WO2020091267A1 - Aircraft thermoplastic reinforcement panel manufacturing apparatus and method - Google Patents

Aircraft thermoplastic reinforcement panel manufacturing apparatus and method Download PDF

Info

Publication number
WO2020091267A1
WO2020091267A1 PCT/KR2019/013494 KR2019013494W WO2020091267A1 WO 2020091267 A1 WO2020091267 A1 WO 2020091267A1 KR 2019013494 W KR2019013494 W KR 2019013494W WO 2020091267 A1 WO2020091267 A1 WO 2020091267A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold plate
thermoplastic
protective film
carbon fiber
unit
Prior art date
Application number
PCT/KR2019/013494
Other languages
French (fr)
Korean (ko)
Inventor
박종현
강정석
강창수
Original Assignee
재단법인 한국탄소융합기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소융합기술원 filed Critical 재단법인 한국탄소융합기술원
Publication of WO2020091267A1 publication Critical patent/WO2020091267A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/12Construction or attachment of skin panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B2038/1891Using a robot for handling the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention relates to an apparatus and method for manufacturing an aircraft thermoplastic reinforcement panel.
  • thermoplastic reinforcing panel of an aircraft is made by pressing and heating a preform formed by laminating a thermoplastic UD tape (TACK) having no adhesive (TACK) to a mold of a predetermined shape or a semi-preg in a B-Stage state.
  • TACK thermoplastic UD tape
  • TACK no adhesive
  • thermoplastic reinforcing panel In order to manufacture the thermoplastic reinforcing panel, the preform is heated and placed in the upper and lower molds and pressed.
  • the aircraft thermoplastic reinforcing panel has a different thickness for each part, if the preform is placed between the lower mold and the upper mold, and heated to + 50 ° C than the melting point of the thermoplastic resin and pressurized, the thick prep is thick. Less heat is transferred to the leg portion (the portion to be thickened in the reinforcement panel), and a lot of heat is transferred to the thin prepreg portion (the portion to be thinned in the reinforcement panel).
  • thermoplastic thermoplastic reinforcement panel which is the final product
  • crystallization of the thermoplastic resin cannot be achieved, resulting in a defective thermoplastic thermoplastic reinforcement panel.
  • An object of the present invention is to provide an aircraft thermoplastic reinforcement panel manufacturing apparatus and method that can solve the above-described problems.
  • Aircraft thermoplastic reinforcement panel manufacturing apparatus for achieving the above object
  • the protective film placed on the mold plate it is characterized in that it comprises an automatic laminating unit for laminating, cutting, pressing and heating a thermoplastic carbon fiber tape to produce a reinforcing panel.
  • Aircraft thermoplastic reinforcement panel manufacturing method for achieving the above object Aircraft thermoplastic reinforcement panel manufacturing method for achieving the above object
  • a thermoplastic carbon fiber tape is laminated, cut, pressurized, heated to produce a reinforced panel by the aircraft thermoplastic reinforcement panel manufacturing apparatus consisting of an aircraft thermoplastic reinforcement panel manufacturing method
  • the automatic lamination unit is characterized in that it comprises a step of laminating, cutting, pressing and heating the thermoplastic carbon fiber tape on the protective film in a state in which the temperature difference between the upper side and the lower side of the reinforcing panel being manufactured is reduced.
  • the aircraft reinforcement panel is directly made on the protective film placed on the mold plate by the automatic lamination unit. Therefore, there is no need for an upper mold covering the heating system and the lower mold, thereby improving productivity.
  • thermoplastic reinforcement panel By using the present invention, it is possible to rapidly produce an aircraft thermoplastic reinforcement panel by adjusting the laser power according to the speed of the head portion of the automatic lamination unit.
  • thermoplastic reinforcing panel By using the present invention, it is possible to reduce the temperature difference between the upper side and the lower side of the thermoplastic reinforcing panel during manufacture, thereby eliminating residual residual stress in the thermoplastic reinforcing panel of the aircraft. Therefore, a high quality aircraft thermoplastic reinforcement panel can be produced.
  • the temperature difference between the lower side and the upper side of the reinforcing panel is reduced, so that the crystallinity can be stably improved to enhance the interlayer adhesion.
  • the adhesion between the thermoplastic carbon fiber tape is improved, it is possible to increase the speed of manufacturing the reinforcing panel.
  • thermoplastic carbon fiber tape lacking stickiness By using the present invention, even if a thermoplastic carbon fiber tape lacking stickiness is used, it is possible to increase the adhesive strength with the protective film.
  • an aircraft thermoplastic reinforcement panel can be made of a thermoplastic carbon fiber tape having high toughness, so that the aircraft thermoplastic reinforcement panel can have high damage resistance and shock absorption capability.
  • FIG. 1 is a view showing an aircraft thermoplastic reinforcement panel manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view of the mold unit shown in FIG. 1 looking down from above.
  • FIG. 3 is a view showing a mold unit according to a first modification, FIG. 3 (a) is a view looking down, and FIG. 3 (b) is a view seen from the side.
  • Figure 4 is a view showing a mold unit according to a second modification
  • Figure 4 (a) is a view looking down from above
  • Figure 4 (b) is a view viewed from the side.
  • FIG. 5 is a view showing a head portion of the automatic stacking unit shown in FIG.
  • FIG. 6 is a view showing a state in which the automatic lamination unit shown in FIG. 1 forms a thermoplastic reinforcement panel for an aircraft by laminating, cutting, pressing, and heating carbon fiber tape on a protective film placed on a mold plate.
  • FIG. 7 is a view showing the temperature distribution of the mold plate shown in FIG.
  • the aircraft thermoplastic reinforcement panel manufacturing apparatus 1 is composed of a mold unit 10, an automatic lamination unit 20.
  • the mold unit 10 is composed of a mold plate 11, a protective film 12, planar heating elements 13, and a control unit 14.
  • the mold plate 11 is made of a ceramic or metal material. Since the automatic thermoplastic unit 20 is directly made on the mold plate 11 by the automatic laminating unit 20, the mold mold 11 is covered to cover the mold plate 11, and the upper mold for making the aircraft thermoplastic reinforcement panel therein. There is no need.
  • the protective film 12 covers the mold plate 11.
  • the protective film 12 is made of polyimide, Teflon, and the like, which can withstand temperatures above 350 ° C at which the thermoplastic resin melts.
  • the protective film 12 is brought into close contact with the mold plate 11.
  • the sealant tape 15 is positioned along the rim of the protective film 12 to bond the rim of the protective film 15 onto the mold plate 11. Due to the sealant tape 15, a space S is formed between the mold plate 11 and the protective film 12. One end of the tube 16 is inserted into the space S through the sealant tape 15. The other end of the tube 16 is connected to a vacuum pump (not shown). When a vacuum is applied to the space S through the tube 16, the protective film 12 is in close contact with the mold plate 11.
  • the planar heating elements 13 are installed on the lower surface of the mold plate 11.
  • the planar heating elements 13 are installed for each zone of the mold plate 11.
  • the mold plate 11 is divided into A, B, C, D, E, F, G, H, I zone.
  • planar heating elements 13 are provided.
  • Each of the planar heating elements (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h, 13i) is composed of two insulating layers, a heating layer disposed between the two insulating layers, and a power supply unit that supplies electricity to the heating layer. It is composed.
  • the insulating layer is made of polymer material or rubber.
  • the heating layer is composed of nichrome wire disposed between two insulating layers, carbon black applied to the inner surface of the two insulating layers, or carbon fibers randomly distributed between the insulating layers.
  • the power supply unit supplies electricity to the nichrome wire, carbon black, and carbon fibers, the nichrome wire, carbon black, and carbon fibers generate heat.
  • the mold plate 11 may be divided into more zones, and accordingly, the number, size, and arrangement of the planar heating elements 13 may also vary.
  • the control unit 14 controls the temperature of each of the planar heating elements 13 to control the temperature for each zone of the mold plate 11. To this end, the control unit 14 controls the amount of electricity supplied to the nichrome wire, carbon black, and carbon fibers to control the heating value of the nichrome wire, carbon black, and carbon fibers.
  • the automatic lamination unit 20 stacks, cuts, presses and heats the carbon fiber tape T on the protective film 12 to produce a reinforcing panel (P, see FIG. 6).
  • the automatic stacking unit 20 is composed of a supply unit 21, a robot unit 22, and a head unit 23.
  • the supply part 21 loads the thermoplastic carbon fiber tape T and supplies it to the head part 23.
  • the supply unit 21 is composed of a frame, a cover, a bobbin, a motor, a power source, an electric wire, etc.
  • the supply unit 21 can be configured in various ways using a known technique.
  • thermoplastic carbon fiber tape (T) is composed of a carbon fiber and a thermoplastic resin.
  • Carbon fibers are arranged in one direction.
  • the thermoplastic resin is impregnated between the carbon fibers.
  • PPS, PEI, PEEK, PEKK, etc. are used as the thermoplastic resin.
  • Thermoplastic resins have higher toughness than thermosetting resins, and thus have high damage resistance and shock absorption capacity. Therefore, it is suitable for manufacturing aircraft thermoplastic reinforcement panels.
  • the thermoplastic resin can be melted repeatedly so that it can be reformed and has a high use temperature (180 ° C).
  • the thermoplastic resin has the advantages of excellent non-combustibility, faster processing time (within minutes) than the thermosetting resin, and storage at room temperature. Due to these advantages, the present invention uses a thermoplastic carbon fiber tape (T).
  • the robot part 22 moves the head part 23 to a position set on the protective film 12.
  • the robot unit 22 is composed of a frame, a cover, a motor, a link, a power source, an electric wire, a cable bearing, etc.
  • the robot unit 22 can be configured in various ways using known techniques.
  • the head part 23 repeats lamination by cutting, heating and pressing the thermoplastic carbon fiber tape T on the protective film 12. Then, an aircraft thermoplastic reinforcement panel having a shape and thickness set on the protective film 12 is made.
  • the head portion 23 is composed of a cutting portion 23a, a laser portion 23b, and a pressing portion 23c.
  • the cutting portion 23a cuts the thermoplastic carbon fiber tape T.
  • the cutting portion 23a is composed of a frame, a cover, a blade, a motor, a link, a power source, an electric wire, etc.
  • the cutting portion 23a can be configured in various ways using a known technique.
  • the laser unit 23b heats the thermoplastic carbon fiber tape T by irradiating the laser L with the thermoplastic carbon fiber tape T. Then, the thermoplastic resin in the thermoplastic carbon fiber tape (T) melts.
  • the laser part 23b is composed of a frame, a cover, a laser generator, a power source, an electric wire, a cable bearing, etc.
  • the laser part 23b can be configured in various ways using a known technique.
  • the laser unit 23b adjusts the laser power according to the speed at which the robot unit 22 moves the head unit 23. The reason for this is as follows.
  • the robot part 22 increases the speed of the head part 23 in a gentle section of the reinforcement panel.
  • the robot part 22 reduces the speed of the head part 23 in a sudden shape change section of the reinforcement panel.
  • the laser power may be melted within a short time by increasing the laser output, and in the section where the speed is slow, the laser output may be lowered to melt the thermoplastic resin with a relatively long time.
  • the output of the laser is increased to 4500 W, and the speed of the head portion 23 (0.1 m / sec), the laser power is lowered by 3500W in the slow section.
  • the pressing portion 23c presses the heated thermoplastic carbon fiber tape T.
  • the pressing portion 23c is composed of a frame, a cover, a roller, a motor, a power source, an electric wire, etc.
  • the pressing portion 23c can be configured in various ways using a known technique.
  • FIGS. 1, 2 and 5 basically.
  • the control unit 14 causes the planar heating elements 13a, 13b, and 13c to generate high heat.
  • the control unit 14 causes the planar heating elements (13g, 13h, 13i) of the relatively thin portion t2 to generate lower heat than the planar heating elements (13a, 13b, 13c).
  • the control unit 14 provides the medium heat of the heat generated by the planar heating elements 13a, 13b, 13c and the planar heating elements 13 (13g, 13h, 13i) to the planar heating elements 13d, 13e, 13f located at an intermediate thickness. Cause it to occur.
  • the controller 14 pre-stores the shape (thickness) data of the reinforcing panel P to be manufactured before operation.
  • the automatic stacking unit 20 is laminated with a carbon fiber tape (T) on a protective film (12) placed on the mold plate (11) in a state in which the temperature difference between the upper side and the lower side of the reinforcing panel (P) being manufactured is reduced.
  • Reinforcement panel (P) is produced by cutting, pressing and heating.
  • the temperature of the planar heating elements 13 may be adjusted by measuring the real-time temperature of the reinforcing panel P being manufactured.
  • a temperature sensor is installed on the upper side of each section of the mold plate 11.
  • the control unit 14 receives the temperature of the reinforcing panel P being manufactured from the temperature sensor in real time, and in response to the thickness of the reinforcing panel P being manufactured, the temperature of the planar heating elements 13 more precisely Can be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

An aircraft thermoplastic reinforcement panel manufacturing apparatus according to the present invention comprises: a mold unit including a mold plate, a protective film placed on the mold plate, planar heating elements each installed on the lower surface of the mold plate in each zone of the mold plate, and a control unit controlling the temperature for each zone of the mold plate by adjusting the temperature of each of the planar heating elements; and an automatic lamination unit for generating a reinforcement panel by laminating, cutting, pressing, and heating a thermoplastic carbon fiber tape on the protective film placed on the mold plate.

Description

항공기 열가소성 보강판넬 제조장치 및 방법Aircraft thermoplastic reinforcement panel manufacturing equipment and method
본 발명은 항공기 열가소성 보강판넬 제조장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for manufacturing an aircraft thermoplastic reinforcement panel.
일반적으로 항공기 열가소성 보강판넬은 소정 형상의 몰드에 점착성(TACK)이 없는 열가소성 UD 테이프(Tape) 또는, B-Stage 상태인 세미 프리프레그(semiprege)가 적층되어 형성된 프리폼이 가압 및 가열되어 만들어진다.In general, the thermoplastic reinforcing panel of an aircraft is made by pressing and heating a preform formed by laminating a thermoplastic UD tape (TACK) having no adhesive (TACK) to a mold of a predetermined shape or a semi-preg in a B-Stage state.
열가소성 보강판넬을 제조하기 위해서는 프리폼을 가열한 후 상부와 하부 몰드에 위치하고 가압한다.In order to manufacture the thermoplastic reinforcing panel, the preform is heated and placed in the upper and lower molds and pressed.
이렇게, 프리폼의 사전 가열이 필요하고 하부몰드와 상부몰드를 모두 써서 항공기 열가소성 보강 판넬을 만들기 때문에, 항공기 열가소성 보강판넬의 형상에 대응하는 가열시스템과 하부몰드와 상부몰드를 모두 제작해야 했고, 이로 인해 항공기 열가소성 보강판넬의 생산성이 떨어졌다.In this way, pre-heating of the preform is required and both the lower mold and the upper mold are used to make an aircraft thermoplastic reinforcement panel, so a heating system corresponding to the shape of the aircraft thermoplastic reinforcement panel and both the lower mold and the upper mold had to be manufactured. The productivity of the aircraft thermoplastic reinforcing panel was reduced.
한편, 항공기 열가소성 보강판넬은 부위별로 두께가 다르기 때문에, 지금처럼 하부몰드와 상부몰드 사이에서 프리폼을 두고, 열가소성 수지의 녹는점(melting point) 보다 +50℃로 가열하고 가압하면, 두께가 두꺼운 프리프레그 부분(보강판넬 두꺼운 부위가 될 부분)의 열이 덜 전달되고, 두께가 얇은 프리프레그 부분(보강판넬 얇은 부위가 될 부분)에는 열이 많이 전달된다.On the other hand, since the aircraft thermoplastic reinforcing panel has a different thickness for each part, if the preform is placed between the lower mold and the upper mold, and heated to + 50 ° C than the melting point of the thermoplastic resin and pressurized, the thick prep is thick. Less heat is transferred to the leg portion (the portion to be thickened in the reinforcement panel), and a lot of heat is transferred to the thin prepreg portion (the portion to be thinned in the reinforcement panel).
이러한 불균일한 열전달로 인해, 최종제품인 항공기 열가소성 보강판넬에 잔류응력이 남고, 열가소성수지의 결정화가 이루어지지 못해 불량의 항공기 열가소성 보강판넬이 만들어진다. 이러한 문제점은 금형에 열가소성 UD 테이프(Tape) 또는 B-Stage 상태인 세미 프리프레그(semiprege)를 적층되어 형성된 프리폼을 넣고 진공, 가압, 가열을 가하여 수지를 경화(consolidation)시켜 보강판넬을 만드는 오토클레이브(autoclave)방법에서도 동일하게 발생한다.Due to this non-uniform heat transfer, residual stress remains in the thermoplastic thermoplastic reinforcement panel, which is the final product, and crystallization of the thermoplastic resin cannot be achieved, resulting in a defective thermoplastic thermoplastic reinforcement panel. These problems are caused by laminating a thermoplastic UD tape or a B-Stage semiprepreg in a mold, and forming a reinforcing panel by consolidating the resin by applying vacuum, pressure, and heating. The same happens in the (autoclave) method.
본 발명의 목적은 상술한 문제점을 해결할 수 있는 항공기 열가소성 보강판넬 제조장치 및 방법을 제공하는 데 있다.An object of the present invention is to provide an aircraft thermoplastic reinforcement panel manufacturing apparatus and method that can solve the above-described problems.
상기 목적을 달성하기 위한 항공기 열가소성 보강판넬 제조장치는,Aircraft thermoplastic reinforcement panel manufacturing apparatus for achieving the above object,
몰드판과, 상기 몰드판 위에 놓인 보호필름, 상기 몰드판 하면에 상기 몰드판의 구역별로 각각 설치된 면상발열체들과, 상기 면상발열체들 각각의 온도를 조절하여 상기 몰드판의 구역별로 온도를 제어하는 제어부를 포함하는 몰드유닛; 및The mold plate, the protective film placed on the mold plate, and the planar heating elements respectively installed for each zone of the mold plate on the lower surface of the mold plate, and controlling the temperature of each of the planar heating elements to control the temperature for each zone of the mold plate. A mold unit including a control unit; And
상기 몰드판 위에 놓인 보호필름 상에, 열가소성 탄소섬유테이프를 적층, 컷팅, 가압, 가열하여 보강판넬을 만들어내는 자동적층유닛을 포함하는 것을 특징으로 한다.On the protective film placed on the mold plate, it is characterized in that it comprises an automatic laminating unit for laminating, cutting, pressing and heating a thermoplastic carbon fiber tape to produce a reinforcing panel.
상기 목적을 달성하기 위한 항공기 열가소성 보강판넬 제조방법은,Aircraft thermoplastic reinforcement panel manufacturing method for achieving the above object,
몰드판과, 상기 몰드판 위에 놓인 보호필름, 상기 몰드판 하면에 상기 몰드판의 구역별로 각각 설치된 면상발열체들과, 상기 면상발열체들 각각의 온도를 조절하여 상기 몰드판의 구역별로 온도를 제어하는 제어부를 포함하는 몰드유닛; 및 상기 몰드판 위에 놓인 보호필름 상에, 열가소성 탄소섬유테이프를 적층, 컷팅, 가압, 가열하여 보강판넬을 만들어내는 자동적층유닛으로 구성된 항공기 열가소성 보강판넬 제조장치로 항공기 열가소성 보강판넬을 제조하는 방법에 있어서,The mold plate, the protective film placed on the mold plate, and the planar heating elements respectively installed for each zone of the mold plate on the lower surface of the mold plate, and controlling the temperature of each of the planar heating elements to control the temperature for each zone of the mold plate. A mold unit including a control unit; And on the protective film placed on the mold plate, a thermoplastic carbon fiber tape is laminated, cut, pressurized, heated to produce a reinforced panel by the aircraft thermoplastic reinforcement panel manufacturing apparatus consisting of an aircraft thermoplastic reinforcement panel manufacturing method In,
제조 중인 보강판넬의 상측과 하측의 온도 차이를 줄이기 위해, 상기 제어부가, 상기 면상발열체들 각각의 온도를 조절하여 상기 몰드판의 구역별로 온도를 제어하는 단계; 및In order to reduce the temperature difference between the upper side and the lower side of the reinforcing panel being manufactured, controlling the temperature for each zone of the mold plate by adjusting the temperature of each of the planar heating elements; And
상기 자동적층유닛이, 제조 중인 보강판넬의 상측과 하측의 온도 차이가 줄인 상태에서, 상기 열가소성 탄소섬유테이프를 상기 보호필름 상에 적층, 컷팅, 가압, 가열하는 단계를 포함하는 것을 특징으로 한다.The automatic lamination unit is characterized in that it comprises a step of laminating, cutting, pressing and heating the thermoplastic carbon fiber tape on the protective film in a state in which the temperature difference between the upper side and the lower side of the reinforcing panel being manufactured is reduced.
본 발명을 사용하면, 자동적층유닛으로 몰드판 위에 놓인 보호필름 위에 항공기 보강 판넬을 직접 만들어낸다. 따라서, 가열시스템 및 하부몰드를 덮는 상부몰드가 필요 없어, 생산성이 향상된다.When the present invention is used, the aircraft reinforcement panel is directly made on the protective film placed on the mold plate by the automatic lamination unit. Therefore, there is no need for an upper mold covering the heating system and the lower mold, thereby improving productivity.
본 발명을 사용하면, 자동적층유닛의 헤드부의 속도에 따라 레이저 출력을 조절하여, 항공기 열가소성 보강판넬을 신속하게 만들어낼 수 있다.By using the present invention, it is possible to rapidly produce an aircraft thermoplastic reinforcement panel by adjusting the laser power according to the speed of the head portion of the automatic lamination unit.
본 발명을 사용하면, 제조 중인 항공기 열가소성 보강판넬의 상측과 하측의 온도 차이를 줄여, 항공기 열가소성 보강판넬에 잔류응력이 남는 것을 없앨 수 있다. 따라서, 고품질의 항공기 열가소성 보강판넬을 만들어낼 수 있다.By using the present invention, it is possible to reduce the temperature difference between the upper side and the lower side of the thermoplastic reinforcing panel during manufacture, thereby eliminating residual residual stress in the thermoplastic reinforcing panel of the aircraft. Therefore, a high quality aircraft thermoplastic reinforcement panel can be produced.
본 발명을 사용하면, 보강판넬의 하측과 상측의 온도차이가 줄어들어, 결정화도(crystallinity)를 안정적으로 향상시켜 층간 접착력을 강화시킬 수 있다.When using the present invention, the temperature difference between the lower side and the upper side of the reinforcing panel is reduced, so that the crystallinity can be stably improved to enhance the interlayer adhesion.
본 발명을 사용하면, 열가소성 탄소섬유테이프 간의 접착력이 향상되어 보강판넬을 제조하는 속도를 높일 수 있다.When using the present invention, the adhesion between the thermoplastic carbon fiber tape is improved, it is possible to increase the speed of manufacturing the reinforcing panel.
본 발명을 사용하면, 끈적임이 부족한 열가소성 탄소섬유테이프를 사용하더라도, 보호필름과의 접착력을 높일 수 있다.By using the present invention, even if a thermoplastic carbon fiber tape lacking stickiness is used, it is possible to increase the adhesive strength with the protective film.
본 발명을 사용하면, 높은 인성을 가진 열가소성 탄소섬유테이프로 항공기 열가소성 보강판넬을 만들 수 있어, 항공기 열가소성 보강판넬이 높은 손상 저항과 충격 흡수 능력을 가질 수 있다.By using the present invention, an aircraft thermoplastic reinforcement panel can be made of a thermoplastic carbon fiber tape having high toughness, so that the aircraft thermoplastic reinforcement panel can have high damage resistance and shock absorption capability.
도 1은 본 발명의 일 실시예에 따른 항공기 열가소성 보강판넬 제조장치를 나타낸 도면이다.1 is a view showing an aircraft thermoplastic reinforcement panel manufacturing apparatus according to an embodiment of the present invention.
도 2는 도 1에 도시된 몰드유닛을 위에서 내려다 본 도면이다.FIG. 2 is a view of the mold unit shown in FIG. 1 looking down from above.
도 3은 제1변형예에 따른 몰드유닛을 나타낸 도면으로, 도 3(a)는 위에서 내려다 본 도면이고, 도 3(b)는 측면에서 바라본 도면이다.3 is a view showing a mold unit according to a first modification, FIG. 3 (a) is a view looking down, and FIG. 3 (b) is a view seen from the side.
도 4는 제2변형예에 따른 몰드유닛을 나타낸 도면으로, 도 4(a)는 위에서 내려다 본 도면이고, 도 4(b)는 측면에서 바라본 도면이다.Figure 4 is a view showing a mold unit according to a second modification, Figure 4 (a) is a view looking down from above, Figure 4 (b) is a view viewed from the side.
도 5는 도 1에 도시된 자동적층유닛의 헤드부를 나타낸 도면이다.5 is a view showing a head portion of the automatic stacking unit shown in FIG.
도 6은 도 1에 도시된 자동적층유닛이 몰드판 위에 놓인 보호필름 상에, 탄소섬유테이프를 적층, 컷팅, 가압, 가열하여 항공기 열가소성 보강판넬을 만드는 상태를 나타낸 도면이다.FIG. 6 is a view showing a state in which the automatic lamination unit shown in FIG. 1 forms a thermoplastic reinforcement panel for an aircraft by laminating, cutting, pressing, and heating carbon fiber tape on a protective film placed on a mold plate.
도 7은 도 6에 도시된 몰드판의 온도분포를 나타낸 도면이다.7 is a view showing the temperature distribution of the mold plate shown in FIG.
이하, 본 발명의 일 실시예에 따른 항공기 열가소성 보강판넬 제조장치를 자세히 설명한다.Hereinafter, an apparatus for manufacturing an aircraft thermoplastic reinforcement panel according to an embodiment of the present invention will be described in detail.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 항공기 열가소성 보강판넬 제조장치(1)는, 몰드유닛(10), 자동적층유닛(20)으로 구성된다.As shown in Figure 1, the aircraft thermoplastic reinforcement panel manufacturing apparatus 1 according to an embodiment of the present invention, is composed of a mold unit 10, an automatic lamination unit 20.
몰드유닛(10)은, 몰드판(11), 보호필름(12), 면상발열체들(13), 제어부(14)로 구성된다.The mold unit 10 is composed of a mold plate 11, a protective film 12, planar heating elements 13, and a control unit 14.
몰드판(11)은 세라믹이나 금속 재질로 만들어진다. 몰드판(11) 위에 자동적층유닛(20)으로 항공기 열가소성 보강판넬을 직접 만들어내므로, 몰드판(11)을 덮어 몰드판(11)과 함께, 그 내부에서 항공기 열가소성 보강판넬을 만들어내는 상부몰드가 필요 없다.The mold plate 11 is made of a ceramic or metal material. Since the automatic thermoplastic unit 20 is directly made on the mold plate 11 by the automatic laminating unit 20, the mold mold 11 is covered to cover the mold plate 11, and the upper mold for making the aircraft thermoplastic reinforcement panel therein. There is no need.
보호필름(12)은 몰드판(11)을 덮는다. 보호필름(12)은 열가소성 수지가 녹는 온도 350℃ 이상에서 견딜 수 있는, 폴리이미드, 테프론 등으로 만들어진다.The protective film 12 covers the mold plate 11. The protective film 12 is made of polyimide, Teflon, and the like, which can withstand temperatures above 350 ° C at which the thermoplastic resin melts.
한편, 항공기 열가소성 보강판넬의 하부를 매끈하게 만들기 위해, 보호필름(12)을 몰드판(11)에 밀착시킨다.On the other hand, in order to make the lower portion of the aircraft thermoplastic reinforcement panel smooth, the protective film 12 is brought into close contact with the mold plate 11.
이를 위해, 실런트테이프(15)를 보호필름(12)의 테두리를 따라 위치시켜 보호필름(15)의 테두리를 몰드판(11) 위에 접착시킨다. 실런트테이프(15)로 인해 몰드판(11)과 보호필름(12) 사이에 공간(S)이 형성된다. 튜브(16)의 일단을 실런트테이프(15)를 관통하여 공간(S)내로 삽입시킨다. 튜브(16)의 타단을 진공펌프(미도시)와 연결시킨다. 튜브(16)을 통해 공간(S)에 진공이 작용하면, 보호필름(12)가 몰드판(11)에 밀착된다.To this end, the sealant tape 15 is positioned along the rim of the protective film 12 to bond the rim of the protective film 15 onto the mold plate 11. Due to the sealant tape 15, a space S is formed between the mold plate 11 and the protective film 12. One end of the tube 16 is inserted into the space S through the sealant tape 15. The other end of the tube 16 is connected to a vacuum pump (not shown). When a vacuum is applied to the space S through the tube 16, the protective film 12 is in close contact with the mold plate 11.
면상발열체들(13)은 몰드판(11)의 하면에 설치된다. 면상발열체들(13)은 몰드판(11)의 구역별로 각각 설치된다.The planar heating elements 13 are installed on the lower surface of the mold plate 11. The planar heating elements 13 are installed for each zone of the mold plate 11.
일 예로, 도 2에 도시된 바와 같이, 몰드판(11)은 A, B, C, D, E, F, G, H, I 구역으로 나뉜다.As an example, as shown in Figure 2, the mold plate 11 is divided into A, B, C, D, E, F, G, H, I zone.
면상발열체들(13)은,The planar heating elements 13,
A구역에 설치된 면상발열체(13a), B구역에 설치된 면상발열체(13b), C구역에 설치된 면상발열체(13c), D구역에 설치된 면상발열체(13d), E구역에 설치된 면상발열체(13e), F구역에 설치된 면상발열체(13f), G구역에 설치된 면상발열체(13g), H구역에 설치된 면상발열체(13h), I구역에 설치된 면상발열체(13i)로 구성된다.Planar heating element (13a) installed in zone A, planar heating element (13b) installed in zone B, planar heating element (13c) installed in zone C, planar heating element (13d) installed in zone D, planar heating element (13e) installed in zone E, It consists of a planar heating element (13f) installed in zone F, a planar heating element (13g) installed in zone G, a planar heating element (13h) installed in zone H, and a planar heating element (13i) installed in zone I.
면상발열체들(13a,13b,13c,13d,13e,13f,13g,13h,13i) 각각은, 2장의 절연층, 2장의 절연층 사이에 배치된 발열층, 발열층에 전기를 공급하는 전원부로 구성된다. 절연층은 폴리머재질이나 고무로 만들어진다. 발열층은 2장의 절연층 사이에 배치된 니크롬선 또는, 2장의 절연층의 안쪽 표면에 도포된 카본블랙 또는, 절연층 사이에 무작위로 분포된 탄소섬유들로 구성된다. 전원부가 니크롬선, 카본블랙, 탄소섬유들에 전기를 공급하면, 니크롬선, 카본블랙, 탄소섬유들은 발열한다.Each of the planar heating elements (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h, 13i) is composed of two insulating layers, a heating layer disposed between the two insulating layers, and a power supply unit that supplies electricity to the heating layer. It is composed. The insulating layer is made of polymer material or rubber. The heating layer is composed of nichrome wire disposed between two insulating layers, carbon black applied to the inner surface of the two insulating layers, or carbon fibers randomly distributed between the insulating layers. When the power supply unit supplies electricity to the nichrome wire, carbon black, and carbon fibers, the nichrome wire, carbon black, and carbon fibers generate heat.
물론, 몰드판(11)은 더 많은 구역으로 나눠질 수 있고, 이에 따라 면상발열체들(13)의 개수와 크기와 배치도 다양할 수 있다.Of course, the mold plate 11 may be divided into more zones, and accordingly, the number, size, and arrangement of the planar heating elements 13 may also vary.
제어부(14)는 면상발열체들(13) 각각의 온도를 조절하여 몰드판(11)의 구역별로 온도를 제어한다. 이를 위해, 제어부(14)는 니크롬선, 카본블랙, 탄소섬유들에 공급하는 전기의 양을 조절하여, 니크롬선, 카본블랙, 탄소섬유들의 발열량을 조절한다.The control unit 14 controls the temperature of each of the planar heating elements 13 to control the temperature for each zone of the mold plate 11. To this end, the control unit 14 controls the amount of electricity supplied to the nichrome wire, carbon black, and carbon fibers to control the heating value of the nichrome wire, carbon black, and carbon fibers.
한편, 도 3에 도시된 바와 같이, 몰드판(11)의 구역 경계에 진공흡입공(11a)들을 두어, 몰드판(11)의 구역별로 배치된 면상발열체들(13) 상호간의 열전달을 억제할 수 있다. 이로 인해, 보다 정밀하게 몰드판(11)의 구역별로 온도를 제어할 수 있다. 이렇게 몰드판(11)의 구역 경계에 진공흡입공(11a)들을 둘 경우, 도 3에 도시된 실런트테이프(15)와 튜브(16)는 필요 없게 되고, 진공흡입공(11a)들의 아래에서 튜브(미도시)가 진공흡입공(11a)들을 진공펌프(미도시)에 연결하게 된다.On the other hand, as shown in Figure 3, by placing the vacuum suction holes (11a) at the zone boundary of the mold plate 11, to suppress the heat transfer between the planar heating elements 13 arranged for each zone of the mold plate (11) Can be. For this reason, it is possible to control the temperature for each zone of the mold plate 11 more precisely. When the vacuum suction holes 11a are placed at the boundary of the mold plate 11 in this way, the sealant tape 15 and the tube 16 shown in FIG. 3 are not required, and the tubes under the vacuum suction holes 11a are removed. (Not shown) will connect the vacuum suction hole (11a) to a vacuum pump (not shown).
한편, 도 4에 도시된 바와 같이, 몰드판(11)의 구역 경계에 진공슬릿(11b)들을 두어, 몰드판(11)의 구역별로 배치된 면상발열체들(13) 상호간의 열전달을 억제할 수 있다. 이로 인해, 보다 정밀하게 몰드판(11)의 구역별로 온도를 제어할 수 있다. 이렇게 몰드판(11)의 구역 경계에 진공슬릿(11b)들을 둘 경우, 도 3에 도시된 실런트테이프(15)와 튜브(16)는 필요 없게 되고, 진공슬릿(11b)들의 아래에서 튜브(미도시)가 진공슬릿(11b)들을 진공펌프(미도시)에 연결하게 된다.On the other hand, as shown in Figure 4, by placing the vacuum slit (11b) at the zone boundary of the mold plate 11, it is possible to suppress the heat transfer between the planar heating elements 13 arranged for each zone of the mold plate (11). have. For this reason, it is possible to control the temperature for each zone of the mold plate 11 more precisely. When the vacuum slits 11b are placed at the boundary of the mold plate 11 in this way, the sealant tape 15 and the tube 16 shown in FIG. 3 are unnecessary, and the tubes (not shown) under the vacuum slits 11b are not required. City) will connect the vacuum slits 11b to a vacuum pump (not shown).
자동적층유닛(20)은 보호필름(12) 위에, 탄소섬유테이프(T)를 적층, 컷팅, 가압 및 가열하여 보강판넬(P, 도 6 참조)을 만들어낸다.The automatic lamination unit 20 stacks, cuts, presses and heats the carbon fiber tape T on the protective film 12 to produce a reinforcing panel (P, see FIG. 6).
자동적층유닛(20)은, 공급부(21), 로봇부(22), 헤드부(23)로 구성된다.The automatic stacking unit 20 is composed of a supply unit 21, a robot unit 22, and a head unit 23.
공급부(21)는 열가소성 탄소섬유테이프(T)를 적재하고 헤드부(23)로 공급한다.The supply part 21 loads the thermoplastic carbon fiber tape T and supplies it to the head part 23.
공급부(21)는 프레임, 커버, 보빈, 모터, 전원, 전선 등으로 구성되며, 이 밖에도 공급부(21)는 공지된 기술을 사용하여 다양한 구성이 가능하다.The supply unit 21 is composed of a frame, a cover, a bobbin, a motor, a power source, an electric wire, etc. In addition, the supply unit 21 can be configured in various ways using a known technique.
열가소성 탄소섬유테이프(T)는 탄소섬유와 열가소성수지로 구성된다.The thermoplastic carbon fiber tape (T) is composed of a carbon fiber and a thermoplastic resin.
탄소섬유는 일방향으로 배치된다. 열가소성수지는 탄소섬유 사이로 함침된다. 열가소성수지로 PPS, PEI, PEEK, PEKK 등이 사용된다.Carbon fibers are arranged in one direction. The thermoplastic resin is impregnated between the carbon fibers. PPS, PEI, PEEK, PEKK, etc. are used as the thermoplastic resin.
열가소성수지는 열경화성 수지에 비해서 높은 인성을 가지고 있어 높은 손상 저항과 충격 흡수 능력을 가진다. 따라서, 항공기 열가소성 보강판넬 제작에 적합하다. 또한, 열가소성수지는 반복적으로 녹일 수 있어 재 성형이 가능하고, 높은 사용온도(180℃)를 가진다. 또한, 열가소성수지는 우수한 불연성, 열경화성수지 보다 빠른 공정시간(수분 내), 실온에서 보관할 수 있는 장점을 가지고 있다. 이러한 장점으로 인해, 본 발명에서는 열가소성 탄소섬유테이프(T)를 사용한다.Thermoplastic resins have higher toughness than thermosetting resins, and thus have high damage resistance and shock absorption capacity. Therefore, it is suitable for manufacturing aircraft thermoplastic reinforcement panels. In addition, the thermoplastic resin can be melted repeatedly so that it can be reformed and has a high use temperature (180 ° C). In addition, the thermoplastic resin has the advantages of excellent non-combustibility, faster processing time (within minutes) than the thermosetting resin, and storage at room temperature. Due to these advantages, the present invention uses a thermoplastic carbon fiber tape (T).
로봇부(22)는 헤드부(23)를 보호필름(12) 위 설정된 위치로 이동시킨다.The robot part 22 moves the head part 23 to a position set on the protective film 12.
로봇부(22)는 프레임, 커버, 모터, 링크, 전원, 전선, 케이블베어 등으로 구성되며, 이 밖에도 로봇부(22)는 공지된 기술을 사용하여 다양한 구성이 가능하다.The robot unit 22 is composed of a frame, a cover, a motor, a link, a power source, an electric wire, a cable bearing, etc. In addition, the robot unit 22 can be configured in various ways using known techniques.
헤드부(23)는 보호필름(12) 위에 열가소성 탄소섬유테이프(T)를 컷팅하고 가열하고 가압하여 적층하는 것을 반복한다. 그러면, 보호필름(12) 위에 설정된 형상과 두께를 가진 항공기 열가소성 보강판넬이 만들어진다.The head part 23 repeats lamination by cutting, heating and pressing the thermoplastic carbon fiber tape T on the protective film 12. Then, an aircraft thermoplastic reinforcement panel having a shape and thickness set on the protective film 12 is made.
도 5에 도시된 바와 같이, 헤드부(23)는 컷팅부(23a), 레이저부(23b), 가압부(23c)로 구성된다.5, the head portion 23 is composed of a cutting portion 23a, a laser portion 23b, and a pressing portion 23c.
컷팅부(23a)는 열가소성 탄소섬유테이프(T)를 컷팅한다.The cutting portion 23a cuts the thermoplastic carbon fiber tape T.
컷팅부(23a)는 프레임, 커버, 칼날, 모터, 링크, 전원, 전선 등으로 구성되며, 이 밖에도 컷팅부(23a)는 공지된 기술을 사용하여 다양한 구성이 가능하다.The cutting portion 23a is composed of a frame, a cover, a blade, a motor, a link, a power source, an electric wire, etc. In addition, the cutting portion 23a can be configured in various ways using a known technique.
레이저부(23b)는 열가소성 탄소섬유테이프(T)에 레이저(L)를 조사하여 열가소성 탄소섬유테이프(T)를 가열한다. 그러면, 열가소성 탄소섬유테이프(T) 내 열가소성 수지가 녹는다.The laser unit 23b heats the thermoplastic carbon fiber tape T by irradiating the laser L with the thermoplastic carbon fiber tape T. Then, the thermoplastic resin in the thermoplastic carbon fiber tape (T) melts.
레이저부(23b)는 프레임, 커버, 레이저발생장치, 전원, 전선, 케이블베어 등으로 구성되며, 이 밖에도 레이저부(23b)는 공지된 기술을 사용하여 다양한 구성이 가능하다.The laser part 23b is composed of a frame, a cover, a laser generator, a power source, an electric wire, a cable bearing, etc. In addition, the laser part 23b can be configured in various ways using a known technique.
레이저부(23b)는 로봇부(22)가 헤드부(23)을 움직이는 속도에 따라 레이저 출력을 조절한다. 그 이유는 다음과 같다.The laser unit 23b adjusts the laser power according to the speed at which the robot unit 22 moves the head unit 23. The reason for this is as follows.
항공기 열가소성 보강판넬을 신속하게 만들어내기 위해서, 로봇부(22)는 보강판넬의 완만한 구간에서는 헤드부(23)의 속도를 높인다. 반면, 로봇부(22)는 보강판넬의 급격한 형상 변경 구간에서는 헤드부(23)의 속도를 줄인다.In order to rapidly create an aircraft thermoplastic reinforcement panel, the robot part 22 increases the speed of the head part 23 in a gentle section of the reinforcement panel. On the other hand, the robot part 22 reduces the speed of the head part 23 in a sudden shape change section of the reinforcement panel.
이 경우, 헤드부(23)의 속도가 빠른 구간에서는 레이저의 출력을 높여야 짧은 시간 내에 열가소성 수지를 녹일 수 있고, 속도가 느린 구간에서는 레이저의 출력을 낮춰야 상대적 긴 시간을 가지고 열가소성 수지를 녹일 수 있다.In this case, in the section where the head portion 23 has a high speed, the laser power may be melted within a short time by increasing the laser output, and in the section where the speed is slow, the laser output may be lowered to melt the thermoplastic resin with a relatively long time. .
따라서, 열가소성 수지가 녹을 수 있는 온도 350℃를 만들어내기 위해, 헤드부(23)의 속도(0.2m/sec)가 빠른 구간에서는 레이저의 출력을 4500W로 높이고, 헤드부(23)의 속도(0.1m/sec)가 느린 구간에서는 레이저의 출력은 3500W가 낮춘다.Therefore, in order to produce a temperature at which the thermoplastic resin can be melted at 350 ° C, in a section where the speed of the head portion 23 (0.2 m / sec) is high, the output of the laser is increased to 4500 W, and the speed of the head portion 23 (0.1 m / sec), the laser power is lowered by 3500W in the slow section.
가압부(23c)는 가열된 열가소성 탄소섬유테이프(T)를 가압한다.The pressing portion 23c presses the heated thermoplastic carbon fiber tape T.
가압부(23c)는 프레임, 커버, 롤러, 모터, 전원, 전선 등으로 구성되며, 이 밖에도 가압부(23c)는 공지된 기술을 사용하여 다양한 구성이 가능하다.The pressing portion 23c is composed of a frame, a cover, a roller, a motor, a power source, an electric wire, etc. In addition, the pressing portion 23c can be configured in various ways using a known technique.
이하, 본 발명의 일 실시예에 따른 항공기 열가소성 보강판넬 제조장치로 항공기 열가소성 보강판넬을 제조하는 방법을 자세히 설명한다.Hereinafter, a method for manufacturing an aircraft thermoplastic reinforcement panel with an apparatus for manufacturing an aircraft thermoplastic reinforcement panel according to an embodiment of the present invention will be described in detail.
도 1, 도 2, 도 5를 기본적으로 참조한다.Reference is made to FIGS. 1, 2 and 5 basically.
도 6 및 도 7에 도시된 바와 같이, 자동적층유닛(20)이 보강판넬(P)을 만들어내는 과정에서, 탄소섬유테이프(T)가 많이 적층되어 두께가 두꺼워지는 부분(t1)의 열전도도를 높이기 위해, 제어부(14)는 면상발열체(13a,13b,13c)에게 고열을 발생시키게 한다.6 and 7, in the process of the automatic lamination unit 20 making the reinforcing panel P, the thermal conductivity of the portion t1 where the thickness of the carbon fiber tape T is thickened by being stacked a lot. To increase, the control unit 14 causes the planar heating elements 13a, 13b, and 13c to generate high heat.
제어부(14)는 두께가 상대적으로 얇은 부분(t2)의 면상발열체((13g,13h,13i)에게, 면상발열체(13a,13b,13c) 보다 낮은 저열을 발생시키게 한다.The control unit 14 causes the planar heating elements (13g, 13h, 13i) of the relatively thin portion t2 to generate lower heat than the planar heating elements (13a, 13b, 13c).
제어부(14)는 중간 정도 두께에 위치된 면상발열체(13d,13e,13f)에게, 면상발열체(13a,13b,13c)와 면상발열체((13g,13h,13i)가 내는 열의 중간 정도의 열을 발생시키게 한다.The control unit 14 provides the medium heat of the heat generated by the planar heating elements 13a, 13b, 13c and the planar heating elements 13 (13g, 13h, 13i) to the planar heating elements 13d, 13e, 13f located at an intermediate thickness. Cause it to occur.
이로 인해, 제조 중인 보강판넬(P)의 상측과 하측의 온도 차이가 줄어든다.Due to this, the temperature difference between the upper side and the lower side of the reinforcing panel P being manufactured is reduced.
이렇게 제조 중인 보강판넬(P)의 두께에 따라 면상발열체들(13)의 온도를 조절하기 위해, 제어부(14는 제조될 보강판넬(P)의 형상(두께) 데이터를 작업전 미리 저장해 둔다.In order to control the temperature of the planar heating elements 13 according to the thickness of the reinforcing panel P being manufactured in this way, the controller 14 pre-stores the shape (thickness) data of the reinforcing panel P to be manufactured before operation.
자동적층유닛(20)은, 제조 중인 보강판넬(P)의 상측과 하측의 온도 차이가 줄어든 상태에서, 몰드판(11) 위에 놓인 보호필름(12) 상에, 탄소섬유테이프(T)를 적층, 컷팅, 가압, 가열하여 보강판넬(P)을 만들어 낸다.The automatic stacking unit 20 is laminated with a carbon fiber tape (T) on a protective film (12) placed on the mold plate (11) in a state in which the temperature difference between the upper side and the lower side of the reinforcing panel (P) being manufactured is reduced. , Reinforcement panel (P) is produced by cutting, pressing and heating.
한편, 제조중인 보강판넬(P)의 실시간 온도를 측정하여 면상발열체들(13)의 온도를 조절할 수도 있다. 이를 위해, 몰드판(11)의 구역 마다 그 상측에 온도센서를 설치한다. 이 경우, 제어부(14)는 온도센서로부터 제조중인 보강판넬(P)의 온도를 실시간으로 전달받아, 제조중인 보강판넬(P)의 두께에 대응하여, 보다 정밀하게 면상발열체들(13)의 온도를 조절할 수 있다.Meanwhile, the temperature of the planar heating elements 13 may be adjusted by measuring the real-time temperature of the reinforcing panel P being manufactured. To this end, a temperature sensor is installed on the upper side of each section of the mold plate 11. In this case, the control unit 14 receives the temperature of the reinforcing panel P being manufactured from the temperature sensor in real time, and in response to the thickness of the reinforcing panel P being manufactured, the temperature of the planar heating elements 13 more precisely Can be adjusted.

Claims (5)

  1. 몰드판과, 상기 몰드판 위에 놓인 보호필름, 상기 몰드판 하면에 상기 몰드판의 구역별로 각각 설치된 면상발열체들과, 상기 면상발열체들 각각의 온도를 조절하여 상기 몰드판의 구역별로 온도를 제어하는 제어부를 포함하는 몰드유닛; 및The mold plate, the protective film placed on the mold plate, and the planar heating elements respectively installed for each zone of the mold plate on the lower surface of the mold plate, and controlling the temperature of each of the planar heating elements to control the temperature for each zone of the mold plate. A mold unit including a control unit; And
    상기 몰드판 위에 놓인 보호필름 상에, 열가소성 탄소섬유테이프를 적층, 컷팅, 가압, 가열하여 보강판넬을 만들어내는 자동적층유닛을 포함하는 것을 특징으로 하는 항공기 열가소성 보강판넬 제조장치.On the protective film placed on the mold plate, a thermoplastic carbon fiber tape is laminated, cut, pressurized, and heated to produce an automatic lamination unit for making a reinforcing panel.
  2. 제1항에 있어서, 상기 몰드유닛에는,According to claim 1, The mold unit,
    상기 몰드판을 덮는 보호필름; 상기 몰드판의 테두리에 상기 보호필름을 붙이는 실런트테이프; 및 상기 실런트테이프를 관통하여, 상기 몰드판과 상기 보호필름 사이에 형성된 공간에 일단이 삽입되고, 타단이 진공펌프와 연결된 튜브를 더 포함하는 것을 특징으로 하는 항공기 열가소성 보강판넬 제조장치.A protective film covering the mold plate; A sealant tape for attaching the protective film to the rim of the mold plate; And a tube inserted through the sealant tape and inserted into a space formed between the mold plate and the protective film, and the other end connected to a vacuum pump.
  3. 제2항에 있어서, 상기 자동적층유닛에는,According to claim 2, The automatic stacking unit,
    열가소성 탄소섬유테이프를 적재하고 공급하는 공급부;Supply section for loading and supplying a thermoplastic carbon fiber tape;
    상기 몰드판 위에 상기 열가소성 탄소섬유테이프를 컷팅하여 올려놓고 가열하고 가압하여 적층하는 것을 반복하는 헤드부; 및A head portion for repeating lamination by heating, pressing, and stacking the thermoplastic carbon fiber tape on the mold plate; And
    상기 헤드부를 상기 보호필름 위 설정된 위치로 이동시키는 로봇부를 포함하는 것을 특징으로 하는 항공기 열가소성 보강판넬 제조장치.Aircraft thermoplastic reinforcement panel manufacturing apparatus comprising a robot portion for moving the head portion to a predetermined position on the protective film.
  4. 제3항에 있어서, 상기 헤드부는,According to claim 3, The head portion,
    상기 열가소성 탄소섬유테이프를 컷팅하여 올려놓는 컷팅부;A cutting unit for cutting and placing the thermoplastic carbon fiber tape;
    상기 컷팅된 열가소성 탄소섬유테이프에 레이저를 조사하여 가열하는 레이저부; 및A laser unit that irradiates and cuts the cut thermoplastic carbon fiber tape to heat it; And
    상기 레이저가 조사되어 가열된 열가소성 탄소섬유테이프를 가압하는 가압부로 구성된 것을 특징으로 하는 항공기 열가소성 보강판넬 제조장치.Aircraft thermoplastic reinforcement panel manufacturing apparatus, characterized in that it consists of a pressing portion for pressing the heated thermoplastic carbon fiber tape is irradiated with the laser.
  5. 몰드판과, 상기 몰드판 위에 놓인 보호필름, 상기 몰드판 하면에 상기 몰드판의 구역별로 각각 설치된 면상발열체들과, 상기 면상발열체들 각각의 온도를 조절하여 상기 몰드판의 구역별로 온도를 제어하는 제어부를 포함하는 몰드유닛; 및 상기 몰드판 위에 놓인 보호필름 상에, 열가소성 탄소섬유테이프를 적층, 컷팅, 가압, 가열하여 보강판넬을 만들어내는 자동적층유닛으로 구성된 항공기 열가소성 보강판넬 제조장치로 항공기 열가소성 보강판넬을 제조하는 방법에 있어서,The mold plate, the protective film placed on the mold plate, and the planar heating elements respectively installed for each zone of the mold plate on the lower surface of the mold plate, and controlling the temperature of each of the planar heating elements to control the temperature for each zone of the mold plate. A mold unit including a control unit; And on the protective film placed on the mold plate, a thermoplastic carbon fiber tape is laminated, cut, pressurized, heated to produce a reinforced panel by the aircraft thermoplastic reinforcement panel manufacturing apparatus consisting of an aircraft thermoplastic reinforcement panel manufacturing method In,
    제조 중인 보강판넬의 상측과 하측의 온도 차이를 줄이기 위해, 상기 제어부가, 상기 면상발열체들 각각의 온도를 조절하여 상기 몰드판의 구역별로 온도를 제어하는 단계; 및In order to reduce the temperature difference between the upper side and the lower side of the reinforcing panel being manufactured, controlling the temperature for each zone of the mold plate by adjusting the temperature of each of the planar heating elements; And
    상기 자동적층유닛이, 제조 중인 보강판넬의 상측과 하측의 온도 차이가 줄인 상태에서, 상기 열가소성 탄소섬유테이프를 상기 보호필름 상에 적층, 컷팅, 가압, 가열하는 단계를 포함하는 것을 특징으로 하는 항공기 열가소성 보강판넬 제조방법.The automatic lamination unit, the temperature difference between the upper side and the lower side of the reinforcing panel being manufactured, comprising the step of laminating, cutting, pressing and heating the thermoplastic carbon fiber tape on the protective film. Thermoplastic reinforcement panel manufacturing method.
PCT/KR2019/013494 2018-10-30 2019-10-15 Aircraft thermoplastic reinforcement panel manufacturing apparatus and method WO2020091267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0130539 2018-10-30
KR1020180130539A KR102127736B1 (en) 2018-10-30 2018-10-30 Apparatus and method for manufacturing thermoplastic reinforced panel of aircraft

Publications (1)

Publication Number Publication Date
WO2020091267A1 true WO2020091267A1 (en) 2020-05-07

Family

ID=70462294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013494 WO2020091267A1 (en) 2018-10-30 2019-10-15 Aircraft thermoplastic reinforcement panel manufacturing apparatus and method

Country Status (2)

Country Link
KR (1) KR102127736B1 (en)
WO (1) WO2020091267A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102322411B1 (en) * 2020-11-02 2021-11-05 재단법인 한국탄소산업진흥원 Aircraft Wing End Composite Structure Manufacturing Equipment
KR102340607B1 (en) * 2020-11-02 2021-12-17 재단법인 한국탄소산업진흥원 Carbon Fiber Reinforced Thermoplastic Reinforcement Panel Manufacturing Equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293895A (en) * 1992-04-20 1993-11-09 Dainippon Printing Co Ltd Device and method for laminated molding with vacuum press
US20100072665A1 (en) * 2007-03-30 2010-03-25 Pioneer Corporation Thermal imprinting device and thermal imprinting method
JP2012506804A (en) * 2008-11-05 2012-03-22 アストン マーティン ラゴンダ リミテッド Manufacturing of structural composite elements
JP2016135590A (en) * 2014-12-22 2016-07-28 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー Device for heating composite material with temperature-dependent processing characteristics, and associated methods
JP2018149729A (en) * 2017-03-13 2018-09-27 東レエンジニアリング株式会社 Fiber bundle sticking device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934802B2 (en) 1976-12-28 1984-08-24 伸洋 道前 waist lining

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293895A (en) * 1992-04-20 1993-11-09 Dainippon Printing Co Ltd Device and method for laminated molding with vacuum press
US20100072665A1 (en) * 2007-03-30 2010-03-25 Pioneer Corporation Thermal imprinting device and thermal imprinting method
JP2012506804A (en) * 2008-11-05 2012-03-22 アストン マーティン ラゴンダ リミテッド Manufacturing of structural composite elements
JP2016135590A (en) * 2014-12-22 2016-07-28 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー Device for heating composite material with temperature-dependent processing characteristics, and associated methods
JP2018149729A (en) * 2017-03-13 2018-09-27 東レエンジニアリング株式会社 Fiber bundle sticking device

Also Published As

Publication number Publication date
KR20200050479A (en) 2020-05-12
KR102127736B1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2021107340A1 (en) Automatic fiber lamination apparatus and thermoplastic reinforced panel for aircraft manufactured thereby
WO2020091267A1 (en) Aircraft thermoplastic reinforcement panel manufacturing apparatus and method
US5126000A (en) Method and apparatus of molding laminated plates
US4560428A (en) System and method for producing cured composites
EP3461620B1 (en) Method for the resistance welding of fibre-composite components to give a fibre-composite structure, fibre-composite structure and fibre-composite component
US4909886A (en) Process for producing copper-clad laminate
WO2011102679A2 (en) High frequency induction heating double steel belt press apparatus
GB2108427A (en) Continuous production of copper clad laminates
US8181334B2 (en) Method for producing windings for a dry-type transformer
IT201800020524A1 (en) ELECTROMAGNETIC INDUCTION WELDING DEVICE FOR JOINING COMPOSITE MATERIALS AND RELATIVE JOINT METHOD
EP0207938B1 (en) Method and apparatus for producing fiber-reinforced plastics bodies
CN106457699A (en) Process and installation for producing a composite material part
WO1997048108A1 (en) Apparatus and method for preparing flame-proof flat cables
WO2019107579A1 (en) Fiber stacking apparatus and method for manufacturing direct preform
JPH02188240A (en) Manufacture of fiber-reinforced thermoplastic composite-metal foil laminate
WO2021132752A1 (en) Preform molding apparatus for manufacturing composite material and preform molding method for manufacturing composite material
WO2020111723A1 (en) Apparatus for manufacturing carbon fiber fabric sheet
CA2990786A1 (en) Fiber reinforced composite member molding apparatus
JP2000503258A (en) Apparatus for heating press tool, press having such apparatus, and manufacturing method
WO2022196903A1 (en) Thermoplastic filament winding apparatus and method
EP4238743A1 (en) Method for bonding two fiber composite components with each other to form a fiber composite structure
JP3396491B2 (en) Method for producing prepreg for bonding sheet and method for producing multilayer printed wiring board
RU2359353C1 (en) Coil windings with resin insulation, not involving moulding
EP3498471B1 (en) Method of consolidating a wound body
CN115056507A (en) Method and system for controlling fusion and infiltration quality of structural member resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879016

Country of ref document: EP

Kind code of ref document: A1