WO2020093325A1 - 立式加工中心可靠性快速检测装置 - Google Patents

立式加工中心可靠性快速检测装置 Download PDF

Info

Publication number
WO2020093325A1
WO2020093325A1 PCT/CN2018/114626 CN2018114626W WO2020093325A1 WO 2020093325 A1 WO2020093325 A1 WO 2020093325A1 CN 2018114626 W CN2018114626 W CN 2018114626W WO 2020093325 A1 WO2020093325 A1 WO 2020093325A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining center
vertical machining
sensor
displacement sensor
branch chain
Prior art date
Application number
PCT/CN2018/114626
Other languages
English (en)
French (fr)
Inventor
王立平
吴军
张彬彬
朱斌
梁建红
吴崇灯
陈代伟
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2018/114626 priority Critical patent/WO2020093325A1/zh
Publication of WO2020093325A1 publication Critical patent/WO2020093325A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools

Definitions

  • the invention relates to the technical field of reliability testing of machine tools, in particular to a rapid reliability testing device for vertical machining centers.
  • Reliability is the ability of a product to perform a specified function under specified conditions and within a specified time.
  • its reliability not only means that the machine tool itself can run smoothly, but more importantly, it can ensure that qualified products are processed for a long time, so reliability is an important indicator of CNC machine tools.
  • the reliability of CNC machine tools involves the entire life cycle of CNC machine tools. From the design, manufacture, assembly, installation, commissioning, user use of machine tools to scrapping of machine tools, they are closely related to the reliability technology of CNC machine tools.
  • the machine tool machining state is simulated by applying a load on the machine tool that exceeds the actual working conditions but not exceeding the actual load capacity of the CNC machine tool, and the accuracy detection device and Acquisition system to quickly test the reliability and accuracy of CNC machine tools, and then to evaluate the reliability and accuracy of CNC machine tools, to detect the reliability and accuracy of CNC machine tools, such a set of CNC machine tool reliability deceleration detection devices will have Very broad application prospects.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • the object of the present invention is to propose a rapid testing device for reliability of vertical machining centers, which has the advantages of simple structure, powerful functions, portable and easy installation, and the like.
  • an embodiment of the present invention provides a rapid testing device for reliability of a vertical machining center.
  • the vertical machining center 1 includes a vertical machining center spindle 2, a vertical machining center table 3, and a vertical machining center Numerical control system 4, wherein the device includes: an accuracy detection module 5 for detecting the motion accuracy and spindle rotation accuracy of the vertical machining center 1; a dynamic and static high and low frequency loading module 6 for the vertical machining
  • the center 1 applies forces and moments with different frequencies, directions and magnitudes to simulate the cutting state of the machining center;
  • a data collection and analysis module 7 is used to collect multiple items of the vertical machining center CNC system 4 and the vertical machining center 1 Machining center status information, and obtain the health status of the vertical machining center 1 according to the plurality of machining center status information.
  • the vertical reliability testing device of the vertical machining center can detect multiple machining center status information such as the static stiffness, dynamic stiffness, static rotation accuracy, dynamic rotation accuracy, machining center positioning error, and repeated positioning error of the machining center spindle. It can quickly check the reliability of the machining center, which has the advantages of simple structure, powerful function, portable and easy installation.
  • the reliability rapid detection device for the vertical machining center may also have the following additional technical features:
  • the accuracy detection module 5 includes a detection rod 51, a first displacement sensor 52, a second displacement sensor 53, a third displacement sensor 54, a fourth displacement sensor 55, a third Five displacement sensors 56, a sensor mounting seat 57 and a magnetic seat 58, wherein the first displacement sensor 52, the second displacement sensor 53, the third displacement sensor 54, the fourth displacement sensor 55 and the fifth
  • the displacement sensors 56 are all set on the sensor mounting base 57, and the sensor mounting base 57 is set on the magnetic base 58, the magnetic base 58 is adsorbed on the table 3 of the vertical machining center; the dynamic and static force is high
  • the low-frequency loading module 6 includes: a pneumatic parallel mechanism and a spindle loading connection interface 61, wherein the pneumatic parallel mechanism is provided on the table 3 of the vertical machining center, and the spindle loading connection interface 61 is provided above the pneumatic parallel mechanism , The upper end of the spindle loading connection interface 61 is connected to the spindle 2 of the vertical machining center, the
  • the sensor is arranged around each drive shaft of the vertical machining center 1 and the vertical machining center.
  • the acquisition card is used to collect sensor signals synchronously.
  • the communication board is connected to the CNC system 4 of the vertical machining center to read multiple pieces of machining center status information of the vertical machining center 1, and the data analyzer evaluates and monitors the laboratory based on the multiple pieces of machining center status information The reliability of the vertical machining center 1 will be described.
  • the detection rod 51 is a standard cylindrical rod, a standard sphere, an eccentric standard sphere, a standard double sphere, or an eccentric standard double sphere.
  • the first displacement sensor 52 and the second displacement sensor 53 are perpendicular to each other, coplanar and along the horizontal direction;
  • the third displacement sensor 54 and the fourth displacement The sensors 55 are parallel to the first displacement sensor 52 and the second displacement sensor 53, respectively, and the third displacement sensor 54 and the fourth displacement sensor 55 are perpendicular to each other, coplanar, and along the horizontal direction;
  • the first Five displacement sensors 56 are perpendicular to the first displacement sensor 52, the second displacement sensor 53, the third displacement sensor 54, and the fourth displacement sensor 55.
  • the displacement sensor is directed to the center of the sphere of the standard sphere, the eccentric standard sphere, the standard double sphere or the eccentric standard double sphere.
  • the pneumatic parallel mechanism includes a moving platform 8, a first branch chain 9, a second branch chain 10, a third branch chain 11, a fourth branch chain 12, and a fifth branch Chain 13, wherein the movable platform 8 is connected to the spindle loading connection interface 61 by bolts; the first branch chain 9, the second branch chain 10, the third branch chain 11, the fourth branch chain 12, and the fifth branch chain 13
  • the movable platform 8 and the vertical machining center table 3 are connected together;
  • the first branch chain 9 includes a first Hook hinge 91, a first connecting rod 92, a first rotating hinge 93, a first cylinder mounting flange 94, a first A cylinder piston rod 95, a first cylinder cylinder 96, a first tensile pressure sensor 97, a first sensor connecting rod 98, a second Hook hinge 99 and a first mounting base 910; the first connecting rod 92 passes through the first
  • the Hook hinge 91 is connected to the moving platform 8; the first cylinder mounting flange 94 is connected to the
  • the spindle loading connection interface 61 includes a spindle shank 611, a bearing upper cover plate 612, an upper bearing 613, a bearing seat 614, a lower bearing 615, a bearing lower cover plate 616, a block Ring 617, lock nut 618, spring jacket 619 and tool holder nut 6110; wherein, the spindle tool holder 611 is connected to the vertical machining center spindle 2 by hydraulic suction, and the bearing seat 614 passes through the upper The bearing 613 and the lower bearing 615 are connected to the spindle holder 611, the bearing upper cover plate 612 and the bearing lower cover plate 616 are installed on the upper and lower surfaces of the bearing seat 614 by bolts, and the retaining ring 617 is installed At the lower end of the lower bearing 615 and locked by a lock nut 618, the detection rod 51 is installed at the lower end of the spindle shank 611 by a spring jacket 619 and locked by a shank nut 6
  • the dynamic and static high and low frequency loading module 6 can detach the first branch chain 9, the second branch chain 10, the third branch chain 11, the first The mounting base on the four branch chain 12 and the fifth branch chain 13 gathers the first branch chain 9, the second branch chain 10, the third branch chain 11, the fourth branch chain 12 and The fifth branch chain 13 is installed on the mounting base 14.
  • the first branch 9, the second branch 10, the third branch 11, the fourth branch 12 and the fifth branch is different.
  • the device further includes a temperature sensor, a vibration acceleration sensor, a frequency transmitter, and a current transformer to detect the plurality of state information of the machining center.
  • FIG. 1 is a schematic structural diagram of a rapid detection device for reliability of a vertical machining center according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a three-dimensional structure of an embodiment of an accuracy detection module according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a device for quickly testing the reliability of a vertical machining center according to an embodiment of the present invention
  • FIG. 4 is an exploded view of the structure of the first branch chain and moving platform according to an embodiment of the present invention.
  • FIG. 5 is an exploded view of the structure of the second branch chain and moving platform embodiment according to an embodiment of the present invention.
  • FIG. 6 is an exploded view of the structure of an embodiment of a spindle loading connection interface according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a dynamic and static high and low frequency loading module according to an embodiment of the present invention in a stored state.
  • FIG. 1 is a schematic structural diagram of a device for quickly detecting the reliability of a vertical machining center according to an embodiment of the present invention.
  • the vertical machining center reliability rapid detection device the vertical machining center 1 includes a vertical machining center spindle 2, a vertical machining center table 3, and a vertical machining center CNC system 4, wherein the device includes : Precision detection module 5, dynamic and static force high and low frequency loading module 6 and data acquisition and analysis module 7.
  • the accuracy detection module 5 is used to detect the motion accuracy and spindle rotation accuracy of the vertical machining center 1; the dynamic and static high and low frequency loading module 6 is used to apply forces and moments of different frequencies, directions and magnitudes to the vertical machining center 1 , To simulate the cutting state of the machining center; the data collection and analysis module 7 is used to collect multiple machining center status information of the vertical machining center CNC system 4 and the vertical machining center 1, and obtain vertical machining based on the multiple machining center status information Center 1's health status.
  • the device of the embodiment of the present invention can detect multiple machining center status information such as the static stiffness, dynamic stiffness, static rotation accuracy, dynamic rotation accuracy, machining center positioning error, and repeated positioning error of the machining center spindle, and can quickly detect the reliability of the machining center , It has the advantages of simple structure, powerful function, portable and easy installation.
  • the vertical machining center 1 includes a vertical machining center spindle 2, a vertical machining center table 3, and a vertical machining center CNC system 4.
  • the device of the embodiment of the present invention includes a dynamic and static force high and low frequency loading module 6, a data collection and analysis module 7 and an accuracy detection module 5.
  • the dynamic and static high and low frequency loading module 6 and the accuracy detection module 5 are installed on the workbench 3 of the vertical machining center.
  • the data collection and analysis module 7 is connected to the CNC system 4 of the vertical machining center.
  • the accuracy detection module 5 can detect the machining center motion accuracy and the spindle rotation accuracy.
  • the dynamic and static force high and low frequency loading module 6 can apply forces and moments with different frequencies, directions and magnitudes to the machining center to simulate the cutting state of the machining center.
  • the data collection and analysis module 7 can collect the state information in the numerical control system and the temperature sensor, vibration sensor and other signals installed in the processing center in real time, and evaluate and monitor the health status of the processing center according to the collected signals.
  • the accuracy detection module 5 includes a detection rod 51, a first displacement sensor 52, a second displacement sensor 53, a third displacement sensor 54, a fourth displacement sensor 55, a fifth displacement
  • the sensor mounting base 57 is set on the magnetic base 58, and the magnetic base 58 is adsorbed on the table 3 of the vertical machining center.
  • the detection rod 51 may be a standard cylindrical rod, a standard sphere, an eccentric standard sphere, a standard double sphere, or an eccentric standard double sphere.
  • the first displacement sensor 52 and the second displacement sensor 53 are perpendicular to each other, coplanar and along the horizontal direction;
  • the third displacement sensor 54 and the fourth displacement sensor 55 are respectively connected to the first displacement sensor 52 and the second displacement sensor 53 are parallel, and the third displacement sensor 54 and the fourth displacement sensor 55 are perpendicular to each other, coplanar, and along the horizontal direction;
  • the fifth displacement sensor 56 and the first displacement sensor 52, the second displacement sensor 53, the first The three displacement sensors 54 and the fourth displacement sensor 55 are vertical.
  • the displacement sensor is directed to the center of the standard ball, eccentric standard ball, standard double ball, or eccentric standard double ball.
  • the accuracy detection module 5 includes a detection rod 51, a first displacement sensor 52, a second displacement sensor 53, a third displacement sensor 54, a fourth displacement sensor 55, a fifth displacement sensor 56, a sensor Mounting base 57 and magnetic base 58.
  • the detection rod 51 may be a standard cylindrical rod, a standard sphere, an eccentric standard sphere, a standard double sphere, or an eccentric standard double sphere.
  • the first displacement sensor 52 and the second displacement sensor 53 are perpendicular to each other, coplanar, and along the horizontal direction; the third displacement sensor 54 and the fourth displacement sensor 55 are parallel to the first displacement sensor 52 and the second displacement sensor 53, respectively, and the third The displacement sensor 54 and the fourth displacement sensor 55 are perpendicular to each other, coplanar, and along the horizontal direction; the fifth displacement sensor 56 and the first displacement sensor 52, the second displacement sensor 53, the third displacement sensor 54, and the fourth displacement sensor 55 are perpendicular.
  • the five displacement sensors are all mounted on the sensor mounting base 57 and point to the center of the standard ball, eccentric standard ball, standard double ball or eccentric standard double ball.
  • the sensor mounting base 57 is installed on the magnetic base 58; the magnetic base 58 is adsorbed on the table 3 of the vertical machining center; the accuracy detection module 5 can be used to detect the motion accuracy, repeated positioning accuracy and spindle rotation accuracy of the vertical machining center.
  • the dynamic and static high and low frequency loading module 6 includes: a pneumatic parallel mechanism and a spindle loading connection interface 61, wherein the pneumatic parallel mechanism is provided on the table 3 of the vertical machining center, and the spindle The loading connection interface 61 is provided above the pneumatic parallel mechanism, the upper end of the spindle loading connection interface 61 is connected to the spindle 2 of the vertical machining center, and the lower end of the spindle loading connection interface 61 clamps the detection rod 51;
  • the data collection and analysis module 7 includes a sensor, a collection card, Communication board and data analyzer, the sensors are arranged around each drive shaft of vertical machining center 1 and vertical machining center, the acquisition card is used to collect sensor signals synchronously, the communication board is connected to CNC system 4 of vertical machining center for reading Taking multiple machining center status information of the vertical machining center 1, the data analyzer evaluates and monitors the reliability of the vertical machining center 1 based on the multiple machining center status information.
  • the pneumatic parallel mechanism includes a moving platform 8, a first branch chain 9, a second branch chain 10, a third branch chain 11, a fourth branch chain 12, and a fifth branch chain 13 , Where the moving platform 8 is connected to the spindle loading connection interface 61 by bolts; the first branch chain 9, the second branch chain 10, the third branch chain 11, the fourth branch chain 12 and the fifth branch chain 13 are connected to the moving platform 8 and Vertical machining center table 3.
  • FIG. 3 it includes a dynamic and static force high and low frequency loading module 6, a data acquisition and analysis module 7 and an accuracy detection module 5.
  • the dynamic and static high and low frequency loading module 6 is installed on the table 3 of the vertical machining center, and includes a pneumatic parallel mechanism and a spindle loading connection interface 61.
  • the pneumatic parallel mechanism includes a moving platform 8, a first branch chain 9, a second branch chain 10, a third branch chain 11, a fourth branch chain 12, and a fifth branch chain 13.
  • the moving platform 8 is connected to the spindle loading connection interface 61 by bolts.
  • the first branch chain 9, the second branch chain 10, the third branch chain 11, the fourth branch chain 12 and the fifth branch chain 13 are connected to the moving platform 8 and the vertical machining center table 3, respectively.
  • the first branch chain 9 includes a first Hook hinge 91, a first connecting rod 92, a first rotating hinge 93, a first cylinder mounting flange 94, a first cylinder piston rod 95, a first cylinder cylinder Cylinder 96, first pull pressure sensor 97, first sensor connecting rod 98, second Hook hinge 99 and first mounting base 910;
  • first connecting rod 92 is connected to the moving platform 8 through the first Hook hinge 91;
  • first cylinder The mounting flange 94 is connected to the first connecting rod 92 through the first rotating hinge 93;
  • the first cylinder mounting flange 94 is fixed to the first cylinder piston rod 95 through bolts;
  • the first cylinder piston rod 95 is connected to the first cylinder through the first moving pair Cylinder 96;
  • the first pulling pressure sensor 97 is fixed to the lower end of the first cylinder cylinder 96 by bolts;
  • the first sensor connecting rod 98 is fixed to the lower end of the first pulling pressure sensor 97;
  • the first sensor connecting rod 88
  • the second branch chain 10 includes a third Hook hinge 101, a second connecting rod 102, a second cylinder mounting flange 103, a second cylinder piston rod 104, a second cylinder cylinder 105, a second pull
  • the second connecting rod 102 is fixed; the second cylinder mounting flange 103 and the second cylinder piston rod 104 are fixed by bolts; the second cylinder piston rod 104 is connected to the second cylinder cylinder 105 through the second moving pair; the second pulling pressure
  • the sensor 106 is fixed to the lower end of the second cylinder cylinder 105 by bolts; the second sensor connecting rod 107 is fixed to the lower end of the second tensile pressure sensor 106; the second sensor connecting rod 107 is connected to the second mounting base through the fourth Hook hinge
  • the spindle loading connection interface 61 is installed on the moving platform 8 of the pneumatic parallel mechanism, the upper end of the spindle loading connection interface 61 is connected to the spindle 2 of the vertical machining center, and the lower end of the spindle loading connection interface 61 is connected for accuracy detection Module 5.
  • the spindle loading connection interface 61 includes a spindle tool holder 611, a bearing upper cover plate 612, an upper bearing 613, a bearing seat 614, a lower bearing 615, a bearing lower cover plate 616, a retaining ring 617, a lock nut 618, a spring jacket 619 and a knife Handle nut 6110;
  • the spindle tool holder 611 is connected to the vertical machining center spindle 2 through hydraulic suction
  • the bearing seat 614 is connected to the spindle tool holder 611 through the upper bearing 613 and the lower bearing 615
  • the cover plate 616 is installed on the upper surface and the lower surface of the bearing housing 614 through bolts
  • the retaining ring 617 is installed on the lower end of the lower bearing 615 and is locked by the lock nut 618
  • the detection rod 51 is installed on the spindle holder 611 through the spring jacket 619 The lower end is locked by the tool holder nut
  • the strokes of the cylinders of the first branch chain 9, the second branch chain 10, the third branch chain 11, the fourth branch chain 12, and the fifth branch chain 13 are different.
  • the cylinders of the first branch chain 9, the second branch chain 10, the third branch chain 11, the fourth branch chain 12, and the fifth branch chain 13 can be replaced by cylinders with different strokes, so that Reliability testing of vertical machining centers with different specifications for small, medium, and large-scale machining.
  • the dynamic and static high and low frequency loading module 6 can detach the first branch chain 9, the second branch chain 10, the third branch chain 11, and the fourth branch chain 12 With the mounting base on the fifth branch chain 13, the first branch chain 9, the second branch chain 10, the third branch chain 11, the fourth branch chain 12, and the fifth branch chain 13 are gathered and installed on the mounting base 14.
  • the mounting base 14 can be a small integrated mounting base for storage in a reduced volume.
  • the device further includes a temperature sensor, a vibration acceleration sensor, a frequency transmitter, and a current transformer to detect multiple pieces of machining center status information.
  • the data acquisition and analysis module 7 includes a sensor, an acquisition card, a communication board, and a data analyzer.
  • the sensor includes a temperature sensor, a vibration acceleration sensor, a frequency transmitter, and a current transformer, and is installed in the vertical machining center 1.
  • the acquisition card synchronously collects sensor signals at high speed.
  • the communication board is connected to the CNC system 4 of the vertical machining center, and the status information of the vertical machining center 1 is read from the CNC system 4 of the vertical machining center, including tracking error, spindle load rate, load rate of each axis, motor temperature, etc. Performance index of vertical machining center.
  • the data analyzer evaluates and monitors the reliability of the machining center based on sensor signals and machining center status information.
  • the data collection and analysis module 7 collects the data of the five tension pressure sensors installed on the five branch chains. By adjusting the air pressure of the five cylinders on the five branch chains, the pulling pressure of the five branch chains is adjusted, and then the The loading force on the spindle 2 of the vertical machining center is precisely controlled. At the same time, the vertical machining center is controlled by G code.
  • the pneumatic parallel mechanism is driven to realize the loading force of the vertical machining center at different positions and postures.
  • the vertical machining center spindle 2 of the platform 8 performs multi-dimensional loading and simulates CNC machine tool cutting.
  • the data collection and analysis module collects sensor signals and machining center status information, and performs status detection and reliability evaluation on the vertical machining center.
  • the device of the embodiment of the present invention is suitable for rapid reliability testing of vertical machining centers.
  • the device can apply three-direction force and two-direction torque to the vertical machining center to simulate the actual machine tool cutting state. While applying loads to the vertical machining center, it can also monitor the status of a series of machining centers such as the rotation accuracy, repeated positioning accuracy, positioning accuracy, tracking error, motor temperature, and load of each axis of the vertical machining center, and real-time Feedback the health status of the vertical machining center, and finally evaluate the reliability and accuracy of the machining center.
  • the device of the embodiment of the present invention can apply three-direction force and two-direction torque to vertical machining centers of different specifications, such as vertical three-axis machining centers and vertical five-axis machining centers, to simulate the actual cutting state of CNC machine tools.
  • the device of the embodiment of the present invention can replace the cylinders in the mechanical structure with cylinders with different strokes, so that the modified mechanism can meet the reliability testing of vertical machining centers with different specifications such as small, medium, and large processing medium.
  • the device of the embodiment of the present invention can realize the simulation of CNC machine tool cutting, and at the same time, detect the rotation accuracy, repeated positioning accuracy and positioning accuracy of the CNC machine tool.
  • the device of the embodiment of the present invention can realize the detection of the CNC machine tool, at the same time, it can monitor the tracking error of the CNC machine tool, the spindle load rate, the load rate of each axis, the motor temperature and other performance indicators of the CNC machine tool, and can feedback the real-time
  • the health status of the type machining center finally evaluates the reliability and accuracy of the machining center.
  • the device of the embodiment of the present invention has a simple structure, is easy to manufacture, has low cost, and is easy to install on a CNC machine tool of different specifications for reliability testing.
  • the device of the embodiment of the present invention can be mounted on a small integrated mounting base, reducing the volume and being easy to carry and store.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the meaning of "plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.

Abstract

一种立式加工中心可靠性快速检测装置,立式加工中心(1)包括立式加工中心主轴(2)、立式加工中心工作台(3)和立式加工中心数控系统(4),其中,所述装置包括:精度检测模块(5),用于检测所述立式加工中心(1)的运动精度和主轴回转精度;动静力高低频加载模块(6),用于对所述立式加工中心(1)施加不同频率、方向和大小的力和力矩,以模拟加工中心切削状态;以及数据采集分析模块(7),用于采集所述立式加工中心数控系统(4)和所述立式加工中心(1)的多项加工中心状态信息,并根据所述多项加工中心状态信息得到所述立式加工中心(1)的健康状态。该装置可对加工中心可靠性进行快速检测,具有结构简单、功能强大、便携易安装等优点。

Description

立式加工中心可靠性快速检测装置 技术领域
本发明涉及机床可靠性试验技术领域,特别涉及一种立式加工中心可靠性快速检测装置。
背景技术
可靠性是产品在规定的条件下和规定的时间内,完成规定功能的能力。对数控机床而言,其可靠性不仅指机床本身能够平稳运行,更重要的是能够保证长时间加工出合格的产品,因此可靠性是数控机床的重要指标。数控机床可靠性涉及数控机床的整个寿命周期,从数控机床的设计、制造、装配、安装、调试、用户使用到机床报废,都与数控机床的可靠性技术密切相关。
为提高数控机床可靠性,需开展数控机床可靠性试验。常规的可靠性试验有全寿命试验、现场跟踪统计试验。但这些可靠性试验存在着周期较长,见效慢,所需样本量大,成本高等缺陷,从而使企业和产品不能适应市场的快速发展,满足用户需要。因此需要在数控机床出厂前快速测试其可靠性,并发现其潜在的薄弱点,并对其进行改进,提高数控机床的可靠性。目前,一部分国内数控机床生产厂商在数控机床出厂前进行了一定程度的可靠性和精度测试,但一般只涉及到简单圆台的轻切削和空运转试验。虽然在刚出厂时,数控机床的可靠性和精度能够满足出厂需求。但在用户使用一段时间后,数控机床的精度和可靠性会较快地衰退,因此国产数控机床的可靠性和精度保持性一直制约着其市场份额的提升。相对的,国外的一些数控机床厂商一般采取抽样连续切削可靠性试验。如日本山崎马扎克公司,通过对同一批次的一台或几台机床实施3个月的连续切削试验来检验机床可靠性。该方法时间和材料消耗巨大,试验成本很高,而且在完成试验后,该机床也无法上市进行销售。
若开发一种模拟实际切削的力加载机构和数控机床精度检测装置,通过对机床施加超过实际工况但又不超过数控机床实际负载能力的载荷,模拟机床加工状态,并同时采用精度检测装置和采集系统来快速测试数控机床的可靠性和数控机床精度,进而对数控机床的可靠性和精度保持进行评估,检测数控机床可靠性和精度水平,这样的一套数控机床可靠性减速检测装置将具有非常广阔的应用前景。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的目的在于提出一种立式加工中心可靠性快速检测装置,该装置具有结构简单、功能强大、便携易安装等优点。
为达到上述目的,本发明一方面实施例提出了一种立式加工中心可靠性快速检测装置,立式加工中心1包括立式加工中心主轴2、立式加工中心工作台3和立式加工中心数控系统4,其中,所述装置包括:精度检测模块5,用于检测所述立式加工中心1的运动精度和主轴回转精度;动静力高低频加载模块6,用于对所述立式加工中心1施加不同频率、方向和大小的力和力矩,以模拟加工中心切削状态;数据采集分析模块7,用于采集所述立式加工中心数控系统4和所述立式加工中心1的多项加工中心状态信息,并根据所述多项加工中心状态信息得到所述立式加工中心1的健康状态。
本发明实施例的立式加工中心可靠性快速检测装置,能够检测加工中心主轴静刚度、动刚度、静态回转精度、动态回转精度、加工中心定位误差、重复定位误差等多项加工中心状态信息,可对加工中心可靠性进行快速检测,具有结构简单、功能强大、便携易安装等优点。
另外,根据本发明上述实施例的立式加工中心可靠性快速检测装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,其中,所述精度检测模块5包括检测棒51、第一位移传感器52、第二位移传感器53、第三位移传感器54、第四位移传感器55、第五位移传感器56、传感器安装座57和磁座58,其中,所述第一位移传感器52、所述第二位移传感器53、所述第三位移传感器54、所述第四位移传感器55和第五位移传感器56均设置于传感器安装座57上,所述传感器安装座57设置于所述磁座58上,所述磁座58吸附在所述立式加工中心工作台3上;所述动静力高低频加载模块6包括:气动式并联机构和主轴加载连接接口61,其中,所述气动式并联机构设置于立式加工中心工作台3上,所述主轴加载连接接口61设置于气动式并联机构上方,所述主轴加载连接接口61上端和立式加工中心主轴2连接,主轴加载连接接口61下端夹持所述检测棒51;所述数据采集分析模块7包括传感器、采集卡、通信板卡和数据分析仪,所述传感器设置于所述立式加工中心1的各个驱动轴和立式加工中心四周,所述采集卡用于同步采集传感器信号,所述通信板卡连接所述立式加工中心数控系统4,以读取所述立式加工中心1的多项加工中心状态信息,所述数据分析仪根据所述多项加工中心状态信息评价和监控所述立式加工中心1的可靠性。
进一步地,在本发明的一个实施例中,所述的检测棒51为标准圆柱棒、标准球、偏心标准球、标准双球或偏心标准双球。
进一步地,在本发明的一个实施例中,所述第一位移传感器52和所述第二位移传感器 53相互垂直、共面且沿水平方向;所述第三位移传感器54和所述第四位移传感器55分别与所述第一位移传感器52和所述第二位移传感器53平行,且所述第三位移传感器54和所述第四位移传感器55相互垂直、共面且沿水平方向;所述第五位移传感器56和所述第一位移传感器52、所述第二位移传感器53、所述第三位移传感器54、所述第四位移传感器55垂直。
进一步地,在本发明的一个实施例中,所述位移传感器指向所述标准球、所述偏心标准球、所述标准双球或所述偏心标准双球的球心。
进一步地,在本发明的一个实施例中,所述气动式并联机构包括动平台8、第一支链9、第二支链10、第三支链11、第四支链12和第五支链13,其中,所述动平台8通过螺栓连接主轴加载连接接口61;所述第一支链9、第二支链10、第三支链11、第四支链12和第五支链13共同连接动平台8和立式加工中心工作台3;所述第一支链9包括第一虎克铰91、第一连接杆92、第一转动铰链93、第一气缸安装法兰94、第一气缸活塞杆95、第一气缸缸筒96、第一拉压力传感器97、第一传感器连接杆98、第二虎克铰99和第一安装底座910;所述第一连接杆92通过第一虎克铰91连接动平台8;所述第一气缸安装法兰94通过第一转动铰链93连接第一连接杆92;所述第一气缸安装法兰94通过螺栓固接第一气缸活塞杆95;所述第一气缸活塞杆95通过第一移动副连接第一气缸缸筒96;所述第一拉压力传感器97通过螺栓固接在第一气缸缸筒96下端;所述第一传感器连接杆98固接在第一拉压力传感器97下端;所述第一传感器连接杆98通过第二虎克铰99连接第一安装底座910;所述第三支链11、第四支链12和第一支链9的结构和连接方式相同;所述第二支链10包括第三虎克铰101、第二连接杆102、第二气缸安装法兰103、第二气缸活塞杆104、第二气缸缸筒105、第二拉压力传感器106、第二传感器连接杆107、第四虎克铰108和第二安装底座109;所述第二连接杆10通过第三虎克铰101连接动平台8;所述第二气缸安装法兰103通过螺栓固接第二连接杆102;所述第二气缸安装法兰103和第二气缸活塞杆104通过螺栓固接;所述第二气缸活塞杆104通过第二移动副连接第二气缸缸筒105;所述第二拉压力传感器106通过螺栓固接在第二气缸缸筒105下端;所述第二传感器连接杆107固接在第二拉压力传感器106下端;所述第二传感器连接杆107通过第四虎克铰108连接第二安装底座109;所述第五支链13和所述第二支链10的结构和连接方式相同,且所述第二支链10和所述第五支链13始终处于同一平面内。
进一步地,在本发明的一个实施例中,所述主轴加载连接接口61包括主轴刀柄611、轴承上盖板612、上轴承613、轴承座614、下轴承615、轴承下盖板616、挡圈617、锁紧螺母618、弹簧夹套619和刀柄螺帽6110;其中,所述主轴刀柄611通过液压吸合连接在立式加工中心主轴2上,所述轴承座614通过所述上轴承613和所述下轴承615连接所述 主轴刀柄611,所述轴承上盖板612和轴承下盖板616分别通过螺栓安装在轴承座614的上表面和下表面,所述挡圈617安装在下轴承615的下端并通过锁紧螺母618锁紧,所述检测棒51通过弹簧夹套619安装在主轴刀柄611下端,并通过刀柄螺帽6110锁紧;所述轴承座614通过螺栓和所述动平台8连接,使所述主轴加载连接接口61安装在气动式并联机构上。
进一步地,在本发明的一个实施例中,所述动静力高低频加载模块6可拆卸所述第一支链9、所述第二支链10、所述第三支链11、所述第四支链12和所述第五支链13上的安装底座,收拢所述第一支链9、所述第二支链10、所述第三支链11、所述第四支链12和所述第五支链13,并安装在安装底座14上。
进一步地,在本发明的一个实施例中,所述第一支链9、所述第二支链10、所述第三支链11、所述第四支链12和所述第五支链13的气缸的行程不同。
进一步地,在本发明的一个实施例中,所述装置还包括温度传感器、振动加速度传感器、频率变送器和电流互感器,以检测所述多项加工中心状态信息。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明一个实施例的立式加工中心可靠性快速检测装置的结构示意图;
图2为根据本发明一个实施例的精度检测模块的实施例的三维结构示意图;
图3为根据本发明一个实施例的立式加工中心可靠性快速检测装置的示意图;
图4为根据本发明一个实施例的第一支链和动平台实施例结构爆炸视图;
图5为根据本发明一个实施例的第二支链和动平台实施例结构爆炸视图;
图6为根据本发明一个实施例的主轴加载连接接口的实施例结构爆炸视图;
图7为根据本发明一个实施例的动静力高低频加载模块处于收纳状态的示意图。
附图标记说明:
立式加工中心1、立式加工中心主轴2、立式加工中心工作台3、立式加工中心数控系统4、精度检测模块5、动静力高低频加载模块6、数据采集分析模块7、动平台8、第一支链9、第二支链10、第三支链11、第四支链12、第五支链13、安装底座14、检测棒51、第一位移传感器52、第二位移传感器53、第三位移传感器54、第四位移传感器55、第五位移传感器56、传感器安装座57、磁座58、主轴加载连接接口61、主轴刀柄611、轴承上盖板612、上轴承613、轴承座614、下轴承615、轴承下盖板616、挡圈617、锁紧螺母 618、弹簧夹套619、刀柄螺帽6110、第一虎克铰91、第一连接杆92、第一转动铰链93、第一气缸安装法兰94、第一气缸活塞杆95、第一气缸缸筒96、第一拉压力传感器97、第一传感器连接杆98、第二虎克铰99、第一安装底座910、第三虎克铰101、第二连接杆102、第二气缸安装法兰103、第二气缸活塞杆104、第二气缸缸筒105、第二拉压力传感器106、第二传感器连接杆107、第四虎克铰108和第二安装底座109。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的立式加工中心可靠性快速检测装置。
图1是本发明一个实施例的立式加工中心可靠性快速检测装置的结构示意图。
如图1所示,该立式加工中心可靠性快速检测装置,立式加工中心1包括立式加工中心主轴2、立式加工中心工作台3和立式加工中心数控系统4,其中,装置包括:精度检测模块5、动静力高低频加载模块6和数据采集分析模块7。
其中,精度检测模块5,用于检测立式加工中心1的运动精度和主轴回转精度;动静力高低频加载模块6,用于对立式加工中心1施加不同频率、方向和大小的力和力矩,以模拟加工中心切削状态;数据采集分析模块7,用于采集立式加工中心数控系统4和立式加工中心1的多项加工中心状态信息,并根据多项加工中心状态信息得到立式加工中心1的健康状态。本发明实施例的装置能够检测加工中心主轴静刚度、动刚度、静态回转精度、动态回转精度、加工中心定位误差、重复定位误差等多项加工中心状态信息,可对加工中心可靠性进行快速检测,具有结构简单、功能强大、便携易安装等优点。
具体而言,立式加工中心1包括立式加工中心主轴2、立式加工中心工作台3和立式加工中心数控系统4。本发明实施例的装置包括动静力高低频加载模块6,数据采集分析模块7和精度检测模块5。动静力高低频加载模块6和精度检测模块5安装在立式加工中心工作台3上。数据采集分析模块7连接立式加工中心数控系统4。
精度检测模块5可检测加工中心运动精度和主轴回转精度。动静力高低频加载模块6可对加工中心施加不同频率、方向和大小的力和力矩,模拟加工中心切削状态。数据采集分析模块7可实时采集数控系统内的状态信息和安装在加工中心上的温度传感器、振动传感器等信号,并根据采集的信号对加工中心健康状态进行评估和监控。
下面将结合具体实施例对立式加工中心可靠性快速检测装置进行详细阐述。
进一步地,在本发明的一个实施例中,其中,精度检测模块5包括检测棒51、第一位移传感器52、第二位移传感器53、第三位移传感器54、第四位移传感器55、第五位移传感器56、传感器安装座57和磁座58,其中,第一位移传感器52、第二位移传感器53、第三位移传感器54、第四位移传感器55和第五位移传感器56均设置于传感器安装座57上,传感器安装座57设置于磁座58上,磁座58吸附在立式加工中心工作台3上。
其中,在本发明的一个实施例中,检测棒51可以为标准圆柱棒、标准球、偏心标准球、标准双球或偏心标准双球。
进一步地,在本发明的一个实施例中,第一位移传感器52和第二位移传感器53相互垂直、共面且沿水平方向;第三位移传感器54和第四位移传感器55分别与第一位移传感器52和第二位移传感器53平行,且第三位移传感器54和第四位移传感器55相互垂直、共面且沿水平方向;第五位移传感器56和第一位移传感器52、第二位移传感器53、第三位移传感器54、第四位移传感器55垂直。
进一步地,在本发明的一个实施例中,位移传感器指向标准球、偏心标准球、标准双球或偏心标准双球的球心。
具体而言,如图2所示,精度检测模块5包括检测棒51,第一位移传感器52,第二位移传感器53,第三位移传感器54,第四位移传感器55,第五位移传感器56,传感器安装座57和磁座58。检测棒51可以是标准圆柱棒、标准球、偏心标准球、标准双球或偏心标准双球。第一位移传感器52和第二位移传感器53相互垂直、共面且沿水平方向;第三位移传感器54和第四位移传感器55分别与第一位移传感器52和第二位移传感器53平行,且第三位移传感器54和第四位移传感器55相互垂直、共面且沿水平方向;第五位移传感器56和第一位移传感器52、第二位移传感器53、第三位移传感器54、第四位移传感器55垂直。五个位移传感器均安装在传感器安装座57上,并指向标准球、偏心标准球、标准双球或偏心标准双球的球心。传感器安装座57安装在磁座58上;磁座58吸附在立式加工中心工作台3上;精度检测模块5可用于检测立式加工中心运动精度、重复定位精度和主轴回转精度。
进一步地,在本发明的一个实施例中,动静力高低频加载模块6包括:气动式并联机构和主轴加载连接接口61,其中,气动式并联机构设置于立式加工中心工作台3上,主轴加载连接接口61设置于气动式并联机构上方,主轴加载连接接口61上端和立式加工中心主轴2连接,主轴加载连接接口61下端夹持检测棒51;数据采集分析模块7包括传感器、采集卡、通信板卡和数据分析仪,传感器设置于立式加工中心1的各个驱动轴和立式加工中心四周,采集卡用于同步采集传感器信号,通信板卡连接立式加工中心数控系统4,以 读取立式加工中心1的多项加工中心状态信息,数据分析仪根据多项加工中心状态信息评价和监控立式加工中心1的可靠性。
进一步地,在本发明的一个实施例中,气动式并联机构包括动平台8、第一支链9、第二支链10、第三支链11、第四支链12和第五支链13,其中,动平台8通过螺栓连接主轴加载连接接口61;第一支链9、第二支链10、第三支链11、第四支链12和第五支链13共同连接动平台8和立式加工中心工作台3。
具体而言,如图3所示,其包括动静力高低频加载模块6,数据采集分析模块7和精度检测模块5。动静力高低频加载模块6安装在立式加工中心工作台3上,包括气动式并联机构和主轴加载连接接口61。气动式并联机构包括动平台8、第一支链9、第二支链10、第三支链11、第四支链12和第五支链13。动平台8通过螺栓连接主轴加载连接接口61。第一支链9、第二支链10、第三支链11、第四支链12和第五支链13分别连接动平台8和立式加工中心工作台3。
如图4所示,第一支链9包括第一虎克铰91、第一连接杆92、第一转动铰链93、第一气缸安装法兰94、第一气缸活塞杆95、第一气缸缸筒96、第一拉压力传感器97、第一传感器连接杆98、第二虎克铰99和第一安装底座910;第一连接杆92通过第一虎克铰91连接动平台8;第一气缸安装法兰94通过第一转动铰链93连接第一连接杆92;第一气缸安装法兰94通过螺栓固接第一气缸活塞杆95;第一气缸活塞杆95通过第一移动副连接第一气缸缸筒96;第一拉压力传感器97通过螺栓固接在第一气缸缸筒96下端;第一传感器连接杆98固接在第一拉压力传感器97下端;第一传感器连接杆88通过第二虎克铰99连接第一安装底座910;第三支链11、第四支链12和第一支链9的结构和连接方式相同。
如图5所示,第二支链10包括第三虎克铰101、第二连接杆102、第二气缸安装法兰103、第二气缸活塞杆104、第二气缸缸筒105、第二拉压力传感器106、第二传感器连接杆107、第四虎克铰108和第二安装底座109;第二连接杆10通过第三虎克铰101连接动平台8;第二气缸安装法兰103通过螺栓固接第二连接杆102;第二气缸安装法兰103和第二气缸活塞杆104通过螺栓固接;第二气缸活塞杆104通过第二移动副连接第二气缸缸筒105;第二拉压力传感器106通过螺栓固接在第二气缸缸筒105下端;第二传感器连接杆107固接在第二拉压力传感器106下端;第二传感器连接杆107通过第四虎克铰108连接第二安装底座109;第五支链13和第二支链10的结构和连接方式相同,且第二支链10和第五支链13始终处于同一平面内。
进一步地,如图6所示,主轴加载连接接口61安装在气动式并联机构的动平台8上,主轴加载连接接口61上端和立式加工中心主轴2连接,主轴加载连接接口61下端连接精 度检测模块5。主轴加载连接接口61包括主轴刀柄611、轴承上盖板612、上轴承613、轴承座614、下轴承615、轴承下盖板616、挡圈617、锁紧螺母618、弹簧夹套619和刀柄螺帽6110;其中,主轴刀柄611通过液压吸合连接在立式加工中心主轴2上,轴承座614通过上轴承613和下轴承615连接主轴刀柄611,轴承上盖板612和轴承下盖板616分别通过螺栓安装在轴承座614的上表面和下表面,挡圈617安装在下轴承615的下端并通过锁紧螺母618锁紧,检测棒51通过弹簧夹套619安装在主轴刀柄611下端,并通过刀柄螺帽6110锁紧;轴承座614通过螺栓和动平台8连接,使主轴加载连接接口61安装在气动式并联机构上。
进一步地,在本发明的一个实施例中,第一支链9、第二支链10、第三支链11、第四支链12和第五支链13的气缸的行程不同。
可以理解的是,第一支链9、第二支链10、第三支链11、第四支链12和第五支链13的气缸可更换为不同行程的气缸,以使改机构满足对小型、中型、大型加工中型等不同规格的立式加工中心1可靠性检测。
进一步地,在本发明的一个实施例中,如图7所示,动静力高低频加载模块6可拆卸第一支链9、第二支链10、第三支链11、第四支链12和第五支链13上的安装底座,收拢第一支链9、第二支链10、第三支链11、第四支链12和第五支链13,并安装在安装底座14上。安装底座14可以为小型一体安装底座,以缩小体积收纳。
进一步地,在本发明的一个实施例中,装置还包括温度传感器、振动加速度传感器、频率变送器和电流互感器,以检测多项加工中心状态信息。
具体而言,数据采集分析模块7包括传感器、采集卡、通信板卡和数据分析仪,传感器包括温度传感器、振动加速度传感器、频率变送器、电流互感器,并安装在立式加工中心1的各个驱动轴和立式加工中心1四周,采集卡高速同步采集传感器信号。通信板卡连接立式加工中心数控系统4,并从立式加工中心数控系统4中读取立式加工中心1的状态信息,包括跟踪误差、主轴负载率、各轴负载率、电机温度等多项立式加工中心的性能指标。数据分析仪根据传感器信号和加工中心状态信息评价和监控加工中心可靠性。
在工作时,数据采集分析模块7采集五条支链上安装的五个拉压力传感器数据,通过调节五条支链上的五支气缸的气压,对五条支链的拉压力进行调节,进而对施加在立式加工中心主轴2上的加载力进行精确控制。同时,通过G代码对立式加工中心进行控制,当立式加工中心1进行运动时,通过带动气动式并联机构运动,实现对立式加工中心在不同位置和姿态下加载力,从而对连接动平台8的立式加工中心主轴2进行多维加载,模拟数控机床切削。同时,数据采集分析模块采集传感器信号和加工中心状态信息,对立式加工 中心进行状态检测和可靠性评价。
综上,本发明实施例的装置适用于立式加工中心的可靠性快速测试试验。该装置能够对立式加工中心施加三方向的力和两方向的力矩,模拟实际的机床切削状态。在对立式加工中心施加载荷的同时,还可以对立式加工中心的回转精度、重复定位精度、定位精度、跟踪误差、电机温度、各轴负载等一系列加工中心的状态进行监测,并实时反馈立式加工中心的健康状态,最终评估加工中心的可靠性和精度保持性水平。
本发明实施例的装置具有以下优点:
(1)本发明实施例的装置可对立式三轴加工中心、立式五轴加工中心等不同规格的立式加工中心施加三方向力和两方向力矩,模拟数控机床实际切削状态。
(2)本发明实施例的装置可更换机械结构中的气缸为不同行程的气缸,以使改机构满足对小型、中型、大型加工中型等不同规格的立式加工中心可靠性检测。
(3)本发明实施例的装置可实现模拟数控机床切削的同时,对数控机床的回转精度、重复定位精度和定位精度进行检测。
(4)本发明实施例的装置可实现对数控机床检测的同时,对数控机床的跟踪误差、主轴负载率、各轴负载率、电机温度等多项数控机床性能指标进行监测,可实时反馈立式加工中心的健康状态,最终评估加工中心的可靠性和精度保持性水平。
(5)本发明实施例的装置结构简单,易于制造,成本低廉,易于安装在不同规格的数控机床上进行可靠性检测。
(6)本发明实施例的装置可通过安装在在小型一体安装底座上,缩小体积便于携带和收纳。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种立式加工中心可靠性快速检测装置,其特征在于,立式加工中心(1)包括立式加工中心主轴(2)、立式加工中心工作台(3)和立式加工中心数控系统(4),其中,所述装置包括:
    精度检测模块(5),用于检测所述立式加工中心(1)的运动精度和主轴回转精度;
    动静力高低频加载模块(6),用于对所述立式加工中心(1)施加不同频率、方向和大小的力和力矩,以模拟加工中心切削状态;以及
    数据采集分析模块(7),用于采集所述立式加工中心数控系统(4)和所述立式加工中心(1)的多项加工中心状态信息,并根据所述多项加工中心状态信息得到所述立式加工中心(1)的健康状态。
  2. 根据权利要求1所述的立式加工中心可靠性快速检测装置,其特征在于,其中,
    所述精度检测模块(5)包括检测棒(51)、第一位移传感器(52)、第二位移传感器(53)、第三位移传感器(54)、第四位移传感器(55)、第五位移传感器(56)、传感器安装座(57)和磁座(58),其中,所述第一位移传感器(52)、所述第二位移传感器(53)、所述第三位移传感器(54)、所述第四位移传感器(55)和第五位移传感器(56)均设置于传感器安装座(57)上,所述传感器安装座(57)设置于所述磁座(58)上,所述磁座(58)吸附在所述立式加工中心工作台(3)上;
    所述动静力高低频加载模块(6)包括:气动式并联机构和主轴加载连接接口(61),其中,所述气动式并联机构设置于立式加工中心工作台(3)上,所述主轴加载连接接口(61)设置于气动式并联机构上方,所述主轴加载连接接口(61)上端和立式加工中心主轴(2)连接,主轴加载连接接口(61)下端夹持所述检测棒(51);
    所述数据采集分析模块(7)包括传感器、采集卡、通信板卡和数据分析仪,所述传感器设置于所述立式加工中心(1)的各个驱动轴和立式加工中心四周,所述采集卡用于同步采集传感器信号,所述通信板卡连接所述立式加工中心数控系统(4),以读取所述立式加工中心(1)的多项加工中心状态信息,所述数据分析仪根据所述多项加工中心状态信息评价和监控所述立式加工中心(1)的可靠性。
  3. 根据权利要求2所述的立式加工中心可靠性快速检测装置,其特征在于,所述的检测棒(51)为标准圆柱棒、标准球、偏心标准球、标准双球或偏心标准双球。
  4. 根据权利要求2所述的立式加工中心可靠性快速检测装置,其特征在于,所述第一位移传感器(52)和所述第二位移传感器(53)相互垂直、共面且沿水平方向;所述第三 位移传感器(54)和所述第四位移传感器(55)分别与所述第一位移传感器(52)和所述第二位移传感器(53)平行,且所述第三位移传感器(54)和所述第四位移传感器(55)相互垂直、共面且沿水平方向;所述第五位移传感器(56)和所述第一位移传感器(52)、所述第二位移传感器(53)、所述第三位移传感器(54)、所述第四位移传感器(55)垂直。
  5. 根据权利要求4所述的立式加工中心可靠性快速检测装置,其特征在于,所述位移传感器指向所述标准球、所述偏心标准球、所述标准双球或所述偏心标准双球的球心。
  6. 根据权利要求2所述的立式加工中心可靠性快速检测装置,其特征在于,所述气动式并联机构包括动平台(8)、第一支链(9)、第二支链(10)、第三支链(11)、第四支链(12)和第五支链(13),其中,
    所述动平台(8)通过螺栓连接主轴加载连接接口(61);所述第一支链(9)、第二支链(10)、第三支链(11)、第四支链(12)和第五支链(13)共同连接动平台(8)和立式加工中心工作台(3);所述第一支链(9)包括第一虎克铰(91)、第一连接杆(92)、第一转动铰链(93)、第一气缸安装法兰(94)、第一气缸活塞杆(95)、第一气缸缸筒(96)、第一拉压力传感器(97)、第一传感器连接杆(98)、第二虎克铰(99)和第一安装底座(910);所述第一连接杆(92)通过第一虎克铰(91)连接动平台(8);所述第一气缸安装法兰(94)通过第一转动铰链(93)连接第一连接杆(92);所述第一气缸安装法兰(94)通过螺栓固接第一气缸活塞杆(95);所述第一气缸活塞杆(95)通过第一移动副连接第一气缸缸筒(96);所述第一拉压力传感器(97)通过螺栓固接在第一气缸缸筒(96)下端;所述第一传感器连接杆(98)固接在第一拉压力传感器(97)下端;所述第一传感器连接杆(98)通过第二虎克铰(99)连接第一安装底座(910);所述第三支链(11)、第四支链(12)和第一支链(9)的结构和连接方式相同;所述第二支链(10)包括第三虎克铰(101)、第二连接杆(102)、第二气缸安装法兰(103)、第二气缸活塞杆(104)、第二气缸缸筒(105)、第二拉压力传感器(106)、第二传感器连接杆(107)、第四虎克铰(108)和第二安装底座(109);所述第二连接杆(10)通过第三虎克铰(101)连接动平台(8);所述第二气缸安装法兰(103)通过螺栓固接第二连接杆(102);所述第二气缸安装法兰(103)和第二气缸活塞杆(104)通过螺栓固接;所述第二气缸活塞杆(104)通过第二移动副连接第二气缸缸筒(105);所述第二拉压力传感器(106)通过螺栓固接在第二气缸缸筒(105)下端;所述第二传感器连接杆(107)固接在第二拉压力传感器(106)下端;所述第二传感器连接杆(107)通过第四虎克铰(108)连接第二安装底座(109);所述第五支链(13)和所述第二支链(10)的结构和连接方式相同,且所述第二支链(10)和所述第五支链(13)始终处于同一平面内。
  7. 根据权利要求2所述的立式加工中心可靠性快速检测装置,其特征在于,所述主轴加载连接接口(61)包括主轴刀柄(611)、轴承上盖板(612)、上轴承(613)、轴承座(614)、下轴承(615)、轴承下盖板(616)、挡圈(617)、锁紧螺母(618)、弹簧夹套(619)和刀柄螺帽(6110);
    其中,所述主轴刀柄(611)通过液压吸合连接在立式加工中心主轴(2)上,所述轴承座(614)通过所述上轴承(613)和所述下轴承(615)连接所述主轴刀柄(611),所述轴承上盖板(612)和轴承下盖板(616)分别通过螺栓安装在轴承座(614)的上表面和下表面,所述挡圈(617)安装在下轴承(615)的下端并通过锁紧螺母(618)锁紧,所述检测棒(51)通过弹簧夹套(619)安装在主轴刀柄(611)下端,并通过刀柄螺帽(6110)锁紧;所述轴承座(614)通过螺栓和所述动平台(8)连接,使所述主轴加载连接接口(61)安装在气动式并联机构上。
  8. 根据权利要求6所述的立式加工中心可靠性快速检测装置,其特征在于,所述动静力高低频加载模块(6)可拆卸所述第一支链(9)、所述第二支链(10)、所述第三支链(11)、所述第四支链(12)和所述第五支链(13)上的安装底座,收拢所述第一支链(9)、所述第二支链(10)、所述第三支链(11)、所述第四支链(12)和所述第五支链(13),并安装在安装底座(14)上。
  9. 根据权利要求8所述的立式加工中心可靠性快速检测装置,其特征在于,所述第一支链(9)、所述第二支链(10)、所述第三支链(11)、所述第四支链(12)和所述第五支链(13)的气缸的行程不同。
  10. 根据权利要求8所述的立式加工中心可靠性快速检测装置,其特征在于,所述装置还包括温度传感器、振动加速度传感器、频率变送器和电流互感器,以检测所述多项加工中心状态信息。
PCT/CN2018/114626 2018-11-08 2018-11-08 立式加工中心可靠性快速检测装置 WO2020093325A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114626 WO2020093325A1 (zh) 2018-11-08 2018-11-08 立式加工中心可靠性快速检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114626 WO2020093325A1 (zh) 2018-11-08 2018-11-08 立式加工中心可靠性快速检测装置

Publications (1)

Publication Number Publication Date
WO2020093325A1 true WO2020093325A1 (zh) 2020-05-14

Family

ID=70612420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114626 WO2020093325A1 (zh) 2018-11-08 2018-11-08 立式加工中心可靠性快速检测装置

Country Status (1)

Country Link
WO (1) WO2020093325A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012286A (zh) * 2010-11-16 2011-04-13 中国人民解放军国防科学技术大学 一种加工中心电主轴可靠性试验方法及系统
CN103308338A (zh) * 2013-05-31 2013-09-18 北京航空航天大学 一种基于三自由度并联机构的机床加载装置及加载试验方法
JP2013188827A (ja) * 2012-03-13 2013-09-26 Howa Mach Ltd 工作機械の機械剛性測定用起振ツール及び工作機械の機械剛性測定方法
CN103344449A (zh) * 2013-07-09 2013-10-09 北京航空航天大学 一种单自由度数控机床加载装置及加载试验方法
CN108031870A (zh) * 2017-12-04 2018-05-15 上海理工大学 一种数控机床主轴加载性能测试装置及测试评价方法
CN108088399A (zh) * 2017-11-03 2018-05-29 上海拓璞数控科技股份有限公司 加载状态下机床精度的检测装置及方法
CN108145531A (zh) * 2018-01-08 2018-06-12 内蒙古科技大学 一种检测机床运动特性及精度退化规律的装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012286A (zh) * 2010-11-16 2011-04-13 中国人民解放军国防科学技术大学 一种加工中心电主轴可靠性试验方法及系统
JP2013188827A (ja) * 2012-03-13 2013-09-26 Howa Mach Ltd 工作機械の機械剛性測定用起振ツール及び工作機械の機械剛性測定方法
CN103308338A (zh) * 2013-05-31 2013-09-18 北京航空航天大学 一种基于三自由度并联机构的机床加载装置及加载试验方法
CN103344449A (zh) * 2013-07-09 2013-10-09 北京航空航天大学 一种单自由度数控机床加载装置及加载试验方法
CN108088399A (zh) * 2017-11-03 2018-05-29 上海拓璞数控科技股份有限公司 加载状态下机床精度的检测装置及方法
CN108031870A (zh) * 2017-12-04 2018-05-15 上海理工大学 一种数控机床主轴加载性能测试装置及测试评价方法
CN108145531A (zh) * 2018-01-08 2018-06-12 内蒙古科技大学 一种检测机床运动特性及精度退化规律的装置及方法

Similar Documents

Publication Publication Date Title
CN106323618B (zh) 电动伺服机构负载模拟系统及其模拟方法
CN106514433B (zh) 一种链式刀库可靠性试验方法及状态监测系统
CN105651511A (zh) 圆柱齿轮动力学性能实验装置
CN109571140B (zh) 立式加工中心可靠性快速检测装置
CN109632161B (zh) 一种滚动轴承摩擦力矩测试机
CN104296927B (zh) 一种电主轴动平衡性能测试实验系统
CN107238497B (zh) 一种卧式往复旋转减速机产品综合试验测试台
CN105675298A (zh) 一种转角式万向联轴器试验台
WO2022105458A1 (zh) 一种rv减速器精度保持性和疲劳寿命测试装置
CN111215648B (zh) 电主轴可靠性快速实验加载方法及加载系统
CN107991095A (zh) 机器人精密摆线减速器的寿命试验装置和方法
CN104122036A (zh) 例行试验离心机静-动态平衡监测装置
CN112881047A (zh) 一种五轴摆头测试试验平台
CN206020024U (zh) 基于电液伺服加载的丝杠导轨可靠性试验台
WO2020093325A1 (zh) 立式加工中心可靠性快速检测装置
CN203981346U (zh) 例行试验离心机静-动态平衡监测装置
CN202002811U (zh) 用于卧式加工中心转台的可靠性试验台
CN102749163B (zh) 压缩机缸体主轴扭力及活塞顶缸位移测试设备
CN210603720U (zh) 一种对比式六维力传感器标定装置
CN104197985B (zh) 数控刀架检测系统及其工作方法
CN206351386U (zh) 一种链式刀库状态监测系统
CN209311256U (zh) 用于轴承保持架耐磨性评估的装置
CN202693179U (zh) 一种压缩机缸体主轴扭力及活塞顶缸位移测试设备
CN207358185U (zh) 一种能模拟工况条件的机床主轴试车平台
CN2826392Y (zh) 旋转机械故障诊断与试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939781

Country of ref document: EP

Kind code of ref document: A1