WO2020094212A1 - Division de cellule pour réseaux non terrestres - Google Patents

Division de cellule pour réseaux non terrestres Download PDF

Info

Publication number
WO2020094212A1
WO2020094212A1 PCT/EP2018/080267 EP2018080267W WO2020094212A1 WO 2020094212 A1 WO2020094212 A1 WO 2020094212A1 EP 2018080267 W EP2018080267 W EP 2018080267W WO 2020094212 A1 WO2020094212 A1 WO 2020094212A1
Authority
WO
WIPO (PCT)
Prior art keywords
coverage area
radio beams
radio
beams
directed toward
Prior art date
Application number
PCT/EP2018/080267
Other languages
English (en)
Inventor
Jeroen Wigard
Istvan Zsolt Kovacs
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Priority to PCT/EP2018/080267 priority Critical patent/WO2020094212A1/fr
Publication of WO2020094212A1 publication Critical patent/WO2020094212A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations

Definitions

  • This disclosure relates to non-terrestrial networks. More particularly, this disclosure relates to telecommunications networks having base stations deployed in satellites and high-altitude platforms.
  • the present disclosure considers geostationary satellites, non-geostationary satellites, and airborne platforms, and covers both the bent-pipe scenario and the case where the base station (gNB) is on board such a satellite or platform.
  • Bent-pipe deployment refers to the process of sending back to Earth what comes in with only amplification and a shift from uplink frequency to downlink frequency. In the present disclosure, these will be collectively referred to as non-terrestrial base stations.
  • cells for cellular coverage on earth are moving.
  • the speed and changes of the movements of cells depend on the capability of the airborne platform to adjust the antenna beams being used to form a cell, and on the speed and height of the airborne platform, whether geostationary, high-altitude, or low-altitude.
  • the sizes of cells originating from non-terrestrial base stations depend on the beam footprint size, typical values of which, taken from 3GPP TR 38.811 , are shown in Table 1 below. It is clear that the cell sizes depend on the height of the non-terrestrial base station, including the ability of a base station on an airborne platform to form narrow beams. A beam footprint may also be changed dynamically within certain limits. It is also possible that one satellite or high-altitude platform (HAP) may produce more than one beam.
  • HAP high-altitude platform
  • a high- altitude platform station (HAPS) is a moving/flying base station over the intended coverage area at an elevated altitude of approximately twenty kilometers. Geostationary satellites usually orbit at an altitude of 36,000 kilometers above the equator.
  • the available satellite frequency bands and spectra for International Telecommunications Union (ITU) Region 1 which includes Europe, Africa, the former Soviet Union, Mongolia, and the Middle East west of the Persian Gulf, including Iraq, are summarized in Table 2 below. (See R1-1800781).
  • Most of the satellite bands specify frequency-division-duplex (FDD) operation for geostationary (GEO), non-GEO (medium orbit (MEO), low orbit (LEO)), and high-altitude platform system (HAPS).
  • FDD frequency-division-duplex
  • GEO geostationary
  • MEO medium orbit
  • LEO low orbit
  • HAPS high-altitude platform system
  • the largest available bandwidths are approximately 2 to 2.5 GHz (Ka, Q, Ku bands), while only 30 MHz to 1.3 GHz are available in the lower-frequency bands (S, L and C bands).
  • the S band ( ⁇ 2.lGHz) is the most promising frequency band to be used by both GEO, non-GEO and HAPS, due to its favorable propagation properties; likewise, the C-band ( ⁇ 3.5GHz) is a likely candidate for GEO and non-GEO 5G NR solutions.
  • frequency reuse is supported, and, therefore, the maximum channel bandwidth per cell (beam) is 1/3 or 1/4 of the spectrum listed in Table 2, where“2x” is meant to indicate that an FDD (DL/UL frequency division multiplexing) band is used.
  • the number of MHz or GHz indicates the available bandwidth. (See 3GPP TR 38.811). Table 2: Typical frequency bands and available satellite bandwidths
  • the capacity of a cell typically depends on the amount of spectrum available and the signal-to-interference-and-noise (SINR) conditions. As shown in Table 1 , cell sizes are considerably larger than those of conventional cellular cells. In addition, it is quite likely that non-terrestrial systems are noise-limited due to the large radio paths. In order to have a feasible system, the spectrum should be significantly larger, which is feasible looking at the numbers in Table 2, or the provided capacity per given area should be decreased compared to that of conventional cellular networks. The lower capacity may work quite well in many of the use cases, which can be imagined, such as 5G coverage on the oceans. At the same time, large cells may be beneficial to keep control-plane load, due to handover and the associated delays and gaps, low.
  • SINR signal-to-interference-and-noise
  • the problem being presently addressed is best expressed as how to deliver the right cell size as a combination of beam footprint and beam spectrum.
  • the right cell size is one which is able to deliver the right amount of capacity, and which keeps the number of mobility events (handovers) as low as possible, while keeping the amount of interference manageable.
  • Cell splitting can be used to get more capacity; this has heretofore been targeted in a more static manner, that is, through network planning, such as vertical or horizontal high-order sectorization.
  • gNB should be understood to mean“network node”.
  • the term“gNB” is used to denote a network node in 5G.
  • the present invention as described below, is not limited to 5G, but may be applicable to other generations yet to be developed.
  • “gNB” should be understood more broadly as a network node.
  • a method comprises: directing a radio beam of a plurality of radio beams toward a coverage area of a non-terrestrial base station; detecting a potential increase in a capacity demand in the coverage area; directing one or more additional radio beams of the plurality of radio beams toward the coverage area, wherein frequency reuse and narrow beams are employed to divide the coverage area into regions served by individual radio beams; detecting a decrease in the capacity demand in the coverage area; and reducing the number of radio beams of the plurality of radio beams directed toward the coverage area.
  • an apparatus comprises at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code being configured, with the at least one processor, to cause the apparatus to perform the following: direct a radio beam of a plurality of radio beams toward a coverage area of a non-terrestrial base station; detect a potential increase in a capacity demand in the coverage area; direct one or more additional radio beams of the plurality of radio beams toward the coverage area, wherein frequency reuse and narrow beams are employed to divide the coverage area into regions served by individual radio beams; detect a decrease in the capacity demand in the coverage area; and reduce the number of radio beams of the plurality of radio beams directed toward the coverage area.
  • an apparatus comprises means for directing a radio beam of a plurality of radio beams toward a coverage area of a non- terrestrial base station; means for detecting a potential increase in a capacity demand in the coverage area; means for directing one or more additional radio beams of the plurality of radio beams toward the coverage area, wherein frequency reuse and narrow beams are employed to divide the coverage area into regions served by individual radio beams; means for detecting a decrease in the capacity demand in the coverage area; and means for reducing the number of radio beams of the plurality of radio beams directed toward the coverage area.
  • a computer program product comprises a non-transitory computer-readable storage medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for performing: directing a radio beam of a plurality of radio beams toward a coverage area of a non-terrestrial base station; detecting a potential increase in a capacity demand in the coverage area; directing one or more additional radio beams of the plurality of radio beams toward the coverage area, wherein frequency reuse and narrow beams are employed to divide the coverage area into regions served by individual radio beams; detecting a decrease in the capacity demand in the coverage area; and reducing the number of radio beams of the plurality of radio beams directed toward the coverage area.
  • Figure 1 illustrates a first scenario where a temporary high-capacity demand, such as a high-speed train, enters the coverage area of three satellites.
  • a temporary high-capacity demand such as a high-speed train
  • Figure 2 illustrates a second scenario where a temporary high-capacity demand enters the coverage area of three satellites.
  • Figure 3 shows an embodiment of the present invention in which a combined wide beam and a high-capacity beam may be configured by a satellite.
  • Figure 4 shows a possible implementation of signaling between satellites to coordinate frequency reuse.
  • Figure 5 shows a simplified block diagram of certain apparatus according to various exemplary embodiments of the present invention.
  • Figure 6 shows an exemplary radio network in which the present invention may find use.
  • Figure 7 is a flow chart illustrating a method performed by a non-terrestrial base station in accordance with the present disclosure.
  • the capacity in a cell is too small, or is anticipated to be too small, through the movement of satellites or HAPs and/or user equipments, the number of beams from the satellites or HAPs, covering the same area, is increased.
  • the cells may start frequency reuse and use narrower beams with higher signal gain.
  • cell splitting is undone and a bigger cell is generated to replace many smaller cells.
  • cell splitting and frequency reuse is applied across the interfering cells to lower inter-satellite interference and even cellular-satellite system interference.
  • frequency reuse is meant the process of using the same radio frequencies on radio transmitter sites within a geographic area that are separated by sufficient distance to cause minimal interference with one another.
  • Figures 1 and 2 illustrate scenarios where a temporary high-capacity demand, such as a high-speed train, enters the coverage area of three satellites. It is assumed that the satellites are able to form beams and to configure a frequency reuse pattern among their own beams; furthermore, with the availability of inter-satellite communications, the three satellites can also coordinate their frequency reuse pattern to further minimize interference at the borders of their coverage areas.
  • a temporary high-capacity demand such as a high-speed train
  • a high-speed train 110 is shown entering a region covered by the footprints of three satellites or HAPS: SAT 1 footprint 1 12, SAT 2 footprint 114, and SAT 3 footprint 116.
  • Each of the satellites generates radio beams having frequencies fi, f 2 , f 3 , and f 4 .
  • each satellite Before high-speed train 1 10 enters the region covered by the three footprints 1 12, 114, 1 16, each satellite generates only one beam covering the entire area of its respective footprint 112, 1 14, 116 using all available bands (fi + f 2 + f 3 + f 4 ). In other words, the footprints 112, 114, 1 16 reuse the same available spectrum (fi + f 2 + f 3 + f 4 ).
  • the high-speed train 1 10, travelling along path or track 1 18, first enters the coverage area (footprint) of SAT 3, footprint 1 16, where it will require high radio capacity. Later, the high speed train 110 will require the same, when it passes into the SAT 2 footprint 1 14.
  • Figure 2 shows the resulting reuse pattern. Because the movement of the satellites along their orbits can be determined, and because the satellite system may know the trajectory of the high-speed train 210, SAT 2 and SAT 3 may coordinate with one another and, when required, dynamically form beams using a reuse scheme of the type shown in Figure 2.
  • the narrower beams shown provide a better signal-to -noise ratio (SNR) in their coverage area, and, thus, higher capacity.
  • SNR signal-to -noise ratio
  • Figure 3 shows another embodiment of the present invention in which embodiment a combined wide beam and a high-capacity beam may be configured by a satellite.
  • the high-speed train 310 enters the coverage area of SAT 3, that is, SAT 3 footprint 316, and requires high radio capacity.
  • the narrow beam using fi is dynamically generated to offer maximum capacity along the train path or track 318 across SAT 3 footprint 316, while a combined wide beam uses the remaining available spectrum (f 2 + f 3 + f 4 ).
  • the satellite may configure a narrow beam within the coverage area of a larger beam, as shown in Figure 3.
  • SAT 3 could then dynamically steer the beam (fi) to follow the movement of the high-speed train 310.
  • the cell-splitting trigger may be used to provide separate beams for DL (satellite -to-UE) and UL (UE-to-satellite), depending on the traffic load and interference conditions.
  • DL satellite -to-UE
  • UL UE-to-satellite
  • the reuse pattern example in Figure 2 could be applied for DL, while in FTL the wide -beam of Figure 1 is used.
  • Triggers may be based on interference or capacity.
  • the latter can be easily detected by a non-terrestrial base station by monitoring the resource usage of its own and neighboring cells, whereas interference can be detected by monitoring the performance of connections with user equipments and checking FTE measurements.
  • the frequency reuse in the footprint of one satellite must be coordinated with that of neighboring footprints to avoid interference between neighboring cells belonging to different satellites.
  • Figure 2 An example of this is provided in Figure 2.
  • Figure 4 shows a possible implementation of signaling between satellites to coordinate frequency reuse.
  • the signaling between the satellites can be direct through existing, prior-art inter satellite communications, or routed through one or several terrestrial base stations (gNBs) through the use of a bent-pipe deployment (see 3GPP TR 38.81 1).
  • a potential different implementation would be accomplished by having the satellites implement gNB functionalities (see 3GPP TR 38.811), and then the inter-gNB coordination would be implemented either directly via the inter-satellite links or relayed via the ground gateway(s) on the feeder link to each satellite.
  • the source satellite 402 when cell splitting is triggered for capacity or interference reasons in a cell under the control of a source satellite 402 (or non terrestrial base station), the source satellite 402 (non-terrestrial base station) signals a proposal to a target (neighboring) satellite 404 (non-terrestrial base station) handling a cell bordering that under the control of source satellite 402 on how to split frequency space at the cell border area and overlapping areas of their respective footprints (signal 406).
  • the target satellite 404 sends either an acknowledgment (ACK) or a counterproposal to the source satellite 402 in signal 408.
  • ACK acknowledgment
  • a counterproposal to the source satellite 402 in signal 408.
  • the source satellite 402 then sends either an acknowledgement (ACK) or a negative acknowledgment (NACK) to the target satellite 404 in response to the counterproposal, if one has been made, in signal 410. In either case, once there has been an acknowledgment, the source satellite 402 and the target satellite 404 start the cell splitting procedure.
  • ACK acknowledgement
  • NACK negative acknowledgment
  • a wireless network 501 is adapted for communication over a wireless link 51 1 with an apparatus, such as a mobile communication device, which is referred to as a UE 510, via a wireless network access node, such as a base station or relay station or remote radio head, and more specifically shown as a gNodeB (gNB) 512.
  • the network 501 may include a network element 514, which serves as a gateway to a broader network, such as a public switched telephone/data network and/or the Internet.
  • the UE 510 includes a controller, such as a computer or a data processor (DP) 510A, a computer-readable memory medium embodied as a memory (MEM) 510B, which stores a program of computer instructions (PROG) 510C, and a suitable radio frequency (RF) transmitter and receiver 510D for bi-directional wireless communications with the gNodeB (gNB) 512 via one or more antennas.
  • a controller such as a computer or a data processor (DP) 510A
  • MEM memory
  • PROG program of computer instructions
  • RF radio frequency
  • the gNodeB 512 also includes a controller, such as a computer or a data processor (DP) 512 A, a computer-readable memory medium embodied as a memory (MEM) 512B that stores a program of computer instructions (PROG) 512C, and a suitable RF transmitter and receiver 512D for communication with the UE 510 via one or more antennas.
  • the network element 514 also includes a controller, such as a computer or a data processor (DP) 514A, and a computer-readable memory medium embodied as a memory (MEM) 514B that stores a program of computer instructions (PROG) 514C.
  • the gNodeB 512 is coupled via a data/control path 513 to the network element 514.
  • the path 513 may be implemented as an S l interface when the network 501 is an LTE network.
  • the gNodeB 512 may also be coupled to another gNodeB or to an eNodeB via data/control path 515, which may be implemented as an X2 interface when the network 501 is an LTE network.
  • At least one of the PROGs 510C, 512C, and 514C is assumed to include program instructions that, when executed by the associated DP, enable the device to operate in accordance with the exemplary embodiments of this invention. That is, the exemplary embodiments of this invention may be implemented at least in part by computer software executable by the DP 510A of the UE 510, and/or by the DP 512A of the gNodeB 512, and/or by the DP 514A of the NE 514, or by hardware, or by a combination of software and hardware (and firmware).
  • the various embodiments of the EGE 510 can include, but are not limited to, cellular telephones; personal digital assistants (PDAs) having wireless communication capabilities; portable computers having wireless communication capabilities; image capture devices, such as digital cameras, having wireless communication capabilities; gaming devices having wireless communication capabilities; music storage and playback appliances having wireless communication capabilities; and Internet appliances permitting wireless Internet access and browsing, as well as portable units or terminals that incorporate combinations of such functions.
  • PDAs personal digital assistants
  • portable computers having wireless communication capabilities
  • image capture devices such as digital cameras, having wireless communication capabilities
  • gaming devices having wireless communication capabilities
  • music storage and playback appliances having wireless communication capabilities
  • Internet appliances permitting wireless Internet access and browsing, as well as portable units or terminals that incorporate combinations of such functions.
  • the computer-readable MEMs 510B, 512B, and 514B may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, flash memory, magnetic- memory devices and systems, optical-memory devices and systems, fixed memory and removable memory.
  • the DPs 510A, 512A, and 514A may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on a multicore processor architecture, as non-limiting examples.
  • the various DPs 510A, 512A, 514A may be implemented as one or more processors/chips, either or both of the EGE 510 and the gNodeB 512 may include more than one transmitter and/or receiver 510D, 512D, and particularly the gNodeB 512 may have its antennas mounted remotely from the other components of the gNodeB 512, such as for example tower-mounted antennas.
  • FIG. 6 shows an exemplary radio network in which the present invention may be practiced.
  • This architecture is valid for constellations of both GEO and LEO satellites.
  • the ISLs provide the Fl interface 602 between the different satellites 604 each implementing gNB-DU (distributed unit) functionalities.
  • at least one satellite is assumed to have an Fl interface to a Remote Radio Unit 606 on the ground.
  • the Remote radio Unit 606 implements the gNB-CU (centralized unit) functionalities.
  • the illustrated architecture allows for coordination by the gNB-CU of the spectrum frequency bands (fi, f 2 , f 3 , f 4 ) and coverage beams used on each of the satellites.
  • Figure 7 is a flow chart illustrating a method performed by a non-terrestrial base station in accordance with the present disclosure.
  • the non-terrestrial base station directs a radio beam of a plurality of radio beams toward a coverage area of the non terrestrial base station.
  • the non-terrestrial base station detects a potential increase in a capacity demand in the coverage area.
  • the non-terrestrial base station directs one or more additional radio beams of the plurality of radio beams toward the coverage area, wherein frequency reuse and narrow beams are employed to divide the coverage area into regions served by individual radio beams.
  • the non-terrestrial base station detects a decrease in the capacity demand in the coverage area.
  • the non-terrestrial base station reduces the number of radio beams of the plurality of radio beams directed toward the coverage area.
  • the various exemplary embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the invention is not limited thereto.
  • the integrated circuit, or circuits may comprise circuitry, as well as possibly firmware, for embodying at least one or more of a data processor or data processors, a digital signal processor or processors, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this invention.
  • gNB gNodeB 5G eNB
  • MEO Medium orbit satellite (7000km to 20000km altitude orbit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente invention porte sur un procédé qui consiste à diriger un faisceau radio d'une pluralité de faisceaux radio vers une zone de couverture d'une station de base non terrestre ; à détecter une augmentation potentielle d'une demande de capacité dans la zone de couverture ; à diriger un ou plusieurs faisceaux radio supplémentaires de la pluralité de faisceaux radio vers la zone de couverture, une réutilisation de fréquence et des faisceaux étroits étant utilisés pour diviser la zone de couverture en régions desservies par des faisceaux radio individuels ; à détecter une diminution de la demande de capacité dans la zone de couverture ; et à réduire le nombre de faisceaux radio de la pluralité de faisceaux radio dirigés vers la zone de couverture. L'invention porte également sur des appareils permettant de mettre en œuvre le procédé, et sur un produit programme informatique comprenant un support de stockage non transitoire lisible par ordinateur portant un code de programme informatique incorporé dedans destiné à être utilisé avec un ordinateur, le code de programme informatique comprenant un code permettant de mettre en œuvre le procédé.
PCT/EP2018/080267 2018-11-06 2018-11-06 Division de cellule pour réseaux non terrestres WO2020094212A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/080267 WO2020094212A1 (fr) 2018-11-06 2018-11-06 Division de cellule pour réseaux non terrestres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/080267 WO2020094212A1 (fr) 2018-11-06 2018-11-06 Division de cellule pour réseaux non terrestres

Publications (1)

Publication Number Publication Date
WO2020094212A1 true WO2020094212A1 (fr) 2020-05-14

Family

ID=64184074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/080267 WO2020094212A1 (fr) 2018-11-06 2018-11-06 Division de cellule pour réseaux non terrestres

Country Status (1)

Country Link
WO (1) WO2020094212A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910180A2 (fr) * 1997-10-17 1999-04-21 Hughes Electronics Corporation Système et méthode de pinceaux d'antenne multiples non uniformes pour satellite de communication
US20040092257A1 (en) * 2002-11-12 2004-05-13 Chung Kirby J. Scalable satellite area coverage
US20150263802A1 (en) * 2013-01-07 2015-09-17 Viasat, Inc. Satellite fleet deployment
US20170353960A1 (en) * 2016-06-06 2017-12-07 Google Inc. Systems and methods for dynamically allocating wireless service resources consonant with service demand density

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910180A2 (fr) * 1997-10-17 1999-04-21 Hughes Electronics Corporation Système et méthode de pinceaux d'antenne multiples non uniformes pour satellite de communication
US20040092257A1 (en) * 2002-11-12 2004-05-13 Chung Kirby J. Scalable satellite area coverage
US20150263802A1 (en) * 2013-01-07 2015-09-17 Viasat, Inc. Satellite fleet deployment
US20170353960A1 (en) * 2016-06-06 2017-12-07 Google Inc. Systems and methods for dynamically allocating wireless service resources consonant with service demand density

Similar Documents

Publication Publication Date Title
CN109792293B (zh) 卫星通信系统中的动态反向链路重传时间线
US6859652B2 (en) Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
CN103379435B (zh) 一种基于卫星移动通信系统的广播信息传输方法和设备
US7792488B2 (en) Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
CN110518965B (zh) 一种非同步轨道卫星对同步轨道卫星上行干扰规避方法
US7155161B2 (en) Communications apparatus and method
US7756482B2 (en) Scheduling method for wireless multihop relay communication systems and system thereof
US8340591B2 (en) Scheduling methods and systems for multi-hop relay in wireless communications
US8787903B2 (en) High capacity hybrid terrestrial/satellite cellular radio communication system
KR20170129143A (ko) Ngso 위성들을 위한 epfd 커버리지의 개선
AU2002228208A1 (en) Communication apparatus and method with links to mobile terminals via a satellite or a terrestrial network with partly reuse of the frequency band
Gaber et al. 5G and satellite network convergence: Survey for opportunities, challenges and enabler technologies
CN112887004A (zh) 一种通信方法及装置
Hokazono et al. Extreme coverage extension in 6G: Cooperative non-terrestrial network architecture integrating terrestrial networks
US20220368411A1 (en) Method for Interference Minimization and Optimization of Orbital Mobile Cellular Services
AU2002225801B2 (en) System and method of terrestrial frequency reuse using signal attenuation and dynamic
US20220104233A1 (en) Frequency adjustment in wireless transmission and reception
US8095145B2 (en) Method and system of distributing transmissions in a wireless data transmission system
WO2020094212A1 (fr) Division de cellule pour réseaux non terrestres
EP1940049A1 (fr) Procédé de planification pour système de communication à relais sans fil à plusieurs sauts, et système correspondant
WO2021102121A1 (fr) Système et procédé d'amélioration de performances de liaison avec conformateur de faisceau basé au sol
CN113364507B (zh) 一种信息处理方法、装置、设备及计算机可读存储介质
JP2010525666A (ja) 無線データ送信システムで送信を分配するための方法及びシステム
Qu et al. A Study of Irregular Repetition Slotted ALOHA Over LEO Satellite Channel with Capture Effect
Lee et al. Feasibility and Opportunities of Terrestrial Network and Non-Terrestrial Network Spectrum Sharing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799723

Country of ref document: EP

Kind code of ref document: A1