to the plane B-B of FIG. (A).
[0115] Le dispositif 700 de la figure 11 a la forme d'une plaque ondulée, et comporte une pluralité de cellules élémentaire 702 connectées en série. Les cellules élémentaires 702 du dispositif 700 sont par exemple des cellules identiques ou similaires aux cellules 102, connectées en série par des éléments conducteurs de façon similaire à ce qui a été décrit en relation avec la figure 1. A titre de variante, les cellules élémentaires 702 du dispositif 700 sont des cellules identiques ou similaires aux cellules 302, connectées en série par des nappes conductrices ajourées de façon similaire à ce qui a été décrit en relation avec les figures 3 à 8. Les cellules élémentaires 702 du dispositif 700 peuvent aussi être des cellules identiques ou similaires à la cellule 602 de la figure 10, connectées en série par des rubans conducteurs ou par des nappes conductrices ajourées. The device 700 of Figure 11 has the shape of a corrugated plate, and comprises a plurality of elementary cells 702 connected in series. The elementary cells 702 of the device 700 are for example cells identical or similar to cells 102, connected in series by conductive elements in a similar manner to what has been described in relation to FIG. 1. As a variant, the elementary cells 702 of the device 700 are cells identical or similar to the cells 302, connected in series by perforated conducting sheets in a similar manner to what has been described in relation to FIGS. 3 to 8. The elementary cells 702 of the device 700 can also be cells identical or similar to cell 602 in FIG. 10, connected in series by conductive tapes or by perforated conductive plies.
[0116] Dans l'exemple de la figure 11, la direction des ondulations du dispositif 700 est parallèle à la longueur de l'assemblage de cellules 702. Autrement dit, les cellules élémentaires 702 sont légèrement courbées dans le sens de leur longueur de façon à épouser la courbure du dispositif, mais ne sont pas courbées dans le sens de leur largeur.  In the example of FIG. 11, the direction of the undulations of the device 700 is parallel to the length of the assembly of cells 702. In other words, the elementary cells 702 are slightly curved in the direction of their length so to match the curvature of the device, but are not curved in the direction of their width.
[0117] De préférence, la longueur de chaque cellule est relativement faible par rapport au rayon de courbure minimal du dispositif, par exemple comprise entre un dixième et un vingtième du rayon de courbure minimal de la plaque pour des cellules d'épaisseur de l'ordre de 200 ym. De cette façon, la courbure des cellules 702 reste limitée. On pourra toutefois prévoir d'utiliser des cellules plus fines, par exemple d'épaisseur comprise entre 80 et 120 ym, de façon à pouvoir augmenter leur longueur. A titre d'exemple, pour des cellules d'épaisseur de l'ordre de 80 ym, la longueur des cellules peut être comprise entre un tiers et un cinquième du rayon de courbure minimal de la plaque.  Preferably, the length of each cell is relatively small compared to the minimum radius of curvature of the device, for example between one tenth and one twentieth of the minimum radius of curvature of the plate for cells of thickness of the order of 200 ym. In this way, the curvature of cells 702 remains limited. However, provision may be made to use thinner cells, for example of thickness between 80 and 120 μm, so as to be able to increase their length. By way of example, for cells with a thickness of the order of 80 μm, the length of the cells can be between one third and one fifth of the minimum radius of curvature of the plate.
[0118] Dans l'exemple de la figure 11, le dispositif comprend une plaque de protection de face avant ondulée 704 transparente, par exemple en verre ou en plexiglas, et une plaque de protection de face arrière ondulée 706 transparente ou opaque. Au moins l'une des plaques de protection 704 et 706 est une plaque rigide, de façon à obtenir un panneau photovoltaïque en forme de plaque ondulée rigide.  In the example of FIG. 11, the device comprises a transparent corrugated front face protection plate 704, for example made of glass or plexiglass, and a corrugated or opaque rear protective face plate 706. At least one of the protective plates 704 and 706 is a rigid plate, so as to obtain a photovoltaic panel in the form of a rigid corrugated plate.
[0119] A titre d'exemple, les plaques protectrices 704 et 706 peuvent être fixées l'une à l'autre et à l'assemblage de cellules photovoltaïques 702 par un procédé de lamination. Plus généralement, tout autre procédé adapté peut être utilisé Un matériau de collage et/ou de remplissage, non représenté, peut éventuellement être prévu entre les plaques protectrices 704 et 706, notamment à la périphérie de l'assemblage pour assurer l'étanchéité de l'assemblage. For example, the protective plates 704 and 706 can be fixed to each other and to the assembly of photovoltaic cells 702 by a lamination process. More generally, any other suitable method can be used. A bonding and / or filling material, not shown, can optionally be provided between the protective plates. 704 and 706, in particular at the periphery of the assembly to seal the assembly.
[0120] Sur la vue (B) de la figure 11, on a représenté de façon schématique des liaisons de connexion électrique 708 reliant la face avant de chaque cellule à la face arrière de la cellule voisine. Comme indiqué ci-dessus, on comprendra que ces liaisons peuvent correspondre à des éléments conducteurs tel que décrit en relation avec la figure 1, ou à des nappes conductrices tel que décrit en relation avec les figures 3 à 8.  In view (B) of Figure 11, there is shown schematically electrical connection links 708 connecting the front face of each cell to the rear face of the neighboring cell. As indicated above, it will be understood that these connections may correspond to conductive elements as described in relation to FIG. 1, or to conductive layers as described in relation to FIGS. 3 to 8.
[0121] Un avantage du dispositif 700 de la figure 11 est qu' il peut directement être utilisé comme élément de couverture d'un bâtiment, par exemple en remplacement de tuiles ou ardoises traditionnelles. De préférence, la hauteur et l'espacement des ondulations est compatible avec des éléments de couverture traditionnels tels que des tuiles, de façon à pouvoir utiliser le panneau 700 en combinaison avec de tels éléments de couverture traditionnels. A titre d'exemple, la hauteur (ou amplitude) des ondulations est comprise entre 5 et 15 cm, et le pas (ou période) des ondulations est compris entre 15 et 30 cm.  An advantage of the device 700 of FIG. 11 is that it can directly be used as a covering element of a building, for example in replacement of traditional tiles or slates. Preferably, the height and spacing of the corrugations is compatible with traditional covering elements such as tiles, so that the panel 700 can be used in combination with such traditional covering elements. By way of example, the height (or amplitude) of the undulations is between 5 and 15 cm, and the pitch (or period) of the undulations is between 15 and 30 cm.
[0122] A titre de variante, le dispositif 700 peut avoir la forme d'une plaque galbée, par exemple de la forme d'une tuile simple (c'est-à-dire comportant une seule période d ' ondulation) .  Alternatively, the device 700 may be in the form of a curved plate, for example in the form of a single tile (that is to say comprising a single period of undulation).
[0123] Divers modes de réalisation et variantes ont été décrits. L'homme de l'art comprendra que certaines caractéristiques de ces divers modes de réalisation et variantes pourraient être combinées, et d'autres variantes apparaitront à l'homme de l'art. En particulier, les modes de réalisation décrits ne se limitent pas aux exemples de dimensions et de matériaux mentionnés dans la présente description . [0124] En outre, bien que les cellules photovoltaïques décrites comprennent chacune une plaque semiconductrice 104 dopée de type P munie, en face avant, d'une couche dopée de type N, a titre de variante, chaque cellule peut comprendre une plaque semiconductrice dopée de type N munie, en face avant d'une couche dopée de type P. Various embodiments and variants have been described. Those skilled in the art will understand that certain features of these various embodiments and variants could be combined, and other variants will appear to those skilled in the art. In particular, the embodiments described are not limited to the examples of dimensions and materials mentioned in the present description. In addition, although the photovoltaic cells described each comprise a P-type doped semiconductor plate 104 provided, on the front face, with an N-type doped layer, alternatively, each cell can comprise a doped semiconductor plate type N equipped, on the front face with a doped layer of type P.

Claims

REVENDICATIONS
1. Dispositif photovoltaïque (300 ; 400) comportant une juxtaposition de cellules élémentaires (302) connectées en série par des nappes conductrices (304) ajourées.  1. Photovoltaic device (300; 400) comprising a juxtaposition of elementary cells (302) connected in series by openwork conductive layers (304).
2. Dispositif (300 ; 400) selon la revendication 1, dans lequel chaque nappe conductrice (304) a une forme de grillage . 2. Device (300; 400) according to claim 1, wherein each conductive sheet (304) has a grid shape.
3. Dispositif (300 ; 400) selon la revendication 2, dans lequel chaque nappe conductrice (304) est constituée d'une pluralité de fils conducteurs tressés formant un grillage, ou d'un grillage monobloc. 3. Device (300; 400) according to claim 2, wherein each conductive sheet (304) consists of a plurality of braided conductive son forming a grid, or a monobloc grid.
4. Dispositif (300 ; 400) selon l'une quelconque des revendications 1 à 3, dans lequel chaque nappe conductrice (304) est en contact d'une part, par sa face arrière, avec une première structure collectrice (108) en face avant d'une première cellule et d'autre part, par sa face avant, avec une deuxième structure collectrice (110) en face arrière d'une deuxième cellule voisine de la première cellule . 4. Device (300; 400) according to any one of claims 1 to 3, in which each conductive sheet (304) is in contact on the one hand, by its rear face, with a first collecting structure (108) opposite before a first cell and on the other hand, by its front face, with a second collecting structure (110) on the rear face of a second cell close to the first cell.
5. Dispositif (300 ; 400) selon la revendication 4, dans lequel les nappes conductrices (304) ne sont pas fixées aux premières (108) et deuxièmes (110) structures collectrices . 5. Device (300; 400) according to claim 4, wherein the conductive sheets (304) are not fixed to the first (108) and second (110) collecting structures.
6. Dispositif (300 ; 400) selon la revendication 4, dans lequel chaque nappe conductrice (304) est fixée à la première structure collectrice (108) par son bord le plus éloigné de la deuxième cellule, et à la deuxième structure collectrice (110) par son bord le plus éloigné de la première cellule. 6. Device (300; 400) according to claim 4, in which each conductive sheet (304) is fixed to the first collecting structure (108) by its edge farthest from the second cell, and to the second collecting structure (110 ) by its edge furthest from the first cell.
7. Dispositif (300 ; 400) selon l'une quelconque des revendications 4 à 6, dans lequel la première structure collectrice (108) est un motif conducteur discontinu formé dans une couche métallique disposée sur et en contact avec la face avant d'une plaque semiconductrice (104) de la première cellule. 7. Device (300; 400) according to any one of claims 4 to 6, in which the first structure collector (108) is a discontinuous conductive pattern formed in a metal layer disposed on and in contact with the front face of a semiconductor plate (104) of the first cell.
8. Dispositif (300) selon l'une quelconque des revendications 1 à 7, dans lequel les cellules (302) voisines sont disposées côte à côte dans un même plan. 8. Device (300) according to any one of claims 1 to 7, wherein the neighboring cells (302) are arranged side by side in the same plane.
9. Dispositif (400) selon l'une quelconque des revendications 1 à 7, dans lequel les cellules (302) voisines se chevauchent . 9. Device (400) according to any one of claims 1 to 7, in which the neighboring cells (302) overlap.
10. Dispositif (300 ; 400) selon l'une quelconque des revendications 1 à 9, dans lequel chaque nappe (304) a une largeur sensiblement égale à la largeur des cellules élémentaires (302). 10. Device (300; 400) according to any one of claims 1 to 9, in which each ply (304) has a width substantially equal to the width of the elementary cells (302).
11. Dispositif (300 ; 400) selon l'une quelconque des revendications 1 à 10, dans lequel chaque nappe (304) a une longueur comprise entre un quart et trois quarts de la longueur des cellules élémentaires (302) . 11. Device (300; 400) according to any one of claims 1 to 10, in which each ply (304) has a length of between one quarter and three quarters of the length of the elementary cells (302).
12. Dispositif (300 ; 400) selon l'une quelconque des revendications 1 à 11, dans lequel les cellules élémentaires (302) et les nappes conductrices (304) sont disposées entre une plaque de protection de face avant transparente (306) et une plaque de protection de face arrière (308) . 12. Device (300; 400) according to any one of claims 1 to 11, in which the elementary cells (302) and the conductive layers (304) are disposed between a transparent front face protection plate (306) and a rear face protection plate (308).
13. Dispositif (700) selon l'une quelconque des revendications 1 à 12, en forme de plaque galbée ou ondulée. 13. Device (700) according to any one of claims 1 to 12, in the form of a curved or corrugated plate.
14. Assemblage comportant une pluralité de dispositifs photovolta ques (300_1, 300_2, 300_3, 300_4) selon l'une quelconque des revendications 1 à 13 connectés en parallèle entre des première (P+) et deuxième (P-) bornes de l'assemblage, dans lequel chaque nappe conductrice (304) connectant l'une à l'autre deux cellules (302) voisines d'un même dispositif photovoltaïque (300_i) est commune à tous les dispositifs photovoltaïques (300_i) de 1 ' assemblage . 14. Assembly comprising a plurality of photovoltaic devices (300_1, 300_2, 300_3, 300_4) according to any one of claims 1 to 13 connected in parallel between first (P +) and second (P-) terminals of the assembly, in which each conductive sheet (304) connecting to one another two neighboring cells (302) of the same photovoltaic device (300_i) is common to all the photovoltaic devices (300_i) of the assembly .
PCT/FR2019/052631 2018-11-07 2019-11-06 Photovoltaic device WO2020094980A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201990001289.5U CN216450658U (en) 2018-11-07 2019-11-06 Photovoltaic device and assembly
EP19817395.7A EP3878019A1 (en) 2018-11-07 2019-11-06 Photovoltaic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1871388 2018-11-07
FR1871388A FR3088140B1 (en) 2018-11-07 2018-11-07 PHOTOVOLTAIC DEVICE

Publications (1)

Publication Number Publication Date
WO2020094980A1 true WO2020094980A1 (en) 2020-05-14

Family

ID=66676591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052631 WO2020094980A1 (en) 2018-11-07 2019-11-06 Photovoltaic device

Country Status (4)

Country Link
EP (1) EP3878019A1 (en)
CN (1) CN216450658U (en)
FR (1) FR3088140B1 (en)
WO (1) WO2020094980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216756A (en) * 2020-08-27 2021-01-12 天合光能股份有限公司 Battery connection method of solar module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263180A1 (en) * 2004-06-01 2005-12-01 Alan Montello Photovoltaic module architecture
WO2014028312A1 (en) * 2012-08-15 2014-02-20 Dow Global Technologies Llc Bi-component electrical connector
US20180090635A1 (en) * 2015-03-30 2018-03-29 Imec Vzw Electrically contacting and interconnecting photovoltaic cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263180A1 (en) * 2004-06-01 2005-12-01 Alan Montello Photovoltaic module architecture
WO2014028312A1 (en) * 2012-08-15 2014-02-20 Dow Global Technologies Llc Bi-component electrical connector
US20180090635A1 (en) * 2015-03-30 2018-03-29 Imec Vzw Electrically contacting and interconnecting photovoltaic cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216756A (en) * 2020-08-27 2021-01-12 天合光能股份有限公司 Battery connection method of solar module

Also Published As

Publication number Publication date
FR3088140B1 (en) 2021-09-10
CN216450658U (en) 2022-05-06
FR3088140A1 (en) 2020-05-08
EP3878019A1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP5328363B2 (en) Method for manufacturing solar cell element and solar cell element
EP2510553B1 (en) Photovoltaic cell, method for assembling plurality of cells, and assembly of a plurality of photovoltaic cells
EP1846956B1 (en) Method for producing metal/semiconductor contacts through a dielectric
FR3094570A1 (en) PHOTOVOLTAIC CELL AND CHAIN AND RELATED PROCESSES
EP3598506A1 (en) Improved assembly of solar cells with contacts on the rear surface
EP2612361A2 (en) Photovoltaic cell having discontinuous conductors
EP3878019A1 (en) Photovoltaic device
FR3088139A1 (en) PHOTOVOLTAIC DEVICE
EP3459121B1 (en) Array of photovoltaic cells
FR3088141A1 (en) PHOTOVOLTAIC DEVICE
FR3088142A1 (en) PHOTOVOLTAIC DEVICE
WO2016198797A1 (en) Photovoltaic module and method for interconnecting photovoltaic cells for producing such a module
EP3926692A1 (en) Photovoltaic cell and string and associated manufacturing methods
EP3340318A1 (en) Photovoltaic device and associated manufacturing method
FR3074963A1 (en) PHOTOVOLTAIC MODULE COMPRISING PHOTOVOLTAIC CELLS INTERCONNECTED BY INTERCONNECTION ELEMENTS
FR2722917A1 (en) INTEGRATED STRUCTURING METHOD FOR THIN FILM SOLAR CELLS ACCORDING TO A STACKED STRUCTURE
WO2017081400A1 (en) Electronic structure on a ceramic support
FR2502400A1 (en) Solar panel using photocell array - has coupling provided via H-shaped connection tongues allowing defective photocell to be by=passed
FR2939966A1 (en) STRUCTURE OF A PHOTOVOLTAIC MODULE
FR3124043A1 (en) PHOTOVOLTAIC STRING
WO2023073308A1 (en) Method for manufacturing an assembly of a photovoltaic cell and an interconnection element
EP4102578A1 (en) Element for electrical interconnection of at least two photovoltaic cells
TW202341506A (en) An electrode assembly
FR3128314A1 (en) Assembly for photovoltaic module, photovoltaic module and method of manufacturing the assembly and the module
FR3100382A1 (en) Photovoltaic module with conductive strips and associated manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19817395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019817395

Country of ref document: EP

Effective date: 20210607