WO2020093994A1 - 承载侧网络系统、移固共存融合系统及其部署方法 - Google Patents

承载侧网络系统、移固共存融合系统及其部署方法 Download PDF

Info

Publication number
WO2020093994A1
WO2020093994A1 PCT/CN2019/115633 CN2019115633W WO2020093994A1 WO 2020093994 A1 WO2020093994 A1 WO 2020093994A1 CN 2019115633 W CN2019115633 W CN 2019115633W WO 2020093994 A1 WO2020093994 A1 WO 2020093994A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
core network
user plane
communication core
mobile
Prior art date
Application number
PCT/CN2019/115633
Other languages
English (en)
French (fr)
Inventor
宋雪雁
朱海东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19882617.4A priority Critical patent/EP3879779A4/en
Priority to US17/291,307 priority patent/US20220030438A1/en
Publication of WO2020093994A1 publication Critical patent/WO2020093994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2863Arrangements for combining access network resources elements, e.g. channel bonding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2852Metropolitan area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2858Access network architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2592Translation of Internet protocol [IP] addresses using tunnelling or encapsulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1043Gateway controllers, e.g. media gateway control protocol [MGCP] controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1053IP private branch exchange [PBX] functionality entities or arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L2012/4629LAN interconnection over a backbone network, e.g. Internet, Frame Relay using multilayer switching, e.g. layer 3 switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the embodiments of the present disclosure relate to the field of fixed-mobile convergence networks, for example, to a bearer-side network system, a mobile-solid coexistence fusion system, and a deployment method thereof.
  • NVMN Next Generation Mobile
  • 5G 5th Generation Mobile Communication Technology
  • the fixed communication network and the mobile communication network are two independent dedicated networks. In a short period of time, it is unrealistic to realize the complete integration of the fixed communication network and the mobile communication network in network deployment. Therefore, in the transitional stage, you can consider passing the metropolitan area Network convergence to achieve the coexistence and integration of mobile communication networks and fixed communication networks; mainstream mobile communication networks use Long Term Evolution (LTE) technology, and LTE mobile communication metropolitan area networks include the Metropolitan Internet Protocol (Internet Protocol, IP ) Network, metropolitan transport network and integrated access network, bearing level 7-10, complex bearing level, service scheduling path bypass, service forwarding process delay and other issues.
  • LTE Long Term Evolution
  • the embodiments of the present disclosure provide a bearer-side network system, a mobile-solid coexistence fusion system, and a deployment method thereof, which can solve the problems of excessive mobile communication service bearing levels, traffic bypass, and long network delay time.
  • An embodiment of the present disclosure provides a bearer-side network system, including: a mobile fixed-bearing IP metropolitan area network for implementing unified bearers for mobile communications and fixed communications, and a sink to the mobile fixed-bearing IP metropolitan area network
  • the user plane equipment of the mobile communication core network at the convergence layer, and the user plane equipment of the mobile communication core network is in communication connection with the mobile fixed bearer IP metropolitan area network.
  • An embodiment of the present disclosure also provides a mobile-solid coexistence fusion system, including: the bearer-side network system, the access-side network system, the multi-service gateway device (MSG) and the mobile communication core network control plane located on the core network side as described above Equipment; wherein, the MSG includes a fixed communication core network user plane device sinking to the convergence layer of the metropolitan area network and a fixed communication core network control plane device located on the core network side, and the bearer side network system includes mobile The user plane equipment of the communication core network is connected to the user plane equipment of the fixed communication core network.
  • MSG multi-service gateway device
  • the MSG includes a fixed communication core network user plane device sinking to the convergence layer of the metropolitan area network and a fixed communication core network control plane device located on the core network side
  • the bearer side network system includes mobile The user plane equipment of the communication core network is connected to the user plane equipment of the fixed communication core network.
  • An embodiment of the present disclosure also provides a method for deploying a bearer-side network system, including:
  • the mobile fixed-bearing IP metropolitan area network is set to realize a unified bearer for mobile communication and fixed communication;
  • the bearer-side network system includes: the mobile fixed bearer IP metropolitan area network and the mobile communication core network user plane equipment, the mobile communication core network user plane equipment and the mobile fixed bearer IP Metropolitan area network communication connection.
  • An embodiment of the present disclosure also provides a deployment method of a mobile-solid coexistence fusion system, including:
  • the user plane equipment of the mobile communication core network and the user plane equipment of the fixed communication core network are sunk to the convergence layer of the mobile fixed-bearing IP metropolitan area network, and the mobile fixed-bearing IP metropolitan area network is configured to realize the unification of mobile communication and fixed communication Bear
  • a mobile-solid coexistence fusion system which includes a bearer side network system, an access side network system, a multi-service gateway device (Multi-service Gateway, MSG), and a mobile communication core network control plane located on the core network side Equipment;
  • the bearer side network system includes: the mobile bearer IP metropolitan area network and the mobile communication core network user plane equipment, the mobile communication core network user plane equipment communicates with the mobile bearer IP metropolitan area network
  • the MSG includes the fixed communication core network user plane equipment and the fixed communication core network control plane equipment located on the core network side, and the mobile communication core network user plane equipment is connected to the fixed communication core network user plane equipment.
  • FIG. 1 is a schematic diagram of a reference architecture of a coexistence model in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a mobile-solid coexistence fusion system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an MSG according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a network architecture of a mobile-solid coexistence fusion system according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a network transformation process of a mobile-solid coexistence fusion system according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of implementing a mobile control service and a data service bearer in a mobile-solid coexistence fusion system according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of implementing the bearer service of a broadband user online service in a mobile-solid coexistence fusion system according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of implementing home broadband IPTV service bearing in a mobile-solid coexistence fusion system according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of a method for deploying a bearer-side network system according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a deployment method of a mobile-solid coexistence fusion system according to an embodiment of the present disclosure.
  • the International Standards Organization Broadband Forum (BBF) and the 3rd Generation Partnership Project (3GPP) have carried out standardization cooperation in the field of Fixed Mobile Convergence (FMC).
  • the cooperation work is in progress.
  • the functions related to the fixed communication network are carried out in BBF, and the required functions for the mobile communication network are carried out in 3GPP.
  • the purpose of this standardized cooperation work is to realize the network structure and business of the fixed communication network and the mobile communication network.
  • Deep integration at the level the purpose of integration is to uniformly access different types of access networks to the same 5G core network.
  • the BBF standards organization has given three evolution routes for the standard specifications of fixed-mobile integration:
  • Integration model the access network through the introduction of wireline 5G access network (Wireline-5G Access Network, W-5GAN) equipment to achieve the integration and evolution of 5G core network (5G Core, 5GC), this is integration The ultimate goal of evolution.
  • W-5GAN Wirelessline-5G Access Network
  • 5G Core 5G Core
  • Inter-working model by continuing to use Broadband Network Gateway (BNG) equipment in the fixed communication network, adding interworking equipment 5G fixed mobile interworking function (5G Fixed Mobile Inter-working Function, 5G-FMIF ) Equipment to achieve the integration and evolution of 5GC. This is the transitional stage of convergence and evolution.
  • BNG Broadband Network Gateway
  • 5G-FMIF 5G Fixed Mobile Inter-working Function
  • Coexistence model (Co-existence model).
  • the fusion characteristics of the coexistence model are: the fixed communication network and the mobile communication network adopt a unified transmission metropolitan area network, but the original network deployment is also used for access and core, thereby reducing the deployment and maintenance of the metropolitan area network. This is recommended for early deployment of convergence evolution.
  • the network integration deployment of the integrated model and the interworking model has made significant changes to the interworking equipment of the fixed communication network and the 5G core network; the integrated model uses the interworking equipment 5G access gateway function (5G Access Gateway Function, 5G-AGF) to access 5G core network, the interworking model uses the interworking equipment 5G-FMIF to access the 5G core network to realize user registration and authentication.
  • the interworking equipment supports N1, N2, N3 and other interface technologies defined by 3GPP in the communication control plane. For the coexistence model, since the access network and the core network still use the equipment in the related technologies, but only the integration of the transport bearer network and the changes to the existing network equipment are small, it can be used as an early solution to the evolution of 5G mobile communication network convergence.
  • FIG. 1 is a schematic diagram of the reference architecture of the coexistence model in the embodiment of the present disclosure.
  • AN represents Access Network (AN)
  • 5G-RG represents 5G residential gateway (5G Residential Gateway, 5G-RG)
  • FMIF represents Fixed Mobile Interworking Function (Fixed Mobile Inter-working Function, FMIF)
  • FN-RG stands for Fixed Network Gateway (FN-RG)
  • ARCF Access Network Resource Control Function
  • U stands for User Reference Point (U) Indicates that V indicates a network reference node (V reference point, V).
  • An embodiment of the present disclosure proposes a mobile-solid coexistence fusion system, which can achieve solid-mobile fusion.
  • the mobile-solid coexistence fusion system may include: a bearer side network system, an access side network system, a core side network system, and the Internet;
  • the bearer-side network system is connected to the access-side network system, the core-side network system, and the Internet, respectively.
  • the access-side network system is configured to implement mobile communication access and fixed communication access; in practical applications, evolvable base stations (eNodeB, eNB) can be used to implement mobile communication access, and home user clients ( Customer's Premises) to achieve fixed communication access.
  • eNodeB evolvable base stations
  • eNodeB evolvable base stations
  • home user clients Customer's Premises
  • the bearer-side network system includes: a mobile fixed-bearing IP metropolitan area network for implementing unified bearer for mobile and fixed communications, and a mobile communication core network user plane sinking to the convergence layer of the mobile fixed-bearing IP metropolitan area network Equipment, the user plane equipment of the mobile communication core network is in communication connection with the mobile fixed bearer IP metropolitan area network.
  • the fixed communication network bearer level is generally level 3
  • sinking the user plane equipment of the mobile communication core network to the convergence layer of the mobile fixed bearer IP metropolitan area network can solve the problem of excessive mobile communication service bearer levels , Traffic bypass and long network delay time, on the one hand, it can reduce the bearer level of the mobile communication network, realize the flattening of the bearer network, and reduce the network delay; on the other hand, the mobile communication metropolitan area network communicates with the fixed communication metropolitan area
  • the network is integrated into the same metropolitan area bearer network to reduce network construction costs and improve network operation and maintenance efficiency.
  • the core-side network system may include a mobile-fixed converged control plane network
  • the mobile-solid converged control plane network may include a mobile communication core network control plane device and a fixed communication core network control plane device
  • the bearer side network system further includes a fixed The communication core network user plane device, wherein the mobile communication core network user plane device is connected to the fixed communication core network user plane device, and the fixed communication core network user plane device is set to implement data communication on the forwarding plane.
  • a mobile communication core network user plane device and a fixed communication core network user plane device may be used to form a mobile-fixed converged user plane network, that is, referring to FIG. Solid integration user plane network.
  • a newly added multi-service gateway device can be used to implement a fixed communication core network user plane device (MSG User Plane, MSG-U) and a fixed communication core network control plane device (MSG-U).
  • MSG Control Plane MSG Control Plane (MSG-C); in one embodiment, the MSG includes a fixed communication core network user plane device located in the mobile-fixed converged user plane network and a fixed communication core network control plane device located in the mobile-consolidated control plane network ; Among them, the user plane equipment of the fixed communication core network sinks to the convergence layer of the above-mentioned mobile fixed bearer IP metropolitan area network.
  • the Internet is set up to enable users of mobile and fixed communication networks to access the Internet.
  • the mobile-solid coexistence and fusion system may further include: a content delivery network (Content Delivery Network, CDN), which is configured to provide a fixed communication network interactive network television (Internet Protocol Television, IPTV) service , That is, access to fixed-line IPTV user video sources can be achieved.
  • CDN Content Delivery Network
  • IPTV Internet Protocol Television
  • the service gateway (SGW) and the public data network gateway (PGW) of the Long Term Evolution (LTE) core network are the evolved packet core (Evolved Packet Core) in the LTE mobile communication network.
  • EPC is an important network element, in which SGW realizes the RAN backhaul service through the S1-U interface and terminates in the user plane of the S1 interface, and the PGW realizes the connection with the Internet user plane through the SGi interface.
  • the user plane equipment of the mobile communication core network includes PGW and SGW.
  • SGW and PGW may be combined, which is referred to as S / PGW for short.
  • the bearer level is reduced to Level 3, to achieve a greatly flattened mobile bearer network; that is, through the flattening of the network to reduce network construction costs, reduce network transmission delay, and improve network maintenance efficiency.
  • the fixed communication core network user plane equipment (MSG-U) and the fixed communication core network control plane equipment (MSG-C) in the MSG are set to be implemented by a transfer control separation architecture; in an embodiment, the transfer The control separation architecture can be implemented based on Software Defined Network (SDN) and Network Function Virtualization (NFV); MSG can be a transfer control separation architecture (also called a transfer control separation architecture).
  • SDN Software Defined Network
  • NFV Network Function Virtualization
  • MSG can be a transfer control separation architecture (also called a transfer control separation architecture).
  • the software virtualizes MSG equipment of SDN and NFV technology to realize unified convergence access to the fixed communication network and the mobile communication network, thereby realizing the coexistence and integration of fixed communication network and mobile communication network services.
  • the above-mentioned MSG based on SDN and NFV technology adopts a transfer control separation architecture
  • the control plane implements service control through software virtualization
  • the forwarding plane uses a dedicated service board (eg, based on a network processor (Network Processor, NP) ))
  • NP Network Processor
  • the MSG can be fully implemented using existing network equipment.
  • the MSG can be implemented using a virtual edge network gateway device (virtual Border Network Gateway, vBNG);
  • vBNG can include user plane vBNG (vBNG User Plane, vBNG-U) and control It consists of vBNG (vBNG Control Plane, vBNG-C);
  • vBNG-C is set up for broadband user access protocol negotiation, user authentication, access control, user management, etc.
  • vBNG-U is set up to implement the forwarding of user data services.
  • the user plane device of the mobile communication core network is connected to the aggregation network of the mobile bearer IP metropolitan area network through the S1-U interface of the SGW; the user plane device of the mobile communication core network passes the SGi interface of the PGW Connect the user plane equipment of the fixed communication core network; as the S / PGW-U sinks to the convergence layer, the original mobile communication core network user plane equipment uses the S1-U interface for the SGW forwarding function, which can be sunk to the convergence layer S / PGW-U is connected to a metropolitan area convergence network (that is, a converged network of a fixed-bearing IP metropolitan area network) to implement user plane data communication; the SGi interface of the original mobile communication core network user plane equipment and the Internet directly sinks to Fixed communication network convergence layer, connected to MSG-U, to achieve data access to the Internet.
  • a metropolitan area convergence network that is, a converged network of a fixed-bearing IP metropolitan area network
  • the bearer-side network system further includes a switch (SW, SW) device, and the S / PGW-U can be connected to the MSG-U through the SW device.
  • the SW device can be used to realize the connection between the S / PGW-U and the MSG-U. Communicate with each other.
  • the SW device is set to support transparent transmission of the S1-U interface service and SGi interface service of the S / PGW-U; in one embodiment, the SW device is not a necessary device, but is based on geographical considerations And add optional equipment.
  • the mobile communication core network user plane device is connected to the fixed communication core network user plane device through the SW device.
  • a point-to-point protocol (Point-to-Point Protocol, PPP) can be carried through an Extensible Virtual Local Area Network (VXLAN) tunnel ) Transmission and management of user access signaling; in one embodiment, for mobile services, S / PGW-U and the mobile communication core network control plane device (S / PGW Control Plane, S / PGW-C) Establish a first VXLAN tunnel between them, and use the first VXLAN tunnel to realize the transmission of mobile communication signaling and management channel information; for fixed communication network broadband and IPTV services, etc., a second VXLAN can be established between vBNG-U and vBNG-C For the tunnel, the second VXLAN tunnel is used to realize the service signaling and management channel information transmission of the fixed communication network.
  • VXLAN Extensible Virtual Local Area Network
  • a second VXLAN tunnel is established between the control plane device of the fixed communication core network and the user plane device of the fixed communication core network, and the second VXLAN tunnel is configured to implement service signaling of the fixed communication network and Management channel information transmission.
  • the fixed communication core network control plane device is configured to deliver VXLAN tunnel service configuration information to the fixed communication core network user plane device through the network configuration NetConf protocol.
  • the fixed communication core network user plane device is configured to encapsulate the received protocol message with a VXLAN message, and send the VXLAN message encapsulated by the VXLAN function module to the fixed communication core network control plane device.
  • the control plane device of the fixed communication core network is configured to decapsulate the VXLAN message, uniformly allocate address resources, and use the OpenFlow protocol to deliver user forwarding entries to the user plane device of the fixed communication core network.
  • the CDN sinks to the convergence layer of the fixed-line communication network and hangs sideways to the MSG-U to implement the user's IPTV service's nearest access and reduce the access delay of the IPTV service.
  • the MSG supports Network Address Translation (NAT) function, which can be set to convert the user's private network IP address to the public network IP address to achieve IPTV access to the CDN.
  • NAT Network Address Translation
  • a dual-plane backup method is adopted, and both the control plane communication network and the user plane communication network are deployed with active and standby backups to ensure protection switching in the event of a network failure.
  • a first backup network for backing up the working state of the user plane communication network may be set in the above mobile-solid coexistence fusion system, and the first backup network and the user plane communication network are set to adopt the master-standby mode Work, when the user plane communication network fails, the first backup network can be used to implement protection switching;
  • the user plane communication network includes the mobile communication core network user plane equipment and the fixed communication core network user plane At least one of the devices.
  • a second backup network for backing up the working state of the control plane communication network may be set in the above mobile-solid coexistence fusion system, and the second backup network and the control plane communication network are set to adopt the main standby mode Work, when the control plane communication network fails, the second backup network can be used to implement protection switching;
  • the control plane communication network includes the mobile communication core network control plane device and the fixed communication core network control plane At least one of the devices.
  • the embodiments of the present disclosure provide a mobile-solid coexistence fusion system based on the reference structure of the fixed-mobile fusion coexistence model proposed by BBF (refer to FIG. 1), combined with the actual communication network deployment, which can realize the mobile communication network and fixed
  • the coexistence and integration of communication networks can reduce the capital expenditure (Capex Expenditure, CAPEX) and operating costs (Operating Expense) of operators through the integration of fixed communication networks and mobile communication networks at the metropolitan area network level on the premise of using existing network equipment. , OPEX), to enhance the user's broadband Internet service experience, to prepare for the later evolution of fixed communication networks and mobile communication networks to the ultimate integration of 5G.
  • the problems of excessive mobile communication service bearing levels, traffic bypass and long network delay time are solved.
  • the IPTV network is flattened, reducing the network construction cost (Total Cost of Ownership, TCO), improving the transmission efficiency of the network, and reducing the maintenance difficulty and maintenance of the metropolitan area network Cost, reduce the impact rate of faults, and shorten the resolution time of fault location.
  • FIG. 3 is a schematic structural diagram of the MSG of the embodiment of the present disclosure.
  • the MSG may include management plane operation support Systems (Operations Support System, OSS), MSG-C and MSG-U; MSG-C can communicate with the management plane OSS and MSG-U respectively, MSG-C can pass the Northbound Access (Northbound Access Point Interface, NBAP) protocol For data interaction with the management plane OSS, MSG-C can interact with MSG-U through the Southbound Access (Interface, SBAP) protocol.
  • OSS Management plane operation support Systems
  • MSG-C can communicate with the management plane OSS and MSG-U respectively
  • MSG-C can pass the Northbound Access (Northbound Access Point Interface, NBAP) protocol
  • NBAP Northbound Access Point Interface
  • SBAP Southbound Access
  • MSG-C is configured to receive external commands (external commands from OSS) through the northbound interface protocol, and implement service configuration, service monitoring, and user of the MSG on the forwarding plane of the MSG through the southbound interface protocol Management and control of the plane; in one embodiment, MSG-C can realize the separation of transfer control through software virtualization.
  • MSG-U is set to obtain service configuration information from MSG-C, and at the same time report the service monitoring information of the user plane device of the fixed communication core network to the control plane device of the fixed communication core network; in one embodiment, MSG-U may pass The Southbound (SB) interface obtains service configuration information through MSG-C, and reports service monitoring information to MSG-C in real time to achieve unified control by MSG-C.
  • MSG-U can be implemented with high-performance business boards (such as NP).
  • the MSG-C device and the MSG-U device may be arranged separately, and one MSG-C may simultaneously implement control and management of one or more MSG-Us.
  • the user plane and the control plane of the MSG realize the separation of transfer control, which can realize the complete decoupling of the control plane and the forwarding plane, realize the flexible deployment of services, and reduce the operator CAPEX through the independent upgrade of the network element structure.
  • the investment promotes the flexible development and deployment of the operator's network element structure and network architecture.
  • FIG. 4 a schematic diagram of the network architecture of the mobile-solid coexistence fusion system of the embodiment of the present disclosure is given in FIG. 4.
  • the dotted line indicates control packets, and the implementation indicates forwarding packets; MSG-C and S / PGW-C is in the control cloud, and MSG-U is in the forwarding cloud.
  • a user of a mobile communication service When a user of a mobile communication service (such as a mobile phone user) initiates a network access request, it can be based on the Universal Service Optical Transport Network (Universal Transport Port Network Over Fiber, UTN) Convergence, mobile network data services (referred to as mobile network data services for short), UTN access, to achieve communication with S / PGW-U; fixed communication services may include broadband services, IPTV services, dedicated line services or VPN services, optionally, The access to fixed communication services can be realized through SW; the MSG-U in the forwarding cloud can be accessed to the Internet through the Core Router (CR).
  • UTN Universal Service Optical Transport Network
  • MSG-U in the forwarding cloud can be accessed to the Internet through the Core Router (CR).
  • CR Core Router
  • an embodiment of the present disclosure proposes a network transformation process of the foregoing mobile-solid coexistence fusion system.
  • FIG. 5 is a schematic diagram of a network transformation process of a mobile-solid coexistence fusion system according to an embodiment of the present disclosure. As shown in FIG. 5, the process may include steps 500 to 507.
  • Step 500 Network topology hierarchy division.
  • the control plane network is named a first-level control data center (Data Center, DC).
  • the user plane network is named the secondary forwarding DC, and the bearer network between the DCs, the IP metropolitan area network, and the eNB are set.
  • Step 501 Multi-level DC network resource deployment.
  • DC internal resource deployment planning and service planning involve processing at different network topologies.
  • the primary control DC is the control plane network
  • S / PGW-C is set to implement the core network S1-MME interface service
  • MSG-C is set to implement protocol negotiation, user authentication, and access for broadband user access Control, user management, etc.
  • the secondary forwarding DC is a forwarding plane network, including S / PGW-U and MSG-U.
  • a new SW device can be added to achieve communication between the two.
  • the SW device is optional .
  • the first-level control DC and the second-level forwarding DC communication between the DCs is implemented through a bearer network, an IP metropolitan area network, etc .; the second-level forwarding DC and the Internet have a CR bearer network connection.
  • the service deployment here includes the service deployment of the control plane network and the forwarding plane network; the transmission of control plane signaling and management information is carried by the VXLAN tunnel; when the data forwarding plane is transmitted, such as segment routing (Segment routing) can be used Routing (SR) technology realizes the encapsulation of data services.
  • segment routing Segment routing
  • SR Routing
  • Step 502 The first-level control DC network is built.
  • the internal network of the first-level control DC is built.
  • the internal network of the first-level control DC includes S / PGW-C and MSG-C.
  • the MSG-C requires side verification, authorization, and accounting (Authentication, Authorization, Accounting, AAA) server and dynamic host configuration protocol (Dynamic Host Configuration Protocol, DHCP) server, set up for user AAA identity authentication, identity authorization, IP address acquisition and accounting functions; primary control DC and secondary forward DC
  • DHCP Dynamic Host Configuration Protocol
  • Step 503 The secondary forwarding DC network is built.
  • a secondary forwarding DC internal network is constructed.
  • the secondary forwarding DC internal network includes S / PGW-U and MSG-U, which are respectively set as the core network user plane services sink to the city after the convergence of mobile communication networks The mobile service communication at the domain convergence layer and the user plane service forwarding of the separation control architecture of the fixed communication network service.
  • S / PGW-U may not directly communicate with the IP MAN It is connected through the SW device, so when the internal network of the secondary forwarding DC is built, at least one SW device is added to connect with the IP metropolitan area network aggregation device, S / PGW-U, and MSG-U.
  • SW equipment IP metropolitan area network convergence equipment, and MSG-U.
  • MSG-U supports the NAT function, and hangs the CDN network. After the NAT address conversion, the user requests to the CDN video source.
  • Step 504 Build a network across DCs.
  • cross-DC network construction can be achieved in the following ways:
  • the S1-U wireless between the IP metropolitan area network, SW equipment, and S / PGW-U can be realized by adding SW devices Access network (Radio Access Network, RAN) business communication, and at the same time, support SGi interface business communication between S / PGW-U, SW equipment, and MSG-U; SR technology can be used to implement outer tunnel deployment.
  • SW devices Access network Radio Access Network, RAN
  • SR technology can be used to implement outer tunnel deployment.
  • the two-level forwarding DC communicates with the bearer network to achieve access to the Internet.
  • Step 505 Mobile VXLAN tunnel deployment.
  • the deployment of the mobile VXLAN tunnel means the opening of the mobile communication service VXLAN tunnel; through the opening of the mobile communication service VXLAN tunnel, the logical communication between S / PGW-C and S / PGW-U can be achieved.
  • the premise of establishing logical communication is that there is a certain IP route reachable link between the network elements; after the route is established, the deployment of the mobile communication network VXLAN tunnel is carried out.
  • Step 506 Fixed network VXLAN tunnel deployment.
  • the fixed network VXLAN tunnel deployment means the establishment of the fixed communication service VXLAN tunnel; through the establishment of the fixed communication service VXLAN tunnel, the logical communication between the MSG-C and the MSG-U can be realized, and the above logical communication is established
  • the premise is that there is a certain IP route reachable link between the network elements; after the route is established, the fixed communication network VXLAN tunnel is deployed.
  • Step 507 Typical service deployment and verification, and the process ends.
  • a typical service may be a network convergence service; the verification of the network convergence service may verify the operation of the converged service by loading some basic services, and then verify the feasibility of the network convergence; for example, it may be Through the fixed communication network IP connection protocol (Internet Protocol over Ethernet, IPoE), point-to-point connection protocol (Point to Point Protocol over Ethernet, PPPoE) user authentication, verify the reliability of the basic business operation of the fixed communication network, and through mobile S1- The transmission of MME signaling messages verifies the feasibility of the operation of mobile network services.
  • IP connection protocol Internet Protocol over Ethernet, IPoE
  • PPPoE Point to Point Protocol over Ethernet
  • the following several examples can be used to illustrate the unified bearer implementation manner of different services on the mobile-solid coexistence fusion system.
  • FIG. 6 is a schematic diagram of realizing the carrying of mobile control services and data services in a mobile-solid coexistence fusion system of an embodiment of the present disclosure. As shown in FIG. 6, the dotted lines with arrows indicate control packets, and the solid lines with arrows indicate data packets , The thick solid line indicates the VXLAN tunnel.
  • the eNB can be connected to the S / PGW-C in the primary control DC through the IP bearer network, so as to realize the bearer of the mobile S1-MME service control plane signaling and management traffic.
  • L3 Layer 3 logical link between S / PGW-C and S / PGW-U is opened.
  • the first VXLAN tunnel uses the public network address of the metropolitan area network as the end address of the VXLAN tunnel and is set to be carried on the IP metropolitan area network. Core network control signaling.
  • the eNodeB user registration authentication process may be implemented using method one or method two, where,
  • Method 1 The eNB user registration request passes through the IP metropolitan area network, and is connected by S / PGW-U to S / PGW-C to complete the signaling processing of S1-MME.
  • the signaling processing includes: user access authentication, Security certification and mobility control, etc .;
  • Method 2 The eNB user registration request is connected to the S / PGW-C via the original transport network (transport network in the related art) to perform S1-MME signaling processing, including: user access authentication, security authentication, and mobility control Wait.
  • the above method one and method two may be mutually backup.
  • the embodiment of the present disclosure may adopt method one to implement the eNB user registration request.
  • the eNB user data service is connected to the S / PGW-U via the IP metropolitan area network and sent by the MSG-U to the Internet to achieve network access to the mobile user data plane.
  • the bearer of mobile S1-MME control services and network access services can be completed.
  • FIG. 7 is a schematic diagram of realizing the carrying of broadband users ’Internet access services in the mobile-solid coexistence fusion system according to an embodiment of the present disclosure. As shown in FIG. 7, the dotted line with arrows indicates control packets, and the solid line with arrows indicates data packets. The solid line indicates the VXLAN tunnel.
  • a user's personal computer can be connected to an IP metropolitan area network, and then connected to the MSG-U, to achieve a logical connection to the MSG-C.
  • PC Personal Computer
  • L3 Layer 3 logical link between MSG-U and MSG-C is opened, so that IP routing is reachable.
  • a second VXLAN tunnel is configured between MSG-U and MSG-C, and the second VXLAN tunnel uses the public network address of the metropolitan area network as the end address of the VXLAN tunnel and is set to carry the MSG-C to the MSG -Signaling information between U.
  • the home user's PC broadband service registration request goes through MSG-U to MSG-C, and the registration authentication of PPPoE or IPoE users of the home user's broadband service is completed through the MSG-C side-mounted AAA server (AAA Server).
  • AAA Server AAA server
  • the home user's PC broadband service IP address allocation request passes through MSG-U to MSG-C, and the MSG-C side-mounted DHCP server (DHCP Server) completes the home user's broadband service IP address allocation.
  • DHCP Server MSG-C side-mounted DHCP server
  • the fixed-line home broadband user can access the Internet (Internet).
  • FIG. 8 is a schematic diagram of implementing a home broadband IPTV service bearer in a mobile-solid coexistence fusion system according to an embodiment of the present disclosure. As shown in FIG. 8, the dotted line with arrows indicates control packets, and the solid line with arrows indicates data packets. The solid line indicates the VXLAN tunnel.
  • a request sent by a set-top box (STB) of a home broadband IPTV user can be connected to the convergence layer of the metropolitan area network through the IP metropolitan area network, and then connected to the MSG-U, MSG-U equipment side Hang the CDN.
  • STB set-top box
  • L3 Layer 3 logical link between MSG-U and MSG-C is opened, so that IP routing is reachable.
  • a second VXLAN tunnel is configured between MSG-U and MSG-C, and the second VXLAN tunnel uses the public network address of the metropolitan area network as the end address of the VXLAN tunnel and is set to carry the MSG-C to the MSG -IPTV service control signaling between U.
  • the service registration request sent by the home broadband user STB is transmitted to MSG-C via MSG-U, and the registration authentication of the IPTV user is obtained through the MSG-C side-mounted AAA server.
  • the request for obtaining the IP address of the IPTV service is transmitted to the MSG-C through the MSG-U, and the IP address of the IPTV user is allocated through the MSG-C side-mounted DHCP server.
  • IPTV user authentication and user IP address allocation After completing IPTV user authentication and user IP address allocation, apply for a multicast video source to complete IPTV service communication.
  • a unified bearer for mobile communication services and fixed communication services can be completed based on the above-mentioned mobile-solid coexistence fusion system.
  • the control plane interface protocol between MSG-C and MSG-U is selected according to the actual situation.
  • MSG-C delivers the configuration information of the VXLAN tunnel service to the forwarding plane of MSG-U through the NetConf protocol according to service requirements.
  • the MSG-U forwarding plane sends the received protocol packets of different services to the MSG-C control plane for processing via VXLAN packet encapsulation.
  • the MSG-C control plane decapsulates the VXLAN message to uniformly allocate address resources.
  • the OpenFlow protocol is used to deliver the user forwarding entry to the corresponding MSG-U forwarding plane to complete the MSG-C control.
  • An embodiment of the present disclosure proposes a bearer-side network system, including: a mobile fixed-bearing IP metropolitan area network for implementing unified bearers for mobile communications and fixed communications, and a sink to the mobile fixed-bearing IP metropolitan area network
  • the user plane equipment of the mobile communication core network at the convergence layer, and the user plane equipment of the mobile communication core network is in communication connection with the mobile fixed bearer IP metropolitan area network.
  • the system further includes: a fixed communication core network user plane device sinking to the convergence layer of the mobile bearer IP metropolitan area network, and the mobile communication core network user plane device is connected to the fixed communication Core network user plane equipment.
  • the system further includes a SW device; the mobile communication core network user plane device is connected to the fixed communication core network user plane device through the SW device.
  • the SW device is configured to support transparent transmission of S1-U interface services and SGi interface services to the user plane device of the mobile communication core network.
  • the fixed communication core network user plane device has a CDN sinking to the convergence layer of the fixed communication network.
  • the bearer-side network system further includes: a first backup network, the first backup network and the user plane communication network are configured to work in a master-standby mode, and the user plane communication network includes the mobile At least one of the user plane equipment of the communication core network and the user plane equipment of the fixed communication core network.
  • the mobile communication core network user plane equipment includes PGW and SGW.
  • the user plane device of the mobile communication core network is connected to the aggregation network of the mobile bearer IP metropolitan area network through the S1-U interface of the SGW.
  • the bearer side network system further includes: a fixed communication core network user plane device sinking to the convergence layer of the mobile bearer IP metropolitan area network; the mobile communication core network user plane device passes through The SGi interface of the PGW is connected to the user plane equipment of the fixed communication core network.
  • the embodiments of the present disclosure provide a method for deploying a bearer-side network system.
  • FIG. 9 is a flowchart of a method for deploying a bearer-side network system according to an embodiment of the present disclosure. As shown in FIG. 9, the process may include steps 9010 to 9020.
  • Step 9010 Sink the user plane equipment of the mobile communication core network to the convergence layer of the mobile fixed-bearing IP metropolitan area network, where the mobile fixed-bearing IP metropolitan area network is configured to realize a unified bearer for mobile communication and fixed communication;
  • Step 9020 Build a bearer-side network system
  • the bearer-side network system includes: the fixed bearer IP metropolitan area network and the mobile communication core network user plane equipment, the mobile communication core network user plane equipment and the mobile Fixed-bearing IP metropolitan area network communication connection.
  • the embodiments of the present disclosure propose a deployment method of a mobile-solid coexistence fusion system.
  • FIG. 10 is a flowchart of a method for deploying a mobile-solid coexistence fusion system according to an embodiment of the present disclosure. As shown in FIG. 10, the process may include steps 10010 to 10020.
  • Step 10010 Sink the user plane equipment of the mobile communication core network and the user plane equipment of the fixed communication core network to the convergence layer of the mobile fixed bearer IP metropolitan area network.
  • the mobile fixed bearer IP metropolitan area network is configured to implement Unified bearer of communication.
  • Step 10020 Construct a mobile-solid coexistence fusion system, which includes a bearer-side network system, an access-side network system, an MSG, and a mobile communication core network control plane device located on the core network side;
  • the bearer-side network system Including: the mobile fixed bearer IP metropolitan area network and the mobile communication core network user plane equipment, the mobile communication core network user plane equipment is in communication connection with the mobile fixed bearer IP metropolitan area network;
  • the MSG includes the A fixed communication core network user plane device and a fixed communication core network control plane device located on the core network side, the mobile communication core network user plane device is connected to the fixed communication core network user plane device.
  • the structure of the mobile-solid coexistence fusion system and the service bearing method of the mobile-solid coexistence fusion system have been described in the foregoing embodiments.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the present disclosure may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer usable storage media (including disk storage and optical storage, etc.) containing computer usable program code.
  • each flow and / or block in the flowchart and / or block diagram and a combination of the flow and / or block in the flowchart and / or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种承载侧网络系统、移固共存融合系统及其部署方法,所述承载侧网络系统包括:用于实现对移动通信和固定通信的统一承载的移固承载IP城域网、以及下沉至所述移固承载IP城域网的汇聚层的移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接。

Description

承载侧网络系统、移固共存融合系统及其部署方法
本申请要求在2018年11月05日提交中国专利局、申请号为201811309129.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及固移融合网络领域,例如涉及一种承载侧网络系统、移固共存融合系统及其部署方法。
背景技术
国际标准组织下一代移动网络(Next Generation Mobile Network,NGMN)在第五代移动通信技术(the 5th Generation Mobile Communication Technology,5G)白皮书中,明确了对固移融合网络的需求:为实现消费者端到端业务的无缝体验,5G系统应支持固移融合,同时,对于不同的接入类型的运营商用户,可通过统一的用户数据库及信息系统,完成独立的认证和计费,不限固定网络或移动网络。
固定通信网络和移动通信网络是两个的独立专用网络,短期内,实现固定通信网络与移动通信网络的完全融合,在网络部署上是不现实的,因此,在过渡阶段,可以考虑通过城域网的融合来实现移动通信网络与固定通信网络的共存融合演进;主流移动通信网络采用长期演进(Long Term Evolution,LTE)技术,LTE移动通信城域网络包括了城域互联网协议(Internet Protocol,IP)网、城域传送网及综合接入网,承载层级为7-10级,存在承载层级复杂,业务调度路径绕行,业务转发过程时延增大等问题。
发明内容
本公开实施例提供了一种承载侧网络系统、移固共存融合系统及其部署方法,能够解决移动通信业务承载层级过多,流量绕行及网络延时时间长等问题。
本公开实施例提供了一种承载侧网络系统,包括:用于实现对移动通信和固定通信的统一承载的移固承载IP城域网、以及下沉至所述移固承载IP城域网的汇聚层的移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接。
本公开实施例还提供了一种移固共存融合系统,包括:上述记载的承载侧网络系统、接入侧网络系统、多业务网关设备(MSG)和位于核心网侧的移动 通信核心网控制面设备;其中,所述MSG包括下沉至所述城域网的汇聚层的固定通信核心网用户面设备和位于核心网侧的固定通信核心网控制面设备,所述承载侧网络系统包括的移动通信核心网用户面设备连接所述固定通信核心网用户面设备。
本公开实施例还提供了一种承载侧网络系统的部署方法,包括:
将移动通信核心网用户面设备下沉至移固承载IP城域网的汇聚层,所述移固承载IP城域网设置为实现对移动通信和固定通信的统一承载;
构建承载侧网络系统,所述承载侧网络系统包括:所述移固承载IP城域网和所述移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接。
本公开实施例还提供了一种移固共存融合系统的部署方法,包括:
将移动通信核心网用户面设备和固定通信核心网用户面设备下沉至移固承载IP城域网的汇聚层,所述移固承载IP城域网设置为实现对移动通信和固定通信的统一承载;
构建移固共存融合系统,所述移固共存融合系统包括承载侧网络系统、接入侧网络系统、多业务网关设备(Multi-service Gateway,MSG)和位于核心网侧的移动通信核心网控制面设备;所述承载侧网络系统包括:所述移固承载IP城域网和所述移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接;所述MSG包括所述固定通信核心网用户面设备和位于核心网侧的固定通信核心网控制面设备,所述移动通信核心网用户面设备连接所述固定通信核心网用户面设备。
附图说明
图1为本公开实施例中共存模型的参考架构的示意图;
图2为本公开实施例的移固共存融合系统的结构示意图;
图3为本公开实施例的MSG的结构示意图;
图4为本公开实施例的移固共存融合系统的网络架构体系示意图;
图5为本公开实施例的移固共存融合系统的网络改造流程的示意图;
图6为本公开实施例的移固共存融合系统中实现移动控制业务及数据业务的承载的示意图;
图7为本公开实施例的移固共存融合系统中实现宽带用户上网业务的承载的示意图;
图8为本公开实施例的移固共存融合系统中实现家庭宽带IPTV业务的承载的示意图;
图9为本公开实施例的承载侧网络系统的部署方法的流程图;
图10为本公开实施例的移固共存融合系统的部署方法的流程图。
具体实施方式
以下结合附图及实施例,对本公开进行进行说明。此处所描述的实施例仅仅用以解释本公开,并不用于限定本公开。
相关技术中,国际标准组织宽带论坛(Broadband Forum,BBF)和第三代合作项目(the 3rd Generation Partnership Project,3GPP),在固移融合(Fixed Mobile Convergence,FMC)领域进行了标准化合作工作,标准化合作工作正在开展过程中,其中,固定通信网络相关的功能在BBF展开,移动通信网络的需求功能则在3GPP展开,此标准化合作工作的目的是实现固定通信网络和移动通信网络在网络结构及业务层面的深度融合,融合的宗旨是将不同类型的接入网统一接入到同一张5G核心网。BBF标准组织对固移融合的标准规范,给出了三条演进路线:
1.整合模型(Integration model),接入网通过引入有线5G接入网(Wireline-5G Access Network,W-5GAN)设备,实现与5G核心网(5G Core,5GC)的融合演进,此为融合演进的终极目标。
2.互通模型(Inter-working model),通过在固定通信网络继续沿用宽带网络网关(Broadband Network Gateway,BNG)设备,加入互通设备5G固定移动互通功能(5G Fixed Mobile Inter-working Function,5G-FMIF)设备,来实现与5GC的融合演进。此为融合演进的过渡阶段。
3.共存模型(Co-existence model)。共存模型的融合特点是:固定通信网络和移动通信网络走统一的传输城域网,但对于接入和核心还沿用原网络部署,以此减少对城域网的部署和维护。此为融合演进的前期部署推荐。
整合模型和互通模型的网络融合部署,对固定通信网络和5G核心网络的互通设备作了较大改动;整合模型采用互通设备5G接入网关功能(5G Access Gateway Function,5G-AGF)接入到5G核心网,互通模型采用互通设备5G-FMIF接入到到5G核心网,实现用户的注册、认证等。互通设备在通信控制面支持3GPP定义的N1、N2、N3等接口技术。对于共存模型,由于接入网和核心网还是沿用相关技术中的设备,只是传输承载网的融合,对现网设备改动较小,因此,可作为到5G移动通信网络融合演进的早期方案。BBF对共存场景应用模型 进行了说明(参见BBF FMC-407文件),也给出了共存模型的参考架构,图1为本公开实施例中共存模型的参考架构的示意图。图1中,AN表示接入网络(Access Network,AN),5G-RG表示5G住宅网关(5G Residential gateway,5G-RG),FMIF表示固定移动互通功能(Fixed Mobile Inter-working Function,FMIF),FN-RG表示固网家庭网关(Fixed Network Residential Gateway,FN-RG),ARCF表示接入网络资源控制功能(Access network Resource Control Function,ARCF),U表示用户侧参考节点(U reference point,U)表示,V表示网络侧参考节点(V reference point,V)。
基于上述记载的内容,提出以下多个实施例。
实施例一
本公开实施例提出了一种移固共存融合系统,可以实现固移融合。
图2为本公开实施例的移固共存融合系统的结构示意图,如图2所示,该移固共存融合系统可以包括:承载侧网络系统、接入侧网络系统、核心侧网络系统和因特网;承载侧网络系统分别连接接入侧网络系统、核心侧网络系统和因特网。
在一实施例中,接入侧网络系统设置为实现移动通信接入和固定通信接入;实际应用中,可以利用演进型基站(eNodeB,eNB)实现移动通信接入,利用家庭用户客户端(Customer Premises)实现固定通信接入。
承载侧网络系统包括:用于实现对移动通信和固定通信的统一承载的移固承载IP城域网、以及下沉至所述移固承载IP城域网的汇聚层的移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接。
本公开实施例中,由于固定通信网络承载层级一般为3级,因而,将移动通信核心网用户面设备下沉至移固承载IP城域网的汇聚层,可以解决移动通信业务承载层级过多,流量绕行及网络延时时间长等问题,一方面可以减少移动通信网络的承载层级,实现承载网络的扁平化,降低网络时延;另一方面移动通信城域网通过与固定通信城域网络融合到同一个城域承载网,降低网络建设成本,提升网络运维效率等。
在一实施例中,核心侧网络系统可以包括移固融合控制面网络,移固融合控制面网络可以包括移动通信核心网控制面设备和固定通信核心网控制面设备;承载侧网络系统还包括固定通信核心网用户面设备,其中,移动通信核心网用户面设备连接所述固定通信核心网用户面设备,固定通信核心网用户面设备,设置为实现转发面的数据通信。
示例性地,可以利用移动通信核心网用户面设备和固定通信核心网用户面设备构成移固融合用户面网络,即,参照图2,承载侧网络系统可以包括移固承载IP城域网和移固融合用户面网络。
本公开实施例中,可以利用一个新增的多业务网关设备(Multi-service Gateway,MSG)实现固定通信核心网用户面设备(MSG User Plane,MSG-U)和固定通信核心网控制面设备(MSG Control Plane,MSG-C);在一实施例中,MSG包括位于移固融合用户面网络中的固定通信核心网用户面设备和位于移固融合控制面网络中的固定通信核心网控制面设备;其中,固定通信核心网用户面设备下沉至上述移固承载IP城域网的汇聚层。
因特网设置为实现移动通信和固定通信网络用户的上网访问。
在一实施例中,参照图2,该移固共存融合系统还可以包括:内容分发网络(Content Delivery Network,CDN),CDN设置为提供固定通信网络交互式网络电视(Internet Protocol Television,IPTV)服务,即可以实现固网IPTV用户视频源访问。
相关技术中,长期演进(Long Term Evolution,LTE)核心网的服务网关(Service Gateway,SGW)和公用数据网网关(Public Data Network Gateway,PGW)是LTE移动通信网络中演进分组核心(Evolved Packet Core,EPC)的重要网元,其中,SGW通过S1-U接口实现RAN回传业务在S1接口用户面终结,PGW通过SGi接口实现与因特网用户面连接。
本公开实施例中,移动通信核心网用户面设备包括PGW和SGW,本公开实施例中,可以将SGW和PGW合并,简称为S/PGW。为解决移动通信LTE网络承载层级多,及业务绕行的问题,通过将移动通信核心网用户面设备(S/PGW User Plane,S/PGW-U)下沉至汇聚层,将承载层级缩减为3级,从而实现移动承载网络的极大扁平化;即,通过网络扁平化改造,降低网络建设成本,降低网络传送时延,及提升网络维护效率等。
可选地,MSG中的固定通信核心网用户面设备(MSG-U)和固定通信核心网控制面设备(MSG-C)设置为采用转控分离架构实现;在一实施例中,所述转控分离架构可以基于软件定义网络(Software Defined Network,SDN)和网络功能虚拟化(Network Function Virtualization,NFV)实现;MSG可以为转控分离体系架构(也称为转控分离架构),通过构建基于软件虚拟化SDN、NFV技术的MSG设备来实现对固定通信网络和移动通信网络的统一汇聚接入,从而实现固定通信网络和移动通信网络业务的共存融合。
在一实施例中,基于SDN和NFV技术实现的上述MSG,采用转控分离架 构,控制面通过软件虚拟化实现业务控制,转发面采用专用业务板(如:基于网络处理器(Network Processor,NP))的高性能转发,克服X86软转发的性能瓶颈,满足电信级网络的大连接会话、高带宽的运营需求。
可选地,MSG可以充分利用现网设备实现,例如,MSG可以采用虚拟边缘网络网关设备(virtual Border Network Gateway,vBNG)实现;vBNG可以包括用户面vBNG(vBNG User Plane,vBNG-U)和控制面vBNG(vBNG Control Plane,vBNG-C)组成;vBNG-C设置为宽带用户接入的协议协商、用户认证、接入控制、用户管理等,vBNG-U设置为实现用户数据业务的转发。
可选地,所述移动通信核心网用户面设备通过所述SGW的S1-U接口连接所述移固承载IP城域网的汇聚网络;移动通信核心网用户面设备通过所述PGW的SGi接口连接所述固定通信核心网用户面设备;由于S/PGW-U下沉至汇聚层,原移动通信核心网用户面设备用于SGW转发功能的S1-U接口,可以通过下沉至汇聚层的S/PGW-U与城域汇聚网络(即移固承载IP城域网的汇聚网络)连接,实现用户面数据通信;原移动通信核心网用户面设备与因特网直连的SGi接口,下沉到固定通信网络汇聚层,连接到MSG-U,实现到互联网的数据访问。
可选地,承载侧网络系统还包括交换机(switch,SW)设备,S/PGW-U可以通过SW设备连接MSG-U,如此,利用SW设备可以实现S/PGW-U与MSG-U间的相互通信。实际应用中,SW设备设置为支持对S/PGW-U的S1-U接口业务及SGi接口业务的透传;在一实施例中,SW设备并不是必须的设备,而是基于地理位置的考虑而增加的可选设备。在一实施例中,所述移动通信核心网用户面设备通过所述SW设备连接所述固定通信核心网用户面设备。
可选地,对于移动通信核心网或固定通信核心网的控制面通信,可以通过可扩展虚拟局域网(Virtual Extensible Local Area Network,VXLAN)隧道来承载点到点协议(Point-to-Point Protocol,PPP)等用户接入信令的传输及管理;在一实施例中,对于移动业务,可以在S/PGW-U与移动通信核心网控制面设备(S/PGW Control Plane,S/PGW-C)之间建立第一VXLAN隧道,利用第一VXLAN隧道实现移动通信信令及管理通道的信息传输;对于固定通信网络宽带及IPTV业务等,可以在vBNG-U和vBNG-C之间建立第二VXLAN隧道,利用第二VXLAN隧道实现固定通信网络业务信令及管理通道的信息传输。
在一实施例中,所述移动通信核心网控制面设备和所述移动通信核心网用户面设备之间具有处于连通状态的三层逻辑链路。
在一实施例中,所述固定通信核心网控制面设备和所述固定通信核心网用户面设备之间具有处于连通状态的三层逻辑链路。
在一实施例中,所述固定通信核心网控制面设备和所述固定通信核心网用户面设备之间建立有第二VXLAN隧道,所述第二VXLAN隧道设置为实现固定通信网络业务信令及管理通道的信息传输。
在一实施例中,所述固定通信核心网控制面设备设置为通过网络配置NetConf协议将VXLAN隧道业务配置信息下发到所述固定通信核心网用户面设备。
所述固定通信核心网用户面设备设置为对接收到的协议报文进行VXLAN报文封装,将经所述VXLAN功能模块封装得到的VXLAN报文发送至所述固定通信核心网控制面设备。
所述固定通信核心网控制面设备设置为解封装所述VXLAN报文,对地址资源进行统一分配,采用OpenFlow协议向所述固定通信核心网用户面设备下发用户转发表项。
可选地,CDN下沉至固网通信网络汇聚层,侧挂到MSG-U,用以实现用户IPTV服务的就近获取,降低IPTV业务的访问时延。
可选地,MSG支持网络地址转换(Network Address Transport,NAT)功能,可以设置为将用户私网IP地址转换到公网IP地址,实现到CDN的IPTV访问。
可选地,在业务部署上,采用双平面备份方式,控制面通信网络和用户面通信网络均部署主备备份,确保在网络故障情况下的保护切换。
在一实施例中,可以在上述移固共存融合系统,设置用于对用户面通信网络的工作状态进行备份的第一备份网络,第一备份网络和用户面通信网络设置为采用主备模式进行工作,在用户面通信网络出现故障时,可以利用第一备份网络实现保护切换;在一实施例中,用户面通信网络包括所述移动通信核心网用户面设备和所述固定通信核心网用户面设备中的至少一种设备。
在一实施例中,可以在上述移固共存融合系统,设置用于对控制面通信网络的工作状态进行备份的第二备份网络,第二备份网络和控制面通信网络设置为采用主备模式进行工作,在控制面通信网络出现故障时,可以利用第二备份网络实现保护切换;在一实施例中,控制面通信网络包括所述移动通信核心网控制面设备和所述固定通信核心网控制面设备中的至少一种设备。
可以看出,本公开实施例基于BBF提出的固移融合共存模型参考结构(参照图1),并结合实际通信网络部署情况,提供了一种移固共存融合系统,可以实现移动通信网络与固定通信网络共存融合,可以在利用现网设备的前提下,通过城域网层面的固定通信网络与移动通信网络的融合,降低运营商的资本性支出(Capital Expenditure,CAPEX)和运营成本(Operating Expense,OPEX), 提升用户的宽带上网业务体验,为后期固定通信网络及移动通信网络演进到5G终极融合统一做准备。
本公开实施例中,通过将S/PGW-U下沉至移固承载IP城域网的汇聚层,来解决移动通信业务承载层级过多,流量绕行及网络延时时间长等问题,同时,通过将CDN下沉至汇聚层,实现对IPTV网络的扁平化改造,降低了网络建设成本(Total Cost of Ownership,TCO),提升了网络的传输效率,并降低城域网的维护难度和维护成本,降低故障的影响率,并缩短故障定位的解决时间。
通过上述记载的内容,可以看出,本公开实施例可以基于新增的设备MSG来实现,图3为本公开实施例的MSG的结构示意图,如图3所示,MSG可以包括管理面操作支持系统(Operations Support System,OSS)、MSG-C和MSG-U;MSG-C可以分别与管理面OSS和MSG-U进行通信,MSG-C可以通过北向接口(Northbound Access Point Interface,NBAP I)协议与管理面OSS进行数据交互,MSG-C可以通过南向接口(Southbound Access Point Interface,SBAP I)协议与MSG-U进行数据交互。
实际应用中,MSG-C设置为通过北向接口协议接收外部指令(来自于OSS的外部指令),通过南向接口协议实现对所述MSG的转发面的业务配置、业务监控及所述MSG的用户面的管理控制等;在一实施例中,MSG-C可以通过软件虚拟化实现转控分离。
MSG-U设置为从MSG-C获取业务配置信息,同时将固定通信核心网用户面设备的业务监控信息上报至所述固定通信核心网控制面设备;在一实施例中,MSG-U可以通过南向(Southbound,SB)接口通过MSG-C获取业务配置信息,并将业务监控信息实时上报到MSG-C,实现由MSG-C的统一控制。MSG-U可以采用高性能业务板(如:NP)实现。
在一实施例中,MSG-C设备和所述MSG-U设备可分别布置,一个MSG-C可同时实现对一个或多个MSG-U的控制管理。
本公开实施例中,MSG的用户面和控制面实现转控分离,可实现控制面和转发面的完全解耦,实现业务的灵活部署,并可通过网元结构的单独升级来降低运营商CAPEX投入,促使运营商网元结构与网络架构的灵活发展与部署。
实施例二
在本公开实施例一的基础上,进行举例说明。
根据前述实施例记载的内容,通过图4给出了本公开实施例的移固共存融合系统的网络架构体系示意图,图4中,虚线表示控制报文,实现表示转发报文;MSG-C和S/PGW-C处于控制云,MSG-U处于转发云,当移动通信业务的 用户(如手机用户)发起网络接入请求时,可以基于综合业务光传输网(Universal Transport Network over Fiber,UTN)汇聚、移动网络数据业务(简称为移网数据业务)、UTN接入,实现与S/PGW-U的通信;固定通信业务可以包括宽带业务、IPTV业务、专线业务或VPN业务,可选地,固定通信业务的接入可以通过SW实现;转发云中的MSG-U可以通过核心路由器(Core Router,CR)实现到因特网(Internet)的访问。
对于前述实施例和图4所示的移固共存融合系统,本公开实施例提出了上述移固共存融合系统的网络改造流程。
图5为本公开实施例的移固共存融合系统的网络改造流程的示意图,如图5所示,该流程可以包括:步骤500至步骤507。
步骤500:网络拓扑层次划分。
进行准备工作,对网络整体拓扑进行层次划分,根据转控分离的原则,分为控制面网络和用户面网络,所述控制面网络命名为一级控制数据中心(Data Center,DC),所述用户面网络命名为二级转发DC,并设置DC间的承载网、IP城域网以及eNB。
步骤501:多级DC网络资源部署。
进行多级DC内部资源部署规划及业务规划,在一实施例中,DC内部资源部署规划及业务规划涉及不同网络拓扑层次的处理。
本公开实施例中,一级控制DC为控制面网络,S/PGW-C设置为实现核心网S1-MME接口业务,MSG-C设置为实现宽带用户接入的协议协商、用户认证、接入控制、用户管理等。二级转发DC为转发面网络,包括S/PGW-U和MSG-U,为打通用户面业务,可通过新加入SW设备来实现两者间通信,在一实施例中,SW设备为可选项。
在一实施例中,一级控制DC和二级转发DC之间,通过承载网、IP城域网等来实现DC间的通信;二级转发DC与互联网之间有CR承载网衔接。
这里的业务部署包括控制面网络和转发面网络分别的业务部署;控制面信令及管理信息的传输,采用VXLAN隧道来承载;在进行数据转发面的传输时,可采用如分段路由(Segment Routing,SR)技术实现对数据业务的封装。
步502:一级控制DC网络搭建。
在一实施例中,进行一级控制DC内部组网搭建,一级控制DC内部网络包括S/PGW-C及MSG-C,MSG-C需侧挂验证、授权和记账(Authentication、Authorization、Accounting,AAA)服务器及动态主机配置协议(Dynamic Host  Configuration Protocol,DHCP)服务器,设置为用户AAA身份认证、身份授权、IP地址获取及计费等功能;一级控制DC与二级转发DC设备的L3逻辑链路打通,可实现信令及管理层面的信息传输。
步骤503:二级转发DC网络搭建。
在一实施例中,进行二级转发DC内部组网搭建,二级转发DC内部网络包括S/PGW-U及MSG-U,分别设置为移动通信网络融合后核心网用户面业务下沉至城域汇聚层的移动业务通信,及固定通信网络业务的转控分离架构的用户面业务转发。
根据S/PGW-U与MSG-U地理位置的不同,考虑增加SW设备来完成S/PGW-U与MSG-U的之间数据交互;S/PGW-U可以不是直接与IP城域网直连,而是通过SW设备转接,因此,在二级转发DC内部网络搭建时,增加至少一个SW设备,与IP城域网汇聚设备、S/PGW-U、MSG-U分别进行连接互通,以实现所述S/PGW-U、SW设备、IP城域网汇聚设备、MSG-U之间的通信。
MSG-U支持NAT功能,并侧挂CDN网络,通过NAT地址转换后用户请求到CDN视频源。
步骤504:跨DC间网络搭建。
在一实施例中,跨DC间网络搭建可以通过以下方式实现:
1)一级控制DC与二级转发DC间的逻辑通道VXLAN隧道的部署;
2)二级转发DC与IP城域网之间传输网的互通,实际应用中,可以通过增加SW设备,实现IP城域网、SW设备、及S/PGW-U之间的S1-U无线接入网络(Radio Access Network,RAN)业务通信,同时,支持对S/PGW-U、SW设备、及MSG-U之间的SGi接口业务通信;在外层隧道部署上,可采用SR技术实现。
3)二级转发DC与承载网的互通,实现到因特网的接入。
步骤505:移动VXLAN隧道部署。
在一实施例中,移动VXLAN隧道部署的含义为移动通信业务VXLAN隧道的打通;通过移动通信业务VXLAN隧道的打通,可以实现S/PGW-C与S/PGW-U之间的逻辑通信,上述逻辑通信建立的前提是网元间有确定的IP路由可达链路;在路由打通后,进行移动通信网络VXLAN隧道的部署。
步骤506:固网VXLAN隧道部署。
在一实施例中,固网VXLAN隧道部署的含义为固定通信业务VXLAN隧道的打通;通过固定通信业务VXLAN隧道的打通,可以实现MSG-C与MSG-U 之间的逻辑通信,上述逻辑通信建立的前提是网元间有确定的IP路由可达链路;在路由打通后,进行固定通信网络VXLAN隧道的部署。
步骤507:典型业务部署及验证,结束流程。
在一实施例中,典型业务可以是网络融合业务;网络融合业务的验证,可以通过一些基本业务的加载,来验证融合后的业务运行情况,进而验证网络融合的可行性;示例性地,可以通过固定通信网络IP连接协议(Internet Protocol over Ethernet,IPoE)、点到点连接协议(Point to Point Protocol over Ethernet,PPPoE)用户认证,验证固定通信网络基本业务运行的可靠性,并通过移动S1-MME信令报文的传输,进行移动网络业务运行的可行性验证。
至此,完成了移固共存融合系统的网络改造,可以实现固移网络共存融合。
实施例三
在本公开前述实施例的基础上,进行举例说明。
对于本公开前述实施例的移固共存融合系统,可以通过以下几个示例说明不同业务在移固共存融合系统上的统一承载实现方式。
示例1:
图6为本公开实施例的移固共存融合系统中实现移动控制业务及数据业务的承载的示意图,如图6所示,带箭头的虚线表示控制报文,带箭头的实线表示数据报文,粗实线表示VXLAN隧道。
eNB可以通过IP承载网连接到一级控制DC中的S/PGW-C,从而实现移动S1-MME业务控制面信令及管理流量的承载。
可选地,S/PGW-C与S/PGW-U之间的三层(L3)逻辑链路打通。
可选地,在S/PGW-C与S/PGW-U之间配置第一VXLAN隧道,第一VXLAN隧道采用城域网公网地址作为VXLAN隧道的端地址,设置为在IP城域网承载核心网控制信令。
可选地,eNodeB用户注册认证处理过程可以采用方法一或方法二实现,其中,
方法一为:eNB用户注册请求经过IP城域网,由S/PGW-U连接到S/PGW-C,完成S1-MME的信令处理,所述信令处理包括:用户的接入认证、安全认证及移动性控制等;
方法二为:eNB用户注册请求经过原传送网(相关技术中的传送网)连接到S/PGW-C进行S1-MME的信令处理,包括:用户的接入认证、安全认证及移动性控制等。
本公开实施例中,对于eNB用户注册认证处理过程,上述方法一和方法二可以互为备份,可选地,本公开实施例可以采用方法一实现eNB用户注册请求。
可选地,eNB用户数据业务,经过IP城域网,连接到S/PGW-U,由MSG-U发送到因特网(Internet),实现移动用户数据面的网络访问。
在一实施例中,可以完成移动S1-MME控制业务及网络访问业务的承载。
示例2:
图7为本公开实施例的移固共存融合系统中实现宽带用户上网业务的承载的示意图,如图7所示,带箭头的虚线表示控制报文,带箭头的实线表示数据报文,粗实线表示VXLAN隧道。
参照图7所示的网络部署,用户的个人计算机(Personal Computer,PC)可以接入IP城域网,进而连接到MSG-U,实现到MSG-C的逻辑连接。
可选地,MSG-U与MSG-C之间之间的三层(L3)逻辑链路打通,从而实现IP路由可达。
可选地,在MSG-U与MSG-C之间配置第二VXLAN隧道,第二VXLAN隧道采用城域网公网地址作为VXLAN隧道的端地址,设置为承载所述MSG-C到所述MSG-U间的信令信息。
可选地,家庭用户PC宽带业务注册请求,经过MSG-U到MSG-C,通过MSG-C侧挂AAA服务器(AAA Server)完成家庭用户宽带业务的PPPoE或IPoE用户的注册认证。
可选地,家庭用户PC宽带业务IP地址分配请求,经过MSG-U到MSG-C,通过MSG-C侧挂DHCP服务器(DHCP Server)完成家庭用户宽带业务的IP地址分配。
在家庭用户完成宽带业务的用户认证及IP地址分配后,可以实现固网家庭宽带用户到因特网(Internet)的访问。
示例3:
图8为本公开实施例的移固共存融合系统中实现家庭宽带IPTV业务的承载的示意图,如图8所示,带箭头的虚线表示控制报文,带箭头的实线表示数据报文,粗实线表示VXLAN隧道。
参照图8,家庭宽带IPTV用户的机顶盒(Set Top Box,STB)发送的请求,可以通过IP城域网,接入到城域网的汇聚层,进而连接到MSG-U,MSG-U设备侧挂CDN。
可选地,MSG-U与MSG-C之间之间的三层(L3)逻辑链路打通,从而实 现IP路由可达。
可选地,在MSG-U与MSG-C之间配置第二VXLAN隧道,第二VXLAN隧道采用城域网公网地址作为VXLAN隧道的端地址,设置为承载所述MSG-C到所述MSG-U间的IPTV业务控制信令。
可选地,家庭宽带用户STB发送的业务注册请求,经过MSG-U传输到MSG-C,通过MSG-C侧挂AAA服务器获取IPTV用户的注册认证。
可选地,家庭宽带用户机顶盒业务请求中,用于获取IPTV业务的IP地址的请求,经过MSG-U传输到MSG-C,通过MSG-C侧挂DHCP服务器完成IPTV用户的IP地址分配。
完成IPTV的用户认证及用户IP地址分配后,进行组播(multicast)视频源的申请,可以完成IPTV业务通信。
综上,根据示例1至示例3,可以基于上述移固共存融合系统,完成对移动通信业务及固定通信业务的统一承载。
示例4:
MSG-C与MSG-U之间的控制面接口协议根据实际情况进行选择。
可选地,MSG-C根据业务需求,通过NetConf协议将VXLAN隧道业务配置信息下发到MSG-U转发面。
可选地,MSG-U转发面将接收到的不同业务的协议报文,通过VXLAN报文封装发送至MSG-C控制面处理。
可选地,MSG-C控制面解封装VXLAN报文,对地址资源进行统一分配,待用户上线后,采用OpenFlow协议向对应MSG-U转发面下发用户转发表项,进而完成MSG-C控制面与MSG-U转发面间的用户实例创建及业务通信需求。
实施例四
在本公开前述实施例的基础上,单独从承载侧网络系统的角度,进行举例说明。
本公开实施例提出了一种承载侧网络系统,包括:用于实现对移动通信和固定通信的统一承载的移固承载IP城域网、以及下沉至所述移固承载IP城域网的汇聚层的移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接。
在一实施方式中,所述系统还包括:下沉至所述移固承载IP城域网的汇聚层的固定通信核心网用户面设备,所述移动通信核心网用户面设备连接所述固定通信核心网用户面设备。
在一实施方式中,所述系统还包括SW设备;所述移动通信核心网用户面设备通过所述SW设备连接所述固定通信核心网用户面设备。
在一实施方式中,所述SW设备设置为支持对所述移动通信核心网用户面设备的S1-U接口业务及SGi接口业务的透传。
在一实施方式中,所述固定通信核心网用户面设备侧挂有下沉至固定通信网络汇聚层的CDN。
在一实施方式中,所述承载侧网络系统还包括:第一备份网络,所述第一备份网络和用户面通信网络设置为采用主备模式进行工作,所述用户面通信网络包括所述移动通信核心网用户面设备和所述固定通信核心网用户面设备中的至少一种设备。
在一实施方式中,所述移动通信核心网用户面设备包括PGW和SGW。
在一实施方式中,所述移动通信核心网用户面设备通过所述SGW的S1-U接口连接所述移固承载IP城域网的汇聚网络。
在一实施方式中,所述承载侧网络系统还包括:下沉至所述移固承载IP城域网的汇聚层的固定通信核心网用户面设备;所述移动通信核心网用户面设备通过所述PGW的SGi接口连接所述固定通信核心网用户面设备。
实施例五
在本公开前述实施例的基础上,本公开实施例提出了一种承载侧网络系统的部署方法。
图9为本公开实施例的承载侧网络系统的部署方法的流程图,如图9所示,该流程可以包括:步骤9010至步骤9020。
步骤9010:将移动通信核心网用户面设备下沉至移固承载IP城域网的汇聚层,所述移固承载IP城域网设置为实现对移动通信和固定通信的统一承载;
步骤9020:构建承载侧网络系统,所述承载侧网络系统包括:所述移固承载IP城域网和所述移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接。
在一实施例中,承载侧网络系统的结构以及承载侧网络系统的业务承载方式已经在前述实施例中作出说明。
实施例六
在本公开前述实施例的基础上,本公开实施例提出了一种移固共存融合系 统的部署方法。
图10为本公开实施例的移固共存融合系统的部署方法的流程图,如图10所示,该流程可以包括:步骤10010至步骤10020。
步骤10010:将移动通信核心网用户面设备和固定通信核心网用户面设备下沉至移固承载IP城域网的汇聚层,所述移固承载IP城域网设置为实现对移动通信和固定通信的统一承载。
步骤10020:构建移固共存融合系统,所述移固共存融合系统包括承载侧网络系统、接入侧网络系统、MSG和位于核心网侧的移动通信核心网控制面设备;所述承载侧网络系统包括:所述移固承载IP城域网和所述移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接;所述MSG包括所述固定通信核心网用户面设备和位于核心网侧的固定通信核心网控制面设备,所述移动通信核心网用户面设备连接所述固定通信核心网用户面设备。
在一实施例中,移固共存融合系统的结构以及移固共存融合系统的业务承载方式已经在前述实施例中作出说明。
本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。在一实施例中,可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个 流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (33)

  1. 一种承载侧网络系统,包括:用于实现对移动通信和固定通信的统一承载的移固承载互联网协议IP城域网、以及下沉至所述移固承载IP城域网的汇聚层的移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接。
  2. 根据权利要求1所述的系统,还包括:下沉至所述移固承载IP城域网的汇聚层的固定通信核心网用户面设备,所述移动通信核心网用户面设备连接所述固定通信核心网用户面设备。
  3. 根据权利要求2所述的系统,还包括交换机SW设备;所述移动通信核心网用户面设备通过所述SW设备连接所述固定通信核心网用户面设备。
  4. 根据权利要求3所述的系统,其中,所述SW设备设置为支持对所述移动通信核心网用户面设备的S1-U接口业务及SGi接口业务的透传。
  5. 根据权利要求2所述的系统,其中,所述固定通信核心网用户面设备侧挂有下沉至固定通信网络汇聚层的内容分发网络CDN。
  6. 根据权利要求2所述的系统,还包括:第一备份网络,所述第一备份网络和用户面通信网络设置为采用主备模式进行工作,所述用户面通信网络包括所述移动通信核心网用户面设备和所述固定通信核心网用户面设备中的至少一种设备。
  7. 根据权利要求1所述的系统,其中,所述移动通信核心网用户面设备包括公用数据网网关PGW和服务网关SGW。
  8. 根据权利要求7所述的系统,其中,所述移动通信核心网用户面设备通过所述SGW的S1-U接口连接所述移固承载IP城域网的汇聚网络。
  9. 根据权利要求7所述的系统,还包括:下沉至所述移固承载IP城域网的汇聚层的固定通信核心网用户面设备;所述移动通信核心网用户面设备通过所述PGW的SGi接口连接所述固定通信核心网用户面设备。
  10. 一种移固共存融合系统,包括如权利要求1所述的承载侧网络系统、接入侧网络系统、多业务网关设备MSG和位于核心网侧的移动通信核心网控制面设备;其中,所述MSG包括下沉至移固承载互联网协议IP城域网的汇聚层的固定通信核心网用户面设备和位于核心网侧的固定通信核心网控制面设备,所述承载侧网络系统包括的移动通信核心网用户面设备连接所述固定通信核心网用户面设备。
  11. 根据权利要求10所述的系统,其中,所述承载侧网络系统还包括交换机SW设备;所述移动通信核心网用户面设备通过所述SW设备连接所述固定 通信核心网用户面设备。
  12. 根据权利要求11所述的系统,其中,所述SW设备设置为支持对所述移动通信核心网用户面设备的S1-U接口业务及SGi接口业务的透传。
  13. 根据权利要求10所述的系统,其中,所述固定通信核心网用户面设备侧挂有下沉至固定通信网络汇聚层的内容分发网络CDN。
  14. 根据权利要求10所述的系统,还包括:第一备份网络,所述第一备份网络和用户面通信网络设置为采用主备模式进行工作,所述用户面通信网络包括所述移动通信核心网用户面设备和所述固定通信核心网用户面设备中的至少一种设备。
  15. 根据权利要求10所述的系统,还包括:第二备份网络,所述第二备份网络和控制面通信网络设置为采用主备模式进行工作,所述控制面通信网络包括所述移动通信核心网控制面设备和所述固定通信核心网控制面设备中的至少一种设备。
  16. 根据权利要求10所述的系统,其中,所述移动通信核心网用户面设备包括公用数据网网关PGW和服务网关SGW。
  17. 根据权利要求16所述的系统,其中,所述移动通信核心网用户面设备通过所述SGW的S1-U接口连接所述移固承载IP城域网的汇聚网络。
  18. 根据权利要求16所述的系统,其中,所述移动通信核心网用户面设备通过所述PGW的SGi接口连接所述固定通信核心网用户面设备。
  19. 根据权利要求10所述的系统,其中,所述MSG中的所述固定通信核心网用户面设备和所述固定通信核心网控制面设备设置为采用转控分离架构实现。
  20. 根据权利要求19所述的系统,其中,所述转控分离架构基于软件定义网络SDN和网络功能虚拟化NFV实现。
  21. 根据权利要求19所述的系统,其中,所述固定通信核心网控制面设备设置为通过北向接口协议接收外部指令,通过南向接口协议实现对所述MSG的转发面的业务配置、业务监控及所述MSG的用户面的管理控制。
  22. 根据权利要求19所述的系统,其中,所述固定通信核心网用户面设备设置为从所述固定通信核心网控制面设备获取业务配置信息,同时将所述固定通信核心网用户面设备的业务监控信息上报至所述固定通信核心网控制面设备。
  23. 根据权利要求10或19所述的系统,其中,所述MSG支持网络地址转 换NAT功能。
  24. 根据权利要求10或19所述的系统,其中,所述MSG为虚拟边缘网络网关设备vBNG。
  25. 根据权利要求10所述的系统,其中,所述移动通信核心网控制面设备和所述移动通信核心网用户面设备之间具有处于连通状态的三层逻辑链路。
  26. 根据权利要求10或25所述的系统,其中,所述移动通信核心网控制面设备和所述移动通信核心网用户面设备之间建立有第一可扩展虚拟局域网VXLAN隧道,所述第一VXLAN隧道设置为实现移动通信信令及管理通道的信息传输。
  27. 根据权利要求10所述的系统,其中,所述固定通信核心网控制面设备和所述固定通信核心网用户面设备之间具有处于连通状态的三层逻辑链路。
  28. 根据权利要求10或27所述的系统,其中,所述固定通信核心网控制面设备和所述固定通信核心网用户面设备之间建立有第二VXLAN隧道,所述第二VXLAN隧道设置为实现固定通信网络业务信令及管理通道的信息传输。
  29. 根据权利要求28所述的系统,其中,所述固定通信核心网控制面设备设置为通过网络配置NetConf协议将VXLAN隧道业务配置信息下发到所述固定通信核心网用户面设备。
  30. 根据权利要求29所述的系统,其中,所述固定通信核心网用户面设备设置为对接收到的协议报文进行VXLAN报文封装,将封装得到的VXLAN报文发送至所述固定通信核心网控制面设备。
  31. 根据权利要求30所述的系统,其中,所述固定通信核心网控制面设备设置为解封装所述VXLAN报文,对地址资源进行统一分配,采用OpenFlow协议向所述固定通信核心网用户面设备下发用户转发表项。
  32. 一种承载侧网络系统的部署方法,包括:
    将移动通信核心网用户面设备下沉至移固承载互联网协议IP城域网的汇聚层,所述移固承载IP城域网设置为实现对移动通信和固定通信的统一承载;
    构建承载侧网络系统,所述承载侧网络系统包括:所述移固承载IP城域网和所述移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接。
  33. 一种移固共存融合系统的部署方法,包括:
    将移动通信核心网用户面设备和固定通信核心网用户面设备下沉至移固承载互联网协议IP城域网的汇聚层,所述移固承载IP城域网设置为实现对移动通 信和固定通信的统一承载;
    构建移固共存融合系统,所述移固共存融合系统包括承载侧网络系统、接入侧网络系统、多业务网关设备MSG和位于核心网侧的移动通信核心网控制面设备;所述承载侧网络系统包括:所述移固承载IP城域网和所述移动通信核心网用户面设备,所述移动通信核心网用户面设备与所述移固承载IP城域网通信连接;所述MSG包括所述固定通信核心网用户面设备和位于核心网侧的固定通信核心网控制面设备,所述移动通信核心网用户面设备连接所述固定通信核心网用户面设备。
PCT/CN2019/115633 2018-11-05 2019-11-05 承载侧网络系统、移固共存融合系统及其部署方法 WO2020093994A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19882617.4A EP3879779A4 (en) 2018-11-05 2019-11-05 MEDIA-SIDE NETWORK SYSTEM, FIXED MOBILE COEXISTENCE AND CONVERGENCE SYSTEM, AND DEPLOYMENT METHOD THEREOF
US17/291,307 US20220030438A1 (en) 2018-11-05 2019-11-05 Bearer side network system, fixed-mobile coexistence and convergence system, and deployment method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811309129.5A CN111147426A (zh) 2018-11-05 2018-11-05 一种承载侧网络系统、移固共存融合系统及其部署方法
CN201811309129.5 2018-11-05

Publications (1)

Publication Number Publication Date
WO2020093994A1 true WO2020093994A1 (zh) 2020-05-14

Family

ID=70515798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115633 WO2020093994A1 (zh) 2018-11-05 2019-11-05 承载侧网络系统、移固共存融合系统及其部署方法

Country Status (4)

Country Link
US (1) US20220030438A1 (zh)
EP (1) EP3879779A4 (zh)
CN (1) CN111147426A (zh)
WO (1) WO2020093994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794596A (zh) * 2021-09-15 2021-12-14 河南省信息咨询设计研究有限公司 一种基于城域网的网络重构方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114363285A (zh) * 2020-09-28 2022-04-15 华为技术有限公司 地址管理的方法、装置及系统
CN117135625A (zh) * 2022-05-20 2023-11-28 中国电信股份有限公司 数据传输方法和系统及信令安全管理网关
US11811728B1 (en) * 2022-08-08 2023-11-07 Juniper Networks, Inc. Broadband network gateway (BNG) as dynamic host configuration protocol (DHCP) server
CN116367106B (zh) * 2023-03-17 2024-01-02 国网湖北省电力有限公司 一种面向电力的5g短切片和4g短复用融合的通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123549A (zh) * 2006-08-11 2008-02-13 华为技术有限公司 控制与承载分离的接入网系统及其实现通信的方法
CN101494638A (zh) * 2008-01-25 2009-07-29 华为技术有限公司 一种固定移动融合fmc的方法、系统及装置
US20170245207A1 (en) * 2016-02-22 2017-08-24 Cisco Technology, Inc. Consolidated control plane routing agent

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490289B1 (en) * 1998-11-03 2002-12-03 Cisco Technology, Inc. Multiple network connections from a single PPP link with network address translation
CN101129045A (zh) * 2004-12-31 2008-02-20 索尼爱立信移动通讯股份有限公司 经通信网络远程控制媒体装置的方法
US8873398B2 (en) * 2011-05-23 2014-10-28 Telefonaktiebolaget L M Ericsson (Publ) Implementing EPC in a cloud computer with openflow data plane
US9450810B2 (en) * 2013-08-02 2016-09-20 Cisco Technoogy, Inc. Policy-driven automatic redundant fabric placement mechanism for virtual data centers
EP3231247A1 (en) * 2014-12-12 2017-10-18 Telefonaktiebolaget LM Ericsson (publ) A method and node for handling control plane signaling
US9819581B2 (en) * 2015-07-31 2017-11-14 Nicira, Inc. Configuring a hardware switch as an edge node for a logical router
US10652786B2 (en) * 2015-10-06 2020-05-12 Apple Inc. Dual radio operation between access systems using 3GPP radio access technology
WO2017066574A1 (en) * 2015-10-16 2017-04-20 Convida Wireless, Llc Coap enhancements to enable an autonomic control plane
US10469595B2 (en) * 2017-02-17 2019-11-05 Arista Networks, Inc. System and method of dynamic establishment of virtual private networks using border gateway protocol ethernet virtual private networks technology
CN107508736B (zh) * 2017-09-26 2018-07-24 中国联合网络通信有限公司广东省分公司 一种多业务汇聚接入的互联网网络架构
CN109818868B (zh) * 2017-11-20 2021-06-22 中兴通讯股份有限公司 一种实现边缘网络能力开放的方法、装置、设备及存储介质
US10560331B2 (en) * 2018-02-07 2020-02-11 Juniper Networks, Inc. Self-driven and adaptable multi-vBNG management orchestration
CN109640348B (zh) * 2019-01-08 2020-11-20 中国联合网络通信集团有限公司 多业务mec网络架构、多业务数据流的处理方法及装置
CN110401572A (zh) * 2019-09-04 2019-11-01 中国联合网络通信集团有限公司 网络端到端业务编排系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123549A (zh) * 2006-08-11 2008-02-13 华为技术有限公司 控制与承载分离的接入网系统及其实现通信的方法
CN101494638A (zh) * 2008-01-25 2009-07-29 华为技术有限公司 一种固定移动融合fmc的方法、系统及装置
US20170245207A1 (en) * 2016-02-22 2017-08-24 Cisco Technology, Inc. Consolidated control plane routing agent

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BBF WIKI: "SD-420 5G Fixed Mobile Convergence Study", 3GPP, 12 January 2018 (2018-01-12), XP051390182 *
LI, TING ET AL.: "The Positioning and Development Trends of Mobile IP Metro Area Network", MODERN SCIENCE & TECHNOLOGY OF TELECOMMUNICATIONS, no. 12, 31 December 2007 (2007-12-31), pages 1 - 7, XP055811907 *
See also references of EP3879779A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794596A (zh) * 2021-09-15 2021-12-14 河南省信息咨询设计研究有限公司 一种基于城域网的网络重构方法
CN113794596B (zh) * 2021-09-15 2024-03-19 河南省信息咨询设计研究有限公司 一种基于城域网的网络重构方法

Also Published As

Publication number Publication date
CN111147426A (zh) 2020-05-12
EP3879779A1 (en) 2021-09-15
US20220030438A1 (en) 2022-01-27
EP3879779A4 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2020093994A1 (zh) 承载侧网络系统、移固共存融合系统及其部署方法
US11368862B2 (en) Point-to-multipoint or multipoint-to-multipoint mesh self-organized network over WIGIG standards with new MAC layer
EP3567896B1 (en) Communication method, device and system
US10939267B1 (en) Apparatus and method for a unified slice manager
US9615318B2 (en) Multiplexing core networks in RAN sharing
WO2021057217A1 (zh) 一种通信方法、装置、设备、系统及介质
CN102308523B (zh) 数据通信网络配置方法、网关网元及数据通信系统
US11057796B2 (en) Employing self organizing network (SON) techniques to manage data over cable service interface specification (DOCSIS) backhaul for small cells
CN103931149A (zh) 利用OpenFlow数据和控制面在云计算机中实现3G分组核心
WO2012106919A1 (zh) 一种三层虚拟专有网路由控制方法、装置及系统
WO2013182066A1 (zh) 标签分发方法及设备
US11824685B2 (en) Method for implementing GRE tunnel, access point and gateway
CN106453027A (zh) Gre隧道实现方法、接入设备和汇聚网关
CN105357099A (zh) 一种基于sdn的虚拟专用网络的实现方法
CN106465188A (zh) 增强的移动性管理
US20240250789A1 (en) Mobile network user plane with access network user plane function
CN107508736B (zh) 一种多业务汇聚接入的互联网网络架构
CN102891903A (zh) 一种nat转换方法及设备
TW202243531A (zh) 用於次世代無線電存取網路的超可靠低延遲通信的本地分流方法及系統
WO2015070763A1 (zh) X2接口的自建立方法及装置
CN108306755A (zh) 一种建立管理通道的方法及系统
CN105594180B (zh) 节点间通信处理方法及路由确定节点
WO2016161761A1 (zh) 数据传输方法及装置
US20240224158A1 (en) Bgp signaling for access network-user plane function
US11943101B2 (en) Joint orchestration for private mobile network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019882617

Country of ref document: EP

Effective date: 20210607