WO2020093938A1 - Laminated glass and preparation process thereof - Google Patents

Laminated glass and preparation process thereof Download PDF

Info

Publication number
WO2020093938A1
WO2020093938A1 PCT/CN2019/114947 CN2019114947W WO2020093938A1 WO 2020093938 A1 WO2020093938 A1 WO 2020093938A1 CN 2019114947 W CN2019114947 W CN 2019114947W WO 2020093938 A1 WO2020093938 A1 WO 2020093938A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer
insulation
glass substrate
adhesive layer
Prior art date
Application number
PCT/CN2019/114947
Other languages
French (fr)
Inventor
Yunxin GU
Ce Shi
Chong ZHOU
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2020093938A1 publication Critical patent/WO2020093938A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials

Definitions

  • the invention relates to the field of vehicle glazing, in particular to a laminated glass and a preparation process thereof, the laminated glass having a heat-insulation function and at least one other function.
  • the first type is the green glass and/or solar glass, e.g., Saint-Gobain TSA Nx, TSA3+, TSA4+, TSA 5+.
  • the second type is the double-layered silver-plated glass, such as the product of Saint-Gobain coated with a commercial product Kappa.
  • the third type is the three-layered silver-plated glass, such as Saint-Gobain's all-weather glass.
  • the glass In actual use, it is desirable to make the glass have good heat insulation function, and have one or more other properties, e.g., HUD (head-up display) application, sound insulation, anti-fogging property, water-repellence, and the like.
  • HUD head-up display
  • the glass should be set such that electronic signals, e.g., the radio-frequency wireless signals, are not substantially blocked.
  • electronic signals e.g., the radio-frequency wireless signals
  • TTS total transmittance sum
  • the third type of the three-layered silver-plated glass has similar disadvantages as the double-layered silver-plated glass, namely limited electronic signal reception and higher price, and is more expensive than the second type of glass.
  • the three-layered silver-plated glass is more sensitive to the bending process.
  • the three-layered silver-plated glass is easily broken in areas where the curvature is large. This is also the reason why all-weather glass has not been produced outside of Europe so far.
  • the heat insulation glass in the prior art can hardly withstand the high temperature and high oxidation environment in the hot bending process, and thus is difficult to be used in the hot bending process.
  • a caesium tungsten bronze precursor and a reducing gas for example, N 2 , Ar, and H 2
  • a reducing gas for example, N 2 , Ar, and H 2
  • An object of the present invention is to provide a laminated glass, the preparation process thereof and the use of the laminated glass.
  • the invention provides a laminated glass comprising:
  • the adhesive layer is a functional adhesive layer, and/or a functional layer is disposed on at least one side of at least one of the glass substrates,
  • the heat-insulation laminate comprises a heat-insulation layer containing a heat-insulation material and a binder, wherein,
  • the heat-insulation material comprises one or more components from the group consisting of composite tungsten oxide, lanthanum boride, vanadium oxide, indium tin oxide, antimony tin oxide, and the combination of indium tin oxide and antimony tin oxide,
  • the binder comprises one or more components from the group consisting of silica, titania, and alumina.
  • the laminated glass of the present invention comprises two glass substrates and one adhesive layer.
  • the heat-insulation laminate of the present invention further comprises a barrier layer disposed on the side of the heat-insulation layer that is farther from the adhesive layer.
  • the heat-insulation material of the present invention comprises composite tungsten oxide, the composite tungsten oxide is as shown in formula (1) :
  • M is an alkali metal element or an alkaline earth metal element
  • W is tungsten
  • O is oxygen
  • A is halogen element
  • 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5
  • y 0, and/or M is caesium.
  • the adhesive layer is made from a thermoplastic polymer
  • the thermoplastic polymer is one or more selected from the group consisting of: polyvinyl butyral, polyurethane, plasticized polyvinyl chloride, and ethylene-vinyl acetate copolymer, preferably polyvinyl butyral.
  • the functional adhesive layer is one or more selected from the group consisting of wedge adhesive layer, acoustic adhesive layer.
  • the functional layer is one or more selected from the group consisting of water-repellent layer, anti-fogging layer.
  • the present invention is directed to a process for preparing a laminated glass, comprising:
  • the powder-protection layer comprises one or more of the following components: carbon powder, metallic powder and reducing salt (s) .
  • the metallic powder comprises iron powder, zinc powder, aluminum powder or their combination.
  • the powder-protection layer has a thickness of from about 0.01 mm to about 5 mm, preferably from about 0.1 mm to about 1 mm.
  • step (a) comprises:
  • step (a3) optionally post-curing the product obtained from step (a2) .
  • the invention also relates to a laminated glass which is prepared according to any one of above mentioned process.
  • the invention also relates to the use of the laminated glass of the invention in vehicle glazing.
  • the positive effect of the present invention is that, the laminated glass of the present invention is provided with heat insulation and at least one other function including, but not limited to, HUD application, sound insulation, anti-fogging property, water-repellence, and the like.
  • the use of the heat-insulation layer of the present invention allows the disposition of the heat-insulation layer to have substantially no adverse effects on other functions.
  • the laminated glass of the invention has a lower TTS (TTS less than 60%) and a lower cost, does not block electronic signals, is simple in the preparation process, and has wide application prospects.
  • the barrier layer in the laminated glass of the present invention can effectively block sodium ions derived from the glass substrates, thereby effectively preventing the damage of the lattice structure by the permeation effect of sodium ions and preventing haze of the glass.
  • the laminated glass has both infrared absorption property and low infrared reflection property, has good strength and wear resistance, and can effectively resist the friction occurring during the washing process.
  • the laminated glass of the present invention can be applied in a hot bending or tempering process and effectively withstand the high temperature and high oxidation environments in a hot bending or tempering process.
  • Figure 1 is a schematic view showing the structure of a heat-insulation laminate in an embodiment of the present invention.
  • Figures 2 to 11 are schematic views showing the structure of a laminated glass in the embodiments of the present invention under different conditions.
  • Figure 12 is the spectra of the sample of Example 2 of the present invention before and after the hot bending process.
  • Figure 13A shows the transmission spectra of a laminated glass formed as shown in Figure 3 and a laminated glass formed as shown in Figure 8 of the present invention.
  • Figure 13B shows the reflection spectra of a laminated glass formed as shown in Figure 3 and a laminated glass formed as shown in Figure 8 of the present invention.
  • Figure 14A shows the transmission spectra of a laminated glass formed as shown in Figure 3 of the present invention and a laminated glass (TSA3+ after lamination) comprising the first type of TSA3+ in the prior art.
  • Figure 14B shows the reflection spectra of a laminated glass formed as shown in Figure 3 of the present invention and a laminated glass comprising the first type of glass TSA3+ in the prior art (TSA3+ after lamination) .
  • one or more or “at least one” means one, two, three, four, five, six, seven, eight or more.
  • room temperature refers to about 20 to 30 °C, such as about 25 °C.
  • reducing salt refers to a salt having a reducing property
  • the exemplary salts include, but are not limited to, a sulfite such as potassium sulfite.
  • total transmittance sum is an indicator commonly used in the art to judge the heat insulation performance. It was determined using ISO 13837, a commonly used method in the art.
  • the instrument used for measurement is a spectrophotometer, such as the Lambda 950 from PE Corporation.
  • the laminated glass of the present invention has a TTS value of less than about 60%, preferably less than about 55%, such as about 55%, 51%.
  • the term "light transmittance" means the ability of light to pass through a medium, which is the percentage ratio of the transmitted light flux that passes through a transparent or translucent body to the incident light flux.
  • the light transmittance can be measured, for example, using a spectrophotometer, for example, a Lambda 950 spectrophotometer from PE Corporation.
  • the measurement temperature is, for example, room temperature.
  • the laminated glass should have good light transmittance.
  • the visible light transmittance (or referred to as visible light transmission) of the laminated glass of the present invention is 70%or more.
  • haze has the meaning as commonly understood in the art, it may refer to the percentage ratio of the intensity of the transmitted light that is at an angle above 2.5° from the incident light to that of the total transmitted light.
  • the haze can be measured, for example, using a haze meter such as a haze meter of a model number BYK-Gardner 4725.
  • the measurement temperature is, for example, room temperature.
  • HUD head-up display system
  • a head-up display system that allows for display of information projected onto a glass panel and reflected into the eyes of the driver or observer.
  • a ghost image that is, a first image reflected by the glass surface facing the interior of the cabin and a second image reflected by the outer surface of the windshield, the two images being slightly offset from each other. This offset may result in the interference of information display.
  • a solution as proposed in the patent US 5,013,134 describes a head-up display system using a laminated windshield formed of two glass sheets and a polyvinyl butyral (PVB) interlayer.
  • PVB polyvinyl butyral
  • a wedge laminated glass is conventionally manufactured using an intermediate sheet whose thickness is reduced from the top side to the bottom side of the glass sheet.
  • the HUD used in the present invention adopts a configuration generally used in the art, that is, the adhesive layer is shaped to have a wedge structure as described above, which will not be described herein.
  • wedge adhesive layer refers to that the adhesive layer is configured to have a wedge shape so as to be suitable for HUD.
  • the wedge adhesive layer is shaped to have a shape commonly used in the art for the purpose of the HUD application, and is a commercially available product, which will not be described herein.
  • the wedge adhesive layer has a wedge angle of about 0.25-0.73 milli-arcs.
  • the wedge adhesive layer can be prepared using materials and methods known in the art. For example, it is a PVB (polyvinyl butyral) product of Sekisui Co., Ltd., Japan.
  • acoustic adhesive layer means that the adhesive layer has good noise reduction or sound insulation properties. It is usually a PVB with a three-layered structure, in which the intermediate layer is a modified PVB, which mainly plays the role of sound insulation or noise reduction.
  • the acoustic adhesive layer can be prepared by using materials and methods known in the art for preparing an acoustic adhesive layer, and is a commercially available product, such as the product of Sekisui Co., Ltd., Japan, and no further details will be provided herein.
  • anti-fogging layer refers to a coating having an anti-fogging function.
  • the anti-fogging layer can be prepared using materials and methods known in the art, and will not be described herein.
  • the anti-fogging layer is typically applied to the outer surface of the first glass substrate in the laminated glass.
  • water-repellent layer refers to a coating having a water-repellent function.
  • the water-repellent layer can be prepared using materials and methods known in the art as commercially available products, such as the Aqua control of Saint-Gobain, and will not be described herein.
  • the water-repellent layer is typically applied to the outer surface of the second glass substrate in the laminated glass.
  • lanthanum boride refers to a compound comprising lanthanum (La) and B elements in the compound, including but not limited to LaB 6 .
  • vanadium oxide as used herein includes, but is not limited to, VO 2 .
  • ITO indium tin oxide
  • ITO indium oxide
  • Group III oxide In 2 O 3
  • tin oxide Group IV oxide
  • antimony tin oxide as used herein is abbreviated as ATO, which may also be referred to as antimony tin oxide or nano antimony-doped tin dioxide.
  • the "glass” used in glass substrate is an amorphous inorganic non-metallic material, generally prepared by using a variety of inorganic minerals (such as quartz sand, borax, boric acid, barite, barium carbonate, limestone, feldspar, soda ash, etc. ) as the main raw materials and a small amount of auxiliary materials. Its main components are silica and other oxides.
  • the "glass” here can be ordinary glass, whose chemical composition is Na 2 SiO 3 , CaSiO 3 , SiO 2 or Na 2 O ⁇ CaO ⁇ 6SiO 2 , etc., and the main component is a silicate double salt, which is an amorphous solid with irregular structure.
  • the "glass” herein may also be a colored glass in which a certain metal oxide or salt is mixed to exhibit a color, or a tempered glass obtained by a physical or chemical method. Glass substrate is usually transparent.
  • the glass substrate used in the present invention also has good heat insulation property, thereby further reducing the cost of the laminated glass.
  • the glass substrate has a thickness commonly used in the art, for example, not less than about 0.7 mm, not less than about 1.4 mm, for example, not more than about 2.8 mm, not more than about 2.3 mm, for example, from about 0.7 to about 2.8 mm, from about 1.4 to about 2.8 mm, from about 0.7 to about 2.3 mm, e.g., about 2.1 mm.
  • the laminated glass of the present invention is configured such that the TTS value is not significantly affected by the thickness of the glass substrate.
  • the glass substrates used in the present invention are not particularly different from each other in material selection.
  • the size and shape of the glass substrates will vary depending on where the glass substrates are located.
  • the laminated glass comprises two glass substrates, a first glass substrate and a second glass substrate, respectively.
  • the glass on the indoor side is defined as the first glass substrate.
  • the glass on the outdoor side is defined as the second glass substrate.
  • the material composition of the first glass substrate and the second glass substrate is as described above and of no substantial difference.
  • the size and shape of the first glass substrate and the second glass substrate may vary depending on the position of the glass substrates (indoor or outdoor side) .
  • the first glass substrate and the second glass substrate are typically subjected to a matching process during preparation such that the two have matching and desired shapes.
  • heat-insulation laminate denotes a multilayer structure having heat insulation properties.
  • the heat-insulation laminate of the present invention comprises a heat-insulation layer.
  • the heat-insulation layer contains a heat-insulation material and a binder.
  • the heat-insulation material is a material having a property of reflecting or absorbing infrared rays, and is preferably a material having an absorption property for infrared rays, such as composite tungsten oxide.
  • the heat-insulation material comprises one or more of the following ingredients: composite tungsten oxide, lanthanum boride, vanadium oxide, indium tin oxide, antimony tin oxide, and the combination of indium tin oxide and antimony tin oxide.
  • the combination may be a physical combination or a chemical combination, for example, in the form of a blend of two or more of the above-mentioned heat-insulation materials, or the above-mentioned two or more heat-insulation materials are presented in the form of a laminate, so that the heat-insulation laminate has two or more heat-insulation layers made of different heat-insulation materials.
  • the heat-insulation material comprises composite tungsten oxide.
  • composite tungsten oxide is used as the heat-insulation material.
  • the composite tungsten oxide is as shown in formula (1) :
  • M is an alkali metal element or an alkaline earth metal element
  • W is tungsten
  • O is oxygen
  • A is a halogen element
  • M is an alkali metal element or an alkaline earth metal element, examples of which are lithium (Li) , sodium (Na) , potassium (K) , rubidium (Rb) , caesium (Cs) , beryllium (Be) , magnesium (Mg) , calcium (Ca) , strontium (Sr) , barium (Ba) or any combination thereof.
  • A is a halogen element, examples of which are fluorine (F) , chlorine (Cl) , bromine (Br) , iodine (I) or any combination thereof.
  • the composite tungsten oxide is as shown in formula (2) ,
  • the composite tungsten oxide is as shown in formula (1) wherein x is from about 0.27 to about 0.33.
  • the composite tungsten oxide may be commercially available, for example, Cs x WO 3 from Sumitomo Metal Corporation of Japan.
  • the binder can be used to bond the heat-insulation materials together to effectively increase the mechanical properties and wear resistance of the heat-insulation layer and keep the heat-insulation materials from being removed during subsequent processing of the glass substrate.
  • the binder contains one or more of the following ingredients: silica, titania, and alumina, preferably silica.
  • the weight ratio of the binder to the heat-insulation material in the heat-insulation layer should be set such that the heat-insulation layer has good heat insulation property and mechanical property. Too little binder content will reduce the mechanical properties of the heat-insulation layer, and excessive binder content will make the heat-insulation layer's heat insulation performance worse. In one embodiment, the weight ratio of the binder to the heat-insulation material in the heat-insulation layer is from about 1: 1 to 1: 1000, preferably from about 1: 10 to 1: 200, more preferably about 1: 100.
  • the heat-insulation layer should have a suitable thickness.
  • the heat-insulation layer should not be too thin in order to have a good heat insulation effect. However, it should not be too thick in order to ensure that the visible light transmittance of the heat-insulation layer is more than 70%.
  • the heat-insulation layer of the present invention has a thickness of from about 50 nm to 50 ⁇ m, preferably from about 500 nm to 5 ⁇ m, for example, about 1 ⁇ m.
  • the heat-insulation layer of the present invention does not contain a signal shielding material.
  • the heat-insulation layer of the present invention does not substantially block electronic signals.
  • the heat-insulation laminate of the present invention may further comprise a barrier layer disposed on the side of the heat-insulation layer that is farther from the adhesive layer.
  • a barrier layer disposed on the side of the heat-insulation layer that is farther from the adhesive layer.
  • the barrier layer contains one or more of the following components: silica, titania, and alumina, preferably silica.
  • the purity of the single component of silica, titania, and alumina is about 99%or more.
  • the barrier layer has a compactness of about 90%or more.
  • the barrier layer should have a suitable thickness so that it can exert a good barrier effect while meeting the requirements of light transmittance, particularly visible light transmittance.
  • the barrier layer has a thickness of about 5 nm to 500 nm, preferably about 10 nm to 200 nm, for example, about 100 nm.
  • the heat-insulation laminate 4 of the present invention includes a barrier layer 42 and a heat-insulation layer 41 disposed in sequence.
  • the positions of the barrier layer 42 and the heat-insulation layer 41 can be interchanged depending on the arrangement of the positions of the glass substrates and the adhesive layer.
  • the description of the heat-insulation layer disposed on the barrier layer only indicates the positional relationship between the heat-insulation layer and the barrier layer.
  • the heat-insulation layer can be placed in close contact with the surface of the barrier layer.
  • other layers may be disposed between the heat-insulation layer and the barrier layer.
  • the adhesive layer acts as a bond.
  • the adhesive layer is made of thermoplastic polymer which is one or more selected from the group consisting of polyvinyl butyral, polyurethane, plasticized polyvinyl chloride, and ethylene-vinyl acetate copolymer, preferably polyvinyl butyral (PVB) .
  • the material used for the adhesive layer is commonly used in the art, and may be, for example, a commercially available product such as PVB available from Sekisui Co., Ltd., Japan.
  • the adhesive layer is a functional adhesive layer such that the laminated glass has one or more functions in addition to heat insulation.
  • the functional adhesive layer is one or more selected from the group consisting of a wedge adhesive layer and an acoustic adhesive layer. Therefore, the laminated glass has one or more functions of HUD applications, sound insulation and the like.
  • the wedge adhesive layer and the acoustic adhesive layer may be the same adhesive layer, for example, using a wedge-shaped PVB with a three-layered structure having a sound insulation function. Through the design of the shape and material composition, it has both the functions of HUD application and sound insulation.
  • the thickness of the adhesive layer is the thickness conventionally used in the art.
  • the thickness is about 0.7 to about 0.8 mm, for example about 0.76 mm.
  • the HUD thickness is about 0.3 to about 2 mm, for example, the narrow side of the wedge is about 0.5 mm, and the thick side of the wedge is about 1.1 mm.
  • the functional layer gives the laminated glass extra functions in addition to heat insulation.
  • the functional layer is one or more selected from the group consisting of a water-repellent layer and an anti-fogging layer.
  • the functional layer can be disposed on any suitable surface of the glass substrates, such as the outer surfaces of the glass substrates, e.g., the first glass substrate and/or the second glass substrate.
  • the present invention provides a laminated glass comprising:
  • the adhesive layer is a functional adhesive layer
  • a functional layer is provided on at least one side of at least one of the glass substrates.
  • the laminated glass comprises two glass substrates and one adhesive layer.
  • the two glass substrates are a first glass substrate and a second glass substrate, respectively.
  • the heat-insulation laminate is located between one of the glass substrates and the adhesive layer.
  • the adhesive layer is a functional adhesive layer.
  • a functional layer is disposed on at least one side of at least one of the glass substrates.
  • the adhesive layer is a functional adhesive layer and a functional layer is disposed on at least one side of at least one of the glass substrates.
  • the laminated glass of the present invention includes a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, and a second glass substrate 2 disposed sequentially from bottom to top.
  • the heat-insulation laminate 4 includes an optional barrier layer 42 and a heat-insulation layer 41 which are sequentially disposed from bottom to top.
  • the laminated glass includes a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, and a second glass substrate 2 which are disposed sequentially from bottom to top.
  • the adhesive layer 3 is a wedge adhesive layer.
  • the laminated glass thus obtained has both heat insulation and HUD applications.
  • the heat-insulation layer of the present invention contains a material that preferably absorbs infrared rays, it does not substantially impair the HUD application.
  • the laminated glass includes an anti-fogging layer 6, a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, and a second glass substrate 2 disposed sequentially from bottom to top.
  • the laminated glass thus obtained has both heat insulation and anti-fogging functions.
  • the laminated glass includes a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, and a second glass substrate 2 disposed sequentially from bottom to top.
  • the adhesive layer 3 is an acoustic adhesive layer.
  • the laminated glass includes a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, a second glass substrate 2, and a water-repellent layer 5 disposed sequentially from bottom to top.
  • the laminated glass thus obtained has both heat insulation and water-repellent functions.
  • the laminated glass of the present invention includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, and a second glass substrate 2 disposed sequentially from bottom to top.
  • the heat-insulation laminate 4 includes a heat-insulation layer 41 and a barrier layer 42 disposed sequentially from bottom to top.
  • the laminated glass includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, and a second glass substrate 2 disposed sequentially from bottom to top.
  • the adhesive layer 3 is a wedge adhesive layer.
  • the laminated glass thus obtained has both heat insulation and HUD applications.
  • the heat-insulation layer of the present invention contains a material that preferably absorbs infrared rays, it does not substantially impair the function of the HUD application.
  • the heat-insulation layer provided by the present invention is used, whether arranged in the form of Figure 3 or Figure 8, the function of the HUD application would not be significantly affected. Specifically, in both arrangements, the distance between the additional image and the original image is very small.
  • the additional image is also relatively weak.
  • the additional image in the prior art will be relatively strong and if the heat-insulation laminate is arranged in the form of Figure 8, and the additional image will be farther away from the original image. Therefore, in order to make the additional image closer to the original image, the heat-insulation laminate usually could only be arranged in the form of Figure 3 in the prior art.
  • the laminated glass includes an anti-fogging layer 6, a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, and a second glass substrate 2 disposed sequentially from bottom to top. Therefore, the laminated glass obtained has both heat insulation and anti-fogging functions.
  • the laminated glass includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, and a second glass substrate 2 disposed sequentially from bottom to top.
  • the adhesive layer 3 is an acoustic adhesive layer.
  • the laminated glass thus obtained has both heat insulation and noise reduction functions.
  • the laminated glass includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, a second glass substrate 2, and a water-repellent layer 5 disposed sequentially from bottom to top.
  • the laminated glass thus obtained has both heat insulation and water-repellent functions.
  • the laminated glass may include an anti-fogging layer 6, a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, a second glass substrate 2, and a water-repellent layer 5 simultaneously.
  • the position of the heat-insulation laminate 4 and the adhesive layer 3 can be interchanged, as shown in Figure 2 or Figure 7.
  • the adhesive layer can be both a wedge adhesive layer and an acoustic adhesive layer. That is, at least one of the anti-fogging layer 6, the water-repellent layer 5, and/or at least one of the wedge adhesive layer and the acoustic adhesive layer may be optionally provided such that the laminated glass has a plurality of functions.
  • the laminated glass includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4 and a second glass substrate 2 disposed sequentially from bottom to top, and the fact that adhesive layer 3 is located on the first glass substrate 1 does not exclude that other layers are disposed between the adhesive layer 3 and the first glass substrate 1.
  • the adhesive layer 3 may be placed in close contact with the surface of the first glass substrate 1, while other layers may also be disposed between the adhesive layer 3 and the first glass substrate 1.
  • the fact that the heat-insulation laminate 4 is located on the adhesive layer 3 does not exclude that other layers are disposed between the heat-insulation laminate 4 and the adhesive layer 3.
  • the invention further relates to a process for preparing a laminated glass of the invention, which comprises:
  • step (a) includes:
  • step (a3) optionally post-curing the product obtained from step (a2) .
  • step (a) glass substrate is used as a basis for disposing a heat-insulation laminate.
  • the heat-insulation laminate is disposed on the glass substrate to obtain coated glass substrate.
  • step (a1) the barrier layer solution is applied to the surface of the glass substrate and curing is performed to form a barrier layer. Coating is carried out preferably by a roll coating method.
  • the coated glass substrate can be the first and/or second glass substrate, depending on the structural arrangement of the final laminated glass.
  • the barrier layer solution comprises one or more of the following components: silica, titania, and alumina.
  • the purity of the single component of silica, titania, and alumina is 99%or more.
  • the formed barrier layer has a compactness of 90%or more.
  • the barrier layer solution is a solution of the corresponding component to perform coating.
  • a solution or a sol of silica can be used.
  • the silica sol is obtained by the following preparation method: tetra-ethyl-orthosilicate and hydrochloric acid are mixed and stirred with the weight ratio of tetra-ethyl-orthosilicate to hydrochloric acid being about 5: 1 to 1: 50.
  • the stirring temperature is about 15 to 25 °C, and the stirring time is about 4-10 hours.
  • the speed of the coating may have an effect on the thickness of the barrier layer. In one embodiment, the belt speed is about 5-15 m/min when performing coating.
  • the speed of the rubber roller is about 5-15 m/min. Curing can also be referred to as drying.
  • the curing temperature is about 80 to 250 °C, for example, about 100 °C, 200 °C.
  • the curing time is from about 3 s to about 60 s, e.g., about 10 s, 15 s.
  • the barrier layer has a thickness of from about 5 nm to about 500 nm, preferably from about 10 nm to about 200 nm, e.g., about 100 nm.
  • a heat-insulation layer is provided on the barrier layer.
  • a mixed solution of a solution or dispersion of the heat-insulation material and a binder solution may be coated to the surface of the barrier layer and curing is performed to form a heat-insulation layer.
  • the coating process is carried out preferably by a roll coating method.
  • the binder solution is a solution of the corresponding component to preform coating.
  • a solution or a sol of silica can be used.
  • the silica sol is as described above.
  • the silica sol is mixed with a dispersion of the heat-insulation material.
  • the dispersion of the heat-insulation material should have a suitable solid content such that it has a good heat insulation effect, while the effect on light transmittance, particularly visible light transmittance, remains within an acceptable range.
  • the dispersion of the heat-insulation material has a solid content of from about 5 to 50%.
  • the weight ratio of silica to the heat-insulation material is from about 1: 1 to 1: 1000, preferably from about 1: 10 to 1: 200, more preferably about 1: 100.
  • the coating speed may have an effect on the thickness of the heat-insulation layer.
  • the belt speed is about 5-15 m/min and the rubber roll speed is about 5-15 m/min when performing coating.
  • the curing temperature is about 80 to 250 °C, e.g., about 100 °C, about 200 °C.
  • the curing time is about 3 s to 60 s, e.g., about 15 s, 20 s.
  • the heat-insulation layer has a thickness of from about 50 nm to 50 ⁇ m, preferably from about 500 nm to 5 ⁇ m, e.g. about 1 ⁇ m.
  • the coating process described above can be performed by the following methods in addition to roll coating.
  • spin coating, casting, bar coating, blade coating, wire bar coating, dip coating, etc. may be employed.
  • post-curing is an optional curing step after completion of the curing for the barrier layer and the heat-insulation layer.
  • Post-curing removes organic residues and enhances the bond strength among the layers and the glass substrate.
  • the post-curing temperature should be below the temperature at which the heat-insulation material will be oxidized. In one embodiment, the post-curing temperature is from about 200 to 400 °C.
  • the post-curing time is about 30 s to 120 min.
  • the another glass substrate is an glass substrate applied in subsequent matching process.
  • the another glass substrate to be applied for matching process is the second glass substrate.
  • the another glass substrate to be applied for matching process is the first glass substrate.
  • the another glass substrate may also optionally be a glass substrate coated as described in step (a) .
  • a powder-protection layer is disposed between the heat-insulation laminate of the coated glass substrate and the another glass substrate and matching process is performed to obtain the coated glass substrate that is processed and the another glass substrate that is processed.
  • a powder-protection layer is applied between the heat-insulation laminate of the coated glass substrate and the another glass substrate to prevent the heat-insulation material from being oxidized.
  • the powder-protection layer refers to a layer formed by a protective powder.
  • the powder-protection layer may have a good reducibility and does not react with the materials in contact therewith, such as glass, heat-insulation material, e.g., composite tungsten oxide, binder, e.g., silica of the insulation layer, and is less likely to be dangerous at high temperatures.
  • the powder-protection layer contains one or more of the following components: carbon powder, metallic powder and reducing salt (s) .
  • the metallic powder is preferably a reducing metallic powder including, but not limited to, iron powder, zinc powder, aluminum powder, magnesium powder, titanium powder or a combination thereof, and more preferably includes iron powder, zinc powder, aluminum powder or their combination.
  • Exemplary reducing salts include, but are not limited to, sulfites such as potassium sulfite.
  • the particle size of the protective powder is usually from about 150 to 300 mesh, for example from about 100 to 200 mesh.
  • the powder-protection layer should have a suitable thickness so that it fully serves as a protection. However, the powder-protection layer should not be too thick in order to avoid causing negative effect on the tolerance control for the two glasses during the matching process.
  • the powder-protection layer has a thickness of about 0.01 mm to 5 mm, preferably about 0.1 mm to 1 mm, e.g., about 0.5 mm.
  • the material used in the powder-protection layer is a reducing material.
  • the reducing material will not react with the material in the heat-insulation layer and can provide protection during the matching process, especially during the hot bending process.
  • the powder-protection layer can effectively block the oxidation of the components in the heat-insulation laminate.
  • the heat-insulation material in the heat-insulation layer of the heat-insulation laminate is composite tungsten oxide
  • the powder-protection layer can prevent the composite tungsten oxide from being oxidized at the high temperature of the hot bending process.
  • the powder-protection layer can be applied to the another glass substrate or applied to the heat-insulation laminate of the coated glass substrate.
  • the powder-protection layer is applied to the side of the another glass substrate to be contacted with the heat-insulation laminate of the coated glass substrate.
  • a powder-protection layer is applied to the heat-insulation laminate of the coated glass substrate.
  • the protective powder can be applied by, for example, hand-sprayed or dispersed in a solvent such as water, ethanol and then sprayed onto the corresponding surface.
  • the powder-protection layer is applied to the another glass substrate, and the coated glass substrate is disposed on the powder-protection layer for matching process.
  • the side of the heat-insulation laminate of the coated glass substrate is in close contact with the powder-protection layer.
  • a powder-protection layer is applied on the coated glass substrate, and the another glass substrate is disposed on the powder-protection layer for matching process.
  • the matching process can render the shape and dimension of the glass substrates (i.e., the first glass substrate and the second glass substrate) matching to each other, and a desired shape and dimension can be obtained.
  • the matching process includes a high-temperature matching process, for example, a hot bending process is performed at a high temperature.
  • the temperature of the hot bending process is a temperature range well known in the art, such as about 500-680 °C, e.g., about 650 °C.
  • the matching process is performed for the coated glass substrate and the another glass substrate in the presence of a powder-protection layer to obtain the coated glass substrate that is processed and the another glass substrate that is processed.
  • the matching process is performed for the coated glass substrate and the another glass substrate. In another embodiment, the matching process is performed for the coated glass substrate and the glass substrate coated as described in step (a) .
  • the coated glass substrate is only physically in close contact with the another glass substrate so that the glass substrates can be easily separated from each other after the matching process, making an easier removal of the powder-protection layer.
  • the coated glass substrate that is processed is separated from the another glass substrate that is processed to remove the powder-protection layer. Removal is carried out in a manner generally known in the art, such as cleaning.
  • the coated glass substrate that is processed has a lower haze value after the matching process.
  • the heat-insulation material of the heat-insulation laminate in the coated glass substrate is not oxidized.
  • the coated glass substrate that is processed has a haze value of about less than 2%, preferably about less than 1%, more preferably about less than 0.8%, e.g., about 0.5%.
  • the coated glass substrate that is processed and the another glass substrate that is processed are combined with the remaining elements, e.g., in combination with an adhesive layer, and an optional functional layer, to obtain the laminated glass of the present invention, for example, the laminated glass as shown in Figure 2 to Figure 11.
  • the manner of combination is a combination manner generally used in the art, and will not be described herein.
  • the invention also relates to the use of the laminated glass of the invention in vehicle glazing.
  • the glazing includes, but is not limited to, a windshield, a front side glazing, a rear side glazing, a rear window, and a roof glazing.
  • Vehicles include, but are not limited to, motor vehicles, trains, trucks, airplanes, and buses.
  • the laminated glass of the present invention is provided with heat insulation and at least one other function including, but not limited to, HUD application, sound insulation, anti-fogging property, water-repellence, and the like.
  • the application of the heat-insulation layer of the present invention allows the provision of the heat-insulation layer to have substantially no adverse effects on other functions.
  • the laminated glass of the invention has a lower TTS and a lower cost, does not block electronic signals, has a simple preparation process and has wide application prospects.
  • the barrier layer in the laminated glass of the present invention can effectively block sodium ions derived from the glass substrate, thereby effectively preventing the damage of the lattice structure by the permeation effect of sodium ions and preventing haze of the glass.
  • the laminated glass has both infrared absorption and low infrared reflection property, has good strength and wear resistance, and can effectively resist the friction occurring during the washing process.
  • the laminated glass of the present invention can be applied in a hot bending or tempering process and effectively withstand the high temperature and high oxidation environments in a hot bending or tempering process.
  • Tetra-ethyl-orthosilicate was purchased from Sinopharm Chemical Reagent Co., Ltd. (Cat. No. 80124118)
  • Caesium Tungsten bronze (Cs x WO 3 ) was purchased from Sumitomo Metal Co., Ltd., Japan, with x of 0.27-0.33.
  • Roll coating equipment was purchased from Mingshuo Machinery Co., Ltd., Shanghai.
  • Tetra-ethyl-orthosilicate was mixed with hydrochloric acid (HCl) having a pH of 2 to prepare a silica sol, wherein each of TEOS and hydrochloric acid was 2 kg, and the mixture was stirred at room temperature (25 °C) for 4 hours.
  • the silica sol was applied to the glass substrate by roll coating.
  • the glass substrate is a commercially available ordinary glass, and the thickness of the glass is 2.1 mm.
  • the purity of the silica is 99%.
  • the belt speed was 10 m/min and the rubber roller speed was 12 m/min.
  • curing was performed at a temperature of 100 °C for 10 s to form a barrier layer.
  • the barrier layer has a compactness of 90%.
  • the barrier layer has a thickness of 100 nm.
  • the silica sol was mixed with a caesium tungsten bronze dispersion.
  • the caesium tungsten bronze dispersion has a solid content of 20%.
  • the weight ratio of silica to caesium tungsten bronze in the mixture is 1: 100.
  • the mixture was applied by roller coating to a barrier layer on glass substrate.
  • the belt speed was 14 m/min and the speed of the rubber roller was 14 m/min.
  • curing was performed at a temperature of 100 °C for 20 s to form a heat-insulation layer.
  • the heat-insulation layer has a thickness of 1 ⁇ m.
  • the post-curing temperature was 350 °C, and the post-curing time was 1 min. Coated glass substrate was obtained thereby.
  • a powder-protection layer was provided on another glass substrate, and the powder-protection layer contains carbon powder having a particle diameter of 100-200 mesh.
  • the protective powder was dispersed in water and sprayed onto the surface of the another glass substrate.
  • the thickness of the powder-protection layer is 0.5 mm.
  • the another glass substrate may be commercially available ordinary glass having a thickness of 2.1 mm.
  • the coated glass substrate was combined with the another glass substrate to which the powder-protection layer had been applied such that the powder-protection layer was disposed between the heat-insulation laminate of the coated glass substrate and the another glass substrate.
  • Matching process i.e. the hot bending process, was performed with the heating temperature of 650 °C and the treatment time of 10 minutes.
  • the powder-protection layer on the another glass substrate that was processed was removed.
  • Spectra of the coated glass substrates before and after the hot bending process were determined at room temperature using a Lambda 950 spectrophotometer from PE, as shown in Figure 12.
  • sample 1 the infrared absorption of the coated glass substrate (hereinafter referred to as sample 1) after the heat process almost remains unchanged compared to that of the coated glass before the heat process. It is indicated that the powder-protection layer plays a good role in protecting the heat-insulation layer, so that the heat-insulation material caesium tungsten bronze in the heat-insulation layer is not oxidized in the hot bending process.
  • the haze value of sample 1 was measured at room temperature with a haze meter of the type BYK-Gardner 4725, and the haze value is 0.5%.
  • Example 1 On the basis of Example 1, same matching process i.e., hot bending process, was performed for the coated glass substrate and the another glass substrate without providing the protective powder.
  • the coated glass substrate thus treated is referred to as sample of Comparative Example 1.
  • the appearance of the sample of Comparative Example 1 was observed, and it is found that the blue color of caesium tungsten bronze disappears, and the entire coated glass substrate become white and hazy.
  • the haze value measured by the haze meter is more than 5%.
  • Example 2 The procedure was similar to that of Example 1 and Example 2, except that no barrier layer was applied to the glass substrate (i.e., the primary coating in Example 1 was not applied) .
  • the glass substrate thus processed is referred to as sample of Comparative Example 2.
  • sample of Comparative Example 2 After the completion of the hot bending process, the appearance of the sample of Comparative Example 2 was observed. It is found that the glass substrate of the sample of Comparative Example 2 is hazy.
  • the haze value measured by the haze meter is more than 20%. It was observed by a scanning electron microscope that crystal grains having a particle diameter of more than 1 ⁇ m are formed on the surface of the coating, i.e., the heat-insulation layer of the coated glass substrate.
  • the coated glass substrate that was processed obtained in Example 2 after hot bending process and the another glass substrate that was processed after hot bending process were combined with a wedge adhesive layer to prepare a laminated glass as shown in Figure 3 (laminated glass of the present invention) .
  • the wedge adhesive layer was purchased from Sekisui Co., Ltd., Japan.
  • the laminated glass was subjected to spectral measurement using the above-mentioned spectrophotometer to examine the compatibility of the HUD application and the heat-insulation function. It can be calculated from Figure 13B using ISO 13837 that the laminated glass with the heat-insulation layer containing caesium tungsten bronze (laminated glass of the present invention) has a reflection value of only less than 7% (low reflectance) . Therefore, the additional ghost image of the laminated glass in Example 3 is weaker than that of the double-layered silver-plated glass (not the laminated glass of the present invention) .
  • the first type of glass Saint-Gobain TSA3+ in the prior art was combined with a wedge adhesive layer and an ordinary glass (hereinafter referred to as a TSA3+ after lamination) .
  • the sample thus obtained and the laminated glass as shown in Figure 3 (hereinafter referred to as laminated glass of the present invention) were subjected to spectral measurement using a spectrophotometer, respectively.
  • the TTS value was compared. It can be calculated from the curves shown in Figure 14A-B that the TTS of the sample TSA3+ after lamination is 65%, and the laminated glass of the present invention has a TTS of 51%, i.e., the laminated glass of the present invention has a superior heat insulation ability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a laminated glass, comprising at least two glass substrates, at least one adhesive layer disposed between the glass substrates, and a heat-insulation laminate disposed on at least one side of the adhesive layer, characterized in that, the adhesive layer is a functional adhesive layer and/or a functional layer is disposed on at least one side of at least one of the glass substrates, the heat-insulation laminate comprises a heat-insulation layer containing a heat-insulation material and a binder, wherein the heat-insulation material comprises one or more components from the group consisting of composite tungsten oxide, lanthanum boride, vanadium oxide, indium tin oxide, antimony tin oxide, and the combination of indium tin oxide and antimony tin oxide, the binder comprises one or more components from the group consisting of silica, titania, and alumina. The laminated glass has heat-insulation function and at least one other function, has low total transmittance and low cost, does not block electronic signals, is simple in preparation process, and has wide application prospects.

Description

LAMINATED GLASS AND PREPARATION PROCESS THEREOF
The present application claims the priority of Chinese application No. 201811306993. X, filed on November 5, 2018, entitled “Laminated glass and preparation process thereof” , the content of which is incorporated by reference in its entirety.
Technical field
The invention relates to the field of vehicle glazing, in particular to a laminated glass and a preparation process thereof, the laminated glass having a heat-insulation function and at least one other function.
Background
Cost-effective vehicle heat-insulation glass has always been the focus of attention. Currently, there are three major types of glass in the field of vehicle glazing. The first type is the green glass and/or solar glass, e.g., Saint-Gobain TSA Nx, TSA3+, TSA4+, TSA 5+. The second type is the double-layered silver-plated glass, such as the product of Saint-Gobain coated with a commercial product Kappa. The third type is the three-layered silver-plated glass, such as Saint-Gobain's all-weather glass.
In actual use, it is desirable to make the glass have good heat insulation function, and have one or more other properties, e.g., HUD (head-up display) application, sound insulation, anti-fogging property, water-repellence, and the like. In addition, as receiving device is required to be installed in the vehicle to receive the inspection from the road-relevant equipment, the glass should be set such that electronic signals, e.g., the radio-frequency wireless signals, are not substantially blocked. In the prior art of glass, for the first type of glass, it has a lower cost, does not substantially block electronic signals, and does not adversely affect other functions such as HUD application, sound insulation, anti-fogging property, and water-repellence. However, this type of glass has a higher heat transmittance, that is, the heat insulation function is lacking. According to ISO13837, total transmittance sum (TTS) is a key indicator of blocking the solar energy. The lower the TTS, the better the heat insulation performance is. For the first type of glass with excellent properties, TTS is relatively high, for example 61% (with the thickness of 2.1 mm for a single piece) . The  second type of the double-layered silver-plated glass, which is for example realized by magnetic sputtering, e.g., Kappa, has a relatively low TTS, that is, a relatively good heat insulation property. However, this type of glass achieves heat insulation by reflection. It will create a third image under HUD application (the two sides of the glass produce two images due to reflection, and the third image is an additional image produced by the plating, hereinafter referred to as the additional image or the additional ghost image) . Therefore, currently Kappa coatings are typically arranged between the first glass substrate and the adhesive layer to reduce the distance between the additional image and the original image. The second type of glass also suffers from the problem of electronic signal blocking. Laser cladding or physical removal is required to the silver-plated glass such that the glass has signal windows in certain areas. Even so, electronic signals can only be received at specific angles, limiting their market applications. In addition, Kappa-coated Sekurit glass has a higher cost. For the third type of the three-layered silver-plated glass, it has similar disadvantages as the double-layered silver-plated glass, namely limited electronic signal reception and higher price, and is more expensive than the second type of glass. In addition, the three-layered silver-plated glass is more sensitive to the bending process. In particular, the three-layered silver-plated glass is easily broken in areas where the curvature is large. This is also the reason why all-weather glass has not been produced outside of Europe so far.
In addition, the heat insulation glass in the prior art can hardly withstand the high temperature and high oxidation environment in the hot bending process, and thus is difficult to be used in the hot bending process. In the solutions of the prior art wherein caesium tungsten bronze is used as a heat-insulation layer, a caesium tungsten bronze precursor and a reducing gas (for example, N 2, Ar, and H 2) are commonly used. However, in the actual hot bending or tempering process, such a method using a caesium tungsten bronze precursor and a reducing gas is hard to be achieved.
Therefore, there is still a need for a laminated glass having good heat insulation properties, substantially no electronic signal blocking, and at least one other function, and a need for a method of obtaining such a laminated glass.
Summary of the invention
An object of the present invention is to provide a laminated glass, the preparation process thereof and the use of the laminated glass.
In one aspect, the invention provides a laminated glass comprising:
at least two glass substrates,
at least one adhesive layer disposed between the glass substrates, and
a heat-insulation laminate disposed on at least one side of the adhesive layer, wherein,
the adhesive layer is a functional adhesive layer, and/or a functional layer is disposed on at least one side of at least one of the glass substrates,
the heat-insulation laminate comprises a heat-insulation layer containing a heat-insulation material and a binder, wherein,
the heat-insulation material comprises one or more components from the group consisting of composite tungsten oxide, lanthanum boride, vanadium oxide, indium tin oxide, antimony tin oxide, and the combination of indium tin oxide and antimony tin oxide,
the binder comprises one or more components from the group consisting of silica, titania, and alumina.
In one embodiment, the laminated glass of the present invention comprises two glass substrates and one adhesive layer.
In another embodiment, the heat-insulation laminate of the present invention further comprises a barrier layer disposed on the side of the heat-insulation layer that is farther from the adhesive layer.
In yet another embodiment, the heat-insulation material of the present invention comprises composite tungsten oxide, the composite tungsten oxide is as shown in formula (1) :
M xWO 3-yA y         (1)
wherein M is an alkali metal element or an alkaline earth metal element, W is tungsten, O is oxygen, A is halogen element, and 0<x≤1, 0≤y≤0.5.
In a preferred embodiment, y = 0, and/or M is caesium.
In one embodiment, the adhesive layer is made from a thermoplastic polymer, and the thermoplastic polymer is one or more selected from the group consisting of: polyvinyl butyral, polyurethane, plasticized polyvinyl chloride, and ethylene-vinyl acetate copolymer, preferably polyvinyl butyral.
In another embodiment, the functional adhesive layer is one or more selected from the group consisting of wedge adhesive layer, acoustic adhesive layer.
In yet another embodiment, the functional layer is one or more selected from the group consisting of water-repellent layer, anti-fogging layer.
In another aspect, the present invention is directed to a process for preparing a laminated glass, comprising:
(a) providing the heat-insulation laminate on the glass substrate to form a coated glass substrate;
(b) providing another glass substrate;
(c) disposing a powder-protection layer between the heat-insulation laminate of the coated glass substrate and the another glass substrate for a matching process to obtain the coated glass substrate that is processed and the another glass substrate that is processed;
(d) removing the powder-protection layer, and combining the coated glass substrate that is processed and the another glass substrate that is processed with the adhesive layer and an optional functional layer.
In one embodiment, the powder-protection layer comprises one or more of the following components: carbon powder, metallic powder and reducing salt (s) .
In a preferred embodiment, the metallic powder comprises iron powder, zinc powder, aluminum powder or their combination.
In another embodiment, the powder-protection layer has a thickness of from about 0.01 mm to about 5 mm, preferably from about 0.1 mm to about 1 mm.
In yet another embodiment, the step (a) comprises:
(a1) providing the barrier layer on the glass substrate and performing curing;
(a2) providing the heat-insulation layer on the barrier layer and performing curing;
(a3) optionally post-curing the product obtained from step (a2) .
In yet another aspect, the invention also relates to a laminated glass which is prepared according to any one of above mentioned process.
In yet another aspect, the invention also relates to the use of the laminated glass of the invention in vehicle glazing.
The positive effect of the present invention is that, the laminated glass of the present  invention is provided with heat insulation and at least one other function including, but not limited to, HUD application, sound insulation, anti-fogging property, water-repellence, and the like. The use of the heat-insulation layer of the present invention allows the disposition of the heat-insulation layer to have substantially no adverse effects on other functions. The laminated glass of the invention has a lower TTS (TTS less than 60%) and a lower cost, does not block electronic signals, is simple in the preparation process, and has wide application prospects.
The barrier layer in the laminated glass of the present invention can effectively block sodium ions derived from the glass substrates, thereby effectively preventing the damage of the lattice structure by the permeation effect of sodium ions and preventing haze of the glass. Moreover, the laminated glass has both infrared absorption property and low infrared reflection property, has good strength and wear resistance, and can effectively resist the friction occurring during the washing process. Moreover, the laminated glass of the present invention can be applied in a hot bending or tempering process and effectively withstand the high temperature and high oxidation environments in a hot bending or tempering process.
Brief Description of the Drawings
The foregoing and other aspects of the present application will be more fully understood from the following detailed specification and the following figures. It should be noted that the scales of individual figures may be different for the purpose of clarity, but this does not affect the understanding of the present invention. In the figures:
Figure 1 is a schematic view showing the structure of a heat-insulation laminate in an embodiment of the present invention.
Figures 2 to 11 are schematic views showing the structure of a laminated glass in the embodiments of the present invention under different conditions.
Figure 12 is the spectra of the sample of Example 2 of the present invention before and after the hot bending process.
Figure 13A shows the transmission spectra of a laminated glass formed as shown in Figure 3 and a laminated glass formed as shown in Figure 8 of the present invention.
Figure 13B shows the reflection spectra of a laminated glass formed as shown in Figure 3 and a laminated glass formed as shown in Figure 8 of the present invention.
Figure 14A shows the transmission spectra of a laminated glass formed as shown in Figure 3 of the present invention and a laminated glass (TSA3+ after lamination) comprising the first type of TSA3+ in the prior art.
Figure 14B shows the reflection spectra of a laminated glass formed as shown in Figure 3 of the present invention and a laminated glass comprising the first type of glass TSA3+ in the prior art (TSA3+ after lamination) .
Detailed Description
General definitions and terms
The invention is further described in detail below, and it is to be understood that the terms are for the purpose of description but not intended to limit the invention.
The technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, unless otherwise indicated. In the event of a conflict, the definition provided in this application shall prevail. When a certain amount, concentration or other value or parameter is expressed in the form of a range, a preferred range, or a preferred upper numerical limit, and a preferred lower numerical limit, it is to be understood that any range that combines any one of the upper limit or preferred value of the range with any lower limit or preferred value of the range is specifically recited, regardless of whether the range is specifically disclosed. Ranges of values recited herein are intended to include the endpoints of the range and all integers and fractions (fractions) within the range, unless otherwise stated.
The terms "about" and "approximately" when used in conjunction with a numerical variable, it is generally referred to the values of the variable and all values of the variable within the experimental error (e.g., within a 95%confidence interval of the mean) or within ±10%of the specified value, or broader.
The term "optional" or "optionally" as used herein means that the subsequently described event or circumstance may or may not occur. The description includes the occurrence or non-occurrence of the event or circumstance, as well as the arbitrary selection of the  subsequently described content.
Unless otherwise indicated, percentages, parts, and the like herein are provided by weight.
The expressions "including" , "comprising" , "having" , “containing” and the like, are meant to be inclusive, and do not exclude unlisted additional elements, steps, or components. The expression "consisting of" excludes any element, step or ingredient that is not specified. The expression "consisting essentially of" means that the scope is limited to the specified elements, steps or components, together with elements, steps or components that are optionally present and do not substantially affect the basic and novel characteristics of the claimed subject matter. It should be understood that the expression "comprising" encompasses the expression "consisting essentially of" and "consisting of. "
The term "one or more" or "at least one" , as used herein, means one, two, three, four, five, six, seven, eight or more.
The terms "two or more" or "at least two" are used herein to mean two, three, four, five, six, seven, eight or more.
The term "room temperature" as used herein refers to about 20 to 30 ℃, such as about 25 ℃.
The term "reducing salt" as used herein refers to a salt having a reducing property, and the exemplary salts include, but are not limited to, a sulfite such as potassium sulfite.
The term "compactness" as used herein refers to the ratio of the volume of the solid matter portion of the material to the total volume, that is, the compactness = (ρ 0 /ρ) ×100 % (ρ 0: apparent density; ρ: density) .
The term "total transmittance sum (TTS) " as used herein is an indicator commonly used in the art to judge the heat insulation performance. It was determined using ISO 13837, a commonly used method in the art. The instrument used for measurement is a spectrophotometer, such as the Lambda 950 from PE Corporation. The laminated glass of the present invention has a TTS value of less than about 60%, preferably less than about 55%, such as about 55%, 51%.
As used herein, the term "light transmittance" means the ability of light to pass through a medium, which is the percentage ratio of the transmitted light flux that passes through a  transparent or translucent body to the incident light flux. The light transmittance can be measured, for example, using a spectrophotometer, for example, a Lambda 950 spectrophotometer from PE Corporation. The measurement temperature is, for example, room temperature. When used as vehicle glazing, the laminated glass should have good light transmittance. The visible light transmittance (or referred to as visible light transmission) of the laminated glass of the present invention is 70%or more.
The term "haze" as used herein has the meaning as commonly understood in the art, it may refer to the percentage ratio of the intensity of the transmitted light that is at an angle above 2.5° from the incident light to that of the total transmitted light. The haze can be measured, for example, using a haze meter such as a haze meter of a model number BYK-Gardner 4725. The measurement temperature is, for example, room temperature.
The term "HUD" as used herein is a head-up display system that allows for display of information projected onto a glass panel and reflected into the eyes of the driver or observer. Typically, such an image is obtained by projecting information onto a laminated glass. However, the driver now sees a ghost image, that is, a first image reflected by the glass surface facing the interior of the cabin and a second image reflected by the outer surface of the windshield, the two images being slightly offset from each other. This offset may result in the interference of information display. A solution as proposed in the patent US 5,013,134 describes a head-up display system using a laminated windshield formed of two glass sheets and a polyvinyl butyral (PVB) interlayer. Two outer surfaces of the windshields are not parallel, but wedge, so that the image projected by the display source and the image reflected by the windshield surface facing the cabin are almost superimposed on the same image that is reflected by the outward facing windshield surface from the same source. In order to eliminate the ghosting, a wedge laminated glass is conventionally manufactured using an intermediate sheet whose thickness is reduced from the top side to the bottom side of the glass sheet.
The HUD used in the present invention adopts a configuration generally used in the art, that is, the adhesive layer is shaped to have a wedge structure as described above, which will not be described herein.
The term "wedge adhesive layer" as used herein refers to that the adhesive layer is configured to have a wedge shape so as to be suitable for HUD. The wedge adhesive layer is  shaped to have a shape commonly used in the art for the purpose of the HUD application, and is a commercially available product, which will not be described herein. Typically, the wedge adhesive layer has a wedge angle of about 0.25-0.73 milli-arcs. The wedge adhesive layer can be prepared using materials and methods known in the art. For example, it is a PVB (polyvinyl butyral) product of Sekisui Co., Ltd., Japan.
The term "acoustic adhesive layer" as used herein means that the adhesive layer has good noise reduction or sound insulation properties. It is usually a PVB with a three-layered structure, in which the intermediate layer is a modified PVB, which mainly plays the role of sound insulation or noise reduction. The acoustic adhesive layer can be prepared by using materials and methods known in the art for preparing an acoustic adhesive layer, and is a commercially available product, such as the product of Sekisui Co., Ltd., Japan, and no further details will be provided herein.
The term "anti-fogging layer" as used herein refers to a coating having an anti-fogging function. The anti-fogging layer can be prepared using materials and methods known in the art, and will not be described herein. The anti-fogging layer is typically applied to the outer surface of the first glass substrate in the laminated glass.
The term "water-repellent layer" as used herein refers to a coating having a water-repellent function. The water-repellent layer can be prepared using materials and methods known in the art as commercially available products, such as the Aqua control of Saint-Gobain, and will not be described herein. The water-repellent layer is typically applied to the outer surface of the second glass substrate in the laminated glass.
The term "lanthanum boride" as used herein refers to a compound comprising lanthanum (La) and B elements in the compound, including but not limited to LaB 6.
The term "vanadium oxide" as used herein includes, but is not limited to, VO 2.
The term "indium tin oxide" as used herein is abbreviated as ITO, which is a mixture of indium (Group III) oxide (In 2O 3) and tin (Group IV) oxide (SnO 2) , usually in a mass ratio of In 2O 3: SnO 2 of 90%: 10%.
The term "antimony tin oxide" as used herein is abbreviated as ATO, which may also be referred to as antimony tin oxide or nano antimony-doped tin dioxide.
Glass substrate
The "glass" used in glass substrate is an amorphous inorganic non-metallic material, generally prepared by using a variety of inorganic minerals (such as quartz sand, borax, boric acid, barite, barium carbonate, limestone, feldspar, soda ash, etc. ) as the main raw materials and a small amount of auxiliary materials. Its main components are silica and other oxides. The "glass" here can be ordinary glass, whose chemical composition is Na 2SiO 3, CaSiO 3, SiO 2 or Na 2O·CaO·6SiO 2, etc., and the main component is a silicate double salt, which is an amorphous solid with irregular structure. The "glass" herein may also be a colored glass in which a certain metal oxide or salt is mixed to exhibit a color, or a tempered glass obtained by a physical or chemical method. Glass substrate is usually transparent.
The glass substrate used in the present invention also has good heat insulation property, thereby further reducing the cost of the laminated glass.
The glass substrate has a thickness commonly used in the art, for example, not less than about 0.7 mm, not less than about 1.4 mm, for example, not more than about 2.8 mm, not more than about 2.3 mm, for example, from about 0.7 to about 2.8 mm, from about 1.4 to about 2.8 mm, from about 0.7 to about 2.3 mm, e.g., about 2.1 mm. The laminated glass of the present invention is configured such that the TTS value is not significantly affected by the thickness of the glass substrate.
The glass substrates used in the present invention are not particularly different from each other in material selection. The size and shape of the glass substrates will vary depending on where the glass substrates are located.
In one embodiment, the laminated glass comprises two glass substrates, a first glass substrate and a second glass substrate, respectively. For the vehicle glazing, the glass on the indoor side is defined as the first glass substrate. For the vehicle glazing, the glass on the outdoor side is defined as the second glass substrate. The material composition of the first glass substrate and the second glass substrate is as described above and of no substantial difference. The size and shape of the first glass substrate and the second glass substrate may vary depending on the position of the glass substrates (indoor or outdoor side) . For the purposes of use, the first glass substrate and the second glass substrate are typically subjected to a matching process during preparation such that the two have matching and desired shapes. 
Heat-insulation laminate
The term "heat-insulation laminate" as used herein denotes a multilayer structure having heat insulation properties.
The heat-insulation laminate of the present invention comprises a heat-insulation layer.
The heat-insulation layer contains a heat-insulation material and a binder.
The heat-insulation material is a material having a property of reflecting or absorbing infrared rays, and is preferably a material having an absorption property for infrared rays, such as composite tungsten oxide.
In one embodiment of the invention, the heat-insulation material comprises one or more of the following ingredients: composite tungsten oxide, lanthanum boride, vanadium oxide, indium tin oxide, antimony tin oxide, and the combination of indium tin oxide and antimony tin oxide. When two or more heat-insulation materials are used, the combination may be a physical combination or a chemical combination, for example, in the form of a blend of two or more of the above-mentioned heat-insulation materials, or the above-mentioned two or more heat-insulation materials are presented in the form of a laminate, so that the heat-insulation laminate has two or more heat-insulation layers made of different heat-insulation materials.
In a preferred embodiment, the heat-insulation material comprises composite tungsten oxide.
In a more preferred embodiment, composite tungsten oxide is used as the heat-insulation material.
In a specific embodiment, the composite tungsten oxide is as shown in formula (1) :
M xWO 3-yA y        (1)
wherein, M is an alkali metal element or an alkaline earth metal element, W is tungsten, O is oxygen, A is a halogen element, and 0 < x ≤ 1, 0 ≤ y ≤ 0.5.
M is an alkali metal element or an alkaline earth metal element, examples of which are lithium (Li) , sodium (Na) , potassium (K) , rubidium (Rb) , caesium (Cs) , beryllium (Be) , magnesium (Mg) , calcium (Ca) , strontium (Sr) , barium (Ba) or any combination thereof. A is a halogen element, examples of which are fluorine (F) , chlorine (Cl) , bromine (Br) , iodine (I)  or any combination thereof.
In a further embodiment, the composite tungsten oxide is as shown in formula (2) ,
M xWO 3        (2)
wherein M, x, W and O are as defined above.
The formula (2) is the case where y = 0 in the formula (1) , that is, the composite tungsten oxide does not contain a halogen element.
In a more preferred embodiment, the composite tungsten oxide is as shown in formula (1) , wherein y = 0 and M is caesium.
In another more preferred embodiment, the composite tungsten oxide is as shown in formula (1) wherein x is from about 0.27 to about 0.33.
The composite tungsten oxide may be commercially available, for example, Cs xWO 3 from Sumitomo Metal Corporation of Japan.
The binder can be used to bond the heat-insulation materials together to effectively increase the mechanical properties and wear resistance of the heat-insulation layer and keep the heat-insulation materials from being removed during subsequent processing of the glass substrate. In one embodiment, the binder contains one or more of the following ingredients: silica, titania, and alumina, preferably silica.
In one embodiment, the weight ratio of the binder to the heat-insulation material in the heat-insulation layer should be set such that the heat-insulation layer has good heat insulation property and mechanical property. Too little binder content will reduce the mechanical properties of the heat-insulation layer, and excessive binder content will make the heat-insulation layer's heat insulation performance worse. In one embodiment, the weight ratio of the binder to the heat-insulation material in the heat-insulation layer is from about 1: 1 to 1: 1000, preferably from about 1: 10 to 1: 200, more preferably about 1: 100.
The heat-insulation layer should have a suitable thickness. The heat-insulation layer should not be too thin in order to have a good heat insulation effect. However, it should not be too thick in order to ensure that the visible light transmittance of the heat-insulation layer is more than 70%. The heat-insulation layer of the present invention has a thickness of from about 50 nm to 50 μm, preferably from about 500 nm to 5 μm, for example, about 1 μm.
The heat-insulation layer of the present invention does not contain a signal shielding  material. The heat-insulation layer of the present invention does not substantially block electronic signals.
The heat-insulation laminate of the present invention may further comprise a barrier layer disposed on the side of the heat-insulation layer that is farther from the adhesive layer. Through the barrier layer, sodium ions from the glass substrates can be effectively blocked, thereby effectively preventing the damage of the lattice structure by the permeation effect of sodium ions and preventing haze of the glass.
The barrier layer contains one or more of the following components: silica, titania, and alumina, preferably silica. The purity of the single component of silica, titania, and alumina is about 99%or more. The barrier layer has a compactness of about 90%or more.
The barrier layer should have a suitable thickness so that it can exert a good barrier effect while meeting the requirements of light transmittance, particularly visible light transmittance. The barrier layer has a thickness of about 5 nm to 500 nm, preferably about 10 nm to 200 nm, for example, about 100 nm.
As shown in Figure 1, the heat-insulation laminate 4 of the present invention includes a barrier layer 42 and a heat-insulation layer 41 disposed in sequence. The positions of the barrier layer 42 and the heat-insulation layer 41 can be interchanged depending on the arrangement of the positions of the glass substrates and the adhesive layer.
It should be noted that, in the above-mentioned embodiments, the description of the heat-insulation layer disposed on the barrier layer only indicates the positional relationship between the heat-insulation layer and the barrier layer. In one embodiment, the heat-insulation layer can be placed in close contact with the surface of the barrier layer. In another embodiment, other layers may be disposed between the heat-insulation layer and the barrier layer.
Adhesive layer
The adhesive layer acts as a bond. The adhesive layer is made of thermoplastic polymer which is one or more selected from the group consisting of polyvinyl butyral, polyurethane, plasticized polyvinyl chloride, and ethylene-vinyl acetate copolymer, preferably polyvinyl butyral (PVB) . The material used for the adhesive layer is commonly used in the art, and may  be, for example, a commercially available product such as PVB available from Sekisui Co., Ltd., Japan.
In one embodiment, the adhesive layer is a functional adhesive layer such that the laminated glass has one or more functions in addition to heat insulation. The functional adhesive layer is one or more selected from the group consisting of a wedge adhesive layer and an acoustic adhesive layer. Therefore, the laminated glass has one or more functions of HUD applications, sound insulation and the like. The wedge adhesive layer and the acoustic adhesive layer may be the same adhesive layer, for example, using a wedge-shaped PVB with a three-layered structure having a sound insulation function. Through the design of the shape and material composition, it has both the functions of HUD application and sound insulation.
The thickness of the adhesive layer is the thickness conventionally used in the art. For an adhesive layer for non-HUD applications, the thickness is about 0.7 to about 0.8 mm, for example about 0.76 mm. For an adhesive layer for HUD applications, the HUD thickness is about 0.3 to about 2 mm, for example, the narrow side of the wedge is about 0.5 mm, and the thick side of the wedge is about 1.1 mm.
Functional layer
The functional layer gives the laminated glass extra functions in addition to heat insulation. The functional layer is one or more selected from the group consisting of a water-repellent layer and an anti-fogging layer. The functional layer can be disposed on any suitable surface of the glass substrates, such as the outer surfaces of the glass substrates, e.g., the first glass substrate and/or the second glass substrate.
Laminated glass
In one aspect, the present invention provides a laminated glass comprising:
at least two glass substrates,
at least one adhesive layer disposed between the glass substrates, and
a heat-insulation laminate disposed on at least one side of the adhesive layer, wherein
the adhesive layer is a functional adhesive layer,
and/or a functional layer is provided on at least one side of at least one of the glass  substrates.
Preferably, the laminated glass comprises two glass substrates and one adhesive layer.
In one embodiment, the two glass substrates are a first glass substrate and a second glass substrate, respectively.
In a preferred embodiment, the heat-insulation laminate is located between one of the glass substrates and the adhesive layer.
In one embodiment, the adhesive layer is a functional adhesive layer.
In another embodiment, a functional layer is disposed on at least one side of at least one of the glass substrates.
In yet another embodiment, the adhesive layer is a functional adhesive layer and a functional layer is disposed on at least one side of at least one of the glass substrates.
In one embodiment, as shown in Figure 2, the laminated glass of the present invention includes a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, and a second glass substrate 2 disposed sequentially from bottom to top. The heat-insulation laminate 4 includes an optional barrier layer 42 and a heat-insulation layer 41 which are sequentially disposed from bottom to top.
In a preferred embodiment, as shown in Figure 3, the laminated glass includes a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, and a second glass substrate 2 which are disposed sequentially from bottom to top. The adhesive layer 3 is a wedge adhesive layer. The laminated glass thus obtained has both heat insulation and HUD applications. As the heat-insulation layer of the present invention contains a material that preferably absorbs infrared rays, it does not substantially impair the HUD application.
In another preferred embodiment, as shown in Figure 4, the laminated glass includes an anti-fogging layer 6, a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, and a second glass substrate 2 disposed sequentially from bottom to top. The laminated glass thus obtained has both heat insulation and anti-fogging functions.
In still another preferred embodiment, as shown in Figure 5, the laminated glass includes a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, and a second glass substrate 2 disposed sequentially from bottom to top. The adhesive layer 3 is an acoustic adhesive layer. The laminated glass thus obtained has both heat insulation and noise reduction  functions.
In still another preferred embodiment, as shown in Figure 6, the laminated glass includes a first glass substrate 1, a heat-insulation laminate 4, an adhesive layer 3, a second glass substrate 2, and a water-repellent layer 5 disposed sequentially from bottom to top. The laminated glass thus obtained has both heat insulation and water-repellent functions.
In another embodiment, as shown in Figure 7, the laminated glass of the present invention includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, and a second glass substrate 2 disposed sequentially from bottom to top. The heat-insulation laminate 4 includes a heat-insulation layer 41 and a barrier layer 42 disposed sequentially from bottom to top.
In a preferred embodiment, as shown in Figure 8, the laminated glass includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, and a second glass substrate 2 disposed sequentially from bottom to top. The adhesive layer 3 is a wedge adhesive layer. The laminated glass thus obtained has both heat insulation and HUD applications. As the heat-insulation layer of the present invention contains a material that preferably absorbs infrared rays, it does not substantially impair the function of the HUD application. When the heat-insulation layer provided by the present invention is used, whether arranged in the form of Figure 3 or Figure 8, the function of the HUD application would not be significantly affected. Specifically, in both arrangements, the distance between the additional image and the original image is very small. Furthermore, as the reflection of the infrared absorbing material is relatively weak, the additional image is also relatively weak. However, the additional image in the prior art will be relatively strong and if the heat-insulation laminate is arranged in the form of Figure 8, and the additional image will be farther away from the original image. Therefore, in order to make the additional image closer to the original image, the heat-insulation laminate usually could only be arranged in the form of Figure 3 in the prior art.
In another preferred embodiment, as shown in Figure 9, the laminated glass includes an anti-fogging layer 6, a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, and a second glass substrate 2 disposed sequentially from bottom to top. Therefore, the laminated glass obtained has both heat insulation and anti-fogging functions.
In still another preferred embodiment, as shown in Figure 10, the laminated glass includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, and a second glass substrate 2 disposed sequentially from bottom to top. The adhesive layer 3 is an acoustic adhesive layer. The laminated glass thus obtained has both heat insulation and noise reduction functions.
In still another preferred embodiment, as shown in Figure 11, the laminated glass includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, a second glass substrate 2, and a water-repellent layer 5 disposed sequentially from bottom to top. The laminated glass thus obtained has both heat insulation and water-repellent functions.
In one embodiment, the laminated glass may include an anti-fogging layer 6, a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4, a second glass substrate 2, and a water-repellent layer 5 simultaneously. The position of the heat-insulation laminate 4 and the adhesive layer 3 can be interchanged, as shown in Figure 2 or Figure 7. The adhesive layer can be both a wedge adhesive layer and an acoustic adhesive layer. That is, at least one of the anti-fogging layer 6, the water-repellent layer 5, and/or at least one of the wedge adhesive layer and the acoustic adhesive layer may be optionally provided such that the laminated glass has a plurality of functions.
It should be noted that, in the above-mentioned embodiments, the description of the positional relationship among the layers indicates only the relative positional relationship among the layers. For example, the laminated glass includes a first glass substrate 1, an adhesive layer 3, a heat-insulation laminate 4 and a second glass substrate 2 disposed sequentially from bottom to top, and the fact that adhesive layer 3 is located on the first glass substrate 1 does not exclude that other layers are disposed between the adhesive layer 3 and the first glass substrate 1. The adhesive layer 3 may be placed in close contact with the surface of the first glass substrate 1, while other layers may also be disposed between the adhesive layer 3 and the first glass substrate 1. For example, the fact that the heat-insulation laminate 4 is located on the adhesive layer 3 does not exclude that other layers are disposed between the heat-insulation laminate 4 and the adhesive layer 3.
Process for preparing a laminated glass
The invention further relates to a process for preparing a laminated glass of the invention, which comprises:
(a) providing a heat-insulation laminate on the glass substrate to form a coated glass substrate;
(b) providing another glass substrate;
(c) disposing a powder-protection layer between the heat-insulation laminate of the coated glass substrate and the another glass substrate for a matching process to obtain the coated glass substrate that is processed and the another glass substrate that is processed;
(d) removing the powder-protection layer, and combining the coated glass substrate that is processed and the another glass substrate that is processed with an adhesive layer, and an optionally functional layer.
Step (a)
Specifically, step (a) includes:
(a1) providing a barrier layer on the glass substrate and performing curing;
(a2) providing a heat-insulation layer on the barrier layer and performing curing;
(a3) optionally post-curing the product obtained from step (a2) .
In step (a) , glass substrate is used as a basis for disposing a heat-insulation laminate. The heat-insulation laminate is disposed on the glass substrate to obtain coated glass substrate.
Specifically, in step (a1) , the barrier layer solution is applied to the surface of the glass substrate and curing is performed to form a barrier layer. Coating is carried out preferably by a roll coating method. The coated glass substrate can be the first and/or second glass substrate, depending on the structural arrangement of the final laminated glass.
Preferably, the barrier layer solution comprises one or more of the following components: silica, titania, and alumina. The purity of the single component of silica, titania, and alumina is 99%or more. The formed barrier layer has a compactness of 90%or more.
In a specific embodiment, in step (a1) , the barrier layer solution is a solution of the corresponding component to perform coating. When silica is used, a solution or a sol of silica can be used. The silica sol is obtained by the following preparation method: tetra-ethyl-orthosilicate and hydrochloric acid are mixed and stirred with the weight ratio of  tetra-ethyl-orthosilicate to hydrochloric acid being about 5: 1 to 1: 50. The stirring temperature is about 15 to 25 ℃, and the stirring time is about 4-10 hours. The speed of the coating may have an effect on the thickness of the barrier layer. In one embodiment, the belt speed is about 5-15 m/min when performing coating. The speed of the rubber roller is about 5-15 m/min. Curing can also be referred to as drying. In step (a1) , the curing temperature is about 80 to 250 ℃, for example, about 100 ℃, 200 ℃. The curing time is from about 3 s to about 60 s, e.g., about 10 s, 15 s. In one embodiment, the barrier layer has a thickness of from about 5 nm to about 500 nm, preferably from about 10 nm to about 200 nm, e.g., about 100 nm.
In step (a2) , a heat-insulation layer is provided on the barrier layer. A mixed solution of a solution or dispersion of the heat-insulation material and a binder solution may be coated to the surface of the barrier layer and curing is performed to form a heat-insulation layer. The coating process is carried out preferably by a roll coating method.
In a specific embodiment, in step (a2) , the binder solution is a solution of the corresponding component to preform coating. When silica is used, a solution or a sol of silica can be used. The silica sol is as described above. The silica sol is mixed with a dispersion of the heat-insulation material. The dispersion of the heat-insulation material should have a suitable solid content such that it has a good heat insulation effect, while the effect on light transmittance, particularly visible light transmittance, remains within an acceptable range. In one embodiment, the dispersion of the heat-insulation material has a solid content of from about 5 to 50%. In another embodiment, the weight ratio of silica to the heat-insulation material is from about 1: 1 to 1: 1000, preferably from about 1: 10 to 1: 200, more preferably about 1: 100. The coating speed may have an effect on the thickness of the heat-insulation layer. In one embodiment, the belt speed is about 5-15 m/min and the rubber roll speed is about 5-15 m/min when performing coating. In step (a2) , the curing temperature is about 80 to 250 ℃, e.g., about 100 ℃, about 200 ℃. The curing time is about 3 s to 60 s, e.g., about 15 s, 20 s. In one embodiment, the heat-insulation layer has a thickness of from about 50 nm to 50 μm, preferably from about 500 nm to 5 μm, e.g. about 1 μm.
In other embodiments, the coating process described above can be performed by the following methods in addition to roll coating. For example, spin coating, casting, bar coating, blade coating, wire bar coating, dip coating, etc. may be employed.
In step (a3) , post-curing is an optional curing step after completion of the curing for the barrier layer and the heat-insulation layer. Post-curing removes organic residues and enhances the bond strength among the layers and the glass substrate. The post-curing temperature should be below the temperature at which the heat-insulation material will be oxidized. In one embodiment, the post-curing temperature is from about 200 to 400 ℃. The post-curing time is about 30 s to 120 min.
Step (b)
Another glass substrate is provided. The another glass substrate is an glass substrate applied in subsequent matching process. For example, when the glass substrate used in the coated glass substrate is the first glass substrate, the another glass substrate to be applied for matching process is the second glass substrate. When the glass substrate used in the coated glass substrate is the second glass substrate, the another glass substrate to be applied for matching process is the first glass substrate.
The another glass substrate may also optionally be a glass substrate coated as described in step (a) .
Step (c)
A powder-protection layer is disposed between the heat-insulation laminate of the coated glass substrate and the another glass substrate and matching process is performed to obtain the coated glass substrate that is processed and the another glass substrate that is processed.
A powder-protection layer is applied between the heat-insulation laminate of the coated glass substrate and the another glass substrate to prevent the heat-insulation material from being oxidized.
The powder-protection layer refers to a layer formed by a protective powder. The powder-protection layer may have a good reducibility and does not react with the materials in contact therewith, such as glass, heat-insulation material, e.g., composite tungsten oxide, binder, e.g., silica of the insulation layer, and is less likely to be dangerous at high temperatures. In this context, the powder-protection layer contains one or more of the following components: carbon powder, metallic powder and reducing salt (s) . The metallic  powder is preferably a reducing metallic powder including, but not limited to, iron powder, zinc powder, aluminum powder, magnesium powder, titanium powder or a combination thereof, and more preferably includes iron powder, zinc powder, aluminum powder or their combination. Exemplary reducing salts include, but are not limited to, sulfites such as potassium sulfite. The particle size of the protective powder is usually from about 150 to 300 mesh, for example from about 100 to 200 mesh.
The powder-protection layer should have a suitable thickness so that it fully serves as a protection. However, the powder-protection layer should not be too thick in order to avoid causing negative effect on the tolerance control for the two glasses during the matching process. In this context, the powder-protection layer has a thickness of about 0.01 mm to 5 mm, preferably about 0.1 mm to 1 mm, e.g., about 0.5 mm.
In one embodiment, the material used in the powder-protection layer is a reducing material. The reducing material will not react with the material in the heat-insulation layer and can provide protection during the matching process, especially during the hot bending process. The powder-protection layer can effectively block the oxidation of the components in the heat-insulation laminate. For example, when the heat-insulation material in the heat-insulation layer of the heat-insulation laminate is composite tungsten oxide, the powder-protection layer can prevent the composite tungsten oxide from being oxidized at the high temperature of the hot bending process.
Depending on the structural arrangement of the product that ultimately needs to be obtained, the powder-protection layer can be applied to the another glass substrate or applied to the heat-insulation laminate of the coated glass substrate.
In one embodiment, the powder-protection layer is applied to the side of the another glass substrate to be contacted with the heat-insulation laminate of the coated glass substrate.
In another embodiment, a powder-protection layer is applied to the heat-insulation laminate of the coated glass substrate.
The protective powder can be applied by, for example, hand-sprayed or dispersed in a solvent such as water, ethanol and then sprayed onto the corresponding surface.
In one embodiment, the powder-protection layer is applied to the another glass substrate, and the coated glass substrate is disposed on the powder-protection layer for matching process.  The side of the heat-insulation laminate of the coated glass substrate is in close contact with the powder-protection layer.
In another embodiment, a powder-protection layer is applied on the coated glass substrate, and the another glass substrate is disposed on the powder-protection layer for matching process.
The matching process can render the shape and dimension of the glass substrates (i.e., the first glass substrate and the second glass substrate) matching to each other, and a desired shape and dimension can be obtained. In step (c) , the matching process includes a high-temperature matching process, for example, a hot bending process is performed at a high temperature. The temperature of the hot bending process is a temperature range well known in the art, such as about 500-680 ℃, e.g., about 650 ℃.
The matching process is performed for the coated glass substrate and the another glass substrate in the presence of a powder-protection layer to obtain the coated glass substrate that is processed and the another glass substrate that is processed.
In one embodiment, the matching process is performed for the coated glass substrate and the another glass substrate. In another embodiment, the matching process is performed for the coated glass substrate and the glass substrate coated as described in step (a) .
Step (d)
It should be noted that during the matching process, the coated glass substrate is only physically in close contact with the another glass substrate so that the glass substrates can be easily separated from each other after the matching process, making an easier removal of the powder-protection layer.
After the matching process, the coated glass substrate that is processed is separated from the another glass substrate that is processed to remove the powder-protection layer. Removal is carried out in a manner generally known in the art, such as cleaning.
The coated glass substrate that is processed has a lower haze value after the matching process. The heat-insulation material of the heat-insulation laminate in the coated glass substrate is not oxidized. In one embodiment, the coated glass substrate that is processed has a haze value of about less than 2%, preferably about less than 1%, more preferably about less  than 0.8%, e.g., about 0.5%.
After removing the powder-protection layer, the coated glass substrate that is processed and the another glass substrate that is processed are combined with the remaining elements, e.g., in combination with an adhesive layer, and an optional functional layer, to obtain the laminated glass of the present invention, for example, the laminated glass as shown in Figure 2 to Figure 11. The manner of combination is a combination manner generally used in the art, and will not be described herein.
The invention also relates to the use of the laminated glass of the invention in vehicle glazing. The glazing includes, but is not limited to, a windshield, a front side glazing, a rear side glazing, a rear window, and a roof glazing. Vehicles include, but are not limited to, motor vehicles, trains, trucks, airplanes, and buses.
Beneficial effect
The laminated glass of the present invention is provided with heat insulation and at least one other function including, but not limited to, HUD application, sound insulation, anti-fogging property, water-repellence, and the like. The application of the heat-insulation layer of the present invention allows the provision of the heat-insulation layer to have substantially no adverse effects on other functions. The laminated glass of the invention has a lower TTS and a lower cost, does not block electronic signals, has a simple preparation process and has wide application prospects.
The barrier layer in the laminated glass of the present invention can effectively block sodium ions derived from the glass substrate, thereby effectively preventing the damage of the lattice structure by the permeation effect of sodium ions and preventing haze of the glass. Moreover, the laminated glass has both infrared absorption and low infrared reflection property, has good strength and wear resistance, and can effectively resist the friction occurring during the washing process. Moreover, the laminated glass of the present invention can be applied in a hot bending or tempering process and effectively withstand the high temperature and high oxidation environments in a hot bending or tempering process.
Example
Specific examples are given below to illustrate the laminated glass of the present invention and the preparation process thereof, but do not constitute a limitation thereto.
Example 1
Preparation of a coated glass substrate
Main reagents:
Tetra-ethyl-orthosilicate (TEOS) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Cat. No. 80124118)
Caesium Tungsten bronze (Cs xWO 3) was purchased from Sumitomo Metal Co., Ltd., Japan, with x of 0.27-0.33.
Main instruments:
Roll coating equipment was purchased from Mingshuo Machinery Co., Ltd., Shanghai.
Primary coating:
Tetra-ethyl-orthosilicate (TEOS) was mixed with hydrochloric acid (HCl) having a pH of 2 to prepare a silica sol, wherein each of TEOS and hydrochloric acid was 2 kg, and the mixture was stirred at room temperature (25 ℃) for 4 hours.
The silica sol was applied to the glass substrate by roll coating. The glass substrate is a commercially available ordinary glass, and the thickness of the glass is 2.1 mm. The purity of the silica is 99%. The belt speed was 10 m/min and the rubber roller speed was 12 m/min. After the coating was completed, curing was performed at a temperature of 100 ℃ for 10 s to form a barrier layer. The barrier layer has a compactness of 90%. The barrier layer has a thickness of 100 nm.
Secondary coating:
The silica sol was mixed with a caesium tungsten bronze dispersion. The caesium tungsten bronze dispersion has a solid content of 20%. The weight ratio of silica to caesium tungsten bronze in the mixture is 1: 100.
The mixture was applied by roller coating to a barrier layer on glass substrate. The belt speed was 14 m/min and the speed of the rubber roller was 14 m/min. After the completion of coating, curing was performed at a temperature of 100 ℃ for 20 s to form a heat-insulation layer. The heat-insulation layer has a thickness of 1 μm.
Subsequently, a post-curing step was carried out. The post-curing temperature was 350 ℃, and the post-curing time was 1 min. Coated glass substrate was obtained thereby.
Example 2
On the basis of Example 1, a powder-protection layer was provided on another glass substrate, and the powder-protection layer contains carbon powder having a particle diameter of 100-200 mesh. The protective powder was dispersed in water and sprayed onto the surface of the another glass substrate. The thickness of the powder-protection layer is 0.5 mm. The another glass substrate may be commercially available ordinary glass having a thickness of 2.1 mm. The coated glass substrate was combined with the another glass substrate to which the powder-protection layer had been applied such that the powder-protection layer was disposed between the heat-insulation laminate of the coated glass substrate and the another glass substrate. Matching process, i.e. the hot bending process, was performed with the heating temperature of 650 ℃ and the treatment time of 10 minutes. After the process was completed, the powder-protection layer on the another glass substrate that was processed was removed. Spectra of the coated glass substrates before and after the hot bending process were determined at room temperature using a Lambda 950 spectrophotometer from PE, as shown in Figure 12. As shown in Figure 12, the infrared absorption of the coated glass substrate (hereinafter referred to as sample 1) after the heat process almost remains unchanged compared to that of the coated glass before the heat process. It is indicated that the powder-protection layer plays a good role in protecting the heat-insulation layer, so that the heat-insulation material caesium tungsten bronze in the heat-insulation layer is not oxidized in the hot bending process. The haze value of sample 1 was measured at room temperature with a haze meter of the type BYK-Gardner 4725, and the haze value is 0.5%.
Comparative Example 1
On the basis of Example 1, same matching process i.e., hot bending process, was performed for the coated glass substrate and the another glass substrate without providing the protective powder. The coated glass substrate thus treated is referred to as sample of Comparative Example 1. The appearance of the sample of Comparative Example 1 was  observed, and it is found that the blue color of caesium tungsten bronze disappears, and the entire coated glass substrate become white and hazy. The haze value measured by the haze meter is more than 5%.
Comparative Example 2
The procedure was similar to that of Example 1 and Example 2, except that no barrier layer was applied to the glass substrate (i.e., the primary coating in Example 1 was not applied) . The glass substrate thus processed is referred to as sample of Comparative Example 2. After the completion of the hot bending process, the appearance of the sample of Comparative Example 2 was observed. It is found that the glass substrate of the sample of Comparative Example 2 is hazy. The haze value measured by the haze meter is more than 20%. It was observed by a scanning electron microscope that crystal grains having a particle diameter of more than 1 μm are formed on the surface of the coating, i.e., the heat-insulation layer of the coated glass substrate.
Example 3
The coated glass substrate that was processed obtained in Example 2 after hot bending process and the another glass substrate that was processed after hot bending process were combined with a wedge adhesive layer to prepare a laminated glass as shown in Figure 3 (laminated glass of the present invention) . The wedge adhesive layer was purchased from Sekisui Co., Ltd., Japan. The laminated glass was subjected to spectral measurement using the above-mentioned spectrophotometer to examine the compatibility of the HUD application and the heat-insulation function. It can be calculated from Figure 13B using ISO 13837 that the laminated glass with the heat-insulation layer containing caesium tungsten bronze (laminated glass of the present invention) has a reflection value of only less than 7% (low reflectance) . Therefore, the additional ghost image of the laminated glass in Example 3 is weaker than that of the double-layered silver-plated glass (not the laminated glass of the present invention) .
In the prior art, in order to bring the additional ghost image closer to the original image, it is always preferable to arrange a heat-insulation laminate in the form of Figure 3. For the heat-insulation laminate of the present invention, there is almost no functional performance  reduction for the laminated glass in the form of Figure 8 compared to that in the form of Figure 3. Figures 13A-B show a comparison of the performance of the laminated glass of the present invention configured in the form of Figure 3 and in the form of Figure 8. It can be calculated from Figure 13 using ISO 13837 that the TTS difference between the two forms is only about 0.1%.
Example 4
The first type of glass Saint-Gobain TSA3+ in the prior art was combined with a wedge adhesive layer and an ordinary glass (hereinafter referred to as a TSA3+ after lamination) . The sample thus obtained and the laminated glass as shown in Figure 3 (hereinafter referred to as laminated glass of the present invention) were subjected to spectral measurement using a spectrophotometer, respectively. The TTS value was compared. It can be calculated from the curves shown in Figure 14A-B that the TTS of the sample TSA3+ after lamination is 65%, and the laminated glass of the present invention has a TTS of 51%, i.e., the laminated glass of the present invention has a superior heat insulation ability.
Although specific embodiments of the invention have been described above, it is understood that they are for purposes of example only, and the scope of the invention is defined by the appended claims. Those skilled in the art can make various changes or modifications to the embodiments without departing from the spirit and scope of the invention, and such changes and modifications fall within the scope of the invention.

Claims (15)

  1. A laminated glass, comprising
    at least two glass substrates,
    at least one adhesive layer disposed between the glass substrates, and
    a heat-insulation laminate disposed on at least one side of the adhesive layer, characterized in that,
    the adhesive layer is a functional adhesive layer, and/or a functional layer is disposed on at least one side of at least one of the glass substrates,
    the heat-insulation laminate comprises a heat-insulation layer containing a heat-insulation material and a binder, wherein
    the heat-insulation material comprises one or more components from the group consisting of composite tungsten oxide, lanthanum boride, vanadium oxide, indium tin oxide, antimony tin oxide, and the combination of indium tin oxide and antimony tin oxide,
    the binder comprises one or more components from the group consisting of silica, titania, and alumina.
  2. The laminated glass according to claim 1, characterized in that,
    the laminated glass comprises two glass substrates and one adhesive layer.
  3. The laminated glass according to claim 1 or 2, characterized in that,
    the heat-insulation laminate further comprises a barrier layer disposed on the side of the heat-insulation layer that is farther from the adhesive layer.
  4. The laminated glass according to any one of claims 1 to 3, characterized in that,
    the heat-insulation material comprises composite tungsten oxide,
    the composite tungsten oxide is as shown in formula (1) :
    M xWO 3-yA y (1)
    wherein M is an alkali metal element or an alkaline earth metal element, W is tungsten, O is oxygen, A is halogen element, and 0<x≤1, 0≤y≤0.5.
  5. The laminated glass according to claim 4, characterized in that,
    y = 0, and/or
    M is caesium.
  6. The laminated glass according to any one of claims 1 to 5, characterized in that,
    the adhesive layer is made from thermoplastic polymer selected from one or more of polyvinyl butyral, polyurethane, plasticized polyvinyl chloride, and ethylene-vinyl acetate copolymer, preferably polyvinyl butyral.
  7. The laminated glass according to any one of claims 1 to 6, characterized in that,
    the functional adhesive layer is one or more selected from the group consisting of wedge adhesive layer, acoustic adhesive layer.
  8. The laminated glass according to any one of claims 1 to 7, characterized in that,
    the functional layer is one or more selected from the group consisting of water-repellent layer, anti-fogging layer.
  9. A process for preparing the laminated glass according to any one of claims 1 to 8, characterized in that, the process comprises
    (a) providing the heat-insulation laminate on the glass substrate to form a coated glass substrate;
    (b) providing another glass substrate;
    (c) disposing a powder-protection layer between the heat-insulation laminate of the coated glass substrate and the another glass substrate for a matching process to obtain the coated glass substrate that is processed and the another glass substrate that is processed;
    (d) removing the powder-protection layer, and combining the coated glass substrate that is processed and the another glass substrate that is processed with the adhesive layer and an optional functional layer.
  10. The process according to claim 9, characterized in that, the powder-protection layer comprises one or more of the following components: carbon powder, metallic powder and reducing salt (s) .
  11. The process according to claim 10, characterized in that, the metallic powder comprises iron powder, zinc powder, aluminum powder or their combination.
  12. The process according to any one of claims 9 to 11, characterized in that, the powder-protection layer has a thickness of about 0.01 mm to 5 mm, preferably about 0.1 mm to 1 mm.
  13. The process according to any one of claims 9 to 12, characterized in that, the step (a) comprises:
    (a1) providing the barrier layer on the glass substrate and performing curing;
    (a2) providing the heat-insulation layer on the barrier layer and performing curing;
    (a3) optionally post-curing the product obtained from step (a2) .
  14. A laminated glass, characterized in that, the laminated glass is prepared according to the process of any one of claims 9-13.
  15. Use of the laminated glass according to any one of claims 1 to 8 in vehicle glazing.
PCT/CN2019/114947 2018-11-05 2019-11-01 Laminated glass and preparation process thereof WO2020093938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811306993.X 2018-11-05
CN201811306993.XA CN111138096A (en) 2018-11-05 2018-11-05 Laminated glass and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2020093938A1 true WO2020093938A1 (en) 2020-05-14

Family

ID=70515622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114947 WO2020093938A1 (en) 2018-11-05 2019-11-01 Laminated glass and preparation process thereof

Country Status (3)

Country Link
CN (1) CN111138096A (en)
AR (1) AR116873A1 (en)
WO (1) WO2020093938A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603619A (en) * 2008-06-11 2009-12-16 财团法人工业技术研究院 Transparent heat-insulating multilayered structure
CN102145980A (en) * 2010-02-08 2011-08-10 财团法人工业技术研究院 Transparent thermal insulation material, manufacturing method thereof and transparent thermal insulation film
US20140242381A1 (en) * 2012-12-17 2014-08-28 Industrial Technology Research Institute Ir reflective multilayer structure and method for manufacturing the same
CN105842850A (en) * 2016-03-22 2016-08-10 福耀集团(上海)汽车玻璃有限公司 HUD glass product with reflecting film layer
US20170145737A1 (en) * 2014-08-27 2017-05-25 Fujifilm Corporation Heat insulating film, manufacturing method of heat insulating film, heat insulating glass, and window
CN109987855A (en) * 2017-12-29 2019-07-09 法国圣戈班玻璃公司 Heat-protecting glass, preparation method and heat-protecting glass product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603619A (en) * 2008-06-11 2009-12-16 财团法人工业技术研究院 Transparent heat-insulating multilayered structure
CN102145980A (en) * 2010-02-08 2011-08-10 财团法人工业技术研究院 Transparent thermal insulation material, manufacturing method thereof and transparent thermal insulation film
US20140242381A1 (en) * 2012-12-17 2014-08-28 Industrial Technology Research Institute Ir reflective multilayer structure and method for manufacturing the same
US20170145737A1 (en) * 2014-08-27 2017-05-25 Fujifilm Corporation Heat insulating film, manufacturing method of heat insulating film, heat insulating glass, and window
CN105842850A (en) * 2016-03-22 2016-08-10 福耀集团(上海)汽车玻璃有限公司 HUD glass product with reflecting film layer
CN109987855A (en) * 2017-12-29 2019-07-09 法国圣戈班玻璃公司 Heat-protecting glass, preparation method and heat-protecting glass product

Also Published As

Publication number Publication date
CN111138096A (en) 2020-05-12
AR116873A1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP5163742B2 (en) Low reflection glass and protective plate for display
JP7483677B2 (en) Glazing with optical instruments
EP1923362B1 (en) Infrared reflective glass plate and laminated glass for vehicle window
US7638184B2 (en) Laminated glass for vehicle window
JP7471217B2 (en) Laminated Glazing
WO2007049478A1 (en) Near infrared ray reflective substrate and near infrared ray reflective laminated glass employing that substrate, near infrared ray reflective double layer glass
CN113646276B (en) Optical component
JP2022549183A (en) Apparatus with laminated vehicular glazing and associated near-infrared viewing system
WO2022065000A1 (en) Far-infrared ray transmitting member and method for manufacturing far-infrared ray transmitting member
JP2020516571A (en) Coated glass articles
CN107771167B (en) Laminated glazing for solar control
WO2020093938A1 (en) Laminated glass and preparation process thereof
WO2016181739A1 (en) Insulated glass unit for vehicles
JPH10139491A (en) Low reflecting dark gray glass
CN113692396B (en) Glass sheet coated with a stack of thin layers and an enamel layer
CN103613284B (en) One can tempering low-reflection plating glass and preparation method thereof
CN114538791B (en) Coated glass, preparation method thereof and automobile glass assembly
CN114765970B (en) Laminated glazing for a vehicle, in particular a motor vehicle
EP4374199A2 (en) Ir transmissive pane
CN112192921A (en) Heat-insulating laminated glass and preparation method thereof
CN115087627A (en) Method for obtaining a curved laminated glazing
JP2021062991A (en) Window glass for vehicle
US20240059048A1 (en) Method for obtaining a laminated curved glazing
WO2023130214A1 (en) Windshield and windshield assembly
JP7255179B2 (en) Heat ray shielding laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882961

Country of ref document: EP

Kind code of ref document: A1