WO2020091611A1 - Método de obtención de composiciones lubricantes, aditivos oleosos para combustibles desengrasantes industriales - Google Patents

Método de obtención de composiciones lubricantes, aditivos oleosos para combustibles desengrasantes industriales Download PDF

Info

Publication number
WO2020091611A1
WO2020091611A1 PCT/PA2018/000023 PA2018000023W WO2020091611A1 WO 2020091611 A1 WO2020091611 A1 WO 2020091611A1 PA 2018000023 W PA2018000023 W PA 2018000023W WO 2020091611 A1 WO2020091611 A1 WO 2020091611A1
Authority
WO
WIPO (PCT)
Prior art keywords
distilled
alcohols
fatty acids
mix
mineral oil
Prior art date
Application number
PCT/PA2018/000023
Other languages
English (en)
French (fr)
Inventor
David de Jesus MARTUCCI URDANETA
William J. JIMENEZ CUMARE
Original Assignee
Globalquimica A.L C,A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globalquimica A.L C,A filed Critical Globalquimica A.L C,A
Priority to PCT/PA2018/000023 priority Critical patent/WO2020091611A1/es
Priority to CA3097529A priority patent/CA3097529A1/en
Priority to US17/300,402 priority patent/US20220243140A1/en
Publication of WO2020091611A1 publication Critical patent/WO2020091611A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/0215Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/1253Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/003Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/017Specific gravity or density
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/22Degreasing properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/50Emission or smoke controlling properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • a lubricant on the one hand, can be a liquid, a paste or a solid, with liquid lubricants being the most used.
  • Lubricating oils can be used in automobile engines, transmissions, bearings, gears, industrial gears, and other machinery to reduce friction and wear and to increase fuel economy.
  • a number of components that include, but are not limited to, dispersants, detergents, friction modifiers, antiwear agents, antioxidants, and anticorrosive additives are typically present in fully formulated lubricating oils.
  • a viscosity index improver can also be included as a major component.
  • additives improve fuel performance parameters, enhancing existing properties; deleting those that are not valid; or introducing new properties that optimize the efficiency of fuels such as Diesel and Gasoline.
  • it allows to obtain additives that help the lubricants in common use in the market due to their antioxidant capacity that they provide and that allow to slow down this aging and oxidation process by preventing the formation of acids, sludges and viscosity increases derived from oxidation.
  • the anticorrosive and degreasing capacity of the components obtained with this method allow a better performance in the uses of the compositions.
  • lubrication one of the most important issues in the design of an equipment or an engine is the calculation of the necessary viscosity to avoid friction and wear. If the recommended viscosity is very low, there will be contact between parts, wear and high temperatures, further reducing the viscosity of the lubricant. If the Viscosity is very high, it creates an excess resistance, excess pressure and a lack of circulation or penetration, leaving rubbing between dry parts and high wear. Excess pressure can cause some failures where Valves and Sensors stand out.
  • Lubricant Degradation The most common causes of Lubricant Degradation are Oxidation, Thermal Decomposition, Depletion of Additives and Contamination.
  • OXIDATION It is the Reaction of the molecules of the Lubricant with the Oxygen. It can lead to an increase in Viscosity and the formation of Varnish, mud and sediments which can result in exhaustion of its additives and in a degradation of the lubricant base. Oxidation can produce an increase in Total Acid Number (NAT) and rust and corrosion in the machine; THERMAL DECOMPOSITION: The temperature of the lubricant should be our main concern. In addition to separating the moving surfaces within the machinery, the lubricant must also dissipate the Heat, refrigerate. This means that the Lubricant can and will be heated above its Recommended Temperature range.
  • the ARRHENIUS Rate rule indicates that for every 10 ° C (18 ° F) of Temperature Increase, the speed of a Chemical Reaction doubles. In other words, for every 10 ° C increase in the temperature of your lubricant, its useful life is cut in half. Keeping the oil as cold as possible while in operation will extend its Service Life and reduce the Thermal Decomposition Reaction; Thermal decomposition induces degradation by transferring an air bubble through a low pressure zone in a system to a high pressure zone, which is extremely common in hydraulic systems which leads to compression in the air bubble. inside the lubricant.
  • the lubricants, degreasers, and additives of the present invention are compositions that can be obtained from the method described in this document and can be made according to the user's needs due to the ability to adapt their rheological properties to operations in environments. changing and extreme.
  • This novel method allows conventional lubricant compounds and fuel / oil additives to be combined with other materials of unconventional use under the processes of the present invention.
  • compositions may be suitable for significantly reducing emissions of: Hydrocarbons (HC): They are poisonous, unburned gases, they are combustible in their pure state and are measured as particulates per million (ppm); Carbon Monoxide (CO): It is a poisonous gas burned; a partial combustion has happened, but the fuel molecule has not been completely burned; CO is measured as a percentage of the gas being measured; Carbon Dioxide (C02): It is a completely burned fuel; y is a harmless result of complete combustion; this is measured as a percentage of the gas volume; Oxygen (02): Oxygen is important because combustion cannot be achieved without it. The content of 02 is the most important (if there is anything left over).
  • the present invention allows to increase the fuel economy since, from it, different types of lubricants and oily additives for fuels / oils can be obtained with a lower degree of viscosity, but adaptable to work environments with the presence of high pressures and High decomposition temperatures of hitherto conventional oils, as well as the presence of oxygen, sediment and water. Their particular conditions also allow them to adapt to environments with low temperature operational conditions.
  • the lubrication technology known until today allows the supply of lower viscosity lubricating oils to dramatically increase fuel economy, but these lubricating oils have the limitation of increasing wear due to mechanical friction.
  • the improvement of the quality of the fuels allows the reduction of soot by increasing the combustion efficiency and therefore reduction of emission and will allow the extraction and separation of the water content present in them, thereby reducing the impact of fuel contamination.
  • What is described in this patent allows us to provide an innovative method, which integrates multiple processes, to obtain lubricants intended to reduce coefficients of friction, wear between surfaces lubricated and increase fuel economy, as well as additives for improving fuel quality, for improving the quality of other oils, to facilitate cleaning and degreasing of mechanical components with anti-corrosive properties
  • the reactions are the result of a structured combination process of the described compounds.
  • Mixing processes combine the use of high and low variable temperatures, uses of high and low varying pressures corresponding to each stage of the process, and the use of ambient temperature in the reactions that complete the process.
  • halogenated compounds used in the preparation and reaction of mixtures have the particularity of being pretreated, under a process of ion equilibrium, thereby preventing them from being caustic, irritant, corrosive to human tissues, and reducing the impact of corrosion. in metals and metal alloys.
  • the characteristic details of this novel method for obtaining corrosion inhibiting lubricants, additives and degreasers are clearly seen in the following technical description.
  • the present invention relates to the use, in stages and in combination, of reactions at variable temperatures that may require environments under pressure to execute various mixtures of organic compositions, distilled fatty acids, di-distillates, controlled halogenated compounds, organic polymers, mineral oil and alcohols. that facilitate the obtaining of finished compounds destined to be used as a novel alternative that facilitates, on the one hand, Lubrication that reduces coefficients of friction, wear between lubricated surfaces and increases fuel economy without negatively affecting the fuel systems.
  • Lubrication that reduces metal-metal and metal-sand friction, in all typical mechanical gear of mechanical equipment and in the metallic / mechanical rigging of pipes and mechanical tool rigs normally used for drilling and fracturing rocks in deposits of metallic mining, non-metallic mining and energy mining of oil and gas.
  • gears and mechanisms systems that compose gasoline, diesel, electric motors, liquefied petroleum gas motors and any motor and / or mechanical transmission that operates under any other type of fuel or energy mechanism.
  • the innovative ability of lubricants to adapt to severe and changing conditions make it intelligent lubricants that also allow for fuel savings and reduced emissions.
  • the oily additives obtained with the method can be applied to improve the efficiency and quality of fuels by affecting the cetane number, dehydrating the water content, improving combustion, and by reducing soot deposits derived from inadequate combustion. which also impacts on fuel savings and emission reduction. They also improve the efficiency of other commercial oils.
  • highly effective degreasers in reducing organic deposits and that provide corrosion inhibiting activity Best way to carry out the invention
  • the compounds used to obtain Lubricants of the present invention are made from mixtures of compounds and fusion of organic compositions based on distilled, di-distilled fatty acids, halogenated compounds, organic polymers, alcohols and mineral oil. Stage reactions are a combination of low and high variable temperature mixing processes for the transformation of materials where the use of pressure plays an important role in each stage to which some reactions are subjected.
  • the halogenated compounds used in the mixture have the particularity of previously undergoing an ion equilibration process and thereby avoiding caustics, irritants and corrosives to human tissues and eliminating the impact of corrosion on metals and alloys. metallic.
  • each type of lubricant to be used in each specific need, as well as each oily additive for the improvement of fuel quality , for the improvement of performance and quality of other lubricants and for degreasing products and corrosion inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)

Abstract

Método de obtención de composiciones lubricantes, desengrasantes industriales inhibidores de corrosión oleosos para aceites y combustibles, no degrad ables en presencia de oxígeno, agua, altas temperaturas y por contaminación por partículas. basados en ácidos grasos destilados y didestilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral.

Description

MÉTODO DE OBTENCIÓN DE COMPOSICIONES LUBRICANTES, ADITIVOS
OLEOSOS PARA COMBUSTIBLES DESENGRASANTES INDUSTRIALES
ANTECEDENTES DE LA INVENCIÓN
Un lubricante, por un lado, puede ser un líquido, una pasta o un sólido, siendo los lubricantes líquidos los más utilizados. Los aceites lubricantes pueden usarse en motores de automóviles, transmisiones, cojinetes, engranajes, engranajes industriales y otras maquinarias para reducir la fricción y el desgaste y para aumentar el ahorro de combustible. Una serie de componentes que incluyen, pero no se limitan a, dispersantes, detergentes, modificadores de fricción, agentes antidesgaste, antioxidantes y aditivos anticorrosivos están presentes típicamente en aceites lubricantes completamente formulados. Para muchas aplicaciones de lubricantes, un mejorador del índice de viscosidad también se puede incluir como un componente principal. Por otro lado, los aditivos mejoran los parámetros de rendimiento del combustible, potenciando las propiedades existentes; suprimiendo las que no sean válidas; o introduciendo nuevas propiedades que optimizan la eficacia de combustibles como el Diesel y la Gasolina. Así también, permite obtener aditivos que ayudan a los lubricantes de uso común en el mercado debido a su capacidad antioxidante que aportan y que permiten ralentizar este proceso de envejecimiento y de oxidación al prevenir la formación de ácidos, lodos e incrementos de viscosidad derivados de la oxidación. La capacidad anticorrosiva y desengrasante de los componentes obtenidos con este método, permiten un mejor rendimiento en los usos de las composiciones.
Con el avance de la reducción de los recursos energéticos y la creciente adopción de reglamentaciones ambientales más estrictas, existe una mayor demanda para aumentar la economía de combustible de los vehículos y disminuir las emisiones en los escapes de los vehículos. Actualmente, se agregan modificadores de fricción orgánicos a los aceites lubricantes para aumentar el ahorro de combustible. Sin embargo, el nivel de economía de combustible que se puede lograr mediante modificadores de fricción orgánicos es limitado. Por lo tanto, existe una necesidad de métodos alternativos para lograr mejoras en el ahorro de combustible tanto por la versatilidad y calidad de los lubricantes, así como el papel que juegan los aditivos utilizados para mejorar la calidad de los combustibles.
En lo relativo a la lubricación, uno de los temas más importantes del diseño de un equipo o un motor es el cálculo de la viscosidad necesaria para evitar fricción y desgaste. Si la viscosidad recomendada es muy baja, habrá contacto entre piezas, desgaste y altas temperaturas, reduciendo aún más la viscosidad del lubricante. Si la Viscosidad es muy alta, crea un exceso a la resistencia, exceso de presión y una falta de circulación o penetración dejando un roce entre piezas secas y alto desgaste. El exceso de presión puede causar algunas fallas donde destacan las Válvulas y los Sensores.
Las causas más comunes de Degradación de Lubricantes son Oxidación, la Descomposición Térmica, el agotamiento de Aditivos y la Contaminación.
OXIDACION: Es la Reacción de las moléculas del Lubricante con el Oxígeno. Puede conducir a un aumento en la Viscosidad y a la formación de Barniz, lodo y sedimentos lo cual puede resultar en agotamientos de sus aditivos y en una degradación de la base lubricante. La oxidación puede producir un incremento en el Número Acido Total (NAT) y la herrumbre y corrosión en la máquina; DESCOMPOSICION TERMICA: La temperatura del Lubricante debería ser nuestra principal preocupación. Además de separar las superficies en movimientos dentro de la maquinaria, el lubricante también debe disipar el Calor, refrigerar. Esto significa que el Lubricante Podrá y será calentado por encima de su rango de Temperatura Recomendada. Normalmente se aplica la regla de la Tasa de ARRHENIUS indica que por cada 10°C (18°F) de Incremento de temperatura, la velocidad de una Reacción Química se duplica. En otras palabras, por cada 10 °C de incremento en la Temperatura de su lubricante, la vida útil del mismo se reduce a la mitad. Mantener el aceite lo más frió posible mientras se encuentra en operación, extenderá su Vida Útil y reducirá la Reacción de Descomposición Térmica; La descomposición Térmica induce la Degradación por transferencia de una burbuja de aire pasa por una zona de baja presión en un sistema a una zona de alta presión, lo cual es sumamente común en los sistemas hidráulicos lo cual conlleva a una compresión en la burbuja de Aire dentro del Lubricante. El Calor Generado por esta compresión prácticamente quema las moléculas de Lubricante Circundante ocasionando su reducción Instantánea; AGOTAMIENTO DE ADITIVOS: los distintos aditivos convencionales que forman parte de los Lubricantes de uso convencional, están diseñados para ser sacrificados durante la Vida útil del Lubricante, por ello es necesario utilizar el análisis de Lubricante para monitorear los niveles de“vida” de los aditivos, no solo para evaluar la salud del lubricante, sino también para proporcionar pistas sobre lo que está ocasionando su agotamiento; y CONTAMINACION: La Contaminación con tierra, agua, aire, etc. puede influir enormemente en la tasa de degradación del lubricante. La tierra que contiene partículas finas de metal puede ser un catalizador que inicie y acelere el proceso de degradación del Lubricante. El Aire y el agua pueden proporcionar una fuente de oxigeno que reaccione con el Lubricante y conduzca a su oxidación. El análisis del lubricante puede ser muy útil para el monitoreo de los niveles de contaminación del lubricante.
Cuando la viscosidad de un Lubricante es muy baja, puede generar una película muy delgada y promover el contacto metal-metal, por otro lado, una viscosidad muy alta puede retrasar o impedir la llegada a tiempo del lubricante a las partes móviles del motor, ocasionando la disminución de la potencia y el aumento del consumo de Combustible. La relación Costo-Beneficio entre durabilidad y eficiencia de un lubricante, determinan el grado de viscosidad más conveniente en función de las necesidades de los consumidores.
Los lubricantes, desengrasante y aditivos de la presente invención, son composiciones que pueden ser obtenidas a partir del método descrito en este documento y pueden ser elaborados a la medida de la necesidad del usuario debido a la capacidad de adaptar sus propiedades reológicas a operaciones en ambientes cambiantes y extremas. Este novedoso método permite combinar compuestos convencionales de lubricantes y aditivos para combustibles/aceites con otros materiales de uso NO convencional bajo los procesos de la presente invención. Las composiciones pueden ser adecuados para reducir, de manera significativa, las emisiones de: Hidrocarburos (HC): Son gases venenosos sin quemar, son combustibles en su estado puro y se miden en partículas por millón (ppm); Monóxido de Carbono (CO): Es un gas venenoso quemado; una combustión parcial ha sucedido, pero la molécula de combustible no ha sido quemada completamente; el CO es medido como un porcentaje del gas en medición; Dióxido de Carbono (C02): Es combustible completamente quemado; y es un resultante inofensivo de la combustión completa; este es medido como un porcentaje del volumen de gas; Oxigeno (02): El Oxigeno es importante porque la combustión no se puede lograr sin él. El contenido del 02 es lo más importante (si es que sobra algo). El 02 también es medido como porcentaje del volumen del gas en medición; pero éste no es medido por la luz infrarroja, sino que, es medido por un sensor de oxigeno similar al que se encuentra en los automóviles y Óxido de Nitrógeno (NOx): Es un residuo el cual destruye la capa de ozono de nuestro planeta, y aunque también puede indicarnos problemas de funcionamiento es muy difícil tener un buen parámetro, pues para poder medir el NOx se necesita del uso de un dinamómetro para simular las condiciones de carga y peso, de los motores lubricados con las composiciones lubricantes descritas con el Método que se presenta en la presente invención.. Como se ha indicado, el método de la presente invención también permite la obtención de aditivos oleosos para combustibles destinados a mejorar la eficiencia de combustibles por afectar el índice cetano, ser un deshidratador y por reducir los residuos de Hollín derivados de la combustión del diésel.
La presente Invención, permite aumentar la economía de combustible ya que, a partir del mismo, pueden ser obtenidos distintos tipos de Lubricantes y aditivos oleosos para combustibles/aceites con menor grado de viscosidad, pero adaptables a ambientes de trabajo con presencia de altas presiones y altas temperaturas de descomposición de aceites hasta ahora convencionales, así como presencia de oxígeno, sedimentos y agua. Sus particulares condiciones, también les permiten adaptarse a ambientes con condiciones operacionales de baja temperatura. La tecnología de lubricación conocida hasta hoy permite el suministro de aceites lubricantes de menor viscosidad para aumentar drásticamente el ahorro de combustible, pero dichos aceites lubricantes tienen la limitante de aumentar el desgaste por la fricción mecánica. En consecuencia, ante la existencia de esa creciente necesidad de métodos para reducir la fricción y el desgaste sin afectar negativamente a los sistemas de control de emisiones y sin agotar aún más los recursos naturales escasos, hacemos nuestra la presente propuesta tecnológica de un novedoso método capaz de permitir la obtención de composiciones para Lubricación, aditivos oleosos para mejorar la calidad de Combustibles y aceites y desengrasantes inhibidores de corrosión. Los usuarios podrán obtener una hábil lubricación de los sistemas mecánicos. Por un lado, se contaría con aditivos para mejora de los combustibles utilizados en distintas actividades operativas, y permitiría satisfacer, esa necesidad creciente de disponer, primeramente, de aceites lubricantes de menor viscosidad que aumenten el ahorro de combustible y al mismo tiempo reduzcan de manera efectiva, segura y eficiente el desgaste por la fricción mecánica e inhiban la Corrosión. En otro aspecto, la mejora de la calidad de los combustibles permite la reducción de hollín por aumento de la eficiencia de combustión y por ende reducción de emisión y permitirá la extracción y separación de contenido de agua presente en los mismos con lo cual se reduce el impacto de contaminación de los combustibles. Lo descrito en esta patente permite proporcionar un novedoso método, que integra múltiples procesos, de obtención de Lubricantes destinados a reducir los coeficientes de fricción, el desgaste entre las superficies lubricadas y aumentar el ahorro de combustible, así como de aditivos para el mejoramiento de calidad de Combustibles, para el mejoramiento de calidad de otros aceites, para facilitar la limpieza y el desengrase de componentes mecánicos con propiedades anticorrosivas
DESCRIPCIÓN DE LA INVENCIÓN
Los detalles característicos de los procesos envueltos en el presente método químico para obtención de composiciones lubricantes, desengrasantes industriales inhibidores de corrosión y aditivos oleosos para aceites y combustibles No degradables en presencia de oxígeno, agua, altas temperaturas y contaminación por partículas, se describen claramente en la exposición y en cuadros que se indican en las reivindicaciones de la presente invención. Las líneas de composiciones, lubricantes, desengrasantes anticorrosivos y aditivos para mejoramiento de Combustibles y otros aceites, son obtenidos a partir de un método que combina varios procesos que se fundamentan en mezclas y fusiones de composiciones orgánicas centradas en uso de ácidos grasos destilados, di-destilados, alcoholes, compuesto ternario, compuestos halogenados controlados, polímeros orgánicos y aceite mineral.
Las reacciones, son el resultado de un proceso de combinación estructurada de los compuestos descritos. En los procesos de mezclas se combinan uso de temperaturas variables altas y bajas, usos de presiones variantes altas y bajas correspondiente a cada etapa del proceso y al uso de temperatura ambiente en las reacciones que completan el proceso.
Los compuestos halogenados utilizados en la preparación y reacciones de mezclas, tienen la particularidad de ser tratados previamente, bajo un proceso de equilibrio de iones con lo cual se evitan que sean cáusticos, irritantes, corrosivos a los tejidos humanos y con reducción de impacto de corrosión en los metales y aleaciones metálicas. Los detalles característicos de este novedoso método de obtención de Lubricantes, Aditivos y desengrasantes inhibidores de corrosión, se aprecian claramente en la siguiente descripción Técnica. Campo Técnico
El presente invento relaciona el uso, por etapas y de manera combinada, de reacciones a temperaturas variables que pueden requerir ambientes bajo presión para ejecutar varias mezclas de composiciones orgánicas ácidos grasos destilados, di destilados, compuestos haiogenados controlados, polímeros orgánicos, aceite mineral y alcoholes que facilitan la obtención de compuestos terminados destinados a ser utilizados como una novedosa alternativa que facilite, por una lado, la Lubricación que reduzca los coeficientes de fricción, el desgaste entre las superficies lubricadas y aumentar el ahorro de combustible sin afectar negativamente a los sistemas de control de emisiones y contribuir a reducir el agotamiento de los recursos naturales escasos tanto en el parque automotor en general; la Lubricación que permita disminuir la fricción metal-metal y metal-arena, en todo típico de engranajes mecánicos de equipos mecánicos y en el aparejo metálico/mecánico de tuberías y aparejos de herramientas mecánicas normalmente utilizadas para realizar perforaciones y fracturamiento de rocas en yacimientos de minería metálica, minería no metálica y minería energética de petróleo y gas. También para lubricación de engranajes y sistemas mecanismos que componen motores a gasolina, a diesel, motores eléctricos, motores a gas licuado de petróleo y cualquier motor y/o transmisión mecánica que opere bajo cualquier otro tipo de combustible o mecanismo de energía. La novedosa capacidad de los lubricantes de adaptarse a condiciones severas y cambiantes, lo hacen lubricantes inteligentes que también permiten, el ahorro de combustible y reducción de emisiones. Así mismo, los aditivos oleosos obtenidos con el método, pueden ser aplicados para mejorar la eficiencia y calidad de los combustibles por afectar el índice cetano, deshidratar el contenido de agua, mejorar la combustión y por reducir los depósitos de Hollín derivados de una inadecuada combustión lo cual también impacta en ahorro de combustible y reducción de emisiones. También permiten mejorar la eficiencia de otros aceites comerciales. Finalmente, los desengrasantes de alta eficacia en reducción de depósitos orgánicos y que aportan una actividad inhibitoria de corrosión Mejor forma de llevar a cabo el invento
Tal como se indicó previamente, los compuestos utilizado en la obtención de Lubricantes de la presente invención se realizan a partir de mezclas de compuestos y fusión de composiciones orgánicas en base a ácidos grasos destilados, di-destilados, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral. Las reacciones por etapas, son una combinación de procesos de mezclas a temperatura variables Bajas y altas para la transformación de los materiales donde el uso de presión juega un papel importante en cada etapa a las que son sometidas alunas reacciones. Los compuestos halogenados utilizados en la mezcla, tienen la particularidad de pasar previamente por un proceso de equilibrio de iones y con lo cual se evitan que sean cáusticos, irritantes y corrosivos a los tejidos humanos y con eliminación de impacto de corrosión en los metales y aleaciones metálicas. Una vez transformados y homogenizados, por fusión en las temperaturas y presiones requeridas los compuestos indicados en cada etapa, es posible obtener cada tipo de lubricante para ser utilizados en cada necesidad específica, así como cada aditivo oleoso para el mejoramiento de la calidad de los combustibles, para el mejoramiento de desempeño y calidad de otros lubricantes y para los productos desengrasantes e inhibidores de corrosión

Claims

REIVINDICACIONES Habiendo descrito suficientemente la invención de este método químico para obtención de composiciones lubricantes, desengrasantes industriales inhibidores de corrosión y aditivos oleosos para aceites y combustibles No degradables en presencia de oxígeno, agua, altas temperaturas y contaminación por partículas, lo consideramos como novedoso e innovador, por lo tanto, reclamamos como de nuestra exclusiva propiedad, lo contenido en las siguientes cláusulas:
1. Soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral. Los rangos de concentraciones que pueden ser utilizados de cada compuestos utilizados, se indican en la TABLA I:
Figure imgf000011_0001
2. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I que permiten la preservación, mediante lubricación, de los sistemas mecanismos de todo equipo con engranajes mecánicos y motores a Gasolina, a Diesel, motores eléctricos, Motores a Gas Licuado de petróleo y cualquier motor y/o transmisión mecánica que opere bajo cualquier otro tipo de combustible o mecanismo de energía
3. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto temario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I que poseen temperaturas de descomposición superior a los 404 °C (760 °F) con lo cual adaptan sus propiedades Teológicas a operaciones a ambientes de altas temperaturas de descomposición térmica
4. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I con temperaturas de congelamiento menores a -10 °C que se adaptan al trabajo de motores bajo temperaturas de invierno.
5. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I resistentes a descomposición en ambiente se subsuelo de alta frinccion y teperaturas presentes en operaciones de perforación y fracturamiento de yacimientos metálicos, yacimientos No metálicos y en yacimientos enérgicos para extracción de petróleo y gas que tienen abundate presencia de sedimentos, altas presiones, altas temperaturas, oxígeno y agua
6. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, Alcoholes y aceite mineral descrita en la TABLA I que pueden ser utilizadas como Inhibidores de Corrosión porque tienen la capacidad dual para inhibir la corrosión, por un lado, por oxidación de gases de H2S y C02 y por otro lado, por poseer una elevada capacidad isoterma de absorción que permite la formación de película inhibidora sobre la superficie de los metales lubricados lo cual se aprecia, tanto en la calificación 1A comunmente observada en sus exposiciones a tiras de cobre bajo el metododo ASTM-D130 asi como en la reducción de colonias de baterías surfato reductoras presentes en aguas congenitas de yacimientos
7. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I que permite obtener aceites lubricantes de menor viscosidad
8. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I con punto de autoignicion superior a los 440 °C (824 °F)
9. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I capaces de reducir el Coeficiente de fricción (m) Metal-Metal y Metal - Roca de Yacimientos con lo cual reduce el desgaste por la fricción mecánica y aumenta el ahorro de combustible
10. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I que permiten la obtención de composiciones que pueden ser utilizados como aditivos oleosos con capacidad de mejoramiento de calidad de combustibles mediante el mejoramiento del índice cetano, deshidracion del contenido de agua, mejoraramiento de la combustión y por reducir los depósitos de Hollín derivados de una inadecuada combustión lo cual también impacta en ahorro de combustible y reducción de emisiones.
11. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I con capacidad tensioactiva para el tratamiento surfactante del agua utilizada durante los proceso de perforación y fracturamiento de rocas en Yacimientos Mineros Metálicos, No Metálicos y de Energía
12. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA Ί que permiten la obtención de composiciones que pueden ser utilizados como aditivos oleosos con capacidad de mejoramiento de calidad de lubricantes comerciales de uso común debido a su cacapcidad antioxidantes que ralentizar el proceso de envejecimiento y de oxidación al prevenir la formación de ácidos, lodos e incrementos de viscosidad derivados de la oxidación.
13. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I que pueden lograr mas de 240 mM de fuerza de fricción metal-metal
14. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto temario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I para uso como lubricantes que permiten reducir las concentraciones de emisiones de: Hidrocarburos (HC); Monóxido de Carbono (CO) Dióxido de Carbono (C02) y y Óxido de Nitrógeno (NOx)
15. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I que presenta las características de Gravedad y Viscosidad en los Rangos que se indican en la siguiente TABLA II:
TABLA ti
Figure imgf000015_0001
16. Uso de soluciones que mezclan y fusionan composiciones orgánicas en base a ácidos grasos destilados y di-destilados, compuesto ternario, compuestos halogenados, polímeros orgánicos, alcoholes y aceite mineral descrita en la TABLA I, la cual se obtiene mediante su sometimiento a los rangos de presiones y temperaturas indicadas en la siguiente TABLA III:
TABLA II
Figure imgf000015_0002
PCT/PA2018/000023 2018-11-01 2018-11-01 Método de obtención de composiciones lubricantes, aditivos oleosos para combustibles desengrasantes industriales WO2020091611A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/PA2018/000023 WO2020091611A1 (es) 2018-11-01 2018-11-01 Método de obtención de composiciones lubricantes, aditivos oleosos para combustibles desengrasantes industriales
CA3097529A CA3097529A1 (en) 2018-11-01 2018-11-01 Chemical method for obtaining lubricating compositions, industrial degreasers corrosion inhibitors and oil additives for oils and non-degradable fuels in the presence of oxygen, water, high temperatures and particulate contamination
US17/300,402 US20220243140A1 (en) 2018-11-01 2018-11-01 Method For Producing Lubricating Compositions, Industrial Degreasing Oily Additives For Fuels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/PA2018/000023 WO2020091611A1 (es) 2018-11-01 2018-11-01 Método de obtención de composiciones lubricantes, aditivos oleosos para combustibles desengrasantes industriales

Publications (1)

Publication Number Publication Date
WO2020091611A1 true WO2020091611A1 (es) 2020-05-07

Family

ID=70462653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PA2018/000023 WO2020091611A1 (es) 2018-11-01 2018-11-01 Método de obtención de composiciones lubricantes, aditivos oleosos para combustibles desengrasantes industriales

Country Status (3)

Country Link
US (1) US20220243140A1 (es)
CA (1) CA3097529A1 (es)
WO (1) WO2020091611A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB633188A (en) * 1947-12-02 1949-12-12 Shell Refining & Marketing Co Improvements in and relating to lubricating oil compositions
DD254021A1 (de) * 1986-11-28 1988-02-10 Mansfeld Kombinat W Pieck Veb Schmiermittel zum stechen von spinnduesenloechern
EP0452998A2 (en) * 1987-02-27 1991-10-23 Idemitsu Kosan Company Limited Lubricating oil composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363701B2 (ja) * 1999-06-01 2009-11-11 シェブロンジャパン株式会社 ギヤ潤滑油組成物
US8623798B2 (en) * 2007-12-20 2014-01-07 Chevron Oronite Company Llc Lubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant
ES2897403T3 (es) * 2011-03-08 2022-03-01 Cognis Ip Man Gmbh Composiciones de lubricante de alta viscosidad
US10717915B2 (en) * 2016-06-16 2020-07-21 Halliburton Energy Services, Inc. Drilling fluid for downhole electrocrushing drilling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB633188A (en) * 1947-12-02 1949-12-12 Shell Refining & Marketing Co Improvements in and relating to lubricating oil compositions
DD254021A1 (de) * 1986-11-28 1988-02-10 Mansfeld Kombinat W Pieck Veb Schmiermittel zum stechen von spinnduesenloechern
EP0452998A2 (en) * 1987-02-27 1991-10-23 Idemitsu Kosan Company Limited Lubricating oil composition

Also Published As

Publication number Publication date
US20220243140A1 (en) 2022-08-04
CA3097529A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
Hoang et al. A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil
Darminesh et al. Recent development on biodegradable nanolubricant: A review
Mobarak et al. The prospects of biolubricants as alternatives in automotive applications
Hasannuddin et al. Performance, emissions and lubricant oil analysis of diesel engine running on emulsion fuel
CA2710403C (en) Universal synthetic gasoline fuel conditioner additive, method and product-by-process
US20080221001A1 (en) Composition and Methods for Improved Lubrication, Pour Point, and Fuel Performance
US7931704B2 (en) Universal synthetic gasoline fuel conditioner additive, method and product-by-process
US8268022B2 (en) Universal synthetic gasoline fuel conditioner additive, method and product-by-process
Alimova et al. Ways to improve the anticorrosive properties of motor oils used in vehicles
Kumar et al. Tribological and emission studies on two stroke petrol engine lubricated with sunflower methyl ester
Dey et al. Experimental investigation on combustion-performance-emission characteristics of nanoparticles added biodiesel blends and tribological behavior of contaminated lubricant in a diesel engine
Singh et al. Aspects of non-edible vegetable oil-based bio-lubricants in the automotive sector
US20080295391A1 (en) Fuel and Lubricant Additives and Methods for Improving Fuel Economy and Vehicle Emissions
CN101180384A (zh) 润滑油和燃油通用添加剂,包含通用添加剂的内燃式发动机用燃油/方案/、柴油/方案/以及热电站燃烧炉和金属熔炉用生火燃油
WO2020091611A1 (es) Método de obtención de composiciones lubricantes, aditivos oleosos para combustibles desengrasantes industriales
KR20160044306A (ko) 연비 및 내구향상형 디젤엔진오일 조성물
Awad et al. A study of enhancement of the properties of lubricant oil
US20080312114A1 (en) Composition and Methods for Improved Lubrication, Pour Point, and Fuel Performance
Rahim et al. Influence of lubrication technology on internal combustion engine performance: an overview
Trujillo-Olivares et al. Dual combustion oxyhydrogen-diesel: Effects on internal components of engine
Palikhel et al. Effect of Natural and Synthesized Oil Blends with Diesel by Volume on Lubrication and Performance of Internal Combustion Engine
Henderson Natural Gas Engine Oils
Karina et al. The impact of critical characteristic of methanol contaminant on the lubricant properties in Si-engine vehicles
Lestari et al. Recycling Waste Lubricants with Different Types of Base Oil into Low Sulfur Fuel with Two Stage Distillation Pyrolysis Process
Opia et al. Tribological Performance of Modified Jatropha lubricant Under Reciprocating NANOVEA T 50 Tribometer for Electric Vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3097529

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938831

Country of ref document: EP

Kind code of ref document: A1