WO2020094929A1 - Process for manufacturing fibres that are thermostable at high temperatures - Google Patents

Process for manufacturing fibres that are thermostable at high temperatures Download PDF

Info

Publication number
WO2020094929A1
WO2020094929A1 PCT/FR2019/000139 FR2019000139W WO2020094929A1 WO 2020094929 A1 WO2020094929 A1 WO 2020094929A1 FR 2019000139 W FR2019000139 W FR 2019000139W WO 2020094929 A1 WO2020094929 A1 WO 2020094929A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrils
pvd
fibers
principle
ceramic
Prior art date
Application number
PCT/FR2019/000139
Other languages
French (fr)
Other versions
WO2020094929A4 (en
Inventor
Max Sardou
Patricia SARDOU
Original Assignee
Max Sardou
Sardou Patricia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Sardou, Sardou Patricia filed Critical Max Sardou
Publication of WO2020094929A1 publication Critical patent/WO2020094929A1/en
Publication of WO2020094929A4 publication Critical patent/WO2020094929A4/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/14Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length of filaments or wires
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0068Composite fibres, e.g. fibres with a core and sheath of different material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62855Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62876Coating fibres with metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/127Metals
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • the present invention relates to an innovative process optimized for producing high performance thermostable fibers. These fibers being intended to constitute a ceramic or metallic matrix composite.
  • the composite thus formed having the objective of producing hot parts and structures such as hypersonic airplanes, aircraft reactor components, nuclear reactor components, rocket nozzles, exhaust pipes, gas turbines
  • the materials used for the matrix in technical applications are currently mainly alumina, mullite, carbon and silicon carbide.
  • the development of these ceramics was the solution to serious mechanical resistance problems encountered when using conventional technical ceramics, such as alumina, silicon carbide often used in sintered form, aluminum nitride (AIN ), silicon nitride (S13N4), oxide of
  • the massive material opposes the propagation of the crack only a weak resistance, like glass, contrary to the more ductile metals. This gives a
  • CMC ceramic matrix composites
  • carbon fibers (C) and silicon carbide (SiC) are mainly used, and sometimes aluminum oxide or alumina (AI2O3) fibers, or mixed crystals of alumina and silicon oxide or silica (S1O2) called mullite (3AI2O3, 2S1O2).
  • CMCs are described as "fiber type / matrix type”.
  • C / C describes carbon reinforced with carbon fibers
  • C / SiC describes silicon carbide reinforced with carbon fibers.
  • the main CMCs are C / C, C / SiC, SiC / SiC, and AI2O3 / AI2O3. They differ from conventional technical ceramics mainly by the following properties:
  • CVD chemical gas deposition
  • fabrics or rovings direct carbon fibers, made up of a bundle of fibrils, the number of fibrils of which typically varies from 1,000 to 50,000! in no way guarantees the perfect coating of elementary fibrils.
  • a single protective layer is deposited, which is not optimal for withstanding thermal fatigue cycles.
  • CVD deposition is carried out on fibers carried between 1400 ° C and 1650 ° C, many microcracks appear on the coating during cooling.
  • the objective of the invention is to deposit, in a perfectly homogeneous and controlled manner, an oxygen barrier coating on all the fibrils of a carbon thread. In order not to damage the properties of the said wire, the coating must be extremely thin.
  • Composite matrices made up of layers containing unidirectional fibers (woven, felt, or mat) of reinforcement and matrix:
  • organic, mineral, metallic or ceramic are increasingly used to produce light structures as described in the field of the invention.
  • CMCs When placed under significant stress, or during impacts, these composite structures are subject to deformations.
  • conventional ceramic matrices are extremely fragile and do not tolerate significant deformation.
  • the objective of CMCs is to behave well mechanically and to be implemented as organic matrices, while having a range
  • the present invention relates to a solution, developed for producing a thermostable ceramic composite.
  • the serious problem encountered by CMCs at high temperature is the poor resistance to oxidation of the fibers that compose them.
  • the invention consists in creating a protective environment, a confinement, around the carbon fibrils so that they do not oxidize.
  • the best solution is to cover the fibrils with a thin, tight and refractory layer, perfectly uniform, which envelops them completely and whose radial thickness is between 0.5 and 900 nanometers.
  • this layer is formed by a stack of concentric layers of different nature, namely of different metals or alloys, of different ceramics, of combination of metals (or alloys) with ceramics:
  • the metallic type refractory lining can be made from a combination of at least one of the following metals, or their alloy:
  • the refractory coating, of ceramic type can be made from at least one of the following metals: Niobium, Molybdenum, Tantalum, Tungsten, Rhenium, Nickel, Chromium, Titanium, Zirconium, Hafnium, combined
  • a metalloid such as boron and silicon or a non-metal such as carbon, sulfur, nitrogen, phosphorus, lanthanum and oxygen in order to form, for example and in ascending order of interests:
  • T1B2 o Titanium Diboride
  • Said "refractory layer” can be made up of a complex coating of several layers:
  • this coating is carried out a posteriori, it is necessary to pyrolyze the surfactant which covers the fibers, for example by passing the fibers over two rollers, on which they rest (slight change in orientation of the fibers) and, by establishing a difference in electric voltage between said rollers, an electric current then travels through the fibrils of the carbon fibers and burns the size.
  • the deposition surface must be functionalized to decouple it from its future matrix. This consists in coating said surface with a surfactant which will allow the fiber to be isolated from the matrix in order to allow blocking. cracks coming from the latter's service. To do this, at least one of the following surfactants is used:
  • hydrophobic silane • Preferably hydrophobic silane,
  • the matrix can be any metal known to a person skilled in the art (for example, copper, aluminum, aluminum, zinc, tin, steel, and alloys of said metals)
  • the matrix can be any ceramic known to those skilled in the art (for example alumina, mullite, carbon, silicon carbide, alumina, silicon carbide often used in sintered form, nitride d aluminum (AIN), silicon nitride (S13N4), zirconium oxide (IV) or zirconia (ZrÜ2)) and, preferably the TOUGHCERAM ® ceramic matrix which is the subject of Dr SARDOU's patents:
  • the ceramic which is the subject of the Dr SARDOU patents mentioned above makes it possible to impregnate the reinforcing fibers (coated with their refractory layer described above) so as to obtain a ceramic composite, this polycrystallized ceramic between 60 and 180 ° C. under modest pressures. ranging from 0 to 3 bars.
  • Said ceramic is flexible, tolerant to damage, for low temperature applications only, it can be divided into micro ceramic domains (MDC). Ceramic is produced by the polycrystallization reaction of a material called resin which is an aluminosilicate poly (silico-oxo-aluminate) i.e.
  • (-Si-O-AI-O-) n which can be Meta Kaolin (S12O5, AI2O2 said resin can optionally be supplemented by a material called additive which can be micronized aluminum (Al), micronized alumina (AI2O3), micronized magnesia (MgO), dioxide of micronized Zirconium (Zr02), before being mixed with a material called hardener which is a hydroxide chosen from the following hydroxides: a silica hydroxide (Si), an aluminum hydroxide (Al), a magnesium hydroxide (Mg ), Zirconium hydroxide (Zr), calcium hydroxide (Ca), complex aluminum hydroxide and silicon (Kaolin hydroxide), the Hydroxide being produced by one of the following solutions: either by attacking a strong base such as KOH (potassium hydroxide), NaOH (sodium hydroxide), CsOH (cesium hydroxide), either by one of the following acids: HCl, H2SO4,
  • micro ceramic domains for low temperature applications only, are linked together by a dense network of micro elements
  • the network of elastic microelements is made up of linear elastic molecular chains, terminated at their ends by functions capable of chemically binding to micro domains of solid ceramic.
  • Said elastic network is preferably chosen from molecular chains belonging to the family of fluid silicone homopolymers
  • PVD sputtering is a thin film deposition method. It is a technique that allows the synthesis of several materials (alloy) from the condensation of a metallic or ceramic vapor, coming from a solid source (target) (16) on a substrate (fibers) (4f).
  • Principle # 2 use of a PVD method to create, under vacuum, vapors from the target (16); by PVD we mean indifferently: EV, EBPVD, PVD, PLD, MBE, Arc-PVD, PC, PCM, PCT, HiTUS.
  • Principle # 3 use of static electricity [either by electrostatically charging the coils (1) & (1 ') or by charging the wires (13) & (14) at the level of the guide means (8) & (8 ')] to separate the fibrils from a carbon conductive wire (13) & (14), said wire consisting of a bundle of fibrils (4f) and being charged, for example positively.
  • the fibrils are all at the same potential, will strongly repel and adopt a balloon arrangement (4) in the chamber (11 '). All the fibrils (4f) will be distributed statistically at equal distance and all on the outer surface of said balloon (4).
  • the table below given as an example, shows that the inter-fibrillary distance (4f), even for a bundle of 10,000 fibrils, perhaps 14.7 times greater than the diameter of a so-called fibril, the vapors can therefore pass easily between the fibrils (4f);
  • Principle # 4 use of an electrostatic field, established between the target (16) and the fibrils (4f) the vapors, charged at the potential of the target (16) and coming from this one will cross the field lines (18 ) as shown in Figure 3.
  • Principle # 5 use of an electric current [either by charging the coils (1) & (T) or by charging the wires (13) & (14) at the level of the guide means (8) & (8 ') ]; this current makes it possible to adjust the temperature of the fibrils (4f) so that the vapor, when it condenses on the fibrils (4f), is at an optimum temperature. It should be noted that, thanks to the vacuum, said temperature can be between ambient and for example 2000 ° C. without risk of degradation of the fibrils.
  • Principle # 6 use of the wire speed (13) & (14) in order to control the thickness of the deposit and be able to obtain extremely thin layers with particularly high productivity. It is important to deposit thin layers so as not to modify the mechanical properties of the wire.
  • FIG. 1 shows a summary of the process which is the subject of the invention:
  • (16) (solid source) sputtering targets preferably mounted in polyhedron around the plasma (6)
  • FIG 2 is a simplified sectional view of the area of the vacuum chambers (11 ') corresponding to the PVD treatment area.
  • This view briefly represents the process which is the subject of the invention.
  • Figure 3 is a close-up view of a simplified section of the balloon (4), the latter being here shown in phantom.
  • Solution A The coils (1) and (1 ’) of carbon fibers (13), (14) are brought to an electrostatic potential with respect to the electrostatic casing (17).
  • Preferable solution B the guide means (8) and (8 ’) of the carbon fibers (13), (14), are brought to an electrostatic potential with respect to the electrostatic casing (17).
  • the electrostatic field causes the attraction of carbon fibrils to the electrostatic housing (17) and to the targets (16) which are also charged with the same sign and substantially the same potential as the housing (17) (there are several thousand such fibrils (4f) in a carbon fiber), the fibrils then take a balloon shape (4).
  • the distance between fibrils can reach several times, several hundred times the diameter of said fibrils (the distance can be between 10 microns and 10 mm).
  • the metallic vapors come from targets (6) having an electrostatic charge opposite to those of the fibrils (4f); said vapors to be deposited are attracted electro-statically by the fibrils. Since the fibrils are very widely spaced, the vapors can therefore easily miss the fibrils and pass between said fibrils, however, being attracted by the electrostatic field, the vapors can follow the electrostatic field lines (18) and deposit on the entire surface of each fibril, said surface is oriented towards the housing (17) or towards the center of the balloon (4).
  • the coils (1) and (1 ') of carbon fibers, or the guide means (8) and (8') of the fibers, can be brought to a potential difference, so as to allow the fibrils to be able to be heated ( 4f) and adjust their temperature. This optimizes the quality and surface reactions of the substrate during deposition.
  • the diameter of the balloon is adjusted by playing on the electrostatic field which will attract the fibrils towards the electrostatic casing (17) and on the control of the thread tension (13), (14), between the guide means (8) and (8 '). Adjustment procedure possible: without the presence of an electrostatic field and non-moving wire, the "soft strand" is adjusted so that the wire (13), (14) hangs in the metallization cavity (11 ') and has the shape from the low point of the fibril balloon (4) that one wishes to obtain; then the electrostatic field is triggered and the balloon (4) is formed; it is then possible to trigger the scrolling of the wire (13), (14); it is therefore necessary to have perfect control of the speed of travel of the wire (13), (14); this can be obtained either by controlling the speed of rotation of the coils (1) & (1 '), or more finely by controlling the speed of the wire (13), (14), at the level of the means (8) and (8 ') which can be capstans or any equivalent means known to those skilled in the art.
  • the average scrolling speed combined with the power of the PVD, allows the thickness of the deposit to be adjusted. It is therefore possible to have considerable deposition powers coupled with a very high speed of travel of the wire (13), (14), so as to obtain a particularly fine homogeneous deposition.
  • the adverbs preferentially, and optionally mean that one can preferably use a solution (for example this form is preferably ended by fixing loops) or that one can not use it (this is ie not to use said loops) while remaining within the scope of the invention.
  • FIGS. 1, 2 and 3 essentially represent an embodiment of the object, according to the invention, but that there may be other embodiments, which meet the definition of this invention.
  • the object of the invention comprises “at least one” element having a given function
  • the embodiment described may comprise several of these elements.
  • the embodiment of the object according to the invention, as illustrated comprises several elements of identical function and if, in the description, it is not specified that the object according to this invention must necessarily include a particular number of these elements, the subject of the invention could be defined as comprising “at least one” of these elements.
  • an expression defines alone, without any specific mention relating to it, a set of structural characteristics, these characteristics can be taken, for the definition of the subject of the protection sought, when technically possible, either separately or in total and / or partial combination.
  • PVD TECHNOLOGIES by PVD we mean in the context of the invention all the variants described below and preferably the HiTUS process:
  • Physical vapor deposition by electron beam is a form of physical vapor deposition in which a target anode under high vacuum is bombarded by an electron beam emitted by a charged tungsten filament. The electron beam transforms the target molecules into the gas phase. These molecules then precipitate in solid form, covering the entire vacuum chamber (in a way) with a thin layer of the anode material.
  • vacuum evaporation is based on two basic processes: vacuum evaporation (EV) from a heated source and solid state condensation of the material evaporated on the substrate. Evaporation takes place under vacuum, that is to say in a gaseous environment, excluding deposit vapor, containing extremely few particles. Under these conditions, the particles of matter can propagate to the target without colliding with other particles. For example in a vacuum of 10 "4 Pa, a particle of 0.4 nm in diameter with an average free path of 60 m, that is to say that it can travel on average sixty meters before colliding with another particle. Heated objects (ie the heating filament) produce parasitic vapors which limit the quality of the vacuum in the deposition chamber.
  • Pulsed laser ablation is a layered deposition method
  • thin film deposition by pulsed laser ablation is based on the interaction between the target material that one wishes to deposit and a pulsed laser beam (pulse of the order of a nanosecond) of high energy.
  • a pulsed laser beam pulse of the order of a nanosecond
  • particles are ejected from the target. Initially, confined near the surface of the target, these particles constitute what is called the Knudsen layer.
  • the same dimensions as the laser spot (1 to 2 mm A 2) the latter is mainly composed of ions, electrons, but also neutral atoms, diatomic particles or even droplets of molten material ... Device pulsed laser ablation.
  • the Knudsen layer is the site of a large number of collisions between particles, which generates a rise in temperature at the target material.
  • This high rate of collisions coupled with the absorption of the laser beam then lead to the ionization of the Knudsen layer, then to the formation of a plasma, called "feather".
  • the expansion thereof finally allows the release and deposition of particles on the surface of the monocrystalline substrate, positioned opposite the target.
  • the deposition of thin layers by pulsed laser ablation can be carried out under conditions of high vacuum, but also in the presence of ambient gases, such as oxygen (oxide deposits), nitrogen, or argon (inert medium).
  • MBE Molecular jet epitaxy
  • Sputtering is a thin layer deposition method. It is a technique that allows the synthesis of several materials from the condensation of a metallic vapor from a solid source (target) on a substrate. Applying a potential difference between the target and the walls of the reactor in a rarefied atmosphere allows the creation of a cold plasma, composed of electrons, ions, photons and neutrons in a ground or excited state. Under the effect of the electric field, positive plasma species are attracted to and collide with the cathode (target). They then communicate their momentum, thus causing the atomization of atoms in the form of neutral particles which condense on the substrate.
  • the film is formed according to several mechanisms which depend on the interaction forces between the substrate and the film.
  • the discharge is self-sustaining by the secondary electrons emitted from the target. Indeed, these, in inelastic collisions, transfer part of their kinetic energy into potential energy to the atoms of the gas present in the enclosure which can be ionized.
  • the PVD has the following variants:
  • Magnetron sputtering (PCM): Sputtering sources are usually magnetrons which use strong electric and magnetic fields to trap electrons near the surface of the magnetron, which is known as the target.
  • Triode cathode sputtering To facilitate the supply of additional electrons to the plasma, you can add a hot filament acting as a cathode (3rd electrode for the plasma). By applying a negative bias to the wire with respect to the plasma, the electrons emitted thermally by it are ejected. This tension should be kept as low as possible to limit spraying of the filament.
  • This technique called triode sputtering or PCT sputtering makes it possible to obtain high deposition rates, therefore thin coatings but also with relatively large thicknesses.
  • HiTUS High use of sputtering targets. HiTUS is the process we favor. HiTUS is a major evolution of the traditional magnetron thin film deposition technology widely used in industry and research. HiTUS is based on the remote generation of a plasma high density. The plasma is generated in a side chamber opening onto the main chamber containing the target and the substrate to be coated. HiTUS offers a multitude of advantages compared to traditional spraying techniques such as:
  • thermostable up to 2000 ° C in an oxidizing atmosphere the basic principle being to cover in a homogeneous and perfectly controlled manner all the fibrils (4f) of a wire (13) & (14) of one to several concentric refractory layers extremely fine with barrier properties against oxidation, the said process is characterized by the simultaneous implementation of at least one or a combination of the physical principles described below, namely:
  • Principle 2 to evaporate the target material, use of a PVD process, ie at least one of the following treatments: EV, EBPVD, PVD, PLD, MBE, Arc-PVD, PC, PCM, PCT , HiTUS [Vacuum evaporation of the substrate to be deposited (EV), Physical vapor deposition by electron beam (EBPVD), Cathode sputtering (PVD and PC), Pulsed laser ablation (PLD), Molecular jet epitaxy (MBE) Electric arc deposit (Arc PVD), Magnetron cathode sputtering (PCM), Cathode sputtering triode (PCT). Advanced magnetron deposit says "High use of sputtering targets" (HiTUS)]
  • thermostable fibers protected against oxidation and combustion to be incorporated into a high performance ceramic or metallic matrix, intended to produce so-called hot parts and structures such as hypersonic planes, aircraft reactor components, components of nuclear reactors, rocket nozzles, solid or hybrid fuel rocket bodies, exhaust pipes, gas turbines, said thermostable fibers are carbon fibers, said carbon fibers being
  • PVD physical vapor deposition
  • Vacuum evaporation of the substrate to be deposited Physical vapor deposition by electron beam (EBPVD), Cathode sputtering, Pulsed laser ablation (PLD), Epitaxy by jets
  • MBE molecular molecular
  • Arc-PVD Deposition by electric arc
  • the fibrils (substrate) receive a refractory coating, consisting of a
  • the deposition can be carried out on fibrils heated between 250 and 1500 ° C. in order to obtain the
  • the refractory lining, fibrils can consist of at least one layer of at least one ceramic produced with at least one of the following metals:
  • TiB2 o Titanium Diboride
  • the coating of the fibrils consists of at least a combination of metallic coatings, and of at least one layer of ceramic coatings, as described above, the fact of depositing several concentric layers around the substrate, and in particular of combining metals and ceramics significantly improves the seal and the barrier effect against oxidation sought.
  • the fibrils are carefully rid of any pollution and any size before PVD treatment.
  • the fibers are preferably placed on spools (1 and 1 ’), in the PVD chamber. Said chamber is placed under vacuum with either a neutral gas or traces of reaction gas, such as oxygen The fibrils are separated in the PVD chamber by the application of an electrostatic field between the fibrils (4) and the casing (3) of said chamber.
  • the PVD means or means (2) are arranged so as to allow perfect treatment of the fibrils.
  • the matrix used to coat the fibers and constitute a thermo structural composite is a ceramic or a metal.

Abstract

The invention relates to an optimised process for making high-performance thermostable fibres. These fibres are designed to form a composite with a ceramic or metal matrix. A composite having this structure is aimed at producing hot parts and hot structures such as hypersonic aircraft, components of aircraft reactors, components of nuclear reactors, rocket nozzles, exhaust pipes, and gas turbines. It consists in using carbon fibres coated with an innovative refractory envelope impregnated with a matrix in a PVD process.

Description

PROCEDE DE FABRICATION DE FIBRES TERMOSTABLE A HAUTE TEMPERATURE  HIGH TEMPERATURE TERMOSTABLE FIBER MANUFACTURING PROCESS
Domaine de l’invention : Field of the invention:
La présente invention concerne un procédé innovant optimisé pour réaliser des fibres thermostables à haute performance. Ces fibres étant destinées à constituer un composite à matrice céramique ou métallique. Le composite ainsi constitué ayant pour objectif de réaliser des pièces et des structures chaudes tel que des avions hypersoniques, des composants de réacteurs d’aéronef, des composants de réacteurs nucléaire, des tuyères de fusées, des tubulures d’échappement, des turbines à gaz  The present invention relates to an innovative process optimized for producing high performance thermostable fibers. These fibers being intended to constitute a ceramic or metallic matrix composite. The composite thus formed having the objective of producing hot parts and structures such as hypersonic airplanes, aircraft reactor components, nuclear reactor components, rocket nozzles, exhaust pipes, gas turbines
Etat de Part antérieur :  Previous State of Share:
Les matériaux utilisés, pour la matrice dans les applications techniques, sont actuellement principalement l'alumine, la mullite, le carbone et le carbure de silicium. Le développement de ces céramiques a été la solution à de graves problèmes de tenue mécanique, rencontrés lors de l'utilisation des céramiques techniques conventionnelles, comme l'alumine, le carbure de silicium utilisé souvent sous forme frittée, le nitrure d'aluminium (AIN), le nitrure de silicium (S13N4), l’oxyde de  The materials used for the matrix in technical applications are currently mainly alumina, mullite, carbon and silicon carbide. The development of these ceramics was the solution to serious mechanical resistance problems encountered when using conventional technical ceramics, such as alumina, silicon carbide often used in sintered form, aluminum nitride (AIN ), silicon nitride (S13N4), oxide of
zirconium(IV) ou zircone (Zr02), en effet, tous ces matériaux se brisent aisément sous des contraintes mécaniques ou thermiques, parce que, même de petites imperfections ou rayures en surface peuvent devenir le point de départ d'une fêlure. Le matériau massif, n'oppose à la propagation de la fêlure qu'une faible résistance, comme le verre, contrairement aux métaux plus ductiles. Cela donne un zirconium (IV) or zirconia (Zr02), indeed, all these materials break easily under mechanical or thermal stresses, because even small imperfections or scratches on the surface can become the starting point of a crack. The massive material, opposes the propagation of the crack only a weak resistance, like glass, contrary to the more ductile metals. This gives a
comportement cassant caractéristique, qui complique ou même empêche beaucoup d'usages. characteristic brittle behavior, which complicates or even prevents many uses.
Ce n'est qu'avec l'utilisation de longues fibres pour le renfort de la céramique, dit composites à matrice céramiques, (CMC), que l'on a pu améliorer de façon drastique la résistance à la rupture, ainsi que d'autres propriétés comme la possibilité d'allongement, la résistance aux chocs thermique, ce qui a ouvert de nouveaux champs d'application. Dans les développements et les applications des composites à matrice céramiques, (CMC) on utilise principalement des fibres de carbone (C) et de carbure de silicium (SiC), et parfois des fibres d'oxyde d'aluminium ou alumine (AI2O3), ou des cristaux mixtes d'alumine et d'oxyde de silicium ou silice (S1O2) appelés mullite (3AI2O3, 2S1O2). On décrit les CMC sous la forme « type de fibre/type de matrice ». Ainsi « C/C » décrit du carbone renforcé par des fibres de carbone, « C/SiC » du carbure de silicium renforcé par des fibres de carbone. It was only with the use of long fibers for the reinforcement of ceramic, known as ceramic matrix composites (CMC), that we could drastically improve the breaking strength, as well as other properties such as the possibility of elongation, resistance to thermal shock, which opened up new fields of application. In the development and applications of ceramic matrix composites (CMC), carbon fibers (C) and silicon carbide (SiC) are mainly used, and sometimes aluminum oxide or alumina (AI2O3) fibers, or mixed crystals of alumina and silicon oxide or silica (S1O2) called mullite (3AI2O3, 2S1O2). CMCs are described as "fiber type / matrix type". Thus "C / C" describes carbon reinforced with carbon fibers, "C / SiC" describes silicon carbide reinforced with carbon fibers.
Les principaux CMC, actuellement disponibles industriellement, sont C/C, C/SiC, SiC/SiC, et AI2O3/AI2O3. Ils diffèrent des céramiques techniques conventionnelles principalement par les propriétés suivantes :  The main CMCs, currently commercially available, are C / C, C / SiC, SiC / SiC, and AI2O3 / AI2O3. They differ from conventional technical ceramics mainly by the following properties:
• Allongement avant cassure agrandi jusqu'à 1 %  • Elongation before breakage enlarged up to 1%
• Significativement meilleure résistance à la cassure  • Significantly better resistance to breakage
• Résistance extrême au choc thermique  • Extreme resistance to thermal shock
• Meilleure résistance aux charges dynamiques  • Better resistance to dynamic loads
• Propriétés anisotropes définies par l’orientation des fibres  • Anisotropic properties defined by the orientation of the fibers
Dans le brevet US 5021367 du 4 juin 1991 l’inventeur utilise un dépôt chimique en phase gazeuse (CVD) pour imprégner des fibres en stratifil direct ou des tissus : la CVD est délicate à maîtriser et le fait d’utiliser des tissus ou des stratifil direct (fibres de carbone, constituées d’un faisceau de fibrilles, dont le nombre de fibrilles varie typiquement de 1 000 à 50 000 !) ne garantit en aucune manière le parfait revêtement des fibrilles élémentaires. De plus une seule couche de protection est déposée, ce qui n’est pas optimum pour résister aux cycles de fatigue thermique. De plus le dépôt CVD se faisant sur des fibres portées entre 1400°C et 1650°C, de nombreuses microfissures apparaissent sur le revêtement lors du refroidissement. Conclusion = Aucun rapport avec le présent brevet Dans le brevet US 4962070 du 9 octobre 1990 l’inventeur utilise un dépôt chimique en phase gazeuse (CVD) pour imprégner des fibres en stratifil direct : comme expliqué précédemment la CVD est délicate à maîtriser et le fait d’utiliser des stratifil direct ne garantit en aucune manière le parfait revêtement des fibrilles élémentaires. De plus une seule couche de protection est déposée, ce qui n’est pas optimum pour résister aux cycles de fatigue thermique. De plus le dépose CVD se faisant sur des fibres portées entre 1400°C et 1650°C, de nombreuses microfissures apparaissent sur le revêtement lors du refroidissement. Conclusion = Aucun rapport avec le présent brevet  In US patent 5021367 of June 4, 1991 the inventor uses a chemical gas deposition (CVD) to impregnate fibers in direct rovings or fabrics: CVD is difficult to control and the fact of using fabrics or rovings direct (carbon fibers, made up of a bundle of fibrils, the number of fibrils of which typically varies from 1,000 to 50,000!) in no way guarantees the perfect coating of elementary fibrils. In addition, a single protective layer is deposited, which is not optimal for withstanding thermal fatigue cycles. In addition, CVD deposition is carried out on fibers carried between 1400 ° C and 1650 ° C, many microcracks appear on the coating during cooling. Conclusion = No relation with the present patent In the patent US 4962070 of October 9, 1990 the inventor uses a chemical deposition in gas phase (CVD) to impregnate fibers in direct rovet: as explained previously the CVD is delicate to control and using direct rovings in no way guarantees the perfect covering of elementary fibrils. In addition, a single protective layer is deposited, which is not optimal for withstanding thermal fatigue cycles. In addition, the CVD deposit being made on fibers carried between 1400 ° C and 1650 ° C, many microcracks appear on the coating during cooling. Conclusion = No relation to this patent
Dans le brevet US 4376803 du 15 mars 1983 l’inventeur utilise un dépôt chimique obtenu par passage d’un stratifil (direct de fibres de graphite) dans un bain d’organo- métalliques en suspension dans un solvant, puis passage en pyrolyse afin d’obtenir un revêtement d’oxydes métalliques. Le fait d’utiliser des stratifil direct ne garantit en aucune manière le parfait revêtement des fibrilles In US patent 4,376,803 of March 15, 1983, the inventor uses a chemical deposit obtained by passing a roving (direct from graphite fibers) in an organometallic bath suspended in a solvent, then passing through pyrolysis. in order to obtain a coating of metal oxides. The use of direct rovings in no way guarantees the perfect covering of the fibrils
élémentaires cette technologie conduit à l’obligation d’aboutir à des oxydes métalliques. Conclusion = Aucun rapport avec le présent brevet elementary this technology leads to the obligation to lead to metal oxides. Conclusion = No relation to this patent
Dans le brevet US 4376804 du 15 mars 1983 l’inventeur utilise un dépôt chimique obtenu par passage d’un stratifil direct (de fibres de graphite) dans un bain de toluène, puis passage en pyrolyse et nouveau passage dans un bain d’organo- métalliques en suspension dans un solvant, puis re passage en pyrolyse afin d’obtenir un revêtement d’oxydes métalliques. Le fait d’utiliser des stratifil direct ne garantit en aucune manière le parfait revêtement des fibrilles élémentaires cette technologie conduit à l’obligation d’aboutir à des oxydes métalliques. In US patent 4,376,804 of March 15, 1983, the inventor uses a chemical deposit obtained by passing a direct roving (of graphite fibers) in a toluene bath, then passing through pyrolysis and again passing through an organo-bath. metals in suspension in a solvent, then re pyrolysis to obtain a coating of metal oxides. The fact of using direct rovings does not in any way guarantee the perfect coating of the elementary fibrils this technology leads to the obligation to lead to metal oxides.
Conclusion = Aucun rapport avec le présent brevet Conclusion = No relation to this patent
Dans le brevet US 5562966 du 8 octobre 1996 l’inventeur utilise un surfactant à froid obtenu par passage d’un stratifil direct (de fibres de carbone) dans un bain de solvant (par exemple d’alcool polyvinyle ) dans lequel sont dilués des nano particules (d’une taille de 46à 76 nanomètres) d’agents inhibiteur d’oxydation tel que par exemple des oxydes tel l’oxyde de zirconium , des carbures tel : le carbure de silicium, le carbure de bore ,le carbure d’aluminium, le carbure de chrome etc. le fait d’utiliser des stratifil direct ne garantit en aucune manière le parfait revêtement des fibrilles élémentaires, on utilise ici des nano particules sensées se déposer sur les fibres ... il s’agit d’essayer d’enduire le stratifil d’un ensimage (agent de sufatation) on a donc un stratifil de par exemple 1 mm de diamètre contenant par exemple 1 1 000 fibrilles de 10 microns de diamètre, sur lesquelles on espère appliquer un dépôt uniforme de particule 0.05 In US patent 5562966 of October 8, 1996 the inventor uses a cold surfactant obtained by passing a direct roving (carbon fibers) in a solvent bath (for example polyvinyl alcohol) in which nano are diluted particles (from 46 to 76 nanometers in size) of oxidation inhibiting agents such as, for example, oxides such as zirconium oxide, carbides such as: silicon carbide, boron carbide, aluminum carbide , chromium carbide etc. the fact of using direct rovings does not in any way guarantee the perfect coating of the elementary fibrils, we use here nanoparticles supposed to be deposited on the fibers ... it is a question of trying to coat the rovet with a sizing agent (blowing agent) there is therefore a rovet of for example 1 mm in diameter containing for example 1 1000 fibrils of 10 microns in diameter, on which it is hoped to apply a uniform deposit of particles 0.05
microns... c’est irréaliste , il y aura des zones non traitées et même sur les zones traiter des granules, même nanométriques, laisseront des zones entre elles non protégées. Conclusion = Aucun rapport avec le présent brevet microns ... it's unrealistic, there will be untreated areas and even on the areas to treat granules, even nanometric, will leave areas between them unprotected. Conclusion = No relation to this patent
Dans le brevet FR 7500882 du 13 Janvier 1975 l’inventeur utilise un stratifil de de carbone de par exemple 1 mm de diamètre contenant par exemple 1 1 000 fibrilles de 10 microns de diamètre, l’inventeur prétend réussir à recouvrir uniformément les fibrilles par un agent mouillant, de type borure, en utilisant un dépôt chimique en phase gazeuse (CVD) de 10 nanomètres à 1 micron à des températures de 550 à 900°C. Il faut réaliser un traitement de 30 minutes pour obtenir un dépôt de 20 microns. Les fibres sont ensuite noyées dans un métal qui sert de matrice. Conclusion = Aucun rapport avec le présent brevet In the patent FR 7500882 of January 13, 1975 the inventor uses a carbon rovet of for example 1 mm in diameter containing for example 1 1000 fibrils of 10 microns in diameter, the inventor claims to succeed in uniformly covering the fibrils with a wetting agent, boride type, using a chemical vapor deposition (CVD) of 10 nanometers to 1 micron at temperatures from 550 to 900 ° C. A 30-minute treatment is required to obtain a deposit of 20 microns. The fibers are then embedded in a metal which acts as a matrix. Conclusion = No relation to this patent
Dans le brevet UK 2279667 du 1 1 Janvier 1995 l’inventeur utilise un dépôt épais de métal sur des faisceau de fibres de carbone. Ce dépôt étant obtenu par la circulation importante d’un courant dans la cathode du métal à déposer.  In UK patent 2279667 of January 1, 1995 the inventor uses a thick deposit of metal on bundles of carbon fibers. This deposit is obtained by the large circulation of a current in the cathode of the metal to be deposited.
Le composite métal fibres et ensuite comprimé sous vide pour repartir le dépôt par rapport aux fibres. Un tel traitement ne consiste pas à enrober les fibres, mais a les noyer dans un dépôt épais métallique. Il aboutit à un composite à matrice métallique (et non une matrice céramique, que nous souhaitons également obtenir.) ce procédé devant déposer une grande quantité de métal est forcément lent et onéreux. Conclusion = Aucun rapport avec le présent brevet  The metal fiber composite and then compressed under vacuum to distribute the deposit relative to the fibers. Such a treatment does not consist in coating the fibers, but in drowning them in a thick metallic deposit. It results in a composite with a metallic matrix (and not a ceramic matrix, which we also wish to obtain.) This process having to deposit a large quantity of metal is necessarily slow and expensive. Conclusion = No relation to this patent
Dans le brevet US 5244748 du 14 septembre 1993 l’inventeur décrit un  In US Patent 5,244,748 of September 14, 1993 the inventor describes a
composite fibre matrice métallique, lesdites fibres étant infiltrées par la matrice métallique (la méthode d’infiltration n’étant pas décrite) on aboutit à un composite à matrice métallique (et non une matrice céramique, que nous souhaitons également obtenir.) ce procédé devant infiltrée une grande quantité de métal est forcément lent et onéreux. Conclusion = Aucun rapport avec le présent brevet  composite metal matrix fiber, said fibers being infiltrated by the metal matrix (the method of infiltration not being described) we end up with a composite with a metal matrix (and not a ceramic matrix, which we also wish to obtain). a large amount of metal is necessarily slow and expensive. Conclusion = No relation to this patent
PROBLEME TECHNIQUE A RESOUDRE : TECHNICAL PROBLEM TO BE SOLVED:
Afin de pouvoir obtenir un fil capable de résister à l’oxydation à chaud :  In order to be able to obtain a wire capable of withstanding hot oxidation:
L’objectif de l’invention est de déposer, de façon parfaitement homogène et maîtrisé, un revêtement barrière à l’oxygène sur toutes les fibrilles d’un fil de carbone. De façon à ne mas péjorer les propriétés du dit fil le revêtement doit être extrêmement fin.  The objective of the invention is to deposit, in a perfectly homogeneous and controlled manner, an oxygen barrier coating on all the fibrils of a carbon thread. In order not to damage the properties of the said wire, the coating must be extremely thin.
Les matrices composites constituées de couches contenant des fibres unidirectionnelles (tissées, feutres, ou mat) de renforcement et de matrice :  Composite matrices made up of layers containing unidirectional fibers (woven, felt, or mat) of reinforcement and matrix:
organique, minérales, métalliques ou céramique, sont de plus en plus utilisées pour réaliser des structures légères telles que décrites dans le domaine de l’invention.organic, mineral, metallic or ceramic, are increasingly used to produce light structures as described in the field of the invention.
Lors de mise sous contrainte importante, ou lors de chocs, ces structures composites sont sujettes à déformations. Nous avons vu précédemment que les matrices céramiques classiques sont extrêmement fragiles et ne tolèrent pas de déformations significatives. L’objectif des CMC est de bien se comporter mécaniquement et de se mettre en œuvre comme des matrices organiques, tout en ayant une plage When placed under significant stress, or during impacts, these composite structures are subject to deformations. We have previously seen that conventional ceramic matrices are extremely fragile and do not tolerate significant deformation. The objective of CMCs is to behave well mechanically and to be implemented as organic matrices, while having a range
thermique d’utilisation plus étendue, et un coût de possession nettement plus faible. La présente invention a pour objet une solution, développée pour réaliser un composite céramique thermostable. Le grave problème rencontré par les CMC à haute température est la médiocre tenu à l’oxydation des fibres qui les composent. more extensive thermal use, and a significantly lower cost of ownership. The present invention relates to a solution, developed for producing a thermostable ceramic composite. The serious problem encountered by CMCs at high temperature is the poor resistance to oxidation of the fibers that compose them.
Figure imgf000007_0001
Figure imgf000007_0001
Le tableau ci-dessus démontre que par rapport aux meilleures fibres céramique (Nextel 720) les fibres de carbone sont très performantes. En atmosphère protectrice les fibres de carbone sont traitées entre 2000 et 3000°C lors de leur production ; mais elles s’oxydent dès 500°C en atmosphère oxydante (en d’autres termes, elles brûlent) ! il faut donc trouver un moyen de confinement et de protection des fibres de carbone. Notons ici que les fibres de carbone, sont constituées d’un faisceau de fibrilles d’un diamètre de 4 à 12 micromètres. The table above shows that compared to the best ceramic fibers (Nextel 720) carbon fibers are very efficient. In a protective atmosphere, the carbon fibers are treated between 2000 and 3000 ° C during their production; but they oxidize from 500 ° C in an oxidizing atmosphere (in other words, they burn)! a means of confining and protecting carbon fibers must therefore be found. Note here that the carbon fibers are made up of a bundle of fibrils with a diameter of 4 to 12 micrometers.
Par ailleurs le tableau confirme qu’il est impossible d'utiliser des fibres céramiques au-delà de 1400°C  In addition, the table confirms that it is impossible to use ceramic fibers above 1400 ° C
APPORT DE L’INVENTION : CONTRIBUTION OF THE INVENTION:
L’invention consiste à créer un environnement protecteur, un confinement, autour des fibrilles de carbone de manière à ce qu’elles ne s’oxydent pas.  The invention consists in creating a protective environment, a confinement, around the carbon fibrils so that they do not oxidize.
La meilleure solution consiste à recouvrir les fibrilles d’une couche fine étanche et réfractaire, parfaitement uniforme, qui les enveloppe intégralement et dont l’épaisseur radiale est comprise entre 0.5 et 900 nanomètres. Préférentiellement, cette couche est formée d’un empilement de couches concentriques de nature différentes, à savoir de différents métaux ou alliages, de différentes céramiques, de combinaison métaux (ou alliages) avec des céramiques : • Le revêtement réfractaire, de type métallique, peut être constitué à base d’une combinaison d’au moins l’un des métaux suivants, ou de leur alliage : The best solution is to cover the fibrils with a thin, tight and refractory layer, perfectly uniform, which envelops them completely and whose radial thickness is between 0.5 and 900 nanometers. Preferably, this layer is formed by a stack of concentric layers of different nature, namely of different metals or alloys, of different ceramics, of combination of metals (or alloys) with ceramics: • The metallic type refractory lining can be made from a combination of at least one of the following metals, or their alloy:
Niobium, Molybdène, Tantale, Tungstène, Rhénium, Nickel, Chrome, Titane, Zirconium, Hafnium,  Niobium, Molybdenum, Tantalum, Tungsten, Rhenium, Nickel, Chromium, Titanium, Zirconium, Hafnium,
• Le revêtement réfractaire, de type céramique, peut être constitué à base d’au moins l’un des métaux suivants : Niobium, Molybdène, Tantale, Tungstène, Rhénium, Nickel, Chrome, Titane, Zirconium, Hafnium, combiné  • The refractory coating, of ceramic type, can be made from at least one of the following metals: Niobium, Molybdenum, Tantalum, Tungsten, Rhenium, Nickel, Chromium, Titanium, Zirconium, Hafnium, combined
chimiquement avec un métalloïde tel le bore et le silicium ou un non-métal tel le carbone, le soufre, l’azote, le phosphore, le Lanthane et l’oxygène afin de former, par exemple et par ordre d’intérêts croissant :  chemically with a metalloid such as boron and silicon or a non-metal such as carbon, sulfur, nitrogen, phosphorus, lanthanum and oxygen in order to form, for example and in ascending order of interests:
o Le Diborure de Zirconium (ZrB2)  o Zirconium Diboride (ZrB2)
o Le Diborure de Titane (T1B2)  o Titanium Diboride (T1B2)
o Le Diborure d'Hafnium (HfB2.)  o Hafnium Diboride (HfB2.)
o Le Carbure de Tungstène (WC)  o Tungsten Carbide (WC)
o L'hexaborure de lanthane (LaB6)  o Lanthanum hexaborure (LaB6)
Ladite « couche réfractaire », peut être constituée d’un revêtement complexe de plusieurs couches :  Said "refractory layer" can be made up of a complex coating of several layers:
o De type métalliques différentes  o Different metallic types
o De type céramique différentes  o Different ceramic types
o D’une combinaison de couches de type métalliques et de couches céramiques L’application de ce revêtement peut, préférentiellement, être réalisée dans l’usine de production des fibres de carbone lors de leur production, en bout de ligne.  o A combination of metallic type layers and ceramic layers The application of this coating can, preferably, be carried out in the factory producing carbon fibers during their production, ultimately.
Si on la réalise l’application de ce revêtement à posteriori il faut pyrolyser le surfactant qui recouvre les fibres, par exemple en faisant passer les fibres sur deux rouleaux, sur lesquels elles s’appuient (léger changement d’orientation des fibres) et, en établissant une différence de tension électrique entre les dits rouleaux, un courant électrique parcours alors les fibrilles des fibres de carbone et brûle l’ensimage.  If the application of this coating is carried out a posteriori, it is necessary to pyrolyze the surfactant which covers the fibers, for example by passing the fibers over two rollers, on which they rest (slight change in orientation of the fibers) and, by establishing a difference in electric voltage between said rollers, an electric current then travels through the fibrils of the carbon fibers and burns the size.
Il est alors possible de les recouvrir de la couche réfractaire évoquée ci-dessus, par tout procédé connu de l’homme de l’art :  It is then possible to cover them with the refractory layer mentioned above, by any process known to those skilled in the art:
• Tel le dépôt électrolytique ou électrodéposition  • Such as electroplating or electrodeposition
• Tel le dépôt en Phase vapeur : dépôt physique PVD et dépôt chimique CVD En fin de dépôt de la couche réfractaire il faut fonctionnaliser la surface du dépôt pour le découpler de sa future matrice. Cela consiste à enduire ladite surface d’un surfactant qui va permettre d’isoler la fibre de la matrice afin de permettre le blocage des fissures provenant en service de cette dernière. Pour ce faire on utilise au moins l’un des surfactants suivants : • Like vapor phase deposition: PVD physical deposition and CVD chemical deposition At the end of the refractory layer deposition, the deposition surface must be functionalized to decouple it from its future matrix. This consists in coating said surface with a surfactant which will allow the fiber to be isolated from the matrix in order to allow blocking. cracks coming from the latter's service. To do this, at least one of the following surfactants is used:
• Nitrure de bore,  • Boron nitride,
• Carbone (graphite),  • Carbon (graphite),
• Disulfure de molybdène (M0S2),  • Molybdenum disulfide (M0S2),
• Silane préférentiellement hydrophobe,  • Preferably hydrophobic silane,
• Bore  • Boron
• Frite de verre  • Glass fries
La matrice peut être tout métal connu de l’homme de l’art (par exemple, le cuivre, l’aluminium, l’aluminium, le zinc, l’étain, l’acier, et les alliages des dits métaux) The matrix can be any metal known to a person skilled in the art (for example, copper, aluminum, aluminum, zinc, tin, steel, and alloys of said metals)
La matrice peut être toute céramique connue de l’homme de l’art (par exemple l'alumine, la mullite, le carbone, le carbure de silicium, l'alumine, le carbure de silicium utilisé souvent sous forme frittée, le nitrure d'aluminium (AIN), le nitrure de silicium (S13N4), l’oxyde de zirconium (IV) ou zircone (ZrÜ2)) et, préférentiellement la matrice céramique TOUGHCERAM ® objet des brevets de Dr SARDOU : The matrix can be any ceramic known to those skilled in the art (for example alumina, mullite, carbon, silicon carbide, alumina, silicon carbide often used in sintered form, nitride d aluminum (AIN), silicon nitride (S13N4), zirconium oxide (IV) or zirconia (ZrÜ2)) and, preferably the TOUGHCERAM ® ceramic matrix which is the subject of Dr SARDOU's patents:
• Brevet Fr14/02994  • Patent Fr14 / 02994
• Brevet Fr 16/00826  • Patent Fr 16/00826
• PCT/FR 16/000140  • PCT / FR 16/000140
La céramique objet des brevets de Dr SARDOU sus cités permet d’imprégner les fibres de renforcement (revêtues de leur couche réfractaire décrite ci-dessus) de manière à obtenir un composite céramique, cette céramique polycristallisée entre 60 et 180°C sous des pressions modestes allant de 0 à 3 bars. La dite céramique est flexible, tolérante aux dommages, pour des applications basse température uniquement, elle peut être fractionnée en micros domaines céramique (MDC). La céramique est produite par la réaction de polycristallisation d’une matière dite résine qui est un aluminosilicate poly(silico-oxo-aluminate) c’est-à-dire (-Si-O-AI-O-)n, qui peut être du Meta Kaolin (S12O5, AI2O2 la dite résine peut optionnellement être complétée par une matière dite additif qui peut être de l’aluminium micronisé (Al), de l’alumine micronisée (AI2O3), de la magnésie micronisée(MgO), du dioxyde de Zirconium micronisé (Zr02), avant d’être mélangée à une matière dite durcisseur qui est un hydroxyde choisi parmi les hydroxydes suivants : un hydroxyde de Silice (Si), un hydroxyde d’aluminium (Al), un hydroxyde de magnésium (Mg), un hydroxyde de Zirconium (Zr), un hydroxyde de calcium (Ca), un hydroxyde complexe d’aluminium et de silicium (hydroxyde de Kaolin), l’Hydroxyde étant produit par l'une des solution suivantes : soit par l’attaque d’une base forte telle le KOH (hydroxyde de potassium), le NaOH (hydroxyde de sodium), le CsOH (hydroxyde de césium), soit par l’un des acides suivant : HCl, H2SO4, HF. The ceramic which is the subject of the Dr SARDOU patents mentioned above makes it possible to impregnate the reinforcing fibers (coated with their refractory layer described above) so as to obtain a ceramic composite, this polycrystallized ceramic between 60 and 180 ° C. under modest pressures. ranging from 0 to 3 bars. Said ceramic is flexible, tolerant to damage, for low temperature applications only, it can be divided into micro ceramic domains (MDC). Ceramic is produced by the polycrystallization reaction of a material called resin which is an aluminosilicate poly (silico-oxo-aluminate) i.e. (-Si-O-AI-O-) n, which can be Meta Kaolin (S12O5, AI2O2 said resin can optionally be supplemented by a material called additive which can be micronized aluminum (Al), micronized alumina (AI2O3), micronized magnesia (MgO), dioxide of micronized Zirconium (Zr02), before being mixed with a material called hardener which is a hydroxide chosen from the following hydroxides: a silica hydroxide (Si), an aluminum hydroxide (Al), a magnesium hydroxide (Mg ), Zirconium hydroxide (Zr), calcium hydroxide (Ca), complex aluminum hydroxide and silicon (Kaolin hydroxide), the Hydroxide being produced by one of the following solutions: either by attacking a strong base such as KOH (potassium hydroxide), NaOH (sodium hydroxide), CsOH (cesium hydroxide), either by one of the following acids: HCl, H2SO4, HF.
Les micros domaines céramique (MDC), pour des applications basse température uniquement, sont reliés entre eux par un réseau dense de micro éléments  The micro ceramic domains (MDC), for low temperature applications only, are linked together by a dense network of micro elements
élastiques, le dit réseau élastique polymérisant durant la polycristallisation des micro domaine céramique et se liant par liaison covalentes avec les dits micro domaines céramique. Le réseau de micro éléments élastiques (MEE) est constitués par des chaînes moléculaires élastiques linéaires, terminés à leurs extrémités par des fonctions capables de se lier chimiquement aux micros domaines de céramique solide. Ce dit réseau élastique est préférentiellement choisi parmi les chaînes moléculaires appartenant à la famille des homopolymères de silicone fluide elastic, the said elastic network polymerizing during the polycrystallization of micro ceramic domains and binding by covalent bond with said micro ceramic domains. The network of elastic microelements (MEE) is made up of linear elastic molecular chains, terminated at their ends by functions capable of chemically binding to micro domains of solid ceramic. Said elastic network is preferably chosen from molecular chains belonging to the family of fluid silicone homopolymers
(Polysiloxanes) à terminaisons actives préférentiellement choisie soit parmi les types OH soit parmi les types alcool. Le pourcentage massique de MEE par rapport à la matrice est compris entre 0 et 60%= [MEE/(MEE+MDC)] (Polysiloxanes) with active endings preferably chosen either from the OH types or from the alcohol types. The mass percentage of MEE compared to the matrix is between 0 and 60% = [MEE / (MEE + MDC)]
DESCRIPTION DES FIGURES ET PRINCIPE DIRECTEUR DE L’INVENTION : DESCRIPTION OF THE FIGURES AND GUIDING PRINCIPLE OF THE INVENTION:
PVD = pulvérisation cathodique (ou sputtering) est une méthode de dépôt de couche mince. Il s'agit d'une technique qui autorise la synthèse de plusieurs matériaux (alliage) à partir de la condensation d’une vapeur métallique, ou céramique, issue d’une source solide (cible) (16) sur un substrat (fibres)(4f).  PVD = sputtering is a thin film deposition method. It is a technique that allows the synthesis of several materials (alloy) from the condensation of a metallic or ceramic vapor, coming from a solid source (target) (16) on a substrate (fibers) (4f).
Remarque : il est connu que les fibres de carbone (ou équivalent) sont conductrices. La stratégie de l’invention est de faire coopérer plusieurs principes physiques connus pour aboutir, grâce à leur interaction, à un résultat innovant :  Note: it is known that carbon fibers (or equivalent) are conductive. The strategy of the invention is to make several known physical principles cooperate to achieve, thanks to their interaction, an innovative result:
Principe #1 = utilisation d’une enceinte sous vide (1 1’) afin de ne pas entraver le libre parcours moyen des vapeurs issues de la cible (16), notons que l’on peut imaginer mettre à la queue leu leu plusieurs enceintes de type (11’) pour appliquer plusieurs dépôts à la suite. On table ici pour des niveaux de vide compris entre 10-2 et 108 Principle # 1 = use of a vacuum enclosure (1 1 ') in order not to hinder the average free path of the vapors from the target (16), note that one can imagine putting in line leu leu several enclosures type (11 ') to apply several deposits in a row. We table here for vacuum levels between 10 -2 and 10 8
Principe #2 = utilisation d’une méthode de PVD afin de créer, sous vide, des vapeurs issues de la cible (16) ; par PVD nous désignons indifféremment : EV, EBPVD, PVD, PLD, MBE, Arc-PVD, PC, PCM, PCT, HiTUS. Principe #3 = utilisation de l’électricité statique [soit en chargeant électrostatiquement, les bobines (1) & (1’) soit en chargeant les fils (13) & (14) au niveau des moyen de guidage (8) & (8’)] pour écarter les fibrilles d’un fil conducteur en carbone (13) & (14), le dit fil étant constitué d’un faisceau de fibrilles (4f) et étant chargé, par exemple positivement. Les fibrilles étant toutes au même potentiel, vont se repousser fortement et adopter une disposition en ballon (4) dans la chambre (11’). Toutes les fibrilles (4f) vont se repartir statistiquement à égale distance et toutes à la surface extérieure du dit ballon (4). Le tableau ci-dessous, donné à titre d’exemple, montre que la distance inter fibrilles (4f), même pour un faisceau de 10000 fibrilles, peut-être 14,7 fois supérieure au diamètre d’une dite fibrille, les vapeurs peuvent donc passer aisément entre les fibrilles (4f) ; Exemple calcul de distance inter fibrilles : Principle # 2 = use of a PVD method to create, under vacuum, vapors from the target (16); by PVD we mean indifferently: EV, EBPVD, PVD, PLD, MBE, Arc-PVD, PC, PCM, PCT, HiTUS. Principle # 3 = use of static electricity [either by electrostatically charging the coils (1) & (1 ') or by charging the wires (13) & (14) at the level of the guide means (8) & (8 ')] to separate the fibrils from a carbon conductive wire (13) & (14), said wire consisting of a bundle of fibrils (4f) and being charged, for example positively. The fibrils are all at the same potential, will strongly repel and adopt a balloon arrangement (4) in the chamber (11 '). All the fibrils (4f) will be distributed statistically at equal distance and all on the outer surface of said balloon (4). The table below, given as an example, shows that the inter-fibrillary distance (4f), even for a bundle of 10,000 fibrils, perhaps 14.7 times greater than the diameter of a so-called fibril, the vapors can therefore pass easily between the fibrils (4f); Example of inter-fibrillum distance calculation:
Figure imgf000011_0001
Principe #4 = utilisation d’un champ électrostatique, établi entre la cible (16) et les fibrilles (4f) les vapeurs, chargées au potentiel de la cible (16) et issues de celle-ci vont parcourir les lignes de champs (18) comme illustré en figure 3.
Figure imgf000011_0001
Principle # 4 = use of an electrostatic field, established between the target (16) and the fibrils (4f) the vapors, charged at the potential of the target (16) and coming from this one will cross the field lines (18 ) as shown in Figure 3.
Les vapeurs vont donc pouvoir venir se condenser sur toutes les faces des fibrilles (4f), ce qui permet de les traiter uniformément, notons que l’on dispose uniformément des cibles (16) autour du ballon (4) afin de faciliter The vapors will therefore be able to condense on all the faces of the fibrils (4f), which makes it possible to treat them uniformly, it should be noted that the targets (16) are uniformly arranged around the balloon (4) in order to facilitate
l’homogénéité.  homogeneity.
^ Principe #5 = utilisation d’un courant électrique [soit en chargeant les bobines (1) & (T) soit en chargeant les fils (13) & (14) au niveau des moyen de guidage (8) & (8’)] ; ce courant permet d’ajuster la température des fibrilles (4f) de façon à ce que la vapeur, lorsque‘elle se condense sur les fibrilles (4f), soit à une température optimale. Notons que, grâce au vide, ladite température peut être comprise entre l’ambiante et par exemple 2000°C sans risque de dégradation des fibrilles. Principe #6 = utilisation de la vitesse de défilement du fil (13) & (14) afin de maîtriser l’épaisseur du dépôt et pouvoir obtenir des couches extrêmement fines avec une productivité particulièrement importante. Il est important de déposer des couches fines pour ne pas modifier les propriétés mécaniques du fil. ^ Principle # 5 = use of an electric current [either by charging the coils (1) & (T) or by charging the wires (13) & (14) at the level of the guide means (8) & (8 ') ]; this current makes it possible to adjust the temperature of the fibrils (4f) so that the vapor, when it condenses on the fibrils (4f), is at an optimum temperature. It should be noted that, thanks to the vacuum, said temperature can be between ambient and for example 2000 ° C. without risk of degradation of the fibrils. Principle # 6 = use of the wire speed (13) & (14) in order to control the thickness of the deposit and be able to obtain extremely thin layers with particularly high productivity. It is important to deposit thin layers so as not to modify the mechanical properties of the wire.
La figure 1 représentation sommairement le procédé objet de l’invention :  Figure 1 shows a summary of the process which is the subject of the invention:
(1) & (1’) = bobines de fibres de carbone (fibres de carbone = substrat) (2) & (2’) = générateurs PVD ayant préférentiellement une forme en cylindre creux  (1) & (1 ’) = coils of carbon fibers (carbon fibers = substrate) (2) & (2’) = PVD generators preferably having a hollow cylinder shape
(3) = carter de l’enceinte PVD  (3) = PVD enclosure housing
(4f) = fibrilles écartées par le champ électrostatique (ballon de fibrilles) (4) = ballon formé par les fibrilles (trait mixte, en figure 3) (5) & (5’) = écran anti plasma  (4f) = fibrils separated by the electrostatic field (fibril balloon) (4) = balloon formed by the fibrils (dashed line, in Figure 3) (5) & (5 ’) = anti plasma screen
(6) = plasma gazeux de révolution autour du ballon de fibrilles  (6) = gaseous plasma of revolution around the ball of fibrils
(7) = électro aimants de confinement du plasma  (7) = electromagnets for plasma confinement
(8) & (8’) = moyen de guidage des fibres de carbone, ce peut être soit des yeux de guidage (par exemple céramique, connu de l’homme de l’art) soit tout autre moyen de guidage et de contrôle de la tension des dites fibres, (en particulier ce peut être des cabestans) ' (9) & (9’) = trappes d’accès  (8) & (8 ') = means for guiding the carbon fibers, it can be either guide eyes (for example ceramic, known to those skilled in the art) or any other means of guiding and controlling the tension of said fibers, (in particular it can be capstans) '(9) & (9') = access hatches
(10) & (10’) = système de refroidissement du générateur PVD (2) & (2’) ·/ (11) & (11”) = enceintes sous vide contenant les bobines  (10) & (10 ’) = PVD generator cooling system (2) & (2’) · / (11) & (11 ”) = vacuum chambers containing the coils
(1 1’) = enceintes sous vide correspondant à la zone de traitement PVD (12) & (12’) = systèmes de mise sous vide  (1 1 ’) = vacuum chambers corresponding to the PVD treatment zone (12) & (12’) = vacuum systems
(13) = fibres de carbone issues du traitement PVD  (13) = carbon fibers from PVD treatment
(14) = fibres de carbone allant au traitement PVD  (14) = carbon fibers going to PVD treatment
(15) & (15’) = écran anti champ électrostatique  (15) & (15 ’) = anti electrostatic field screen
(16) = (source solide) cibles de pulvérisation cathodique montées préférentiellement en polyèdre autour du plasma (6)  (16) = (solid source) sputtering targets preferably mounted in polyhedron around the plasma (6)
(17) carter électrostatique  (17) electrostatic housing
La figure 2 est une vue en coupe simplifiée de la zone de l’enceintes sous vide (11’) correspondant à la zone de traitement PVD. Cette vue représente sommairement le procédé objet de l’invention. On y voit les cibles de pulvérisation cathodique (16), le ballon formé par les fibrilles (4) ainsi que les fibrilles (4f) La figure 3 est une vue en gros plan de coupe simplifiée du ballon (4), celui-ci étant ici représenté en trait mixte. On y voit les fibrilles (4f) et une cible (16) ; une différence de potentiel électrostatique est créée entre les fibrilles (4f) et la cible (16) ; les vapeurs chargées électrostatiquement, issues de la cible, suivent donc les lignes de champs représentées schématiquement par les pointillés de type (18). Pour venir se condenser sur toutes les faces des fibrilles. Figure 2 is a simplified sectional view of the area of the vacuum chambers (11 ') corresponding to the PVD treatment area. This view briefly represents the process which is the subject of the invention. We can see the sputtering targets (16), the balloon formed by the fibrils (4) as well as the fibrils (4f) Figure 3 is a close-up view of a simplified section of the balloon (4), the latter being here shown in phantom. We can see the fibrils (4f) and a target (16); a difference in electrostatic potential is created between the fibrils (4f) and the target (16); the electrostatically charged vapors from the target therefore follow the field lines represented schematically by the dotted lines of type (18). To condense on all sides of the fibrils.
Solution A : Les bobines (1) et (1’) de fibres de carbone (13), (14) sont portées à un potentiel électrostatique par rapport au carter électrostatique (17).  Solution A: The coils (1) and (1 ’) of carbon fibers (13), (14) are brought to an electrostatic potential with respect to the electrostatic casing (17).
Solution B préférable : les moyens de guidage (8) et (8’) des fibres de carbone (13), (14), sont portées à un potentiel électrostatique par rapport au carter électrostatique (17).  Preferable solution B: the guide means (8) and (8 ’) of the carbon fibers (13), (14), are brought to an electrostatic potential with respect to the electrostatic casing (17).
Le champ électrostatique provoque l’attraction des fibrilles de carbone vers le carter électrostatique (17) et vers les cibles (16) qui sont également chargées du même signe et sensiblement du même potentiel que le carter (17) (il y a plusieurs milliers de telles fibrilles (4f) dans une fibre de carbone), les fibrilles prennent alors une forme en ballon (4). Cette forme en ballon et creuse, toutes les fibrilles (4f) étant approximativement toutes côte à côte sur le diamètre extérieur du dit ballon (4). The electrostatic field causes the attraction of carbon fibrils to the electrostatic housing (17) and to the targets (16) which are also charged with the same sign and substantially the same potential as the housing (17) (there are several thousand such fibrils (4f) in a carbon fiber), the fibrils then take a balloon shape (4). This balloon shape and hollow, all the fibrils (4f) being approximately all side by side on the outside diameter of said balloon (4).
La distance inter fibrilles peut atteindre plusieurs fois, a plusieurs centaines de fois le diamètre des dites fibrilles (la distance peut être comprise entre 10 microns et 10 mm). Les vapeurs métallique (ou oxyde ou céramique) sont issues de cibles (6) ayant une charge électrostatique opposées à celles des fibrilles (4f) ; lesdites vapeurs à déposer sont attirées électro-statiquement par les fibrilles. Les fibrilles étant très espacées les vapeurs peuvent donc aisément manquer les fibrilles et passer entre lesdites fibrilles toutefois étant attirées par le champ électrostatique, les vapeurs peuvent suivre les lignes de champ électrostatique (18) et se déposer sur toute la surface de chaque fibrille, que ladite surface soit orientée vers le carter (17) ou vers le centre du ballon (4). The distance between fibrils can reach several times, several hundred times the diameter of said fibrils (the distance can be between 10 microns and 10 mm). The metallic vapors (or oxide or ceramic) come from targets (6) having an electrostatic charge opposite to those of the fibrils (4f); said vapors to be deposited are attracted electro-statically by the fibrils. Since the fibrils are very widely spaced, the vapors can therefore easily miss the fibrils and pass between said fibrils, however, being attracted by the electrostatic field, the vapors can follow the electrostatic field lines (18) and deposit on the entire surface of each fibril, said surface is oriented towards the housing (17) or towards the center of the balloon (4).
Les bobines (1) et (1’) de fibres de carbone, ou les moyens de guidage (8) et (8’) des fibres, peuvent être portées à une différence de potentiel, de façon à permettre de pouvoir chauffer les fibrilles (4f) et ajuster leur température. Ceci permet d’optimiser la qualité et les réactions de surface du substrat lors du dépôt.  The coils (1) and (1 ') of carbon fibers, or the guide means (8) and (8') of the fibers, can be brought to a potential difference, so as to allow the fibrils to be able to be heated ( 4f) and adjust their temperature. This optimizes the quality and surface reactions of the substrate during deposition.
On règle le diamètre du ballon en jouant sur le champ électrostatique qui vas attirer les fibrilles vers le carter électrostatique (17) et sur le contrôle de la tension du fil (13), (14), entre les moyens de guidage (8) et (8’). Procédure de régalage possible : sans présence de champ électrostatique et fil non défilant , on ajuste le « brin mou » de telle sorte que le fil (13), (14), pende dans la cavité de métallisation (11’) et présente la forme du point bas du ballon de fibrilles (4) que l’on souhaite obtenir; puis on déclenche le champ électrostatique et le ballon (4) se forme ; il est alors possible de déclencher le défilement du fil (13), (14); il faut donc avoir une maîtrise parfaite de la vitesse de défilement du fil (13), (14) ; cela peut être obtenu soit par la maîtrise de la vitesse de rotation des bobines (1) & (1’) , soit plus finement par la maîtrise de la vitesse fil (13), (14), au niveau des moyens (8) et (8’) qui peuvent être des cabestans ou tout moyen équivalent connu de l’homme de l’art. The diameter of the balloon is adjusted by playing on the electrostatic field which will attract the fibrils towards the electrostatic casing (17) and on the control of the thread tension (13), (14), between the guide means (8) and (8 '). Adjustment procedure possible: without the presence of an electrostatic field and non-moving wire, the "soft strand" is adjusted so that the wire (13), (14) hangs in the metallization cavity (11 ') and has the shape from the low point of the fibril balloon (4) that one wishes to obtain; then the electrostatic field is triggered and the balloon (4) is formed; it is then possible to trigger the scrolling of the wire (13), (14); it is therefore necessary to have perfect control of the speed of travel of the wire (13), (14); this can be obtained either by controlling the speed of rotation of the coils (1) & (1 '), or more finely by controlling the speed of the wire (13), (14), at the level of the means (8) and (8 ') which can be capstans or any equivalent means known to those skilled in the art.
La vitesse moyenne de défilement, conjuguée à la puissance de la PVD permet d’ajuster l’épaisseur du dépôt. On peut donc avoir des puissances de dépôt considérable couplés à une très grande vitesse de défilement du fil (13), (14), de manière à obtenir un dépôt homogène particulièrement fin.  The average scrolling speed, combined with the power of the PVD, allows the thickness of the deposit to be adjusted. It is therefore possible to have considerable deposition powers coupled with a very high speed of travel of the wire (13), (14), so as to obtain a particularly fine homogeneous deposition.
Il est possible soit de passer plusieurs fois dans la zone de PVD (1 T) afin d’appliquer plusieurs couches différentes, soit de disposer à la queue-leu-leu plusieurs cellules (11’) de PVD telle que celle décrite ci-dessus.  It is possible either to pass several times in the PVD area (1 T) in order to apply several different layers, or to arrange at the tail-leu-leu several cells (11 ') of PVD such as that described above. .
Il est précisé que les adverbes préférentiellement, et optionnellement signifient que l’on peut de préférence utiliser une solution (par exemple cette forme est terminée préférentiellement par des boucles de fixation) ou que l’on peut ne pas l’utiliser (c’est-à-dire ne pas utiliser lesdites boucles) tout en restant dans le cadre de l’invention.  It is specified that the adverbs preferentially, and optionally mean that one can preferably use a solution (for example this form is preferably ended by fixing loops) or that one can not use it (this is ie not to use said loops) while remaining within the scope of the invention.
Il est aussi précisé que les Figure 1 , 2 et 3 représentent essentiellement un mode de réalisation de l’objet, selon l’invention, mais qu’il peut exister d’autres modes de réalisation, qui répondent à la définition de cette invention.  It is also specified that FIGS. 1, 2 and 3 essentially represent an embodiment of the object, according to the invention, but that there may be other embodiments, which meet the definition of this invention.
Il est en outre précisé que, lorsque, selon la définition de l’invention, l’objet de l’invention comporte“au moins un” élément ayant une fonction donnée, le mode de réalisation décrit peut comporter plusieurs de ces éléments. Réciproquement, si le mode de réalisation de l’objet selon l’invention, tel qu’illustré, comporte plusieurs éléments de fonction identique et si, dans la description, il n’est pas spécifié que l’objet selon cette invention doit obligatoirement comporter un nombre particulier de ces éléments, l’objet de l’invention pourra être défini comme comportant“au moins un” de ces éléments. Il est enfin précisé que lorsque, dans la présente description, une expression définit à elle seule, sans mention particulière spécifique la concernant, un ensemble de caractéristiques structurelles, ces caractéristiques peuvent être prises, pour la définition de S'objet de la protection demandée, quand cela est techniquement possible, soit séparément, soit en combinaison totale et/ou partielle. It is further specified that, when, according to the definition of the invention, the object of the invention comprises “at least one” element having a given function, the embodiment described may comprise several of these elements. Conversely, if the embodiment of the object according to the invention, as illustrated, comprises several elements of identical function and if, in the description, it is not specified that the object according to this invention must necessarily include a particular number of these elements, the subject of the invention could be defined as comprising “at least one” of these elements. It is finally specified that when, in the present description, an expression defines alone, without any specific mention relating to it, a set of structural characteristics, these characteristics can be taken, for the definition of the subject of the protection sought, when technically possible, either separately or in total and / or partial combination.
Il est de même précisé que, dans la présente description, si l'adverbe "sensiblement" est associé à un qualificatif d'un moyen donné, ce qualificatif doit être compris au sens strict ou approché.  It is likewise specified that, in the present description, if the adverb "substantially" is associated with a qualifier of a given means, this qualifier must be understood in the strict sense or approximated.
TECHNOLOGIES PVD par PVD nous entendons dans le cadre de l’invention toutes les variantes décrites ci-dessous et préférentiellement le procédé HiTUS : PVD TECHNOLOGIES by PVD we mean in the context of the invention all the variants described below and preferably the HiTUS process:
• Dépôt physique en phase vapeur par faisceau d'électrons (EBPVD) est une forme de dépôt physique en phase gazeuse dans laquelle une anode cible sous vide poussé est bombardée par un faisceau d'électrons émis par un filament de tungstène chargé. Le faisceau d'électrons transforme les molécules de la cible en phase gazeuse. Ces molécules précipitent alors sous forme solide, recouvrant toute la chambre à vide (en quelque sorte) d'une couche mince du matériau de l'anode.  • Physical vapor deposition by electron beam (EBPVD) is a form of physical vapor deposition in which a target anode under high vacuum is bombarded by an electron beam emitted by a charged tungsten filament. The electron beam transforms the target molecules into the gas phase. These molecules then precipitate in solid form, covering the entire vacuum chamber (in a way) with a thin layer of the anode material.
• (PVD) l’évaporation sous vide repose sur deux processus élémentaires : l'évaporation sous vide (EV) d'une source chauffée et la condensation à l’état solide de la matière évaporée sur le substrat. L'évaporation a lieu sous vide, c'est-à-dire dans un environnement gazeux, vapeur de dépôt exclue, contenant extrêmement peu de particules. Dans ces conditions, les particules de matière peuvent se propager jusqu'à la cible sans collision avec d'autres particules. Par exemple dans un vide de 10"4 Pa, une particule de 0,4 nm de diamètre à un libre parcours moyen de 60 m, c'est-à-dire qu'elle peut parcourir en moyenne soixante mètres avant de rentrer en collision avec une autre particule. Les objets chauffés (i.e. le filament chauffant), produisent des vapeurs parasites qui limitent la qualité du vide dans la chambre de dépôt. • (PVD) vacuum evaporation is based on two basic processes: vacuum evaporation (EV) from a heated source and solid state condensation of the material evaporated on the substrate. Evaporation takes place under vacuum, that is to say in a gaseous environment, excluding deposit vapor, containing extremely few particles. Under these conditions, the particles of matter can propagate to the target without colliding with other particles. For example in a vacuum of 10 "4 Pa, a particle of 0.4 nm in diameter with an average free path of 60 m, that is to say that it can travel on average sixty meters before colliding with another particle. Heated objects (ie the heating filament) produce parasitic vapors which limit the quality of the vacuum in the deposition chamber.
• L'ablation laser pulsé (PLD) est une méthode de dépôt en couches  • Pulsed laser ablation (PLD) is a layered deposition method
minces utilisant un laser de très forte puissance. Techniquement, les dépôts de couches minces par ablation laser pulsé sont fondés sur l'interaction entre le matériau cible que l'on souhaite déposer et un faisceau laser impulsionnel (impulsion de l'ordre de la nanoseconde) de forte énergie. Lors du processus d'irradiation laser, des particules sont éjectées de la cible. Dans un premier temps, confinées près de la surface de la cible, ces particules constituent ce que l'on appelle la couche de Knudsen. De mêmes dimensions que le spot laser (1 à 2 mmA2) cette dernière est principalement composée d'ions, d'électrons, mais également d'atomes neutres, de particules diatomiques ou encore de gouttelettes de matériaux en fusion... Dispositif d'ablation laser pulsé. Relativement dense, la couche de Knudsen constitue le siège d'un grand nombre de collisions entre particules, ce qui engendre une élévation de la température au niveau du matériau cible. Ce fort taux de collisions, couplé à l'absorption du faisceau laser conduisent alors à l'ionisation de la couche de Knudsen, puis à la formation d'un plasma, appelé "plume". L'expansion de celui-ci, permet enfin la libération et le dépôt des particules à la surface du substrat monocristallin, positionné en vis-à-vis de la cible. De plus, les dépôts de couches minces par ablation laser pulsé peuvent s'effectuer sous des conditions de vide poussé, mais également en présence de gaz ambiants, comme l'oxygène (dépôts d'oxydes), l'azote, ou encore l'argon (milieu inerte).thin using a very high power laser. Technically, thin film deposition by pulsed laser ablation is based on the interaction between the target material that one wishes to deposit and a pulsed laser beam (pulse of the order of a nanosecond) of high energy. During the laser irradiation process, particles are ejected from the target. Initially, confined near the surface of the target, these particles constitute what is called the Knudsen layer. The same dimensions as the laser spot (1 to 2 mm A 2) the latter is mainly composed of ions, electrons, but also neutral atoms, diatomic particles or even droplets of molten material ... Device pulsed laser ablation. Relatively dense, the Knudsen layer is the site of a large number of collisions between particles, which generates a rise in temperature at the target material. This high rate of collisions, coupled with the absorption of the laser beam then lead to the ionization of the Knudsen layer, then to the formation of a plasma, called "feather". The expansion thereof, finally allows the release and deposition of particles on the surface of the monocrystalline substrate, positioned opposite the target. In addition, the deposition of thin layers by pulsed laser ablation can be carried out under conditions of high vacuum, but also in the presence of ambient gases, such as oxygen (oxide deposits), nitrogen, or argon (inert medium).
• L'épitaxie par jets moléculaires (MBE) est une technique consistant à envoyer un ou plusieurs jets moléculaires vers un substrat • Molecular jet epitaxy (MBE) is a technique consisting in sending one or more molecular jets to a substrate
préalablement choisi pour réaliser une croissance épitaxiale. Elle permet de faire croître des échantillons nanostructurés de plusieurs cm2 à une vitesse d'environ une monocouche atomique par seconde. previously chosen to achieve epitaxial growth. It allows nanostructured samples of several cm2 to grow at a speed of around one atomic monolayer per second.
• Dépôt par arc électrique (Arc-PVD) : atomes et ions sont vaporisés • Deposition by electric arc (Arc-PVD): atoms and ions are vaporized
sous l'action d'un fort courant, provoqué par décharge électrique entre deux électrodes présentant une forte différence de potentiel, qui détache des particules de métal et les fait passer en phase gazeuse. under the action of a strong current, caused by electric discharge between two electrodes with a strong potential difference, which detaches metal particles and makes them pass into the gas phase.
• La pulvérisation cathodique (PC) (ou sputtering) est une méthode de dépôt de couche mince. Il s'agit d'une technique qui autorise la synthèse de plusieurs matériaux à partir de la condensation d’une vapeur métallique issue d’une source solide (cible) sur un substrat. L’application d’une différence de potentiel entre la cible et les parois du réacteur au sein d’une atmosphère raréfiée permet la création d’un plasma froid, composé d’électrons, d’ions, de photons et de neutrons dans un état fondamental ou excité. Sous l’effet du champ électrique, les espèces positives du plasma se trouvent attirées par la cathode (cible) et entrent en collision avec cette dernière. Elles communiquent alors leur quantité de mouvement, provoquant ainsi la pulvérisation des atomes sous forme de particules neutres qui se condensent sur le substrat. La formation du film s’effectue selon plusieurs mécanismes qui dépendent des forces d'interactions entre le substrat et le film. La décharge est auto-entretenue par les électrons secondaires émis de la cible. En effet, ceux-ci, lors de collisions inélastiques, transfèrent une partie de leur énergie cinétique en énergie potentielle aux atomes du gaz présent dans l'enceinte qui peuvent s’ioniser. La PVD comporte les variantes suivantes : • Sputtering is a thin layer deposition method. It is a technique that allows the synthesis of several materials from the condensation of a metallic vapor from a solid source (target) on a substrate. Applying a potential difference between the target and the walls of the reactor in a rarefied atmosphere allows the creation of a cold plasma, composed of electrons, ions, photons and neutrons in a ground or excited state. Under the effect of the electric field, positive plasma species are attracted to and collide with the cathode (target). They then communicate their momentum, thus causing the atomization of atoms in the form of neutral particles which condense on the substrate. The film is formed according to several mechanisms which depend on the interaction forces between the substrate and the film. The discharge is self-sustaining by the secondary electrons emitted from the target. Indeed, these, in inelastic collisions, transfer part of their kinetic energy into potential energy to the atoms of the gas present in the enclosure which can be ionized. The PVD has the following variants:
La pulvérisation cathodique magnétron (PCM) : Les sources de pulvérisation sont habituellement des magnétrons qui utilisent des champs forts électriques et magnétiques pour emprisonner des électrons près de la surface du magnétron, qui est connu comme la cible.  Magnetron sputtering (PCM): Sputtering sources are usually magnetrons which use strong electric and magnetic fields to trap electrons near the surface of the magnetron, which is known as the target.
La pulvérisation cathodique triode (PCT) : Pour faciliter l’alimentation du plasma en électrons additionnels, on peut ajouter un filament chaud jouant le rôle d’une cathode (3e électrode pour le plasma). En appliquant une polarisation négative au fil par rapport au plasma, on éjecte les électrons émis thermiquement par celui-ci. Il faut maintenir cette tension aussi faible que possible pour limiter la pulvérisation du filament. Cette technique appelée pulvérisation cathodique triode ou PCT permet d’obtenir des vitesses de dépôt élevées donc des revêtements minces mais aussi avec des épaisseurs relativement grandes  Triode cathode sputtering (PCT): To facilitate the supply of additional electrons to the plasma, you can add a hot filament acting as a cathode (3rd electrode for the plasma). By applying a negative bias to the wire with respect to the plasma, the electrons emitted thermally by it are ejected. This tension should be kept as low as possible to limit spraying of the filament. This technique called triode sputtering or PCT sputtering makes it possible to obtain high deposition rates, therefore thin coatings but also with relatively large thicknesses.
HiTUS (Haute utilisation des cibles de pulvérisation). HiTUS est le procédé que nous privilégions. HiTUS est une évolution majeure de la traditionnelle technologie magnétron de déposition de couches minces largement utilisée dans les domaines de l’industrie et de la recherche. HiTUS est fondé sur la génération à distance d’un plasma à haute densité. Le plasma est généré dans une chambre latérale ouvrant sur la chambre principale contenant la cible et le substrat à revêtir. HiTUS offre une multitude d’avantages comparés aux techniques traditionnelles de pulvérisation tels que : HiTUS (High use of sputtering targets). HiTUS is the process we favor. HiTUS is a major evolution of the traditional magnetron thin film deposition technology widely used in industry and research. HiTUS is based on the remote generation of a plasma high density. The plasma is generated in a side chamber opening onto the main chamber containing the target and the substrate to be coated. HiTUS offers a multitude of advantages compared to traditional spraying techniques such as:
Meilleure précision des dépôts ; Better precision of deposits;
Meilleur contrôle des caractéristiques du film avec des propriétés proches de celles du matériau déposé dans la masse ; Better control of the characteristics of the film with properties close to those of the material deposited in the mass;
Meilleur contrôle de l’état de surface : lissage ; Better control of the surface condition: smoothing;
Niveaux élevés de reproductibilité et de répétabilité ; High levels of reproducibility and repeatability;
Plus haute vitesse de production ; Higher production speed;
» Possibilité de production en ligne ou déroulement enroulement avec la possibilité de multicouches ; » Possibility of online production or winding process with the possibility of multilayers;
Contrainte dans le dépôt aisément contrôlable, de la compression à la tension, ou nulle entre ces deux possibilités ; Constraint in the easily controllable deposit, compression at tension, or zero between these two possibilities;
Processus à basse température autorisant un dépôt sur des Low temperature process authorizing deposition on
substrats organiques  organic substrates
EN RESUME IN SUMMARY
Nous revendiquons un procédé destiné à réaliser des fibres à haute  We claim a process intended to produce fibers with high
performance , thermostables jusqu’à 2000°C en atmosphère oxydante, le principe de base étant de recouvrir de façon homogène et parfaitement contrôlée toutes les fibrilles (4f) d’uh fil (13) & (14) de une à plusieurs couches réfractaires concentrique extrêmement fines présentant des propriétés barrière contre l’oxydation, le dit procédé se caractérisées par la mise en œuvre simultanée d’au moins un ou une combinaison des principes physique décrits ci-après à savoir : performance, thermostable up to 2000 ° C in an oxidizing atmosphere, the basic principle being to cover in a homogeneous and perfectly controlled manner all the fibrils (4f) of a wire (13) & (14) of one to several concentric refractory layers extremely fine with barrier properties against oxidation, the said process is characterized by the simultaneous implementation of at least one or a combination of the physical principles described below, namely:
Principe 1 : mise sous vide d’au moins une enceinte de traitement (11’) le niveaux de vide étant compris entre 10'2 et 108 mbar Principle 1: vacuum of at least one treatment enclosure (11 '), the vacuum levels being between 10 ' 2 and 10 8 mbar
Principe 2 : pour évaporer le matériau des cibles, utilisation d’un procédé PVD, c’est à dire au moins l’un des traitements suivants : EV, EBPVD, PVD, PLD, MBE, Arc-PVD, PC, PCM, PCT, HiTUS [Évaporation sous vide du substrat à déposer (EV), Dépôt physique en phase vapeur par faisceau d'électrons (EBPVD) , Pulvérisation cathodique (PVD et PC), Ablation par laser pulsé (PLD), Epitaxie par jets moléculaires (MBE) .Dépôt par arc électrique (Arc- PVD), Pulvérisation cathodique magnétron (PCM) , Pulvérisation cathodique triode (PCT) .Dépôt magnétron perfectionné dit à « Haute utilisation des cibles de pulvérisation » (HiTUS)] Principle 2: to evaporate the target material, use of a PVD process, ie at least one of the following treatments: EV, EBPVD, PVD, PLD, MBE, Arc-PVD, PC, PCM, PCT , HiTUS [Vacuum evaporation of the substrate to be deposited (EV), Physical vapor deposition by electron beam (EBPVD), Cathode sputtering (PVD and PC), Pulsed laser ablation (PLD), Molecular jet epitaxy (MBE) Electric arc deposit (Arc PVD), Magnetron cathode sputtering (PCM), Cathode sputtering triode (PCT). Advanced magnetron deposit says "High use of sputtering targets" (HiTUS)]
Principe 3 : utilisation de l’électricité statique, pour écarter de façon homogène les fibrilles (4f) des fils (13) & (14)  Principle 3: use of static electricity, to spread the fibrils (4f) of the wires (13) & (14) evenly
Principe 4 : utilisation d’un champ électrostatique, établi entre la cible (16) et les fibrilles (4f) pour guider les vapeurs depuis les cibles (6) vers le substrat = fibrilles (4f)  Principle 4: use of an electrostatic field, established between the target (16) and the fibrils (4f) to guide the vapors from the targets (6) to the substrate = fibrils (4f)
v' Principe 5 : utilisation d’un courant électrique pour chauffer les fibrilles (4f) Principe 6 = utilisation de la vitesse de défilement du fil (13) & (14) afin de maîtriser l’épaisseur du dépôt sur les fibrilles (4f)  v 'Principle 5: use of an electric current to heat the fibrils (4f) Principle 6 = use of the thread speed (13) & (14) in order to control the thickness of the deposit on the fibrils (4f)
. Nous revendiquons des fibres thermostables protégées contre l’oxydation et la combustion, à incorporer dans une matrice céramique ou métalliques à haute performance, destinées à réaliser des pièces et des structures dites chaudes tel que des avions hypersonique, des composants de réacteurs d’aéronef, des composants de réacteurs nucléaire, des tuyère de fusées, des corps de fusée à carburant solide ou hybride, des tubulures d’échappement, des turbines à gaz, les dites fibres thermostables sont des fibres de carbone, lesdites fibres de carbone étant . We are claiming thermostable fibers protected against oxidation and combustion, to be incorporated into a high performance ceramic or metallic matrix, intended to produce so-called hot parts and structures such as hypersonic planes, aircraft reactor components, components of nuclear reactors, rocket nozzles, solid or hybrid fuel rocket bodies, exhaust pipes, gas turbines, said thermostable fibers are carbon fibers, said carbon fibers being
constituées d’un faisceau de fibrilles d’un diamètre de 4 à 12 micromètres, chaque fibrille élémentaire étant revêtue, au moyen d’un procédé PVD (dépôt physique en phase vapeur), d’au moins une couche étanche et réfractaire, parfaitement uniforme, qui l’enveloppe intégralement et dont l’épaisseur radiale est comprise entre 0,5 et 900 nanomètres, PVD est un terme générique qui désigne l’une, ou une made up of a bundle of fibrils with a diameter of 4 to 12 micrometers, each elementary fibril being coated, by means of a PVD process (physical vapor deposition), with at least one tight and refractory layer, perfectly uniform , which envelops it entirely and whose radial thickness is between 0.5 and 900 nanometers, PVD is a generic term which designates one, or one
combinaison, des techniques suivantes : Évaporation sous vide du substrat à déposer, Dépôt physique en phase vapeur par faisceau d'électrons (EBPVD) , Pulvérisation cathodique, Ablation par laser pulsé (PLD), Epitaxie par jets combination of the following techniques: Vacuum evaporation of the substrate to be deposited, Physical vapor deposition by electron beam (EBPVD), Cathode sputtering, Pulsed laser ablation (PLD), Epitaxy by jets
moléculaires (MBE) .Dépôt par arc électrique (Arc-PVD), Dépôt magnétron molecular (MBE) .Deposition by electric arc (Arc-PVD), Magnetron deposit
perfectionné dit à « Haute utilisation des cibles de pulvérisation » (HiTUS), ce dernier procédé offre une grande productivité , une parfaite maîtrise de l’épaisseur du dépôt, de son homogénéité et la possibilité de déposer sur des fibres organiques à des températures comprises entre 20 et 1500°, suivant les réactions chimiques de surface souhaitées. improved said to "High use of spray targets" (HiTUS), this latter process offers high productivity, perfect control of the thickness of the deposit, its homogeneity and the possibility of depositing on organic fibers at temperatures between 20 and 1500 °, depending on the desired surface chemical reactions.
Les fibrilles (substrat) reçoivent un revêtement réfractaire, constitué d’une  The fibrils (substrate) receive a refractory coating, consisting of a
combinaison d’au moins une couche d’au moins l’un des métaux suivants et de leurs alliages : Niobium, Molybdène, Tantale, Tungstène, Rhénium, Nickel, Chrome, Titane, Zirconium, Hafnium, Iridium, Osmium, Ruthénium, notons qu’avec les procédés PVD revendiqués on obtient des couches métalliques homogènes, extrêmement fines et non oxydées, permettant de bénéficier, notamment, des excellentes propriété d’élongation à la rupture de certains métaux, notons que grâce à la PVD on peut réaliser des « alliages in situ » en utilisant des cibles métalliques différentes placées côte à côte, notons que grâce à la PVD on peut déposer plusieurs couches de métaux différents concentriquement autour du substrat, ceci améliore sensiblement l’étanchéité et l’effet barrière contre l’oxydation recherché.combination of at least one layer of at least one of the following metals and their alloys: Niobium, Molybdenum, Tantalum, Tungsten, Rhenium, Nickel, Chromium, Titanium, Zirconium, Hafnium, Iridium, Osmium, Ruthenium, it should be noted that with the claimed PVD processes homogeneous, extremely thin and non-oxidized metal layers are obtained, allowing to benefit, in particular, from the excellent elongation properties at break of certain metals, it should be noted that thanks to PVD it is possible to produce “alloys in situ” using different metal targets placed side by side, note that thanks to PVD several layers of different metals can be deposited concentrically around the substrate, this appreciably improves the sealing and the barrier effect against the desired oxidation.
De façon à optimiser le dépôt du revêtement par métaux réfractaire, le dépôt , peut être réalisé sur des fibrilles chauffées entre 250 et 1500°C afin d’obtenir la In order to optimize the deposition of the coating by refractory metals, the deposition can be carried out on fibrils heated between 250 and 1500 ° C. in order to obtain the
«carburation» d’une sous-couche de une à une dizaine d’épaisseurs atomique, entre le premier métal d’apport (de la première couche) et la fibrille de carbone, cette sous- couche carburée participe à la transition entre le métal et la fibrille, de plus, par exemple, un carbure de tungstène, offre des propriétés barrières à l’oxydation efficace, le reste de la couche supérieure du premier métal d’apport restant ledit métal pur d’apport. "Carburetion" of a sublayer of one to ten atomic thicknesses, between the first filler metal (of the first layer) and the carbon fibril, this carbureted sublayer participates in the transition between the metal and the fibril, in addition, for example, a tungsten carbide, offers barrier properties to effective oxidation, the remainder of the upper layer of the first filler metal remaining said pure filler metal.
le revêtement réfractaire, des fibrilles, peut être constitué d’au moins une couche d’au moins une céramique produite avec au moins l’un des métaux suivants : the refractory lining, fibrils, can consist of at least one layer of at least one ceramic produced with at least one of the following metals:
Niobium, Molybdène, Tantale, Tungstène, Rhénium, Nickel, Chrome, Titane, Niobium, Molybdenum, Tantalum, Tungsten, Rhenium, Nickel, Chromium, Titanium,
Zirconium, Hafnium, Iridium, Osmium, Ruthénium, Chrome, Calcium, Magnésium, combiné chimiquement avec un métalloïde tel le bore et le silicium ou un non-métal tel le carbone, le soufre, l’azote, le phosphore et l’oxygène et formant ainsi des céramiques telles que par exemple et par ordre d’intérêts croissant: Zirconium, Hafnium, Iridium, Osmium, Ruthenium, Chromium, Calcium, Magnesium, chemically combined with a metalloid such as boron and silicon or a non-metal such as carbon, sulfur, nitrogen, phosphorus and oxygen and thus forming ceramics such as for example and in ascending order of interest:
o Le Diborure de Zirconium (ZrB2) o Zirconium Diboride (ZrB2)
o Le Diborure de Titane (TiB2) o Titanium Diboride (TiB2)
o Le Diborure d'Hafnium (HfB2) o Hafnium Diboride (HfB2)
o Le Diborure de Rhénium (ReB2) o Rhenium Diboride (ReB2)
o Le Dioxyde de Zirconium (Zr02) o Zirconium Dioxide (Zr02)
o L’Oxyde de Magnésium (MgO) o Magnesium Oxide (MgO)
o Le Carbure de Tungstène (WC) o Tungsten Carbide (WC)
Notons que le fait de déposer plusieurs couches concentriques de céramiques autour du substrat, améliore sensiblement, l’étanchéité et l’effet barrière contre l’oxydation recherché. Le revêtement des fibrilles est constitué d’au moins une combinaison de revêtements métalliques, et d’au moins une couche de revêtements céramiques, tels que décrits précédemment, le fait de déposer plusieurs couches concentriques autour du substrat, et en particulier de combiner métaux et céramiques améliore sensiblement l’étanchéité et l’effet barrière contre l’oxydation recherché. Note that the fact of depositing several concentric layers of ceramics around the substrate significantly improves the sealing and the barrier effect against the desired oxidation. The coating of the fibrils consists of at least a combination of metallic coatings, and of at least one layer of ceramic coatings, as described above, the fact of depositing several concentric layers around the substrate, and in particular of combining metals and ceramics significantly improves the seal and the barrier effect against oxidation sought.
Le revêtement des fibrilles tel que défini précédemment, est enduit avec au moins l’un des surfactants suivants : nitrure de bore, carbone (graphite), disulfure de molybdène (M0S2), silane, bore, frite de verre, PEG (Polyéthylène glycol = Formule : The coating of the fibrils as defined above, is coated with at least one of the following surfactants: boron nitride, carbon (graphite), molybdenum disulfide (M0S2), silane, boron, glass frit, PEG (Polyethylene glycol = Formula :
C2nH4n+20n+1 ) . C2nH4n + 20n + 1).
Les fibrilles sont soigneusement débarrassées de toute pollution et de tout ensimage avant traitement PVD.  The fibrils are carefully rid of any pollution and any size before PVD treatment.
Les fibres sont placées préférentiellement sur des bobines (1 et 1’), dans la chambre de PVD. Ladite chambre est placée sous vide avec soit un gaz neutre soit des traces de gaz de réaction, tel l’oxygène Les fibrilles sont écartées dans la chambre de PVD par l’application d’un champ électrostatique entre les fibrilles (4) et le carter (3) de ladite chambre.  The fibers are preferably placed on spools (1 and 1 ’), in the PVD chamber. Said chamber is placed under vacuum with either a neutral gas or traces of reaction gas, such as oxygen The fibrils are separated in the PVD chamber by the application of an electrostatic field between the fibrils (4) and the casing (3) of said chamber.
Le ou les moyens de PVD (2) sont disposés de manière à permettre un traitement parfait des fibrilles.  The PVD means or means (2) are arranged so as to allow perfect treatment of the fibrils.
La matrice utilisée pour enrober les fibres et constituer d’un composite thermo structural est une céramique ou un métal.  The matrix used to coat the fibers and constitute a thermo structural composite is a ceramic or a metal.
REMARQUES :  NOTES:
Dans le cadre d’une production industrielle et afin de déposer plusieurs couches diferentes disposées concentriquement sur les fibrilles (4f), on peut :  Within the framework of an industrial production and in order to deposit several different layers arranged concentrically on the fibrils (4f), one can:
• Mettre en séries plusieurs enceintes de de traitement PVD (11’}, chaque  • Put in series several PVD treatment chambers (11 ’}, each
enceinte disposant de son propre générateur PVD (2, 2’) et de ses propres cibles de pulvérisation cathodique (16)  enclosure with its own PVD generator (2, 2 ’) and its own sputtering targets (16)
• Mettre en série dans une enceintes de de traitement PVD (1 1’) longue ,  • Put in series in a long PVD treatment enclosure (1 1 ’),
disposant d’un plasma long (6) et d’un ballon long (4), plusieurs zone de traitement différentes et donc cibles de pulvérisation cathodique (16) différentes placées en série le long du ballon (4), optionnellement des électroaimant de confinement (7) préférentiellement réglés à faible puissance, placés le long du plasma peuvent permettre de moduler la forme du plasma de façon a éviter la pollution d’une zone de traitement , par la suivante.  having a long plasma (6) and a long flask (4), several different treatment zones and therefore sputtering targets (16) different placed in series along the flask (4), optionally containment electromagnets (7) preferably set at low power, placed along the plasma can make it possible to modulate the shape of the plasma so as to avoid pollution of a treatment zone by the following.

Claims

R E V E N D I C A T I O N S PROCEDE DE FABRICATION DE FIBRES TERMOSTABLE A HAUTE TEMPERATURE CLAIMS METHOD FOR MANUFACTURING HIGH TEMPERATURE TERMOSTABLE FIBERS
1. Procédé destiné à réaliser des fibres à haute performance , thermostables jusqu’à 2000°C en atmosphère oxydante, le principe de base étant de recouvrir de façon homogène et parfaitement contrôlée toutes les fibrilles (4f) d’un fil (13) & (14) de une à plusieurs couches réfractaires concentrique extrêmement fines présentant des propriétés barrière contre l’oxydation, ledit procédé se caractérise par la mise en oeuvre simultanée d’au moins un ou une combinaison des principes physique décrits ci-après à savoir : 1. Process for producing high performance fibers, thermostable up to 2000 ° C in an oxidizing atmosphere, the basic principle being to cover all the fibrils (4f) in a homogeneous and perfectly controlled manner with a thread (13) & (14) of one to several extremely thin concentric refractory layers having barrier properties against oxidation, said method is characterized by the simultaneous implementation of at least one or a combination of the physical principles described below, namely:
Principe 1 : mise sous vide d’au moins une enceinte de traitement (11’) le niveau de vide étant compris entre 10'2 et 10 8 mbar Principle 1: vacuuming of at least one treatment enclosure (11 '), the vacuum level being between 10 ' 2 and 10 8 mbar
Principe 2 : pour évaporer le matériau des cibles, utilisation d’un procédé PVD, c’est à dire au moins l’un des traitements suivants : EV, EBPVD, PVD, PLD, MBE, Arc-PVD, PC, PCM, PCT, HiTUS [Évaporation sous vide du substrat à déposer (EV), Dépôt physique en phase vapeur par faisceau d'électrons (EBPVD) , Pulvérisation cathodique (PVD et PC), Ablation par laser pulsé (PLD), Epitaxie par jets moléculaires (MBE) .Dépôt par arc électrique (Arc- PVD), Pulvérisation cathodique magnétron (PCM) , Pulvérisation cathodique triode (PCT) .Dépôt magnétron perfectionné dit à « Haute utilisation des cibles de pulvérisation » (HiTUS)]  Principle 2: to evaporate the target material, use of a PVD process, i.e. at least one of the following treatments: EV, EBPVD, PVD, PLD, MBE, Arc-PVD, PC, PCM, PCT , HiTUS [Vacuum evaporation of the substrate to be deposited (EV), Physical vapor deposition by electron beam (EBPVD), Cathode sputtering (PVD and PC), Pulsed laser ablation (PLD), Molecular jet epitaxy (MBE) ) .Deposition by electric arc (Arc- PVD), Magnetron cathode sputtering (PCM), Triode cathode sputtering (PCT) .Stretched magnetron deposit says "High use of sputtering targets" (HiTUS)]
Principe 3 : utilisation de l’électricité statique, pour écarter de façon homogène les fibrilles (4f) des fils (13) & (14) afin de former le ballon (4)  Principle 3: use of static electricity, to spread the fibrils (4f) of the wires (13) & (14) evenly in order to form the balloon (4)
Principe 4 : utilisation d’un champ électrostatique, établi entre la cible (16) et les fibrilles (4f) pour guider les vapeurs ioniques depuis les cibles (6) vers le substrat = fibrilles (4f)  Principle 4: use of an electrostatic field, established between the target (16) and the fibrils (4f) to guide the ionic vapors from the targets (6) to the substrate = fibrils (4f)
Principe 5 : utilisation d’un courant électrique pour chauffer les fibrilles (4f) ' Principe 6 = utilisation de la vitesse de défilement du fil (13) & (14) afin de maîtriser l’épaisseur du dépôt sur les fibrilles (4f)  Principle 5: use of an electric current to heat the fibrils (4f) 'Principle 6 = use of the thread speed (13) & (14) in order to control the thickness of the deposit on the fibrils (4f)
2. Procédé selon la revendication 1 caractérisé par l’emploi de fibres de carbone (13) & (14) constituées d’un faisceau de fibrilles (4f) d’un diamètre de 4 à 12 micromètres, chaque fibrille élémentaire étant revêtue, au moyen d’un procédé PVD (dépôt physique en phase vapeur), d’au moins une couche barrière à l’oxygène, étanche et réfractaire, parfaitement uniforme, qui l'enveloppe intégralement et dont l’épaisseur radiale est comprise entre 0,5 et 900 nanomètres, 2. Method according to claim 1 characterized by the use of carbon fibers (13) & (14) consisting of a bundle of fibrils (4f) with a diameter of 4 to 12 micrometers, each elementary fibril being coated, at by means of a PVD (physical vapor deposition) process, of at least one oxygen barrier layer, waterproof and refractory, perfectly uniform, which completely envelops it and whose radial thickness is between 0.5 and 900 nanometers,
3. Procédés objets des revendications 1 et 2, caractérisé par le fait que le revêtement par métaux réfractaire, des fibrilles (4f), substrat, peut être réalisé sur des fibrilles chauffées entre l’ambiante et 2000°C afin d’obtenir une, carburation, d’une sous-couche d’une à une dizaine d’épaisseurs atomique, entre le premier métal d’apport, de la première couche, et la fibrille de carbone.  3. Objects of claims 1 and 2, characterized in that the coating with refractory metals, fibrils (4f), substrate, can be performed on fibrils heated between ambient and 2000 ° C in order to obtain a, carburetion, of a sublayer of one to ten atomic thicknesses, between the first filler metal, of the first layer, and the carbon fibril.
4. Procédés objets des revendications 1 à 3 caractérisée par le fait que les fibrilles (4f) sont soigneusement débarrassées de toute pollution et de tout ensimage avant traitement PVD de la revendication 1  4. Processes objects of claims 1 to 3 characterized in that the fibrils (4f) are carefully rid of any pollution and any size before PVD treatment of claim 1
5. Procédés, objets des revendications 1 à 4, dans le cadre d’une production industrielle, et afin de déposer plusieurs couches diferentes disposées  5. Processes, subjects of claims 1 to 4, within the framework of an industrial production, and in order to deposit several diferent layers arranged
concentriquement sur les fibrilles (4f), ledit procédé se caractérise par la mise en œuvre simultanée d’au moins une des solutions suivantes : concentrically on the fibrils (4f), said method is characterized by the simultaneous implementation of at least one of the following solutions:
• Mettre en séries plusieurs enceintes de de traitement PVD (1 1’), chaque enceinte disposant de son propre générateur PVD (2, 2’) et de ses propres cibles de pulvérisation cathodique (16)  • Put in series several PVD treatment chambers (1 1 ’), each chamber having its own PVD generator (2, 2’) and its own sputtering targets (16)
• Mettre en série dans une enceintes de de traitement PVD (11’) longue , disposant d’un plasma long (6) et d’un ballon long (4), plusieurs zone de traitement différentes et donc cibles de pulvérisation cathodique (16) différentes placées en série le long du ballon (4), optionnellement des électroaimant de confinement (7) préférentiellement réglés à faible puissance, placés le long du plasma peuvent permettre de moduler la forme du plasma de façon à éviter la pollution d’une zone de traitement , par la suivante.  • Put in series in a long PVD treatment enclosure (11 '), having a long plasma (6) and a long flask (4), several different treatment zones and therefore sputtering targets (16) different placed in series along the balloon (4), optionally containment electromagnets (7) preferably set at low power, placed along the plasma can allow to modulate the shape of the plasma so as to avoid pollution of an area of treatment, by the following.
6. Fibres modifiées selon les procédés objets des revendications 1 à 6, caractérisé par le fait que le revêtement réfractaire, des fibrilles (4f), substrat, est constitué d’au moins une couche d’au moins l’un des métaux suivants et de leurs alliages : Niobium, Molybdène, Tantale, Tungstène, Rhénium, Nickel, Chrome, 6. Fibers modified according to the methods which are the subject of claims 1 to 6, characterized in that the refractory coating, of fibrils (4f), substrate, consists of at least one layer of at least one of the following metals and of their alloys: Niobium, Molybdenum, Tantalum, Tungsten, Rhenium, Nickel, Chromium,
Titane, Zirconium, Hafnium, Iridium, Osmium, Ruthénium Titanium, Zirconium, Hafnium, Iridium, Osmium, Ruthenium
7. Fibres modifiées selon les procédés objets des revendications 1 à 6, caractérisé par le fait que le revêtement réfractaire des fibrilles (4f) est constitué d’au moins une couche concentrique d’au moins une céramique produite avec au moins l’un des métaux suivants : Niobium, Molybdène, Tantale, Tungstène, Rhénium, 7. Fibers modified according to the methods which are the subject of claims 1 to 6, characterized in that the refractory lining of the fibrils (4f) consists of at least one concentric layer of at least one ceramic produced with at least one of the following metals: Niobium, Molybdenum, Tantalum, Tungsten, Rhenium,
Nickel, Chrome, Titane, Zirconium, Hafnium, Iridium, Osmium, Ruthénium, Chrome, Calcium, Magnésium, combiné chimiquement avec un métalloïde tel le bore et le silicium ou un non-métal tel le carbone, le soufre, l’azote, le phosphore , le lanthane et l’oxygène et formant ainsi des céramiques telles que par exemple et par ordre d’intérêts croissant: Nickel, Chromium, Titanium, Zirconium, Hafnium, Iridium, Osmium, Ruthenium, Chromium, Calcium, Magnesium, chemically combined with a metalloid such as boron and silicon or a non-metal such as carbon, sulfur, nitrogen, phosphorus, lanthanum and oxygen and thus forming ceramics such as for example and in ascending order of interest:
o Le Diborure de Zirconium (ZrB2) o Zirconium Diboride (ZrB2)
o Le Diborure de Titane (TiB2) o Titanium Diboride (TiB2)
o Le Diborure d'Hafnium (HfB2) o Hafnium Diboride (HfB2)
o Le Diborure de Rhénium (ReB2) o Rhenium Diboride (ReB2)
o Le Dioxyde de Zirconium (Zr02) o Zirconium Dioxide (Zr02)
o L’Oxyde de Magnésium (MgO) o Magnesium Oxide (MgO)
o Le Carbure de Tungstène (WC) o Tungsten Carbide (WC)
o L'Hexaborure de Lanthane (LaB6) o Lanthanum Hexaborure (LaB6)
8. Fibres modifiées selon l’une des revendications 5 et 7 et la revendication de procédé 3, caractérisé par le fait le revêtement des fibrilles (4f) peut être constitué : d’au moins une combinaison de revêtements métalliques, tels que décrits dans la revendication 5, d’au moins une sous couche carburée telle que décrite dans la revendication 3, et d’au moins une couche de revêtements céramiques, tel que décrits dans la revendication 6.  8. Modified fibers according to one of claims 5 and 7 and the process claim 3, characterized in that the coating of the fibrils (4f) may consist of: at least a combination of metallic coatings, as described in claim 5, at least one carburetted under layer as described in claim 3, and at least one layer of ceramic coatings, as described in claim 6.
9. Fibres modifiées selon l’une des revendications 5 à 8, caractérisé par le fait le revêtement des fibrilles (4f) tel que défini précédemment, est enduit avec au moins l’un des surfactants suivants : nitrure de bore, carbone (graphite), disulfure de molybdène (M0S2), silane, bore, frite de verre, PEG (Polyéthylène glycol = Formule : C2nH4n+20n+l).  9. Modified fibers according to one of claims 5 to 8, characterized in that the coating of the fibrils (4f) as defined above, is coated with at least one of the following surfactants: boron nitride, carbon (graphite) , molybdenum disulfide (M0S2), silane, boron, glass frit, PEG (Polyethylene glycol = Formula: C2nH4n + 20n + l).
10. Composite thermostructural présentant une matrice céramique renforcée par des fibres modifiées selon l’une des revendications 5 à 9  10. Thermostructural composite having a ceramic matrix reinforced with modified fibers according to one of claims 5 to 9
11. Composite thermostructural présentant une matrice métallique renforcée par des fibres modifiées selon l’une des revendications 5 à 9  11. Thermostructural composite having a metallic matrix reinforced by modified fibers according to one of claims 5 to 9
PCT/FR2019/000139 2018-11-08 2019-08-26 Process for manufacturing fibres that are thermostable at high temperatures WO2020094929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1801169 2018-11-08
FR1801169A FR3088345B1 (en) 2018-11-08 2018-11-08 METHOD FOR MANUFACTURING HIGH TEMPERATURE TERMOSTABLE FIBERS

Publications (2)

Publication Number Publication Date
WO2020094929A1 true WO2020094929A1 (en) 2020-05-14
WO2020094929A4 WO2020094929A4 (en) 2020-07-23

Family

ID=66776383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/000139 WO2020094929A1 (en) 2018-11-08 2019-08-26 Process for manufacturing fibres that are thermostable at high temperatures

Country Status (2)

Country Link
FR (1) FR3088345B1 (en)
WO (1) WO2020094929A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501574A (en) * 2020-10-27 2021-03-16 东兴华鸿光学科技有限公司 Coating equipment for sunglasses
CN114231957A (en) * 2022-02-21 2022-03-25 北京航天天美科技有限公司 Composite sealing layer and sealing structure of composite material packaging box
CN115368166A (en) * 2022-07-29 2022-11-22 中国航发北京航空材料研究院 Ceramic microsphere coated nickel coating and preparation method thereof
WO2023184954A1 (en) * 2022-04-02 2023-10-05 重庆诺奖二维材料研究院有限公司 Molybdenum disulfide coating for fireproof flame-retardant cotton fabric and coating method therefor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1402994A (en) 1964-05-04 1965-06-18 Materiel Ceramique Moderne Improvements to firing ovens for ceramic or other products
FR1600826A (en) 1967-06-30 1970-08-03 Stabilisation of ascorbic acid with a coating of org
US4376804A (en) 1981-08-26 1983-03-15 The Aerospace Corporation Pyrolyzed pitch coatings for carbon fiber
US4376803A (en) 1981-08-26 1983-03-15 The Aerospace Corporation Carbon-reinforced metal-matrix composites
US4962070A (en) 1985-10-31 1990-10-09 Sullivan Thomas M Non-porous metal-oxide coated carbonaceous fibers and applications in ceramic matrices
US5021367A (en) 1987-06-25 1991-06-04 General Electric Company Fiber-containing composite
US5034267A (en) * 1988-03-04 1991-07-23 The Dow Chemical Company Carbonaceous fiber or fiber assembly with inorganic coating
US5244748A (en) 1989-01-27 1993-09-14 Technical Research Associates, Inc. Metal matrix coated fiber composites and the methods of manufacturing such composites
GB2279667A (en) 1991-03-11 1995-01-11 Minnesota Mining & Mfg Metal matrix composites
US5562966A (en) 1989-01-27 1996-10-08 Science Applications International Corporation Method of applying oxidation resistant coating on carbon fibers
CN108409348A (en) * 2018-03-19 2018-08-17 中南大学 A kind of device and method thereof of fiber surface deposited interfacial layer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1402994A (en) 1964-05-04 1965-06-18 Materiel Ceramique Moderne Improvements to firing ovens for ceramic or other products
FR1600826A (en) 1967-06-30 1970-08-03 Stabilisation of ascorbic acid with a coating of org
US4376804A (en) 1981-08-26 1983-03-15 The Aerospace Corporation Pyrolyzed pitch coatings for carbon fiber
US4376803A (en) 1981-08-26 1983-03-15 The Aerospace Corporation Carbon-reinforced metal-matrix composites
US4962070A (en) 1985-10-31 1990-10-09 Sullivan Thomas M Non-porous metal-oxide coated carbonaceous fibers and applications in ceramic matrices
US5021367A (en) 1987-06-25 1991-06-04 General Electric Company Fiber-containing composite
US5034267A (en) * 1988-03-04 1991-07-23 The Dow Chemical Company Carbonaceous fiber or fiber assembly with inorganic coating
US5244748A (en) 1989-01-27 1993-09-14 Technical Research Associates, Inc. Metal matrix coated fiber composites and the methods of manufacturing such composites
US5562966A (en) 1989-01-27 1996-10-08 Science Applications International Corporation Method of applying oxidation resistant coating on carbon fibers
GB2279667A (en) 1991-03-11 1995-01-11 Minnesota Mining & Mfg Metal matrix composites
CN108409348A (en) * 2018-03-19 2018-08-17 中南大学 A kind of device and method thereof of fiber surface deposited interfacial layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501574A (en) * 2020-10-27 2021-03-16 东兴华鸿光学科技有限公司 Coating equipment for sunglasses
CN114231957A (en) * 2022-02-21 2022-03-25 北京航天天美科技有限公司 Composite sealing layer and sealing structure of composite material packaging box
CN114231957B (en) * 2022-02-21 2022-05-27 北京航天天美科技有限公司 Composite sealing layer and sealing structure of composite material packaging box
WO2023184954A1 (en) * 2022-04-02 2023-10-05 重庆诺奖二维材料研究院有限公司 Molybdenum disulfide coating for fireproof flame-retardant cotton fabric and coating method therefor
CN115368166A (en) * 2022-07-29 2022-11-22 中国航发北京航空材料研究院 Ceramic microsphere coated nickel coating and preparation method thereof

Also Published As

Publication number Publication date
FR3088345A1 (en) 2020-05-15
WO2020094929A4 (en) 2020-07-23
FR3088345B1 (en) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2020094929A1 (en) Process for manufacturing fibres that are thermostable at high temperatures
EP2065486B1 (en) Method of depositing metal nanoparticles by physical deposition in vapour phase
US10822686B2 (en) Structure or structural member for high temperature applications and method and apparatus for producing thereof
FR3057580A1 (en) METHOD FOR COATING A SURFACE OF A SOLID SUBSTRATE WITH A LAYER COMPRISING A CERAMIC COMPOUND, AND THE COATED SUBSTRATE THUS OBTAINED
EP0906635B1 (en) Method for using a non-vaporisable getter
EP1522533B1 (en) Target destined for electron beam evaporation and its process of manufacture.
FR2742433A1 (en) THERMOSTRUCTURAL COMPOSITE MATERIALS WITH CARBON FIBER REINFORCEMENTS OR CARBON COATED, HAVING INCREASED OXIDATION RESISTANCE
FR2966455A1 (en) METHOD FOR COATING A PART OF A COATING AGAINST OXIDATION
CN108796454A (en) A kind of used by nuclear reactor zirconium cladding surface metal coating PVD preparation processes
FR3059322A1 (en) PIECE OF COMPOSITE MATERIAL
WO2013030484A1 (en) Ultra-refractory material that is stable in a wet environment and process for manufacturing same
FR2939789A1 (en) PROCESS FOR TREATING CERAMIC FIBERS
FR2990442A1 (en) ZIRCONIUM ALLOY FOR IMPROVING OXIDATION STRENGTH AT VERY HIGH TEMPERATURE AND METHOD OF MANUFACTURING THE SAME
EP0962545B1 (en) Ceramic coating having a low thermal conductivity
FR3058469A1 (en) TURBOMACHINE PIECE COATED WITH A THERMAL BARRIER AND METHOD FOR OBTAINING IT
Wu et al. Oxidation behavior of multilayer iridium coating on niobium substrate
Wen et al. Supersonic flame ablation resistance of W/ZrC coating deposited on C/SiC composites by atmosphere plasma spraying
FR3043411A1 (en) HIGH-TEMPERATURE THERMAL PROTECTION MULTI-LAYER CERAMIC COATING, IN PARTICULAR FOR AERONAUTICAL APPLICATION, AND PROCESS FOR PRODUCING THE SAME
EP1821584B1 (en) Method of depositing a thermal barrier by plasma torch
CN109437974B (en) C/SiC composite material with Mo-Si-B-O high-temperature oxidation-resistant coating and preparation method thereof
WO2021123680A1 (en) In-situ powder treatment for additive manufacturing in order to improve the thermal and/or electrical conductivity of the powder
WO2021123572A1 (en) In situ treatment of powders for additive manufacturing
Zimmermann et al. The potential of plasma activation for EB-PVD of EBC systems on CMC components
CA3044431A1 (en) Part made of composite material comprising an interphase layer of aluminium-doped boron nitride
Shijie et al. Ultra-high Temperature Ceramic Coatings: A Review on Preparation Technology and Development Prospect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19790258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19790258

Country of ref document: EP

Kind code of ref document: A1