WO2020093180A1 - Sistema y método de control integrado para la optimización de la eficiencia del proceso de lixiviación en pilas de minerales - Google Patents

Sistema y método de control integrado para la optimización de la eficiencia del proceso de lixiviación en pilas de minerales Download PDF

Info

Publication number
WO2020093180A1
WO2020093180A1 PCT/CL2018/050105 CL2018050105W WO2020093180A1 WO 2020093180 A1 WO2020093180 A1 WO 2020093180A1 CL 2018050105 W CL2018050105 W CL 2018050105W WO 2020093180 A1 WO2020093180 A1 WO 2020093180A1
Authority
WO
WIPO (PCT)
Prior art keywords
irrigation
hydrometallurgical
pile
control
control system
Prior art date
Application number
PCT/CL2018/050105
Other languages
English (en)
French (fr)
Inventor
Héctor Enrique LEIVA SILVA
Jorge MENACHO LLAÑA
Adrián Fernando FREITTE FLORES
Ramón FARÍAS ASTUDILLO
Jose Antonio LARRAÍN RIESCO
Francisco Javier TRONCOSO DÍAZ
Original Assignee
Emerson Electric (Us) Holding Corporation (Chile) Limitada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Electric (Us) Holding Corporation (Chile) Limitada filed Critical Emerson Electric (Us) Holding Corporation (Chile) Limitada
Priority to PCT/CL2018/050105 priority Critical patent/WO2020093180A1/es
Priority to PE2021000676A priority patent/PE20211898A1/es
Priority to MX2021005419A priority patent/MX2021005419A/es
Publication of WO2020093180A1 publication Critical patent/WO2020093180A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention refers to an integrated control system and method of the heap leaching process, which allows to automate the operations and optimize the extraction efficiency and then the recovery of the metals of interest contained in it, based on criteria of Uniform hydraulic irrigation and prediction of the hydrodynamic and hydrometallurgical behavior of the mineral bed over time.
  • the invention also makes it possible to reduce operational and maintenance costs of operations, as well as to increase job security, by generating and ensuring safer operating conditions.
  • the integrated control system and method of the present invention includes means to measure and control variables of the leaching operations, mainly associated with irrigation, but also variables that significantly affect the stability of the mineral beds, and thermodynamics. and kinetics of the extraction reactions involved, thereby optimizing production and operations management throughout the life of the cells.
  • the system considers the measurement of operation variables using field instrumentation with wireless technology, a control system to monitor said variables and control the irrigation process on the piles, and an application station where control strategies reside that generate rates of Dynamic irrigation that maximizes extractions and recoveries of valuable metals. These strategies are based on dynamic phenomenological and predictive models with permanent adjustment.
  • dynamics refers to that each day, or over time, irrigation rates are recalculated for different areas in the leach pad.
  • Heap leaching is a hydrometallurgical process where the previously crushed mineral, and in some cases agglomerate, is deposited on a waterproof folder forming a large pile, which can normally reach 100 [ha] of surface and heights over 6 meters.
  • This mineral pile is irrigated from an irrigation mesh with a solution of a chemical nature and composition appropriate to the dissolution of the metals of interest, such as the refining solution from the solvent extraction process, which after percolation through the mineral bed and dissolve the valuable elements, it is recovered by the lower zone in the form of a solution called strong solution.
  • This solution is normally sent for concentration and purification to processes such as Solvent Extraction, and finally to processes such as electro-obtaining for the recovery of the metals of interest in high purity forms.
  • the entire leaching process can be extended in ranges ranging from months to years.
  • the pile In order to control irrigation by means of the irrigation matrix, the pile is normally divided into lengths of equal dimensions, which in turn are divided into blocks. The number of bands and blocks will depend on the dimensions of the stack and the strategies defined by the operation.
  • the irrigation solution is distributed in each band by means of a main pipe installed along its entire length, from which secondary pipes are forked in each block that finally feed thin tubes (combs) that contain distributors, such as drippers or splinkers.
  • combs thin tubes
  • Two main challenges are identified in the heap leaching process, the first is to ensure uniform and appropriate irrigation throughout the heap, and the second is to establish an optimal irrigation rate according to the expected hydrometallurgical behavior based on the characteristics geo metallurgical of the mineral of each block in time.
  • the heap leaching process takes time to optimize the extraction of valuable metals, taking into account the continuity of irrigation throughout the entire length of the heap.
  • This variable is difficult to measure and control, mainly due to the large size of the piles, their instability and the danger of the solutions used in irrigation. Indeed, at present it is almost impossible to determine in its entirety if certain sectors of the pile have any failure in the operation, for example, if they present obstruction or breaks in any area of the irrigation matrix, requiring the permanent presence of personnel on the battery to carry out measurements and supervisions that ensure the correct operation of the battery, with the consequent risk of accidents.
  • document CL 1968-2011 seeks to use a battery to carry out control actions based on measurements and based on theoretical curves of metal recovery, obtaining a dynamic control model that is unable to predict the actual behavior of the battery. in the time.
  • the control offered on the heap is dynamic
  • experience in the development of heap leaching operations has indicated that each one behaves differently depending on variables associated with irrigation.
  • variables that cannot be replicated by means of theoretical mineral recovery curves and that make predicting the behavior of the pile difficult are dependent on a multiplicity of variables associated with both the operation of the pile and the mineralogical characteristics present in the pile, elements that vary with the passage of time and the action of the solution on the mineral.
  • document WO 2009/146571 proposes a solution for the instrumentalization of a heap leach, for its monitoring and control, by means of wireless equipment arranged in the extension of the heap.
  • This document proposes a system that seeks to obtain real-time information on different important variables in the leaching process, maintaining flow control through automated valve control and operation. Then, based on the measured information, decisions associated with the operation of the heap are implemented, its behavior over time is analyzed, and data are obtained that allow irrigation to be modeled under different conditions. While this solution allows automating the measurements made on a battery, which are usually manual, and provides variables for real-time control of the battery, does not predict the behavior of the battery based on its particularities and environment.
  • this solution is a simple instrumentation using wireless equipment that allows avoiding the requirement of operators in the field, where a large amount of information is obtained to characterize the instantaneous behavior of the battery, allowing the instantaneous behavior to be modeled to verify how the production if irrigation parameters are changed.
  • this solution does not allow the behavior of the battery to be predicted throughout its useful life, nor to take control actions based on said prediction, being ineffective in maximizing production adaptively to the evolution of the battery over time. .
  • the prior art of the present invention proposes measurement and control systems and methods that can be defined as reactive, that is, they obtain information from the stack in real time and model their behavior also in real time, without anticipating the evolution of the stack in time. Therefore, it is necessary to have a leach heap monitoring and control solution capable of predicting the behavior of the heap over time, proposing a predictive control model that evolves as the heap leach does during its useful life. .
  • the solution provides an integrated control system comprising a hydrometallurgical control system, aimed at maximizing the metal recovery value according to the geo-mineralogical characteristics of each block, a hydraulic control system, responsible for ensuring adequate irrigation and homogeneous throughout the heap, and a set of field instrumentation and actuators, for the measurement of relevant process variables that allow monitoring of the leaching process, in addition to measuring hydraulic conditions and execute the irrigation actions in the different areas of the pile.
  • the hydrometallurgical control system comprises an optimizing control system (decision tree) and a dynamic hydrometallurgical model that works synchronously between the different irrigation units, to satisfy the following specific control objectives:
  • the hydrometallurgical model is of a phenomenological and dynamic type, endowed with high predictive capacity, validated by tests at an industrial level. It is a mathematical modeling of the behavior of the mineral deduced from the transport phenomena and the kinetic principles, supported by the variables and additional metallurgical and operation criteria, that provide the estimation of the flow rates and the metal-value concentration that leave each irrigation unit under automatic control. To do this, the hydrometallurgical model integrates the metallurgical and chemical control loops, providing information regarding the time evolution of the battery within its useful life, allowing it to model its behavior over time.
  • the decision tree also called the optimizing control system or optimizing system, is an inference machine based on hierarchical metallurgical and operational rules applied qualitatively in standard leaching operations. These rules arise from empirical knowledge of operations and provide the basis for leaching strategies, in our case to define the quantitative leaching rate per unit of irrigation, as well as to quantitatively manage the destination of the effluents.
  • the hydrometallurgical model together with the decision tree operate recursively to find the optimal distribution of the available irrigation flow through the multiple irrigation units and also allows the definition of the optimal destination of individual effluents to be applied in the following period. of operation.
  • the hydraulic control system in conjunction with the field instrumentation and actuators, is responsible for monitoring and controlling the irrigation process on the pile as specified by the hydrometallurgical control system. Hydraulic operating variables are measured at least at the level of controlled irrigation units or irrigation units (blocks).
  • the hydraulic control system comprises sensors that collect information, measuring hydraulic operation variables of the irrigation system and / or the drainage system that are implemented in the leaching.
  • the main variables measured are pressure and the refining flow that circulates through the different points of the irrigation matrix, this being the distribution of the irrigation and drainage systems in the pile.
  • the hydraulic control system also includes actuators that control hydraulic devices belonging to the irrigation and drainage systems, all in order to operate said systems in the irrigation of the pile and in the recovery of the PLS, respectively.
  • the hydraulic control system also includes means for processing and executing irrigation instructions for the heap or irrigation rates, coordinating the execution of the leaching process through the actuators arranged in the irrigation and / or drainage systems.
  • hydrometallurgical control system integrates the measurement of metallurgical operation variables associated with the metallurgical processes that occur in the pile, such as the residence time of the solution in the pile (percolation rate), variables associated with the chemical composition of refining (Temperature, pH, ORP, etc.), the flow of the solution distribution within the pile, the water table, the refining temperature, the change in the grade of the mineral in the pile in time, variables associated with characteristics of the PLS, oxygen dissolved in the solution (applicable to bioleaching) and / or flow, pressure and temperature of the air injected into the heap (applicable to bioleaching), among others.
  • variables associated with the metallurgical processes that occur in the pile such as the residence time of the solution in the pile (percolation rate), variables associated with the chemical composition of refining (Temperature, pH, ORP, etc.), the flow of the solution distribution within the pile, the water table, the refining temperature, the change in the grade of the mineral in the pile in time, variables associated with characteristics of the
  • the hydrometallurgical control system includes the measurement of all those metallurgical variables that allow characterizing the metallurgical processes that occur in the heap during leaching, particularly at the level of the blocks that make up the heap, implementing suitable sensors for this .
  • the operating variables associated with the characteristics of the fluids that circulate through the irrigation and drainage systems can also be measured by the metallurgical control system, by associating said variables directly with the leaching process that occurs in the heap.
  • the hydrometallurgical control system includes the integration of metallurgical parameters associated with leaching, for example, the geometry of the pile (block size), tons loaded per block, type of mineral in the pile, ore grade, pile mineralogy, presence of other minerals, grain size and initial humidity, among others.
  • metallurgical parameters associated with leaching for example, the geometry of the pile (block size), tons loaded per block, type of mineral in the pile, ore grade, pile mineralogy, presence of other minerals, grain size and initial humidity, among others.
  • the integration of these metallurgical parameters with the operating variables, both metallurgical and hydraulic allows the creation of dynamic hydrometallurgical models that predict the evolution of the behavior of the pile in relation to the extraction of the mineral.
  • the metallurgical control system includes means for generating the irrigation rates of the pile based on the dynamic hydrometallurgical models created, communicating said irrigation rates to the hydraulic control system for its execution.
  • Another component of the integrated control system of the invention corresponds to the hydrometallurgical control station, a component that comprises at least a processor and a database arranged to process the data from the hydraulic and metallurgical control systems, facilitating storage and processing of information.
  • This control station can be located remotely or in the field, communicates with hydraulic and hydrometallurgical control systems, and assists in the creation of dynamic hydrometallurgical models and the generation of irrigation rates.
  • this station offers a user interface that enables user communication with hydrometallurgical information, facilitating the modification and input of parameters required for system operation, for example, those operating parameters that are not measured in the field, such as climate, of the leaching solution used, of the type of mineral to be processed, etc., without prejudice to the fact that preferably all the variables are registered using sensors in the field.
  • the communication established between the components of the integrated control system can be wired or, preferably, wireless, using communication protocols suitable for it.
  • other components of the integrated control system of the invention correspond to an engineering station for the configuration of the control system and, alternatively, for the management of communications, and to an operating station to execute and supervise the integral operation of the cell. .
  • the integrated control system of the invention comprises at least one uninterruptible power source (UPS) for powering the components used in the system.
  • UPS uninterruptible power source
  • Said energy source can be positioned remotely or in the field, being also suitable the use of renewable energy sources arranged for the autonomous operation of the different equipment and components that are part of the system.
  • the integrated control system of the invention can be implemented in a set of leach piles, optimizing the operation of said set of piles on the basis of predicting their behavior.
  • said method mainly comprises the steps of:
  • Both the integrated control system for heap leaching and the method implemented in said system allow solving the disadvantages detected in the prior art, facilitating the optimization of production and managing the operation of the heap on the basis of a prediction of its operation in time.
  • Figure 1 shows a Functional Diagram of the Integrated Control System proposed by the system and method of the invention, according to a preferred embodiment.
  • the present invention comprises an integrated leach pad control system and an associated integrated control method that is implemented in said system. Both the system and the method facilitate the optimization of the production of the cell and manage its operation based on a prediction of its operation over time.
  • the integrated leach pad control system of the present invention comprises:
  • An irrigation system arranged in a heap leach, for irrigation of the heap with the leaching solution
  • a drainage system arranged in the heap leach, for the recovery of the PLS and delivers to the following stages of the general extraction process
  • a hydrometallurgical control system to measure metallurgical operating variables, create dynamic hydrometallurgical models of the behavior of the pile and generate selective irrigation rates of the same;
  • An operation station for the integration of the hydraulic and metallurgical control systems and to control the communication between all the components of the system
  • the term selective refers to the fact that the hydrometallurgical control system takes into account aspects of a metallurgical nature to define the irrigation rates to be applied in different areas of the leach pad, being selective, for example, to irrigate at a rate in one zone and another in another zone.
  • This selectivity depends, for example, on whether one zone has more metal or more extractable metal than the other, which is related to the mineralogical distribution existing in the different zones of the pile.
  • Other examples of the selectivity feature is that it may depend on whether there is one zone that is more impermeable than the other, which is related to the distribution of the gangue in the pile, or whether there are zones that require more acid than others, etc.
  • This feature is called "metallurgical selectivity", being an essential difference and a competitive advantage of the present technology with respect to what exists in the state of the art.
  • the feeding system corresponds to the set of hydraulic devices, mainly ducts, pumps and valves, which feed the leaching solution or refining solution to the irrigation system in the pile.
  • the irrigation system arranged in the heap leach comprises a set of hydraulic devices that correspond mainly to pipelines, pumps, valves and irrigation means, which make up the irrigation network implemented to irrigate the heap with the leaching solution.
  • the irrigation means of the system are of the drip irrigation type, sprinklers and / or another suitable irrigation device, arranged on the surface of the pile.
  • the irrigation means are connected to the supply of the leaching solution and to the rest of the hydraulic devices. through the ducts, forming an irrigation matrix arranged in the pile. Said matrix is implemented in the stack based on the distribution of blocks that divide and make up the same. According to the preferred modality, the quantity and distribution of the irrigation means implemented in the irrigation matrix will be such that a uniform irrigation of the entire pile at block level is ensured.
  • the leaching solution is fed to the irrigation system by means of a driving device such as a pump, allowing said solution to be distributed to all the irrigation media.
  • a driving device such as a pump
  • other hydraulic devices such as valves are implemented to exercise control over the distribution of the leaching solution in the irrigation matrix and the activation of the irrigation means according to the irrigation rate executed by the system.
  • a certain number of valves are arranged in the irrigation system to control the irrigation of each block of the pile separately, ensuring precise control of the operation of each portion of the plot represented for the blocks.
  • the hydraulic devices of the irrigation system configure the communication relationship between said system and the hydraulic control system, which exercises control over the irrigation system by means of actuators integrated in the devices of said system.
  • the actuators of the hydraulic control system are associated with the valves and pumps of the irrigation system, however, modalities of the invention comprise the use of irrigation means integrated with actuation mechanisms.
  • the irrigation system comprises fluid recovery and / or recirculation means, for example, hydraulic devices arranged for the re-entry of the leaching solution and / or PLS that leaves the pile. These means allow fluid recirculation to be established if necessary, which improves extraction efficiency. Drainage system
  • the drainage system arranged in the heap leach also includes hydraulic devices such as pipelines, valves and / or pumps, acting as means of recovery of the fluid that leaves the heap during the leaching process, known as
  • the drainage system is arranged through a distribution of said hydraulic devices and / or recovery means in the extension of the pile, mainly in its lower surface and / or in some intermediate surface, recovering the PLS to direct it towards the following stages of the process extraction, for example, towards the solvent extraction process.
  • the drainage system arranged in the heap comprises a recirculation mechanism in communication with the irrigation system, reintegrating the extraction of fluid from the heap to the leaching process to improve its effectiveness.
  • the recirculation of PLS is controlled by a valve operated by the hydraulic control system of the invention, wherein said valve is operated depending on the quality of the PLS that is extracted from the stack, measured with a sensor. adequate or in the field by an operator, where said measurement allows detecting the quality of the PLS and the deviation of the required PLS, represented as D.
  • one modality contemplates implementing the quality measurement of the PLS in the metallurgical control system for the creation of dynamic models of the behavior of the pile and the generation of irrigation rates, considering this variable as part of said system.
  • the hydraulic control system comprises a set of sensors and actuators arranged in the different stages of the leaching process for the collection of information that allows characterizing the behavior of the heap during the process.
  • said sensors and actuators are arranged in the irrigation and drainage systems contemplated by the invention, integrating said systems with the hydraulic control system.
  • the information collected by the sensors of the hydraulic control system is that associated with the hydraulic operation variables of the irrigation system, mainly the pressure and / or flow of the solution that circulates through the different points of said system, where this type of variables is also measured as a function of time and at the level of the blocks that divide the stack, ensuring the characterization of the operation of the hydraulic devices associated with each block to maintain precision in control.
  • the hydraulic control system also comprises sensors associated with variables of operation of the drainage system, for example, measuring the outflow of the pile and / or the quality of the PLS, information that is used by the system both in the measurement of efficiency and in the generation of predictive irrigation rates that maximize the productivity of the pile.
  • the hydraulic control system also includes actuators that activate hydraulic devices belonging to the irrigation system and / or drainage system, all with the aim of executing the operation actions of said systems in the irrigation of the pile and recovery of the PLS, respectively.
  • the actuators are implemented in hydraulic devices such as pumps and / or valves of the irrigation and / or drainage systems, allowing to control the distribution of the leaching solution in each block of the pile (wetting rate per block) and quality control of the PLS by activating the recirculation of the outflow from the pile to the irrigation system, if deemed necessary.
  • the actuators are integrated in the valves and / or irrigation means that control the irrigation of each block in the pile, as well as they can be integrated in pumps and valves that allow the distribution of the leaching solution in the stack and / or the distribution of the PLS that comes out of it.
  • the main actuators of the system are the pressure regulating valves that participate in it in the form of ensure a flow and pressure at each point of the irrigation matrix according to the irrigation rates established by the hydrometallurgical control.
  • the hydraulic control system includes means for entering and storing process parameters, particularly those related to irrigation, which can be entered manually by an operator, for example, to through an interface in the control station and communicated to the hydraulic control system.
  • process parameters particularly those related to irrigation
  • these parameters are the characteristics of the leaching solution that is fed to the irrigation system, among other operating parameters.
  • all the parameters and variables associated with irrigation and drainage are measured using suitable sensors.
  • the hydraulic control system also includes means to process and execute irrigation instructions or irrigation rates that are generated by the metallurgical control system and communicated to the hydraulic control system, where the latter coordinates the operation and behavior of the leach pad. through the actuators arranged in the irrigation and / or drainage systems.
  • the hydrometallurgical control system of the present invention integrates information on the geo-metallurgical characteristics of the mineral units that are present in the pile, the automatic measurement of parameters and variables of metallurgical operation of the pile from its beginning and throughout its evolution.
  • the hydrometallurgical control system integrates automatic measurement sensors arranged in key locations on the stack, as well as incorporating the possibility of storing the parameters of the stack manually.
  • the parameters of the stack are entered manually and remain fixed during the evolution of the battery, for example, this manual entry is made through the control station that communicates with the metallurgical control system.
  • the main metallurgical operation variables correspond to those coming from the process in the same leaching pile, for example, the residence time of the leaching solution in the pile or percolation rate, the chemical composition and physical-chemical variables of the leaching solution, such as temperature, pH, dissolved oxygen, iron ion ratios and electrochemical potential, among others, in addition to the irrigation flow of the leaching solutions on the heap, the characteristics of the fluid from the heap or PLS and any other type of variable of interest associated with the different types of leaching that can be implemented by the system and method of the present invention.
  • all these operating variables are measured as a function of time and at the level of the blocks that make up the heap, characterizing the behavior of each block during the leaching process and ensuring precise control of the process.
  • mineralogical parameters contemplated by the hydrometallurgical control system are the geometry of the pile (block size), tons of ore loaded per block, type of mineral in the pile, ore grade (at the beginning), mineralogy of the pile , presence of other minerals, granulometry and initial humidity, among others. As indicated above, these parameters are entered manually, through the interface provided for it. In a preferred mode, the parameters are also measured by sensors arranged in the field and automatically entered.
  • the hydrometallurgical control system comprises means for creating hydrometallurgical models dynamics that predict the evolution of the behavior of the pile in relation to the extraction process and for the generation of irrigation rates of the pile depending on its evolution, communicating said irrigation rates to the hydraulic control system.
  • Dynamic hydrometallurgical models are phenomenological, predictive models, dependent on time and the operating variables measured by the system, allowing the mineralogical behavior of the heap to be predicted during the course of the leaching process and the useful life of the heap.
  • the creation of dynamic hydrometallurgical models requires information characterizing the behavior of the pile during the process, as well as characterizing the mineral that makes up the pile, deduced from the transport phenomena and the kinetic principles associated with the mineral, supported by the variables and additional operating and metallurgical criteria. This information can be collected using the measured operation variables and the established operation parameters, all of them at the level of the blocks that make up the stack to maintain precision in modeling.
  • Dynamic hydrometallurgical models allow accurate prediction of the behavior of the pile over time, particularly of the blocks that make it up, facilitating the generation of irrigation rates that maximize the production of the pile throughout its useful life.
  • the creation of dynamic hydrometallurgical models is assisted by expert operators through an interface of the control station associated with the metallurgical control system.
  • the control station of the integrated control system comprises at least one processor and at least one database arranged to integrate the hydraulic and hydrometallurgical control systems, in particular the information from said systems. . Additionally, it includes a engineering and an operating station. This information is communicated via cables or wirelessly, being processed by the processing means offered by the control station.
  • the hydrometallurgical control station assists the hydraulic control system in the processing of the pile operation information, which is used by the hydrometallurgical control system as a precursor in creating the dynamic hydrometallurgical models associated with prediction. of stack behavior based on process variables and parameters.
  • the hydrometallurgical control station then assists in generating the irrigation rates of the pile over time.
  • the operation station integrates the hydraulic and hydrometallurgical control systems as a single control system implemented in the integrated control system.
  • the hydrometallurgical control station comprises a monitoring and control unit that acts as a center for the collection, storage and processing of information, both measured through the different sensors and entered by operators through the operating parameters, creating the dynamic hydrometallurgical models and generating the irrigation rates that will be executed through the irrigation and drainage systems based on the actuators associated with the hydraulic devices of said systems.
  • the control station can be positioned in the field or remotely, using communication protocols suitable for the integration of hydraulic and hydrometallurgical control systems that receive and send information to the devices and equipment installed in the leach pad.
  • the energization of the components of the system is carried out by means of at least one non-interruptible energy source positioned in the field or remotely, the implementation of energy sources being preferred, allowing the autonomous operation of the devices and equipment of the system and reducing complexities. their installation in the field.
  • one of the stages of the method involves collecting the operation information from the stack, which is mainly associated with the measurement of the operation variables and the recording of the parameters measured and / or entered by operations personnel, both in relation to the hydraulic control system as well as the hydrometallurgical control system.
  • the information is collected through the sensors that are part of the hydraulic and hydrometallurgical control systems, being integrated by said control systems.
  • Another stage of the method involves processing the operating information collected in the previous stage, using for this the assistance of servers that allow integrating the measurements of variables and operating parameters, providing means for the integration of the hydraulic and metallurgical control systems.
  • These means are associated with databases for the storage of information and processors for its processing and analysis.
  • the integration of the operating information leads to the creation of dynamic hydrometallurgical models by the hydrometallurgical control system, which predict the evolution of the behavior of the pile, particularly in its mineralogical aspects, based on the changes and evolution of the collected parameters and operating variables.
  • the hydrometallurgical control system determines the irrigation rates based on dynamic hydrometallurgical models, where said irrigation rates are irrigation instructions to be executed by the hydraulic control system.
  • the stages of creation of hydrometallurgical models and generation of irrigation rates are dynamic, that is, they continue throughout the life of the heap leach, adapting to its states and evolution over time.
  • Both the integrated control system for heap leaching and the method implemented in said system allow solving the disadvantages detected in the prior art, facilitating the optimization of production and managing the operation of the heap on the basis of a prediction of its operation in time.
  • Figure 1 shows a diagram of the Functional Diagram of the Integrated Control System of the present invention, according to the preferred modality, representing the production process by the pile and its irrigation matrix and by the processes downstream of the pile, which in this case is represented by solvent extraction (SX).
  • SX solvent extraction
  • the input data of the dynamic hydrometallurgical model can be measured or estimated, taking into account the total flow rate of the feed to the pile and the feed pressures to each irrigation unit, as well as the composition of the irrigation solutions, the evaporation rate of the battery surface and other solution losses.
  • Input variables to the model include the actual and apparent density of the stacked mineral, the stacking and bursting humidity, the saturated hydraulic conductivity, the particle size, the density and viscosity of the irrigation solution and the effluent, and the density and viscosity. air, in case of forced air injection. These same variables allow predictive estimation of the relationship between capillary pressure and saturation. Other input variables are dry and wet tonnage per irrigation unit, layer height, effective irrigation area and / or heat transfer area. The model also considers information on grades, mineralogy and composition of geo-metallurgical units (LTGM), as well as other variables of interest.
  • LTGM geo-metallurgical units
  • the dynamic model solves the equations of continuity and motion of the liquid in a porous medium of variable saturation, a formulation known as the Richards equation. To solve this equation it is required to have a relationship between capillary pressure and saturation, being a preferred option the use of the van Genuchten equation, known to those skilled in the art. Edge conditions refer to geometric pile conditions and process conditions, such as knowing the moisture of the stacked mineral and the surface irrigation vector.
  • the dynamic hydrometallurgical model is completed with continuity equations of the solutes of interest, using dispersion-advection equations.
  • the dynamic hydrometallurgical model of the present example considers a non-linear deterioration of permeability through leaching, the magnitude of which depends on each type of mineral and the irrigation strategy applied.
  • the model also considers channeling solutions that reduces the dissolution rate of the valuable elements that are recovered.
  • the decision trees or optimizing control system are used, which contain a set of logical rules obtained and operated based on the knowledge possessed by an expert in the field . These rules are sequentially ordered so as to respect multiple priorities and objectives.
  • the optimizer system can operate interchangeably with decision tables or trees, classification rules, Bayesian classification, neural networks, fuzzy logic, genetic algorithms, or any other similar technique used by expert systems.
  • the dynamic models Based on the information received by the dynamic models, they recreate the behavior of the pile over time, providing information on hydrometallurgical control that translates into the irrigation rates that the hydraulic control system will execute on the pile, particularly in the matrix. irrigation.
  • the flow of information between the different systems corresponds to the integration between the hydraulic and hydrometallurgical control systems, where the latter behaves as a metallurgical optimizer control system for the process, allowing the system and control method Integrated operate and run to maximize the production of the pile, predicting its behavior over time and proposing irrigation plans based on that prediction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Fluid Mechanics (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Control Of Turbines (AREA)

Abstract

La presente invención se refiere a un sistema y método de control integrado del proceso de lixiviación en pilas, que permite automatizar las operaciones y optimizar la eficiencia de extracción y luego la recuperación de los metales de interés contenidos en ella, sobre la base de criterios de irrigación hidráulica uniforme y de predicción del comportamiento hidrodinámico e hidrometalúrgico del lecho de minerales en el tiempo. La invención permite además reducir costos operacionales y de mantenimiento de las operaciones, así como también incrementar la seguridad laboral, al generar y asegurar condiciones de operaciones más seguras.

Description

SISTEMA Y MÉTODO DE CONTROL INTEGRADO PARA LA OPTIMIZACIÓN DE LA EFICIENCIA DEL PROCESO DE LIXIVIACIÓN EN PILAS DE MINERALES MEMORIA DESCRIPTIVA
La presente invención se refiere a un sistema y método de control integrado del proceso de lixiviación en pilas, que permite automatizar las operaciones y optimizar la eficiencia de extracción y luego la recuperación de los metales de interés contenidos en ella, sobre la base de criterios de irrigación hidráulica uniforme y de predicción del comportamiento hidrodinámico e hidrometalúrgico del lecho de minerales en el tiempo. La invención permite además reducir costos operacionales y de mantenimiento de las operaciones, así como también incrementar la seguridad laboral, al generar y asegurar condiciones de operaciones más seguras.
El sistema y método de control integrado de la presente invención comprende medios para medir y controlar variables de las operaciones de lixiviación, principalmente asociadas al riego de la misma, pero además variables que inciden significativamente en la estabilidad de los lechos minerales, y en la termodinámica y cinética de las reacciones de extracción involucradas, optimizando con ello la producción y la gestión de las operaciones a lo largo de la vida útil de las pilas.
El sistema considera la medición de variables de la operación mediante instrumentación de campo con tecnología inalámbrica, un sistema de control para monitorear dichas variables y controlar el proceso de irrigación sobre las pilas, y una estación de aplicación donde residen estrategias de control que generan tasas de irrigación dinámicas que maximizan las extracciones y recuperaciones de los metales de valor. Estas estrategias están basadas en modelos dinámicos fenomenológicos y predictivos con ajuste permanente. El término dinámicas hace referencia a que cada día, o en el tiempo, se recalculan tasas de irrigación para distintas zonas en la pila de lixiviación.
Antecedentes de la invención
La lixiviación en pilas es un proceso hidrometalúrgico donde el mineral previamente chancado, y en algunos casos aglomerado, es depositado sobre una carpeta impermeable conformando una pila de grandes dimensiones, que pueden alcanzar normalmente l00[ha] de superficie y alturas superiores a 6 metros. Esta pila de mineral es irrigada desde una malla de irrigación con una solución de naturaleza y composición química apropiada a la disolución de los metales de interés, tal como la solución refino proveniente del proceso de extracción por solventes, la cual luego de percolar a través del lecho mineral y disolver los elementos de valor, es recuperada por la zona inferior en forma de una solución denominada solución fuerte. Esta solución es normalmente enviada para concentración y purificación a procesos tales como Extracción por Solventes, y finalmente a procesos tales como la electro obtención para la recuperación de los metales de interés en formas de alta pureza. Dependiendo de las características del mineral, el proceso completo de lixiviación puede extenderse en rangos que van de meses a años.
Para efectuar el control del riego mediante la matriz de irrigación, la pila se divide normalmente a lo largo en bandas de iguales dimensiones, las cuales a su vez se dividen en bloques. La cantidad de bandas y bloques dependerá de las dimensiones de la pila y las estrategias definidas por la operación. La solución de riego es distribuida en cada banda mediante una cañería principal instalada a todo su largo, desde la cual se bifurcan cañerías secundarias en cada bloque que finalmente alimentan delgados tubos (peines) que contienen distribuidores, tales como goteros o splinkers. En el proceso de lixiviación en pilas se identifican dos desafíos principales, el primero es asegurar un riego uniforme y apropiado en toda la pila, y el segundo, es establecer una tasa de riego óptima de acuerdo con el comportamiento hidrometalúrgico esperado en base a las características geo metalúrgicas del mineral de cada bloque en el tiempo.
El proceso de lixiviación en pilas requiere tiempo para optimizar la extracción de metales de valor, tomando relevancia la continuidad del riego en toda la extensión de la pila. Esta variable es difícil de medir y controlar, principalmente por el gran tamaño de las pilas, su inestabilidad y la peligrosidad de las soluciones utilizadas en el riego. Efectivamente, en la actualidad se hace casi imposible determinar en su totalidad si ciertos sectores de la pila tienen alguna falla en la operación, por ejemplo, si presentan obstrucción o roturas en alguna zona de la matriz del riego, requiriéndose la presencia permanente de personal sobre la pila para realizar mediciones y supervisiones que aseguren la correcta operación de la pila, con el consiguiente riesgo de sufrir accidentes.
Considerando lo anterior, se han propuesto distintas soluciones técnicas para el monitoreo y control de pilas de lixiviación, las que buscan maximizar la extracción de los metales de interés, mediante el monitoreo y control de la pila, evitando los riesgos de realizar mediciones y trabajos en terreno para lograr dicho monitoreo y control. Lina de dichas soluciones se entrega en el documento de solicitud de patente CL 1968-2011, en donde se propone un sistema integrado de medición, control y comunicación para pilas de lixiviación, química o bioasistida. Esta solución plantea la medición integral de variables interiores de la pila y exteriores a la misma, empleando dispositivos inalámbricos para el registro de dichas mediciones. Adicionalmente, esta solución emplea curvas de recuperación de mineral para, en conjunto con las mediciones, determinar funciones de control del riego que actúan sobre las válvulas, sopladores y/o ventiladores participantes. En resumen, el documento CL 1968-2011 busca instrumentalizar una pila para realizar acciones de control en base a mediciones y en base a curvas teóricas de recuperación de metales, obteniéndose un modelo de control dinámico que es incapaz de predecir el comportamiento real de la pila en el tiempo. En efecto, si bien se establece que el control que se ofrece sobre la pila es dinámico, la experiencia en el desarrollo de las operaciones de lixiviación en pilas ha indicado que cada una de ellas se comporta de manera diferente en dependencia con variables asociadas al riego, a la solución y al ambiente en el que se encuentra la pila, variables que no son posibles de replicar mediante curvas teóricas de recuperación de minerales y que dificultan la predicción en el comportamiento de la pila. Dichas curvas son dependientes de una multiplicidad de variables asociadas tanto a la operación de la pila como a las características mineralógicas presentes en la pila, elementos que varían con el transcurso del tiempo y la acción de la solución sobre el mineral.
Por lo tanto, se hace necesario contar con una solución que integre totalmente las mayores y principales características de la lixiviación en una pila, evitándose el uso de modelos teóricos y proponiendo una solución capaz de predecir el comportamiento de dicha pila durante el transcurso de su vida útil, facilitándose la optimización de la producción en la pila.
De la misma forma, el documento WO 2009/146571 propone una solución de instrumentalización de una pila de lixiviación, para el monitoreo y control de la misma, mediante equipos inalámbricos dispuestos en la extensión de la pila. Este documento propone un sistema que busca obtener información en tiempo real de distintas variables importantes en el proceso de lixiviación, manteniéndose un control del flujo a través del control y operación automatizada de válvulas. Luego, en base a la información medida, se implementan decisiones asociadas a la operación de la pila, se analiza el comportamiento de la misma en el tiempo y se obtienen datos que permiten modelar el riego bajo distintas condiciones. Si bien esta solución permite automatizar las mediciones realizadas sobre una pila, que usualmente son manuales, y entrega variables para el control en tiempo real de la pila, no predice el comportamiento de la misma en base a sus particularidades y el entorno. En efecto, esta solución es una instrumentalización simple mediante equipos inalámbricos que permiten evitar el requerimiento de operarios en terreno, en donde se obtiene gran cantidad de información para caracterizar el comportamiento instantáneo de la pila, permitiendo modelar dicho comportamiento instantáneo para verificar como se comportaría la producción si se cambian los parámetros de riego. Sin embargo, esta solución no permite predecir el comportamiento de la pila a lo largo de su vida útil, ni tomar acciones de control en base a dicha predicción, siendo ineficaz en maximizar la producción en forma adaptativa a la evolución de la pila en el tiempo.
Considerando lo anterior, el arte previo de la presente invención propone sistemas y métodos de medición y control que pueden definirse como reactivos, es decir, obtienen información de la pila en tiempo real y modelan su comportamiento también en tiempo real, sin anticipar la evolución de la pila en el tiempo. Por lo tanto, se hace necesario contar con una solución de monitoreo y control de pilas de lixiviación capaz de predecir el comportamiento de la pila en el tiempo, proponiendo un modelo de control predictivo que evolucione conforme lo hace la pila de lixiviación durante su vida útil.
Descripción de la invención
La solución proporciona un sistema de control integrado que comprende un sistema de control hidrometalúrgico, orientado a maximizar el valor de recuperación de metal de acuerdo con las características geo-mineralógicas de cada bloque, un sistema de control hidráulico, responsable de asegurar un riego adecuado y homogéneo en toda la pila, y un conjunto de instrumentación de campo y actuadores, para la medición de las variables de proceso relevantes que permitan monitorear el proceso de lixiviación, además de medir las condiciones hidráulicas y ejecutar las acciones de irrigación en las distintas zonas de la pila. Estos objetivos se alcanzan mediante la gestión de la aplicación de la tasa de humectación por unidad de riego o bloque
(l/h/m2), respetando condiciones de estabilidad hidráulica de todo el circuito de lixiviación, y también por la gestión de la unidad de destino efluente, de forma de asegurar que el consumo de refino total no supere el caudal disponible establecido por las capacidades de las bombas de impulsión y además que la demanda de refino de cada unidad de riego no afecte el disponibilidad de refino en las otras unidades.
El sistema de control hidrometalúrgico comprende un sistema de control optimizador (árbol de decisión) y un modelo hidrometalúrgico dinámico que trabaja de forma sincronizada entre las diferentes unidades de riego, para satisfacer los siguientes objetivos específicos de control:
a) Establecer las condiciones para el equilibrio dinámico del flujo que circula por el circuito de lixiviación en toda la pila y proporcionar condiciones de estabilidad por medio del circuito hidráulico.
b) Establecer las condiciones para que la concentración del metal -valor (por ejemplo, de cobre) dentro de un estrecho rango consistente con la capacidad de procesamiento de las plantas de SX-EW. Esto origina un Lazo de Control Químico.
c) Maximizar la recuperación y/o producción metalúrgica del metal -valor (por ejemplo, cobre) en el proceso de lixiviación de acuerdo con las propiedades químicas, físicas y metalúrgicas del mineral cargado en cada unidad de riego y su evolución dinámica a lo largo del tiempo. Esto origina un Lazo de Control Metalúrgico.
El modelo hidrometalúrgico es de tipo fenomenológico y dinámico, dotado de alta capacidad predi ctiva, validado mediante pruebas a nivel industrial. Se trata de una modelación matemática del comportamiento del mineral deducida a partir de los fenómenos de transporte y los principios cinéticos, apoyados por las variables y criterios de operación y metalúrgicas adicionales, que proporcionan la estimación de los caudales y la concentración de metal-valor que salen de cada unidad de riego sometida a control automático. Para ello, el modelo hidrometalúrgico integra los lazos de control metalúrgico y químico, proporcionando información relativa a la evolución temporal de la pila dentro de su vida útil, permitiendo modelar el comportamiento de la misma en el tiempo.
El árbol de decisión también llamado aquí el sistema de control optimizador o sistema optimizador, es una máquina de inferencia basada en reglas jerárquicas metalúrgicas y operacionales aplicadas cualitativamente en las operaciones de lixiviación estándar. Estas reglas surgen a partir del conocimiento empírico de las operaciones y proporcionan la base para las estrategias de lixiviación, en nuestro caso para definir la tasa de lixiviación cuantitativa por unidad de riego, así como para gestionar cuantitativamente el destino de los efluentes.
El modelo hidrometalúrgico en conjunto con el árbol de decisión operan de forma recursiva para encontrar la distribución óptima del flujo de irrigación disponible a través de las múltiples unidades de riego y también permite la definición del destino óptimo de efluentes individuales para ser aplicado en el siguiente período de operación.
El sistema de control hidráulico, en conjunto con la instrumentación de campo y actuadores, es responsable de monitorear y controlar el proceso de irrigación sobre la pila de acuerdo con lo especificado por el sistema de control hidrometalúrgico. Las variables de operación hidráulicas se miden, al menos, a nivel de unidades controladas de riego o unidades de riego (bloques).
En particular, el sistema de control hidráulico comprende sensores que recopilan información, midiendo variables de operación hidráulicas del sistema de riego y/o del sistema de drenaje que se implem entan en la lixiviación. Las principales variables medidas son la presión y el flujo del refino que circula por los distintos puntos de la matriz de riego, siendo esta la distribución de los sistemas de riego y drenaje en la pila. En este contexto, el sistema de control hidráulico también comprende actuadores que controlan dispositivos hidráulicos pertenecientes a los sistemas de riego y drenaje, todo con el objeto de operar dichos sistemas en la irrigación de la pila y en la recuperación del PLS, respectivamente.
El sistema de control hidráulico además comprende medios para procesar y ejecutar instrucciones de riego de la pila o tasas de irrigación, coordinando la ejecución del proceso de lixiviación a través de los actuadores dispuestos en los sistemas de riego y/o drenaje.
En relación al sistema de control hidrometalúrgico, se destaca que éste integra la medición de variables de operación metalúrgicas asociadas a los procesos metalúrgicos que ocurren en la pila, como por ejemplo el tiempo de residencia de la solución en la pila (tasa de percolación), variables asociadas a la composición química de refinación (Temperatura, pH, ORP, etc.), el flujo de la distribución de solución dentro de la pila, nivel freático, la temperatura del refino, el cambio de la ley del mineral en la pila en el tiempo, variables asociadas a características del PLS, oxígeno disuelto en la solución (aplicable a biolixiviación) y/o flujo, presión y temperatura del aire inyectado en la pila (aplicable a biolixiviación), entre otras. Como se puede notar, el sistema de control hidrometalúrgico comprende la medición de todas aquellas variables metalúrgicas que permiten caracterizar los procesos metalúrgicos que ocurren en la pila durante la lixiviación, en particular a nivel de los bloques que conforman la pila, implementando sensores adecuados para ello. Además, las variables de operación asociadas a las características de los fluidos que circulan por los sistemas de riego y drenaje, por ejemplo, la calidad de los mismos y/o composición, también pueden ser medidas por el sistema de control metalúrgico, al asociarse dichas variables directamente con el proceso de lixiviación que ocurre en la pila. Por otra parte, el sistema de control hidrometalúrgico comprende la integración de parámetros metalúrgicos asociados a la lixiviación, por ejemplo, la geometría de la pila (tamaño de bloques), toneladas cargadas por bloque, tipo de mineral en la pila, ley del mineral, mineralogía de la pila, presencia de otros minerales, granulometría y humedad inicial, entre otros. La integración de dichos parámetros metalúrgicos con las variables de operación, tanto metalúrgicas como hidráulicas, permite la creación de modelos hidrometalúrgicos dinámicos que predicen la evolución del comportamiento de la pila en relación con la extracción del mineral.
Estos modelos se emplean para controlar y modificar las variables de operación de la pila en función de los parámetros y variables asociados a la misma, gestionando tasas de irrigación asociadas a la tasa de humectación por bloque de la pila. Adicionalmente, el sistema de control metalúrgico comprende medios para la generación de tasas de irrigación de la pila en función de los modelos hidrometalúrgicos dinámicos creados, comunicando dichas tasas de irrigación al sistema de control hidráulico para su ejecución.
Otro componente del sistema de control integrado de la invención corresponde a la estación de control hidrometalúrgico, componente que comprende al menos un procesador y una base de datos dispuestos para procesar los datos provenientes de los sistemas de control hidráulico y metalúrgico, facilitando almacenamiento y procesamiento de la información. Dicha estación de control puede ubicarse en una posición remota o en terreno, se comunica con los sistemas de control hidráulico e hidrometalúrgico, y asiste en la creación de los modelos hidrometalúrgicos dinámicos y en la generación de las tasas de irrigación. Adicionalmente, dicha estación ofrece una interfaz usuario que posibilita la comunicación del usuario con la información hidrometalúrgica, facilitando la modificación e ingreso de parámetros requeridos para la operación del sistema, por ejemplo, aquellos parámetros de operación que no son medidos en terreno, como parámetros de clima, de la solución lixiviante utilizada, del tipo de mineral a procesar, etc., sin perjuicio de que preferentemente todas las variables se registran mediante sensores en terreno. La comunicación establecida entre los componentes del sistema de control integrado puede ser cableada o, preferentemente, inalámbrica, empleando protocolos de comunicación adecuados para ello.
Adicionalmente, otros componentes del sistema de control integrado de la invención corresponden a una estación de ingeniería para la configuración del sistema de control y, alternativamente, para el manejo de comunicaciones, y a una estación de operación para ejecutar y supervisar la operación integral de la pila.
Finalmente, el sistema de control integrado de la invención comprende al menos una fuente de energía ininterrumpible (UPS) para la alimentación eléctrica de los componentes empleados en el sistema. Dicha fuente de energía puede posicionarse remotamente o en terreno, siendo adecuado también el empleo de fuentes de energía renovables dispuestas para la operación autónoma de los distintos equipos y componentes que forman parte del sistema.
La implementación de los sistemas de control hidráulico e hidrometalúrgico a nivel de los bloques que conforman una pila permite detectar con mayor precisión aquellas situaciones en las que la operación de la pila no es correcta, por ejemplo, la ocurrencia de taponamiento de los dispositivos hidráulicos con la consecuente obstrucción del riego. Con ello, es posible tomar las medidas necesarias para restaurar automáticamente la operación completa de la pila, sin necesidad de revisiones periódicas en terreno y facilitando la detección de aquellas zonas en las que ha ocurrido el desperfecto en la operación.
El sistema de control integrado de la invención puede implementarse en un conjunto de pilas de lixiviación, optimizando la operación de dicho conjunto de pilas sobre la base de la predicción del comportamiento de las mismas. En relación con el método de control integrado de la presente invención, implementado en el sistema descrito anteriormente, es posible indicar que dicho método comprende, principalmente, las etapas de:
• Recopilar información de operación de la pila, correspondiente a los parámetros y variables de operación del proceso de lixiviación en la pila;
• Procesar la información de operación recopilada, en donde este procesamiento permite:
o Crear modelos hidrometalúrgicos dinámicos fenomenológicos que predicen la evolución del comportamiento de la pila, particularmente en sus aspectos hidrometalúrgicos, sobre la base de los cambios y evolución de los parámetros y variables de operación de la pila;
o Generar tasas de irrigación en base a los modelos dinámicos creados; y
• Ejecutar las tasas de irrigación, controlándose la operación de la pila.
Tanto el sistema de control integrado de pilas de lixiviación como el método implementado en dicho sistema permiten resolver las desventajas detectadas en el arte previo, facilitando la optimización de la producción y gestionando la operación de la pila sobre la base de una predicción de su funcionamiento en el tiempo.
Breve descripción de las figuras
Como parte de la presente solicitud se presentan las siguientes figuras representativas de la invención, las cuales enseñan modalidades preferentes de la misma y, por lo tanto, no deben considerarse como limitantes a la definición de la solicitud.
La figura 1 muestra un Diagrama Funcional del Sistema de Control Integrado propuesto por el sistema y método de la invención, de acuerdo con una modalidad preferente.
Descripción detallada de la modalidad preferente La presente invención comprende un sistema de control integrado de pilas de lixiviación y un método de control integrado asociado que se implementa en dicho sistema. Tanto el sistema como el método facilitan la optimización de la producción de la pila y gestionan la operación de la misma sobre la base de una predicción de su funcionamiento en el tiempo.
Sistema de control integrado de pilas de lixiviación
Con referencia a la figura 1, y de acuerdo con la modalidad preferente, el sistema de control integrado de pilas de lixiviación de la presente invención comprende:
• un sistema de alimentación dispuesto en la pila de lixiviación, para la alimentación de una solución lixiviante;
• Un sistema de riego dispuesto en una pila de lixiviación, para el riego de la pila con la solución lixiviante;
• Un sistema de drenaje dispuesto en la pila de lixiviación, para la recuperación del PLS y entrega a las siguientes etapas del proceso general de extracción;
• Un sistema de control hidráulico, para medir y controlar las variables de operación hidráulicas asociadas al riego y recuperación de PLS;
• Un sistema de control hidrometalúrgico, para medir variables de operación metalúrgicas, crear modelos hidrometalúrgicos dinámicos del comportamiento de la pila y generar tasas de irrigación selectivas de la misma;
• Una estación de operación, para la integración de los sistemas de control hidráulico y metalúrgico y controlar la comunicación entre todos los componentes del sistema; y
• Al menos una fuente de energía, para la alimentación de los componentes del sistema. El término selectivas se refiere a que el sistema de control hidrometalúrgico toma en consideración aspectos de naturaleza metalúrgica para definir las tasas de riego que deben aplicarse en distintas zonas de la pila de lixiviación, siendo selectivo, por ejemplo, para regar a una tasa en una zona y a otra en otra zona. Dicha selectividad depende, por ejemplo, de si una zona tiene más metal o más metal extraíble que la otra, lo que se relaciona con la distribución mineralógica existente en las distintas zonas de la pila. Otros ejemplos de la característica de selectividad es que puede depender de si hay una zona que es más impermeable que la otra, lo que se relaciona con la distribución de la ganga en la pila, o de si hay zonas que requieren más ácido que otras, etc. A esta característica se le denomina“selectividad metalúrgica”, siendo una diferencia esencial y una ventaja competitiva de la presente tecnología respecto a lo que existe en el estado del arte.
Sistema de alimentación
El sistema de alimentación corresponde al conjunto de dispositivos hidráulicos, principalmente a ductos, bombas y válvulas, que alimentan la solución lixiviante o solución de refino al sistema de riego en la pila.
Sistema de riego
El sistema de riego dispuesto en la pila de lixiviación comprende un conjunto de dispositivos hidráulicos que corresponden principalmente a ductos, bombas, válvulas y medios de riego, los que integran la red de riego implementada para la irrigación de la pila con la solución lixiviante. Los medios de riego del sistema son del tipo riego por goteo, aspersores y/u otro dispositivo de riego adecuado, dispuestos sobre superficie de la pila Los medios de riego se conectan con la alimentación de la solución lixiviante y con el resto de los dispositivos hidráulicos mediante los ductos, conformando una matriz de riego dispuesta en la pila. Dicha matriz se implementa en la pila sobre la base de la distribución de bloques que dividen y conforman la misma. De acuerdo con la modalidad preferente, la cantidad y distribución de los medios de riego implementados en la matriz de riego serán tales que se asegure una irrigación uniforme de toda la pila a nivel de los bloques.
La solución lixiviante es alimentada al sistema de riego mediante un dispositivo impulsor como una bomba, permitiendo que dicha solución sea distribuida a todos los medios de riego. En este sentido, otros dispositivos hidráulicos como válvulas se implementan para ejercer control sobre la distribución de la solución lixiviante en la matriz de riego y la activación de los medios de riego de acuerdo con la tasa de irrigación ejecutada por el sistema. Por ejemplo, de acuerdo con la modalidad preferente, se dispone un cierto número de válvulas distribuidas en el sistema de riego para controlar la irrigación de cada bloque de la pila por separado, asegurando un control preciso de la operación de cada porción de la pila representada por los bloques. Considerando lo anterior, los dispositivos hidráulicos del sistema de riego configuran la relación de comunicación entre dicho sistema y el sistema de control hidráulico, el que ejerce control sobre el sistema de riego mediante actuadores integrados en los dispositivos de dicho sistema. Generalmente, los actuadores del sistema de control hidráulico se asocian a las válvulas y bombas del sistema de riego, sin embargo, modalidades de la invención comprenden el uso de medios de riego integrados con mecanismos de actuación.
De acuerdo con modalidades alternativas, el sistema de riego comprende medios de recuperación y/o recirculación de fluido, por ejemplo, dispositivos hidráulicos dispuestos para el reingreso de la solución lixiviante y/o PLS que sale de la pila. Estos medios permiten establecer una recirculación de fluidos en caso de ser necesario, lo que mejora la eficiencia en la extracción. Sistema de drenaje
Considerando lo anterior, el sistema de drenaje dispuesto en la pila de lixiviación también comprende dispositivos hidráulicos como ductos, válvulas y/o bombas, actuando como medios de recuperación del fluido que sale de la pila durante el proceso de lixiviación, conocido como
PLS. El sistema de drenaje se dispone mediante una distribución de dichos dispositivos hidráulicos y/o medios de recuperación en la extensión de la pila, principalmente en su superficie inferior y/o en alguna superficie intermedia, recuperando el PLS para dirigirlo hacia las siguientes etapas del proceso de extracción, por ejemplo, hacia el proceso de extracción por solvente.
De acuerdo con una modalidad secundaria, el sistema de drenaje dispuesto en la pila comprende un mecanismo de recirculación en comunicación con el sistema de riego, reintegrando la extracción de fluido desde la pila al proceso de lixiviación para mejorar la efectividad del mismo. De acuerdo con otra modalidad, la recirculación de PLS es controlada por una válvula actuada por el sistema de control hidráulico de la invención, en donde dicha válvula es actuada en función de la calidad del PLS que se extrae de la pila, medida con un sensor adecuado o en terreno por un operario, en donde dicha medición permite detectar la calidad del PLS y la desviación del PLS requerido, representado como D. Adicionalmente, una modalidad contempla implementar la medición de calidad del PLS en el sistema de control metalúrgico para la creación de los modelos dinámicos del comportamiento de la pila y la generación de las tasas de irrigación, considerando dicha variable como parte de dicho sistema.
Sistema de control hidráulico
El sistema de control hidráulico comprende un conjunto de sensores y actuadores dispuestos en las distintas etapas del proceso de lixiviación para la recopilación de información que permite caracterizar el comportamiento de la pila durante el proceso. En particular dichos sensores y actuadores se disponen en los sistemas de riego y drenaje que contempla la invención, integrando dichos sistemas con el sistema de control hidráulico. Entre la información recopilada por los sensores del sistema de control hidráulico se encuentra aquella asociada a las variables de operación hidráulicas del sistema de riego, principalmente la presión y/o flujo de la solución que circula por los distintos puntos de dicho sistema, en donde este tipo de variables también se mide en función del tiempo y a nivel de los bloques que dividen la pila, asegurando la caracterización del funcionamiento de los dispositivos hidráulicos asociados a cada bloque para mantener la precisión en el control.
De acuerdo con una modalidad de la invención, el sistema de control hidráulico además comprende sensores asociados a variables de operación del sistema de drenaje, por ejemplo, midiendo el flujo de salida de la pila y/o la calidad del PLS, información que se emplea por el sistema tanto en la medición de la eficiencia como en la generación de tasas de riego predi ctivos que permiten maximizar la productividad de la pila.
Como indicado anteriormente, el sistema de control hidráulico también comprende actuadores que accionan dispositivos hidráulicos pertenecientes al sistema de riego y/o sistema de drenaje, todo con el objeto de ejecutar las acciones de operación de dichos sistemas en la irrigación de la pila y recuperación del PLS, respectivamente. Los actuadores se implementan en dispositivos hidráulicos como bombas y/o válvulas de los sistemas de riego y/o drenaje, permitiendo controlar la distribución de la solución lixiviante en cada bloque de la pila (tasa de humectación por bloque) y el control de la calidad del PLS mediante la activación de la recirculación del flujo de salida de la pila al sistema de riego, si se considera necesario. De acuerdo con una modalidad de la invención, los actuadores se integran en las válvulas y/o medios de riego que controlan la irrigación de cada bloque en la pila, así como también pueden integrarse en bombas y válvulas que permiten la distribución de la solución lixiviante en la pila y/o la distribución del PLS que sale de la misma. Por ejemplo, entre los principales actuadores del sistema se tienen las válvulas reguladoras de presión que participan en el mismo de forma de asegurar un caudal y presión en cada punto de la matriz de riego de acuerdo a las tasas de riego establecidas por el control hidrometalúrgico.
Por otra parte, de acuerdo con una modalidad de la invención, el sistema de control hidráulico contempla medios para ingresar y almacenar parámetros del proceso, en particular aquellos relacionados con el riego, los que pueden ser ingresados manualmente por un operario, por ejemplo, a través de una interfaz en la estación de control y comunicados al sistema de control hidráulico. Entre dichos parámetros se encuentran las características de la solución lixiviante que se alimenta al sistema de riego, entre otros parámetros de operación. De acuerdo con modalidades alternativas de la invención, todos los parámetros y variables asociados al riego y drenaje son medidos empleando sensores adecuados para ello.
El sistema de control hidráulico además comprende medios para procesar y ejecutar instrucciones de riego o tasas de irrigación que son generados por el sistema de control metalúrgico y comunicados al sistema de control hidráulico, en donde este último coordina la operación y comportamiento de la pila de lixiviación a través de los actuadores dispuestos en los sistemas de riego y/o drenaje.
Sistema de control hidrometalúrgico
De acuerdo con la modalidad preferente, el sistema de control hidrometalúrgico de la presente invención integra información de las características geo-metalúrgicas de las unidades minerales que están presentes en la pila, la medición automática de parámetros y variables de operación metalúrgicas de la pila desde su inicio y durante toda su evolución. Para ello, el sistema de control hidrometalúrgico integra sensores de medición automática dispuestos en ubicaciones claves de la pila, así como también incorpora la posibilidad de almacenar parámetros de la pila en forma manual. Al respecto, de acuerdo con una modalidad de la invención, los parámetros de la pila se ingresan manualmente y se mantienen fijos durante la evolución de la pila, por ejemplo, este ingreso manual se realiza a través de la estación de control que se comunica con el sistema de control metalúrgico.
En este sentido, las principales variables de operación metalúrgicas corresponden a aquellas provenientes del proceso en la misma pila de lixiviación, por ejemplo, el tiempo de residencia de la solución lixiviante en la pila o tasa de percolación, la composición química y variables físico químicas de la solución lixiviante, tales como la temperatura, pH, oxígeno disuelto, razones de iones de hierro y potencial electroquímico, entre otros, además del flujo de irrigación de las soluciones lixiviantes sobre la pila, las características del fluido de salida de la pila o PLS y cualquier otro tipo de variable de interés asociada a los distintos tipos de lixiviación que pueden implementar el sistema y método de la presente invención. De acuerdo con la modalidad preferente, todas estas variables de operación se miden en función del tiempo y a nivel de los bloques que conforman la pila, caracterizado el comportamiento de cada bloque durante el proceso de lixiviación y asegurando un control preciso del proceso.
De acuerdo con modalidades alternativas, otras variables mineralógicas son medidas por el sistema, así como otros parámetros también son incorporadas al mismo.
Entre los parámetros mineralógicos contemplados por el sistema de control hidrometalúrgico se tienen la geometría de la pila (tamaño de bloques), toneladas de mineral cargadas por bloque, tipo de mineral en la pila, ley del mineral (al inicio), mineralogía de la pila, presencia de otros minerales, granulometría y humedad inicial, entre otros. Tal como indicado anteriormente, estos parámetros son ingresados manualmente, a través de la interfaz dispuesta para ello. En una modalidad preferente, los parámetros también son medidos por sensores dispuestos en terreno e ingresados automáticamente.
Adicionalmente, de acuerdo con la modalidad preferente de la invención, el sistema de control hidrometalúrgico comprende medios para la creación de modelos hidrometalúrgicos dinámicos que predicen la evolución del comportamiento de la pila en relación con el proceso de extracción y para la generación de tasas de irrigación de la pila en función de la evolución de la misma, comunicando dichas tasas de irrigación al sistema de control hidráulico.
Los modelos hidrometalúrgicos dinámicos son modelos fenomenológicos, predictivos, dependientes del tiempo y de las variables de operación medidas por el sistema, permitiendo predecir el comportamiento mineralógico de la pila durante el transcurso del proceso de lixiviación y la vida útil de la pila. La creación de los modelos hidrometalúrgicos dinámicos requiere información caracterizadora del comportamiento de la pila durante el proceso, así como caracterizadora del mineral que conforma la pila, deducida a partir de los fenómenos de transporte y los principios cinéticos asociados al mineral, apoyados por las variables y criterios de operación y metalúrgicas adicionales. Esta información puede ser recopilada mediante las variables de operación medidas y los parámetros de operación establecidos, todos ellos a nivel de los bloques que conforman la pila para mantener la precisión en la modelación. Los modelos hidrometalúrgicos dinámicos permiten predecir en forma precisa el comportamiento de la pila en el tiempo, particularmente de los bloques que la conforman, facilitando la generación de tasas de irrigación que permitan maximizar la producción de la pila durante toda su vida útil. De acuerdo con una modalidad alternativa, la creación de los modelos hidrometalúrgicos dinámicos es asistida por operarios expertos a través de una interfaz de la estación de control asociada al sistema de control metalúrgico.
Estación de control
De acuerdo con la modalidad preferente de la invención, la estación de control del sistema de control integrado comprende al menos un procesador y al menos una base de datos dispuestos para integrar los sistemas de control hidráulico e hidrometalúrgico, en particular la información proveniente de dichos sistemas. Adicionalmente comprende una estación de ingeniería y una estación de operación. Esta información es comunicada mediante cables o inalámbricamente, procesándose por los medios de procesamiento que ofrece la estación de control.
En este sentido, la estación de control hidrometalúrgico asiste al sistema de control hidráulico en el procesamiento de la información de operación de la pila, que es utilizada por el sistema de control hidrometalúrgico como precursor en la creación de los modelos hidrometalúrgicos dinámicos asociados a la predicción del comportamiento de la pila sobre la base de las variables y parámetros del proceso. Luego, la estación de control hidrometalúrgico asiste en la generación de las tasas de irrigación de la pila en el tiempo.
De acuerdo con una modalidad de la invención, la estación de operación integra los sistemas de control hidráulico e hidrometalúrgico como un único sistema de control implementado en el sistema de control integrado. En este caso, la estación de control hidrometalúrgico comprende una unidad de monitoreo y control que actúa como centro de recopilación, almacenamiento y procesamiento de la información, tanto medida a través de los distintos sensores como ingresada por operarios a través de los parámetros de operación, creando los modelos hidrometalúrgicos dinámicos y generando las tasas de irrigación que se ejecutarán a través de los sistemas de riego y de drenaje en base a los actuadores asociados a los dispositivos hidráulicos de dichos sistemas.
La estación de control puede posicionarse en terreno o remotamente, empleando protocolos de comunicación adecuados para la integración de los sistemas de control hidráulico e hidrometalúrgico que reciben y envían información a los dispositivos y equipos instalados en la pila de lixiviación.
Fuente de energía Finalmente, la energización de los compontes del sistema se realiza mediante al menos una fuente de energía no interrumpible posicionada en terreno o remotamente, siendo preferente la implementación de fuentes de energía que permitan la operación autónoma de los dispositivos y equipos del sistema y reduzcan las complejidades de instalación de los mismos en terreno.
Método de control integrado de pilas de lixiviación
En relación con el método de control integrado de la presente invención, implementado en el sistema descrito en detalle anteriormente, se destaca que dicho método comprende distintas etapas asociadas a la operación del sistema.
En este sentido, una de las etapas del método comprende recopilar la información de operación de la pila, lo que se asocia principalmente con la medición de las variables de operación y el registro de los parámetros medidos y/o ingresados por personal de operaciones, tanto en relación con el sistema de control hidráulico como con el sistema de control hidrometalúrgico. De acuerdo con la modalidad preferente, la información es recopilada a través de los sensores que forman parte de los sistemas de control hidráulico e hidrometalúrgico, siendo integrada por dichos sistemas de control.
Otra etapa del método comprende procesar la información de operación recopilada en la etapa anterior, empleándose para ello la asistencia de servidores que permiten integrar las mediciones de variables y los parámetros de operación, disponiendo medios para la integración de los sistemas de control hidráulico y metalúrgico. Dichos medios se asocian a las bases de datos para el almacenamiento de la información y los procesadores para su procesamiento y análisis.
La integración de la información de operación da pie la creación de los modelos hidrometalúrgicos dinámicos por parte del sistema de control hidrometalúrgico, los que predicen la evolución del comportamiento de la pila, particularmente en sus aspectos mineralógicos, sobre la base de los cambios y evolución de los parámetros y variables de operación recopilados. Con esto el sistema de control hidrometalúrgico determina las tasas de riego en base a los modelos hidrometalúrgicos dinámicos, en donde dichas tasas de irrigación son instrucciones de riego para ser ejecutadas por el sistema de control hidráulico. Las etapas de creación de los modelos hidrometalúrgicos y de generación de los tasas de irrigación son dinámicas, es decir, continúan a lo largo de la vida útil de la pila de lixiviación, adaptándose a los estados y evolución de la misma en el tiempo.
Finalmente, se tiene la etapa de ejecución de las tasas de irrigación, etapa llevada a cabo mediante los actuadores comprendidos por el sistema de control hidráulico y que se integran a los sistemas de riego y drenaje dispuestos en la pila de lixiviación. La ejecución de las tasas de riego perdura en el tiempo, en particular, durante la vida útil de la pila.
Tanto el sistema de control integrado de pilas de lixiviación como el método implementado en dicho sistema permiten resolver las desventajas detectadas en el arte previo, facilitando la optimización de la producción y gestionando la operación de la pila sobre la base de una predicción de su funcionamiento en el tiempo.
Ejemplo
En la figura 1 se muestra un esquema del Diagrama Funcional del Sistema de Control Integrado de la presente invención, de acuerdo con la modalidad preferente, representando el proceso productivo por la pila y su matriz de riego y por los procesos aguas debajo de la pila, que en este caso se representa por la extracción por solvente (SX). En este sentido, el esquema de la figura 1 muestra que los modelos dinámicos o modelos hidrometalúrgicos dinámicos del sistema de control hidrometalúrgico reciben información proveniente de la pila de lixiviación, del flujo de salida de dicha pila o PLS y de un usuario, donde ésta última se relaciona principalmente con las características minero-metalúrgicas del mineral en un momento inicial del proceso de lixiviación (t=0).
Los datos de entrada del modelo hidrometalúrgico dinámico pueden ser medidos o estimados, contemplando el caudal total de alimentación a la pila y las presiones de alimentación a cada unidad de riego, así como la composición de las soluciones de riego, la tasa de evaporación de la superficie de las pilas y otras pérdidas de solución.
Entre las variables de entrada al modelo está la densidad aparente y real del mineral apilado, la humedad de apilamiento y de reviente, la conductividad hidráulica saturada, la granulometría, la densidad y viscosidad de la solución de riego y del efluente y la densidad y viscosidad del aire, en caso de existir inyección forzada de aire. Estas mismas variables permiten estimar de modo predictivo la relación entre presión capilar y saturación. Otras variables de entrada son el tonelaje seco y húmedo por unidad de riego, altura de capa, área efectiva de riego y/o área de transferencia de calor. El modelo también considera información de leyes, mineralogía y composición de unidades geo metalúrgicas (LTGM), así como de otras variables de interés.
El modelo dinámico resuelve las ecuaciones de continuidad y movimiento del líquido en un medio poroso de saturación variable, formulación conocida como ecuación de Richards. Para resolver esta ecuación se requiere disponer de una relación entre presión capilar y la saturación, siendo una opción preferente el empleo de la ecuación de van Genuchten, conocida por los entendidos en la técnica. Las condiciones de borde se refieren a condiciones geométricas de la pila y a condiciones de proceso, como conocer la humedad del mineral apilado y el vector de riego en la superficie. El modelo hidrometalúrgico dinámico es completado con ecuaciones de continuidad de los solutos de interés, utilizándose ecuaciones de dispersión-advección.
Entre los parámetros del modelo dinámico se incorpora el conocimiento y prácticas operacionales, tanto de la hidrodinámica de las pilas de lixiviación como de los aspectos metalúrgicos asociados.
El modelo hidrometalúrgico dinámico del presente ejemplo considera un deterioro no lineal de la permeabilidad a través de la lixiviación, cuya magnitud depende de cada tipo de mineral y de la estrategia de riego aplicada. El modelo también considera la canalización de soluciones que reduce la tasa de disolución de los elementos valiosos que se recuperan.
Lina vez que el modelo hidrometalúrgico dinámico es creado por el sistema de control hidrometalúrgico, se emplean los árboles de decisión o sistema de control optimizador, el que contiene un conjunto de reglas lógicas obtenidas y operadas en base al conocimiento que posee un experto en la materia. Estas reglas son ordenadas secuencialmente de modo de respetar prioridades y objetivos múltiples. El sistema optimizador puede operar indistintamente con tablas o árboles de decisión, reglas de clasificación, clasificación Bayesiana, redes neuronales, lógica difusa, algoritmos genéticos o cualquier otra técnica similar empleada por los sistemas expertos.
En base a la información recibida por los modelos dinámicos, éstos recrean el comportamiento de la pila en el tiempo, entregando información de control hidrometalúrgico que se traduce en las tasas de irrigación que ejecutará el sistema de control hidráulico sobre la pila, particularmente en la matriz de riego.
El flujo de información entre los distintos sistemas corresponde a la integración entre los sistemas de control hidráulico e hidrometalúrgico, donde este último se comporta como sistema de control optimizador metalúrgico del proceso, permitiendo que el sistema y método de control integrado opere y se ejecute para maximizar la producción de la pila, prediciendo su comportamiento en el tiempo y proponiendo planes de riego en base a dicha predicción.

Claims

REIVINDICACIONES
1. Un sistema de control integrado para la optimización de la eficiencia del proceso de lixiviación en pilas de minerales, caracterizado porque comprende:
- un sistema de control hidráulico, que a su vez comprende:
• un sistema de alimentación dispuesto en la pila de lixiviación, para la alimentación de una solución lixiviante;
• un sistema de riego dispuesto en la pila de lixiviación, para el riego de la pila con la solución lixiviante;
• un sistema de drenaje dispuesto en la pila de lixiviación, para la recuperación del PLS ( Pregnant Leach Solution) y entrega del PLS a las siguientes etapas del proceso de extracción;
• sensores y actuadores dispuestos en terreno para la caracterización de las operaciones de los sistemas de riego y drenaje y, además, para el control de dichas operaciones;
en donde el sistema de alimentación, el sistema de riego y el sistema de drenaje forman un circuito de lixiviación,
- al menos una fuente de energía, dispuesta en terreno o en una ubicación remota, para la alimentación de los componentes del sistema;
- un sistema de control hidrometalúrgico, que a su vez comprende:
• sensores dispuestos en terreno para la caracterización hidrometalúrgica del mineral en la pila y de su evolución;
• un sistema optimizador o árbol de decisión; y
1 • un modelo hidrometalúrgico dinámico que trabaja de forma sincronizada para satisfacer los siguientes objetivos específicos de control:
a) establecer las condiciones para el equilibrio dinámico de líquido que circula por el circuito de lixiviación en toda la pila y proporcionar condiciones de estabilidad por medio de un circuito hidráulico de control;
b) establecer las condiciones para que la concentración del metal-valor dentro de un estrecho rango consistente con la capacidad de procesamiento de la planta, originando un Lazo de Control Químico;
c) maximizar la recuperación y/o producción metalúrgica del metal-valor en el proceso de lixiviación de acuerdo con las propiedades químicas, físicas y metalúrgicas del mineral cargado en cada unidad de riego y su evolución dinámica a lo largo del tiempo, originando un Lazo de Control Metalúrgico; y
- una estación de control hidrometalúrgico, dispuesta en terreno o en una ubicación remota, para la integración de los sistemas de control hidráulico e hidrometalúrgico y controlar la comunicación entre los componentes del sistema; y
en donde el sistema de control hidrometalúrgico crea el modelo hidrometalúrgico dinámico que predice el comportamiento de la pila en el tiempo y genera instrucciones de riego o tasas de irrigación asociado a dicho modelo hidrometalúrgico, basados en una tasa de humectación, en donde el sistema de control hidráulico además procesa y ejecuta las tasas de irrigación para el riego de la pila.
2. El sistema de acuerdo con la reivindicación 1, caracterizado porque el modelo hidrometalúrgico es de tipo fenomenológico y dinámico, dotado de alta capacidad predictiva, comprendiendo una formulación a partir de fenómenos de transporte y principios cinéticos,
2 apoyados por las variables y criterios de operación y metalúrgicas adicionales, que proporcionan la estimación de los caudales y la concentración de metal-valor que salen de cada unidad de riego sometida a control.
3. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema optimizador es una máquina de inferencia basada en reglas jerárquicas metalúrgicas y operación aplicadas cualitativamente en las operaciones de lixiviación.
4. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el modelo hidrometalúrgico en conjunto con el sistema optimizador operan de forma recursiva para encontrar la distribución óptima del flujo de irrigación disponible a través de las múltiples unidades de riego, definiendo el destino óptimo de efluentes individuales para ser aplicado en un siguiente período de operación.
5. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de riego comprende dispositivos hidráulicos, como ductos, bombas, válvulas y medios de riego, que integran una red de riego implementada para la irrigación de la pila con la solución lixiviante, en donde los medios de riego son del tipo riego por goteo, splinker, aspersores y/u otro dispositivo de riego adecuado
6. El sistema de acuerdo con la reivindicación 5, caracterizado porque los medios de riego se disponen sobre la extensión de la pila, ya sea en una superficie superior de la misma o en superficies intermedias al interior de la pila, conectándose con una fuente de alimentación de la solución lixiviante y con el resto de los dispositivos hidráulicos mediante los ductos, formando
3 una matriz de riego o irrigación dispuesta en la pila, en donde dicha matriz de riego se implementa en la pila sobre la base de la distribución las unidades de riego, definidas por bloques que dividen y conforman la pila.
7. El sistema de acuerdo con la reivindicación 6, caracterizado porque la cantidad y distribución de los medios de riego implementados en la matriz de riego asegura una irrigación uniforme de toda la pila a nivel de los bloques, asociado a una tasa de humectación por cada bloque.
8. El sistema de acuerdo con la cualquiera de las reivindicaciones anteriores, caracterizado porque la solución lixiviante es alimentada al sistema de riego mediante un dispositivo impulsor como una bomba o un conjunto de bombas.
9. El sistema de acuerdo con la cualquiera de las reivindicaciones 6 y 7, caracterizado porque las válvulas se impl ementan para ejercer control sobre la distribución de la solución lixiviante en la matriz de riego y sobre la activación de los medios de riego de acuerdo con la tasa de irrigación ejecutada por el sistema.
10. El sistema de acuerdo con la reivindicación 9, caracterizado porque se dispone un cierto número de válvulas distribuidas en el sistema de riego para controlar la irrigación de cada bloque de la pila por separado, en donde los dispositivos hidráulicos del sistema de riego configuran la relación de comunicación entre dicho sistema y el sistema de control hidráulico, el que ejerce control sobre el sistema de riego mediante actuadores integrados en los dispositivos hidráulicos de dicho sistema.
4
11. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de riego comprende medios de recuperación y/o recirculación de fluido, por ejemplo, dispositivos hidráulicos dispuestos para el reingreso de la solución lixiviante y/o PLS que sale de la pila.
12. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de drenaje dispuesto en la pila de lixiviación comprende dispositivos hidráulicos como ductos, válvulas y/o bombas, actuando como medios de recuperación del PLS durante el proceso de lixiviación, en donde el sistema de drenaje se dispone mediante una distribución de dichos dispositivos hidráulicos y/o medios de recuperación en la extensión de la pila, principalmente en su superficie inferior y/o en alguna superficie intermedia, recuperando el PLS para dirigirlo hacia las siguientes etapas del proceso de extracción, por ejemplo, hacia el proceso de extracción por solvente.
13. El sistema de acuerdo con la reivindicación 12, caracterizado porque el sistema de drenaje dispuesto en la pila comprende un mecanismo de recirculación en comunicación con el sistema de riego, reintegrando la extracción de fluido desde la pila al proceso de lixiviación.
14. El sistema de acuerdo con cualquiera de las reivindicaciones 11 y 13, caracterizado porque la recirculación de PLS es controlada por una válvula actuada por el sistema de control hidráulico de la invención, en donde dicha válvula es actuada en función de la calidad del PLS que se extrae de la pila, medida con un sensor adecuado o en terreno por un operario, detectando la desviación del PLS requerido.
5
15. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de control hidráulico comprende un conjunto de sensores y actuadores dispuestos en las distintas etapas del proceso de lixiviación para la recopilación de información que caracteriza el comportamiento hidráulico de los dispositivos asociados a la pila durante el proceso, en particular, dichos sensores y actuadores se disponen en los sistemas de riego y drenaje que contempla la invención, integrando dichos sistemas con el sistema de control hidráulico.
16. El sistema de acuerdo con la reivindicación 15, caracterizado porque la información recopilada por los sensores del sistema de control hidráulico corresponde a las variables de operación hidráulicas del sistema de riego, principalmente la presión y/o flujo de la solución que circula por los distintos puntos de dicho sistema, en donde este tipo de variables se mide en función del tiempo y a nivel de los bloques que dividen la pila.
17. El sistema de acuerdo con cualquiera de las reivindicaciones 15 y 16, caracterizado porque el sistema de control hidráulico además comprende sensores asociados a variables de operación del sistema de drenaje, por ejemplo midiendo el flujo de salida de la pila y/o la calidad del PLS, información que se emplea por el sistema tanto en la medición de la eficiencia como en la generación de las tasas de riego.
18. El sistema de acuerdo con cualquiera de las reivindicaciones 15 a 17, caracterizado porque el sistema de control hidráulico comprende actuadores que accionan dispositivos
6 hidráulicos pertenecientes al sistema de riego y/o sistema de drenaje, implementados en dispositivos hidráulicos como bombas y/o válvulas de los sistemas de riego y/o drenaje.
19. El sistema de acuerdo con la reivindicación 18, caracterizado porque los actuadores se integran en las válvulas y/o medios de riego que controlan la irrigación de cada bloque en la pila, así como también se integran en bombas y válvulas para la distribución de la solución lixiviante en la pila y/o la distribución del PLS que sale de la misma.
20. El sistema de acuerdo con cualquiera de las reivindicaciones 18 y 19, caracterizado porque los actuadores son válvulas reguladoras de presión.
21. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de control hidráulico contempla medios para ingresar y almacenar parámetros del proceso, en particular aquellos relacionados con el riego, los que se ingresan manualmente por un operario, por ejemplo, a través de una interfaz en la estación de control hidrometalúrgico y comunicados al sistema de control hidráulico.
22. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de control hidráulico además comprende medios para procesar y ejecutar las tasas de irrigación que son generados por el sistema de control hidrometalúrgico y comunicados al sistema de control hidráulico.
23. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de control hidrometalúrgico integra información de las características geo-
7 metalúrgicas de las unidades minerales que están presentes en la pila, la medición automática de parámetros y variables de operación hidrometalúrgicas de la pila desde su inicio y durante toda su evolución.
24. El sistema de acuerdo con la reivindicación 23, caracterizado porque el sistema de control hidrometalúrgico comprende sensores de medición automática dispuestos en ubicaciones claves de la pila, así como también incorpora la posibilidad de almacenar parámetros de la pila en forma manual, en donde las variables de operación hidrometalúrgicas corresponden a aquellas provenientes del proceso en la misma pila de lixiviación, por ejemplo, el tiempo de residencia de la solución lixiviante en la pila o tasa de percolación, la composición química y variables físico químicas de la solución lixiviante, tales como la temperatura, pH, oxígeno disuelto, razones de iones de hierro y potencial electroquímico, entre otros, además del flujo de irrigación de las soluciones lixiviantes sobre la pila, las características del fluido de salida de la pila o PLS y cualquier otro tipo de variable de interés asociada al proceso de lixiviación implementado
25. El sistema de acuerdo con cualquiera de las reivindicaciones 23 y 24, caracterizado porque las variables de operación se miden en función del tiempo y a nivel de los bloques que conforman la pila, identificando el comportamiento de cada bloque durante el proceso de lixiviación y asegurando un control preciso del proceso.
26. El sistema de acuerdo con cualquiera de las reivindicaciones 23 a 25, caracterizado porque entre los parámetros hidrometalúrgicos contemplados por el sistema de control hidrometalúrgico se tienen la geometría de la pila (tamaño de bloques), toneladas de mineral
8 cargadas por bloque, tipo de mineral en la pila, ley del mineral (al inicio), mineralogía de la pila, presencia de otros minerales, granulometría y humedad inicial, entre otros.
27. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de control hidrometalúrgico además comprende medios para la creación del modelo hidrometalúrgico dinámico que predice la evolución del comportamiento de la pila en relación con el proceso de extracción y medios para la generación de las tasas de irrigación de la pila en función de la evolución de la misma, comunicando dichas tasas de irrigación al sistema de control hidráulico.
28. El sistema de acuerdo con la reivindicación 27, caracterizado porque contempla implementar la medición de calidad del PLS en el sistema de control hidrometalúrgico para la creación del modelo dinámico del comportamiento de la pila y para la generación de las tasas de irrigación, considerando dicha variable como parte de dicho sistema.
29. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque la estación de control hidrometalúrgico del sistema de monitoreo y control comprende al menos un procesador y al menos una base de datos dispuestos para procesar la información proveniente de los sistemas de control hidráulico e hidrometalúrgico.
30. El sistema de acuerdo con la reivindicación 29, caracterizado porque la estación de control hidrometalúrgico comprende una unidad de monitoreo y control que actúa como centro de recopilación, almacenamiento y procesamiento de la información, tanto medida a través de los distintos sensores como ingresada por operarios a través de los parámetros de operación, creando
9 el modelo hidrometalúrgico dinámico y generando las tasas de irrigación que se ejecutarán a través de los sistemas de riego y de drenaje en base a los actuadores asociados a los dispositivos hidráulicos de dichos sistemas.
31. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque además comprende una estación de ingeniería, para la configuración del sistema de control integrado, y una estación de operación, para supervisar la operación integral de la pila.
32. ETn método de control integrado para la optimización de la eficiencia del Proceso de
Lixiviación en pilas de minerales, caracterizado porque comprende las siguientes etapas:
Recopilar información de operación de la pila, correspondiente a los parámetros y variables de operación del proceso de lixiviación en la pila;
Procesar la información de operación recopilada, en donde este procesamiento permite:
O Crear modelos hidrometalúrgicos dinámicos que predicen la evolución del comportamiento de la pila, particularmente en sus aspectos mineralógicos, sobre la base de los cambios y evolución de los parámetros y variables de operación de la pila;
o Generar tasas de irrigación en base a los modelos dinámicos creados; y Ejecutar las tasas de irrigación, controlándose la operación de la pila.
33. El método de acuerdo con la reivindicación 32, caracterizado porque el modelo hidrometalúrgico es de tipo fenomenológico y dinámico, dotado de alta capacidad predictiva, comprendiendo una formulación a partir de fenómenos de transporte y principios cinéticos,
10 apoyados por las variables y criterios de operación y metalúrgicas adicionales, que proporcionan la estimación de los caudales y la concentración de metal-valor que salen de cada unidad de riego sometida a control.
34. El método de acuerdo con cualquiera de las reivindicaciones 32 y 33, caracterizado porque la información es recopilada a través de sensores que forman parte de un sistema de control hidráulico y de un sistema de control hidrometalúrgico implementados para el control de la pila, en donde la información es integrada por dichos sistemas de control.
35. El método de acuerdo con cualquiera de las reivindicaciones 32 a 34, caracterizado porque para procesar la información de operación recopilada se emplea una estación de control hidrometalúrgico que integra las mediciones de variables y los parámetros de operación, disponiendo medios para la integración de los sistemas de control hidráulico e hidrometalúrgico, donde dichos medios se asocian a bases de datos para el almacenamiento de la información y a procesadores para su procesamiento y análisis.
36. El método de acuerdo con cualquiera de las reivindicaciones 32 a 35, caracterizado porque la creación de los modelos hidrometalúrgicos y la generación de las tasas de irrigación es dinámica, es decir, continúa a lo largo de la vida útil de la pila de lixiviación, adaptándose a los estados y evolución de la misma en el tiempo.
37. El método de acuerdo con cualquiera de las reivindicaciones 32 a 36, caracterizado porque la etapa de ejecución de las tasas de irrigación se realiza mediante actuadores del sistema
11 de control hidráulico, integrados a sistemas de riego y drenaje asociados a dicho sistema de control y dispuestos en la pila de lixiviación.
12
PCT/CL2018/050105 2018-11-06 2018-11-06 Sistema y método de control integrado para la optimización de la eficiencia del proceso de lixiviación en pilas de minerales WO2020093180A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CL2018/050105 WO2020093180A1 (es) 2018-11-06 2018-11-06 Sistema y método de control integrado para la optimización de la eficiencia del proceso de lixiviación en pilas de minerales
PE2021000676A PE20211898A1 (es) 2018-11-06 2018-11-06 Sistema y metodo de control integrado para la optimizacion de la eficiencia del proceso de lixiviacion en pilas de minerales
MX2021005419A MX2021005419A (es) 2018-11-06 2018-11-06 Sistema y metodo de control integrado para la optimizacion de la eficiencia del proceso de lixiviacion en pilas de minerales.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/050105 WO2020093180A1 (es) 2018-11-06 2018-11-06 Sistema y método de control integrado para la optimización de la eficiencia del proceso de lixiviación en pilas de minerales

Publications (1)

Publication Number Publication Date
WO2020093180A1 true WO2020093180A1 (es) 2020-05-14

Family

ID=70611343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050105 WO2020093180A1 (es) 2018-11-06 2018-11-06 Sistema y método de control integrado para la optimización de la eficiencia del proceso de lixiviación en pilas de minerales

Country Status (3)

Country Link
MX (1) MX2021005419A (es)
PE (1) PE20211898A1 (es)
WO (1) WO2020093180A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024130457A1 (es) * 2022-12-22 2024-06-27 Ingeniería E Informática Sg Tis Spa Sistema autónomo de monitoreo de variables para pilas de lixiviación

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1050768A (en) * 1974-06-25 1979-03-20 Satoshi Mukae Automatic leaching system for hydrometallurgical production of zinc
WO2009146571A2 (es) * 2008-06-06 2009-12-10 Miningsystems S.A. Sistema de control y monitoreo de riego en pilas de lixiviación
AU2003263464B2 (en) * 2002-09-17 2010-02-18 Technological Resources Pty Limited Heap leach process
US20120297928A1 (en) * 2009-12-02 2012-11-29 Schlumberger Technology Corporation Heap leach operations
WO2013140379A2 (es) * 2012-03-23 2013-09-26 Aplik S.A. Sistema y método de monitoreo y control sobre distribución de riego en pilas de lixiviación
AU2014200131A1 (en) * 2002-09-17 2014-01-30 Geobiotics, Llc Heap leach process
WO2018068087A1 (en) * 2016-10-10 2018-04-19 Commonwealth Scientific And Industrial Research Organisation Apparatus, method and system for monitoring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1050768A (en) * 1974-06-25 1979-03-20 Satoshi Mukae Automatic leaching system for hydrometallurgical production of zinc
AU2003263464B2 (en) * 2002-09-17 2010-02-18 Technological Resources Pty Limited Heap leach process
AU2014200131A1 (en) * 2002-09-17 2014-01-30 Geobiotics, Llc Heap leach process
WO2009146571A2 (es) * 2008-06-06 2009-12-10 Miningsystems S.A. Sistema de control y monitoreo de riego en pilas de lixiviación
US20120297928A1 (en) * 2009-12-02 2012-11-29 Schlumberger Technology Corporation Heap leach operations
WO2013140379A2 (es) * 2012-03-23 2013-09-26 Aplik S.A. Sistema y método de monitoreo y control sobre distribución de riego en pilas de lixiviación
WO2018068087A1 (en) * 2016-10-10 2018-04-19 Commonwealth Scientific And Industrial Research Organisation Apparatus, method and system for monitoring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024130457A1 (es) * 2022-12-22 2024-06-27 Ingeniería E Informática Sg Tis Spa Sistema autónomo de monitoreo de variables para pilas de lixiviación

Also Published As

Publication number Publication date
PE20211898A1 (es) 2021-09-23
MX2021005419A (es) 2021-11-12

Similar Documents

Publication Publication Date Title
US7575622B2 (en) Heap leach process
Leahy et al. Modelling jarosite precipitation in isothermal chalcopyrite bioleaching columns
Bennett et al. A comprehensive model for copper sulphide heap leaching: Part 1 Basic formulation and validation through column test simulation
CN109738019B (zh) 一种小型浅水湖泊水生态安全红线预警控制系统及方法
US8186607B2 (en) Hybrid irrigation system
Tischbein et al. Water management in Khorezm: current situation and options for improvement (hydrological perspective)
McBride et al. A comprehensive gold oxide heap leach model: Development and validation
BR112014021220B1 (pt) Método de monitoramento e controle das condições do solo
CN109023374A (zh) 一种酸性蚀刻液循环再生系统及其方法
WO2020093180A1 (es) Sistema y método de control integrado para la optimización de la eficiencia del proceso de lixiviación en pilas de minerales
MX2012006435A (es) Operaciones de lixiviacion en pila.
CN105951694A (zh) 灌区闸门远程自动控制节水系统
Bouffard et al. Hydrodynamic behavior of heap leach piles: Influence of testing scale and material properties
CN113605866B (zh) 一种矿井瓦斯抽采动态调控系统及方法
CN104597755A (zh) 一种湿法冶金金氰化浸出过程优化方法
Robertson et al. Advances in high-temperature heap leaching of refractory copper sulphide ores
Sheline et al. Designing a predictive optimal water and energy irrigation (POWEIr) controller for solar-powered drip irrigation systems in resource-constrained contexts
CN205742115U (zh) 灌区闸门远程自动控制节水系统
CN107287444B (zh) 一种低品位氧化铜矿堆浸滴淋工艺
WO2009146571A2 (es) Sistema de control y monitoreo de riego en pilas de lixiviación
CN112632754B (zh) 一种基于swmm模型的城市蓄水体水量变化的分析方法
CN113647314A (zh) 土壤种植的干预方法及系统
CN207405215U (zh) 一种金泥置换装置
CN114540884B (zh) 湿法冶金中电积液温度调控和酸雾净化系统、方法及用途
CN206289722U (zh) 一种可控流量自动排水移动泵站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939259

Country of ref document: EP

Kind code of ref document: A1